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Abstract. The analysis of real-time properties is crucial in safety crit-
ical areas like in automotive applications. Systems have to work in a
timely manner to offer correct services. Most of the applications in this
domain are distributed over several computation units, inter-connected
by bus systems. In previous works we have introduced a state-based
analysis approach to validate end-to-end deadlines for distributed sys-
tems. The approach is based on the computation of the state spaces of
all resources, such as processors and buses, in an iterative fashion. For
this, abstraction and composition operations were defined to adequately
handle task and resource dependencies. During the design process of a
system changes occur typically on both the specification and implemen-
tation level, such that already performed analyses of the system have to
be repeated. In this work, we extend our timing analysis with a refine-
ment checking approach, detail when it is appropriate to be used, and
compare the analysis times with the computation times to perform the
refinement check.
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1 Introduction

In recent years the co-operations and inter-connections between individual, geo-
graphically distributed systems heavily increased. Also in safety critical areas
the significance of these topics increased. As an example, much effort has been
invested in the development of Car-to-Car communications with the aim to
increase the safety in traffic and optimize traffic flows. Another example is the
dynamic partitioning of the airspace with respect to time investigated in the
SESAR (Single European Sky ATM Research) program. The recent partitioning
of the airspace is performed in a static manner with respect to time, i.e. the
trajectories are not changed during the whole landing approach and the takeoff.
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The shift to a dynamic partitioning, which is called 4D-trajectories, involves a
much more intensive co-operation between the tower and each airplane.

For the correct functionality of safety-critical functions of such systems, tim-
ing constraints are one crucial aspect. The final product has to satisfy those
constraints, as the violation of a requirement could result in high costs or even
threats to human life. Nissan for example had to recall the vehicles of its premium
segment cars due to some delays in the emergency program of their new steer-
by-wire system. Such a problem could have been avoided, if an early analysis
on timing constraints would have been performed. Unfortunately, many changes
occur during the design process, such that already performed analyses have to
be repeated. Our approach targets these problems.

In [1] we worked out a state-based approach for the analysis of timing prop-
erties. In analogy to model checking methods, we consider the full state space,
where all task interleavings are preserved. In order to alleviate the problem of
state space explosion due to state unfolding, the state space of an architecture
is constructed in an iterative manner. Abstraction methods are applied to keep
the interfaces between components as small as possible, while composition oper-
ations are used to combine a set of triggering sources of a component.

On top of this we worked out an impact analysis approach to minimize re-
validation efforts of timing properties needed when the considered system is
modified [2]. Adaptations of the architecture of an already existing and analyzed
system could be for example the addition of new tasks that are allocated to the
existing system. To minimize the effort of a re-validation, it is desirable to reuse
the previous results of the analysis that did not change. With this, only the parts
are re-validated, which were affected by the architectural changes.

This work is a consecutive extension of our previous work [2]. We illustrate the
implementation of the impact analysis. We describe in which cases a refinement
check can be applied to reduce the re-verification times when changes occur. We
evaluate our approach by a set of test systems demonstrating the computation
times needed to perform a full timing analysis and the times needed to perform
the impact analysis consisting of the loading and storing of state spaces, and
the refinement check between state spaces. Further, we discuss the benefit of
applying abstractions of resource interfaces for the refinement relation.

Related Work

Timing analysis on distributed systems is a very large research area. Thus, we
cover only the most relevant works for our approach. The classical approach
is a holistic one, as it was worked out in e. g. [3,4]. Local analysis is performed
evaluating fixed-point equations. These approaches are very fast and able to han-
dle large systems. Unfortunately, the analytical approaches deliver pessimistic
results if inter-ECU task dependencies exist. In [5] activation patterns for tasks
are described by upper and lower arrival curves realizing a compositional analy-
sis method. Based on this work a compositional scheduling analysis tool, called
SymTA/S, was created by SymtaVision [6]. The concept has been developed by
Richter et al. The main idea behind SymTa/S is to transform event streams
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whenever needed and to exploit classical scheduling algorithms for local anal-
ysis. Another related approach is the modular performance analysis (MPA) [7]
which is based on a formalism with many similarities to event streams named
Real-Time Calculus. Arrival functions are used to model the computation that
is requested by a process, and service functions are used to model the amount of
computation that can be delivered by a resource. In [8], the MPA approach has
been combined with timed automata while offering methods that allow to trans-
form the model of one formalism to another. CARTS is another tool for com-
positional real-time scheduling analysis [9]. Schedulability is checked for tasks
whose resource usage is bounded by periodic resource models developed by Lee
et al. Composition is done on the resource model level resulting again in periodic
resource models by using abstractions.

