
Chapter 10
Non-monotonicity of Generalized
Dimensions

In Chap. 9, we showed that the value of Dq for a given q depends in general on
which minimal s-covering is selected, and we showed that this ambiguity can be
eliminated by using the unique lexico minimal summary vectors x(s). However,
there remains a significant ambiguity in computing Dq , since Definition 9.3 refers to
a range of s values over which approximate equality holds. Let this range be denoted
by [L,U ], where L < U . It is well known that, in general, the numerical value of
any fractal dimension depends on the range of box sizes over which the dimension is
computed. What had not been previously recognized is that for a complex network
the choice of L and U can dramatically change the shape of the Dq vs. q curve:
depending on L and U , the shape of the Dq vs. q curve can be monotone increasing,
or monotone decreasing, or even have both a local maximum and a local minimum
[49]. Example 9.1 and Fig. 9.1 provided an example where the Dq vs. q plot is not
monotone non-increasing, even for the simple case [L,U ] = [2, 3]. This behavior
stands in sharp contrast to the behavior of a geometric multifractal, for which it is
known [20] that Dq is non-increasing in q.

Recalling that log Z
(
x(s), q

)
for a complex network G is defined by (9.4), one

way to compute Dq for a given q is to determine a range [Lq,Uq ] of s over which
log Z

(
x(s), q

)
is approximately linear in log s, and then use (9.5) to estimate Dq ,

e.g., using linear regression. With this approach, to report computational results to
other researchers, it would be necessary to specify, for each q, the range of box
sizes used to estimate Dq . This is certainly not the protocol currently followed in
research on generalized dimensions. Rather, the approach taken in [49] and [67] is
to pick a single L and U and estimate Dq for all q with this L and U . Moreover,
rather than estimating Dq using a technique such as regression over the range [L,U ]
of box sizes, [49] instead estimates Dq using only the two box sizes L and U . (As
discussed in Chap. 5, such a two-point estimate was also used in [46], where it was
shown that even for as simple a network as a one-dimensional chain, estimates of
d
C

obtained from regression do not behave well, and a two-point estimate has very
desirable properties.)

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
E. Rosenberg, A Survey of Fractal Dimensions of Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_10

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90047-6_10&domain=pdf
https://doi.org/10.1007/978-3-319-90047-6_10


70 10 Non-monotonicity of Generalized Dimensions

With this two-point approach, the estimate of Dq is 1/(q − 1) times the slope of
the secant line connecting the points

(
log L, log Z

(
x(L), q

))
and

(
log U, log Z

(
x(U), q

))
,

where x(L) and x(U) are the lexico minimal summary vectors for box sizes L and
U , respectively. Using (9.4) and (9.5), this secant estimate of Dq , which we denote
by Dq(L,U), is defined by

Dq(L,U) ≡ log Z
(
x(U), q

) − log Z
(
x(L), q

)

(q − 1)
(

log(U/Δ) − log(L/Δ)
)

= 1

(q − 1) log(U/L)
log

(∑
Bj ∈B(U)[xj (U)]q

∑
Bj ∈B(L)[xj (L)]q

)

. (10.1)

Example 10.1 Figure 10.1 plots box counting results for the dolphins network,
which has 62 nodes, 159 arcs, and Δ = 8. This is a social network describing
frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand [35]. For this network, and for all other networks described
in this chapter, each lexico minimal summary vector x(s) was computed using
Procedure 9.1 and the graph coloring heuristic described in [48]. Figure 10.1 shows
that the

( − log(s/Δ), log B(s)
)

curve is approximately linear for 2 ≤ s ≤ 6.
Figure 10.2 plots log Z

(
x(s), q

)
vs. log(s/Δ) for 2 ≤ s ≤ 6 and for q =

2, 4, 6, 8, 10 (q = 2 is the top curve, and q = 10 is the bottom curve). Figure 10.2
shows that, although the log Z

(
x(s), q

)
vs. log(s/Δ) curves are less linear as q

increases, a linear approximation is quite reasonable. Moreover, we are particularly
interested in the behavior of the log Z

(
x(s), q

)
vs. log(s/Δ) curve for small positive

q, the region where the linear approximation is best. Using (10.1), Fig. 10.3 plots the
secant estimate Dq(L,U) vs. q for various choices of L and U . Since the Dq vs. q

Fig. 10.1 Box counting for the dolphins network
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Fig. 10.2 log Z
(
x(s), q

)
vs. log(s/Δ) for the dolphins network

Fig. 10.3 Secant estimate of Dq for the dolphins network for different (L,U)

curve for a geometric multifractal is monotone non-increasing, it is remarkable that
different choices of L and U lead to such different shapes for the Dq(L,U) vs. q

curve for the dolphins network. ��
Let D ′

0(L,U) denote the first derivative with respect to q of the secant Dq(L,U),
evaluated at q = 0. A simple closed-form expression for D ′

