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To Solomon and Asher

“as an ook cometh of a litel spyr”

from “Troilus and Criseyde” (1374)

by Geoffrey Chaucer

as read by (if you listen very closely)

your great-grandfather



Preface

In the field of network science, one of the fundamental questions is how to
characterize a network. One way to characterize a network is to compute a fractal
dimension. We write “a fractal dimension” rather than “the fractal dimension” since
many different fractal dimensions have been proposed for networks.

In this brief, we review the theory and computation of the most important of
these fractal dimensions, including the box counting dimension, the correlation
dimension, the mass dimension, the transfinite fractal dimension, the information
dimension, the generalized dimensions (which provide a way to describe mul-
tifractal networks), and the sandbox method (for approximating the generalized
dimensions). We describe the use of diameter-based and radius-based boxes, and
present several heuristic methods for box counting, including greedy coloring,
random sequential node burning, and a method for computing a lower bound.
We also discuss very recent results on resolving ambiguity in the calculation
of the information dimension and the generalized dimensions, and on the non-
monotonicity of the generalized dimensions.

Research on fractal dimensions of networks began at least as early as 1988.
Since about 2003, this has been an active research area. The wide variety of fractal
dimensions considered in this survey is a testament to the richness of this subject.
There are abundant opportunities for research and applications.

The intended audience for this book is anyone interested in the theory and
application of networks. This includes anyone studying, e.g., social networks,
telecommunications networks, transportation networks, ecological networks, food
chain networks, network models of the brain, or financial networks. We assume a
knowledge of limits and the derivative of a function of a single variable. We also
assume the reader is familiar with finding the shortest path between two nodes
in a network, e.g., using Dijkstra’s method. A knowledge of the theory of linear
programming, specifically, duality theory and complementary slackness, is required
for Chap. 4.

vii



viii Preface

Many thanks to Kartik Pandit and Curtis Provost, and a special acknowledgment
to Robert Murray, for their comments and suggestions on this survey. Many thanks
also to Paul Drougas, Senior Editor at Springer, and to Frank Politano, Esq of K&L
Gates LLP, for bringing this brief to fruition.

Middletown, NJ, USA Eric Rosenberg
March 2018



About the Author

Eric Rosenberg received a B.A. in Mathematics from Oberlin College and a
Ph.D. in Operations Research from Stanford University. He works at AT&T Labs
in Middletown, New Jersey (email: ericr@att.com). Dr. Rosenberg has taught
undergraduate and graduate courses in optimization at Princeton University and
New Jersey Institute of Technology. He has authored or coauthored 17 patents
and has published in the areas of convex analysis and nonlinearly constrained
optimization, computer-aided design of integrated circuits and printed wire boards,
telecommunications network design and routing, and fractal dimensions of net-
works.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Tables of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Box Counting and Hausdorff Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Covering a Complex Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Box Counting with Diameter-Based or Radius-Based Boxes . . . . . . . . 9

3 Network Box Counting Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Node Coloring Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Node Coloring for Weighted Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Random Sequential Node Burning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Set Covering Formulation and a Greedy Method . . . . . . . . . . . . . . . . . . . . . 19
3.5 Box Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Box Counting for Scale-Free Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Lower Bounds on Box Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Dual Ascent and Dual Adjustment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Bounding the Fractal Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Correlation Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Mass Dimension for Infinite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1 Transfinite Fractal Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Volume and Surface Dimensions for Infinite Networks . . . . . . . . . . . . . . . . . 51

8 Information Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Generalized Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10 Non-monotonicity of Generalized Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11 Zeta Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



Chapter 1
Introduction

Consider the network G = (N,A) where N is the set of nodes connected by the set
A of arcs. Let N ≡ |N| be the number of nodes, and let A ≡ |A| be the number
of arcs. (We use “≡” to denote a definition.) Unless otherwise specified, henceforth
we assume that G is a “complex network”: an arbitrary network without special
structure (as opposed to, e.g., a regular lattice), for which all arcs have unit cost (so
the length of a shortest path between two nodes is the number of arcs in that path),
and all arcs are undirected (so the arc between nodes i and j can be traversed in
either direction). We assume that G is connected, meaning there is a path of arcs
in A connecting any two nodes in N. Many different measures have been used to
describe a complex network [7]. For example,

1. the density of G is A/[N(N −1)/2], which is the ratio of the number of arcs in G

to the number of arcs that would be present if each pair of nodes were connected
by an arc;

2. the diameter Δ of G is defined by Δ ≡ max{ dist(x, y) | x, y ∈ N }, where
dist(x, y) is the length of the shortest path between nodes x and y;

3. the average node degree is (1/N)
∑

n∈N δn, where δn is the node degree of node
n (the number of arcs incident to node n).

Another way to describe G is to compute a fractal dimension of G. The interest
in computing fractal dimensions of networks began about 2003 [10] (although
one important paper [38] appeared as early as 1988) and was inspired by the
study of fractal dimensions of geometric objects. For geometric objects, the fractal
dimensions of interest usually have non-integer values, and for that reason a fractal
is sometimes defined as something with a non-integer dimension. However, a good
definition of “a fractal” has been an elusive goal, and research has instead focused
on the theory and application of different fractal dimensions. Similarly, we are not
concerned here with a definition of “a fractal network”. Rather, our goal is to survey
the most important of the different fractal dimensions that have been proposed for
networks.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
E. Rosenberg, A Survey of Fractal Dimensions of Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_1
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2 1 Introduction

This book is organized as follows. In this chapter we will present the box
counting and Hausdorff dimensions. Chapter 2 considers the covering of a complex
network by boxes. Several heuristics for box counting are presented in Chap. 3, and
Chap. 4 is concerned with lower bounds on box counting. The correlation dimension
is presented in Chap. 5. The mass dimension and the transfinite fractal dimension of
an infinite network are studied in Chap. 6, and the volume and surface dimensions of
an infinite network are studied in Chap. 7. The information dimension is the subject
of Chap. 8. Generalized dimensions and the sandbox method are studied in Chap. 9.
The non-monotonicity of the generalized dimensions is explored in Chap. 10. The
final chapter, Chap. 11, presents the zeta dimension.

1.1 Tables of Symbols

Many of the fractal dimensions studied in this book are defined in terms of a
covering of G by “boxes”, and the reason for covering G by boxes is that this is
how the fractal dimension of a geometric object was first defined. So we start, in
the next section, with a review of the box counting and Hausdorff dimensions of a
geometric object. For convenience, some symbols frequently used in this survey are
summarized in Table 1.1, and a list of the fractal dimensions we study is provided in
Table 1.2. The end of a definition, or proof, or example, is indicated by the symbol ��.

1.2 Box Counting and Hausdorff Dimensions

The simplest fractal dimension is the box counting dimension, which is based on
covering a geometric object Ω ⊂ R

E by equal sized E-dimensional hypercubes.
For example, for E = 1, consider a line segment of length L. If we measure the line
segment using a ruler of length s, where s � L, the number B(s) of rule lengths
needed is given by B(s) ≈ Ls−1. We call B(s) the “number of boxes” of size s

needed to cover the segment. For E = 1, a “box” of size s is a line segment of
length s. Since the exponent of s in Ls−1 is −1, we say that a line segment has
a box counting dimension of 1. Now consider a two-dimensional square with side
length L. If we cover the square by small squares of side length s, where s � L, the
number B(s) of small squares needed is given by B(s) ≈ L2s−2. Since the exponent
of s in L2s−2 is −2, we say that the square has box counting dimension 2.

To provide a general definition of the box counting dimension of a geometric
object, let Ω be a closed and bounded subset of R

E . By the “linear size” of Ω

we mean the diameter of Ω (the maximal Euclidean distance between any two
points of Ω , denoted by diam(Ω)), or the maximal variation in any coordinate (i.e.,
maxx,y∈Ω max1≤i≤E |x

i
− y

i
|). Let s � 1 be the linear size of a small box, where a

“box” is an E-dimensional hypercube. By a box of size s we mean a box of linear
size s. A set of boxes covers Ω if each point in Ω belongs to at least one box.
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Table 1.1 Symbols and their definitions

Symbol Definition

δn Node degree of node n

Δ Network diameter

Ω Geometric object in R
E

A Set of arcs in G

B(s) A minimal s-covering of G

B(s) Cardinality of B(s)

B
D
(s) Minimal number of diameter-based boxes needed to cover G

B
R
(r) Minimal number of radius-based boxes needed to cover G

Bj Box in B(s)

G Complex network

G(n, r) Subnetwork of G with center n and radius r

G(s) Subnetwork of G of diameter s − 1

H(s) Entropy of the probability distribution p
j
(s)

M(n, r) Number of nodes in N(n, r)

N Set of nodes in G

N Number of nodes in G

Nj (s) Number of nodes in box Bj ∈ B(s)

N(n, r) The set of nodes whose distance from n does not exceed r

p
j
(s) Probability of box Bj ∈ B(s)

R
E E-dimensional Euclidean space

x(s) Vector summarizing the covering B(s)

Zq

(
B(s)
)

Partition function value for the covering B(s)

Z(x, q) Partition function value for the summary vector x

Table 1.2 Fractal dimensions

Symbol Definition

d
B

Box counting dimension

d
C

Correlation dimension

d
E

Transfinite fractal dimension

d
I

Information dimension

d
M

Mass dimension

d
U

Surface dimension

d
V

Volume dimension

d
Z

Zeta dimension

Dq Generalized dimension of order q

D sandbox
q

Sandbox dimension of order q

Dq(L,U) Secant estimate of Dq



4 1 Introduction

Definition 1.1 Let B(s) be the minimal number of boxes of size s needed to
cover Ω . If

lim
s→0

log B(s)

log(1/s)
(1.1)

exists, then the limit is called the box counting dimension of Ω and is denoted
by d

B
. ��

Roughly speaking, if d
B

is the box counting dimension of Ω then B(s) behaves

as s−d
B for s � 1. In practice, the computation of d

B
typically begins by selecting

a set {s1, s2, · · · , s
K

} of box sizes. For each value of s, we determine the minimal
number B(s) of boxes of size s needed to cover Ω . By plotting log B(s) vs. log s

for the K values of s, a range of s can be identified over which the plot is roughly
linear [3, 27, 28, 45]. Then d

B
can be determined, e.g., by linear regression.

Although the limit (1.1) may not exist [12], the lim inf and lim sup always exist.
The lower box counting dimension d

B
is defined by

d
B

≡ lim
s→0

inf
log B(s)

log (1/s)
, (1.2)

and the upper box counting dimension d
B

is defined by

d
B

≡ lim
s→0

sup
log B(s)

log (1/s)
. (1.3)

When d
B

= d
B

then d
B

exists, and d
B

= d
B

= d
B

.
The box counting dimension assumes that all the boxes used to cover Ω are

identical. This restriction is removed in the Hausdorff dimension [14, 53, 63],
introduced in 1918 by Felix Hausdorff (1868–1942) [24]. Due to the contributions of
Abram Samoilovitch Besicovitch (1891–1970), this dimension is sometimes called
the Hausdorff-Besicovitch dimension. For s > 0, define an s-covering of Ω to be a
finite collection of J sets {X1, X2, · · · , XJ } that cover Ω (i.e., Ω ⊆ ∪J

j=1Xj ) such
that for each j we have diam(Xj ) ≤ s. Let C (s) be the set of all s-coverings of Ω .
For d > 0, define

v(d, s) ≡ inf
C (s)

J∑

j=1

(
diam(Xj )

)d
, (1.4)

where the infimum is over all s-coverings C (s) of Ω . We take the infimum since the
goal is to cover Ω with small sets Xj as efficiently as possible.

We can think of v(d, s) as the d-dimensional volume of Ω . For almost all values
of d, the limit lims→0 v(d, s) is either 0 or ∞, where by ∞ we mean +∞. For
example, suppose we cover the unit square [0, 1] × [0, 1] by small squares of side
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length s. We need 1/s2 small squares, the diameter of each square is
√

2s, and

v(d, s) = (1/s2)(
√

2s)d = √
2

d
s d−2. We have

lim
s→0

s d−2 =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if d < 2

1 if d = 2

0 if d > 2.

Thus, for example, if d = 3 then the unit square [0, 1] × [0, 1] has zero volume; if
d = 1 then the unit square has infinite length.

For a given d, as s decreases, the set of available covers shrinks, so v(d, s)

increases as s decreases. Thus

v �(d) ≡ lim
s→0

v(d, s) (1.5)

always exists in [0,∞) ∪ {∞}; that is, v �(d) might be ∞. (We call v �(d) the d-
dimensional Hausdorff measure of Ω .) Since for each fixed s < 1 the function
v(d, s) is non-increasing with d, then v �(d) is also non-increasing with d. For d ≥ 0
and d ′ ≥ 0, definition (1.5) implies [53]

If v �(d) < ∞ and d ′ > d, then v �(d ′) = 0 .

If v �(d) > 0 and d ′ < d, then v �(d ′) = ∞ .

These two assertions imply the existence of a unique value of d, called the Hausdorff
dimension of Ω and denoted by d

H
, such that v �(d) = ∞ for d < d

H
and v �(d) = 0

for d > d
H

. Formally,

d
H

≡ inf{d ≥ 0 | v �(d) = 0} . (1.6)

The Hausdorff dimension d
H

of Ω might be zero, positive, or ∞.
Mandelbrot [36, p. 15] uses the term “fractal dimension” to refer to the Hausdorff

dimension; we will use the term “fractal dimension” only in a generic manner,
to refer to any fractal dimension. Although historically the Hausdorff dimension
preceded the box counting dimension, the Hausdorff dimension is a generalization
of the box counting dimension, since the Hausdorff dimension does not require
equal size boxes, while the box counting dimension does. A set Ω ⊂ R

E with
d
H

< 1 is totally disconnected [12] (a set Ω is totally disconnected if for x ∈ Ω ,
the largest connected component of Ω containing x is x itself). If Ω ⊂ R

E is an
open set, then d

H
= E. If Ω is countable, then d

H
= 0. For ordinary geometric

objects, the Hausdorff and box counting dimensions are equal: d
H

= d
B

. However,
in general, d

H
≤ d

B
[12]. This inequality holds since the set C (s) of all s-coverings

of Ω includes any covering of Ω by boxes of size s.
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The above discussion suggests that it is easier to obtain an upper bound on d
H

than a lower bound. Obtaining a lower bound on d
H

requires estimating all possible
coverings of Ω . Also, the box counting dimension is not as well-behaved as the
Hausdorff dimension. For example, a countable set can have a positive d

B
[12].

However, in practice the Hausdorff dimension has been rarely used, while the box
counting dimension has been widely used, since it is easier to compute.



Chapter 2
Covering a Complex Network

The previous chapter showed how the box counting and Hausdorff dimensions of a
geometric object Ω are computed from a covering of Ω . With this background, we
can now consider what it means to cover a complex network G, and how a fractal
dimension can be computed from a covering of G. We require some definitions. The
network B is a subnetwork of G if B can be obtained from G by deleting nodes and
arcs. By a box we mean a subnetwork of G. A box is disconnected if some nodes in
the box cannot be connected by arcs in the box. Let {Bj }Jj=1 ≡ {B1, B2, · · · , BJ }
be a collection of boxes. Two types of coverings of G have been proposed: node
coverings and arc coverings. Let s be a positive integer.

Definition 2.1 (i) The set {Bj }Jj=1 is a node s-covering of G if for each j we have
diam(Bj ) < s and if each node in N is contained in exactly one Bj . (ii) The set
{Bj }Jj=1 is an arc s-covering of G if for each j we have diam(Bj ) < s and if each
arc in A is contained in exactly one Bj . ��

If Bj is a box in a node or arc s-covering of G then the requirement diam(Bj ) < s

in Definition 2.1 implies that Bj is connected. However, this requirement, which is
a standard assumption in defining the box counting dimension of G (e.g., [16, 29,
30, 48, 56]), may frequently be violated, for good reasons, in some methods for
determining the fractal dimensions of G, as we will discuss in Sect. 3.6.

It is possible to define a node covering of G to allow a node to be contained
in more than one box; coverings with possibly overlapping boxes are studied in
[15, 60]. The great advantage of non-overlapping boxes is that they immediately
yield a probability distribution, as discussed in Chap. 8. The probability distribution
obtained from a non-overlapping node covering of G is the basis for computing
the information dimension d

I
and the generalized dimensions Dq of G (Chap. 9).

Therefore, in this survey, each node covering of G is assumed to use non-
overlapping boxes, as specified in Definition 2.1.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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8 2 Covering a Complex Network

Fig. 2.1 A node 3-covering
(a) and an arc 3-covering (b)

Fig. 2.2 A node covering
which is not an arc covering

Since a network of diameter 0 contains only a single node, a node 1-covering
contains N boxes. Since a node 1-covering provides no useful information other
than N itself, we consider node s-coverings only for s ≥ 2. Figure 2.1a illustrates
a node 3-covering with J = 2. Both boxes in the 3-covering have diameter 2.
Figure 2.1b illustrates an arc 3-covering of the same network using three boxes.
The box indicated by the solid blue line contains four arcs, the box indicated by the
dotted red line contains three arcs, and the box indicated by the dashed green line
contains one arc.

Each arc covering of G yields a node covering. However, the converse is not true:
a node covering does not in general yield an arc covering. This is illustrated by the
simple example of Fig. 2.2. The nodes are covered by B1 and B2, but the arc in the
middle belongs to neither B1 nor B2.

