
Chapter 4
Lower Bounds on Box Counting

Consider a box counting heuristic using radius-based boxes, e.g., Maximum
Excluded Mass Burning. There is no guarantee that the computed B

R
(r) is minimal

or even near minimal. However, if a lower bound on B
R
(r) is available, we can

immediately determine the deviation from optimality for the calculated B
R
(r). A

method that provides a lower bound B L

R
(r) on B

R
(r) is presented in [44]. The

lower bound is computed by formulating box counting as an uncapacitated facility
location problem (UFLP), a classic combinatorial optimization problem. This
formulation provides, via the dual of the linear programming relaxation of UFLP, a
lower bound on B

R
(r). The method also yields an estimate of B

R
(r); this estimate is

an upper bound on B
R
(r). Under the assumption that B

R
(r) = a(2r + 1)−d

B holds
for some positive constant a and some range of r , a linear program [6], formulated
using the upper and lower bounds on B

R
(r), provides an upper and lower bound on

d
B

. In the event that the linear program is infeasible, a quadratic program [18] can
be used to estimate d

B
.

4.1 Mathematical Formulation

Let the box radius r be fixed. For simplicity we will refer to node j rather than node
n
j
. Define N ≡ {1, 2, · · · , N}. Let Cr be the symmetric N by N matrix defined by

Cr
ij =

{
0 if dist (i, j) ≤ r,

∞ otherwise.

(As with the matrix Mr
ij defined by (3.1), the superscript r in Cr

ij does not mean the
r-th power of the matrix C.) For example, for r = 1, the matrix Cr corresponding
to the network of Fig. 4.1 is

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
E. Rosenberg, A Survey of Fractal Dimensions of Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_4

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90047-6_4&domain=pdf
https://doi.org/10.1007/978-3-319-90047-6_4

30 4 Lower Bounds on Box Counting

Fig. 4.1 Example network
with seven nodes and
eight arcs

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − − − − 0
0 0 0 − − − −
− 0 0 0 − − 0
− − 0 0 0 − −
− − − 0 0 0 −
− − − − 0 0 0
0 − 0 − − 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a dash “–” is used to indicate the value ∞.
For j ∈ N, let

y
j

=
{

1 if the box centered at j is used to cover G,

0 otherwise.

A given node i will, in general, be within distance r of more than one center node j

used in the covering of G. However, we will assign each node i to exactly one node
j , and the variables x

ij
specify this assignment. For i, j ∈ N, let

x
ij

=
{

1 if i is assigned to the box centered at j,

0 otherwise.

With the understanding that r is fixed, for simplicity we write c
ij

to denote element
(i, j) of the matrix Cr . The minimal network covering problem is

minimize
N∑

j=1

y
j

+
N∑

i=1

N∑
j=1

c
ij
x
ij

(4.1)

subject to
N∑

j=1

x
ij

= 1 for i ∈ N (4.2)

x
ij

≤ y
j

for i, j ∈ N (4.3)

4.1 Mathematical Formulation 31

x
ij

≥ 0 for i, j ∈ N (4.4)

y
j

= 0 or 1 for j ∈ N. (4.5)

Let UFLP denote the optimization problem defined by (4.1)–(4.5). Constraint (4.2)
says that each node must be assigned to the box centered at some j . Constraint (4.3)
says that node i can be assigned to the box centered at j only if that box is used in
the covering, i.e., only if y

j
= 1. The objective function is the sum of the number

of boxes in the covering and the total cost of assigning each node to a box. Problem
UFLP is feasible since we can always set y

i
= 1 and x

ii
= 1 for i ∈ N; i.e., let

each node be the center of a box in the covering. Given a set of binary values of y
j

for j ∈ N, since each c
ij

is either 0 or ∞, if there is a feasible assignment of nodes
to boxes then the objective function value is the number of boxes in the covering;
if there is no feasible assignment for the given y

j
values then the objective function

value is ∞. Note that UFLP requires only x
ij

≥ 0; it is not necessary to require
x
ij

to be binary. This relaxation is allowed since if (x, y) solves UFLP then the
objective function value is not increased, and feasibility is maintained, if we assign
each i to exactly one k (where k depends on i) such that y

k
= 1 and c

ik
= 0.