0(L,U) is derived in
[49]. For box size s, let x(s) = ∑

B(s) be lexico minimal. Define

G(s) ≡
⎛

⎝
B(s)∏

j=1

x
j
(s)

⎞

⎠

1/B(s)

A(s) ≡ 1

B(s)

B(s)∑

j=1

x
j
(s)

R(s) ≡ G(s)

A(s)
(10.2)
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so G(s) is the geometric mean of the box masses summarized by x(s), A(s) is
the arithmetic mean of the box masses summarized by x(s), and R(s) is the ratio
of the geometric mean to the arithmetic mean. By the classic arithmetic-geometric
inequality, for each s we have R(s) ≤ 1. Since

∑B(s)
j=1 x

j
(s) = N , then B(s)A(s) =

N . Theorems 10.1 and 10.2 below are proved in [49].

Theorem 10.1

D ′
0(L,U) = 1

log(U/L)
log

R(L)

R(U)
.

��
Theorem 10.1 says that the slope of the secant estimate of Dq at q = 0

depends on x(L) and x(U) only through the ratio of the geometric mean to the
arithmetic mean of the components of x(L), and similarly for x(U). Since L < U ,
Theorem 10.1 immediately implies the following corollary.

Corollary 10.1 D ′
0(L,U) > 0 if and only if R(L) > R(U), and D ′

0(L,U) < 0 if
and only if R(L) < R(U). ��

For a given L and U , Theorem 10.2 below provides a sufficient condition for
Dq(L,U) to have a local maximum or minimum.

Theorem 10.2 (i) If R(L) > R(U) and

B(L)

B(U)
>

x1(U)

x1(L)

then Dq(L,U) has a local maximum at some q > 0. (ii) If R(L) < R(U) and

B(L)

B(U)
<

x1(U)

x1(L)

then Dq(L,U) has a local minimum at some q > 0. ��
Example 10.2 To illustrate Theorem 10.2, consider the dolphins network of Exam-
ple 10.1 with L = 3 and U = 5. We have B(3) = 13 and B(5) = 4, so
D0 = log(13/4)/ log(5/3) ≈ 2.307. Also, x1(3) = 10 and x1(5) = 28, so by (9.8)
we have D∞ ≈ log(28/10)/ log(5/3) ≈ 2.106. We have R(3) ≈ 0.773, R(5) ≈
0.660, and D ′

0(L,U) ≈ 0.311. Hence Dq(3, 5) has a local maximum, as seen in
Fig. 10.3. Moreover, for the dolphins network, choosing L = 2 and U = 5 we have
D0 = log(29/4)/ log(5/2) ≈ 2.16, and D∞ ≈ log(28/3)/ log(5/2) ≈ 2.44, so
D0 < D∞, as is evident from Fig. 10.3. Thus the inequality D0 ≥ D∞, which is
valid for geometric multifractals, does not hold for the dolphins network with L = 2
and U = 5. ��
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If for s = L and s = U we can compute a minimal s-covering with equal box
masses, then G is a monofractal but not a multifractal. To see this, suppose all boxes
in B(L) have the same mass, and that all boxes in B(U) have the same mass. Then
for s = L and s = U we have x

j
(s) = N/B(s) for 1 ≤ j ≤ B(s), and (9.1) yields

Z
(
x(s), q

) =
∑

Bj ∈B(s)

(
x
j
(s)

N

)q

=
∑

Bj ∈B(s)

(
1

B(s)

)q

= [B(s)]1−q .

From (9.5), for q �= 1 we have

Dq = log Z
(
(x(U), q

) − log Z
(
x(L), q

)

(q − 1)
(

log U − log L
) = log

([B(U)]1−q
) − log

([B(L)]1−q
)

(q − 1)
(

log U − log L
)

= log B(L) − log B(U)

log U − log L
= D0 = d

B
, (10.3)

so G is a monofractal. Thus equal box masses imply G is a monofractal, the simplest
of all fractal structures.