Definition 2.2 (i) An arc s-covering {Bj }Jj=1 is minimal if for any other arc s-

covering {B ′
j }J ′

j=1 we have J ≤ J ′. (ii) A node s-covering {Bj }Jj=1 is minimal if

for any other node s-covering {B ′
j }J ′

j=1 we have J ≤ J ′. ��
That is, a covering is minimal if it uses the fewest possible number of boxes. For

s > Δ, the minimal node or arc s-covering consists of a single box, which is G

itself. Virtually all research has considered node coverings; only a few studies (e.g.,
[74]) use arc coverings. The reason arc coverings are rarely used is that, in practice,
computing a fractal dimension of a geometric object typically starts with a given set
of points in R

E (the points are then covered by boxes, or the distance between each
pair of points is computed (e.g., [22, 36])), and nodes in a network are analogous to
points in R

E . Having very briefly contrasted arc coverings and node coverings for
a network, we now abandon arc coverings; henceforth, all coverings of G are node
coverings, and by covering G we mean covering the nodes of G. Also, henceforth
by an s-covering we mean a node s-covering, and by a covering of size s we mean
an s-covering.
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2.1 Box Counting with Diameter-Based or Radius-Based
Boxes

There are two main approaches used to define boxes for use in covering G: diameter-
based boxes and radius-based boxes.

Definition 2.3 (i) A radius-based box G(n, r) with center node n ∈ N and radius r

is the subnetwork of G containing all nodes whose distance to n does not exceed r .
Let B

R
(r) be the minimal number of radius-based boxes of radius at most r needed

to cover G. (ii) A diameter-based box G(s) of size s is a subnetwork of G of diameter
s−1. Let B

D
(s) denote the minimal number of diameter-based boxes of size at most

s needed to cover G. ��
Thus the node set of G(n, r) is {x ∈ N | dist(n, x) ≤ r}. Radius-based boxes

are used in the Maximum Excluded Mass Burning and Random Sequential Node
Burning methods described in Chap. 3. Interestingly, the above definition of a
radius-based box may frequently be violated in the Maximum Excluded Mass
Burning and Random Sequential Node Burning methods. In particular, some radius-
based boxes created by those methods may be disconnected, or some boxes may
contain only some of the nodes whose distance to the center node n does not
exceed r .

A diameter-based box G(s) is not defined in terms of a center node; instead,
for x, y ∈ G(s) we require dist(x, y) < s. Diameter-based boxes are used in
the Box Burning and Compact Box Burning heuristics described in Chap. 3. The
above definition of a diameter-based box also may frequently be violated in the
Box Burning and Compact Box Burning methods. Also, since each node in G must
belong to exactly one Bj in an s-covering {Bj }Jj=1 using diameter-based boxes, then
in general we will not have diam(Bj ) = s − 1 for all j . To see this, consider a chain
of three nodes (call them x, y, and z), and let s = 2. The minimal 2-covering using
diameter-based boxes requires two boxes, B1 and B2. If B1 covers x and y then B2
covers only z, so the diameter of B2 is 0.

The minimal number of diameter-based boxes of size at most 2r + 1 needed to
cover G is, by definition, B

D
(2r + 1). We have B

D
(2r + 1) ≤ B

R
(r) [29]. To see

this, let G(n
j
, r

j
), j = 1, 2, · · · , B

R
(r) be the boxes in a minimal covering of G

using radius-based boxes of radius at most r . Then r
j

≤ r for all j . Pick any j , and
consider box G(n

j
, r

j
). For any nodes x and y in G(n

j
, r

j
) we have

dist(x, y) ≤ dist(x, n
j
) + dist(n

j
, y) ≤ 2r

j
≤ 2r ,

so G(n
j
, r

j
) has diameter at most 2r . Thus these B

R
(r) boxes also serve as a covering

of size 2r + 1 using diameter-based boxes. Therefore, the minimal number of
diameter-based boxes of size at most 2r+1 needed to cover G cannot exceed B

R
(r);

that is, B
D
(2r + 1) ≤ B

R
(r).
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Fig. 2.3 Diameter-based vs.
radius-based boxes

The reverse inequality does not in general hold, since a diameter-based box of
size 2r+1 can contain more nodes than a radius-based box of radius r . For example,
consider the network G of Fig. 2.3. The only nodes adjacent to n are x and z, so
G(n, 1) = {n, x, z} and B

R
(1) = 2. Yet the diameter of G is 2, so it can be covered

by a single diameter-based box of size 3, namely G itself, so B
D
(3) = 1. Thus B

R
(r)

and B
D
(2r +1) are not in general equal. Nonetheless, for the C. elegans and Internet

backbone networks studied in [56], the calculated fractal dimension was the same
whether radius-based or diameter-based boxes were used. Similarly, both radius-
based and diameter-based boxes yielded a fractal dimension of approximately 4.1
for the WWW (the World Wide Web) [29].

The term box counting refers to computing a minimal s-covering of G for a
range of values of s, using either radius-based boxes or diameter-based boxes.
Conceivably, other types of boxes might be used to cover G. In the fractal literature,
the box counting dimension d

B
is often informally defined by the scaling B

D
(s) ∼

s−d
B . (The symbol “∼”, frequently used in the fractal literature but often with

different meanings, should here be interpreted to mean “approximately behaves
like”.) Definition 2.4 below provides a more computationally useful definition of
d
B

for a complex network.

Definition 2.4 G has box counting dimension d
B

if over some range of s and for
some constant c we have

log B
D
(s) ≈ −d

B
log(s/Δ) + c . �� (2.1)

Alternatively, (2.1) can be written as log B
D
(s) ≈ −d

B
log s + c. If G has box

counting dimension d
B

then over some range of s we have B
D
(s) ≈ as−d

B for some
constant a. In the terminology of [16], if the box counting dimension for G exists,
then G enjoys the fractal scaling property, or, more simply, G is fractal. The main
feature apparently displayed by fractal networks is a repulsion between hubs, where
a hub is a node with a significantly higher node degree than a non-hub node. That
is, the highly connected nodes tend to be not directly connected [72]. This tendency
can be quantified using the joint node degree distribution p(δ1, δ2) that a node with
degree δ1 and a node with degree δ2 are neighbors (i.e., connected by a single arc).
In contrast, for a non-fractal network G, hubs are mostly connected to other hubs,
which implies that G enjoys the small-world property [16]. (Roughly speaking, G
is a small-world network if diam(G) grows as log(N) [57].) Also, the concepts of
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Fig. 2.4 Fractal vs.
non-fractal scaling

modularity and fractality for a network are closely related. Interconnections within
a module (e.g., a biological sub-system) are more prevalent than interconnections
between modules. Similarly, in a fractal network, interconnections between a hub
and non-hub nodes are more prevalent than interconnections between hubs. Non-
fractal networks are typically characterized by a sharp decay of B

D
(s) with s, which

is better described by an exponential law B
D
(s) ∼ e−β s , where β > 0, rather than

by a power law B
D
(s) ∼ s−β , with a similar statement holding if radius-based boxes

are used. These two cases are illustrated in Fig. 2.4, taken from [16], where the solid
circles are measurements from a fractal network, and the hollow circles are from a
non-fractal network.



Chapter 3
Network Box Counting Heuristics

In this chapter we examine several methods for computing a minimal set of
diameter-based boxes, or a minimal set of radius-based boxes, to cover G. We
will see that some of these methods, which have been shown to be quite effective,
nonetheless require us to bend some of the definitions presented in Chap. 2. In
particular, some of these methods may generate boxes that are not connected
subnetworks of G.

3.1 Node Coloring Formulation

The problem of determining the minimal number B
D
(s) of diameter-based boxes of

size at most s needed to cover G is an example of the NP-hard graph coloring
problem [56], for which many good heuristics are available. To transform the
covering problem into the graph coloring problem for a given s ≥ 2, first create the
auxiliary graph G̃s = (N, Ãs) as follows. The node set of G̃s is N; it is independent
of s. The arc set Ãs of G̃s depends on s: there is an undirected arc (u, v) in Ãs if
dist(u, v) ≥ s, where the distance is in the original graph G.

Having constructed G̃s , the task is to color the nodes of G̃s , using the minimal
number of colors, such that no arc in Ãs connects nodes assigned the same color.
That is, if (u, v) ∈ Ãs , then u and v must be assigned different colors. The minimal
number of colors required is called the chromatic number of G̃s , traditionally
denoted by χ(G̃s).

Theorem 3.1 χ(G̃s) = B
D
(s).

Proof ([56]) Suppose that nodes u and v are assigned the same color. Then u and
v cannot be the endpoints of an arc in G̃s , because if they were, they would be
assigned different colors. Hence dist(u, v) < s, so u and v can be placed in a single

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
E. Rosenberg, A Survey of Fractal Dimensions of Networks, SpringerBriefs
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Fig. 3.1 Example network
for node coloring

diameter-based box of size s. It follows that B
D
(s) ≤ χ(G̃s). To prove the reverse

inequality, consider any minimal s-covering using B
D
(s) boxes, and let B be any

box in this covering. For any nodes x and y in this box we have dist(x, y) < s, so
x and y are not connected by an arc in G̃s . Thus x and y can be assigned the same
color, which implies χ(G̃s) ≤ B

D
(s). ��

We illustrate the node coloring formulation using the network of Fig. 3.1. For s =
3, the auxiliary graph G̃3 is given by Fig. 3.2a. Arc (x, y) exists in G̃3 if dist(x, y) ≥
3. Thus node c is isolated in G̃3 since its distance in G to all other nodes does not
exceed 2. Also, the distance in G from g to all nodes except a does not exceed 2, so
arc (g, a) exists in G̃3.

The chromatic number χ(G̃3) of the simple network of Fig. 3.2a can be exactly
computed using the Greedy Coloring method [56], which assigns colors based on a
random ordering of the nodes. Typically Greedy Coloring would be run many times,
using different random orderings of the nodes; using 10,000 random orderings,
Greedy Coloring has been shown to provide significant accuracy. Moreover the
method is very efficient, since, for a given random ordering of the nodes, a single
pass through all the nodes suffices to compute an s-covering of G for all box sizes
s [56].

We illustrate Greedy Coloring using Fig. 3.2b. Suppose we randomly pick a as
the first node, and assign the color yellow to node a (a yellow node is indicated
using a small square box). Then d, e, f , and g cannot be colored yellow, so we
color them blue (a blue node is indicated using a small oval box). We can color
b yellow since it is connected only to nodes already colored blue. Since c is
isolated we are free to assign it any color, so we color it yellow. We are done;
nodes a, b, and c are in the yellow box and nodes d, e, f , and g are in the blue
box. This is an optimal coloring, since at least two colors are needed to color any
graph with at least one arc. Figure 3.3 illustrates, in the original network, the two
boxes in this minimal covering for s = 3.

For s = 4, the auxiliary graph G̃4 is shown in Fig. 3.4a. There is an arc (x, y)

in G̃4 if in G we have dist(x, y) ≥ 4. We again apply the Greedy Coloring
heuristic to compute the chromatic number χ(G̃4). Suppose we randomly pick a

as the first node, and assign the color yellow to node a. Then e and f cannot
be colored yellow, so we color them blue. The remaining nodes are isolated
so we arbitrarily color them blue. We are done; a is in the yellow box and the
remaining nodes are in the blue box. This is also an optimal coloring. Figure 3.4b
illustrates, in the original network, the two boxes in the minimal covering for s = 4.
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Fig. 3.2 (a) Auxiliary graph with s=3, and (b) its coloring

Fig. 3.3 Minimal covering
for s = 3

Fig. 3.4 (a) Auxiliary graph with s=4, and (b) its coloring

3.2 Node Coloring for Weighted Networks

For an unweighted network, the distance between two nodes (also known as the
chemical distance, or the hop count) ranges from 1 to the diameter Δ of the network.
However, when applying box counting to a weighted network, choosing box sizes
between 2 and Δ will not in general be useful. For example, if the network diameter
is less than 1, then the entire network is contained in a box of size 1. One simple
approach to dealing with box size selection for weighted networks is to multiply
each arc length by a sufficiently large constant k. For example, if we approximate
each arc length by a rational number, then choosing k to be the least common
denominator of all these rational numbers will yield a set of integer arc lengths.
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Fig. 3.5 A weighted network

Even if all the arc lengths are integer, a set of box sizes must still be selected. The
box sizes could be selected using a default method, such as starting with a box
size less than the network diameter, and decreasing the box size by a factor of 2
in each iteration. Alternatively, the box sizes could be determined by an analysis
of the set of arc lengths. This is the approach taken in [69], and we describe their
method using the network of Fig. 3.5. The nodes are a, b, c, d, e, f , and each arc
length is shown. We first pre-process the data by computing the shortest distance
d
ij

between each pair (i, j) of nodes. The largest d
ij

is the diameter Δ. For this
example we have Δ = 1.16, which is the distance between nodes a and c. The
second pre-processing step is to sort all the d

ij
values in increasing order. For this

example, the five smallest d
ij

values are 0.05, 0.1, 0.3, 0.4, 0.5. Next we compute
the successive sums of the ordered d

ij
values, stopping when the sum first exceeds

Δ. The first sum is σ(1) = 0.05, the second is σ(2) = σ(1) + 0.1 = 0.15, the third
is σ(3) = σ(2) + .3 = .45, the fourth is σ(4) = σ(3) + 0.4 = 0.85, and finally
σ(5) = σ(4) + 0.5 = 1.35 > Δ. We set s1 = σ(4) = 0.85 since this is the largest
sum not exceeding Δ.

Next we create an auxiliary graph G̃ such that an arc in G̃ exists between nodes
i and j if d

ij
≥ s1. There are four pairs of nodes for which d

ij
≥ s1, namely (a, c),

(a, e), (a, f ), and (c, b), so G̃ has four arcs. Node d does not appear in G̃. The
length of arc (i, j) in G̃ is d

ij
, e.g., d

af
= 0.95, which is the length of the shortest

path in G from a to f . Next we assign a weight to each node in G̃. For node i in G̃,
the weight w(i) is

w(i) ≡
∑

(i,j)∈G̃
d
ij

.

The w(i) values are the underlined values in Fig. 3.6 next to each node. Thus w(a) =
0.9 + 1.16 + 0.95 = 3.01 for the three arcs in G̃ incident to a, and w(f ) = 0.95 for
the one arc in G̃ incident to f . As in Sect. 3.1, we color the nodes of G̃ so that the
endpoints of each arc in G̃ are assigned different colors. Each color will correspond
to a distinct box, so using the minimal number of colors means using the fewest
boxes. We start with the node with the highest weight. This is node a, whose weight
is 3.01. Suppose we assign to a the color yellow, as indicated by the node name
in a small square, as shown in Fig. 3.7. Then nodes c, e, and f cannot be colored
yellow, so we color them blue, as indicated by the node name in a small circle.
The remaining node in G̃ to be colored is node b, and it can be colored yellow.
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Fig. 3.6 Auxiliary graph for
box size s1 = 0.85

Fig. 3.7 Two boxes are
required for box size s1

The final step in this iteration is to color to each node not in G̃. If node i does not
appear in G̃ then, by construction of G̃, we have d

ij
< s1 for j ∈ N. Thus i can be

assigned to any nonempty box, so i can be assigned any previously used color. In
our example, only d is not in G̃, and we arbitrarily color it yellow. Thus for the
initial box size s1 we require only two boxes, a yellow box containing a, b, and d,
and a blue box containing c, e, and f . This concludes the iteration for the initial
box size s1.

For the second iteration, we first need the new box size s2. The method of [69]
simply takes the next smallest of the sums. Since s1 = σ(4), then s2 = σ(3) = 0.45.
With this new box size, we continue as before, creating a new auxiliary graph G̃

containing each arc (i, j) such that d
ij

≥ s2, determining the weight of each node

in G̃, coloring the nodes of G̃, and then coloring the nodes not in G̃. Then we select
s3 = σ(2) and continue in this manner.

This above material is one of the few sections in this survey concerning weighted
networks. We now return to the study of unweighted networks, and examine other
methods for box counting.

3.3 Random Sequential Node Burning

In this section we study the Random Sequential Node Burning method of [29] for
covering G using radius-based boxes. For a given radius r , the procedure is as
follows. Initially all nodes are uncovered (or “unburned”, in the terminology of [29],
i.e., not yet assigned to a box), and the box count B

R
(r) is initialized to 0. In each

iteration, we first pick a random node n which may be covered or uncovered, but
which has not previously been selected as the center node of a box. We create the
new radius-based box G(n, r). Next we add to G(n, r) each uncovered node whose
distance from n does not exceed r . If G(n, r) contains no uncovered nodes, then
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Fig. 3.8 Covering using
Random Sequential Node
Burning

G(n, r) is discarded; otherwise, B
R
(r) is incremented by 1, and each uncovered

node added to G(n, r) is marked as covered. This concludes an iteration of the
method.

If there are still uncovered nodes, the next iteration begins by picking another
random node n ′ which may be covered or uncovered, but which has not previously
been selected as the center node of a box. We continue in this manner until all nodes
are covered.

Figure 3.8, adapted from [29], illustrates the method for r = 1. Initially, all
eight nodes are uncovered. Suppose node a is randomly selected as the center node,
and G(a, 1) is created. Since a, b, and c are uncovered and are within one hop
of a, they are placed in G(a, 1); nodes a, b, and c are now covered. There are
still uncovered nodes. Suppose b is randomly selected as the next center node, and
G(b, 1) is created. There are no uncovered nodes within one hop of b, and b is
already covered, so we discard G(b, 1). Suppose c is randomly selected as the next
center node, and G(c, 1) is created. The uncovered nodes d and e are one hop away
from c, so they are placed in G(c, 1); nodes d, and e are now covered. There are
still uncovered nodes, so suppose d is randomly selected as the next center node,
and G(d, 1) is created. The only uncovered node one hop from d is f , so we place
f in G(d, 1); node f is now covered. There are still uncovered nodes, so suppose
e is randomly selected as the next center node, and G(e, 1) is created. Node g and
h are uncovered and one hop from e so we place g and h in G(e, 1); nodes g and
h are now covered. At this point there are no uncovered nodes, and the Random
Sequential Node Burning method halts for this radius r; four boxes were created.
��

As mentioned earlier, this method can generate disconnected boxes. For example,
in Fig. 3.8 there is no path in G(c, 1) connecting the two nodes in that box, and there
is no path in G(e, 1) connecting the two nodes in that box. Also, a box centered at a
node may not even contain the center node, e.g., G(e, 1) does not contain the center
node e. Thus a radius-based box G(n, r) generated by Random Sequential Node
Burning may fail to satisfy Definition 2.3, which would appear to cast doubt on the
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validity of d
B

calculated by this method. However, computational results [29, 56]
show that Random Sequential Node Burning yields the same value of d

B
as obtained

using other box counting methods.
It is perhaps surprising that Random Sequential Node Burning does not exclude

a node that has been covered from being selected as a center. If Random Sequential
Node Burning is modified to exclude a covered node from being a box center, then a
power law scaling relation is not observed for the WWW [29]. However, for another
fractal network studied in [29], a power law continues to hold with this modification,
although the modification led to somewhat different values of B

R
(r).