The primal linear programming relaxation PLP of UFLP is obtained by
replacing the restriction that each y

j
is binary with the constraint y

j
≥ 0. We

associate the dual variable u
i

with the constraint
∑N

j=1 x
ij

= 1, and the dual variable
w

ij
with the constraint x

ij
≥ 0. The dual linear program [18] DLP corresponding

to PLP is

maximize
N∑

i=1

u
i

subject to
N∑

i=1

w
ij

≤ 1 for j ∈ N

u
i
− w

ij
≤ c

ij
for i, j ∈ N

w
ij

≥ 0 for i, j ∈ N.

Following [11], we set w
ij

= max{0, u
i
− c

ij
} and express DLP using only the u

i

variables:

maximize
N∑

i=1

u
i

(4.6)

subject to
N∑

i=1

max{0, u
i
− c

ij
} ≤ 1 for j ∈ N. (4.7)

32 4 Lower Bounds on Box Counting

Let v(UFLP) be the optimal objective function value of UFLP. Then B
R
(r) =

v(UFLP). Let v(PLP) be the optimal objective function value of the linear
programming relaxation PLP. Then v(UFLP) ≥ v(PLP). Let v(DLP) be
the optimal objective function value of the dual linear program DLP. By linear
programming duality theory, v(PLP) = v(DLP). Define u ≡ (u1, u2, · · · , u

N
). If

u is feasible for DLP as defined by (4.6) and (4.7), then the dual objective function∑N
i=1 u

i
satisfies

∑N
i=1 u

i
≤ v(DLP). Combining these relations, we have

B
R
(r) = v(UFLP) ≥ v(PLP) = v(DLP) ≥

N∑
i=1

u
i
.

Thus
∑N

i=1 u
i

is a lower bound on B
R
(r). As described in [44], to maximize this

lower bound subject to (4.7), we use the Dual Ascent and Dual Adjustment methods
of [11]; see also [42].

4.2 Dual Ascent and Dual Adjustment

Call the N variables u1, u2, · · · , u
N

the dual variables. The Dual Ascent method
initializes u = 0 and increases the dual variables, one at a time, until constraints
(4.7) prevent any further increase in any dual variable. For i ∈ N, let Ni = {j ∈
N | c

ij
= 0}. By definition of c

ij
, we have Ni = {j |dist (i, j) ≤ r}. Note that

i ∈ Ni . From (4.7), we can increase some dual variable u
i

from 0 to 1 only if∑N
i=1 max{0, u

i
− c

ij
} = 0 for j ∈ Ni . Once we have increased u

i
then we cannot

increase u
k

for any k such that c
kj

= 0 for some j ∈ Ni . This is illustrated, for
r = 1, in Fig. 4.2, where c

ij1
= c

ij2
= c

ij3
= 0 and c

j1k1
= c

j2 k2
= c

j2 k3
= 0. Once

we set u
i
= 1, we cannot increase the dual variable associated with k1 or k2 or k3.

Recalling that δ
j

is the node degree of node j , if c
ij

= 0 then the number of dual
variables prevented by node j from increasing when we increase u

i
is at least δ

j
−1,

where we subtract 1 since u
i

is being increased from 0. In general, increasing u
i

prevents approximately at least
∑

j∈Ni
(δ

j
− 1) dual variables from being increased.

