Chapter 4 Lower Bounds on Box Counting

Consider a box counting heuristic using radius-based boxes, e.g., *Maximum Excluded Mass Burning*. There is no guarantee that the computed $B_R(r)$ is minimal or even near minimal. However, if a lower bound on $B_R(r)$ is available, we can immediately determine the deviation from optimality for the calculated $B_R(r)$. A method that provides a lower bound $B_R^L(r)$ on $B_R(r)$ is presented in [44]. The lower bound is computed by formulating box counting as an *uncapacitated facility location problem* (**UFLP**), a classic combinatorial optimization problem. This formulation provides, via the dual of the linear programming relaxation of **UFLP**, a lower bound on $B_R(r)$. The method also yields an estimate of $B_R(r)$; this estimate is an upper bound on $B_R(r)$. Under the assumption that $B_R(r) = a(2r + 1)^{-d_B}$ holds for some positive constant a and some range of r , a linear program [6], formulated using the upper and lower bounds on $B_R(r)$, provides an upper and lower bound on d_B . In the event that the linear program is infeasible, a quadratic program [18] can be used to estimate d_B .

4.1 Mathematical Formulation

Let the box radius r be fixed. For simplicity we will refer to node j rather than node n_j . Define $\mathbb{N} \equiv \{1, 2, \cdots, N\}$. Let C^r be the symmetric N by N matrix defined by

$$
C_{ij}^r = \begin{cases} 0 & \text{if } dist(i, j) \le r, \\ \infty & \text{otherwise.} \end{cases}
$$

(As with the matrix M_{ij}^r defined by (3.1), the superscript r in C_{ij}^r does *not* mean the r-th power of the matrix C.) For example, for $r = 1$, the matrix C^r corresponding to the network of Fig. [4.1](#page-1-0) is

[©] The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

E. Rosenberg, *A Survey of Fractal Dimensions of Networks*, SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_4

$$
C^{1} = \begin{pmatrix} 0 & 0 & - - - - & 0 \\ 0 & 0 & 0 & - - - - \\ - & 0 & 0 & 0 - - & 0 \\ - - & 0 & 0 & 0 - - \\ - - - & 0 & 0 & 0 - \\ - - - - & 0 & 0 & 0 \\ 0 & - & 0 & - - & 0 \end{pmatrix},
$$

where a dash "–" is used to indicate the value ∞ .

For $j \in \mathbb{N}$, let

 $y_j = \begin{cases} 1 \text{ if the box centered at } j \text{ is used to cover } \mathbb{G}, \\ 0 \text{ otherwise} \end{cases}$ 0 otherwise.

A given node i will, in general, be within distance r of more than one center node j used in the covering of G . However, we will assign each node i to exactly one node j, and the variables x_{ij} specify this assignment. For $i, j \in \mathbb{N}$, let

> $x_{ij} = \begin{cases} 1 \text{ if } i \text{ is assigned to the box centered at } j, \\ 0 \text{ otherwise.} \end{cases}$ 0 otherwise.

With the understanding that r is fixed, for simplicity we write c_{ij} to denote element (i, j) of the matrix C^r . The minimal network covering problem is

minimize
$$
\sum_{j=1}^{N} y_j + \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} x_{ij}
$$
 (4.1)

subject to
$$
\sum_{j=1}^{N} x_{ij} = 1 \text{ for } i \in \mathbb{N}
$$
 (4.2)

$$
x_{ij} \le y_j \text{ for } i, j \in \mathbb{N}
$$
\n(4.3)

4.1 Mathematical Formulation 31

$$
x_{ij} \ge 0 \text{ for } i, j \in \mathbb{N} \tag{4.4}
$$

$$
y_j = 0 \text{ or } 1 \text{ for } j \in \mathbb{N}.\tag{4.5}
$$

Let **UFLP** denote the optimization problem defined by (4.1) – (4.5) . Constraint (4.2) says that each node must be assigned to the box centered at some j . Constraint [\(4.3\)](#page-1-1) says that node i can be assigned to the box centered at j only if that box is used in the covering, i.e., only if $y_i = 1$. The objective function is the sum of the number of boxes in the covering and the total cost of assigning each node to a box. Problem **UFLP** is feasible since we can always set $y_i = 1$ and $x_{ii} = 1$ for $i \in \mathbb{N}$; i.e., let each node be the center of a box in the covering. Given a set of binary values of y_i for $j \in \mathbb{N}$, since each $c_{i,j}$ is either 0 or ∞ , if there is a feasible assignment of nodes to boxes then the objective function value is the number of boxes in the covering; if there is no feasible assignment for the given y_i values then the objective function value is ∞. Note that **UFLP** requires only $x_{ij} \ge 0$; it is not necessary to require x_{ij} to be binary. This relaxation is allowed since if (x, y) solves **UFLP** then the objective function value is not increased, and feasibility is maintained, if we assign each *i* to exactly one *k* (where *k* depends on *i*) such that $y_k = 1$ and $c_{ik} = 0$.

