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Preface

This book presents the technical program of the International Embedded Systems
Symposium (IESS) 2015. A broad discussion on the design, analysis, and verification
of embedded and cyber-physical systems is presented in a complementary view
throughout the chapters of this book, including design methodologies, verification,
performance analysis, and real-time systems design. The book includes real-world
application case studies discussing challenges and realizations of embedded systems.

The advances in technology over recent years have provided a resourceful infras-
tructure to embedded systems in terms of an enormous amount of processing power
and storage capacity. Formerly external components can now be integrated into a single
System-on-Chip. This tendency has resulted in a dramatic reduction in the size and cost
of embedded systems. Such a hardware infrastructure has led to an increasing number
of services provided, allowing embedded systems to enter numerous application areas
(including cyber-physical applications). As a unique technology, the design of
embedded systems is an essential element of many innovations.

Embedded systems meet their performance goals, including real-time constraints,
through a combination of special-purpose hardware and software components tailored
to the system requirements. Both the development of new features and the reuse of
existing intellectual property components are essential to keeping up with
ever-demanding customer requirements. Furthermore, design complexities are steadily
growing with an increasing number of components that have to cooperate properly.
Embedded system designers have to cope with multiple goals and constraints simul-
taneously, including timing, power, reliability, dependability, maintenance, packaging
and, last but not least, price.

The significance and importance of these constraints vary depending on the appli-
cation area a system is targeted for. Typical embedded applications include consumer
electronics, automotive, avionics, medical, industrial automation, robotics, communi-
cation devices, and others.

The International Embedded Systems Symposium (IESS) is a unique forum to
present novel ideas, exchange timely research results, and discuss the state of the art
and future trends in the field of embedded systems. Contributors and participants from
both industry and academia take active part in this symposium. The IESS conference is
organized by the Computer Systems Technology committee (TC10) of the International
Federation for Information Processing (IFIP), especially the Working Group 10.2
“Embedded Systems.”

IESS is a true interdisciplinary conference on the design of embedded systems.
Computer Science and Electrical Engineering are the predominant academic disciplines
concerned with the topics covered in IESS, but many applications also involve civil,
mechanical, aerospace, and automotive engineering, as well as various medical
disciplines.



In 2005, IESS was held for the first time in Manaus, Brazil. In this initial instalment,
IESS 2005 was very successful with 30 accepted papers ranging from specification to
embedded systems application. IESS 2007 was the second edition of the symposium
held in Irvine (CA), USA, with 35 accepted papers and two tutorials ranging from
analysis and design methodologies to case studies from automotive and medical
applications. IESS 2009 took place in the wonderful Schoß Montfort in Langenargen,
Germany, with 28 accepted papers and two tutorials ranging from efficient modelling to
challenges for designers of fault-tolerant embedded systems. IESS 2013 was held in
Paderborn, Germany, at the Heinz Nixdorf Museums-Forum (HNF) with 22 full papers
and eight short papers.

IESS 2015 was held in Foz do Iguaçu, Brazil, close to the beautiful Iguaçu Falls.
The articles presented in this book are the result of a thorough review process
implemented by the Technical Program Committee. Out of 25 valid submissions, 12
full papers were accepted yielding an acceptance rate of 48%. In addition, six short
papers are included, yielding an overall acceptance rate of 72%.

The technical program of IESS 2015 included sessions with complementary and
interdisciplinary themes, e.g., cyber-physical systems, system level design,
multi/many-core systems design, memory systems design, and embedded hardware and
software design and applications. Very interesting keynotes on diverse topics, such as
the Internet of Things, real-time operating systems, ubiquitous computing infrastruc-
ture, and adaptive systems design based on COTS, were also included in the technical
program.

With our strong technical program, we had a successful IESS 2015 conference with
fruitful discussions.

First and foremost, we thank our sponsors Hella KGaA Hueck & Co. and the Carl
von Ossietzky University Oldenburg for their generous financial support of this con-
ference. Without these contributions, IESS 2015 would not have been possible in its
current form. Very special thanks to the co-located conference team from SBESC 2015,
who supported mainly the local arrangements with the Golden Tulip Conference Hotel
where the event was hosted.

We would also like to thank IFIP for the promotion and support of the IESS
conference.

Last but not least, we thank the authors for their interesting research contributions
and the members of the Technical Program Committee for their valuable time and effort
in reviewing the articles.

November 2015 Marcelo Götz
Gunar Schirner

Marco Wehrmeister
Mohammad Abdullah Al Faruque

Achim Rettberg
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Ontological User Modeling for Ambient
Assisted Living Service Personalization

Mauŕıcio Fontana de Vargas(B) and Carlos Eduardo Pereira

Automation Engineering Department, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil

mauricio.vargas@ufrgs.br, cpereira@ece.ufrgs.br

Abstract. Given that the population is aging, it is crucial to develop
technologies which will not only help the elderly to age in place, but also
live in place with independent and healthy lifestyle. Ambient Assisted
Living (AAL) environments can help the elderly and people with func-
tional diversity by anticipating their needs in specific situations and act-
ing proactively in order to properly assist them in performing their activ-
ities of daily living (ADLs). Since the users needs tend to be very diverse
in regard to functioning and disability levels, it is crucial to have person-
alized services capable of providing tailored assistance to a user based
on their unique preferences, requirements, and desires. This paper intro-
duces the ontology named AATUM (Ambient Assistive Technology User
Model), to be adopted by systems whose goal is to enhance user qual-
ity of life within ALL environments through service personalization. Its
main feature is the use of The International Classification of Function-
ing, Disability and Health (ICF) to model the user’s functioning and
disability levels in a consistent and internationally comparable way. The
use of the proposed ontology is illustrated through its application in two
different case studies.

