
Taming the Memory Demand Complexity
of Adaptive Vision Algorithms

Majid Sabbagh(B), Hamed Tabkhi, and Gunar Schirner

Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA
{msabbagh,tabkhi,schirner}@ece.neu.edu

Abstract. With the demand for utilizing Adaptive Vision Algorithms
(AVAs) in embedded devices, serious challenges have been introduced to
vision architects. AVAs may produce huge model data traffic while con-
tinuously training the internal model of the stream. This traffic dwarfs
the streaming data traffic (e.g. image frames), and consequently dom-
inates bandwidth and power requirements posing great challenges to
a low-power embedded implementation. In result, current approaches
either ignore targeting AVAs, or are limited to low resolutions due to not
handling the traffics separately. This paper proposes a systematic app-
roach to tackle the architectural complexity of AVAs. The main focus of
this paper is to manage the huge model data updating traffic of AVAs
by proposing a shift from compressing streaming data to compressing
the model data. The compression of model data results in significant
reduction of memory accesses leading to a pronounced gain in power and
performance. This paper also explores the effect of different class of com-
pression algorithms (lossy and lossless) on both bandwidth reduction and
result quality of AVAs. For the purpose of exploration this paper focuses
on example of Mixture-of-Gaussians (MoG) background subtraction. The
results demonstrate that a customized lossless algorithm can maintain
the quality while reducing the bandwidth demand facilitating efficient
embedded realization of AVAs. In our experiments we achieved the total
bandwidth saving of about 69% by applying the Most Significant Bits
Selection and BZIP as the first and second level model data compres-
sion schemes respectively, with only about 15% quality loss according to
the Multi-Scale Structural Similarity (MS-SSIM) metric. The bandwidth
saving would be increased to 75% by using a custom compressor.

1 Introduction

The demand for vision capabilities in embedded devices is rising more than
ever. Embedded devices, ranging from tiny medical implants to smart cars and
distributed smart cameras, need advanced vision capabilities and visual scenes
analysis. Among different types of vision algorithms, the need is toward the
algorithms that can dynamically adapt to the varying scene conditions. AVAs
are considered as the dominating class of algorithms for advanced visual analysis.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Götz et al. (Eds.): IESS 2015, IFIP AICT 523, pp. 145–158, 2017.
https://doi.org/10.1007/978-3-319-90023-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90023-0_12&domain=pdf

146 M. Sabbagh et al.

They are based on the machine-learning principles and are able to capture the
runtime changes in the scene (e.g. MoG background subtraction and Support
Vector Machine (SVM)).

While AVAs have been realized for fairly long time in algorithm-development
environment (e.g. Matlab), their embedded low power realization is still very
challenging. Embedded devices are bounded in computation/communication
resources with limited energy/power budget. In contrast, AVAs demand for a
significant computation and communication capabilities which results in a power
consumption far beyond the embedded system budgets. Realization of compu-
tation through custom design and High-Level Synthesis is well-formulated. On
the other hand, communication appears as the primary bottleneck hindering
implementation of AVAs on embedded devices.

The main limitation of AVAs is significant communication traffic imposed
by algorithm itself. Due to inherent learning properties of AVAs, they maintain
and continuously update model data of the scene. The model data is algorithm-
intrinsic and its existence is independent of algorithm implementation. The size
of model data is often very large exceeding the capacity of today’s on-chip mem-
ories, forcing the designers to utilize off-chip memory. In result, accessing and
updating the model data results in huge off-chip bandwidth demand and its asso-
ciated power consumption. For instance, the bandwidth demand for updating the
MoG background subtraction algorithm at Full-HD resolution is about 8 GB/s,
based on the analysis of the standard OpenCV algorithm. This contributes to
about 90% of total power consumption [1]. Therefore, to open efficient realization
of AVAs on embedded devices, the first step is to manage huge communication
demands associated with the model data.

Existing approaches often ignore embedded realization of AVAs and focus
on the non-adaptive ones, or only implement AVAs at very low resolutions
(300 * 400) [2–4]. However, current trend is toward utilizing AVAs to deliver
advanced vision capabilities at Full-HD resolution (1920 * 1080). Overall, opti-
mizing the model data has received less attention despite being crucial for
real-time low-power implementations of AVAs. The need is toward systematic
approaches that can provide a guideline on how to efficiently manage model data
communication traffic.

