
Low Latency FPGA Implementation
of Izhikevich-Neuron Model

Vitor Bandeira1 , Vivianne L. Costa1,2, Guilherme Bontorin1(B),
and Ricardo A. L. Reis1

1 Universidade Federal do Rio Grande do Sul PGMicro/PPGC – Instituto de
Informática, Porto Alegre, Brazil

{vvbandeira,gbontorin,reis}@inf.ufrgs.br
2 Universidade Federal do Paraná PPGMNE, Curitiba, Brazil

vlcosta@ufpr.br

Abstract. The Izhikevich’s simple model (ISM) for neural activity
presents a good compromise between waveform quality and computa-
tional cost. FPGAs (Field Programmable Gate Array) are powerful, flex-
ible, and inexpensive digital hardware that can implement such model.
In this paper, we present a highly combinational, low latency imple-
mentation of ISM for FPGA. In the absence of official benchmark to
compare different implementations, we propose two different metrics to
compare the technical literature with our implementation. In this bench-
mark, we can implement a system that, when compared to the literature,
has almost 1.5 times the number of digital neurons (DN), and latency
more than 56 times smaller. This shows that our implementation is best
suited for hybrid network systems and presents a fair performance for
only-artificial networks.

1 Introduction

The human brain has about 1011 neurons, and each one can have more than 104

synaptic connections with others neurons [8]. As the most inspiring and powerful
computing machine we know at present, it is normal to try breaking the code
and understand how it works. We believe its computer capacity comes from a
three-level complexity: (a) the number of adaptable cells, the neurons; (b) the
capability of configurable connections, the synapses; and (c) the waveform that
is at the same time robust against noise and capable of encoding information,
the spike or action potential.

Considering the waveform, the literature presents various spike models, each
one with respective biological plausibility and computational complexity. The
Izhikevich’s Simple Model (ISM) [9] presents one of the best compromises
between waveform quality and computational cost at the moment. It is com-
posed of a system of two ordinary differential equations of the first order that
can be easily digitalized. Regarding capability of configuration connections and
the number of cells, it is important to find hardware that can at the same time be

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Götz et al. (Eds.): IESS 2015, IFIP AICT 523, pp. 210–217, 2017.
https://doi.org/10.1007/978-3-319-90023-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90023-0_17&domain=pdf
http://orcid.org/0000-0001-7459-0072


Low Latency FPGA Implementation of Izhikevich-Neuron Model 211

powerful, flexible, and inexpensive. FPGAs (Field Programmable Gate Array)
seem to fill all these requirements as reprogrammable digital circuits.

Some papers describe different implementations of ISM in FPGA [1,4–
6,10,11]. They differ from how serial or parallel the computations are imple-
mented and the number of pipeline stages used. Our implementation is highly
combinational and present low latency.

No other paper before has proposed any benchmark. To compare our work
with others, we propose two different metrics. The first one is neural lattice
network. It estimates the maximum number of cells we can simulate in a single
hardware.

The second metric we propose is the latency of one neuron. It is the time a
variation on the input takes to propagate to the output. This metric has a direct
correlation to how parallel an implementation is. Depending on the application,
this performance can or cannot be important. Hybrid neural networks, like [2],
are an example of systems where such performance is fundamental. These are
systems where the whole network is composed of the real-time communication
between an artificial and a living part. Low and reliable latency is fundamental
to ensure the real-time communication integrity between networks. As biological
neurons have latency slower than digital ones, we expect to reuse the hardware,
virtualizing a greater number of neurons.

In Sect. 2, we review the simple model proposed by Izhikevich and adapt its
equation for digital computing. Section 3 presents the hardware implementation
of the neuron and shows a lattice network for comparison reasons. Section 4 shows
the hardware results of the implementation to compare it to current literature.
Section 5 concludes with the potential of this work and comments about future
projects.

