

Necrotizing Enterocolitis

Sarah Henen and Jennifer Duchon

Epidemiology

The incidence of NEC varies greatly between NICUs, with an overall incidence of approximately 5% for all infants <32 weeks gestation [\[1](#page-8-0)]. The incidence increases as gestational age and birth weight decrease, with an incidence of approximately 12% in infants born between 501 and 750 g, and approximately 9% in infants with a birth weight of less than 1500 g $[2]$ $[2]$. However, full-term infants comprise 10% of NEC cases [\[3](#page-8-2)]. There does not appear to be a differential incidence by sex, and the role of race in NEC is unclear. Outbreaks of NEC have been described, lending support to bacterial or viral agents contributing to disease.

Pathogenesis

NEC is typically described as a multifactorial disease with many predisposing elements interacting with each other in a complex manner, making the contribution of individual risk factors difficult to assess. As well, most studies evaluating risk factors are retrospective, showing associations but not causation. Most unifying theories about the etiology of NEC involve a combination of abnormal inflammatory response (both systemically and in the gut environment), colonization of intestinal mucosa by pathogenic bacteria (dysbiosis), and abnormal vascular regulation in a vulnerable host with intestinal immaturity [\[3](#page-8-2)].

S. Henen, MD

Department of Pediatrics, St Joseph's Regional Medical Center, Paterson, NJ, USA

J. Duchon, MDCM, MPH (\boxtimes)

Divisions of Neonatology and Pediatric Infectious Diseases, Departments of Pediatrics, Tufts Floating Hospital for Children, Boston, MA, USA e-mail: jduchon@tuftsmedicalcenter.org

[©] Springer International Publishing AG, part of Springer Nature 2018 21

J. B. Cantey (ed.), *Neonatal Infections*, https://doi.org/10.1007/978-3-319-90038-4_3

Prematurity is the single most consistent risk factor for NEC, with the incidence of the disease inversely proportional to gestational age [\[2](#page-8-1), [4](#page-8-3), [5\]](#page-8-4). Low birth weight, independent of gestational age, has been cited as a risk factor, implying that prenatal factors that cause growth restriction can predispose the developing gut to be vulnerable to NEC [\[6](#page-8-5), [7](#page-8-6)]. Other risk factors include infants born to mothers with chorioamnionitis, preterm premature rupture of membranes, and neonatal sepsis, all of which presumably increase risk by increasing inflammation [\[8](#page-8-7)]. Infants who have experienced hypotension have been shown to be at higher risk of NEC, and the association between NEC and a hemodynamically significant patent ductus arteriosus has been described, with the "steal" of blood flow from the ductus implicated in vascular compromise of the preterm intestine [\[9](#page-8-8), [10](#page-8-9)].

Enteral feeding practices and use of medications, specifically antibiotics and histamine-2 (H2) antagonists, are well-established targets for interventions to prevent NEC.

Enteral feeding. Most infants who get NEC have been fed; however, most infants who are fed do not develop NEC. The optimal feeding strategy for preterm infants is unknown; the optimal rate of advancement, target volume, and composition of enteral feeds in infants at risk for NEC are unclear. Many studies clearly show the protective effect of human milk**,** and this has led to the extrapolation of formula use as a risk factor for NEC [\[11](#page-8-10), [12](#page-8-11)]. Most authors would cite prolonged delay in initiation of feeds and exclusive use of formula in place of breast milk as risk factors for NEC. High osmolarity of feeds via the use of bovine fortification products and rapid advancement of feeds (>30 cc/kg/day) are felt to be associated with NEC; however, the optimal osmolar threshold and timing of feeding fortification and advancement to promote growth but mitigate NEC risk are unclear.

Antibiotic use. Several observational studies have shown and increased risk of NEC or death with prolonged (typically \geq 5 days) duration of antibiotics in the early neonatal period. This association is now felt to be mediated by changes in the intestinal microbiome [[13,](#page-8-12) [14\]](#page-8-13). These epidemiologic studies are being confirmed with the advent of techniques that allow rapid and detailed identification of the intestinal microbial community. Through amplification and sequencing of the 16S ribosomal RNA subunit DNA or whole-genome sequencing, the contribution of the neonatal microbiome to the development of NEC has become clear. Infants with NEC have been shown to have a higher predominance of gram-negative organisms and a decreased diversity of bacteria prior to disease onset [\[15](#page-8-14)].