This paper introduces a system level approach for taming the memory
demand complexity of Adaptive Vision Algorithms. The main goal of this
research is to open a path toward efficient management of model data traffic. By
focusing on model data, we explore the opportunity of shifting the current trend
in compressing the streaming data (i.e. applying different video/image encod-
ing methods), toward compressing the model data to reduce the bandwidth and
power. Following a system-level approach, this paper also explores the effect of
different classes of compression algorithms, lossy and lossless, on both band-
width reduction and resulting quality. Based on the observations, this paper
offers design choices and trade-offs for finding the best compression methods.

For the purpose of exploration, this paper focuses on the example of MoG
background subtraction [5]. Our results on the example of MoG demonstrate

Taming the Memory Demand Complexity of Adaptive Vision Algorithms 147

50% reduction in communication bandwidth by applying a lossy linear com-
pression (Most Significant Bits selection) with minimal quality loss. A higher
bandwidth saving 69% can be achieved by BZIP general-purpose lossless com-
pression with no quality loss. Further bandwidth saving is also achieved by a
customized compression scheme (e.g. 75% in [6]).

This paper is organized as following: Sect. 2 overviews relevant prior work.
Section 3 briefly provides background and additional motivation. Following that,
Sect. 4 describes our systematic approach for bandwidth quality trade-off on dif-
ferent class of compression algorithms. Section 5 concludes the paper and touches
on future work.

2 Related Work

The embedded realization of vision algorithms is still at early stages. Most of
the previous work on embedded vision have been bounded to basic vision filters,
e.g., Canny edge detection, with regular computation and much less communi-
cation demand [7,8]. Only few researchers have targeted adaptive vision algo-
rithms (e.g., MoG, KLT, optical flow) on embedded devices. What all previous
approaches share in common is lack of insight about source and nature of the
traffic. Therefore, they mainly propose a common communication interface for
transferring all types of data. Thus, they either ignore the algorithm-intrinsic
traffic, or assume that it is hidden in the communication hierarchy. In the result,
their proposed solutions works at low resolutions (300 * 400) which is far below
Full-HD resolution (1920 * 1080) [2–4,9]. However, in [1] authors propose Data
Separation concept for Adaptive Algorithms, in which the streaming data is han-
dled differently compare to the model data. That helped them to realize the MoG
algorithm for background subtraction in Full-HD resolution at 30 frames per
second. We based our studies on [1] for applying different compression schemes
on model data and analyzing its effect on the system performance and output
quality.

A recent work [6] hints about the significant communication volume of MoG
background subtraction algorithm. It also provides a promising lossless com-
pression method which can reduce the bandwidth demand for updating MoG
parameters down to 50%. Although their compression method sounds to be very
efficient and promising, their approach lacks a holistic approach which studies
different compression schemes and can generalize the concept of compression on
model data for AVAs.

The general observation is that optimizing the model data has received much
less attention despite being crucial for real-time low-power implementation of
AVAs. In contrast to previous approaches, this paper focuses on optimizing and
managing huge communication demand for updating and accessing model data
in AVAs.

148 M. Sabbagh et al.

3 Background

This section briefly provides background information on traffic separation in the
context of AVAs, and for MoG background subtraction algorithm as an example
of AVAs.

3.1 Data Separation

Data separation, proposed by [1], distinguishes two types of data: streaming data
and model data. Figure 1 highlights these two types of traffic in the context of
AVAs. The streaming data (pixels) is the input/output data to the algorithm,
while the model data is the intrinsic part of algorithm for realizing targeted
processing. In AVAs, typically the model data is much bigger than streaming
data. The size of model data exceeds the capacity of today’s on-chip memories,
forcing the designers to utilize the off-chip memory. Furthermore, since the model
data should keep up with the streaming data, the bandwidth demand for reading
and writing the model data from/to the memory would be a real limitation. Data
Separation provides the opportunity for targeted optimization on both streaming
data and model data.