This is approximate, since there may be arcs connecting the nodes in Ni , e.g.,
there may be an arc between j1 and j2 in Fig. 4.2. However, we can ignore such

Fig. 4.2 Increasing u
i

to 1
block other dual variable
increases

4.2 Dual Ascent and Dual Adjustment 33

considerations since we use
∑

j∈Ni
(δ

j
−1) only as a heuristic metric: we pre-process

the data by ordering the dual variables in order of increasing
∑

j∈Ni
(δ

j
− 1). We

have
∑

j∈Ni
(δ

j
− 1) = 0 only if δ

j
= 1 for j ∈ Ni , i.e., only if each node in

Ni is a leaf node. This can occur only for the trivial case that Ni consists of two
nodes (one of which is i itself) connected by an arc. For any other topology we have∑

j∈Ni
(δ

j
− 1) ≥ 1. For j ∈ N, define s(j) to be the slack in constraint (4.7) for

node j , so s(j) = 1 if
∑N

i=1 max{0, u
i
− c

ij
} = 0 and s(j) = 0 otherwise.

Having pre-processed the data, we run the following Dual Ascent procedure. This
procedure is initialized by setting u = 0 and s(j) = 1 for j ∈ N. We then examine
each u

i
in the sorted order and compute γ ≡ min{s(j) | j ∈ Ni}. If γ = 0 then u

i
cannot be increased. If γ = 1 then we increase u

i
from 0 to 1 and set s(j) = 0 for

j ∈ Ni , since there is no longer slack in those constraints.
Figure 4.3 shows the result of applying Dual Ascent, with r = 1, to Zachary’s

Karate Club network [37] , which has 34 nodes and 77 arcs. In this figure, node
1 is labelled as “v1”, etc. The node with the smallest penalty

∑
j∈Ni

(δ
j

− 1) is
node 17, and the penalty (p in the figure) is 7. Upon setting u17 = 1 we have
s(17) = s(6) = s(7) = 0; these nodes are pointed to by arrows in the figure.
The node with the next smallest penalty is node 25, and the penalty is 12. Upon
setting u25 = 1 we have s(25) = s(26) = s(28) = s(32) = 0. The node with
the next smallest penalty is node 26, and the penalty is 13. However, u26 cannot be
increased, since s(25) = s(32) = 0. The node with the next smallest penalty is
node 12, and the penalty is 15. Upon setting u12 = 1 we have s(12) = s(1) = 0.
The node with the next smallest penalty is node 27, and the penalty is 20. Upon

Fig. 4.3 Results of applying Dual Ascent to Zachary’s Karate Club network

34 4 Lower Bounds on Box Counting

setting u27 = 1 we have s(27) = s(30) = s(34) = 0. No other dual variable can
be increased, and Dual Ascent halts, yielding a dual objective function value of 4,
which is the lower bound B L

R
(1) on B

R
(1).

We can now calculate the upper bound B U

R
(1). For j ∈ N, set y

j
= 1 if s(j) = 0

and y
j

= 0 otherwise. Setting y
j

= 1 means that the box of radius r centered at
node j will be used in the covering of G. For Zachary’s Karate Club network, at the
conclusion of Dual Ascent with r = 1 there are 12 values of j such that s(j) = 0;
for each of these values we set y

j
= 1.

We have shown that if u satisfies (4.7) then

N∑
i=1

u
i
= B L

R
(r) ≤ B

R
(r) ≤ B U

R
(r) =

N∑
j=1

y
j
.

If
∑N

i=1 u
i

= ∑N
j=1 y

j
then we have found a minimal covering. If

∑N
i=1 u

i
<∑N

j=1 y
j

then we use a Dual Adjustment procedure [11] to attempt to close the

gap
∑N

j=1 y
j

− ∑N
i=1 u

i
. For Zachary’s Karate Club network, for r = 1 we have∑N

j=1 y
j

− ∑N
i=1 u

i
= 8.