Another approach is based on model-checking: In [10] non-preemptive sched-
ulers are modeled in terms of timed automata. The advantage of this approach
is that one gets exact solutions with respect to the modeled scheduling prob-
lem. Since the state space of the analyzed system is preserved, checking com-
plex properties like safety is possible. Unfortunately, state-based approaches do
not scale well. The authors of [11] also use timed automata to model preemp-
tive scheduling and verify timing properties by using Uppaal. As a front-end
they employ sequence diagrams, from which timed automata are derived. In [12]
these automaton models were reused and the results were compared to other
techniques such as MPA or SymTA/S. In [13] timed automata are extended by
clocks which may be subtracted by a natural number to handle preemption in a
more natural way. The authors derive a sub-class of this formalism, where the
reachability is preserved.

Outline

First, we illustrate the considered problem domain. In Sect. 3 we will detail
our general analysis approach in a condensed form. In Sect. 4 we introduce our
implemented impact analysis methodology. Section 5 evaluates our concept and
compares plain verification times and refinement checking times. Finally, we
conclude the work and give an outlook for future work.

2 Problem Domain

We are interested in safety-critical real-time systems which are typically used in
the automotive domain. Typically, the design of the overall system is performed
by the original equipment manufacturer (OEM). The OEM designs the software
components in form of logical architectures by using, e.g., Autosar software com-
ponents (SWC), inter-connected by a high level virtual function bus (VFB) like
illustrated in the left part of Fig. 1. The components and parts of this system
are then realized by the suppliers. In order to get adequate realizations from
each supplier, the OEM has to specify the extra-functional properties and inter-
faces unambiguously. This is realized by the usage of so called contracts [14].
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Fig. 1. General concept of modeling and analysis.

Contracts are pairs consisting of an assumption (A) and a guarantee (G). The
assumption specifies how the context of the component, i. e. the environment
from the point of view of the component, should behave. Only if the assumption
holds, then the component will behave as guaranteed. To specify the assump-
tions and guarantees various formalisms like pattern-based languages could be
used. Contracts follow the principle of separation of concerns, i.e., a contract
does not just specify a guarantee about the behavior of a component, but also
an assumption about the behavior of the environment in which the component
will be integrated.

If all suppliers deliver the implementations of the SWCs, the OEM has to
verify whether all SWCs fit together, i.e., he has to perform the consistency check
in a black box manner, and whether some higher level requirements ranging over
several SWCs are realized by the decomposition structure.

After the implementation of all SWCs the logical architecture has to be allo-
cated to the hardware architecture, consisting of electronic control units (ECUs)
which are inter-connected by bus systems. At this design stage technical details
such as resource consumptions and timing latencies have to be verified. To per-
form such analyses, typically the architecture is abstracted in an appropriate
manner. The abstraction we perform for our analysis is illustrated in the right
part of Fig. 1: ECUs and bus systems are treated logically equivalent in the sense
that both represent computation units on which a set of tasks are allocated. The
order of executions of the tasks is determined by the corresponding scheduling
policy like fixed priority scheduling. Dependent tasks are directly connected,
tasks with no input edges are considered to work independent from other tasks.
A task is characterized by a tuple τ = (bcet, wcet, pr), where bcet, wcet ∈ N≥0,
bcet ≤ wcet, are the best and worst case execution times with respect to the
resource the task is allocated to, and pr ∈ N≥0 is the fixed priority of the task.
We will refer to the elements of a task by indexing, e.g. bcetτ for task τ . The
set of all tasks is called T . Independent tasks are triggered by events of a cor-
responding event stream (ES). An event stream ES = (p, j) is characterized by
a period p and a jitter j with p, j ∈ N≥. Such streams can be characterized by
upper and lower occurrence curves as introduced in the real-time calculus [15].
In this work we restrict to event streams where jτ < pτ for all τ ∈ T. Like stated
above we will further assume that dependent tasks are directly connected.
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3 State-Based Timing Analysis

Our timing analysis approach is based on model-checking. For each computation
resource its state space is computed. Such a state space encapsulates the relevant
timing information for tasks allocated to the corresponding resource, and end-
to-end latencies between a set of tasks. In contrast to standard model-checking,
our approach does work in an iterative fashion. The interfaces between resources
are tried to be kept as minimal as possible. Note that we assume cyclic free
systems. Parts of systems with cycles have to be handled in a holistic fashion.

To build the state space of a computation resource, we have to determine its
input behavior, which defines the activation times of all allocated tasks. State
spaces are represented by symbolic transition systems (STS): the states deter-
mine a range of valuations of clock variables, and include the information, which
task is currently running, is interrupted, or in the ready queue. A resource can
have multiple sources for its inputs: the independent tasks are triggered by event
streams, while dependent tasks are triggered when the tasks on which they
depend, terminate. Thus, we get multiple input state spaces. To determine a
single input state space for each resource, we have to combine all these inputs.