2 Izhikevich’s Simple Model

2.1 Equations Model

Ensuring some biological plausibility, the ISM reduces the Hodgkin-Huxley
model in two-dimensional system of ordinary differential equations [9]:

dv

dt
= 0.04v2 + 5v + 140 − u + I (1)

du

dt
= a(bv − u) (2)

with the auxiliary after-spike resetting:

v ≥ 30mV =⇒
{
v ← c
u ← u + d

(3)

where v is the membrane potential of the neuron and u is the membrane recovery
variable, both in millivolts (mV); t is the time in milliseconds (ms); I is the total



212 V. Bandeira et al.

Table 1. Parameters for each neurocomputational feature and injected current used
in the implementation

Neural behaviour

Tonic
spiking

Phasic
spiking

Tonic
bursting

Phasic
bursting

Mixed mode Spike-frequency
adaptation

Parameters a* 0.015625 0.015625 0.015625 0.015625 0.015625 0.0078125

b* 0.15625 0.1953125 0.15625 0.1953125 0.1953125 0.1953125

c −65 −65 −50 −55 −55 −65

d* 4.6875 4.6875 1.56125 0.0390625 3.125 6.25

Input I* 10.9375 5 11.71875 4.6875 9.375 23.4375

injected currents in nanoamperes (nA); a, b, c, and d are parameters to set the
desired waveform or the neuronal activity.

The parameter a describes the time scale of the recovery variable u. The
parameter b represents a sensitivity of the recovery variable u to the subthreshold
fluctuations of the membrane potential v. The parameter c describes the after-
spike reset value of the membrane potential v. The parameter d represents after-
spike reset of the recovery variable u. Different choices of the parameters a, b, c,
and d result in different intrinsic firing patterns.

2.2 Change of Variables

To facilitate the model implementation in a digital circuit, it is possible to rewrite
Eqs. (1) to (3) as:

h
dv

dt
=

1
32

v2 + 3.90625v + 109.375 − u∗ + I∗ (4)

h
du∗

dt
= a∗(b∗v − u∗) (5)

v ≥ 30mV =⇒
{
v ← c
u∗ ← u∗ + d

(6)

where h = 0.78125, u∗ = hu, and I∗ = hI; the parameters a, b, and d are
replaced by a*, b*, and d*, respectively, each one also multiplied by h. This
transformation is suggested in [4] and [1], but both neglect the factor h.

The new system of differential Equations (4) to (6) ensures the same behavior
of Eqs. (1) to (3). We can solve by Euler’s Method [3], a numerical method of
the first order, which produces accurate results. This approach results on:

vn+1 = vn + Δt

[
1
32

v2n + 3.90625vn + 109.375 − u∗
n + I∗

n

]
= vn + Δt.kv (7)

u∗
n+1 = u∗

n + Δt [a∗(b∗vn − u∗
n)] = u∗

n + Δt.ku (8)

where Δt is the time increment of the Euler’s Method. Moreover, in Eq. (7) we
also approximate 3.90625v ≈ 4v [4]. kv and ku are used further in the imple-
mentation and they represent the variation for each iteration.



Low Latency FPGA Implementation of Izhikevich-Neuron Model 213

The parameters in Table 1 are adapted from the original publication [9] con-
sidering the factor h, and it depends on the type of the simulated neuron. The
choice of parameters is beyond the scope of this paper, as it is a current research
topic. The input current is set to an appropriated input to reveal a realistic
behavior.

In the next section, we show the methodology for ISM implementation on
FPGA.

3 Neuron Implementation

3.1 One Neuron

For our implementation, we use combinational logic for the most of the circuit.
The circuitry is as parallel as possible, optimized for latency rather than the
area without the reuse of hardware. Figure 1 presents a single neuron, and Fig. 2
the computation for the new value of v, u* as well as the activity log. For the
calculation of the next v and u*, we opted for two parallel operations, one for the
case with a spike and other without a spike and select between them afterward.

Fig. 1. Implementation of one neuron

Each neuron receives the parameters (a*, b*, c, d* ) from a top module and
stores locally the initial values for v and u*. We use an 18-bit fixed point two’s
complement representation: 1 sign bit, 9 bits for the integer part and 8 bits for the
fractionary part. This representation is better suited for digital implementations
than floating point, and 18 bits uses more efficiently the available hardware
without compromising the accuracy as presented on [1].

The initial values of v and u* are, respectively -70 mV and -15.63 mV. The
time incremental is Δt = h = 0.78125 ms (milliseconds). The parameters and
injected currents are exhibited in Table 1.