3.4 Set Covering Formulation and a Greedy Method

The problem of computing the minimal number B
R
(r) of radius-based boxes of

radius at most r needed to cover G can be formulated as a set covering problem, a
classic combinatorial optimization problem. For simplicity we will refer to node j

rather than node n
j
, so N = {1, 2, · · · , N}. For a given positive integer r , let Mr be

the N by N matrix defined by

Mr
ij =
{

1 if dist(i, j) ≤ r,

0 otherwise .
(3.1)

(The superscript r does not mean the r-th power of the matrix M .) For an undirected
graph, Mr is symmetric. For example, for r = 1, the matrix M1 corresponding to the
network of Fig. 3.9 is the same as the node-node incidence matrix of the network,
namely

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 1
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 1 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For the same network and r = 2 we have

M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 1 1 1 1
1 0 1 1 1 1 1
1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Fig. 3.9 Example network
with seven nodes and eight
arcs

For n = 1, 2, · · · , N , let xn be the binary variable defined by

xn =
{

1 if the box centered at n with radius r is used in the covering of G,

0 otherwise.

The minimal number B
R
(r) of boxes needed to cover G is the optimal objective

function value of the following binary integer program (an integer program is a
linear optimization problem whose variables are restricted to be integer valued):

minimize
N∑

n=1

xn (3.2)

subject to
N∑

n=1

Mr
jn xn ≥ 1 for j = 1, 2, · · · , N (3.3)

xn = 0 or 1 for n = 1, 2, · · · , N. (3.4)

Here Mr
jn is the element in row j and column n of the matrix Mr . The objective

function (3.2) is the number of center nodes used in the covering, i.e., the number
of boxes used in the covering. The left hand side of constraint (3.3) is the number of
boxes covering node j , so this constraint requires that each node be within distance
r of at least one center node used in the covering.

To express this formulation more compactly, let x = (x1, x2, · · · , x
N

) be the
column vector of size N (that is, a matrix with N rows and one column) and let
xT be the transpose of x (so xT is a matrix with one row and N columns). Let 1
= (1, 1, · · · , 1) be the column vector of size N each of whose components is 1.
Then the above set covering formulation can be written as

minimize xT 1

subject to Mrx ≥ 1

xn = 0 or 1 for n = 1, 2, · · · , N.
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Let g̃(n) be the sum of the entries in column n of the matrix Mr , i.e., g̃(n) ≡∑N
j=1 Mr

jn. Then g̃(n) is the number of nodes whose distance from node n does not
exceed r . Intuitively, a node n for which g̃(n) is high (for example, a hub node) has
more value in a covering of G than a node with for which g̃(n) is low. However, once
some boxes have been selected to be in the covering, to determine which additional
boxes to add to the covering, the computation of g̃(n) should consider only nodes
not yet covered by any box. Therefore, given the binary vector x ∈ R

N , for n ∈ N

we define

U(x) ≡
{

j ∈ N

∣
∣
∣

N∑

n=1

Mr
jn xn = 0

}

,

so if j ∈ U(x) then node j is currently uncovered. Define

g(n) ≡
∑

1≤j≤N, j∈U(x)

Mr
jn ,

so g(n) is the number of currently uncovered nodes that would be covered if the
radius-based box G(n, r) centered at n were added to the covering. The g(n) values
are used in a greedy heuristic to solve the integer optimization problem defined by
(3.2)–(3.4). Greedy methods for set covering have been known for decades, and in
1979 Chvátal [5] provided a bound on the deviation from optimality of a greedy
method for set covering.

For a given r , the greedy Maximum Excluded Mass Burning method of [56]
begins by initializing each component of the vector x ∈ R

N to zero, indicating
that no node has yet been selected as the center of a radius-based box. The set Z of
uncovered nodes is initialized to N. In each iteration of Maximum Excluded Mass
Burning, the node selected to be the center of a radius-based box is a node j for
which g(j) = max

i
{g(i) | x

i
= 0}. That is, the next center node j is a node which

has not previously been selected as a center, and which, if used as the center of a box
of radius r , covers the maximal number of uncovered nodes. There is no requirement
that j be uncovered. In the event that more than one node yields max

i
{g(i) | x

i
= 0},

a node can be randomly chosen, or a deterministic tie breaking rule can be utilized.
We set x

j
= 1 indicating that j has now been used as a box center. Each uncovered

node i within distance r of j is removed from Z since i is now covered. If Z is now
empty, we are done. Otherwise, since the newly added box will cover at least one
previously uncovered node, we update g(n) for each n such that xn = 0 (i.e., for
each node not serving as a box center). Upon termination, the estimate of B

R
(r) is∑

n∈N xn. As with Random Sequential Node Burning, a box generated by Maximum
Excluded Mass Burning can be disconnected [56].

Once the method has terminated, each non-center (a node n for which xn = 0)
is within distance r of a center (a node n for which xn = 1). We may now want to
assign each non-center to a center. One way to make this assignment is to arbitrarily
assign each non-center n to any center c for which dist(c, n) ≤ r . Another way to
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make this assignment is to assign each non-center n to the closest center, breaking
ties randomly. Yet another way is suggested in [56]. Although the number of nodes
in each box is not needed to calculate d

B
, the number of nodes in each box is required

to calculate other network fractal dimensions, as will be discussed in Chaps. 8–10.

3.5 Box Burning

The Box Burning method [56] is a heuristic for computing the minimal number
B

D
(s) of diameter-based boxes of size at most s needed to cover G. Let C be the

set of covered nodes, so initially C = ∅. Initialize B
D
(s) = 0. In each iteration, a

random uncovered node x is selected to be the initial occupant (i.e., the “seed”) of a
new box G(s). Since we have created a new box, we increment B

D
(s) by 1. We add

x to C. Now we examine each node n not in C; if n is within distance s − 1 of each
node in G(s) (which initially is just the seed node x), then n is added to G(s) and
added to C. We again examine each node n not in C; if n is within distance s − 1
of each node in G(s), then n is added to G(s) and added to C. This continues until
no additional nodes can be added to G(s). At this point a new box is needed, so a
random uncovered node x is selected to be the seed of a new box and we continue
in this manner, stopping when C = N. We illustrate Box Burning for s = 2 using
the network of Fig. 3.10.

Iteration 1 Choose f as the first seed node, create a new box containing only this
node, and increment B

D
(2). Add node e to the box; this is allowed since the distance

from e to each node in the box (which currently contains only f ) does not exceed
1. No additional uncovered nodes can be added to box with nodes {e, f }; e.g., g

cannot be added since its distance to e is 2.

Iteration 2 Choose b as the second seed node and create a new box containing only
this node. Add node c to the box; this is allowed since the distance from c to each
node in the box (which currently contains only b) is 1. No additional uncovered
nodes can be added to the box with nodes {b, c}; e.g., a cannot be added since its
distance to c is 2.

Fig. 3.10 Network for
illustrating box burning
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Fig. 3.11 (a) Box burning 2-covering and (b) a minimal 2-covering

Iteration 3 Choose a as the third seed node, and create a new box containing only
this node. No additional uncovered nodes can be added to this box, since the only
uncovered nodes are d and g, and their distance from a exceeds 1.

Iteration 4 Choose d as the fourth seed node; d can be the only occupant of
this box.

Iteration 5 Finally, choose g as the fifth seed node; g can be the only occupant of
this box.

We created five boxes to cover the network, which is not optimal since we
can cover it using the four boxes with node sets {a}, {b, c}, {d, e}, and {f, g}.
The covering created by Box Burning and this optimal covering are illustrated in
Fig. 3.11. ��

Just as the Random Sequential Node Burning method described above in Sect. 3.3
can generate disconnected boxes, the boxes generated by Box Burning can be
disconnected. (So radius-based box heuristics for covering G, as well as diameter-
based box heuristics for covering G, can generate disconnected boxes.) This is
illustrated by the network of Fig. 3.12 for s = 3. All five nodes cannot be in the
same box of diameter 2. If w is the first random seed, then the first box contains u,
v, and w. If x is selected as the second random seed, the second box, containing x

and y, is disconnected. The only path connecting x and y goes through a node in
the first box. These two boxes form a minimal 3-covering of G. However, for this
network and s = 3, there is a minimal 3-covering using two connected boxes: place
x, y, and u in the first box, and v and w in the second box.

While the Box Burning method is easy to implement, its running time is
excessive. A faster Compact Box Burning heuristic [56] also uses diameter-based
boxes. To begin, initialize B

D
(s) = 0. Each iteration of Compact Box Burning

processes the set U , the set of uncovered nodes, using the following steps. (i)
Initialize Z = ∅, where Z is the set of nodes in the next box created in the covering
of G. Initialize U = N. Increment B

D
(s) by 1. (ii) Select a random node x ∈ U ; add

x to Z and remove x from U , since x is now covered by the box with node set Z.
(iii) For each node y ∈ U , if dist(x, y) ≥ s then remove y from U , since x and y

cannot both belong to Z. (iv) Repeat steps (ii) and (iii) until U is empty.
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Fig. 3.12 Disconnected
boxes in a minimal covering

When U is empty, no more nodes can be added to Z. If N is empty, we are done.
If N is not empty, another iteration of Compact Box Burning is required. To start
this new iteration, first remove each node in Z from N, since these nodes are now
covered. Now continue the iteration, starting with step (i).

Note that in the first iteration of Compact Box Burning, when we initialize U = N

in step (i), the set N is the original set of all the nodes in G. In subsequent iterations,
N is no longer the original set of all the nodes in G, since each subsequent iteration
begins with removing each node in Z from N. We illustrate Compact Box Burning
for s = 2, again using the network of Fig. 3.10.

Iteration 1 Initialize B
D
(2) = 0. To start the first iteration, set U = N, increment

B
D
(s) (since U is nonempty then at least one more box is needed), and create the

empty set Z. Choose f in step (ii). Add f to Z and remove f from U . In (iii),
remove nodes a, b, c, d from U , since their distance from f exceeds 1. Since U

is not empty, return to (ii) and choose e. Add e node to Z, remove it from U , and
remove node g from U , since its distance from e exceeds 1. Now U is empty.

Iteration 2 Since Z = {e, f }, removing these nodes from N yields N =
{a, b, c, d, g}. Since N is not empty, a new iteration is required. To start the second
iteration, initialize U = N, increment B

D
(s), and create the empty set Z. Choose

b in step (ii). Add b to Z, remove b from U , and remove nodes d and g from U ,
since their distance from b exceeds 1. Since U is not empty, return to step (ii) and
choose c. Add c to Z, remove c from U , and remove node a, since its distance from
c exceeds 1. Now U is empty.

Iteration 3 Since Z = {b, c}, removing these nodes from N yields N = {a, d, g}.
Since N is not empty, a new iteration is required. To start the third iteration, initialize
U = N, increment B

D
(s), and create the empty set Z. Choose a in step (ii). Add

a to Z, remove a from U , and remove nodes d and g since their distance from a

exceeds 1. Now U is empty.

Iteration 4 Since Z = {a}, removing a from N yields N = {d, g}. Since N is not
empty, a new iteration is required. To start the fourth iteration, initialize U = N,
increment B

D
(s), and create the empty set Z. Choose d in step (ii). Add d to Z,

remove d from U , and remove node g since its distance from d exceeds 1. Now U

is empty.
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Iteration 5 Since Z = {d}, removing d from N yields N = {g}. Since N is not
empty, a new iteration is required. To start the fifth iteration, initialize U = N,
increment B

D
(s), and create the empty set Z. Choose g in step (ii); there is no

choice here, since N = {g}. Add g to Z, and remove it from U . Now U is empty.

Termination Since N = {g}, removing g from N makes N empty, so we are done.
For this particular network and random node selections, Box Burning and Compact
Box Burning yielded the same covering using five boxes. ��

Compact Box Burning, like the other heuristics we have presented, is not
guaranteed to yield the minimal value B

D
(s). Since a random node is chosen in

step (ii), the method is not deterministic, and executing the method multiple times,
for the same network, will in general yield different values for B

D
(s). Compact

Box Burning was applied in [56] to two networks, the cellular E. coli network
and the mbone Internet multicast backbone network. [A multicast network [43]
facilitates one-to-many transmissions (e.g., a basketball game is streamed to a set
of geographically diverse viewers), or many-to-many transmissions (e.g., a set of
geographically diverse committee members join a teleconference with both audio
and video capabilities).] For both networks, the average value of B

D
(s) obtained by

10,000 executions of Compact Box Burning is up to 2% higher than the average
for a greedy coloring method similar to the Greedy Coloring method described
in Sect. 3.1. The conclusion in [56] is that Compact Box Burning provides results
comparable with Greedy Coloring, but Compact Box Burning may be a bit simpler
to implement.

Additionally, the four methods Greedy Coloring, Random Sequential Node Burn-
ing, Maximum Excluded Mass Burning, and Compact Box Burning are compared in
[56]. Using 10,000 executions of each method, they find that all four methods yield
the same box counting dimension d

B
. However, the results for Random Sequential

Node Burning show a much higher variance than for the other three methods, so for
Random Sequential Node Burning it is not clear how many randomized executions
are necessary, for a given r , for the average values B

R
(r) to stabilize.

3.6 Box Counting for Scale-Free Networks

As discussed in Sect. 3.3, Random Sequential Node Burning can create disconnected
boxes. For example, in the example of Fig. 3.8, when c is selected as the third center
node, the resulting box G(c, 1), which contains d and e but not c, is disconnected.
Suppose we modify Random Sequential Node Burning so that the nodes inside each
box are required to be connected within that box. With this modification, we still
obtain d

B
≈ 2 for a rectilinear lattice (i.e., a primitive square Bravais lattice) in R

2.

However, with this modification the power law scaling B
R
(r) ∼ (2r + 1)−d

B is not
observed for the WWW [29].

The reason we must allow disconnected boxes to obtain a power law scaling
for the WWW is that the WWW is a scale-free network. A network is scale-free
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Fig. 3.13 Adjacent nodes
only connected through a hub

if p
k
, the probability that the node degree is k, follows the power law distribution

p
k

∼ k−λ for some λ > 0. For a scale-free network, a few nodes will have high
degree. Nodes with high degree (i.e., hubs) will tend to be quickly assigned to a
box, since a hub is assigned to a box whenever one of its neighbors is selected as a
center node. Once a hub is covered by a box, adjacent nodes will be disconnected
if they are connected only via the hub. This is illustrated in Fig. 3.13. Suppose we
cover this network using radius-based boxes of radius 1, and spoke n is randomly
selected as the first center node. Then hub h is added to box G(n, 1). If h is now
selected as a center node, all five uncovered nodes adjacent to h (e.g., t) will be
added to G(h, 1), even though these five nodes interconnect only through hub h.
Counting each spoke connected to h as a separate box creates too many boxes, so
Random Sequential Node Burning corrects for this phenomena by allowing nodes
in a box to be disconnected within that box. This yields a power law scaling for the
WWW.

It might be argued that allowing the nodes in a box to be disconnected within
that box violates the spirit of the Hausdorff dimension (Sect. 1.2), which covers a
geometric object Ω ⊂ R

E by connected subsets of RE . However, with a change
in perspective, allowing nodes in a box to be disconnected within that box can be
viewed as using connected boxes, but allowing a node to belong to more than one
box. To see this, we revisit Fig. 3.8, but now allow overlapping boxes, as shown in
Fig. 3.14. Assume the randomly chosen centers are in the same order as before,
namely a, b, c, d, e, and again choose r = 1. Box G(a, 1) is unchanged, and
G(b, 1) is again discarded. However, now G(c, 1) also includes c, box G(d, 1)

also contains d, and G(e, 1) also contains e. So c, d, and e belong to two boxes.
However, as mentioned above, the great advantage of non-overlapping boxes is that
they immediately yield a probability distribution (Chap. 8).

A very recent study [4] of almost 1000 networks, drawn from social, biological,
technological, and informational sources, concluded that, contrary to a central claim
in modern network science, scale-free networks are rare. For each of the networks,
the methodology employed was to estimate the best-fitting power law, test its
statistical plausibility, and then compare it via a likelihood ratio test to alternative
non-scale-free distributions. The study found that only 4% of the networks exhibited
the strongest possible evidence of scale-free structure, and 52% exhibited the
weakest possible evidence. The study also found that social networks are at best
weakly scale-free, while a handful of technological and biological networks can be
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Fig. 3.14 Overlapping boxes

called strongly scale-free. The authors concluded that “These results undermine the
universality of scale-free networks and reveal that real-world networks exhibit a rich
structural diversity that will likely require new ideas and mechanisms to explain.”
As described in [31], this study has generated considerable discussion, with one
network scientist observing that “In the real world, there is dirt and dust, and this
dirt and dust will be on your data. You will never see the perfect power law.”



Chapter 4
Lower Bounds on Box Counting

Consider a box counting heuristic using radius-based boxes, e.g., Maximum
Excluded Mass Burning. There is no guarantee that the computed B

R
(r) is minimal

or even near minimal. However, if a lower bound on B
R
(r) is available, we can

immediately determine the deviation from optimality for the calculated B
R
(r). A

method that provides a lower bound B L

R
(r) on B

R
(r) is presented in [44]. The

lower bound is computed by formulating box counting as an uncapacitated facility
location problem (UFLP), a classic combinatorial optimization problem. This
formulation provides, via the dual of the linear programming relaxation of UFLP, a
lower bound on B

R
(r). The method also yields an estimate of B

R
(r); this estimate is

an upper bound on B
R
(r). Under the assumption that B

R
(r) = a(2r + 1)−d

B holds
for some positive constant a and some range of r , a linear program [6], formulated
using the upper and lower bounds on B

R
(r), provides an upper and lower bound on

d
B

. In the event that the linear program is infeasible, a quadratic program [18] can
be used to estimate d

B
.