The Dual Adjustment procedure is motivated by the complementary slackness
optimality conditions of linear programming. Let (x, y) be feasible for PLP and
let (u,w) be feasible for DLP, where w

ij
= max{0, u

i
− c

ij
}. The complementary

slackness conditions state that (x, y) is optimal for PLP and (u,w) is optimal for
DLP if

y
j

(
N∑

i=1

max{0, u
i
− c

ij
} − 1

)
= 0 for j ∈ N (4.8)

(y
j

− x
ij
) max{0, u

i
− c

ij
} = 0 for i, j ∈ N . (4.9)

We can assume that x is binary, since as mentioned above, we can assign each i

to a single k (where k depends on i) such that y
k

= 1 and c
ik

= 0. We say that a
node j ∈ N is “open” (i.e., the box centered at node j is used in the covering of
G) if y

j
= 1; otherwise, j is “closed.” When (x, y) and u are feasible for PLP and

DLP, respectively, and x is binary, constraints (4.9) have a simple interpretation:
if for some i we have u

i
= 1 then there can be at most one open node j such that

dist (i, j) ≤ r . For suppose to the contrary that u
i
= 1 and there are two open nodes

j1 and j2 such that dist (i, j1) ≤ r and dist (i, j2) ≤ r . Then c
ij1

= c
ij2

= 0. Since

x is binary, by (4.2), either x
ij1

= 1 or x
ij2

= 1. Suppose without loss of generality

that x
ij1

= 1 and x
ij2

= 0. Then

(y
j1

− x
ij1

) max{0, u
i
− c

ij1
} = (y

j1
− x

ij1
)u

i
= 0

4.2 Dual Ascent and Dual Adjustment 35

but

(y
j2

− x
ij2

) max{0, u
i
− c

ij2
} = y

j2
u
i
= 1 ,

so complementary slackness fails to hold. This argument is easily extended to the
case where there are more than two open nodes such that dist (i, j) ≤ r . The
conditions (4.9) can also be visualized using Fig. 4.2, where c

ij1
= c

ij2
= c

ij3
= 0.

If u
i
= 1 then at most one node in the set {i, j1, j2, j3} can be open.

If B U

R
(r) > B L

R
(r), we run the following Dual Adjustment procedure to close

some nodes, and construct x, to attempt to satisfy constraints (4.9). Define

Y = {j ∈ N | y
j

= 1} ,

so Y is the set of open nodes. The Dual Adjustment procedure, which follows Dual
Ascent, has two steps.

Step 1 For i ∈ N, let α(i) be the “smallest” node in Y such that c
i,α(i)

= 0.
By “smallest” node we mean the node with the smallest node index, or the
alphabetically lowest node name; any similar tie-breaking rule can be used. If for
some j ∈ Y we have j �= α(i) for i ∈ N, then j can be closed, so we set
Y = Y − {j}. In words, if the chosen method of assigning each node to a box
in the covering results in the box centered at j never being used, then j can be
closed.

Applying Step 1 to Zachary’s Karate Club network with r = 1, using the tie-
breaking rule of the smallest node index, we have, for example, α(25) = 25,
α(26) = 25, α(27) = 27, and α(30) = 27. After computing each α(i), we can close
nodes 7, 12, 17, and 28, as indicated by the bold X next to these nodes in Fig. 4.4.
After this step, we have Y = {1, 6, 25, 26, 27, 30, 32, 34}. This step lowered the
primal objective function from 12 (since originally |Y | = 12) to 8.

Step 2 Suppose we consider closing j , where j ∈ Y . We consider the impact of
closing j on i, for i ∈ N. If j �= α(i) then closing j has no impact on i, since i is not
assigned to the box centered at j . If j = α(i) then closing j is possible only if there
is another open node β(i) ∈ Y such that β(i) �= α(i) and c

i,β(i)
= 0 (i.e., if there

is another open node, distinct from α(i), whose distance from i does not exceed r).
Thus we have the rule: close j if for i ∈ N either

j �= α(i)

or

j = α(i) and β(i) exists.

Once we close j and set Y = Y −{j} we must recalculate α(i) and β(i) (if it exists)
for i ∈ N.

