
Chapter 2
Covering a Complex Network

The previous chapter showed how the box counting and Hausdorff dimensions of a
geometric object Ω are computed from a covering of Ω . With this background, we
can now consider what it means to cover a complex network G, and how a fractal
dimension can be computed from a covering of G. We require some definitions. The
network B is a subnetwork of G if B can be obtained from G by deleting nodes and
arcs. By a box we mean a subnetwork of G. A box is disconnected if some nodes in
the box cannot be connected by arcs in the box. Let {Bj }Jj=1 ≡ {B1, B2, · · · , BJ }
be a collection of boxes. Two types of coverings of G have been proposed: node
coverings and arc coverings. Let s be a positive integer.

Definition 2.1 (i) The set {Bj }Jj=1 is a node s-covering of G if for each j we have
diam(Bj ) < s and if each node in N is contained in exactly one Bj . (ii) The set
{Bj }Jj=1 is an arc s-covering of G if for each j we have diam(Bj ) < s and if each
arc in A is contained in exactly one Bj . ��

If Bj is a box in a node or arc s-covering of G then the requirement diam(Bj ) < s

in Definition 2.1 implies that Bj is connected. However, this requirement, which is
a standard assumption in defining the box counting dimension of G (e.g., [16, 29,
30, 48, 56]), may frequently be violated, for good reasons, in some methods for
determining the fractal dimensions of G, as we will discuss in Sect. 3.6.

It is possible to define a node covering of G to allow a node to be contained
in more than one box; coverings with possibly overlapping boxes are studied in
[15, 60]. The great advantage of non-overlapping boxes is that they immediately
yield a probability distribution, as discussed in Chap. 8. The probability distribution
obtained from a non-overlapping node covering of G is the basis for computing
the information dimension d

I
and the generalized dimensions Dq of G (Chap. 9).

Therefore, in this survey, each node covering of G is assumed to use non-
overlapping boxes, as specified in Definition 2.1.
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Fig. 2.1 A node 3-covering
(a) and an arc 3-covering (b)

Fig. 2.2 A node covering
which is not an arc covering

Since a network of diameter 0 contains only a single node, a node 1-covering
contains N boxes. Since a node 1-covering provides no useful information other
than N itself, we consider node s-coverings only for s ≥ 2. Figure 2.1a illustrates
a node 3-covering with J = 2. Both boxes in the 3-covering have diameter 2.
Figure 2.1b illustrates an arc 3-covering of the same network using three boxes.
The box indicated by the solid blue line contains four arcs, the box indicated by the
dotted red line contains three arcs, and the box indicated by the dashed green line
contains one arc.

Each arc covering of G yields a node covering. However, the converse is not true:
a node covering does not in general yield an arc covering. This is illustrated by the
simple example of Fig. 2.2. The nodes are covered by B1 and B2, but the arc in the
middle belongs to neither B1 nor B2.

Definition 2.2 (i) An arc s-covering {Bj }Jj=1 is minimal if for any other arc s-

covering {B ′
j }J ′

j=1 we have J ≤ J ′. (ii) A node s-covering {Bj }Jj=1 is minimal if

for any other node s-covering {B ′
j }J ′

j=1 we have J ≤ J ′. ��
That is, a covering is minimal if it uses the fewest possible number of boxes. For

s > Δ, the minimal node or arc s-covering consists of a single box, which is G

itself. Virtually all research has considered node coverings; only a few studies (e.g.,
[74]) use arc coverings. The reason arc coverings are rarely used is that, in practice,
computing a fractal dimension of a geometric object typically starts with a given set
of points in R

E (the points are then covered by boxes, or the distance between each
pair of points is computed (e.g., [22, 36])), and nodes in a network are analogous to
points in R

E . Having very briefly contrasted arc coverings and node coverings for
a network, we now abandon arc coverings; henceforth, all coverings of G are node
coverings, and by covering G we mean covering the nodes of G. Also, henceforth
by an s-covering we mean a node s-covering, and by a covering of size s we mean
an s-covering.
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2.1 Box Counting with Diameter-Based or Radius-Based
Boxes

There are two main approaches used to define boxes for use in covering G: diameter-
based boxes and radius-based boxes.

Definition 2.3 (i) A radius-based box G(n, r) with center node n ∈ N and radius r

is the subnetwork of G containing all nodes whose distance to n does not exceed r .
Let B

R
(r) be the minimal number of radius-based boxes of radius at most r needed

to cover G. (ii) A diameter-based box G(s) of size s is a subnetwork of G of diameter
s−1. Let B

D
(s) denote the minimal number of diameter-based boxes of size at most

s needed to cover G. ��
Thus the node set of G(n, r) is {x ∈ N | dist(n, x) ≤ r}. Radius-based boxes

are used in the Maximum Excluded Mass Burning and Random Sequential Node
Burning methods described in Chap. 3. Interestingly, the above definition of a
radius-based box may frequently be violated in the Maximum Excluded Mass
Burning and Random Sequential Node Burning methods. In particular, some radius-
based boxes created by those methods may be disconnected, or some boxes may
contain only some of the nodes whose distance to the center node n does not
exceed r .