4.1 Mathematical Formulation

Let the box radius r be fixed. For simplicity we will refer to node j rather than node
n
j
. Define N ≡ {1, 2, · · · , N}. Let Cr be the symmetric N by N matrix defined by

Cr
ij =
{

0 if dist (i, j) ≤ r,

∞ otherwise.

(As with the matrix Mr
ij defined by (3.1), the superscript r in Cr

ij does not mean the
r-th power of the matrix C.) For example, for r = 1, the matrix Cr corresponding
to the network of Fig. 4.1 is

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
E. Rosenberg, A Survey of Fractal Dimensions of Networks, SpringerBriefs
in Computer Science, https://doi.org/10.1007/978-3-319-90047-6_4
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Fig. 4.1 Example network
with seven nodes and
eight arcs

C1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 − − − − 0
0 0 0 − − − −
− 0 0 0 − − 0
− − 0 0 0 − −
− − − 0 0 0 −
− − − − 0 0 0
0 − 0 − − 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where a dash “–” is used to indicate the value ∞.
For j ∈ N, let

y
j

=
{

1 if the box centered at j is used to cover G,

0 otherwise.

A given node i will, in general, be within distance r of more than one center node j

used in the covering of G. However, we will assign each node i to exactly one node
j , and the variables x

ij
specify this assignment. For i, j ∈ N, let

x
ij

=
{

1 if i is assigned to the box centered at j,

0 otherwise.

With the understanding that r is fixed, for simplicity we write c
ij

to denote element
(i, j) of the matrix Cr . The minimal network covering problem is

minimize
N∑

j=1

y
j

+
N∑

i=1

N∑

j=1

c
ij
x
ij

(4.1)

subject to
N∑

j=1

x
ij

= 1 for i ∈ N (4.2)

x
ij

≤ y
j

for i, j ∈ N (4.3)
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x
ij

≥ 0 for i, j ∈ N (4.4)

y
j

= 0 or 1 for j ∈ N. (4.5)

Let UFLP denote the optimization problem defined by (4.1)–(4.5). Constraint (4.2)
says that each node must be assigned to the box centered at some j . Constraint (4.3)
says that node i can be assigned to the box centered at j only if that box is used in
the covering, i.e., only if y

j
= 1. The objective function is the sum of the number

of boxes in the covering and the total cost of assigning each node to a box. Problem
UFLP is feasible since we can always set y

i
= 1 and x

ii
= 1 for i ∈ N; i.e., let

each node be the center of a box in the covering. Given a set of binary values of y
j

for j ∈ N, since each c
ij

is either 0 or ∞, if there is a feasible assignment of nodes
to boxes then the objective function value is the number of boxes in the covering;
if there is no feasible assignment for the given y

j
values then the objective function

value is ∞. Note that UFLP requires only x
ij

≥ 0; it is not necessary to require
x
ij

to be binary. This relaxation is allowed since if (x, y) solves UFLP then the
objective function value is not increased, and feasibility is maintained, if we assign
each i to exactly one k (where k depends on i) such that y

k
= 1 and c

ik
= 0.

The primal linear programming relaxation PLP of UFLP is obtained by
replacing the restriction that each y

j
is binary with the constraint y

j
≥ 0. We

associate the dual variable u
i

with the constraint
∑N

j=1 x
ij

= 1, and the dual variable
w

ij
with the constraint x

ij
≥ 0. The dual linear program [18] DLP corresponding

to PLP is

maximize
N∑

i=1

u
i

subject to
N∑

i=1

w
ij

≤ 1 for j ∈ N

u
i
− w

ij
≤ c

ij
for i, j ∈ N

w
ij

≥ 0 for i, j ∈ N.

Following [11], we set w
ij

= max{0, u
i
− c

ij
} and express DLP using only the u

i

variables:

maximize
N∑

i=1

u
i

(4.6)

subject to
N∑

i=1

max{0, u
i
− c

ij
} ≤ 1 for j ∈ N. (4.7)
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Let v(UFLP) be the optimal objective function value of UFLP. Then B
R
(r) =

v(UFLP). Let v(PLP ) be the optimal objective function value of the linear
programming relaxation PLP. Then v(UFLP) ≥ v(PLP). Let v(DLP) be
the optimal objective function value of the dual linear program DLP. By linear
programming duality theory, v(PLP ) = v(DLP). Define u ≡ (u1, u2, · · · , u

N
). If

u is feasible for DLP as defined by (4.6) and (4.7), then the dual objective function∑N
i=1 u

i
satisfies

∑N
i=1 u

i
≤ v(DLP). Combining these relations, we have

B
R
(r) = v(UFLP) ≥ v(PLP ) = v(DLP) ≥

N∑

i=1

u
i
.

Thus
∑N

i=1 u
i

is a lower bound on B
R
(r). As described in [44], to maximize this

lower bound subject to (4.7), we use the Dual Ascent and Dual Adjustment methods
of [11]; see also [42].

4.2 Dual Ascent and Dual Adjustment

Call the N variables u1, u2, · · · , u
N

the dual variables. The Dual Ascent method
initializes u = 0 and increases the dual variables, one at a time, until constraints
(4.7) prevent any further increase in any dual variable. For i ∈ N, let Ni = {j ∈
N | c

ij
= 0}. By definition of c

ij
, we have Ni = {j |dist (i, j) ≤ r}. Note that

i ∈ Ni . From (4.7), we can increase some dual variable u
i

from 0 to 1 only if
∑N

i=1 max{0, u
i
− c

ij
} = 0 for j ∈ Ni . Once we have increased u

i
then we cannot

increase u
k

for any k such that c
kj

= 0 for some j ∈ Ni . This is illustrated, for
r = 1, in Fig. 4.2, where c

ij1
= c

ij2
= c

ij3
= 0 and c

j1k1
= c

j2 k2
= c

j2 k3
= 0. Once

we set u
i
= 1, we cannot increase the dual variable associated with k1 or k2 or k3.

Recalling that δ
j

is the node degree of node j , if c
ij

= 0 then the number of dual
variables prevented by node j from increasing when we increase u

i
is at least δ

j
−1,

where we subtract 1 since u
i

is being increased from 0. In general, increasing u
i

prevents approximately at least
∑

j∈Ni
(δ

j
− 1) dual variables from being increased.

This is approximate, since there may be arcs connecting the nodes in Ni , e.g.,
there may be an arc between j1 and j2 in Fig. 4.2. However, we can ignore such

Fig. 4.2 Increasing u
i

to 1
block other dual variable
increases
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considerations since we use
∑

j∈Ni
(δ

j
−1) only as a heuristic metric: we pre-process

the data by ordering the dual variables in order of increasing
∑

j∈Ni
(δ

j
− 1). We

have
∑

j∈Ni
(δ

j
− 1) = 0 only if δ

j
= 1 for j ∈ Ni , i.e., only if each node in

Ni is a leaf node. This can occur only for the trivial case that Ni consists of two
nodes (one of which is i itself) connected by an arc. For any other topology we have∑

j∈Ni
(δ

j
− 1) ≥ 1. For j ∈ N, define s(j) to be the slack in constraint (4.7) for

node j , so s(j) = 1 if
∑N

i=1 max{0, u
i
− c

ij
} = 0 and s(j) = 0 otherwise.

Having pre-processed the data, we run the following Dual Ascent procedure. This
procedure is initialized by setting u = 0 and s(j) = 1 for j ∈ N. We then examine
each u

i
in the sorted order and compute γ ≡ min{s(j) | j ∈ Ni}. If γ = 0 then u

i
cannot be increased. If γ = 1 then we increase u

i
from 0 to 1 and set s(j) = 0 for

j ∈ Ni , since there is no longer slack in those constraints.
Figure 4.3 shows the result of applying Dual Ascent, with r = 1, to Zachary’s

Karate Club network [37] , which has 34 nodes and 77 arcs. In this figure, node
1 is labelled as “v1”, etc. The node with the smallest penalty

∑
j∈Ni

(δ
j

− 1) is
node 17, and the penalty (p in the figure) is 7. Upon setting u17 = 1 we have
s(17) = s(6) = s(7) = 0; these nodes are pointed to by arrows in the figure.
The node with the next smallest penalty is node 25, and the penalty is 12. Upon
setting u25 = 1 we have s(25) = s(26) = s(28) = s(32) = 0. The node with
the next smallest penalty is node 26, and the penalty is 13. However, u26 cannot be
increased, since s(25) = s(32) = 0. The node with the next smallest penalty is
node 12, and the penalty is 15. Upon setting u12 = 1 we have s(12) = s(1) = 0.
The node with the next smallest penalty is node 27, and the penalty is 20. Upon

Fig. 4.3 Results of applying Dual Ascent to Zachary’s Karate Club network
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setting u27 = 1 we have s(27) = s(30) = s(34) = 0. No other dual variable can
be increased, and Dual Ascent halts, yielding a dual objective function value of 4,
which is the lower bound B L

R
(1) on B

R
(1).

We can now calculate the upper bound B U

R
(1). For j ∈ N, set y

j
= 1 if s(j) = 0

and y
j

= 0 otherwise. Setting y
j

= 1 means that the box of radius r centered at
node j will be used in the covering of G. For Zachary’s Karate Club network, at the
conclusion of Dual Ascent with r = 1 there are 12 values of j such that s(j) = 0;
for each of these values we set y

j
= 1.

We have shown that if u satisfies (4.7) then

N∑

i=1

u
i
= B L

R
(r) ≤ B

R
(r) ≤ B U

R
(r) =

N∑

j=1

y
j
.

If
∑N

i=1 u
i

= ∑N
j=1 y

j
then we have found a minimal covering. If

∑N
i=1 u

i
<

∑N
j=1 y

j
then we use a Dual Adjustment procedure [11] to attempt to close the

gap
∑N

j=1 y
j

−∑N
i=1 u

i
. For Zachary’s Karate Club network, for r = 1 we have

∑N
j=1 y

j
−∑N

i=1 u
i
= 8.

The Dual Adjustment procedure is motivated by the complementary slackness
optimality conditions of linear programming. Let (x, y) be feasible for PLP and
let (u,w) be feasible for DLP, where w

ij
= max{0, u

i
− c

ij
}. The complementary

slackness conditions state that (x, y) is optimal for PLP and (u,w) is optimal for
DLP if

y
j

(
N∑

i=1

max{0, u
i
− c

ij
} − 1

)

= 0 for j ∈ N (4.8)

(y
j

− x
ij
) max{0, u

i
− c

ij
} = 0 for i, j ∈ N . (4.9)

We can assume that x is binary, since as mentioned above, we can assign each i

to a single k (where k depends on i) such that y
k

= 1 and c
ik

= 0. We say that a
node j ∈ N is “open” (i.e., the box centered at node j is used in the covering of
G) if y

j
= 1; otherwise, j is “closed.” When (x, y) and u are feasible for PLP and

DLP, respectively, and x is binary, constraints (4.9) have a simple interpretation:
if for some i we have u

i
= 1 then there can be at most one open node j such that

dist (i, j) ≤ r . For suppose to the contrary that u
i
= 1 and there are two open nodes

j1 and j2 such that dist (i, j1) ≤ r and dist (i, j2) ≤ r . Then c
ij1

= c
ij2

= 0. Since

x is binary, by (4.2), either x
ij1

= 1 or x
ij2

= 1. Suppose without loss of generality

that x
ij1

= 1 and x
ij2

= 0. Then

(y
j1

− x
ij1

) max{0, u
i
− c

ij1
} = (y

j1
− x

ij1
)u

i
= 0
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but

(y
j2

− x
ij2

) max{0, u
i
− c

ij2
} = y

j2
u
i
= 1 ,

so complementary slackness fails to hold. This argument is easily extended to the
case where there are more than two open nodes such that dist (i, j) ≤ r . The
conditions (4.9) can also be visualized using Fig. 4.2, where c

ij1
= c

ij2
= c

ij3
= 0.

If u
i
= 1 then at most one node in the set {i, j1, j2, j3} can be open.

If B U

R
(r) > B L

R
(r), we run the following Dual Adjustment procedure to close

some nodes, and construct x, to attempt to satisfy constraints (4.9). Define

Y = {j ∈ N | y
j

= 1} ,

so Y is the set of open nodes. The Dual Adjustment procedure, which follows Dual
Ascent, has two steps.

Step 1 For i ∈ N, let α(i) be the “smallest” node in Y such that c
i,α(i)

= 0.
By “smallest” node we mean the node with the smallest node index, or the
alphabetically lowest node name; any similar tie-breaking rule can be used. If for
some j ∈ Y we have j �= α(i) for i ∈ N, then j can be closed, so we set
Y = Y − {j}. In words, if the chosen method of assigning each node to a box
in the covering results in the box centered at j never being used, then j can be
closed.

Applying Step 1 to Zachary’s Karate Club network with r = 1, using the tie-
breaking rule of the smallest node index, we have, for example, α(25) = 25,
α(26) = 25, α(27) = 27, and α(30) = 27. After computing each α(i), we can close
nodes 7, 12, 17, and 28, as indicated by the bold X next to these nodes in Fig. 4.4.
After this step, we have Y = {1, 6, 25, 26, 27, 30, 32, 34}. This step lowered the
primal objective function from 12 (since originally |Y | = 12) to 8.

Step 2 Suppose we consider closing j , where j ∈ Y . We consider the impact of
closing j on i, for i ∈ N. If j �= α(i) then closing j has no impact on i, since i is not
assigned to the box centered at j . If j = α(i) then closing j is possible only if there
is another open node β(i) ∈ Y such that β(i) �= α(i) and c

i,β(i)
= 0 (i.e., if there

is another open node, distinct from α(i), whose distance from i does not exceed r).
Thus we have the rule: close j if for i ∈ N either

j �= α(i)

or

j = α(i) and β(i) exists.

Once we close j and set Y = Y −{j} we must recalculate α(i) and β(i) (if it exists)
for i ∈ N.
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Fig. 4.4 Closing nodes in Zachary’s Karate Club network

Applying Step 2 to Zachary’s Karate Club network with r = 1, we find that, for
example, we cannot close node 1, since 1 = α(5) and β(5) does not exist. Similarly,
we cannot close node 6, since 6 = α(17) and β(17) does not exist. We can close
node 25, since 25 = α(25) but β(25) = 26 (i.e., we can reassign node 25 from the
box centered at 25 to the box centered at 26), 25 = α(26) but β(26) = 26, 25 =
α(28) but β(28) = 34, and 25 = α(32) but β(32) = 26. After recomputing α(i) and
β(i) for i ∈ N, we determine that node 26 can be closed. Continuing in this manner,
we determine that nodes 27 and 30 can be closed, yielding Y = {1, 6, 32, 34}. Since
now the primal objective function value and the dual objective function value are
both 4, we have computed a minimal covering. When we execute Dual Ascent and
Dual Adjustment for Zachary’s Karate Club network with r = 2 we obtain primal
and dual objective function values of 2, so again a minimal covering has been found.

4.3 Bounding the Fractal Dimension

Assume that for some positive constant a we have

B
R
(r) = a(2r + 1)−d

B . (4.10)

Suppose we have computed B L

R
(r) and B U

R
(r) for r = 1, 2, · · · ,K . From

B L

R
(r) ≤ B

R
(r) ≤ B U

R
(r)
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we obtain, for r = 1, 2, · · · ,K ,

log B L

R
(r) ≤ log a − d

B
log(2r + 1) ≤ log B U

R
(r) . (4.11)

The system (4.11) of 2K inequalities may be infeasible, i.e., it may have no solution
a and d

B
. If the system (4.11) is feasible, we can formulate a linear program to

determine the maximal and minimal values of d
B

[44]. For simplicity of notation, let
the K values log(2r+1) for r = 1, 2, · · · ,K be denoted by x

k
for k = 1, 2, · · · ,K ,

so x1 = log(3), x2 = log(5), x3 = log(7), etc. For k = 1, 2, · · · ,K , let the K values
of log B L

R
(r) and log B U

R
(r) be denoted by y L

k
and y U

k
, respectively. Let b = log a.

The inequalities (4.11) can now be expressed as

y L

k
≤ b − d

B
x
k

≤ y U

k
.

The minimal value of d
B

is the optimal objective function value of BCLP (Box
Counting Linear Program):

minimize d
B

subject to b − d
B

x
k

≥ yL

k
for 1 ≤ k ≤ K

b − d
B

x
k

≤ yU

k
for 1 ≤ k ≤ K.

This linear program has only two variables, b and d
B

. Let dmin
B

and bmin be the
optimal values of d

B
and b, respectively. Now we change the objective function of

BCLP from minimize to maximize, and let dmax
B

and bmax be the optimal values of d
B

and b, respectively, for the maximize linear program. The box counting dimension
d
B

, assumed to exist by (4.10), satisfies

dmin
B

≤ d
B

≤ dmax
B

.

For example [44], for the much-studied jazz network [19], the linear program BCLP
is feasible, and solving the minimize and maximize linear programs yields 2.11 ≤
d
B

≤ 2.59.
Feasibility of BCLP does not imply that the box counting relationship (4.10)

holds, since the upper and lower bounds might be so far apart that alternative
relationships could be posited. If the linear program is infeasible, we can assert
that the network does not satisfy the box counting relationship (4.10). Yet even if
BCLP is infeasible, it might be so “close” to feasible that we nonetheless want to
calculate d

B
. When BCLP is infeasible, we can compute d

B
using the solution of

BCQP (box counting quadratic program), which minimizes the sum of the squared
distances to the 2K bounds [44]:

minimize
K∑

k=1

(u2
k

+ v2
k
)

subject to u
k

= (b − d
B

x
k
) − y L

k
for 1 ≤ k ≤ K

v
k

= y U

k
− (b − d

B
x
k
) for 1 ≤ k ≤ K.