36 4 Lower Bounds on Box Counting

Fig. 4.4 Closing nodes in Zachary’s Karate Club network

Applying Step 2 to Zachary’s Karate Club network with r = 1, we find that, for
example, we cannot close node 1, since 1 = α(5) and β(5) does not exist. Similarly,
we cannot close node 6, since 6 = α(17) and β(17) does not exist. We can close
node 25, since 25 = α(25) but β(25) = 26 (i.e., we can reassign node 25 from the
box centered at 25 to the box centered at 26), 25 = α(26) but β(26) = 26, 25 =
α(28) but β(28) = 34, and 25 = α(32) but β(32) = 26. After recomputing α(i) and
β(i) for i ∈ N, we determine that node 26 can be closed. Continuing in this manner,
we determine that nodes 27 and 30 can be closed, yielding Y = {1, 6, 32, 34}. Since
now the primal objective function value and the dual objective function value are
both 4, we have computed a minimal covering. When we execute Dual Ascent and
Dual Adjustment for Zachary’s Karate Club network with r = 2 we obtain primal
and dual objective function values of 2, so again a minimal covering has been found.

4.3 Bounding the Fractal Dimension

Assume that for some positive constant a we have

B
R
(r) = a(2r + 1)−d

B . (4.10)

Suppose we have computed B L

R
(r) and B U

R
(r) for r = 1, 2, · · · ,K . From

B L

R
(r) ≤ B

R
(r) ≤ B U

R
(r)

4.3 Bounding the Fractal Dimension 37

we obtain, for r = 1, 2, · · · ,K ,

log B L

R
(r) ≤ log a − d

B
log(2r + 1) ≤ log B U

R
(r) . (4.11)

The system (4.11) of 2K inequalities may be infeasible, i.e., it may have no solution
a and d

B
. If the system (4.11) is feasible, we can formulate a linear program to

determine the maximal and minimal values of d
B

[44]. For simplicity of notation, let
the K values log(2r+1) for r = 1, 2, · · · ,K be denoted by x

k
for k = 1, 2, · · · ,K ,

so x1 = log(3), x2 = log(5), x3 = log(7), etc. For k = 1, 2, · · · ,K , let the K values
of log B L

R
(r) and log B U

R
(r) be denoted by y L

k
and y U

k
, respectively. Let b = log a.

The inequalities (4.11) can now be expressed as

y L

k
≤ b − d

B
x
k

≤ y U

k
.

The minimal value of d
B

is the optimal objective function value of BCLP (Box
Counting Linear Program):

minimize d
B

subject to b − d
B

x
k

≥ yL

k
for 1 ≤ k ≤ K

b − d
B

x
k

≤ yU

k
for 1 ≤ k ≤ K.

This linear program has only two variables, b and d
B

. Let dmin
B

and bmin be the
optimal values of d

B
and b, respectively. Now we change the objective function of

BCLP from minimize to maximize, and let dmax
B

and bmax be the optimal values of d
B

and b, respectively, for the maximize linear program. The box counting dimension
d
B

, assumed to exist by (4.10), satisfies

dmin
B

≤ d
B

≤ dmax
B

.

For example [44], for the much-studied jazz network [19], the linear program BCLP
is feasible, and solving the minimize and maximize linear programs yields 2.11 ≤
d
B

≤ 2.59.
Feasibility of BCLP does not imply that the box counting relationship (4.10)

holds, since the upper and lower bounds might be so far apart that alternative
relationships could be posited. If the linear program is infeasible, we can assert
that the network does not satisfy the box counting relationship (4.10). Yet even if
BCLP is infeasible, it might be so “close” to feasible that we nonetheless want to
calculate d

B
. When BCLP is infeasible, we can compute d

B
using the solution of

BCQP (box counting quadratic program), which minimizes the sum of the squared
distances to the 2K bounds [44]:

minimize
K∑

k=1

(u2
k

+ v2
k
)

subject to u
k

= (b − d
B

x
k
) − y L

k
for 1 ≤ k ≤ K

v
k

= y U

k
− (b − d

B
x
k
) for 1 ≤ k ≤ K.

	4 Lower Bounds on Box Counting
	4.1 Mathematical Formulation
	4.2 Dual Ascent and Dual Adjustment
	4.3 Bounding the Fractal Dimension