Keywords: Ontology · Context-aware · Functioning · User centered
World Health Organization

1 Introduction

The percentage of global population aged 60 or older is expected to be 22%
by 2050 [8]. As a result, there is an expected increase of chronic illnesses and
disability associated with old age. This demographic change toward an aging
society results in many social and health care system challenges to ensure that
our infrastructures can support the needs of the elderly, enabling them to have
an independent and healthy lifestyle.

Given the fact that 64% of older adults prefer to stay in the comfort of their
own homes, and given the costs of nursing home care, it is crucial to develop
technologies that help older adults not only to age, but also live in place i.e.,
independently and comfortably in their home [2].
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Götz et al. (Eds.): IESS 2015, IFIP AICT 523, pp. 3–14, 2017.
https://doi.org/10.1007/978-3-319-90023-0_1
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In recent years, researchers have developed a variety of assistive technologies
based on a the paradigm called “ambient intelligence”, where the ambient antic-
ipates users needs in specific situations and acts proactively in order to properly
assist the user to perform his/her activities of daily living (ADLs). Assisted living
technologies based on ambient intelligence are called Ambient Assisted Living
(AAL) tools and can be used for preventing, healing, and improving quality of
life of the elderly and people with functional diversity.

Since these users tend to be greatly variable in regards to functioning and
disability levels, service personalization is crucial [7]. A personalized service is a
service capable of providing tailored assistance to a user based on their unique
preferences, requirements, and desires. Therefore, service personalization within
AAL environments can help elderly people or people with functional diversity
to increase their independence and quality of life.

The need for service personalization has led to the use of ontologies as a
means to provide a correct user model in a machine understandable format.
This model is generally represented in the form of a user profile which captures
the personal aspects in terms of user’s behaviors, goals, capacities, likes and
dislikes. Therefore, the user model can be seen as an abstract entity and the
user profile represents an instantiation of the user model for a specific user [1].

This work focuses on user modeling using an ontology to enhance user qual-
ity of life within ALL environments through service personalization. Section 2
presents related work within user modeling and service personalization. The
third section presents the Ambient Assistive Technology User Model (AATUM)
ontology and its structure, highlighting the main covered aspects and describing
its functionality. Then, in the fourth section, two use cases are presented showing
real life situations; these are used in the fifth section in order to demonstrate the
ontology usage. The last section includes conclusions and future research work.

2 Related Work

As mentioned before, one of the core aspects in service personalization is user
modeling. Ontology-based user modeling has been previously proposed in many
research areas like knowledge management systems [12], semantic web search [6]
and digital museum guides [4]. The increasing attention of ontological modeling
is mostly due to its interoperability feature and ability to enable knowledge
sharing and reuse over several application domains [5].

One important issue is that user preference and needs may change depending
on the user context. Thus, the system has to be able to infer which context the
user is in and consequently adapt the ambient to provide the appropriate assis-
tance. The UPOS (User Profile Ontology with Situation-Dependent Preferences
Support) [16] introduced the concept of dynamic user profiles. The ontology
supports the creation of a subset of conditional user profiles associated with the
user context. According to a condition (e.g. if the context of user Bob equals
the MyOffice location), the matching process tries to find the correspondent
sub-profile. If a match happens, the found user profile is applied for service
personalization.
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Another relevant concern within AAL service personalization is the need of
having information about the user’s health condition and his/her limitations per-
forming daily activities. Without the correct representation of the user’s needs
and capabilities, it’s unlikely that the ambient will properly adapt itself to pro-
vide optimum assistance for the elderly and for people with special requirements.

Kadouche et al. [7] proposed the Semantic Matching Framework (SMF) capa-
ble of providing an appropriate middleware for delivering personalized assistive
services according to the user’s needs and capabilities. The main feature of SMF
is based on the semantic matching between the user model and the environment
model. The user model describes user information, preferences and capabilities
while the environment model defines the available devices (e.g. door) and their
attributes (e.g. required force to open the door). Using a reasoning mechanism,
the SMF analyzes user capabilities and the environment and deduces the “hand-
icap situation” in order to deliver personalized services.

The PCEICL (Person Centered Environment for Information, Communica-
tion and Learning) [3] platform aims to offer a better assistance to elderly people
using context aware and personalizable services. They have proposed an ontol-
ogy where the user is the central concept and is described by their characteristics
such as their health condition, capabilities and preferences. In order to have an
exact and correct description of the user’s health condition, they have used the
International Code for Diseases (ICD) [11].

Another approach of service personalization in the field of AAL is the
MobileSage [15]. The main purpose of their work is to provide help on-demand
services as the user moves between mobile environments. Based on the user’s
characteristics and his/her location, the system can personalize services in order
to assist the user in his/her daily activities like outdoor navigation and the use of
devices such as ticket vending machines. As in [3], MobileSage ontology models
the user as a central concept of the system as well as his/her environment. The
user profile is composed by a set of sub profiles like a capability profile, a health
profile and an interest profile.