Streaming Data Streaming Data

Model
Data

Adaptive
Model

Adaptive Algorithm

Fig. 1. Streaming data vs model data

The traffic separation also streamlines the construction of complete vision
flow out of multiple AVAs executing different parts of applications over the
streaming data. Each AVA has its own model data which hits the memory hier-
archy while streaming data is passed across the kernels. This further motivates
us to have a systematic solution toward ever increasing communication com-
plexity of AVAs. The Data Separation insight helps us to explore and tailor the
compression opportunities on model data.

3.2 MoG Background Subtraction

MoG background subtraction is a very good representative of AVAs [5]. In this
paper, we also use this algorithm to present our results. MoG is used in vision
computing for identifying moving objects from the background scene. Figure 2
includes the MoG coarse-grain mathematical formulation. MoG uses multiple
Gaussian distributions, also called Gaussian components, to model a pixel’s

Taming the Memory Demand Complexity of Adaptive Vision Algorithms 149

Fig. 2. Memory access per pixel in MoG algorithm

background. Each Gaussian component has its own set of Gaussian components:
weight ωi, an intensity mean μi and a standard deviation σi. In Full-HD reso-
lution, for storing all Gaussian parameters about 74 MB of storage is required
which may exceed the on-chip memory capacity available in embedded plat-
forms. As a new pixel arrives, all Gaussian parameters are updated to track BG
changes of the pixel at frame basis. On the other hand, the bandwidth demand
for updating the Gaussian parameters, assuming 32 bit per Gaussian parameter
with 3 Gaussian components per pixel, is about 8 GB/s (for processing at Full-
HD resolution 60 fps), which is 30 times more than streaming bandwidth, which
is 265 MB/s for transferring 16-bit input pixel and 1-bit output foreground mask.

4 Systematic Model Data Compression

4.1 System-Level Roadmap

Real-time embedded realization of AVAs forces the system architects toward sys-
tematic approaches. Figure 3 highlights our design flow for tackling the complexi-
ties of AVAs. It starts from analysis of algorithms to identify orthogonal axises of
optimization with separated axises for computation and communication. There
is a computation/communication trade-off at which point the computation and
communication axises meet. The trade-off occurs when compressing the model
data adds to the computation demand while reduces the bandwidth demand.

Adaptive
Algos.

Algorithms

CommunicationComputation

Floating/Fixed
Point Comp.

Compression
Processing

Coarse-Grain
Pipelining

Data
Sepration

Model Data
Compression

Comp/
comm

Computation /
Communication

Trade-off

Synchronization/
Memory Management

Fig. 3. System-level design flow

150 M. Sabbagh et al.

In this study, we mainly focus on communication axis because of significant
communication demand in AVAs for periodically accessing and updating the
model data. Complexities in computation axis, include but not limited to, multi-
dimensional processing, complex operations, floating point computation which
can be explored separately and are not part of this study.

Using the data Separation insight, we propose a shift from current trend
in compressing streaming data toward compressing model data. As shown in
Fig. 4, compression/decompression units could be placed in the access interface
of model data, providing the opportunity of significantly reducing the model
update bandwidth.

Streaming gnimaertSataD Data

Uncompresssed
Model Data

Decompression Compression
Compresssed
Model Data

Adaptive Algorithm

Adaptive
Model

Fig. 4. Compression/decompression on model data access

There are two major categories in compression methods, lossy and lossless. In
lossy compression, there is a trade-off between the achievable bandwidth saving
and output quality while in the lossless compression schemes there would be
no quality loss probably with the cost of higher computation demand. Overall,
the primary metrics needed to be considered for choosing a suitable compression
algorithm are: (1) achievable bandwidth saving, (2) quality effect (lossy/lossless),
and (3) computation demand for compressing/de-compressing model data.

4.2 Experimental Setup

For the purpose of study, we focus on MoG background subtraction algorithm
explained in Sect. 3.2. We modeled MoG in SpecC System Level Design Language
(SLDL) [10]. The high-level diagram of the experimental model is shown in Fig. 5.
The stream of input pixels will be fed from stimulus block to the MoG which
at the same time receives the corresponding parameters, i.e. model data, from
the Read Param block. Read Param block receives the decompressed parameters
from the decompression unit. Decompression unit reads the compressed model
data from a file, decompress it, and sends the individual parameters out when
the corresponding pixel arrives at input of MoG. Then, after finishing the pro-
cessing, MoG block outputs foreground masks as the output stream and updated
parameters as model data. Model data will be written back to a file after being
compressed by the compression unit. In the following section, we will study the
effect of applying different compression methods on MoG’s model data.