H2 Antagonists. Infants receiving H2 blockers (e.g., ranitidine, cimetidine, famotidine) have shown an increased risk of NEC. The mechanism of this association is also likely mediated in part by the alterations in the gut microbiome as well through loss of the protective effect of lowered gastric pH [[16,](#page-8-15) [17\]](#page-8-16).

Packed Red Blood Cell (PRBC) Transfusion. NEC temporally related to PRBC transfusion is well described and often termed transfusion-associated acute gut injury. Although the mechanism of this association is not clear, both age of blood, changes in mesenteric vascular regulation during transfusion, and degree of anemia at transfusion have been implicated [[18,](#page-9-0) [19\]](#page-9-1).

Full-term infants who develop NEC have a unique risk factor profile, likely because NEC in these infants is due to different underlying processes. Intestinal anomalies such as gastroschisis or Hirschsprung's disease, cyanotic congenital heart disease, maternal cocaine use, perinatal asphyxia, and growth restriction have been linked to NEC in term and near-term infants. This risk factor profile suggests perinatal or congenital conditions which result in reduced blood flow to the neonatal intestine as an important consideration in older infants who develop NEC [\[20](#page-9-2), [21\]](#page-9-3).

Clinical Findings

The age at presentation of NEC is inversely proportional to gestational age. In the smallest infants, the median time to onset is approximately 20 days of life, corresponding to a post-menstrual age of 28–32 weeks, when patients are typically beginning the convalescent phase of extreme prematurity [\[22](#page-9-4)]. Full-term or late preterm infants typically present within the first week of life, again indicating the strong contribution of perinatal insults or congenital conditions.

Clinical signs. The initial stages of NEC are comprised of non-specific signs and symptoms which overlap with other conditions such as sepsis, apnea, or feeding intolerance. Increased episodes of apnea, temperature instability, decreased activity level, oliguria, as well as intestinal signs such as feeding intolerance and abdominal distention may be present. More specific local signs include abdominal tenderness and bloody stool; abdominal wall erythema and abdominal mass are specific signs of NEC but often difficult to discern [\[23](#page-9-5), [24\]](#page-9-6). Infants may rapidly progress to severe systemic signs, such as hypotension, circulatory arrest, renal failure, or respiratory failure.

Laboratory signs. Abnormal lab indices include abnormal serum glucose, hyponatremia, leukopenia, neutropenia, thrombocytopenia, and accompanying anemia. Elevated inflammatory makers are typically present. Severely affected patients will show metabolic acidosis and associated hyperkalemia as well as disseminated intravascular coagulopathy (DIC) [\[25](#page-9-7)]. Elevated eosinophil count, when present, may be specific for NEC.

Radiographic signs. Pneumatosis intestinalis, or the projection of gas in the bowel wall as seen on X-ray, is the pathognomonic finding of NEC. Portal venous gas, which is an extension of this intraluminal air into the portal venous system, is also classic radiographic criterion of NEC. Infants who progress to intestinal perforation may display free intraperitoneal air on radiographs; this can be illustrated by the "football sign," an illumination of the falciform ligament by free intraabdominal air. Other, less specific findings of NEC that may overlap with other conditions are fixed and/or dilated intestinal loops of bowel, bowel wall edema, and/or stacked loops of bowel with or without air fluid levels [\[23](#page-9-5), [26](#page-9-8)]. Figure [1](#page-3-0) shows radiographic examples of pneumatosis, portal venous gas, and perforation.