The main issue of the aforementioned works is the lack of a uniform and
consistent representation of user health condition, functioning and disability.
The representation of this information is usually designed in order to meet the
requirements of a specific application. Thus, the main feature of using an ontol-
ogy, i.e. the knowledge sharing and reuse, is not fully utilized.

3 The AATUM Ontology

In order to prevent common mistakes and make the best modeling decisions while
developing the ontology, we have taken into account the design method proposed
by [9]. Using a traditional top-down approach, both static and dynamic high-
level concepts related to the user were selected and further broken down into
specialized concepts. The AATUM ontology has been implemented in OWL, the
Ontology Web Language that is a xml-based semantic web language proposed by
the World Wide Web Consortium (W3C). To help with the process of creating,
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editing and viewing the ontology, the Protégé-OWL Editor1 was selected. A brief
explanation of the ontology main classes is depicted in Table 1. To illustrate
the ontological structure and the relationship between its classes, a graphical
representation is presented in Fig. 1.

Fig. 1. An overview of the AATUM ontological structure

Basic information such as address, date of birth, telephone number and family
contacts is stored in the class PersonalInfo. Though this information may not
seem to be very useful, it could be used for important purposes in terms of
ALL. For example, this information could be used to send an ambulance to a
user’s house after a heart attack or in a statistical report documenting the health
conditions of a neighborhood’s residents.

The class Interest holds information about personal interests related either
to a hobby or work. Every interest has a weight associated in order to measure
how much the user is interested in that specific subject. Moreover, additional
information like descriptions or schedules can be stored. This class is useful
for recommendations or content-filtering applications and can help people to
have a higher quality of life. For example, the task of choosing a movie on
television would be much easier for an elderly person if only desirable options
were presented.

The class Context is used to represent user’s context such as the location,
the time, and the activity the user is performing. One key advantage of defining
1 Protégé-OWL Editor: Available at http://protege.stanford.edu/.

http://protege.stanford.edu/
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Table 1. AATUM ontology main classes

Concept Description Example values

User The user of the system “User John”

User profile Default profile associated to
preferences of one particular
user

“John DefaultProfile”

User conditional
profile

Conditional profile associated to
the user’s context describing
situation-dependent preferences

“John SleepingProfile”,
“John WeekendsProfile”,
“Noel LivingRoomProfile”

Context Environmental information
related with the user such as
location, time or activity

“Sleeping”, “In the kitchen”,
“Evening”

Personal info Basic user information like
address, contacts, age and
e-mail

“59 Homewood st.” “37 year old”,
“Son’s Tel.: 800-876-5380”

Interest Hobbies or work-related
interests

“Cooking”, “Hockey”, “Science
news”

Preference Individual preferences related to
a service

“Room temperature = 75 ◦F”,
“Text size = LARGE”, “Preferred
media = AUDIO”

Health condition A disorder, disease or injury
diagnosis

“Cerebral palsy”, “Back pain”,
“Diabets”

Medication Medication used in the disorder,
disease or injury treatment

“Lisinopril’, “Simvastatin”,
“Hydrocodone”

Impairment Problems in body function and
structure such as significant
deviation or loss

“Pancreatic dysfunction”,
“Respiratory dysfunction”,
“Reduced mobility joint”

Extent of
impairment

The degree of the impairment of
function or structure

“Mild impairment”, “Severe
impairment”

Activities and
participation

Difficulties the user may have in
executing activities or in
involvement in life situations

“Walking”, “Reading”, “Relating

with strangers”

Capacity level Individual’s ability to execute a

task or an action

“Mild difficulty”, “Severe

difficulty”

the context this way is the possibility of inferring additional information from a
small amount of sensor data. For example, using only the information that the
user is located in his bedroom and it is 01:00 AM, the system can infer that the
user is sleeping and then adapt the ambient in order to give the user a better
night sleep.

The user’s behavior and preferences depend on the temporal and environ-
mental context the user is in. For example, the user’s smartphone should be set
to silent mode during a meeting and to loud mode when the user is at home;
the shower water temperature is likely to be higher in the winter compared to
the summer; the desired ambient luminosity may be set to high in the evening
and to none during sleep time. Thus, it’s crucial to have different profiles related
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to different contexts. This is done through the class ConditionalUserProfile
that is linked to the class Context. The preferences that are unlikely to change
according to the context are linked to a default profile represented by the class
UserProfile, which is the superclass of ConditionalUserProfile.

The most important concepts of the ontology are the classes related to the
user’s health condition and capabilities. Having a complete, uniform, and con-
sistent model of the user’s functioning and disability levels allows correct service
tailoring, and thus a better quality of life for impaired and elderly people.

Information about user health condition, i.e., the disease or disorder diagnosis
is stored in HealthCondition class. As in [3], this information is composed by the
disease/disorder level, its related medication, and its ICD, which is a worldwide
used code. Also, additional information relevant to medical accompaniment or
treatment can be stored. This information could be used, for instance, to give
an analysis of the general health situation of a population group or to prompt
the user about his/her medication schedule.