Taming the Memory Demand Complexity of Adaptive Vision Algorithms 151

Uncompresssed
Model Data

MoG

Compressed
Gaussian Parameters

Stimulus MonitorPixel
Stream

FG/BG
Stream

Write
Parameters

Read
Parameters

G
-

ParamG
-

pa
ra

m

Decompression Compression

File

Fig. 5. High-level diagram of evaluation model for MoG

During the exploration, we assess the quality against the ground-truth (MoG
with no compressed Gaussian parameters). We use MS-SSIM metric. MS-SSIM
focuses on the structural similarity between two frames which is more similar
to human perception [11]. MS-SSIM quantifies the quality as a value between
0 to 1 where a higher value means closer similarity and thus lower quality loss
compared to ground-truth.

4.3 Evaluation of Compression Schemes

MSBSel. The simplest compression method is to statically select the most sig-
nificant bits of parameters. We call this method Most Significant Bits Selection
(MSBSel). Although MSBSel is a lossy compression, it has almost no compu-
tation overhead especially considering a hardware implementation. We call the
model with MSBSel compression method the reference model in later explana-
tions.

This compression scheme introduces the Quality-Bandwidth trade-off as illus-
trated in Fig. 6. Based on Fig. 6, the quality and bandwidth have a non-linear
relationship and it is possible to reduce bandwidth without quality loss (in the

Fig. 6. Quality-bandwidth trade-off in MSBSel compression scheme

152 M. Sabbagh et al.

bandwidth range from 160 MB/s down to about 120 MB/s). Moreover, by reduc-
ing the bandwidth down to 50%, i.e. 80 MB/s, quality will not drop more than
15% according to MS-SSIM quality metric. Although this is due to the nature
of MoG algorithm, but same trend could be observed for other AVAs. Select-
ing fewer bits leads to higher bandwidth saving but also higher degradation in
quality. A high dynamic range or precision is essential for accurate background
subtraction. This raises a need for complex/advanced compression algorithms to
further reduce the bandwidth requirements for updating model data.

JPEG-2000. To further explore the compression effect on MoG parameters,
JPEG-2000 compression applied as the second-level compression after MSBSel
to evaluate if it can reduce the bandwidth without affecting the quality signif-
icantly. JPEG is a well-known image compression method developed by Joint
Photographic Experts Group [12]. JPEG-2000 is the newer version of JPEG,
which also supports 16-bit gray-scale images.

Fig. 7. Visual structure of Gaussian parameters.

Since JPEG has been customized for compressing images, we only limit the
JPEG compression for parameter Mean. Parameter Mean keeps background
mean values for pixels and it has a visual structure similar to an image. Figure 7
illustrates the visual structure of all Gaussian parameters. On top from left
to right, the original, background and foreground frames are shown. Below the
frames, Fig. 7 also presents the images of all Gaussian parameters for three Gaus-
sian components: Mean, Standard Deviation and Weight, from left to right.

Figure 8a shows the effect of JPEG-2000 compression on Mean parameter
over the bandwidth demand for updating parameter Mean. Figure 8b plots the
total bandwidth saving (over all parameters), by compressing only parameter
Mean. For this experiment, a sequence of 650 frames with resolution of 320× 240
has been chosen as the input test set. Both figures show the effect of different

Taming the Memory Demand Complexity of Adaptive Vision Algorithms 153

JPEG compression ratios (2:1–10:1). The JPEG-2000 is significantly reducing
the bandwidth demand for updating the Mean parameter. For the best com-
pression ratio of 0.1 (10:1), the bandwidth saving for updating parameter Mean
is about 85%, indicating that the size of compressed Mean image is on average
15% of its original size. Also, as shown in Fig. 8b, overall bandwidth saving is
about 29%. The overall bandwidth saving is limited as JPEG-2000 is not appli-
cable on other MoG parameters (Standard Deviation and Weight).