The *primal linear programming relaxation* **PLP** of **UFLP** is obtained by replacing the restriction that each y_i is binary with the constraint $y_i \geq 0$. We associate the dual variable u_i with the constraint $\sum_{j=1}^{N} x_{ij} = 1$, and the dual variable w_{ij} with the constraint $x_{ij} \geq 0$. The *dual linear program* [18] **DLP** corresponding to **PLP** is

maximize
$$
\sum_{i=1}^{N} u_i
$$

subject to
$$
\sum_{i=1}^{N} w_{ij} \le 1 \text{ for } j \in \mathbb{N}
$$

$$
u_i - w_{ij} \le c_{ij} \text{ for } i, j \in \mathbb{N}
$$

$$
w_{ij} \ge 0 \text{ for } i, j \in \mathbb{N}.
$$

Following [11], we set $w_{ij} = \max\{0, u_i - c_{ij}\}\$ and express **DLP** using only the u_i variables:

$$
\text{maximize} \quad \sum_{i=1}^{N} u_i \tag{4.6}
$$

subject to
$$
\sum_{i=1}^{N} \max\{0, u_i - c_{ij}\} \le 1 \text{ for } j \in \mathbb{N}.
$$
 (4.7)

Let $v(UFLP)$ be the optimal objective function value of **UFLP**. Then $B_p(r)$ = $v(UFLP)$. Let $v(PLP)$ be the optimal objective function value of the linear programming relaxation **PLP**. Then $v(UFLP) > v(PLP)$. Let $v(DLP)$ be the optimal objective function value of the dual linear program **DLP**. By linear programming duality theory, $v(PLP) = v(DLP)$. Define $u \equiv (u_1, u_2, \dots, u_N)$. If u is feasible for **DLP** as defined by (4.6) and (4.7) , then the dual objective function $\sum_{i=1}^{N} u_i$ satisfies $\sum_{i=1}^{N} u_i \le v(DLP)$. Combining these relations, we have

$$
B_R(r) = v(UELP) \ge v(PLP) = v(DLP) \ge \sum_{i=1}^{N} u_i.
$$

Thus $\sum_{i=1}^{N} u_i$ is a lower bound on $B_R(r)$. As described in [44], to maximize this lower bound subject to [\(4.7\)](#page-2-0), we use the *Dual Ascent* and *Dual Adjustment* methods of [11]; see also [42].

4.2 Dual Ascent and Dual Adjustment

Call the N variables u_1, u_2, \cdots, u_N the *dual variables*. The *Dual Ascent* method initializes $u = 0$ and increases the dual variables, one at a time, until constraints [\(4.7\)](#page-2-0) prevent any further increase in any dual variable. For $i \in \mathbb{N}$, let $\mathbb{N}_i = \{j \in \mathbb{N}\}$ $\mathbb{N} \mid c_{ij} = 0$. By definition of c_{ij} , we have $\mathbb{N}_i = \{j | dist(i, j) \leq r\}$. Note that $i \in \mathbb{N}_i$. From [\(4.7\)](#page-2-0), we can increase some dual variable u_i from 0 to 1 only if $\sum_{i=1}^{N} \max\{0, u_i - c_{ij}\} = 0$ for $j \in \mathbb{N}_i$. Once we have increased u_i then we cannot increase u_k for any \hat{k} such that $c_{kj} = 0$ for some $j \in \mathbb{N}_i$. This is illustrated, for $r = 1$, in Fig. [4.2,](#page-3-0) where $c_{ij_1} = c_{ij_2} = c_{ij_3} = 0$ and $c_{j_1 k_1} = c_{j_2 k_2} = c_{j_2 k_3} = 0$. Once we set $u_i = 1$, we cannot increase the dual variable associated with $k_1 \text{ or } k_2 \text{ or } k_3$.