According to [10], diagnosis of a disease or disorder by itself does not predict
service needs, length of hospitalizations, level of care, or functional outcomes. If
a person cannot perform an activity it may be related to any of various different
health conditions. In other words, it is very hard to infer participation in every-
day life from medical diagnosis alone. This implies that without data about levels
of functioning and disability, we will not have the information needed to prop-
erly assist the user in his daily activities. Therefore, we used The International
Classification of Functioning, Disability and Health (ICF) to model the user’s
functioning and disability levels in a consistent and internationally comparable
way. An excerpt of the class describing user impairments is shown in Fig. 2 while
Fig. 3 presents an excerpt of the class that describes user limitations performing
activities and participation restrictions.

Fig. 2. An excerpt of the Impairment class as shown within Protégé
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Fig. 3. An excerpt of the ActivitiesAndParticipation class as shown within Protégé

We also have used the ICF qualifiers to record the presence and severity
of a problem in functioning at the body, person and societal levels. For the
classifications of body function and structure, the qualifier ExtentOfImpairment
indicates, on a five point scale, the degree of the impairment of function or
structure. The possible values are: no impairment, mild, moderate, severe and
complete. In the case of the Activity and Participation list of domains, the
Capacity qualifier describes an individual’s ability to execute a task or an action
using the same five point scale.

4 Use Case Study

Based on the elderly and people with functional diversity most important
requirements presented in [13,14], two use cases where the ontology can be used
in order to properly assist the user to perform his/her activities of daily living
were defined. First, a short description of the users is given:

Mr. John: Mr. John is a 63 year old retired Professor living alone is his apart-
ment. Though he left his job recently, he still reads scientific news on his per-
sonal computer or tablet. He started to cook as a hobby and a few weeks ago
he started to follow a foreign documentary about Asian cuisine that is broadcast
every Wednesday night. He has a high level of myopia which makes it hard to
read small or distant texts.

Mr. Noel: Mr. Noel is a 81 year old widower living with his daughter. Because he
suffers from cardiac arrhythmia, his heart rate needs to be checked constantly.
His daughter used to assist him with the daily care needs such as giving the
medicines and checking his heart rate, but since she got a new job, Mr. Noel will
have to stay by himself during weekday afternoons.
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Use case 1: Every Wednesday night the system will show a notification in Mr.
John’s smartphone telling him that the documentary is about to start. Moreover,
additional information about the specific episode is shown. If Mr. John confirms
he’s going to watch the documentary, the system will turn on the TV, switch to
the correct channel, set the subtitles to English and adjust its size in order to
make it possible for Mr John to read it comfortably. Also, the room lights are
turned off.

Use case 2: While Mr. Noel is by himself at home, his heart rate is obtained by a
wearable sensor and transmitted wirelessly to the system. This data is compared
with values determined safe by his doctor, and in case of an emergency, both
his daughter and medical staff are notified. Since Mr. Noel takes two different
medications, the system attends to his medicine schedule and prompts him when
medication is required. This is done through the closest electronic device, such
as the living room television or his personal computer.

5 Ontology Usage

Once we have the user model ontology, we need a infrastructure capable of
delivering customizable services available in the ambient. Figure 4 presents an
overview of a service-oriented architecture (SOA) within a smart home that
aims to assist the user with special requirements to have a safe and independent
lifestyle using a combination of context-awareness, user modeling and service
personalization. This architecture is part of our ongoing research and will be
further discussed in future papers.

The data needed for populating the ontological user model is gathered in
several ways. Context invariant data such as personal information, interests and
health condition is acquired during the system initialization by the user or the
caregiver. On the other hand, information such as preferences can be deduced
from previously given information. For example, if the user has a mild hearing
impairment, his preference for volume level should automatically be set to high.

Specifically for collecting the health and disability information, the system
can use one of the two application instruments proposed by the World Health
Organization (WHO). This is another compelling benefit of using the ICF as part
of the ontology. The first one is a checklist with the most relevant ICF categories
which allows the identification and qualifications of the individuals functioning
profile in a straightforward manner. The second one, named WHODAS (WHO
Disability Assessment Schedule), is a generic assessment instrument designed
from a comprehensive set of the ICF items that are sufficiently reliable and
precise for providing a standardized method for measuring health and disability
across different cultures [17]. A unique feature of WHODAS, that distinguishes it
from other disability measures, is its direct association to the ICF. According to
the WHO, the WHODAS 12-item version has an average interview time of only
five minutes, what it makes it a very affordable strategy to collect all necessary
user’s health and disability information.
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Fig. 4. System architecture for service personalization in a smart home

The next subsections depict how the proposed AATUM ontology and the
system architecture are used to provide user optimal assistance with the use
cases introduced in Sect. 4.

5.1 Use Case 1

Mr. John’s interest about the Asian cuisine documentary is stored as an instance
of the class Interest and the documentary’s hours and channel is saved as the
class’s property AdditionalInformation.

Knowing the current day and time, the system searches on the Internet addi-
tional information about the episode and sends to John’s smartphone. After
Mr. John confirms he’s going to watch the episode, the living room television is
turned on and set to the documentary’s channel.

Using the information about his seeing impairment stored as an instance
of the ICF class b210. Seeing along his context information Watching TV,
the system infers the preference Subtitle size: large and saves it as an
instance of the class Preference that is linked to his conditional profile
John WatchingTvProfile.