Chapter 5
Correlation Dimension

The correlation dimension of a geometric object in R
E was introduced in [22, 23].

Extending the definition to a complex network, we say that G has correlation
dimension d

C
if the fraction C(s) of nodes at a distance less than s from a random

node follows the scaling law [32, 33, 46, 57, 66]

C(s) ∼ sd
C . (5.1)

More formally, for a positive integer s and n ∈ N, define

C(n, s) ≡
∑

x∈N
x �=n

I
(
s − dist (x, n)

)
, (5.2)

where I (z) ≡ 1 if z > 0 and I (z) ≡ 0 otherwise. Thus C(n, s) is the number
of nodes, distinct from n, whose distance from n is less than s. It follows that
C(n, s)/(N − 1) is the fraction of nodes, distinct from n, whose distance from n

is less than s. We have C(n, 1) = 0, since no node distinct from n has distance less
than 1 from n. Also, for each n and s > Δ we have C(n, s) = N−1. The correlation
sum C(s) is defined by

C(s) ≡ 1

N

∑

n∈N

C(n, s)

N − 1
. (5.3)

Thus C(s) is the average, over all N nodes, of the fraction C(n, s)/(N − 1). It
follows that 0 ≤ C(s) ≤ 1. Since C(n, 1) = 0 for all n then C(1) = 0. Note that
C(n, 2) is the number of nodes at distance 1 from node n; this is δn, the node degree
of n. Let δ be the average node degree. From (5.3),

© The Author(s), under exclusive licence to Springer International Publishing AG,
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C(2) = 1

N

∑

n∈N

δn

N − 1
= 1

N − 1

∑

n∈N

δn

N
= δ

N − 1
. (5.4)

While defining the correlation sum using (5.3) elucidates its meaning, the correla-
tion sum is usually written as

C(s) = 1

N(N − 1)

∑

n∈N

∑

x∈N
x �=n

I
(
s − dist (x, n)

)
.

The goal is to determine if (5.1) holds for some value of d
C

. The typical approach
[32, 33, 57, 66] to computing d

C
is to determine a range of s over which log C(s) is

nearly a linear function of log s, and then fit a straight line to the
(
log s, log C(s)

)

values over this range of s. The slope of this line is the estimate of the correlation
dimension d

C
.

In the beginning of Sect. 3.1, we observed that the problem of determining the
minimal number of diameter-based boxes of size at most s needed to cover G is an
example of the NP-hard graph coloring problem. Thus we cannot expect to compute
a minimal s-covering of G in polynomial time. In contrast, to compute C(s) for a
range of s values it suffices to compute the distance between each pair of nodes.
A simplistic implementation of Dijkstra’s method finds the shortest path from a
given source node to all other nodes in O(N2) time. Running Dijkstra N times,
once for each source node, yields a time complexity of O(N3) for computing the
distance between each pair of nodes. We can actually do better than O(N3) since the
N(N −1)/2 distances can be computed in O(N2.376 log N) time [66]. Thus, besides
the intrinsic interest in studying (5.1), computing d

C
may be easier than computing

the box counting dimension d
B

.
The special case where G is a rectilinear lattice was studied in [46]. Consider a

finite rectilinear lattice in Z
E , where E is a positive integer and where Z denotes

the integers. Assume the lattice is uniform, so each edge of the lattice contains K

nodes. Thus for E = 1 the lattice is a chain of K nodes; for E = 2 it is a K × K

grid, and for E = 3 it is a K × K × K cube. Any definition of the correlation
dimension d

C
(K) for such a network should satisfy two requirements. The first, the

infinite grid requirement, is

lim
K→∞ d

C
(K) = E. (5.5)

Since for geometric objects X, Y ⊂ R
E any reasonable definition of dimension

should satisfy the monotonicity requirement [12] that

X ⊂ Y implies dimension(X) ≤ dimension(Y ) ,

we make the following second assertion. Let G1 and G2 be rectilinear grids in Z
E ,

where each edge of G1 contains K1 nodes, and each edge of G2 contains K2 nodes.
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Any definition of the correlation dimension should satisfy the grid monotonicity
requirement

if K1 < K2 then d
C
(K1) ≤ d

C
(K2). (5.6)

We now present the “overall slope” formula [46] for d
C
(K) which satisfies both

(5.5) and (5.6).
Consider first a one-dimensional grid (E = 1) of K nodes. As shown in [46],

C(s) = (2K − s)(s − 1)

K(K − 1)
. (5.7)

While we might hope that d
C

= 1, the plot of log C(s) vs. log s shows that C(s) does
not exhibit the scaling C(s) ∼ s. In fact, treating s as a continuous variable, C(s)

is strictly concave, since the second derivative is −2/[K(K − 1)]. Thus the least
squares regression line for the ordered pairs

(
log s, log C(s)

)
for s = 2, 3, · · · ,K

cannot be expected to have slope 1. However, for the one-dimensional grid there is
a way to obtain exactly the desired slope of 1. Consider the “overall slope” d

C
(K),

defined by

d
C
(K) ≡ log C(Δ + 1) − log C(2)

log(Δ + 1) − log 2
= log C(2)

log[2/(Δ + 1)] , (5.8)

where the equality holds as C(Δ + 1) = 1. This ratio represents the overall slope
of the log C(s) vs. log s curve over the range s ∈ [2,Δ + 1]. For a one-dimensional
chain of K nodes we have Δ = K − 1. By (5.7) we have C(2) = 2/K , so

d
C
(K) = log C(2)

log[2/(Δ + 1)] = log(2/K)

log(2/K)
= 1 . (5.9)

Thus for each K the overall slope for the one-dimensional chain of size K is 1.
Now consider d

C
(K) for a square rectilinear grid G embedded in Z

2. For x =
(x1, x2) ∈ Z

2 and y = (y1, y2) ∈ Z
2, we have dist (x, y) = |x1 − y1| + |x2 − y2|.

If node n is close to the boundary of G, then the box containing all nodes a given
distance from n will be truncated, as illustrated by Fig. 5.1. In Fig. 5.1a, there are
four nodes in G whose distance to the circled node is 1. In Fig. 5.1b, there are three
nodes in G whose distance to the circled node is 1. For the two-dimensional K × K

grid, a simple expression for the overall slope can be derived [46]:

d
C
(K) = log[(K2 + K)/4]

log[K − (1/2)] . (5.10)

The infinite grid requirement holds: for a K × K rectilinear grid we have

lim
K→∞ d

C
(K) = 2 .
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Fig. 5.1 Non-truncated and
truncated boxes in a
2-dimensional grid

Moreover, for K ≥ 2 we have d
C
(K) < 2 and the monotonicity property holds:

the sequence d
C
(K) is monotone increasing in K for K ≥ 2. The convergence of

d
C
(K) to the limiting value 2 is slow. Suppose we seek the value of K for which

d
C
(K) = 2 − ε, where 0 < ε < 2. From (5.10) we have

log

(
K2 + K

4

)

= (2 − ε) log[K − (1/2)]

which we rewrite as

K2 + K = 4[K − (1/2)](2−ε) .

We approximate K2 + K by K2, and K − (1/2) by K , obtaining K2 = 4K(2−ε),
which yields K = 41/ε. This estimate is excellent, and shows the very slow
convergence. For ε = 1/5 we have K = 45 = 1024 and setting K = 1024 in (5.10)
yields d

C
(1024) ≈ 1.800; for ε = 1/50 we have K = 450 and setting K = 450 in

(5.10) yields d
C
(450) ≈ 1.980.

For the three-dimensional K × K × K rectilinear grid we have

d
C
(K) = log[(K3 + K2 + K)/6]

log[(3/2)K − 1] . (5.11)

It can be proved [46] that for a K × K × K rectilinear grid we have d
C
(K) < 3

for K ≥ 2, that d
C
(K) is monotone increasing in K for all sufficiently large K , and

that limK→∞ d
C
(K) = 3. The convergence of d

C
(K) to the limiting value 3 is also

slow. Suppose we seek the value of K for which d
C
(K) = 3 − ε, where 0 < ε < 3.

From (5.11) we have

log(K3 + K2 + K) − log 6 = (3 − ε)log[(3/2)K − 1] .

We approximate this equation by

log K3 − log 6 = (3 − ε)log[(3/2)K]
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Table 5.1 Summary of
overall slope results

Rectilinear grid d
C
(K) = log C(2)

log[2/(Δ+1)]
Chain of K nodes d

C
(K) = 1

K × K grid d
C
(K) = log[(K2+K)/4]

log[(2K−1)/2]

K × K × K grid d
C
(K) = log[(K3+K2+K)/6]

log[(3K−2)/2]

which yields

K = (2/3)(81/4)1/ε .

This approximation is also excellent. For ε = 1 we have K = 13.5 and setting
K = 13.5 in (5.11) yields d

C
(13.5) ≈ 2.060. For ε = 1/2 we have K ≈ 273 and

setting K = 273 in (5.11) yields d
C
(273) ≈ 2.502. For ε = 1/5 we have K ≈

2.270×106 and setting K = 2.270×106 in (5.11) yields d
C
(2.270×106) ≈ 2.800,

so approximately 1019 nodes are required to achieve a correlation dimension of 2.8.
Rewriting (5.10) and (5.11) in a more suggestive form, the overall slope results

are summarized in Table 5.1. Based on this table, it is conjectured in [46] that,
for any positive integer E, the overall slope correlation dimension d

C
(K,E) of a

uniform rectilinear grid in Z
E , where each edge of the grid contains K nodes, is

given by

d
C
(K,E) = log[(KE + K(E−1) + · · · + K2 + K)/(2E)]

log[(EK − (E − 1)) /2]

=
log
(

KE+1−K
2E(K−1)

)

log
(

EK−E+1
2

) . (5.12)

Expression (5.12) yields the results in Table 5.1 for E = 1, 2, 3.
The correlation dimension of a spatial network (a network whose nodes have

natural coordinates in R
E) was studied in [32, 33]. Their approach is to simulate

random walkers who explore the network. The sequence of the coordinates of these
walkers forms a time series, and the correlation dimension of the spatial network
can be estimated by applying well-known techniques for computing the correlation
dimension from a time series.

To conclude this chapter, we note that a generalized correlation dimension for
networks was studied in [10]. For q ≤ N , let Mq(s) be the number of q-tuples of
nodes such that the distance between any two nodes in a q-tuple is less than s. That
is, Mq(s) is the cardinality of the set

{(ni1 , ni2 , · · · , niq ) such that dist(nij , nik ) < s for 1 ≤ j < k ≤ q} .
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This definition extends to networks the q-correlation sum defined in [20]. Since the
sets are unordered, the number of sets of q nodes is given by the binomial coefficient(
N
q

)
, which is upper bounded by Nq . The q-correlation function is defined as

Cq(s) ≡ Mq(s)

Nq
,

which for N � 1 and q � N is approximately the fraction of all sets of q nodes
with mutual distance less than s. The q-correlation dimension for G is defined in
[10] as

lim
s→∞

1

q − 1

log Cq(s)

log s
,

so this definition assumes we can grow G to infinite size. For a finite complex
network G, we can estimate Cq(s) using the approximation [10]

Cq(s) ≈ 1

N

∑

n∈N

(
C(n, s)

N − 1

)q−1

, (5.13)

where C(n, s) is defined by (5.2). When q = 2 the right hand sides of (5.13) and
(5.3) are identical. In the usual fashion, for a given q the q-correlation dimension for
G is computed by determining a range of s over which log Cq(s) is approximately
linear in log s; the q-correlation dimension estimate is 1/(q − 1) times the slope of
the linear approximation.



Chapter 6
Mass Dimension for Infinite Networks

In this chapter we consider a sequence {Gt }∞t=1 of complex networks such that Δt ≡
diam(Gt ) → ∞ as t → ∞. A convenient way to study such networks is to study
how the “mass” of Gt scales with diam(Gt ), where the “mass” of Gt , which we
denote by Nt , is the number of nodes in Gt . The fractal dimension used in [73] to
characterize {Gt }∞t=1 is

d
M

≡ lim
t→∞

log Nt

log Δt

, (6.1)

and d
M

is called the mass dimension. An advantage of d
M

over the correlation
dimension d

C
is that it is sometimes much simpler to compute the network diameter

than to compute C(n, s) for each n and s, as is required to compute C(s) using (5.3).
A procedure is presented in [73] that uses a probability p to construct a network

that exhibits a transition from fractal to non-fractal behavior as p increases from
0 to 1. For p = 0, the network does not exhibit the small-world property and has
d
M

= 2, while for p = 1 the network does exhibit the small-world property and
d
M

= ∞. The construction, illustrated by Fig. 6.1, begins with G0, which is a single
arc, and p ∈ [0, 1]. Let Gt be the network after t steps. The network Gt+1 is derived
from Gt . For each arc in Gt , with probability p we replace the arc with a path of
three hops (introducing the two nodes c and d, as illustrated by the top branch of
the figure), and with probability 1 − p we replace the arc with a path of four hops
(introducing the three new nodes c, d, and e, as illustrated by the bottom branch
of the figure). For p = 1, the first three generations of this construction yield the
networks of Fig. 6.2. For p = 0, the first three generations of this construction yield
the networks of Fig. 6.3. This construction builds upon the construction in [51] of
(u, v) trees.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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Fig. 6.1 Network that transitions from fractal to non-fractal behavior

Fig. 6.2 Three generations
with p = 1

Let Nt be the expected number of nodes in Gt , let At be the expected number of
arcs in Gt , and let Δt be the expected diameter of Gt . The quantities Nt , At , and Δt

depend on p, but for notational simplicity we omit that dependence. Since each arc
is replaced by three arcs with probability p, and by four arcs with probability 1−p,
for t ≥ 1 we have

At = 3pAt−1 + 4(1 − p)At−1 = (4 − p)At−1

= (4 − p)2At−2 = . . . = (4 − p)tA0 = (4 − p)t , (6.2)

where the final equality follows as A0 = 1, since G0 consists of a single arc.
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Fig. 6.3 Three generations with p = 0

Let xt be the number of new nodes created in the generation of Gt . Since each
existing arc spawns two new nodes with probability p and spawns three new nodes
with probability 1 − p, from (6.2) we have

xt = 2pAt−1 + 3(1 − p)At−1 = (3 − p)At−1 = (3 − p)(4 − p)t−1 . (6.3)

Since G0 has two nodes, for t ≥ 1 we have

Nt = 2 +
t∑

i=1

x
i

= 2 +
t∑

i=1

(3 − p)(4 − p)i−1

= 2 + (3 − p)
(4 − p)t − 1

(3 − p)
= (4 − p)t + 1 . (6.4)

Now we compute the diameter Δt of Gt . We begin with the case p = 1. For
this case, distances between existing node pairs are not altered when new nodes are
added. At each time step, the network diameter increases by 2. Since Δ0 = 1 then
Δt = 2t+1. Since Nt ∼ (4−p)t , then the network diameter grows as the logarithm
of the number of nodes, so Gt exhibits the small-world property for p = 1. From
(6.1) we have d

M
= ∞.

Now consider the case 0 ≤ p < 1. For this case, the distances between existing
nodes are increased. Consider an arc in the network Gt−1, and the endpoints i and
j of this arc. With probability p, the distance between i and j in Gt is 1, and with
probability 1 − p, the distance between i and j in Gt is 2. The expected distance
between i and j in Gt is therefore p + 2(1 − p) = 2 − p. Since each Gt is a tree,
for t ≥ 1 we have

Δt = pΔt−1 + 2(1 − p)Δt−1 + 2 = (2 − p)Δt−1 + 2
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and Δ0 = 1. This yields [73]

Δt =
(

1 + 2

1 − p

)

(2 − p)t − 2

1 − p
. (6.5)

From (6.1), (6.4), and (6.5),

d
M

= lim
t→∞

log Nt

log Δt

= lim
t→∞

log[(4 − p)t + 1]
log
[(

1 + 2
1−p

)
(2 − p)t − 2

1−p

] = log(4 − p)

log(2 − p)
,(6.6)

so d
M

is finite, and Gt does not exhibit the small-world property. For p = 0 we have
d
M

= log 4/ log 2 = 2. Note that log(4 − p)/ log(2 − p) → ∞ as p → 1.

6.1 Transfinite Fractal Dimension

A deterministic recursive construction can be used to create a self-similar network,
called a (u, v)-flower, where u and v are positive integers [51]. By varying u and
v, both fractal and non-fractal networks can be generated. The construction starts
at time t = 1 with a cyclic graph (a ring), with w ≡ u + v arcs and w nodes. At
time t + 1, replace each arc of the time t network by two parallel paths, one with
u arcs, and one with v arcs. Without loss of generality, assume u ≤ v. Figure 6.4
illustrates three generations of a (1, 3)-flower. The t = 1 network has four arcs.
To generate the t = 2 network, arc a is replaced by the path {b} with one arc,
and also by the path {c, d, e} with three arcs; the other three arcs in Fig. 6.4a are
similarly replaced. To generate the t = 3 network, arc d is replaced by the path
{p} with one arc, and also by the path {q, r, s} with three arcs; the other fifteen arcs
in Fig. 6.4b are similarly replaced. The self-similarity of the (u, v)-flowers follows
from an equivalent method of construction: generate the time t + 1 network by
making w copies of the time t network, and joining the copies at the hubs.