Fig. 1 Radiographic findings of necrotizing enterocolitis. (**a**) Pneumatosis intestinalis (lower arrow) and portal venous gas (upper arrow); (**b**) free intraperitoneal air as seen on a decubitus radiograph. Used with permission from [[23](#page-9-5)]

Diagnosis

The diagnosis of NEC is based on a combination of clinical, radiological, and lab findings as mentioned above. Historically, the most common clinical staging system is the modified Bell's staging (Table [1](#page-4-0)), which categorizes NEC into Stages I, II, and III (i.e*.*, suspected, definite, and advanced/surgical) [[27–](#page-9-9)[29\]](#page-9-10). The Centers for Disease Control and Prevention National Healthcare Safety Network (NHSN) has also developed diagnostic criteria for NEC, which is categorized as a healthcareacquired infection [[30\]](#page-9-11). These overlap with the Vermont Oxford Network definition of NEC, which is widely used for quality assurance and research purposes among nurseries [[31\]](#page-9-12).

Stage	Classification of NEC	Systemic signs	Abdominal signs	Radiographic signs	Treatment
IA	Suspected	Temperature instability, apnea, bradycardia, lethargy	Gastric residuals, abdominal distention, emesis, occult blood in stool	Normal or intestinal dilation, mild ileus	NPO, antibiotics for 3 days, pending cultures and stomach decompression
IB	Suspected	Same as IA	Grossly bloody stool	Same as above	Same as IA
IIA	Definite, mildly ill	Same as IA	Same as above: plus absent bowel sounds. $+/-$ abdominal tenderness	Intestinal dilation, ileus, pneumatosis intestinalis	Same as IA; NPO and antibiotics for $7-10$ days
IIB	Definite, moderately ill	Same as IA, plus mild metabolic acidosis and thrombocytopenia	Same as above: absent bowel sounds, definite tenderness, $+/-$ abdominal cellulitis or mass	Same as IIA, $+/-$ ascites. $+/-$ portal venous gas	Same as IIA, NPO and antibiotics for 14 days
IIIA	Advanced. severely ill, intact bowel	Same as above, plus hypotension, bradycardia, apnea, severe acidosis, DIC, and neutropenia	Same as above. plus signs of peritonitis, marked tenderness, and abdominal distention	Same as IIA, plus definite ascites	Same as IIB plus volume replacement, inotropic and ventilator support. If no improvement, consider surgical intervention
IIIB	Advanced. severely ill, perforated bowel	Same as IIIA	Same as IIIA	Same as IIIA, plus pneumoperitoneum	Same as IIIA plus surgical intervention

Table 1 Modified Bell's staging for necrotizing enterocolitis (NEC)

DIC disseminated intravascular coagulation. Adapted from [26](#page-9-8)–[28](#page-9-13)

These classification systems are often used as a diagnostic tool, although Bell criteria are meant to be applied to infants already diagnosed with NEC. Abdominal radiographs in preterm neonates may be difficult to evaluate, and diagnosis of radiographic findings such as pneumatosis intestinalis may vary from reader to reader [\[26](#page-9-8), [32,](#page-9-14) [33\]](#page-9-15). Some infants with severe disease requiring surgical management never develop pneumatosis or portal venous gas. Additionally, NEC in very preterm infants may not present with bloody stools. In this population, intestinal necrosis develops proximal to the ileocecal valve; when ileus is present, blood will fail to pass into the distal part of the colon. Pneumoperitoneum on radiographs may or may not be associated with intestinal necrosis; spontaneous intestinal perforation – an entity which is clinically and pathologically distinct from NEC – often presents as free air in the abdominal cavity. Table [2](#page-5-0) highlights the differences between SIP and NEC. Rarely, dissected air from the pleural cavity in infants with severe lung disease or pneumothorax may present with pneumoperitoneum [\[34](#page-9-16), [35\]](#page-9-17). Ultrasonography may detect bowel wall edema, pneumatosis, alterations in the intestinal vascular state, ascites, or intra-abdominal collections in infants with NEC. This technique provides specificity of diagnosis but requires both operator skill and an experience in interpretation [\[36](#page-9-18), [37](#page-9-19)].

