Chapter 11 )
Zeta Dimension Check for

In this final chapter we consider the use of the zeta function
[e )
(o) =Zi_°‘ (11.1)
i=1

to define the dimension of a network. The zeta function has a rich history [8, 17].
It was studied by Euler in 1737 for non-negative real « and extended in 1859 by
Riemann to complex «. We will consider the zeta function only for non-negative real
a. The zeta function converges for « > 1 and diverges otherwise. It is a decreasing
function of @ and ¢ (o) — 1 as @ — oo [54].

The zeta function has been used to define the fractal dimension of a finite
complex network [54]. Although the zeta dimension of a network has not enjoyed
widespread popularity, it has interesting connections to the Hausdorff dimension.
Recall from (7.5) in Chap. 7 that dN(n, r) is the set of nodes whose distance from
node n is exactly r, and |0N(n, r)| is the number of such nodes. Define the graph
surface function by

1
Sr= %laN(n, N, (11.2)

so S, is the average number of nodes at a distance r from a random node in the
network. Define the graph zeta function g (o) [54] by

1
o) = — dist(x,y)™%. 11.3
e (o) N E E (x,y) (11.3)
xeN yeN
y#x
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Since G is a finite network, then ¢g (o) is finite, and the graph zeta function and the
graph surface function are related by

te) = % O 1aNGe, e

xeNr>1

- Z(% > 10NGx, ]

r>1 xeN

=) Sre. (11.4)

The function ¢g(«) is decreasing in . For o« = 0 we have

@ =>1/N)Y (N-1)=N—1.

xeN

For a given x € N, if dist(x, y) > 1 then dist(x, y)™* — Oas ¢ — 00, SO

. . T . —a __
all)néo E dist(x,y) % = all)néo E dist(x,y)"% =34,, (11.5)
yeN yeN
y#x dist(x,y)=1

where §, is the node degree of x. Thus {g(«) approaches the average node degree
as o — 00.

Since (11.3) defines ¢g(cv) only for a finite network, we would like to define
¢g (o) for an infinite network G. If G = limy_ o, Gy, where Gy has N nodes,
then we can define {g(o) = limy_ o {Gy (), as is implicitly done in [54]. For
example, G = limy_, o Gy holds when G is an infinite E-dimensional rectilinear
lattice and Gy is a finite E-dimensional rectilinear lattice for which each edge has
N nodes. Table 11.1, from [54], provides ¢g («) for an infinite rectilinear lattice in
RE and the L norm. Here I" denotes the gamma function, so I'(E) = (E — 1)!

We are interested in infinite networks G for which {g(«) can be infinite. Since
{c (@) is a decreasing function of «, if {g () is finite for some value «, it is finite for
a’ > a.If ¢g(a) is infinite for some value «, it is infinite for o’ < «. Thus there is at

Table 11.1 S, and ¢g (o) for an infinite rectilinear lattice in RE

E Sr {G(O{)

1 2 20 ()

2 4r 4i(a— 1)

3 4r2 42 47 (a —2) +2¢ ()

4 (8/3)r3 + (16/3)r (8/3)¢ (e —3) + (16/3)¢(a — 1)

F— 00 0(2ErE-1/r(E)) OQEt(a —E+1)/I'(E))
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most one value of « for which {g () transitions from being infinite to finite, and the
zeta dimension dz of G is the value at which this transition occurs. This definition
parallels the definition in Sect. 1.2 of the Hausdorff dimension as that value of d for
which v*(d) transitions from infinite to finite. If for all @ we have ¢g () = oo then
dZ is defined to be oo.

Example 11.1 Let G be an infinite rectilinear lattice in R3. From Table 11.1 we
have

{e(a) =48(a —2) + 20 () .
Since 4¢ (o — 2) 4+ 2¢ (o) < oo only for o > 3, then

d

, =infla [{g(a) <00} =3. O

Example 11.2 As in [55], consider a random graph in which each pair of nodes is
connected with probability p. For any three distinct nodes x, y, and z, the probability
that z is not connected to both x and y is 1 — p2. The probability that x and y are not
both connected to some other node is (1 — p%)N =2, which approaches 0 as N — oo.
Thus for large N each pair of nodes is almost surely connected by a path of length
at most 2. For large N, each node has p(N — 1) neighbors, so from (11.2) we have
S1 & p(N — 1). For large N, the number S, of nodes at distance 2 from a random
node is given by $» &~ (N — 1) — S; = (N — 1)(1 — p). Hence

tey(@ ~ p(N—=1)+ (N - D1 —p)27°.

Since limy o0 {Gy (@) = oo forall a thend, = co. O

An alternative definition of the dimension of an infinite graph, using the zeta
function, but not requiring averages over all the nodes of the graph, is given in [55].
For n € N, define

to(n.a) =Y dist(n, x)™* .
xeN

X#n

There is exactly one value of « at which ¢g (n, ) transitions from being infinite to
finite; denote this value by d,, (n). The alternative definition of the zeta dimension is

d

, =limsupd,(n).
neN

This definition is not always identical to the above definition of d, as the value at
which ¢g («) transitions infinite to finite [55].
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