Let Gt denote the (u, v)-flower at time t . The number of arcs in Gt is At = w t =
(u + v)t . The number Nt of nodes in Gt satisfies the recursion Nt = wNt−1 − w;
with the boundary condition N1 = w we obtain [51]

Nt =
(

w − 2

w − 1

)

w t +
(

w

w − 1

)

. (6.7)

Consider the case u = 1. Let Δt be the diameter of Gt . It can be shown [51] that
for (1, v)-flowers and odd v we have Δt = (v − 1)t + (3 − v)/2 while in general,
for (1, v)-flowers and any v,

Δt ∼ (v − 1)t . (6.8)
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Fig. 6.4 Three generations of a (1, 3)-flower

Since Nt ∼ w t then Δt ∼ log Nt , so (1, v)-flowers enjoy the small-world property.
By (6.1), (6.7), and (6.8), for (1, v)-flowers we have

d
M

= lim
t→∞

log Nt

log Δt

= lim
t→∞

log w t

log t
= ∞ , (6.9)

so (1, v)-flowers have an infinite mass dimension.
We want to define a new type of fractal dimension that is finite for (1, v)-flowers

and for other networks whose mass dimension is infinite. For (1, v)-flowers, from
(6.7) we have

Nt ∼ w t = (1 + v)t

as t → ∞, so log Nt ∼ t log(1 + v). From (6.8) we have Δt ∼ (v − 1)t as t → ∞.
Since both log Nt and Δt behave like a linear function of t as t → ∞, but with
different slopes, let d

E
be the ratio of the slopes, so

d
E

≡ log(1 + v)

v − 1
. (6.10)

From (6.10), (6.8), and (6.7), as t → ∞ we have

d
E

= t log(1 + v)

t (v − 1)
= log(1 + v)t

t (v − 1)
= log w t

t (v − 1)
∼ log Nt

Δt

, (6.11)

from which we obtain

Nt ∼ ed
E

Δt . (6.12)
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Define αt ≡ Δt+1 − Δt . From (6.12),

Nt+1

Nt

∼ ed
E

Δt+1

ed
E

Δt
= ed

E
αt . (6.13)

Writing Nt = N(Δt) for some function N(·), we have

Nt+1 = N(Δt+1) = N(Δt + αt ) .

From this and (6.13) we have

N(Δt + αt ) ∼ N(Δt)e
d
E

αt , (6.14)

which says that, for t � 1, when the diameter increases by αt , the number of nodes
increases by a factor which is exponential in d

E
αt . As observed in [51], in (6.14)

there is some arbitrariness in the selection of e as the base of the exponential term
ed

E
αt , since from (6.10) the numerical value of d

E
depends on the logarithm base.

If (6.14) holds as t → ∞ for a sequence of self similar graphs {Gt } then d
E

is
called the transfinite fractal dimension, since this dimension “usefully distinguishes
between different graphs of infinite dimensionality” [51]. Self-similar networks
such as (1, v)-flowers whose mass dimension d

M
is infinite, but whose transfinite

fractal dimension d
E

is finite, are called transfinite fractal networks, or simply
transfractals. Thus (1, v)-flowers are transfractals with transfinite fractal dimension
d
E

= log(1 + v)/(v − 1).
Finally, consider (u, v)-flowers with u > 1. It can be shown [51] that Δt ∼ ut .

Using (6.7) we have

lim
t→∞

log Nt

log Δt

= lim
t→∞

log w t

log ut
= log(u + v)

log u
,

so

d
M

= log(u + v)

log u
.

Since d
M

is finite, these networks are fractals, not transfractals, and these networks
do not enjoy the small-world property.



Chapter 7
Volume and Surface Dimensions for
Infinite Networks

In this chapter we study two very early (1988) definitions [38] of the dimension of
an infinite network. The two dimensions studied in this pioneering work are related
to the correlation dimension d

C
and mass dimension d

M
. Assume that G = (N,A) is

an unweighted and undirected network, where both N and A are countably infinite
sets. Assume the node degree of each node is finite. For n ∈ N and for each non-
negative integer r , define

N(n, r) = { x ∈ N | dist(n, x) ≤ r } , (7.1)

so N(n, r) is the set of nodes whose distance from n does not exceed r . Define

M(n, r) ≡ |N(n, r)| (7.2)

d i

V
(n) ≡ lim inf

r→∞
log M(n, r)

log r
(7.3)

d s

V
(n) ≡ lim sup

r→∞
log M(n, r)

log r
. (7.4)

If for some n ∈ N we have d i

V
(n) = d s

V
(n), we say that G has local volume

dimension d
V
(n) at n, where d

V
(n) ≡ d i

V
(n) = d s

V
(n). If also d

V
(n) = d

V
for

each n in N, then we say that the volume dimension of G is d
V

. The dimension d
V

is called the “internal scaling dimension” in [38], but we prefer the term “volume
dimension”. If d

V
exists then for n ∈ N we have M(n, r) ∼ rd

V as r → ∞. The
volume dimension somewhat resembles the correlation dimension d

C
(Chap. 5); the

chief difference is that d
C

is defined in terms of the correlation sum (5.3), which is
an average fraction of mass, where the average is over all nodes in a finite network,
while d

V
is defined in terms of an infimum and supremum over all nodes. The

volume dimension d
V

also somewhat resembles the mass dimension d
M

(Chap. 6);
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the chief difference is that d
M

is defined in terms of the network diameter and all the
nodes in the network, while d

V
is defined in terms of the number of nodes within

radius r of node n.
The second definition of a network dimension proposed in [38] is based on the

boundary (i.e., surface) of N(n, r), rather than on the entire neighborhood N(n, r).
For n ∈ N and for each non-negative integer r , define

∂N(n, r) = { x ∈ N | dist(n, x) = r } , (7.5)

so ∂N(n, r) is the set of nodes whose distance from n is exactly r . For each n

we have

∂N(n, r) = N(n, r) − N(n, r − 1)

and ∂N(n, 0) = {n}. Define

d i

U
(n) ≡ lim inf

r→∞

(
log |∂N(n, r)|

log r
+ 1

)

(7.6)

d s

U
(n) ≡ lim sup

r→∞

(
log |∂N(n, r)|

log r
+ 1

)

. (7.7)

If d i

U
(n) = d s

U
(n), we say that G has surface dimension d

U
(n) at n, where d

U
(n) ≡

d i

U
(n) = d s

U
(n). If for each n in N we have d

U
(n) = d

U
, then we say that the surface

dimension of G is d
U

. This dimension is called the “connectivity dimension” in
[38], since “it reflects to some extent the way the node states are interacting with
each other over larger distances via the various bond sequences connecting them”,
but we prefer the term “surface dimension”. If d

U
exists, then for n ∈ N we have

|∂N(n, r)| ∼ rd
U

−1 as r → ∞. The volume dimension d
V

is “rather a mathematical
concept and is related to well known dimensional concepts in fractal geometry”,
while the surface dimension d

U
“seems to be a more physical concept as it measures

more precisely how the graph is connected and how nodes can influence each other”.
The values of d

V
and d

U
are identical for “generic” networks, but are different on

certain “exceptional” networks [38].

Example 7.1 Let G be the infinite graph whose nodes lie on a straight line at
locations · · · , −3, −2, −1, 0, 1, 2, 3, · · · . Then M(n, r) = 2r + 1 for each n

and r , so d
V

= limr→∞ log(2r + 1)/ log r = 1. As for the surface dimension, we
have |∂N(n, r)| = 2 for each n and r , so d

U
= limr→∞[(log 2/log r) + 1] = 1. ��

Example 7.2 Let G be the infinite two-dimensional rectilinear lattice whose nodes
have integer coordinates, and where node (i, j) is adjacent to (i − 1, j), (i + 1, j),
(i, j −1), and (i, j +1). Using the L1 (i.e., Manhattan) metric, the distance from the
origin to node n = (n1, n2) is |n1| + |n2|. For integer r ≥ 1, the number |∂N(n, r)|
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of nodes at a distance r from a given node n is 4r (see [54]), so

|N(n, r)| = 1 + 4
r∑

i=1

i = 1 + 4r(r + 1)/2 = 2r2 + 2r + 1 .

Hence

d
U

= lim
r→∞[(log 4r/log r) + 1] = 2

d
V

= lim
r→∞ log

(
2r2 + 2r + 1

)
/ log r = 2 . ��

A construction and corresponding analysis in [38] generates an infinite network
for which d

V
exists but d

U
does not exist. Thus the existence of the volume

dimension d
V

, and its numerical value, do not provide much information about the
behavior of |∂N(n, r)|, although the inequality lim supr→∞ log |∂N(n, r)|/ log r ≤
d
V
(n) is valid for all n. On the other hand, the existence of the surface dimension at

n does imply the existence of the volume dimension at n, and the equality of these
values: it is proved in [38] that if d

U
(n) exists and if d

U
(n) > 1 then d

V
(n) exists

and d
V
(n) = d

U
(n). It is also proved that if n ∈ N and h is a positive number, then

the insertion of arcs between arbitrarily many pairs of nodes (x, y), subject to the
constraint that dist(x, y) ≤ h, does not change d i

V
(n) and d s

V
(n).

Let d be an arbitrary number such that 1 < d ≤ 2. It is shown in [38] how to
construct a conical graph such that d

V
(n�) = d, where n� is a specially chosen node.

Graphs with higher volume dimension can be constructed using a nearly identical
method. The construction is illustrated in Fig. 7.1 for the choice d = 5/3. There
are two types of nodes in this figure, black circles and grey squares. Both types of
nodes are nodes in G, but we distinguish these two types to facilitate calculating
d
V
(n�). From the figure we see that boxes connect level m to level m + 1, where

the lower left and lower right corner of each box is a grey square, and the upper left
and upper right corner of each box is a black circle. (These boxes have nothing to
do with the boxes used to compute the box counting dimension.) For m ≥ 2, we
construct �(2m − 1)d−1� boxes connecting level m to level m + 1, so the number
of grey squares at level m is 1 + �(2m − 1)d−1�. Each grey square at level m has
distance 2m − 1 to node n�. Thus, for m ≥ 2, the set of grey squares at level m is
the set ∂N(n�, 2m − 1), and

|∂N(n�, 2m − 1)| = 1 + �(2m − 1)d−1� .

To compute d
V
(n�), we first determine d

U
(n�), the surface dimension at n�. Since

(2m − 1)d−1 ≤ 1 + �(2m − 1)d−1� ≤ 1 + (2m − 1)d−1
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Fig. 7.1 Construction of a
conical graph for which
d
V
(n�) = 5/3

then

lim
m→∞

log (2m − 1)d−1

log (2m − 1)
≤ lim

m→∞
log |∂N(n�, 2m − 1)|

log (2m − 1)
≤ lim

m→∞
log
(

1 + (2m − 1)d−1
)

log (2m − 1)
.

Since the first and third limits are both equal to d − 1, then so is the second limit.
That is,

lim
m→∞

log |∂N(n�, 2m − 1)|
log (2m − 1)

= d − 1 . (7.8)

At this point we have shown that the limit exists along the subsequence of distances
{rm}∞m=1, where rm ≡ 2m − 1. Since convergence of a subsequence does not imply
convergence of the entire sequence, it must be shown that the limit exists for all
sufficiently large distances, not just along a subsequence of distances. The proof is
provided in [38], along with other remaining details, and for the above conical graph
construction we have d

V
= d.



Chapter 8
Information Dimension

The information dimension d
I

of a network [47, 70] extends the concept of the
information dimension of a probability distribution [2, 13, 50, 52]. Recall that for
box size s, an s-covering of G was defined by Definition 2.1, and that an s-covering
is minimal if it uses the fewest possible number of boxes. Let B(s) be a minimal s-
covering of G. Let N

j
(s) be the number of nodes of G contained in box Bj ∈ B(s).

We obtain a set of box probabilities {p
j
(s)}Bj ∈B(s) by defining p

j
(s) ≡ N

j
(s)/N .

Define the entropy H(s) by

H(s) ≡ −
∑

Bj ∈B(s)

p
j
(s) log p

j
(s) . (8.1)

The information dimension d
I

for the complex network G is defined in [70] by
d
I

≡ − lims→0 H(s)/log s. However, this definition is not computationally useful,
since the distance between each pair of nodes is at least 1. Moreover, we cannot use
the value s = 1, since then the denominator of the fraction is zero, while for s ≥ 2
we have H(s) > 0 and log s > 0, which implies −H(s)/log s < 0 and thus d

I
< 0.

A computationally useful definition of d
I

would, in the spirit of Definition 2.4 of d
B

,
require H(s) to be approximately linear in log s, i.e.,

H(s) ≈ −d
I

log (s/Δ) + c (8.2)

for some constant c and some range of s. For example, using (8.2), it can be shown
[47] that for a three-dimensional cubic rectilinear lattice of K3 nodes, where K is
the number of nodes on an edge of the cube, for K � 1 we have d

I
= 3.

Example 8.1 Figure 8.1 illustrates a “hub and spoke with a tail” topology with N

nodes. The spokes are the N −K nodes K +1, K +2, · · · , K +N that are connected
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Fig. 8.1 “Hub and spoke
with a tail” network

Fig. 8.2 Two minimal
3-coverings and a minimal
2-covering for the chair
network

to node K . The diameter Δ of this network is K . Assuming s � N , s � K and
s � N − K , it is shown in [47] that

H(s) ≈ −
[(

N − K

N

)

log

(
N − K

N

)

+ K

N
log

K

N

]

− K

N
log

s

K
. (8.3)

Setting

c = −
[(

N − K

N

)

log

(
N − K

N

)

+ K

N
log

K

N

]

,

from (8.3) we have

H(s) ≈ −(K/N) log(s/K) + c .

Since Δ = K , from (8.2) we have d
I

= K/N . When N = K + 1 � 1, the network
is a long chain (i.e., a rectilinear lattice in one dimension), for which d

I
≈ 1. When

N � K = 2, the network is a pure hub and spoke network, for which d
I

≈ 0. ��

Example 8.2 Consider the five node chair network of Fig. 8.2. Using the minimal
2-covering B(2) and the minimal 3-covering B̂(3), from (8.2) we obtain

d
I

= (H(2) − H(3)
)
/(log 3 − log 2) = (4/5) log 2/ log(3/2) ≈ 1.37 .
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However, using the minimal 2-covering B(2) and the other minimal 3-covering
B̃(3), from (8.2) we obtain

d
I

= (H(2) − H(3)
)
/(log 3 − log 2) =

(
3

5
log 3 − 2

5
log 2

)

/ log(3/2) ≈ 0.94 .

��
Thus the value of d

I
depends in general on which minimal covering is selected.

This indeterminacy can be eliminated by using maximal entropy minimal coverings,
introduced in [47].

Definition 8.1 The minimal s-covering B(s) of G is a maximal entropy minimal
covering of G if the entropy H(s) of B(s) is no less than the entropy of any other
minimal s-covering of G. ��

For Example 8.2, the minimal 3-covering B̂(3) has entropy

−
(

4

5
log

4

5
+ 1

5
log

1

5

)

≈ 0.217

while the minimal 3-covering B̃(3) has entropy

−
(

3

5
log

3

5
+ 2

5
log

2

5

)

≈ 0.292 ,

so B̃(3) is a maximal entropy minimal 3-covering. The justification for this
maximal entropy definition is the argument of Jaynes [26] that the significance
of Shannon’s information theory is that there is a unique, unambiguous criterion
for the uncertainty associated with a discrete probability distribution, and this
criterion agrees with our intuitive notion that a flattened distribution possesses more
uncertainty than a sharply peaked distribution. Jaynes argues that when making
physical inferences with incomplete information about the underlying probability
distribution, we must use that probability distribution which maximizes the entropy
subject to the known constraints. The definition of d

I
provided by (8.2) can now be

replaced with the following definition [47].

Definition 8.2 The network G has the information dimension d
I

if for some
constant c and for some range of s we have

H(s) ≈ −d
I

log (s/Δ) + c , (8.4)

where H(s) is given by (8.1), p
j
(s) = N

j
(s)/N for Bj ∈ B(s), and B(s) is a

maximal entropy minimal s-covering. ��
With this definition, for the network of Fig. 8.2 we have d

I
= 0.94. Procedure 8.1

shows how any box counting method for G can easily be modified to generate a
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maximal entropy minimal s-covering. Aside from using (8.1) to compute H(s) from
B(s), computing a maximal entropy minimal covering is no more computationally
burdensome than computing a minimal covering.