As discussed, many laboratory abnormalities occur with NEC, and inflammatory markers are usually quite elevated. However, specific serum, urine, or stool biomarkers have not yet been validated. Intestinal fatty acid-binding protein, a protein present in enterocytes and released with cell injury; fecal calprotectin, released from neutrophils during an inflammatory response; and serum amyloid A and IL-8,

	Spontaneous intestinal perforation	Necrotizing enterocolitis	
Onset	$Age < 10 \text{ days}$	Age > 14 days	
Abdominal signs			
Distention	$^{+++}$	$+++$	
Erythema	-	$+$	
Tenderness	$+/-$	$^{+++}$	
Bilious aspirates	$++/$	$^{++}$	
Laboratory markers			
Leukopenia/neutropenia	$\overline{}$	$+++$	
Thrombocytopenia	$\overline{}$	$^{+++}$	
DIC	-	$^{++}$	
Physiologic signs			
Apnea	$+/-$	$^{++}$	
Temperature Instability	$\overline{}$	$^{++}$	
Hypoperfusion/shock	-	$^{+++}$	
Radiographic signs			
Pneumatosis intestinalis	$\overline{}$	$+++/-$	
Hepatobiliary gas	-	$++/$	
Pneumoperitoneum	$^{+++}$	$++/$	

Table 2 Clinical features of spontaneous intestinal perforation versus necrotizing enterocolitis

DIC disseminated intravascular coagulation

general markers of inflammation, have been studied alone or in combination. However, none are in widespread use, and normal values in infants have not been established [\[38](#page-9-20), [39](#page-9-21)].

Treatment

Treatment for NEC includes bowel decompression and rest, fluid resuscitation, antibiotic therapy, and supportive care.

Medical Therapy. Antibiotic treatment is indicated as bacteremia occurs in 20–30% in infants with NEC primarily from translocation of organisms through a compromised intestinal barrier [[40\]](#page-10-0). The superiority of one regimen over another has not been well established by clinical trials. Most regimens consist of broad gram-negative and anaerobic coverage (e.g., ampicillin *AND* an aminoglycoside ± clindamycin or metronidazole, or piperacillin/tazobactam ± an aminoglycoside). Use of vancomycin is not routinely indicated but could be considered if the infant is colonized with methicillin-resistant *Staphylococcus aureus.* Although studies exist linking the addition of anaerobic therapy with later stricture formation, authors of a large multicenter cohort study note that this association is most likely caused by a "survival bias" in infants treated with these agents who then live to develop strictures [[41,](#page-10-1) [42\]](#page-10-2). Duration of therapy is generally 10–14 days for medical NEC and may be longer for disease requiring surgical intervention. Most providers also continue bowel rest for this duration. However, as with antibiotic choice, no evidencedbased recommendations for resumption of feeding or cessation of antibiotics exist, and shorter courses of both may be indicated when evidence of intestinal inflammation has remitted.

Surgical Therapy. Pneumoperitoneum is an indication for urgent surgical intervention in infants with NEC. Treatment options include either primary peritoneal drain and/or exploratory laparotomy. Studies have failed to show consistent benefits of one approach [\[43](#page-10-3), [44](#page-10-4)]. Relative indications for surgical exploration include refractory thrombocytopenia, acidosis, or shock, all of which may be indicative of necrotic bowel. The decision to operate and the specific intervention should be determined in collaboration with the pediatric surgeon. Weighing the risks and benefits of performing an operation on a severely ill neonate is always challenging; additionally, demarcating unsalvageable bowel from that which could potentially recover is not always a clear-cut surgical decision.

Prevention

Prevention of NEC is based on targeting modifiable risk factors. *Feeding Strategies*

1. Swabbing of the mouth with colostrum may be protective against NEC by stimulating the production of secretory IgA and lactoferrin, substances known to have a protective effect on the intestinal mucosa, and specifically targeting gramnegative bacteria [[45\]](#page-10-5).