Fig. 8. Bandwidth demand vs. compression ratio for JPEG-2000 compression

The bandwidth saving corresponding to the compression ratio was less than
the expected value. For example, the expected bandwidth saving of 10:1 com-
pression ratio, is 90%. However, in practice it is about 85%. The effect of noise
on degrading the performance of compression methods is already studied in
literature. For example, a study in [13] shows that noise reduces the inter-pixel
correlation which compression ratio increased. Some approaches, such as [14,15],
filters the effect of noise from the source image. However, all based on assump-
tion that feature of filtering solutions is that they consider noise in images as
unwanted data. In contrast, the visual distortion that is observable in MoG
parameters are actually the values produced by the algorithm and are required
in next iteration for computation. Therefore, eliminating the distortion which is
seen in MoG parameters in fact reduce the quality of MoG.

To study the effect of JPEG bandwidth saving on the MoG quality (the
foreground masks), we compared the output of MOG with JPEG compression
against the reference model. The outputs are compared using the MS-SSIM
quality metric in a simple scene, with few object movements and variations, and
a complex scene, with lots of object movements and crossings. Figure 9 plots
the quality across total bandwidth saving when applying JPEG compression for
parameter Mean. The maximum achievable output quality is about 0.46 out of
1, in the simple frame sequence. This is even worse in complex frame sequence
which the maximum output quality is 0.22 with bandwidth saving of only 2%
on average. With increasing compression rate to further reduce the bandwidth,
the quality degradation would be more pronounced reaching to a point which
basically MoG is not functional anymore.

154 M. Sabbagh et al.

Fig. 9. Quality-bandwidth trade-off when for simple and complex frame sequences

Overall, we conclude that JPEG-2000 have severe degradation effect on the
final output quality of MoG. We can trace back this issue to the adaptive behav-
ior of the MoG algorithm, meaning that since the MoG parameters are recur-
sively accessed and updated, even a small error can accumulate, resulting in
degradation of background subtraction robustness and eventually output qual-
ity loss. All of these observations motivate us to explore other possibilities for
compression of model data, therefore we will look into the opportunity of using
lossless compression schemes.

Lossless Compression. The principal feature of lossless compression algo-
rithms is that they do not affect the quality of data being compressed. Therefore,
rather than quality loss, the designer may change the focus to other character-
istics of compression algorithms, such as the achievable compression ratio and
computation demand. In our study, five different lossless compression methods
have been explored: QZIP, LZ4, BZIP, GZIP and ZIP. QZIP and LZ4 are two
compression algorithms which are in high-speed categories, while BZIP, GZIP
and ZIP are three regular compression methods. The experiments are done over
4500 parameter images that are the MoG parameters of 3 Gaussian components,
each having 3 parameters (Mean, Standard Deviation and Weight) for 500 frames
of original 1024× 768 resolution. All of the lossless compression methods are
applied as the second level compression after MSBSel. To further explore the
granularity of source data which a certain algorithm will operate on, we divide
the input frames to smaller blocks. A 1024× 768 frame could be divided into
25.6 blocks of 40× 30, 12.8 blocks of 80× 60, 6.4 blocks of 160× 120, 3.2 blocks
of 320× 240, 1.6 blocks of 640× 480 and 1 block of 1024× 768 resolution.

Figure 10a presents the average bandwidth saving over different block sizes for
all compression algorithms. The maximum bandwidth saving could be achieved,
when using the 1024× 768 block size. In fact, by reducing the block size to
less than 1024× 768, all algorithms perform poorly in bandwidth reduction, at
the best case reaching to less than 10% bandwidth saving. The best average
bandwidth savings captured in lossless experiments is about 38%, corresponding
to BZIP compression scheme with block size of 1024× 768.

Taming the Memory Demand Complexity of Adaptive Vision Algorithms 155

Fig. 10. Bandwidth saving and computation demand over different block sizes.