Recalling that δ_j is the node degree of node j, if $c_{ij} = 0$ then the number of dual variables prevented by node j from increasing when we increase u_i is at least $\delta_j - 1$, where we subtract 1 since u_i is being increased from 0. In general, increasing u_i prevents approximately at least $\sum_{j \in \mathbb{N}_i} (\delta_j - 1)$ dual variables from being increased. This is approximate, since there may be arcs connecting the nodes in \mathbb{N}_i , e.g., there may be an arc between j_1 and j_2 in Fig. [4.2.](#page-3-0) However, we can ignore such

Fig. 4.2 Increasing u_i to 1 block other dual variable increases

considerations since we use $\sum_{j \in \mathbb{N}_i} (\delta_j - 1)$ only as a heuristic metric: we pre-process the data by ordering the dual variables in order of increasing $\sum_{j \in \mathbb{N}_i} (\delta_j - 1)$. We have $\sum_{j \in \mathbb{N}_i} (\delta_j - 1) = 0$ only if $\delta_j = 1$ for $j \in \mathbb{N}_i$, i.e., only if each node in N_i is a leaf node. This can occur only for the trivial case that N_i consists of two $\sum_{j \in \mathbb{N}_i} (\delta_j - 1) \ge 1$. For $j \in \mathbb{N}$, define $s(j)$ to be the slack in constraint [\(4.7\)](#page-2-0) for nodes (one of which is i itself) connected by an arc. For any other topology we have node j, so $s(j) = 1$ if $\sum_{i=1}^{N} \max\{0, u_i - c_{ij}\} = 0$ and $s(j) = 0$ otherwise.

Having pre-processed the data, we run the following *Dual Ascent* procedure. This procedure is initialized by setting $u = 0$ and $s(j) = 1$ for $j \in \mathbb{N}$. We then examine each u_i in the sorted order and compute $\gamma \equiv \min\{s(j) | j \in \mathbb{N}_i\}$. If $\gamma = 0$ then u_i cannot be increased. If $\gamma = 1$ then we increase u_i from 0 to 1 and set $s(j) = 0$ for $j \in \mathbb{N}_i$, since there is no longer slack in those constraints.

Figure [4.3](#page-4-0) shows the result of applying *Dual Ascent*, with $r = 1$, to *Zachary's Karate Club* network [37] , which has 34 nodes and 77 arcs. In this figure, node 1 is labelled as "v1", etc. The node with the smallest penalty $\sum_{j \in \mathbb{N}_i} (\delta_j - 1)$ is node 17, and the penalty (p in the figure) is 7. Upon setting $u_{17} = 1$ we have $s(17) = s(6) = s(7) = 0$; these nodes are pointed to by arrows in the figure. The node with the next smallest penalty is node 25, and the penalty is 12. Upon setting $u_{25} = 1$ we have $s(25) = s(26) = s(28) = s(32) = 0$. The node with the next smallest penalty is node 26, and the penalty is 13. However, u_{26} cannot be increased, since $s(25) = s(32) = 0$. The node with the next smallest penalty is node 12, and the penalty is 15. Upon setting $u_{12} = 1$ we have $s(12) = s(1) = 0$. The node with the next smallest penalty is node 27, and the penalty is 20. Upon

Fig. 4.3 Results of applying *Dual Ascent* to *Zachary's Karate Club* network

setting $u_{27} = 1$ we have $s(27) = s(30) = s(34) = 0$. No other dual variable can be increased, and *Dual Ascent* halts, yielding a dual objective function value of 4, which is the lower bound $B_R^L(1)$ on $B_R(1)$.

We can now calculate the upper bound $B_R^U(1)$. For $j \in \mathbb{N}$, set $y_j = 1$ if $s(j) = 0$ and $y_j = 0$ otherwise. Setting $y_j = 1$ means that the box of radius r centered at node j will be used in the covering of G. For *Zachary's Karate Club* network, at the conclusion of *Dual Ascent* with $r = 1$ there are 12 values of j such that $s(j) = 0$; for each of these values we set $y_i = 1$.

We have shown that if u satisfies (4.7) then

$$
\sum_{i=1}^{N} u_i = B_R^L(r) \leq B_R(r) \leq B_R^U(r) = \sum_{j=1}^{N} y_j.
$$

If $\sum_{i=1}^{N} u_i = \sum_{j=1}^{N} y_j$ then we have found a minimal covering. If $\sum_{i=1}^{N} u_i$ $\sum_{j=1}^{N} y_j$ then we use a *Dual Adjustment* procedure [11] to attempt to close the $\exp \sum_{j=1}^{N} y_j - \sum_{i=1}^{N} u_i$. For *Zachary's Karate Club* network, for $r = 1$ we have $\sum_{j=1}^{N} y_j - \sum_{i=1}^{N} u_i = 8.$