- 2. As previously stated, feeding with mother's own milk has been shown to be protective against NEC, and maternal support and resources for breastfeeding and providing fresh expressed milk should be provided from birth. The amount and duration of milk provided needed to provide optimal protection is unclear, but exclusive use of breast milk should be a goal for as long as feasible for mother and infant [\[11](#page-8-10), [12,](#page-8-11) [46](#page-10-6)[–48](#page-10-7)]. The benefits of pasteurized donor or processed human milk products over formula are still unclear [[49,](#page-10-8) [50\]](#page-10-9).
- 3. The decision of when to initiate feeds, especially in in the smallest infants, is much debated and displays both inter- and intra-institution variability. A period of trophic feeding (approximately 10–20 cc/kg/day) initiated within 24–72 h of birth, followed by advancement of 20–30 cc/kg/day of milk, is generally considered as acceptable method of feeding very-low-birth-weight (<1500 g) infants. More aggressive pathways may be safe and preferable in larger infants to reduce central line and parenteral nutrition [\[51](#page-10-10)].
- 4. Despite a lack of precise evidence on the "correct" feeding strategy, there is clear evidence that the mere presence of a unit-wide standardized feeding protocol is preventative for NEC [\[52](#page-10-11)[–54](#page-10-12)].

Medication Stewardship. Several studies have linked the prolonged use of antibiotics in the early neonatal period with an increase in NEC through the manipulation of the microbiome with a shift toward aberrant colonization, or dysbiosis. H2 antagonists (i.e., ranitidine, famotidine, cimetidine) are also associated with increased odds of NEC (and *Candida*—see chapter "*Candida*") [\[13](#page-8-12), [14](#page-8-13), [16](#page-8-15), [17](#page-8-16)]. Recognition of this association has led to successful reduction in utilization of both medications, as well as development of antimicrobial stewardship programs targeted to the NICU population [\[55](#page-10-13), [56](#page-10-14)]. Antimicrobial stewardship strategies are further discussed in chapter "Antibiotic Stewardship."

Probiotics. Probiotics have been shown in randomized trials and subsequent meta-analyses to be protective against NEC, primarily through the establishment of favorable intestinal microbiota in preterm infants. The most common strains used in the United States are *Lactobacillus acidophilus*, *Bifidobacterium infantis*, and *Lactobacillus rhamnosus*. Though the trials are compelling, there is a great deal of heterogeneity in the exposure [[57–](#page-10-15)[60\]](#page-10-16). As such, administration of probiotics for the prevention of NEC is not recommended by the American Academy of Pediatrics due to the lack of a commercial formulation that has been studied for dose, consistency, and safety. Case reports of bacteremia with study products, as well as infection from impure products, have been reported [[61,](#page-10-17) [62\]](#page-10-18).

Other Biologic Agents. The role of epidermal growth factors, prebiotics, glutamine, and oral lactoferrin on mitigating the risk of NEC has not yet been confirmed, with investigations into these products, particularly prebiotics, presently underway [\[63](#page-11-0)[–66](#page-11-1)].

Quality Improvement Initiatives. Implementing the above preventative measures as bundled strategies rather than individual interventions alone is the most effective

approach to reducing NEC [\[67](#page-11-2), [68\]](#page-11-3). Clinical risk assessment tools such as GutCheck [\[69](#page-11-4)], developed and validated by a large national dataset, highlight the need for timely provider awareness with a focus on multifactorial nature of risk factor profiles in preterm infants. Predictive models for NEC integrating real-time patient data and machine learning to predict impending disease are exciting uses of technology [\[70](#page-11-5), [71](#page-11-6)].