Figure 10b shows the average computation demand over different block sizes
for all compression algorithms. To estimate the computation demand, we used
Pin - Dynamic Binary Instrumentation Tool [16], from Intel. The block size
of 1024× 768, equal to full image size, leads to largest computation demand.
Overall, the computation demand varies across the algorithms. In QZIP and
ZIP, the lowest computation demand is achieved by using block size of 80× 60,
for LZ4 320× 240 and for GZIP and BZIP 40× 30. Figure 10a and b also present
the result of LZ4 algorithm in the high-compression mode (LZ4 High-Comp.).
In high-compression mode, LZ4 could provide better compression ratio with the
cost of higher computation demand.

Combining Fig. 10a and b, we can derive Fig. 11 showing the trade-off
between bandwidth saving and computation demand. In Fig. 11, the numbers
over the stars show the average bandwidth saving, while the crosses show the
range of achievable bandwidth demand corresponding to a certain computation
demand. For different algorithms, the trend is that lower bandwidth demand or
higher bandwidth saving, is achievable by having more computation. Among all
algorithms, LZ4 in fast-mode has the lowest computation demand, which is about
100 millions instructions for compression and decompression of a frame, and at
the same time the lowest bandwidth saving of 17%, while the BZIP achieves high-
est bandwidth saving of 38% with the highest computation demand of about 1
billion instructions. Note that, computation demand of LZ4 for compression and
decompression of a frame in high-compression mode is about 10 times higher
than its computation demand in fast-mode.

Custom Compression. The previous studied lossless compression methods
are general algorithms developed to compress any sort of data. The results of
our experiments illustrate that although there are lots of options for compressing
the model data, but for AVAs such as MoG, which have special type of model
data produced by statistical and non-linear processing, general purpose image
or data compression methods might not provide the desirable performance for
designers. There is a demand for lossless compression algorithm customized for
compressing model data in context of AVA. This fact, motivates designers such

156 M. Sabbagh et al.

Fig. 11. Bandwidth saving/computation demand trade-off

as in [6] to devise custom model data compression schemes only for a certain
type of algorithm. One preliminary example, has been already proposed by [6].

In [6], the authors propose a DPCM-based compression algorithm for com-
pression of MoG parameters. Their algorithm, extracts and uses the inter-
correlation of parameters for different Gaussian Components of MoG and intra-
correlation of parameters for within the Gaussian Components, to represent
every two parameters with one compressed parameter, in a lossless process,
reducing the bandwidth demand down to 50%. In terms of computation demand,
the FPGA implementation of their algorithm shows reasonable resource utiliza-
tion of about 2282 LUTs and 1876 FFs in Virtex-5 FPGA, without any use of
DSP Blocks and more importantly Block RAMs.

4.4 Results Summary

To summarize, Using the Data Separation insight, we explored the opportunity of
applying different compression schemes on model data, to shift the compression
trend from streaming data to model data. During the experiments we evaluated
several trade-offs:

– Lossy Compression
• Quality-Bandwidth Trade-off (for MSBSel only and MSBSel+JPEG-

2000): For having better quality, higher bandwidth is needed
• Bandwidth-Compression Ratio (for MSBSel+JPEG-2000): By changing

the configurable compression ratio in JPEG-2000, different bandwidth
demands are achievable

– Lossless Compression
• Computation Demand-Block Size Trade-off (For all 5 lossless algorithms):

Different block sizes lead to different computation demands, highest com-
putation demand is when the block size is equal to the whole frame being
compressed

Taming the Memory Demand Complexity of Adaptive Vision Algorithms 157

• Bandwidth Saving-Block Size Trade-off (For all 5 lossless algorithms):
Different block sizes lead to different Bandwidth Saving, biggest saving
in Bandwidth achieved when largest block size is used

• Bandwidth Demand-Computation Demand Trade-off (For all 5 lossless
algorithms): For having lower bandwidth demand or highest bandwidth
saving, there is need for more computation

• Bandwidth Demand-Computation Demand Trade-off for LZ4 algorithm
in high-compression mode and fast-mode: By using LZ4 in high-
compression mode, higher bandwidth saving is achievable with the cost
of higher computation demand.