The *Dual Adjustment* procedure is motivated by the complementary slackness optimality conditions of linear programming. Let (x, y) be feasible for **PLP** and let (u, w) be feasible for **DLP**, where $w_{ij} = \max\{0, u_i - c_{ij}\}\$. The complementary slackness conditions state that (x, y) is optimal for **PLP** and (u, w) is optimal for **DLP** if

$$
y_j \left(\sum_{i=1}^N \max\{0, u_i - c_{ij}\} - 1 \right) = 0 \text{ for } j \in \mathbb{N}
$$
 (4.8)

$$
(y_j - x_{ij}) \max\{0, u_i - c_{ij}\} = 0 \text{ for } i, j \in \mathbb{N}.
$$
 (4.9)

We can assume that x is binary, since as mentioned above, we can assign each i to a single k (where k depends on i) such that $y_k = 1$ and $c_{ik} = 0$. We say that a node $j \in \mathbb{N}$ is "open" (i.e., the box centered at node j is used in the covering of G) if $y_i = 1$; otherwise, j is "closed." When (x, y) and u are feasible for **PLP** and **DLP**, respectively, and x is binary, constraints [\(4.9\)](#page-5-0) have a simple interpretation: if for some i we have $u_i = 1$ then there can be at most one open node j such that $dist(i, j) \leq r$. For suppose to the contrary that $u_i = 1$ and there are two open nodes j_1 and j_2 such that $dist(i, j_1) \le r$ and $dist(i, j_2) \le r$. Then $c_{ij_1} = c_{ij_2} = 0$. Since x is binary, by [\(4.2\)](#page-1-1), either $x_{ij_1} = 1$ or $x_{ij_2} = 1$. Suppose without loss of generality that $x_{ij_1} = 1$ and $x_{ij_2} = 0$. Then

$$
(y_{j_1} - x_{ij_1}) \max\{0, u_i - c_{ij_1}\} = (y_{j_1} - x_{ij_1})u_i = 0
$$

but

$$
(y_{j_2} - x_{ij_2}) \max\{0, u_i - c_{ij_2}\} = y_{j_2} u_i = 1,
$$

so complementary slackness fails to hold. This argument is easily extended to the case where there are more than two open nodes such that $dist(i, j) \leq r$. The conditions [\(4.9\)](#page-5-0) can also be visualized using Fig. [4.2,](#page-3-0) where $c_{ij_1} = c_{ij_2} = c_{ij_3} = 0$. If $u_i = 1$ then at most one node in the set $\{i, j_1, j_2, j_3\}$ can be open.

If $B_R^U(r) > B_R^L(r)$, we run the following *Dual Adjustment* procedure to close some nodes, and construct x, to attempt to satisfy constraints (4.9) . Define

$$
Y = \{ j \in \mathbb{N} \mid y_j = 1 \},
$$

so Y is the set of open nodes. The *Dual Adjustment* procedure, which follows *Dual Ascent*, has two steps.

Step 1 For $i \in \mathbb{N}$, let $\alpha(i)$ be the "smallest" node in Y such that $c_{i,\alpha(i)} = 0$. By "smallest" node we mean the node with the smallest node index, or the alphabetically lowest node name; any similar tie-breaking rule can be used. If for some $j \in Y$ we have $j \neq \alpha(i)$ for $i \in \mathbb{N}$, then j can be closed, so we set $Y = Y - \{j\}$. In words, if the chosen method of assigning each node to a box in the covering results in the box centered at j never being used, then j can be closed.

Applying Step 1 to *Zachary's Karate Club* network with $r = 1$, using the tiebreaking rule of the smallest node index, we have, for example, $\alpha(25) = 25$, $\alpha(26) = 25$, $\alpha(27) = 27$, and $\alpha(30) = 27$. After computing each $\alpha(i)$, we can close nodes 7, 12, 17, and 28, as indicated by the bold **X** next to these nodes in Fig. [4.4.](#page-7-0) After this step, we have $Y = \{1, 6, 25, 26, 27, 30, 32, 34\}$. This step lowered the primal objective function from 12 (since originally $|Y| = 12$) to 8.

Step 2 Suppose we consider closing j, where $j \in Y$. We consider the impact of closing j on i, for $i \in \mathbb{N}$. If $j \neq \alpha(i)$ then closing j has no impact on i, since i is not assigned to the box centered at j. If $j = \alpha(i)$ then closing j is possible only if there is another open node $\beta(i) \in Y$ such that $\beta(i) \neq \alpha(i)$ and $c_{i, \beta(i)} = 0$ (i.e., if there is another open node, distinct from $\alpha(i)$, whose distance from i does not exceed r). Thus we have the rule: close *j* if for $i \in \mathbb{N}$ either

$$
j\neq \alpha(i)
$$

or

$$
j = \alpha(i)
$$
 and $\beta(i)$ exists.

Once we close j and set $Y = Y - \{j\}$ we must recalculate $\alpha(i)$ and $\beta(i)$ (if it exists) for $i \in \mathbb{N}$.