Procedure 8.1 Let Bmin(s) be the best s-covering obtained over all executions
of whatever box counting method is utilized. Suppose we have executed box
counting some number of times, and stored Bmin(s) and Hmax(s), where Hmax(s)

is the current estimate of the maximal entropy of a minimal s-covering. Now
suppose we execute box counting again, and generate a new s-covering B(s)

using B(s) boxes. Using (8.1), compute the entropy H of the s-covering B(s). If
B(s) < Bmin(s), or if B(s) = Bmin(s) and H > Hmax(s), then set Bmin(s) = B(s)

and Hmax(s) = H . ��

Example 8.3 Table 8.1 and Fig. 8.3 show the results after 1000 executions of
Random Sequential Node Burning (Sect. 3.3) are applied to an Erdos-Rényi random
network, with 100 nodes, 250 arcs, and diameter 6. To show the range of entropy
over all minimal coverings, let Hmin(s) be the minimal entropy, taken over all s-
coverings for which B(s) = Bmin(s). Over the range 1 ≤ r ≤ 3 (which, using
s = 2r + 1, translates to box sizes of 3, 5, and 7), the best linear fits of log Bmin(s)

and Hmax(s) vs. log s yield d
B

= 3.17 and d
I

= 2.99, so d
I

< d
B

. The plot of
Hmax(s) vs. log s (solid blue line, triangular markers) is substantially more linear
than the plot of Hmin(s) vs. log s (dashed red line, square markers), so the use of
maximal entropy minimal coverings enhanced the ability to compute d

I
. Redoing

this analysis with only 100 executions of Random Sequential Node Burning yielded

Table 8.1 Results for
Erdos-Rényi network

r Bmin(s) Hmin(s) Hmax(s)

1 31 3.172 3.246

2 9 1.676 1.951

3 2 0.168 0.680

4 1 0 0

Fig. 8.3 Results for Erdos-Rényi network
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the quite different results d
B

= 2.71 and d
I

= 2.72, so the number of executions of
Random Sequential Node Burning (or whichever box counting method is utilized)
should be sufficiently high so that the results have converged. ��



Chapter 9
Generalized Dimensions

A multifractal is a fractal that cannot be characterized by a single fractal dimension
such as the box counting dimension. The infinite number of fractal dimensions
needed in general to characterize a multifractal are known as generalized dimen-
sions. Generalized dimensions of geometric multifractals were proposed indepen-
dently in 1983 by Grassberger [20] and by Hentschel and Procaccia [25]. They have
been intensely studied (e.g., [21, 40, 61]) and widely applied (e.g., [39, 59]). Given
N points from a geometric multifractal, e.g., the strange attractor of a dynamical
system [9, 41], the generalized dimension Dq defined in [20, 25] is computed from
a set of box sizes. For box size s, we cover the N points with a grid of boxes of linear
size s, compute the fraction p

j
(s) of the N points in box Bj of the grid, discard any

box for which p
j
(s) = 0, and compute the partition function value

Zq

(
B(s)
) ≡
∑

Bj ∈B(s)

[p
j
(s)]q , (9.1)

where B(s) is the set of non-empty grid boxes, of linear size s, used to cover the N

points. For q ≥ 0 and q �= 1, the generalized dimension Dq defined in [20, 25] of
the geometric multifractal is

Dq ≡ 1

q − 1
lim
s→0

log Zq

(
B(s)
)

log s
. (9.2)

When q = 0, this computation yields the box counting dimension d
B

, so D0 = d
B

.
When q = 1, after applying L’Hôpital’s rule we obtain the information dimension
d
I

[13], so D1 = d
I
. When q = 2, we obtain the correlation dimension d

C
[23], so

D2 = d
C

.
Generalized dimensions of a complex network were studied in [15, 34, 48, 49,

58, 67, 68]. Several of these studies employ the sandbox method, which we discuss
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at the end of this chapter. The method of [67] for computing Dq for G is the
following. For a range of s, compute a minimal s-covering B(s). For Bj ∈ B(s),
define p

j
(s) ≡ Nj(s)/N , where Nj(s) is the number of nodes in Bj . For q ∈ R,

use (9.1) to compute Zq

(
B(s)
)
. (In [67], which uses a randomized box counting

heuristic, Zq

(
B(s)
)

is the average partition function value, averaged over 200
random orderings of the nodes.) Typically, Dq is computed only for a small set
of q values, e.g., integer q in [0, 10] or integer q in [−10, 10]. Then G has the
generalized dimension Dq (for q �= 1) if for some constant c and for some range of
s we have

log Zq

(
B(s)
) ≈ (q − 1)Dq log(s/Δ) + c . (9.3)

However, as shown in [48], this definition is ambiguous, since different minimal
s-coverings can yield different values of Dq .

Example 9.1 Consider again the chair network of Fig. 8.2, which shows two
minimal 3-coverings and a minimal 2-covering. Choosing q = 2, for the covering
B̃(3) from (9.1) we have Z2

(
B̃(3)
) = ( 3

5 )2 + ( 2
5 )2 = 13

25 , while for B̂(3) we have
Z2
(
B̂(3)
) = ( 4

5 )2+( 1
5 )2 = 17

25 . For B(2) we have Z2
(
B(2)
) = 2( 2

5 )2+( 1
5 )2 = 9

25 .
If we use B̃(3) then from (9.3) and the range s ∈ [2, 3] we obtain

D2 =
(

log
13

25
− log

9

25

)

/(log 3 − log 2) ≈ 0.907 .

If instead we use B̂(3) and the same range of s we obtain

D2 =
(

log
17

25
− log

9

25

)

/(log 3 − log 2) ≈ 1.569 .

Thus the method of [67] can yield different values of D2 depending on the minimal
covering selected. ��

To devise a computationally efficient method for selecting a unique minimal
covering, first consider the maximal entropy criterion described in Chap. 8. It is
well known that entropy is maximized when all the probabilities are equal. A
partition function is minimized when the probabilities are equal. To formalize this
idea, for integer J ≥ 2, let P(q) denote the continuous optimization problem:
minimize

∑J
j=1 p

q

j
subject to

∑J
j=1 p

j
= 1 and p

j
≥ 0 for each j . It is proved in

[48] that for q > 1, the solution of P(q) is p
j

= 1/J for each j . Applying this result

to G, minimizing Zq

(
B(s)
)

over all minimal s-coverings of G yields a minimal s-
covering for which all the probabilities p

j
(s) are, to the extent possible, equalized.

Since p
j
(s) = N

j
(s)/N , equal box probabilities means that all boxes in the minimal

s-covering have the same number of nodes. The following definition [48] of an (s, q)

minimal covering, for use in computing Dq , is analogous to the definition in [47] of
a maximal entropy minimal s-covering, for use in computing d

I
.
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Definition 9.1 For q ∈ R, the covering B(s) of G is an (s, q) minimal covering if
(i) B(s) is a minimal s-covering and (ii) for any other minimal s-covering B̃(s) we
have Zq

(
B(s)
) ≤ Zq

(
B̃(s)
)
. ��

It is easy to modify any box counting method (in a manner analogous to
Procedure 8.1) to compute an (s, q) minimal covering for a given s and q. However,
this approach to eliminating ambiguity in the computation of a minimal s-covering
is not particularly attractive, since it requires computing an (s, q) minimal covering
for each value of q for which we wish to compute Dq . A better approach to
resolving this ambiguity is to compute a lexico minimal summary vector [48], which
summarizes an s-covering B(s) by the point x ∈ R

J , where J ≡ B(s), where
x
j

= Nj(s) for 1 ≤ j ≤ J , and where x1 ≥ x2 ≥ · · · ≥ x
J

. (We use lexico instead
of the longer lexicographically.) The vector x does not specify all the information in
B(s); in particular, B(s) specifies exactly which nodes belong to each box, while
x specifies only the number of nodes in each box. The notation x = ∑B(s)

signifies that x summarizes the s-covering B(s) and that x1 ≥ x2 ≥ · · · ≥ x
J

.
For example, if N = 37, s = 3, and B(3) = 5, we might have x = ∑B(3) for
x = (18, 7, 5, 5, 2). However, we cannot have x =∑B(3) for x = (7, 18, 5, 5, 2)

since the components of x are not ordered correctly. If x = ∑B(s) then each x
j

is positive, since x
j

is the number of nodes in box Bj . The vector x = ∑B(s) a
called a summary of B(s). By “x is a summary” we mean x is a summary of B(s)

for some B(s). For x(s) =∑B(s) and q ∈ R, define

Z
(
x(s), q

) ≡
∑

Bj ∈B(s)

(
x
j
(s)

N

)q

. (9.4)

Thus for x(s) = ∑B(s) we have Z
(
x(s), q

) = Zq

(
B(s)
)
, where Zq

(
B(s)
)

is
defined by (9.1).

Let x ∈ R
K for some positive integer K . Let right (x) ∈ R

K−1 be the point
obtained by deleting the first component of x. For example, if x = (18, 7, 5, 5, 2)

then right (x) = (7, 5, 5, 2). Similarly, we define right2(x) ≡ right
(
right (x)

)
, so

right2(7, 7, 5, 2) = (5, 2). Let u ∈ R and v ∈ R be numbers. We say that u � v

(in words, u is lexico greater than or equal to v) if ordinary inequality holds, that is,
u � v if u ≥ v. Thus 6 � 3 and 3 � 3. Now let x ∈ R

K and y ∈ R
K . We define

lexico inequality recursively: we say that y � x if either (i) y1 > x1 or (ii) y1 = x1
and right (y) � right (x). For example, for x = (9, 6, 5, 5, 2), y = (9, 6, 4, 6, 2),
and z = (8, 7, 5, 5, 2), we have x � y and x � z and y � z.

Definition 9.2 Let x =∑B(s). Then x is lexico minimal if (i) B(s) is a minimal
s-covering and (ii) if B̃(s) is a minimal s-covering distinct from B(s) and y =∑

B̃(s) then y � x. ��
The following two theorems are proved in [48].

Theorem 9.1 For each s there is a unique lexico minimal summary.
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Theorem 9.2 Let x =∑B(s). If x is lexico minimal then B(s) is (s, q) minimal
for all sufficiently large q.

Analogous to Procedure 8.1, Procedure 9.1 below shows how, for a given s, the
lexico minimal x(s) can be computed by a simple modification of whatever box
counting method is used to compute a minimal s-covering.

Procedure 9.1 Let Bmin(s) be the best s-covering obtained over all executions of
whatever box counting method is utilized. Suppose we have executed box counting
some number of times, and stored Bmin(s) and xmin(s) = ∑Bmin(s), so xmin(s)

is the current best estimate of a lexico minimal summary vector. Now suppose we
execute box counting again, and generate a new s-covering B(s) using B(s) boxes.
Let x = ∑B(s). If B(s) < Bmin(s), or if B(s) = Bmin(s) and xmin(s) � x, then
set Bmin(s) = B(s) and xmin(s) = x. ��

Procedure 9.1 shows that the only additional steps, beyond the box counting
method itself, needed to compute x(s) are lexicographic comparisons, and no
evaluations of the partition function Zq

(
B(s)
)

are required. By Theorems 9.1
and 9.2, the summary vector x(s) is unique and also “optimal” (i.e., (s, q) minimal)
for all sufficiently large q. Thus an attractive way to resolve ambiguity in the choice
of minimal s-coverings is to compute x(s) for a range of s and use the x(s) vectors
to compute Dq , using Definition 9.3 below.

Definition 9.3 For q �= 1, the complex network G has the generalized dimension
Dq if for some constant c and for some range of s we have

log Z
(
x(s), q

) ≈ (q − 1)Dq log(s/Δ) + c , (9.5)

where x(s) =∑B(s) is lexico minimal. ��
Example 9.2 (Continued) Consider again the chair network of Fig. 8.2. Choose
q = 2. For s = 2 we have x(2) = ∑B(2) = (2, 2, 1) and Z

(
x(2), 2

) = 9
25 .

For s = 3 we have x̃(3) =∑ B̃(3) = (3, 2) and Z
(
x̃(3), 2

) = 13
25 . Over the range

s ∈ [2, 3], from Definition 9.3 we have D2 = log(13/9)/ log(3/2) ≈ 0.907. For this
network, not only is the value of Dq dependent on the minimal s-covering selected,
but even the overall shape of the Dq vs. q curve depends on the minimal s-covering
selection. For x(2) = (2, 2, 1) we have

Z
(
x(2), q

) = 2

(
2

5

)q

+
(

1

5

)q

.

For x̃(3) = (3, 2) we have

Z
(
x̃(3), q

) =
(

3

5

)q

+
(

2

5

)q

.
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Over the range s ∈ [2, 3], from (9.5) we have

D̃q ≡
(

1

q − 1

)
⎛

⎝
log
(

3q+2q

5q

)
− log
(

(2)(2q )+1
5q

)

log(3/Δ) − log(2/Δ)

⎞

⎠ =
log
(

3q+2q

(2)(2q )+1

)

log(3/2)(q − 1)
. (9.6)

If for s = 3 we instead choose the covering B̂(3) then for x̂(3) = (4, 1) we have

Z
(
x̂(3), q

) =
(

4

5

)q

+
(

1

5

)q

.

Again over the range s ∈ [2, 3], but now using x̂(3) instead of x̃(3), we obtain

D̂q ≡
(

1

q − 1

)
⎛

⎝
log
(

4q+1q

5q

)
− log
(

(2)(2q )+1
5q

)

log(3/Δ) − log(2/Δ)

⎞

⎠ =
log
(

4q+1
(2)(2q )+1

)

log(3/2)(q − 1)
. (9.7)

Figure 9.1 plots D̃q vs. q, and D̂q vs. q over the range 0 ≤ q ≤ 15. Neither curve
is monotone non-increasing: the D̃q curve (corresponding to the lexico minimal
summary vector x̃(3) = (3, 2)) is unimodal, with a local minimum at q ≈ 4.1, and
the D̂q curve is monotone increasing. ��

The fact that neither curve in Fig. 9.1 is monotone non-increasing is remarkable,
since it is well known that for a geometric multifractal, the Dq vs. q curve is
monotone non-increasing [20]. The shape of the Dq vs. q curve will be explored
further in Chap. 10. We next show that the x(s) summary vectors can be used to
compute D∞ ≡ limq→∞ Dq . Let x(s) =∑B(s) be lexico minimal, and let x1(s)

be the first element of x(s). It is proved in [48] that

log

(
x1(s)

N

)

≈ D∞ log
( s

Δ

)
. (9.8)

Fig. 9.1 Two plots of the generalized dimensions for the chair network
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We can use (9.8) to compute D∞ without having to compute any partition function
values. It is well known [41] that, for geometric multifractals, D∞ corresponds to
the densest part of the fractal. Similarly, (9.8) shows that, for a complex network,
D∞ is the factor that relates the box size s to x1(s), the number of nodes in the box
in the lexico minimal s-covering for which p

j
(s) is maximal.

To conclude this chapter, we consider the sandbox method for approximating Dq .
The sandbox method, originally designed to compute Dq for geometric multifractals
obtained by simulating diffusion-limited aggregation on a lattice [64, 65, 71],
overcomes a well-recognized [1] limitation of using box counting to compute
generalized dimensions: spurious results can be obtained for q � 0. This will
happen if some box probability p

j
is close to zero, for then when q � 0 the

term p
q

j
will dominate the partition sum

∑
j p

q

j
. The sandbox method has also

been shown to be more accurate than box counting for geometric fractals with
known theoretical dimensions [62]. To describe the sandbox method, note that for a
geometric multifractal for which Dq exists, by (9.1) and (9.2) we have, as s → 0,

Zq

(
B(s)
) =
∑

Bj ∈B(s)

p
q

j
(s) =

∑

Bj ∈B(s)

p
j
(s)[p

j
(s)]q−1 ∼ s(q−1)Dq .

The sandbox method approximates
∑

Bj ∈B(s) p
q

j
(s) as follows [62]. Let Ñ be a

randomly chosen subset of the N points and define Ñ ≡ |Ñ|. With M(n, r) defined
by (7.1) and (7.2), define

avg
(
pq−1(r)

) ≡ 1

Ñ

∑

n∈Ñ

(
M(n, r)

N

)q−1

, (9.9)

where the notation avg
(
pq−1(r)

)
is chosen to make it clear that this average uses

equal weights of 1/Ñ . Let L be the linear size of the lattice. The essence of the
sandbox method is the approximation, for r � L,

avg
(
pq−1(r)

) ∼ (r/L)(q−1)Dq . (9.10)

Note that
∑

Bj ∈B(s) p
q

j
(s) is a sum over the set of non-empty grid boxes, and the

weight applied to [p
j
(s)]q−1 is p

j
(s). In contrast, avg

(
pq−1(r)

)
is a sum over a

randomly selected set of sandpiles, and the weight applied to
(
M(n, r)/N

)q−1 is
1/Ñ . Since the Ñ sandpile centers are chosen from the N points using a uniform
distribution, the sandpiles may overlap. Because the sandpiles may overlap, and the
sandpiles do not necessarily cover all the N points, in general

∑
n∈Ñ M(n, r) �= N ,

and we cannot regard the values {M(n, r)/N}n∈Ñ as a probability distribution. Let β

be the spacing between adjacent lattice positions (e.g., between adjacent horizontal
and vertical positions for a lattice in R

2).
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Definition 9.4 For q �= 1, the sandbox dimension function [62] of order q is the
function of r defined for β ≤ r � L by

D sandbox
q

(r/L) ≡ 1

q − 1

log avg
(
pq−1(r)

)

log(r/L)
. (9.11)

��
For a given q �= 1 and lattice size L, the sandbox dimension function does

not define a single sandbox dimension, but rather a range of sandbox dimensions,
depending on r . It is not meaningful to define limr→0 D sandbox

q
(r/L), since r cannot

be smaller than the spacing β between lattice points. In practice, for a given q and
L, a single value D sandbox

q
of the sandbox dimension of order q is typically obtained

by computing D sandbox
q

(r/L) for a range of r values, and finding the slope of the

log avg
(
pq−1(r)

)
vs. log(r/L) curve. The estimate of D sandbox

q
is 1/(q − 1) times

this slope.
The sandbox method was applied to complex networks in [34]. The box centers

are randomly selected nodes. There is no firm rule in [34] on the number of random
centers to pick: they use Ñ ≡ |Ñ| = 1000 random nodes, but suggest that Ñ can
depend on N . For a given q �= 1, they compute avg

(
pq−1(r)

)
for a range of r values.

Adapting (9.10) to a complex network G, for r � Δ we have

log avg
(
pq−1(r)

) ∼ (q − 1)D sandbox
q

log(r/Δ) . (9.12)

In [34], linear regression is applied to (9.12) to compute D sandbox
q

.
The sandbox method was applied to undirected weighted networks in [58]. The

calculation of the sandbox radii in [58] is similar to the selection of box sizes
discussed in Sect. 3.2.



Chapter 10
Non-monotonicity of Generalized
Dimensions

In Chap. 9, we showed that the value of Dq for a given q depends in general on
which minimal s-covering is selected, and we showed that this ambiguity can be
eliminated by using the unique lexico minimal summary vectors x(s). However,
there remains a significant ambiguity in computing Dq , since Definition 9.3 refers to
a range of s values over which approximate equality holds. Let this range be denoted
by [L,U ], where L < U . It is well known that, in general, the numerical value of
any fractal dimension depends on the range of box sizes over which the dimension is
computed. What had not been previously recognized is that for a complex network
the choice of L and U can dramatically change the shape of the Dq vs. q curve:
depending on L and U , the shape of the Dq vs. q curve can be monotone increasing,
or monotone decreasing, or even have both a local maximum and a local minimum
[49]. Example 9.1 and Fig. 9.1 provided an example where the Dq vs. q plot is not
monotone non-increasing, even for the simple case [L,U ] = [2, 3]. This behavior
stands in sharp contrast to the behavior of a geometric multifractal, for which it is
known [20] that Dq is non-increasing in q.