In the last times Mr. John watched TV, he turned off the room’s lights. This
pattern was learned by the system reasoner using a predefined rule and stored
as the preference Room lightning: dark that is also linked to his conditional
profile John WatchingTvProfile.

An excerpt of the ontology classes instances describing this use case is pre-
sented in Fig. 5.

5.2 Use Case 2

Mr. Noel’s heart disease is stored as an instance of the class HealthCondition, as
it’s ICD code (I49.9) and medication schedule. The heart rate values determined
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Fig. 5. Ontology classes instances for Use case 1

Fig. 6. Ontology classes instances for Use case 2

safe by his doctor are stored as the class’ property AdditionalInformation.
His daughter’s and hospital’s telephone number, as his address, are saved in the
class PersonalInfo. This way, when his body sensor detect unsafe values, the
system sends a text message notifying his daughter and calls an ambulance to his
house. After attending his medicine schedule, the system determines the device
where the notification should be displayed using his context information stored
in Location, that was obtained through presence sensors.
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An excerpt of the ontology classes instances describing this use case is pre-
sented in Fig. 6.

6 Conclusion

In this paper we have presented the AATUM, a novel ontology for user modeling
in the field of AAL. We have demonstrated, through two case studies, how the
proposed ontology is used to properly assist the elderly with their activities of
daily living in a smart home, achieving a safe and independent lifestyle.

The use of ontologies for user modeling within AAL is not new, but the related
works fail in the representation of user health condition, functioning, and disabil-
ity, which are essential components to properly provide optimum assistance for
the elderly and for people with special requirements. In the AATUM ontology,
the user is the central concept and is described by his/her static and dynamic
properties such as personal information, interests, health condition, etc. The
AATUM ontology main feature is the use of the ICF, the World Health Organi-
zation’s framework for health and disability, to model the user’s functioning and
disability levels in a consistent and internationally comparable way. Also, the
ICD code is used to properly describe the disease or disorder diagnosis. Another
compelling feature is the use of a conditional user profile related to the user’s
context to describe situation-dependent preferences.

Future work will aim to develop the reasoning mechanism to provide person-
alized services according to the user profile described by the AATUM ontology
and his/her context. Further evaluation will involve the total implementation
and integration of the service personalization component with a smart home
based on a service-oriented and context-aware architecture.
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Abstract. This work proposes a framework and design-space explo-
ration on possible implementations for Multi-Agent based embedded sys-
tems for precision agriculture applications using image processing. For
this application, we evaluate both purely software-based implementations
on different embedded processors, as well as implementations which fea-
ture dedicated peripherals for image processing implemented in FPGA.
All of the implementations feature agent capabilities provided through
the JADE Framework. The proposed Reconfigurable hardware Agent
framework features capabilities which allow it to offer high performance
for applications such as high resolution image processing. We consider
the impact of JADE agent migration to an FPGA platform and evaluate
the impact of partially reconfiguring the FPGA in this application. The
proposed framework is evaluated in an application of use of UAVs for
precision agriculture. A faster execution for the image processing algo-
rithms and detection of points of interest (POI) allows for processing
images of higher resolution, which may help the accuracy of POI detec-
tion. It may also allow for processing an increased number of images in
real-time or improve the autonomy of the UAVs.

1 Introduction

Multi-Agent Systems (MAS) are currently a technology targeted for applications
which require flexibility, robustness and reconfigurability [12]. Due to their char-
acteristics, there is interest in application and research about MASs in several
fields, such as industrial applications [8], area surveillance [11], Unmanned Aerial
Vehicle (UAV) missions [17], security [10], smart grids [18], among others.

While this technology is already finding its way into the industry, there are
still a drawbacks that hinder large scale application of Agent concepts in indus-
try, such as lack of development tools and standards, lack of skilled design, engi-
neering and maintenance personnel, and many others [8]. Another issue regarded
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Götz et al. (Eds.): IESS 2015, IFIP AICT 523, pp. 15–26, 2017.
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as a challenge for MASs is real-time control [13]. There have been recent studies
in this area as described in [5,7].

One common method for implementation of agents is the Java Agent Devel-
opment Framework (JADE) framework. JADE is a well known Agent framework
which simplifies the implementation of MAS through a middleware that com-
plies with the Foundation for Intelligent Physical Agents (FIPA) specifications,
among other features [2]. JADE allows the agent to be developed in a high level
language (Java), provides management and debugging features and allows easy
agent migration.

Another recent topic in Agent development in the implementation of Agents
in hardware and communication of hardware and software agents. Some works
discuss implementations of MASs with hardware Agents, such as in [1,3,15].
Most of the work in this area results in implementation proposals which allow
only communication between Agents of the same implementation nature (hard-
ware or software) or allow communication between Agents among different imple-
mentation natures only through the use of a custom protocol. Usually, the topic
of migrating agents from software to hardware is also out of scope.

The work described in [3] details an architecture proposal for implementing
hardware Agents and allowing communication and migration between hardware
and software Agents. Hardware agents are composed of an field-programmable
gate array (FPGA) to implement the Agent hardware functionality and a host
processor to provide the bridge between JADE messages and hardware execution.
In this work, a middleware is proposed for managing the FPGA reconfiguration
during Agent migration. Through the use of the JADE framework for both
implementation natures, it enables hardware agents to communicate through a
well known interface and to provide faster Agent execution times.