A diameter-based box G(s) is not defined in terms of a center node; instead,
for x, y ∈ G(s) we require dist(x, y) < s. Diameter-based boxes are used in
the Box Burning and Compact Box Burning heuristics described in Chap. 3. The
above definition of a diameter-based box also may frequently be violated in the
Box Burning and Compact Box Burning methods. Also, since each node in G must
belong to exactly one Bj in an s-covering {Bj }Jj=1 using diameter-based boxes, then
in general we will not have diam(Bj ) = s − 1 for all j . To see this, consider a chain
of three nodes (call them x, y, and z), and let s = 2. The minimal 2-covering using
diameter-based boxes requires two boxes, B1 and B2. If B1 covers x and y then B2
covers only z, so the diameter of B2 is 0.

The minimal number of diameter-based boxes of size at most 2r + 1 needed to
cover G is, by definition, B

D
(2r + 1). We have B

D
(2r + 1) ≤ B

R
(r) [29]. To see

this, let G(n
j
, r

j
), j = 1, 2, · · · , B

R
(r) be the boxes in a minimal covering of G

using radius-based boxes of radius at most r . Then r
j

≤ r for all j . Pick any j , and
consider box G(n

j
, r

j
). For any nodes x and y in G(n

j
, r

j
) we have

dist(x, y) ≤ dist(x, n
j
) + dist(n

j
, y) ≤ 2r

j
≤ 2r ,

so G(n
j
, r

j
) has diameter at most 2r . Thus these B

R
(r) boxes also serve as a covering

of size 2r + 1 using diameter-based boxes. Therefore, the minimal number of
diameter-based boxes of size at most 2r+1 needed to cover G cannot exceed B

R
(r);

that is, B
D
(2r + 1) ≤ B

R
(r).
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Fig. 2.3 Diameter-based vs.
radius-based boxes

The reverse inequality does not in general hold, since a diameter-based box of
size 2r+1 can contain more nodes than a radius-based box of radius r . For example,
consider the network G of Fig. 2.3. The only nodes adjacent to n are x and z, so
G(n, 1) = {n, x, z} and B

R
(1) = 2. Yet the diameter of G is 2, so it can be covered

by a single diameter-based box of size 3, namely G itself, so B
D
(3) = 1. Thus B

R
(r)

and B
D
(2r +1) are not in general equal. Nonetheless, for the C. elegans and Internet

backbone networks studied in [56], the calculated fractal dimension was the same
whether radius-based or diameter-based boxes were used. Similarly, both radius-
based and diameter-based boxes yielded a fractal dimension of approximately 4.1
for the WWW (the World Wide Web) [29].

The term box counting refers to computing a minimal s-covering of G for a
range of values of s, using either radius-based boxes or diameter-based boxes.
Conceivably, other types of boxes might be used to cover G. In the fractal literature,
the box counting dimension d

B
is often informally defined by the scaling B

D
(s) ∼

s−d
B . (The symbol “∼”, frequently used in the fractal literature but often with

different meanings, should here be interpreted to mean “approximately behaves
like”.) Definition 2.4 below provides a more computationally useful definition of
d
B

for a complex network.

Definition 2.4 G has box counting dimension d
B

if over some range of s and for
some constant c we have

log B
D
(s) ≈ −d

B
log(s/Δ) + c . �� (2.1)

Alternatively, (2.1) can be written as log B
D
(s) ≈ −d

B
log s + c. If G has box

counting dimension d
B

then over some range of s we have B
D
(s) ≈ as−d

B for some
constant a. In the terminology of [16], if the box counting dimension for G exists,
then G enjoys the fractal scaling property, or, more simply, G is fractal. The main
feature apparently displayed by fractal networks is a repulsion between hubs, where
a hub is a node with a significantly higher node degree than a non-hub node. That
is, the highly connected nodes tend to be not directly connected [72]. This tendency
can be quantified using the joint node degree distribution p(δ1, δ2) that a node with
degree δ1 and a node with degree δ2 are neighbors (i.e., connected by a single arc).
In contrast, for a non-fractal network G, hubs are mostly connected to other hubs,
which implies that G enjoys the small-world property [16]. (Roughly speaking, G
is a small-world network if diam(G) grows as log(N) [57].) Also, the concepts of
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Fig. 2.4 Fractal vs.
non-fractal scaling

modularity and fractality for a network are closely related. Interconnections within
a module (e.g., a biological sub-system) are more prevalent than interconnections
between modules. Similarly, in a fractal network, interconnections between a hub
and non-hub nodes are more prevalent than interconnections between hubs. Non-
fractal networks are typically characterized by a sharp decay of B

D
(s) with s, which

is better described by an exponential law B
D
(s) ∼ e−β s , where β > 0, rather than

by a power law B
D
(s) ∼ s−β , with a similar statement holding if radius-based boxes

are used. These two cases are illustrated in Fig. 2.4, taken from [16], where the solid
circles are measurements from a fractal network, and the hollow circles are from a
non-fractal network.
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