Recalling that log Z
(
x(s), q

)
for a complex network G is defined by (9.4), one

way to compute Dq for a given q is to determine a range [Lq,Uq ] of s over which
log Z
(
x(s), q

)
is approximately linear in log s, and then use (9.5) to estimate Dq ,

e.g., using linear regression. With this approach, to report computational results to
other researchers, it would be necessary to specify, for each q, the range of box
sizes used to estimate Dq . This is certainly not the protocol currently followed in
research on generalized dimensions. Rather, the approach taken in [49] and [67] is
to pick a single L and U and estimate Dq for all q with this L and U . Moreover,
rather than estimating Dq using a technique such as regression over the range [L,U ]
of box sizes, [49] instead estimates Dq using only the two box sizes L and U . (As
discussed in Chap. 5, such a two-point estimate was also used in [46], where it was
shown that even for as simple a network as a one-dimensional chain, estimates of
d
C

obtained from regression do not behave well, and a two-point estimate has very
desirable properties.)
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With this two-point approach, the estimate of Dq is 1/(q − 1) times the slope of
the secant line connecting the points

(
log L, log Z

(
x(L), q

))
and
(
log U, log Z

(
x(U), q

))
,

where x(L) and x(U) are the lexico minimal summary vectors for box sizes L and
U , respectively. Using (9.4) and (9.5), this secant estimate of Dq , which we denote
by Dq(L,U), is defined by

Dq(L,U) ≡ log Z
(
x(U), q

)− log Z
(
x(L), q

)

(q − 1)
(

log(U/Δ) − log(L/Δ)
)

= 1

(q − 1) log(U/L)
log

(∑
Bj ∈B(U)[xj (U)]q
∑

Bj ∈B(L)[xj (L)]q
)

. (10.1)

Example 10.1 Figure 10.1 plots box counting results for the dolphins network,
which has 62 nodes, 159 arcs, and Δ = 8. This is a social network describing
frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand [35]. For this network, and for all other networks described
in this chapter, each lexico minimal summary vector x(s) was computed using
Procedure 9.1 and the graph coloring heuristic described in [48]. Figure 10.1 shows
that the

(− log(s/Δ), log B(s)
)

curve is approximately linear for 2 ≤ s ≤ 6.
Figure 10.2 plots log Z

(
x(s), q

)
vs. log(s/Δ) for 2 ≤ s ≤ 6 and for q =

2, 4, 6, 8, 10 (q = 2 is the top curve, and q = 10 is the bottom curve). Figure 10.2
shows that, although the log Z

(
x(s), q

)
vs. log(s/Δ) curves are less linear as q

increases, a linear approximation is quite reasonable. Moreover, we are particularly
interested in the behavior of the log Z

(
x(s), q

)
vs. log(s/Δ) curve for small positive

q, the region where the linear approximation is best. Using (10.1), Fig. 10.3 plots the
secant estimate Dq(L,U) vs. q for various choices of L and U . Since the Dq vs. q

Fig. 10.1 Box counting for the dolphins network
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Fig. 10.2 log Z
(
x(s), q

)
vs. log(s/Δ) for the dolphins network

Fig. 10.3 Secant estimate of Dq for the dolphins network for different (L,U)

curve for a geometric multifractal is monotone non-increasing, it is remarkable that
different choices of L and U lead to such different shapes for the Dq(L,U) vs. q

curve for the dolphins network. ��
Let D ′

0(L,U) denote the first derivative with respect to q of the secant Dq(L,U),
evaluated at q = 0. A simple closed-form expression for D ′

0(L,U) is derived in
[49]. For box size s, let x(s) =∑B(s) be lexico minimal. Define

G(s) ≡
⎛

⎝
B(s)∏

j=1

x
j
(s)

⎞

⎠

1/B(s)

A(s) ≡ 1

B(s)

B(s)∑

j=1

x
j
(s)

R(s) ≡ G(s)

A(s)
(10.2)
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so G(s) is the geometric mean of the box masses summarized by x(s), A(s) is
the arithmetic mean of the box masses summarized by x(s), and R(s) is the ratio
of the geometric mean to the arithmetic mean. By the classic arithmetic-geometric
inequality, for each s we have R(s) ≤ 1. Since

∑B(s)
j=1 x

j
(s) = N , then B(s)A(s) =

N . Theorems 10.1 and 10.2 below are proved in [49].

Theorem 10.1

D ′
0(L,U) = 1

log(U/L)
log

R(L)

R(U)
.

��
Theorem 10.1 says that the slope of the secant estimate of Dq at q = 0

depends on x(L) and x(U) only through the ratio of the geometric mean to the
arithmetic mean of the components of x(L), and similarly for x(U). Since L < U ,
Theorem 10.1 immediately implies the following corollary.

Corollary 10.1 D ′
0(L,U) > 0 if and only if R(L) > R(U), and D ′

0(L,U) < 0 if
and only if R(L) < R(U). ��

For a given L and U , Theorem 10.2 below provides a sufficient condition for
Dq(L,U) to have a local maximum or minimum.

Theorem 10.2 (i) If R(L) > R(U) and

B(L)

B(U)
>

x1(U)

x1(L)

then Dq(L,U) has a local maximum at some q > 0. (ii) If R(L) < R(U) and

B(L)

B(U)
<

x1(U)

x1(L)

then Dq(L,U) has a local minimum at some q > 0. ��
Example 10.2 To illustrate Theorem 10.2, consider the dolphins network of Exam-
ple 10.1 with L = 3 and U = 5. We have B(3) = 13 and B(5) = 4, so
D0 = log(13/4)/ log(5/3) ≈ 2.307. Also, x1(3) = 10 and x1(5) = 28, so by (9.8)
we have D∞ ≈ log(28/10)/ log(5/3) ≈ 2.106. We have R(3) ≈ 0.773, R(5) ≈
0.660, and D ′

0(L,U) ≈ 0.311. Hence Dq(3, 5) has a local maximum, as seen in
Fig. 10.3. Moreover, for the dolphins network, choosing L = 2 and U = 5 we have
D0 = log(29/4)/ log(5/2) ≈ 2.16, and D∞ ≈ log(28/3)/ log(5/2) ≈ 2.44, so
D0 < D∞, as is evident from Fig. 10.3. Thus the inequality D0 ≥ D∞, which is
valid for geometric multifractals, does not hold for the dolphins network with L = 2
and U = 5. ��
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If for s = L and s = U we can compute a minimal s-covering with equal box
masses, then G is a monofractal but not a multifractal. To see this, suppose all boxes
in B(L) have the same mass, and that all boxes in B(U) have the same mass. Then
for s = L and s = U we have x

j
(s) = N/B(s) for 1 ≤ j ≤ B(s), and (9.1) yields

Z
(
x(s), q

) =
∑

Bj ∈B(s)

(
x
j
(s)

N

)q

=
∑

Bj ∈B(s)

(
1

B(s)

)q

= [B(s)]1−q .

From (9.5), for q �= 1 we have

Dq = log Z
(
(x(U), q

)− log Z
(
x(L), q

)

(q − 1)
(

log U − log L
) = log

([B(U)]1−q
)− log

([B(L)]1−q
)

(q − 1)
(

log U − log L
)

= log B(L) − log B(U)

log U − log L
= D0 = d

B
, (10.3)

so G is a monofractal. Thus equal box masses imply G is a monofractal, the simplest
of all fractal structures.

There are several ways to try to obtain equal box masses in a minimal s-covering
of G. As discussed in Chap. 8, ambiguity in the choice of minimal coverings used to
compute d

I
is eliminated by maximizing entropy. Since the entropy of a probability

distribution is maximized when all the probabilities are equal, a maximal entropy
minimal covering equalizes (to the extent possible) the box masses. Similarly,
as discussed in Chap. 9, ambiguity in the choice of minimal s-coverings used to
compute Dq is eliminated by minimizing the partition function Zq

(
B(s)
)
. Since for

all sufficiently large q the lexico minimal vector x(s) summarizes the s-covering that
minimizes Zq

(
B(s)
)
, and since for q > 1 a partition function is minimized when all

the probabilities are equal, then x(s) also equalizes (to the extent possible) the box
masses. Theorem 10.1 suggests a third way to try to equalize the masses of all boxes
in a minimal s-covering: since G(s) ≤ A(s) and G(s) = A(s) when all boxes have
the same mass, a minimal s-covering that maximizes G(s) will also equalize (to the
extent possible) the box masses. The advantage of computing the lexico minimal
summary vectors x(s), rather than maximizing the entropy or maximizing G(s), is
that, by Theorem 9.1, the summary vector x(s) is unique.

We now apply Theorem 10.1 to the chair network, to the dolphins network, and
to a jazz network.

Example 10.3 For the chair network of Fig. 8.2 we have L = 2, x(L) = (2, 2, 1),
U = 3, and x(U) = (3, 2). We have D′

0(2, 3) ≈ −0.070, as shown in Fig. 9.1 by
the slightly negative slope of the lower curve at q = 0. As mentioned above, this
curve is not monotone non-increasing; it has a local minimum. ��

Example 10.4 For the dolphins network studied in Example 10.1, Table 10.1
provides D′

0(L,U) for various choices of L and U . The values in Table 10.1 are
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Table 10.1 D′
0(L,U) for the

dolphins network
L,U D′

0(L,U)

2, 6 −0.056

3, 5 0.311

2, 4 0.393

2, 5 0.367

Fig. 10.4 log R(s) vs. log s for the dolphins network

Fig. 10.5 Jazz box counting (left) and Dq vs. q for various L and U (right)

better understood using Fig. 10.4, which plots log R(s) vs. log s. For example, for
(L,U) = (2, 6) we have D′

0(2, 6) = log
(
R(2)/R(6)

)
/
(

log 6/2
) ≈ −0.056, as

illustrated by the slightly positive slope of the dashed red line in Fig. 10.4, since
the slope of the dashed red line is −D′

0(2, 6). For the other choices of (L,U) in
Table 10.1, the values of D′

0(L,U) are positive and roughly equal. Figure 10.2
visually suggests that log Z

(
x(s), q

)
is better approximated by a linear fit over

s ∈ [2, 5] than over s ∈ [2, 6], and Fig. 10.4 clearly shows that s = 6 is an outlier
in that using U = 6 dramatically changes D′

0(L,U). ��

Example 10.5 This network, with 198 nodes, 2742 arcs, and diameter 6, is a
collaboration network of jazz musicians [19]. Figure 10.5 shows the results of box
counting; the curve appears reasonably linear for s ∈ [2, 6]. Figure 10.5 also plots
Dq(L,U) vs. q for four choices of L and U . Table 10.2 provides D′

0(L,U), D0,
and D∞ for nine choices of L and U ; the rows are sorted by decreasing D′

0(L,U).
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Table 10.2 Results for the
jazz network for various L

and U

L,U D′
0(L,U) D0 D∞

2, 3 1.576 2.77 2.16

2, 4 1.224 2.74 1.42

2, 5 0.826 2.51 1.51

3, 4 0.728 2.69 0.37

2, 6 0.485 2.73 1.68

3, 5 0.231 2.31 1.00

3, 6 −0.154 2.70 1.40

4, 5 −0.411 1.82 1.82

5, 6 −1.232 3.80 2.52

Fig. 10.6 log R(s) vs. log s for the jazz network

It is even possible for the Dq(L,U) vs. q curve to exhibit both a local maximum
and a local minimum: for the jazz network with L = 4 and U = 5, there is a local
minimum at q ≈ 0.7 and a local maximum at q ≈ 12.8. Figure 10.6 plots log R(s)

vs. log s for the jazz network. ��
These results, together with the results in [47, 48], show that two requirements

should be met when reporting fractal dimensions of a complex network. First, since
there are in general multiple minimal s-coverings, and these different coverings can
yield different values of Dq , computational results should specify the rule (e.g., a
maximal entropy covering, or a covering yielding a lexico minimal summary vector)
used to unambiguously select a minimal s-covering. Second, the lower bound L and
upper bound U on the box sizes used to compute Dq should be reported. Published
values of Dq not meeting these two requirements cannot in general be considered
benchmarks. As to the values of L and U yielding the most meaningful results, it
is desirable to identify the largest range [L,U ] over which log Z is approximately
linear in log s; this is a well-known principle in the estimation of fractal dimensions.
Future research may uncover, based on the log R(s) vs. log s curve, other criteria for
selecting L and U .



Chapter 11
Zeta Dimension

In this final chapter we consider the use of the zeta function

ζ(α) =
∞∑

i=1

i−α (11.1)

to define the dimension of a network. The zeta function has a rich history [8, 17].
It was studied by Euler in 1737 for non-negative real α and extended in 1859 by
Riemann to complex α. We will consider the zeta function only for non-negative real
α. The zeta function converges for α > 1 and diverges otherwise. It is a decreasing
function of α and ζ(α) → 1 as α → ∞ [54].

The zeta function has been used to define the fractal dimension of a finite
complex network [54]. Although the zeta dimension of a network has not enjoyed
widespread popularity, it has interesting connections to the Hausdorff dimension.
Recall from (7.5) in Chap. 7 that ∂N(n, r) is the set of nodes whose distance from
node n is exactly r , and |∂N(n, r)| is the number of such nodes. Define the graph
surface function by

Sr ≡ 1

N

∑

n∈N
|∂N(n, r)| , (11.2)

so Sr is the average number of nodes at a distance r from a random node in the
network. Define the graph zeta function ζG(α) [54] by

ζG(α) ≡ 1

N

∑

x∈N

∑

y∈N
y �=x

dist (x, y)−α . (11.3)
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Since G is a finite network, then ζG(α) is finite, and the graph zeta function and the
graph surface function are related by

ζG(α) = 1

N

∑

x∈N

∑

r≥1

|∂N(x, r)|r−α

=
∑

r≥1

( 1

N

∑

x∈N
|∂N(x, r)|

)
r−α

=
∑

r≥1

Srr
−α . (11.4)

The function ζG(α) is decreasing in α. For α = 0 we have

ζG(0) = (1/N)
∑

x∈N
(N − 1) = N − 1 .

For a given x ∈ N, if dist(x, y) > 1 then dist (x, y)−α → 0 as α → ∞, so

lim
α→∞
∑

y∈N
y �=x

dist(x, y)−α = lim
α→∞

∑

y∈N
dist(x,y)=1

dist(x, y)−α = δx , (11.5)

where δx is the node degree of x. Thus ζG(α) approaches the average node degree
as α → ∞.

Since (11.3) defines ζG(α) only for a finite network, we would like to define
ζG(α) for an infinite network G. If G = limN→∞ GN , where GN has NE nodes,
then we can define ζG(α) ≡ limN→∞ ζGN

(α), as is implicitly done in [54]. For
example, G = limN→∞ GN holds when G is an infinite E-dimensional rectilinear
lattice and GN is a finite E-dimensional rectilinear lattice for which each edge has
N nodes. Table 11.1, from [54], provides ζG(α) for an infinite rectilinear lattice in
R

E and the L1 norm. Here Γ denotes the gamma function, so Γ (E) = (E − 1)!
We are interested in infinite networks G for which ζG(α) can be infinite. Since

ζG(α) is a decreasing function of α, if ζG(α) is finite for some value α, it is finite for
α ′ > α. If ζG(α) is infinite for some value α, it is infinite for α ′ < α. Thus there is at

Table 11.1 Sr and ζG(α) for an infinite rectilinear lattice in R
E

E Sr ζG(α)

1 2 2ζ(α)

2 4r 4ζ(α − 1)

3 4r2 + 2 4ζ(α − 2) + 2ζ(α)

4 (8/3)r3 + (16/3)r (8/3)ζ(α − 3) + (16/3)ζ(α − 1)

r → ∞ O
(
2ErE−1/Γ (E)

)
O
(
2Eζ(α − E + 1)/Γ (E)

)
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most one value of α for which ζG(α) transitions from being infinite to finite, and the
zeta dimension d

Z
of G is the value at which this transition occurs. This definition

parallels the definition in Sect. 1.2 of the Hausdorff dimension as that value of d for
which v �(d) transitions from infinite to finite. If for all α we have ζG(α) = ∞ then
d
Z

is defined to be ∞.

Example 11.1 Let G be an infinite rectilinear lattice in R
3. From Table 11.1 we

have

ζG(α) = 4ζ(α − 2) + 2ζ(α) .

Since 4ζ(α − 2) + 2ζ(α) < ∞ only for α > 3, then

d
Z

= inf{α | ζG(α) < ∞} = 3 . ��

Example 11.2 As in [55], consider a random graph in which each pair of nodes is
connected with probability p. For any three distinct nodes x, y, and z, the probability
that z is not connected to both x and y is 1−p2. The probability that x and y are not
both connected to some other node is (1−p2)N−2, which approaches 0 as N → ∞.
Thus for large N each pair of nodes is almost surely connected by a path of length
at most 2. For large N , each node has p(N − 1) neighbors, so from (11.2) we have
S1 ≈ p(N − 1). For large N , the number S2 of nodes at distance 2 from a random
node is given by S2 ≈ (N − 1) − S1 = (N − 1)(1 − p). Hence

ζGN
(α) ≈ p(N − 1) + (N − 1)(1 − p)2−α .

Since limN→∞ ζGN
(α) = ∞ for all α then d

Z
= ∞. ��

An alternative definition of the dimension of an infinite graph, using the zeta
function, but not requiring averages over all the nodes of the graph, is given in [55].
For n ∈ N, define

ζG(n, α) =
∑

x∈N
x �=n

dist(n, x)−α .

There is exactly one value of α at which ζG(n, α) transitions from being infinite to
finite; denote this value by d

Z
(n). The alternative definition of the zeta dimension is

d
Z

≡ lim sup
n∈N

d
Z
(n) .

This definition is not always identical to the above definition of d
Z

as the value at
which ζG(α) transitions infinite to finite [55].
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