There are several ways to try to obtain equal box masses in a minimal s-covering
of G. As discussed in Chap. 8, ambiguity in the choice of minimal coverings used to
compute d

I
is eliminated by maximizing entropy. Since the entropy of a probability

distribution is maximized when all the probabilities are equal, a maximal entropy
minimal covering equalizes (to the extent possible) the box masses. Similarly,
as discussed in Chap. 9, ambiguity in the choice of minimal s-coverings used to
compute Dq is eliminated by minimizing the partition function Zq

(
B(s)

)
. Since for

all sufficiently large q the lexico minimal vector x(s) summarizes the s-covering that
minimizes Zq

(
B(s)

)
, and since for q > 1 a partition function is minimized when all

the probabilities are equal, then x(s) also equalizes (to the extent possible) the box
masses. Theorem 10.1 suggests a third way to try to equalize the masses of all boxes
in a minimal s-covering: since G(s) ≤ A(s) and G(s) = A(s) when all boxes have
the same mass, a minimal s-covering that maximizes G(s) will also equalize (to the
extent possible) the box masses. The advantage of computing the lexico minimal
summary vectors x(s), rather than maximizing the entropy or maximizing G(s), is
that, by Theorem 9.1, the summary vector x(s) is unique.

We now apply Theorem 10.1 to the chair network, to the dolphins network, and
to a jazz network.

Example 10.3 For the chair network of Fig. 8.2 we have L = 2, x(L) = (2, 2, 1),
U = 3, and x(U) = (3, 2). We have D′

0(2, 3) ≈ −0.070, as shown in Fig. 9.1 by
the slightly negative slope of the lower curve at q = 0. As mentioned above, this
curve is not monotone non-increasing; it has a local minimum. ��

Example 10.4 For the dolphins network studied in Example 10.1, Table 10.1
provides D′

0(L,U) for various choices of L and U . The values in Table 10.1 are
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Table 10.1 D′
0(L,U) for the

dolphins network
L,U D′

0(L,U)

2, 6 −0.056

3, 5 0.311

2, 4 0.393

2, 5 0.367

Fig. 10.4 log R(s) vs. log s for the dolphins network

Fig. 10.5 Jazz box counting (left) and Dq vs. q for various L and U (right)

better understood using Fig. 10.4, which plots log R(s) vs. log s. For example, for
(L,U) = (2, 6) we have D′

0(2, 6) = log
(
R(2)/R(6)

)
/
(

log 6/2
) ≈ −0.056, as

illustrated by the slightly positive slope of the dashed red line in Fig. 10.4, since
the slope of the dashed red line is −D′

0(2, 6). For the other choices of (L,U) in
Table 10.1, the values of D′

0(L,U) are positive and roughly equal. Figure 10.2
visually suggests that log Z

(
x(s), q

)
is better approximated by a linear fit over

s ∈ [2, 5] than over s ∈ [2, 6], and Fig. 10.4 clearly shows that s = 6 is an outlier
in that using U = 6 dramatically changes D′

0(L,U). ��

Example 10.5 This network, with 198 nodes, 2742 arcs, and diameter 6, is a
collaboration network of jazz musicians [19]. Figure 10.5 shows the results of box
counting; the curve appears reasonably linear for s ∈ [2, 6]. Figure 10.5 also plots
Dq(L,U) vs. q for four choices of L and U . Table 10.2 provides D′

0(L,U), D0,
and D∞ for nine choices of L and U ; the rows are sorted by decreasing D′

0(L,U).
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Table 10.2 Results for the
jazz network for various L

and U

L,U D′
0(L,U) D0 D∞

2, 3 1.576 2.77 2.16

2, 4 1.224 2.74 1.42

2, 5 0.826 2.51 1.51

3, 4 0.728 2.69 0.37

2, 6 0.485 2.73 1.68

3, 5 0.231 2.31 1.00

3, 6 −0.154 2.70 1.40

4, 5 −0.411 1.82 1.82

5, 6 −1.232 3.80 2.52

Fig. 10.6 log R(s) vs. log s for the jazz network

It is even possible for the Dq(L,U) vs. q curve to exhibit both a local maximum
and a local minimum: for the jazz network with L = 4 and U = 5, there is a local
minimum at q ≈ 0.7 and a local maximum at q ≈ 12.8. Figure 10.6 plots log R(s)

vs. log s for the jazz network. ��
These results, together with the results in [47, 48], show that two requirements

should be met when reporting fractal dimensions of a complex network. First, since
there are in general multiple minimal s-coverings, and these different coverings can
yield different values of Dq , computational results should specify the rule (e.g., a
maximal entropy covering, or a covering yielding a lexico minimal summary vector)
used to unambiguously select a minimal s-covering. Second, the lower bound L and
upper bound U on the box sizes used to compute Dq should be reported. Published
values of Dq not meeting these two requirements cannot in general be considered
benchmarks. As to the values of L and U yielding the most meaningful results, it
is desirable to identify the largest range [L,U ] over which log Z is approximately
linear in log s; this is a well-known principle in the estimation of fractal dimensions.
Future research may uncover, based on the log R(s) vs. log s curve, other criteria for
selecting L and U .
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