214 V. Bandeira et al.

Fig. 2. Schematics of one neuron, the operations to compute Eqs. (4) to (6). All vari-
ables and parameters in this figure already account for the variable change presented
in Sect. 2.

3.2 Network for Tests and Metrics

We have chosen a lattice network: one neuron is directly connected to the next,
by I[N ] and I[N+1], Fig. 3. Even though this has low biological meaning, it can
be used estimate the maximal number of neurons that can be implemented on
a single FPGA chip.

Fig. 3. Schematics of the lattice network used.

We use an Altera’s DE4 Board (EP4SGX230KF40C2) to estimate the num-
ber of cells that we could implement, and measure latency. Figures 4 and 5 repre-
sent about 200 ms in biological time and about 1.8 ms in FPGA with a 250-MHz
clock. The maximum and minimum tensions are, respectively, +32 mV and -70
mV. Table 1 contains the parameters used for the implementation as well as the
input current. These results were obtained with the SignalTap II, provided in
the Quartus II software, and will be presented in the next section.



Low Latency FPGA Implementation of Izhikevich-Neuron Model 215

Fig. 4. Simulation results of the lattice network used.

Fig. 5. Measurement of the lattice network used.

4 Results

Figure 4 shows the simulation of our Verilog description of lattice network using
ModelSimTM. Figure 5 shows the measurement of the lattice network on the
FPGA, with only the first and last neuron being presented. The data for Fig. 5
was obtained using the SignalTap II tool from Quartus II Software. This tool
implements a circuit on the FPGA that acquires data directly on the logic circuits
and then send it through a JTAG connection to the computer. The data can be
displayed and handled on SignalTap II or exported to other software. Only one
neuron activity is shown, but we have tested the activity of the six neurons
presented in Table 1.

Table 2. Comparison of our implementation with literature

Ref Digital
neurons

HW Use Time performance Representation
(bits)

FPGA

FF LUT Clock
(MHz)

Pipeline
Stages

Latency
(ns)

Total Integer
Decimal

Vendor Family

[5] 32 28% 44% 50 0 320 - Xilinx Spartan

[4] 64% 78% 40 5 150 18 10.8

[1] 1 1% 1,5% 84.81 7 94.33 Virtex-4

[10] 25 79% 198 23 121.21 44 32.12

[6] 32 32% 36% 110.47 6 63.37 18 9.8 Virtex-5

[11] 256 3.39% 307 96 315.96 32 -

7.04% 214 147 453.27 64

This 364 93% 250 0 8 18 10.8 Altera Stratix IV

With a lattice network, we can fit 364 digital neurons (DN) on an FPGA.
This is 1.5 times more than previous from the literature, [11], which presented
256 DN (Table 2). Our estimative is from a lattice network, but this number
alone is expressive. And it is important to estimate how many realistic DN we
can implement in a realistic physical network.



216 V. Bandeira et al.

We consider that there is no coherence of network implementations and avail-
able data in the literature since each paper implements a different network.
Therefore, we do not compare values for virtual neurons at the network level.
Indeed, we have not found any paper comparing it either.

There is much evidence of biological data from experiments indicating that
the information in brain structures can be coded, among other ways, in the time
interval between spikes [12]. Because of this, we have considered paramount to
our implementation to have a high precision on the spike timestamp, which is the
instant that the spike occurred. That is achieved with low latency and reliable
system.

The latency is the time that the cell takes to provide a valid output from a
variation on the input. We have shown that our latency (8 ns) is more than 56
times smaller than the literature, the best comparison being with [11] (453.27
ns), Table 2.

The pipelines presented in the literature do not show a parallel load, causing
to have a bigger latency. And also it implies an approximation of the spike times-
tamp as high as the pipeline extension. We suppose that such an approximation
do not interfere with their applications [1,4,6,10,11], but the same cannot be
said for all applications.

5 Conclusion

In this paper, we presented a highly-combinational low-latency implementation
for Izhikevich’s Neuron Model in FPGA. This approach is better suited for hybrid
network applications as it has the best latency in the literature, Table 2. Some
other implementations can be better suited for emulation of networks purely
artificial with less precision in spike timestamp, as they use fewer resources than
ours.