References

- 1. Battersby C, Santhalingam T, Costeloe K, Modi N. Incidence of neonatal necrotising enterocolitis in high-income countries: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2018;103: F182–9
- 2. Stoll B, Hansen N, Bell E, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015;314:1039–51.
- 3. Lambert D, Christensen R, Henry E, et al. Necrotizing enterocolitis in term neonates: data from a multihospital health-care system. J Perinatol. 2007;27:437–43.
- 4. Patel R, Kandefer S, Walsh M, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372:331–40.
- 5. Yee W, Soraisham A, Shah V, Aziz K, Yoon W, Lee S. Incidence and timing of presentation of necrotizing enterocolitis in preterm infants. Pediatrics. 2012;129:e298–304.
- 6. Temming L, Dicke J, Stout M, et al. Early second-trimester fetal growth restriction and adverse perinatal outcomes. Obstet Gynecol. 2017;130:865–9.
- 7. Boghossian N, Geraci M, Edwards E, Horbar J. Morbidity and mortality in small for gestational age infants at 22 to 29 weeks' gestation. Pediatrics. 2018;141: e20172533
- 8. Been J, Lievense S, Zimmermann L, Kramer B, Wolfs T. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. J Pediatr. 2013;162:236–42.
- 9. Samuels N, van de Graaf R, de Jonge R, IKM R, Vermeulen M. Risk factors for necrotizing enterocolitis in neonates: a systematic review of prognostic studies. BMC Pediatr. 2017;17:105.
- 10. Havranek T, Rahimi M, Hall H, Armbrecht E. Feeding preterm neonates with patent ductus arteriosus (PDA): intestinal blood flow characteristics and clinical outcomes. J Matern Fetal Neonatal Med. 2015;28:526–30.
- 11. Sullivan S, Schanler R, Kim J, et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156:562–7.
- 12. Cacho N, Parker L, Neu J. Necrotizing enterocolitis and human milk feeding: a systematic review. Clin Perinatol. 2017;44:49–67.
- 13. Cotten C, Taylor S, Stoll B, et al. NICHD Neonatal Research Network. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123:58–66.
- 14. Alexander V, Northrup V, Bizzarro M. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011;159:392–7.
- 15. Pammi M, Cope J, Tarr P, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome. 2017;5:31.
- 16. Romaine A, Ye D, Ao Z, et al. Best pharmaceuticals for Children Act – Pediatric Trials Network. Safety of histamine-2 receptor blockers in hospitalized VLBW infants. Early Hum Dev. 2016;99:27–30.
- 17. More K, Athalye-Jape G, Rao S, Patole S. Association of inhibitors of gastric acid secretion and higher incidence of necrotizing enterocolitis in preterm very low-birth-weight infants. Am J Perinatol. 2013;30:849–56.
- 18. Wan-Huen P, Bateman D, Shapiro D, Parravicini E. Packed red blood cell transfusion is an independent risk factor for necrotizing enterocolitis in premature infants. J Perinatol. 2013;33:786–90.
- 19. Patel R, Knezevic A, Shenvi N, et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA. 2016;315:889–97.
- 20. Christensen R, Lambert D, Baer V, Gordon P. Necrotizing enterocolitis in term infants. Clin Perinatol. 2013;40:69–78.
- 21. Becker KC, Hornik CP, Cotten CM, et al. Necrotizing enterocolitis in infants with ductaldependent congenital heart disease. Am J Perinatol. 2015;32:633–8.
- 22. Gordon P, Clark R, Swanson J, Spitzer A. Can a national dataset generate a nomogram for necrotizing enterocolitis onset? J Perinatol. 2014;34:732–5.
- 23. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364:255–64.
- 24. Valpacos M, Arni D, Keir A, et al. Diagnosis and management of necrotizing enterocolitis: an international survey of neonatologists and pediatric surgeons. Neonatology. 2017;113:170–6.
- 25. Maheshwari A. Immunologic and hematological abnormalities in necrotizing enterocolitis. Clin Perinatol. 2015;42:567–85.
- 26. Coursey C, Hollingsworth C, Gaca A, Maxfield C, Delong D, Bisset G. Radiologists' agreement when using a 10-point scale to report abdominal radiographic findings of necrotizing enterocolitis in neonates and infants. Am J Roentgenol. 2008;191:190–7.