When the input is determined, the next step is to build the state space of the
resource itself. For this, the input STS, the behavior of the scheduling policy, and
the execution times and priorities of the allocated tasks are taken into account.
The approach to compute the state space is illustrated in Fig. 3, where two tasks
hp, lp are allocated to a single resource with a fixed priority scheduling policy.
For each task a clock cp which traces the periodic activation is needed. Further,
we need a clock cc to determine when a task is finished. If we are interested in
the exact response times of a task instance, we need multiple clocks cr, one for
each instance of a task.

The computed state space of a resource is then used as an input for dependent
resources, i. e. for resources on which dependent tasks are allocated. To keep the
interface between the resources as small as possible, parts of the state space that
are not relevant for the input behavior of the dependent resources are abstracted.

Consider the example in Fig. 2, which consists of three resources where on
each resource two tasks are allocated. The tasks task5 and task6 on resource
Resource3 depend on task2 on resource Resource1 and task3 on resource
Resource2 respectively. Tasks task1, ...,task4 are activated by event streams,
thus the inputs for both Resource1 and Resource2 are directly given and their
state spaces can be computed (illustrated in the left part of the figure). Next,
the input of Resource3 has to be determined, which depends on both the state
space of Resource1 and Resource2. As timing information for the tasks task1
and task4 is not relevant for Resource3, the corresponding STSs can be reduced
by abstracting from states encapsulating information about these tasks. After
this minimization, the product of both STSs is computed (indicated by the right
part of the figure).

The details of our timing analysis including the composition operation, the
minimization, and the resource construction can be found in [1].
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Fig. 2. Timing analysis approach; left: computation of resource state spaces; right:
computation of output interfaces.

Fig. 3. Two tasks hp, lp and the interrupt scenarios. The clocks refer to the task lp.
Clocks in curved brackets indicate a reset, P is the period of lp.

4 Impact Analysis Methodology

During the design process changes affecting the architecture of a system occur,
such as adding a new task on an existing resource, the merge of two tasks
in a single one, or even the change of the complete implementation. If such
changes occur, already performed analyses have to be repeated, increasing the
time needed to verify the functionality and properties of the design, and thus
increasing the time to market.

To minimize the effort of a re-validation, it is desirable to reuse the previous
results of the analysis that did not change. With this, only the parts are re-
validated, which were affected by the architectural changes. It is required to
perform an impact analysis, when changing or maintaining software because it
allows to judge the amount of work required to implement a change, proposes
software artifacts which should be changed, and helps to identify test cases which
should be re-executed to ensure that the change was implemented correctly [16].

As our timing analysis approach works in an iterative manner (and not holis-
tically), we are able to determine whether the interface of dependent resources is
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affected through the concept of our refinement analysis: we are able to check if
the new interface between dependent resources refines the old interface. In such
a case a re-validation of dependent resources can be omitted. The definition of
an appropriate refinement relation was the topic of our previous work [2].

In the next section, we illustrate our implementation approach of the impact
analysis. We demonstrate in which cases a complete re-verification of a compo-
nent is necessary, in which cases a refinement check is performed, and when ver-
ification steps can be omitted. Thereafter we discuss the advantages of our app-
roach when using further abstraction techniques on the interfaces of resources.

4.1 Concept

The concept of the implementation of our impact analysis is illustrated in Fig. 8
in terms of an UML activity diagram.

Each resource has a status flag for its resource state space called outputIs-
Consistent, initially set to false. The idea of this flag is to inform dependent
resources whether some non-refinement changes concerning the resource state
space occurred (and thus the resource state space has to be recomputed).

First, it is checked whether some inputs of the resource has changed (check-
InputStatus). If changes occurred, the check evaluates to false and the input STS
(computeInputSTS ) followed by the computation of the resource state space itself
(computeResourceSTS )is performed as usual. As the resource STS is newly com-
puted, the flag outputIsConsistent is set to false to signalize dependent resources
that this input has changed. Last, the resource STS is stored appropriately. If
on the other hand the output STSs of all resources, from which the current
resource depends on, did not changed, checkInputStatus evaluates to true. Then
it is checked whether an already computed resource STS of this resource exists
(from previous verification steps, where the resource STS was saved). If not,
it has to be computed as described above. Else, it is checked whether struc-
tural changes have occurred, i.e. changes concerning the scheduling policy of the
resource, the number of allocated tasks and their properties like priorities and
execution times. If these properties did not changed, the resource STS will also
be not affected. Thus, the existing STS can be restored (loaded from file system).
The flag outputIsConsistent is set to true indicating that nothing changed on
the output.