Overall, by applying BZIP as the second level compression scheme over MSB-
Sel, the total bandwidth saving of about 69% is achievable, while the bandwidth
saving could be increased to about 75% by using a custom compressor instead of
BZIP. The overall output quality loss would not be more than 15% according to
the MS-SSIM metric for both of these cases. These trade-offs could help the sys-
tem architects for AVAs, choose the right compression algorithm for model data
based on the application requirements. Furthermore, designers might have to
use or devise tailored algorithms for AVAs’ model data, such as the compression
method proposed in [6] for compressing the MoG parameters.

Altogether, using the Data Separation insight and by applying compression
on model data, realization of AVAs could be facilitated as the overall system
bandwidth demand became manageable, taming the complexity of AVAs real-
ization. We would consider power consumption in future works as it is a very
important factor in embedded systems, while in this work we focus on evaluating
the compression ratio and computation demand in lossless compression schemes.

5 Conclusions

This paper proposes a systematic approach for tackling the complexity of AVAs.
We focus on the main challenge which is the communication complexity due
to huge bandwidth demand for updating model data in AVAs. Using the Data
Separation insight and by applying compression on model data, realization of
multiple vision kernels could be facilitated on a single platform. Also, throughout
our study we evaluated different lossy and lossless compression algorithms, pro-
viding the system architects with various trade-offs and intuitions for choosing
the right method of compression for model data.

References

1. Tabkhi, H., Sabbagh, M., Schirner, G.: Power-efficient real-time solution for adap-
tive vision algorithms. IET Comput. Digit. Tech. 16–26 (2015)

2. Xu, J., et al.: A case study in networks-on-chip design for embedded video. In:
Design, Automation and Test in Europe (DATE), vol. 2, pp. 770–775 (2004)

3. Lv, T., et al.: A methodology for architectural design of multimedia multiprocessor
SoCs. IEEE Des. Test Comput. 22(1), 18–26 (2005)

158 M. Sabbagh et al.

4. Chen, G., et al.: Energy savings through compression in embedded Java envi-
ronments. In: International Symposium on Hardware/Software Codesign, CODES
2002 (2002)

5. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time
tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. 246–252 (1999)

6. Ratnayake, K., Amer, A.: Embedded architecture for noise-adaptive video object
detection using parameter-compressed background modeling. J. Real-Time Image
Process. (2014)

7. Xilinx: Programming vision applications on Zynq using OpenCV and high-level
synthesis. Xilinx technical report (2013)

8. Tang, Z., Shen, D.: Canny edge detection codec using VLib on Davinci series DSP.
In: 2012 International Conference on Computer Science Service System (CSSS)
(2012)

9. Swaminathan, K., Lakshminarayanan, G., Ko, S.-B.: High speed generic network
interface for network on chip using ping pong buffers. In: International Symposium
on Electronic System Design (ISED), pp. 72–76 (2012)

10. Gerstlauer, A., Dömer, R., Peng, J., Gajski, D.D.: System Design: A Practical
Guide with SpecC. Kluwer Academic Publisher, Dordrecht (2001)

11. Wang, Z., et al.: Image quality assessment: from error visibility to structural sim-
ilarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

12. JPEG. http://www.jpeg.org
13. Lo, S.-C., Krasner, B., Mun, S.: Noise impact on error-free image compression.

IEEE Trans. Med. Imaging (1990)
14. Cosman, P., Gray, R., Olshen, R.: Evaluating quality of compressed medical images:

SNR, subjective rating, and diagnostic accuracy. Proc. IEEE (1994)
15. Melnychuck, P.W., Barry, M.J., Mathieu, M.S.: Effect of noise and MTF on the

compressibility of high-resolution color images (1990)
16. Pin - a dynamic binary instrumentation tool. https://software.intel.com/en-us/

articles/pin-a-dynamic-binary-instrumentation-tool. Accessed 30 Aug 2015

http://www.jpeg.org
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

	Taming the Memory Demand Complexity of Adaptive Vision Algorithms
	1 Introduction
	2 Related Work
	3 Background
	3.1 Data Separation
	3.2 MoG Background Subtraction

	4 Systematic Model Data Compression
	4.1 System-Level Roadmap
	4.2 Experimental Setup
	4.3 Evaluation of Compression Schemes
	4.4 Results Summary

	5 Conclusions
	References