We could also implement more DN in a single FPGA board than the liter-
ature when we consider our lattice network. Although as in many cases with
bioinspired circuits, these implementations are very particular, and a fair com-
parison between two different networks is near impossible.

Future works include: (a) to implement a network with more biological mean-
ing; (b) to reuse logic blocks and to implement a pipeline for some calculations
to achieve a better speed without compromising latency; (c) to use precomputed
values in auxiliary shared memory to reduce computation time and latency; and
(d) to explore the parallelism technique for multiple virtual neurons, increasing
the maximum size of a network in a single FPGA chip.

As our application is to study and interface with natural living neural net-
works, the FPGA implementation is preferable for it has easier configurability,
reconfigurability, and test. Other implementations such as artificial networks
implemented on a full-custom analog [7], or digital integrated circuits may be
interesting to implement the short-term objectives (a) through (d) are achieved.
Such long-term implementation can improve power consumption, timing perfor-
mance, and area occupation at the expense of configurability.



Low Latency FPGA Implementation of Izhikevich-Neuron Model 217

Acknowledgment. This work is funded by the following agencies: Federal Agency for
Support and Evaluation of Higher Education of Brazil (CAPES), the National Council
for Technological and Scientific Development (CNPq), and the Foundation for Research
of the State of Rio Grande do Sul (FAPERGS). The authors thank the Macnica-DHW
Ltda for the FPGAs boards and technical support.

References

1. Ambroise, M., Levi, T., Bornat, Y., Saighi, S.: Biorealistic spiking neural net-
work on FPGA. In: 47th Annual Conference on Information Sciences and Systems
(CISS), pp. 1–6, March 2013

2. Bontorin, G., Renaud, S., Garenne, A., Alvado, L., Le Masson, G., Tomas, J.: A
real-time closed-loop setup for hybrid neural networks. In: 29th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
2007, pp. 3004–3007, August 2007

3. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole Publishing
Company, Boston (2011)

4. Cassidy, A., Andreou, A.: Dynamical digital silicon neurons. In: IEEE Biomedical
Circuits and Systems Conference, BioCAS 2008, pp. 289–292, November 2008

5. Cassidy, A., Denham, S., Kanold, P., Andreou, A.: FPGA based silicon spiking
neural array. In: IEEE Biomedical Circuits and Systems Conference, BIOCAS 2007,
pp. 75–78, November 2007

6. Cheung, K., Schultz, S., Leong, P.: A parallel spiking neural network simulator.
In: International Conference on Field-Programmable Technology, FPT 2009, pp.
247–254, December 2009

7. Indiveri, G., Horiuchi, T.K.: Frontiers in neuromorphic engineering. Front. Neu-
rosci. 5, 118 (2011)

8. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos
10(6), 1171–1266 (2000)

9. Izhikevich, E.M.: Simple model of spiking neurons. IEEE 14, 1569–1572 (2003)
10. Rice, K.L., Bhuiyan, M., Taha, T., Vutsinas, C.N., Smith, M.: FPGA implemen-

tation of Izhikevich spiking neural networks for character recognition. In: Interna-
tional Conference on Reconfigurable Computing and FPGAs. ReConFig 2009, pp.
451–456, December 2009

11. Thomas, D.B., Luk, W.: FPGA accelerated simulation of biologically plausible
spiking neural networks. In: Pocek, K.L., Buell, D.A. (eds.) FCCM, pp. 45–52.
IEEE Computer Society (2009)

12. Wennberg, R., Velazquez, J.L.P.: Coordinated Activity in the Brain: Measure-
ments and Relevance to Brain Function and Behavior. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-93797-7

https://doi.org/10.1007/978-0-387-93797-7

	Low Latency FPGA Implementation of Izhikevich-Neuron Model
	1 Introduction
	2 Izhikevich's Simple Model
	2.1 Equations Model
	2.2 Change of Variables

	3 Neuron Implementation
	3.1 One Neuron
	3.2 Network for Tests and Metrics

	4 Results
	5 Conclusion
	References