Some limitations discussed in [3] are that complete FPGA reconfiguration
can be costly and that an external host processor has to be provided. This also
brings the limitation that only one Agent is considered to exist in the FPGA at
a time. FPGA partial reconfiguration was cited as an alternative but was left as
future work. Adding FPGA partial reconfiguration to this work is expected to
reduce FPGA reconfiguration time and increase flexibility, such as in the number
of coexisting hardware agents in a same FPGA.

A further contribution which can be made to [3] is the use of higher
performance methods of communication between the host processor and the
Agent function in FPGA. The proposed middleware relies on Programmed
Input/Output (PIO) register accesses, which becomes suboptimal when transfer-
ring larger amounts of data such as high resolution video or images. Through the
use of Direct Memory Access (DMA) communication, for instance, high perfor-
mance image processing capabilities can be added to the proposed architecture.

This work can be regarded as an extension to [3], and proposes a new frame-
work, through the addition of higher performance methods of communication
between the host processor and the FPGA.

The proposed framework is evaluated through a study case regarding the use
of UAVs on a precision agriculture application. Aerial images obtained by UAV
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are processed using a segmentation algorithm which executes the segmentation
of crop and soil pixels. The execution time is evaluated on different platforms
through the framework to evaluate the possibility of executing it on an embedded
hardware on board the UAV.

This paper is organized as follows: Sect. 2 presents the proposed framework
and discusses the proposed implementation in detail. Section 3 further discusses
the applications and challenges of using UAV for precision agriculture. Section 4
presents experimental results for the evaluated implementation options. Section 5
presents conclusions and discusses future works.

2 Reconfigurable Hardware Agent Framework

This work proposes an architecture in order to allow image processing Agents
to be implemented in hardware through the use of an FPGA. The Agent is
composed of a host processor which is capable of running the Agent framework,
as well as the FPGA.

This architecture is targeted at embedded systems which have reconfigurable
hardware capabilities such as an FPGA. The high performance capabilities are
targeted to applications which need to transfer large amounts of data between
host processor and FPGA, which is a requirement in applications such as high
resolution image processing. Figure 1 shows a detailed view of the architecture
inside the FPGA, where the hardware Agent is implemented.

Fig. 1. Hardware components block diagram. Note that besides memory, all of the
other components are logic instantiations on the FPGA.

This architecture makes use of a soft core processor inside the FPGA itself.
MicroBlaze is a soft core processor provided by Xilinx, which is easily extended
with peripherals through the Xilinx Embedded Development Kit (EDK), so it
is a suitable option for this architecture. MicroBlaze offers limited processing
power for processor intensive algorithms such as image processing, however it
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can be used for this architecture as the expensive algorithms can be implemented
in FPGA and interfaced easily with it. The use of a lower end processor for this
application is also more advantageous as it demands less resources to perform
its function, which is to only provide a bridge interface between the framework
and the FPGA.

Through the use of the Xilinx EDK, custom peripherals can be added to the
MicroBlaze peripheral bus. There are a few different ways to connect custom
peripherals to the MicroBlaze, however the recommended way is to add devices
to MicroBlaze is through the Advanced eXtensible Interface (AXI) [20]. AXI is
part of the Advanced Microcontroller Bus Architecture (AMBA) specification
and is currently a standard specification for implementing peripheral devices.
These devices can be either AXI4, AXI4-Lite or AXI-Stream, each of which has
its own application.

In order to provide high performance for image processing, the architecture
features the transfer of images to the FPGA through DMA transfers. An option
would be to implement it using PIO (or register-based accesses), but that is very
inefficient to transfer data such as an image to the FPGA.

Performance can be maximized if the peripheral is able to read the image from
the buffer and write it back without software intervention at all. For example
if the peripheral does not interrupt the processor after the whole read/write
process. The current implementation uses full AXI with burst capability, in order
to provide the best performance.

Figure 2 demonstrates the operations which can be made by the Agent appli-
cation to the driver in order to perform image processing in FPGA. The first
step is to obtain an mmap buffer from the driver. The application must use the
mmapped buffer because it is allocated by the kernel as a physically contiguous
buffer in DMA’able memory. For example, the device may need a physically con-
tiguous buffer it if does not support scatter-gather functionality, and the driver
is responsible for ensuring this in behalf of the application. The application must
then load the image to be processed to the mmapped buffer. If the image came
packed in an image file format and must be unpacked by a file format library, the
mmapped buffer can be passed directly to the file format API to avoid an addi-
tional memory copy. The application must then request to the driver to initiate
the processing step in the device. In this proposal, the same input buffer will be
overwritten with the output processed image, in order to reduce the amount of
DMA memory reserved for the application. If the application intends to use the
unprocessed image later, it must perform a copy before the processing step. The
driver must provide a way to tell the application when the processing is done.
This can be implemented as a state which can be polled or through a blocking
operation such as a blocking read which will only return when the operation is
done. When the driver returns that the operation is finished, the application can
read the processed image back from the same buffer. After working with the pro-
cessed image, the application can unmap the memory mapped buffer (munmap)
and finish.
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Fig. 2. Operations performed by the Agent application in the driver in order to perform
image processing in FPGA.