- 27. Bell M, Ternberg J, Feigin R, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1–7.
- 28. Walsh M, Kliegman R. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin N Am. 1986;33(1):179–201.
- 29. Kliegman RM, Walsh MC. Neonatal necrotizing enterocolitis: pathogenesis, classification, and spectrum of illness. Curr Probl Pediatr. 1987;17:213–88.
- 30. Centers for Disease Control and Prevention. CDC/NHSN Surveillance Definitions for Specific Types of Infections. Available at [http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_](http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf) [current.pdf.](http://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf) Accessed 31 Jan 2018.
- 31. Vermont Oxford Network. Manual of Operations Part 2: Data definitions and infant data forms. Available at [https://public.vtoxford.org/wp-content/uploads/2013/08/Manual-of-Operations-](https://public.vtoxford.org/wp-content/uploads/2013/08/Manual-of-Operations-Part-2_v18.0.pdf)[Part-2_v18.0.pdf.](https://public.vtoxford.org/wp-content/uploads/2013/08/Manual-of-Operations-Part-2_v18.0.pdf) Accessed 31 Jan 2018.
- 32. Di Napoli A, Di Lallo D, Perucci C, et al. Inter-observer reliability of radiological signs of necrotising enterocolitis in a population of high-risk newborns. Paediatr Perinat Epidemiol. 2004;18:80–7.
- 33. Markiet K, Szymanska-Dubowik A, Janczewska I, et al. Agreement and reproducibility of radiological signs in NEC using the Duke Abdominal Assessment Scale (DAAS). Pediatr Surg Int. 2017;33:335–40.
- 34. Gordon P, Swanson J, Attridge J, Clark R. Emerging trends in acquired neonatal intestinal disease: is it time to abandon Bell's criteria? J Perinatol. 2007;(11):661–71.
- 35. Epelman M, Daneman A, Navarro OM, et al. Necrotizing enterocolitis: review of state-of-theart imaging findings with pathologic correlation. Radiographics. 2007;27:285–305.
- 36. Yikilmaz A, Hall N, Daneman A, et al. Prospective evaluation of the impact of sonography on the management and surgical intervention of neonates with necrotizing enterocolitis. Pediatr Surg Int. 2014;30:1231–40.
- 37. Cuna A, Reddy N, Robinson A, Chan S. Bowel ultrasound for predicting surgical management of necrotizing enterocolitis: a systematic review and meta-analysis. Pediatr Radiol. 2017. [Epub ahead of print]
- 38. Benkoe T, Mechtler T, Weninger M, Pones M, Rebhandl W, Kasper D. Serum levels of interleukin-8 and gut-associated biomarkers in diagnosing necrotizing enterocolitis in preterm infants. J Pediatr Surg. 2014;49:1446–51.
- 39. Ng E, Poon T, Lam HS, et al. Gut-associated biomarkers L-FABP, I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Ann Surg. 2013;258:1111–8.
- 40. Heida FH, Hulscher JB, Schurink M, et al. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC. J Pediatr Surg. 2015;50:1837–41.
- 41. Faix R, Polley T, Grasela T. A randomized, controlled trial of parenteral clindamycin in neonatal necrotizing enterocolitis. J Pediatr. 1988;112:271–7.
- 42. Autmizguine J, Hornik C, Benjamin D, et al. Anaerobic antimicrobial therapy after necrotizing enterocolitis in VLBW infants. Pediatrics. 2015;135:e117–25.
- 43. Rao S, Basani L, Simmer K, Samnakay N, Deshpande G. Peritoneal drainage versus laparotomy as initial surgical treatment for perforated necrotizing enterocolitis or spontaneous intestinal perforation in preterm low birth weight infants. Cochrane Database Syst Rev. 2011;6:CD006182.
- 44. Rees C, Pierro A, Eaton S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fetal Neonatal Ed. 2007;92:F193–8.
- 45. Lee J, Kim H, Jung Y, et al. Oropharyngeal colostrum administration in extremely premature infants: an RCT. Pediatrics. 2015;135:e357–66.
- 46. Cristofalo E, Schanler R, Blanco C, et al. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr. 2013;163:1592–5.