Fig. 4.4 Closing nodes in *Zachary's Karate Club* network

Applying Step 2 to *Zachary's Karate Club* network with $r = 1$, we find that, for example, we cannot close node 1, since $1 = \alpha(5)$ and $\beta(5)$ does not exist. Similarly, we cannot close node 6, since $6 = \alpha(17)$ and $\beta(17)$ does not exist. We can close node 25, since $25 = \alpha(25)$ but $\beta(25) = 26$ (i.e., we can reassign node 25 from the box centered at 25 to the box centered at 26), $25 = \alpha(26)$ but $\beta(26) = 26$, $25 =$ α (28) but β (28) = 34, and 25 = α (32) but β (32) = 26. After recomputing α (i) and $\beta(i)$ for $i \in \mathbb{N}$, we determine that node 26 can be closed. Continuing in this manner, we determine that nodes 27 and 30 can be closed, yielding $Y = \{1, 6, 32, 34\}$. Since now the primal objective function value and the dual objective function value are both 4, we have computed a minimal covering. When we execute *Dual Ascent* and *Dual Adjustment* for *Zachary's Karate Club* network with $r = 2$ we obtain primal and dual objective function values of 2, so again a minimal covering has been found.

4.3 Bounding the Fractal Dimension

Assume that for some positive constant a we have

$$
B_R(r) = a(2r+1)^{-d_B}.
$$
\n(4.10)

Suppose we have computed $B_R^L(r)$ and $B_R^U(r)$ for $r = 1, 2, \dots, K$. From

$$
B_R^L(r) \leq B_R(r) \leq B_R^U(r)
$$

4.3 Bounding the Fractal Dimension 37

we obtain, for $r = 1, 2, \dots, K$,

$$
\log B_R^{\,L}(r) \le \log a - d_B \log(2r + 1) \le \log B_R^{\,U}(r) \,. \tag{4.11}
$$

The system (4.11) of 2K inequalities may be infeasible, i.e., it may have no solution a and d_B . If the system [\(4.11\)](#page-8-0) is feasible, we can formulate a linear program to determine the maximal and minimal values of d_B [44]. For simplicity of notation, let the K values $\log(2r+1)$ for $r = 1, 2, \dots, K$ be denoted by x_k for $k = 1, 2, \dots, K$, so $x_1 = \log(3)$, $x_2 = \log(5)$, $x_3 = \log(7)$, etc. For $k = 1, 2, \dots, K$, let the K values of $\log B_R^L(r)$ and $\log B_R^U(r)$ be denoted by y_k^L and y_k^U , respectively. Let $b = \log a$. The inequalities (4.11) can now be expressed as

$$
y_k^L \le b - d_B x_k \le y_k^U.
$$

The minimal value of d_B is the optimal objective function value of **BCLP** (Box Counting Linear Program):

minimize
$$
d_B
$$

subject to $b - d_B x_k \ge y_k^L$ for $1 \le k \le K$
 $b - d_B x_k \le y_k^U$ for $1 \le k \le K$.

This linear program has only two variables, b and d_B . Let d_B^{\min} and b^{\min} be the optimal values of d_B and b, respectively. Now we change the objective function of **BCLP** from *minimize* to *maximize*, and let d_B^{max} and b^{max} be the optimal values of d_B and b, respectively, for the *maximize* linear program. The box counting dimension d_B , assumed to exist by [\(4.10\)](#page-7-1), satisfies

$$
d_B^{\min} \leq d_B \leq d_B^{\max}.
$$

For example [44], for the much-studied *jazz* network [19], the linear program **BCLP** is feasible, and solving the *minimize* and *maximize* linear programs yields $2.11 \le$ $d_B \le 2.59$.

Feasibility of **BCLP** does not imply that the box counting relationship [\(4.10\)](#page-7-1) holds, since the upper and lower bounds might be so far apart that alternative relationships could be posited. If the linear program is infeasible, we can assert that the network does *not* satisfy the box counting relationship [\(4.10\)](#page-7-1). Yet even if **BCLP** is infeasible, it might be so "close" to feasible that we nonetheless want to calculate d_B . When **BCLP** is infeasible, we can compute d_B using the solution of **BCQP** (box counting quadratic program), which minimizes the sum of the squared distances to the $2K$ bounds [44]:

minimize
$$
\sum_{k=1}^{K} (u_k^2 + v_k^2)
$$

subject to $u_k = (b - d_B x_k) - y_k^L$ for $1 \le k \le K$
 $v_k = y_k^U - (b - d_B x_k)$ for $1 \le k \le K$.