As also demonstrated by Fig. 2, the Agent application is also given the
possibility to reconfigure the FPGA by sending an alternate bitstream to a
reconfigurable region, through the Hardware Internal Configuration Access Port
(HWICAP) driver.

Another performance boost can be obtained if the peripheral can be designed
to match the image encoding format that software uses, so that it eliminates
further image manipulation by software later. If the peripheral is able to work
with images as they are output by the software encoding/decoding libraries, this
makes software implementations much simpler and faster.

If the peripheral supports only contiguous memory buffers for DMA, a large
DMA buffer may be required for the image to be read from and written to by
the peripheral. Recent Linux kernel versions provide the Contiguous Memory
Allocator (CMA) for large buffer allocation. Nevertheless the memory is going
to be locked and be unavailable for the rest of the system. Note that this might
not be a problem for an application specific embedded system.

An alternative to large DMA buffers is the addition of scatter-gather func-
tionality to the peripheral. Scatter-gather makes use of a descriptor in memory
which tells the peripheral the location and size of scattered DMA buffers in
memory, allowing the peripheral to use a set of smaller, non-contiguous buffers.

The architecture also includes the possibility of using FPGA partial recon-
figuration in order to dynamically change the image processing algorithm in
the peripheral. Note that inside the FPGA, there can be as many reconfig-
urable regions as necessary, but a first thing to note is that there must be a
bitstream for each reconfigurable region for each netlist. That is, even if more
than one reconfigurable partition is expected to use a same netlist description,
each physical reconfigurable partition must have a bitstream specifically gener-
ated for it. Each partial reconfiguration bitstream depends on the size of the
partition only.
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As will be shown in Sect. 4, reconfiguration time for partial bitstreams can be
considerably lower than reconfiguring a whole FPGA, so this is another advan-
tage of using partial reconfiguration.

Another benefit of using partial bitstreams is that the static logic only has
to be implemented once, and dynamically reconfigurable modules can later be
added to the design by only reimplementing the reserved block.

JADE offers the possibility of Agent migration, which can be exploited in
this architecture through the use of partial reconfiguration. Initially, JADE can
be used in such a way that whenever an Agent migrates to a platform containing
a free reconfigurable block, that it reconfigures the block to perform its function
in hardware.

3 Case Study: UAV in Precision Agriculture

The case study presented on this paper is a precision agriculture application
using UAVs. These UAVs are used as low altitude sensing platforms, used to
acquire images from crops in order to identify crops characteristics. The main
advantage of such systems is their low cost and easy deployment, compared
to other solutions such as satellite based sensing. However, using commercial
UAVs on such applications may require new processing units in addition to the
existing ones, which are usually responsible for flight control and navigation.
These processing units may be part of mission control system, allowing the
execution of more sophisticated tasks such as image processing or path planning
onboard the UAV [4]. An example of such a mission control module which can
be attached to an UAV is presented on Fig. 3.

Fig. 3. A sample mission control module composed by two Raspberry Pi computers
with visible light and infrared cameras.

Crop images acquired from UAVs may have high spatial and temporal res-
olution, and each flight mission may yield a large quantity of high resolution
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images that need to be analyzed in order to obtain useful data [21], such as
points of infestation or drought. In order to obtain such information about the
crop condition, image processing algorithms are widely employed. However, these
algorithms may demand a large amount of computational power, and executing
them on hardware onboard the UAV may impact its energy consumption. The
execution time of these algorithms may also be of critical importance if time
constraints exist during a given flight mission (for example, a mission where the
image processing output is being used as input on the UAV flight path planning).
If the execution time of the image processing algorithm is to be considered as
the main concern, it is important to note that this sort of algorithm is a typical
task that can usually be accelerated when implemented on hardware, and so it
is interesting to study if the use of FPGA alongside the mission control system
leads to interesting results.

3.1 UAV and Multi-Agent Systems

Scenarios with multiple UAVs may benefit from MAS implementations. For
instance, some authors tackle the coordination of UAVs swarms during search or
sensing missions using Agents [6,14]. In this paper scenario, an Image Process-
ing Agent is studied, which may be onboard an UAV and provide information to
other Agents with different roles (such as path planner Agent or another sensing
Agent). Some studied features of this Agent are its migration capability and the
possibility of it carrying out a partial FPGA reconfiguration, when this Agent
is implemented on a platform containing such processing unit. Agent migration
may perform an interesting role, where a given UAV may be substituted (due to
low battery or failure, for example) and a new UAV may continue to perform its
tasks. FPGA reconfiguration, alongside Agent migration, allows the existence of
multiple hardware Agents on a single FPGA.

The Agent is implemented using the JADE [2] framework due to its char-
acteristics: the Agent is developed using a high level language (Java), it is a
well known framework for Agent development with management and debugging
features, and allows easy Agent migration.