If else some changes on the resource occurred checkInputStatus will evaluate
to false. In this case, we have to re-compute the resource STS, load the previ-
ously computed resource STS and do a refinement check between both STSs.
If the refinement check evaluates to true, outputIsConsistent is also set to true
indicating that the resource STS changed in a good manner. Else it is set to
false. Note that before the re-computation of the resource STS the input STS
of the resource has also to be re-computed because if properties of independent
tasks change the input STS is also affected.
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4.2 Combination with Abstractions

Generally an impact analysis is useful in combination with analysis techniques
that involve abstractions. This is also a typical scenario for analytic techniques
such as in [17]. These techniques are based on the assumption that every interface
behavior can be characterized by event streams. To obtain event streams for the
outputs of a resource, the actual task behavior is generally over-approximated.

Hence changes in the behavior of a particular resource might indeed have an
impact on the already computed exact state-space representing its output behav-
ior, but might not have an impact on the over-approximated output behavior of
the resource. This can be exploited by our impact analysis.

We consider event streams as the maximal abstraction of the timing behavior
of a task, as these only contain information about best- and worst-case response-
times, without any information, in which cases the corresponding response times
occurs. For example a task could have a large response time when it is interrupted
by an high priority task which is allocated on the same resource, and an small
response time, when no interrupts occur.

Though our analysis approach is an exact analysis in general, it can be com-
bined with abstraction techniques in order to reduce the state space of the
interface transition systems. Such abstractions were the topic of our previous
works [18].

An abstraction indeed might affect the schedulability of a depending resource,
and hence may cause false negative results. On the other hand, suitable abstrac-
tion techniques may pave the way to omit re-validations.

5 Evaluation

In this chapter we will evaluate our methodology by the usage of the three test
systems illustrated in Fig. 4. Tasks with no input edge are considered as to be
independent, i.e. triggered by event streams. The scheduling policies of each
ECU is fixed priority with interruption, and the policy of the CAN bus is also
fixed priority but (of course) without interruption. The parameters of the tasks
are detailed in the table of Fig. 5, where p is the period of a task, ecec. is the

Fig. 4. Test systems.
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Fig. 5. Task parameters.

Fig. 6. Measured average computation times.

Fig. 7. Computation times for (a) ECU1 in System1 (left), (b) ECU2 on System2
(center), and (c) ECU3 on System3.
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Fig. 8. Methodology of the impact analysis (timing analysis combined with refinement
check).

execution time which may be a single value or an interval, if bcet �= wcet, and
pr is the priority of a task.

In our evaluation we compare the time needed for an analysis of each resource
and the times needed to store and load a corresponding state space, and check
the refinement of the state spaces of the resources. The idea is to demonstrate
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that the analyses times of the resources is always much larger than the times
needed to store and to load the state spaces, and to check whether – if a change
occurred – the old state space is a refinement of the new one.

Note that all times were measured on the same machine to preserve compa-
rability. Each check has been performed five times. The times illustrated here
are the average times of all measurements.

The measured times are illustrated in the table of Fig. 6. As an example: To
analyze the timings of ECU2 of System2 we need 6.75 s. In contrast to this,
the refinement check of the of state spaces (new and old) of ECU2 only takes
0.015 s. The cell Sum is the sum of the cells Refinement, Load and Store and is
used to compare the times needed to perform these three steps against the plain
verification time.

As an example we illustrated some cases graphically in Fig. 7.
The result of our evaluation is that the larger the state space of a resource

is (and therefore the verification time of that resource), the larger the difference
between the verification time and the computation times needed to load, save,
and check the refinement of the old and new state spaces is. Thus, for larger
systems our refinement methodology is a real gain for our analysis approach.
Note that of course, if the refinement check fails, i.e. the new state space of a
resource is not a refinement, than we have extra analysis times which we would
not have if we always perform the plain verification directly. But fortunately
these refinement checking times are not that large. Actually the complexity of
the refinement check is n(n − 1) where n is the number of states.

6 Conclusion and Outlook

We illustrated the implementation of our impact analysis approach which is
applied when architectural changes occur during the design state of a system.
We evaluated our approach by measuring the computation times needed to per-
form the full verification, the storage and load of state spaces, and the com-
putation of the refinement check, and compared these times. The result is that
for larger systems our refinement methodology is a real gain for our analysis
approach. Currently, we investigate new abstraction techniques which will yield
more accurate results than the classical analysis techniques and will boost the
scalability of our approach.
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