- 47. Assad M, Elliott M, Abraham J. Decreased cost and improved feeding tolerance in VLBW infants fed an exclusive human milk diet. J Perinatol. 2016;36:216–20.
- 48. Abrams S, Schanler R, Lee M, Rechtman D. Greater mortality and morbidity in extremely preterm infants fed a diet containing cow milk protein products. Breastfeed Med. 2014;9:281–5.
- 49. Quigley M, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. 2014; CD002971.
- 50. Kantorowska A, Wei J, Cohen R, Lawrence R, Gould J, Lee H. Impact of donor milk availability on breast milk use and necrotizing enterocolitis rates. Pediatrics. 2016;137:e20153123.
- 51. Oddie S, Young L, McGuire W. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2017;8:CD001241.
- 52. Patole S, de Klerk N. Impact of standardised feeding regimens on incidence of neonatal necrotising enterocolitis: a systematic review and meta-analysis of observational studies. Arch Dis Child Fetal Neonatal Ed. 2005;90:F147–51.
- 53. McCallie K, Lee H, Mayer O, Cohen R, Hintz SR, Rhine W. Improved outcomes with a standardized feeding protocol for very low birth weight infants. J Perinatol. 2011;31(S1):S61-7.
- 54. Gephart S, Hanson C. Preventing necrotizing enterocolitis with standardized feeding protocols: not only possible, but imperative. Adv Neonatal Care. 2013;13:48–54.
- 55. Cantey J, Patel S. Antimicrobial stewardship in the NICU. Infect Dis Clin N Am. 2014;28:247–61.
- 56. Cantey J, Wozniak P, Pruszynski J, Sánchez P. Reducing unnecessary antibiotic use in the neonatal intensive care unit (SCOUT): a prospective interrupted time-series study. Lancet Infect Dis. 2016;16:1178–84.
- 57. Al Faleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;4:CD005496.
- 58. Deshpande G, Rao S, Patole S, Bulsara M. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics. 2010;125:921–30.
- 59. Lau C, Chamberlain R. Probiotic administration can prevent necrotizing enterocolitis in preterm infants: a meta-analysis. J Pediatr Surg. 2015;50:1405–12.
- 60. Patel R, Underwood M. Probiotics and necrotizing enterocolitis. Semin Pediatr Surg. 2018;27:39–46.
- 61. Bertelli C, Pillonel T, Torregrossa A, et al. Bifidobacterium longum bacteremia in preterm infants receiving probiotics. Clin Infect Dis. 2015;60:924–7.
- 62. Jenke A, Ruf E, Hoppe T, Heldmann M, Wirth S. Bifidobacterium septicaemia in an extremely low-birthweight infant under probiotic therapy. Arch Dis Child Fetal Neonatal Ed. 2012;97:F217–8.
- 63. Pammi M, Suresh G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2017;6:CD007137.
- 64. Srinivasjois R, Rao S, Patole S. Prebiotic supplementation in preterm neonates: updated systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2013;32:958–65.
- 65. Moe-Byrne T, Brown JV, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2016;4:CD001457.
- 66. Coursodon C, Dvorak B. Epidermal growth factor and necrotizing enterocolitis. Curr Opin Pediatr. 2012;24:160–4.
- 67. Talavera M, Bixler G, Cozzi C, et al. Quality improvement initiative to reduce the necrotizing enterocolitis rate in premature infants. Pediatrics. 2016;137:e20151119.
- 68. Patel A, Trivedi S, Bhandari N, et al. Reducing necrotizing enterocolitis in very low birth weight infants using quality-improvement methods. J Perinatol. 2014;34:850–7.
- 69. Gephart S, Spitzer A, Effken J, Dodd E, Halpern M, McGrath J. Discrimination of GutCheck (NEC): a clinical risk index for necrotizing enterocolitis. J Perinatol. 2014;34:468–75.
- 70. Fairchild K, Lake D, Kattwinkel J, et al. Vital signs and their cross-correlation in sepsis and NEC: a study of 1,065 very-low-birth-weight infants in two NICUs. Pediatr Res. 2017;81:315–21.
- 71. Ji J, Ling X, Zhao Y, et al. A data-driven algorithm integrating clinical and laboratory features for the diagnosis and prognosis of necrotizing enterocolitis. PLoS One. 2014;9:e89860.