3.2 Image Processing Algorithm

The example algorithm used to evaluate the framework proposed on this work
executes the segmentation of a young wheat crop image by discriminating
between soil and wheat crop. The first step of the algorithm is the conversion
from the RGB colorspace to the excess green index [19], based on Eq. 1,

exg = 2g − r − b, (1)

where r, g and b are the red, green and blue channels. After the index calculation,
a 5× 5 Finite Impulse Response (FIR) filter with a homogeneous weight mask
is convoluted with the image in order to smooth it. Finally, crop and soil are
segmented through the application of a simple threshold.
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(a) Sample crop image. On the left, wheat
rectangular wheat patches. On the right,
a continuous wheat crop with degraded
regions.

(b) Result of the segmentation algorithm.

Fig. 4. Segmentation algorithm example. (Color figure online)

This simple algorithm could be used to detect low developed wheat plants
among crops. The ratio between the total number of “green pixels” and “soil
pixels” would be able to give an indicator of the vegetal coverage of the frame,
with low ratios indicating possible problems at a given location. Figures 4(a) and
(b) represent an obtained image and its corresponding post processed version.

4 Results

This section presents and discusses results of a few different implementations
of the algorithm described in Sect. 3. Three target systems were considered: A
mainstream Desktop Personal Computer (PC), a Raspberry Pi B+ computer,
and a Xilinx ML605 board with a Virtex-6 FPGA. These results were obtained
by running the algorithms separately but still not in the JADE environment. All
of the experiments were run on the specified target systems in order to obtain
the presented results.

A Raspberry Pi B+ computer [16] was considered as a viable processing unit
on the case study of this paper, so it is important that its characteristics are
presented on this section. A Raspberry Pi is a credit card sized computer with
integrated 5MP camera that is suitable for use along UAVs due to its low weight
and small dimensions. The model used on this paper is a Raspberry Pi B+ model
with an ARM1176JZF-S at 700 MHz. A notable feature of the Raspberry Pi
for this application is the ARM NEON extension, which provides the processor
with Single instruction, multiple data (SIMD) instructions which may accelerate
vector operations such as image processing. It is presented as a mission control
module on Sect. 3.

The second target is a Xilinx ML605 board, has at its core a Xilinx Virtex-6
FPGA (XC6VLX240T). Inside the FPGA, the board was loaded with a Xilinx
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MicroBlaze soft core processor. The MicroBlaze version used is 8.40.a from Xilinx
EDK 14.2, running at 100 MHz. The MicroBlaze processor communicates with
its peripherals through an AXI interconnect which also runs at 100 MHz. The
board provides 512 MB of DDR3 memory which is also used by the soft core
processor. The soft core processor is configured with a full Memory Management
Unit (MMU), which allows it to run Linux. On top of Linux, it runs the JamVM
Java Virtual Machine (JVM) through which it is capable of running JADE.
JamVM is an open-source JVM that aims to support the latest version of the
Java specification, while at the same time being compact [9].

In order to have a reference for performance evaluation, the algorithm was
also tested on a Desktop PC with an Intel Core I5-2450M processor at 2.50 GHz,
with Ubuntu 14.04 as operating system.

The image processing algorithm was implemented primarily in the MATLAB
environment. The same MATLAB model was used to generate both HDL and
C code. In the Raspberry Pi and PC systems, the software version of the code
was executed. In the ML605 system, the HDL code was inserted inside an AXI
peripheral through the Xilinx EDK and the algorithm was executed in hardware
through the FPGA.

Table 1 present the execution time of the image processing algorithm on
the different systems. The measured time corresponds to the image process-
ing algorithm execution time, excluding the time used for image capture or
image file opening. Three versions of the algorithm with different image resolu-
tions were tested in all of the three targets. Images were tested in resolutions
256× 256, 1920× 1080 and 2592× 1944. The 2592× 1944 resolution was chosen
as it matches the resolution of the 5MP camera provided by the Raspberry Pi.

Table 1. Execution time for different resolutions of the image processing algorithm,
excluding the time used for image capture or image file opening.

Resolution Processing time (ms)

Desktop PC Raspberry Pi ML605 (FPGA)

256× 256 4 110 7.99

1920× 1080 131 4290 21.87

2592× 1944 333 10510 42.01

The software implementations were run as simple Linux applications and
therefore may include noise coming from multi-tasking. It should come off as no
surprise that the execution in FPGA is faster, but a few more observations can
be made about these results.

The Raspberry Pi results show that it is capable of performing image pro-
cessing relatively fast for low to medium resolution sizes, and would be able to
handle a low rate of images to process in real time.

It is notable that the FPGA times are smaller even than the Desktop PC
results for the higher resolution, even considering that the FPGA peripheral
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runs at only 100 MHz. It must be considered that the AXI peripheral is capable
of performing large bursts to memory and to perform the whole operation in
a single cycle after the pipeline is full, in parallel with memory accesses. It is
reasonable that the Desktop PC performs better for the small resolution image
as it can also provide high performance through SIMD instructions. For the
higher resolution, the software execution may suffer from issues such as cache
misses and scheduling in the processor, which may add to the total time.

Table 2. Resource requirements and reconfigurable partition size for different resolu-
tions of the image processing algorithm.

Resource Available 256× 256 1920× 1080 2592× 1944

Required % util Required % util Required % util

LUT 12480 1651 14 4367 35 4481 36

FD LD 24960 711 3 1372 6 1378 6

SLICEL 1680 221 14 586 35 602 36

SLICEM 1440 193 14 506 36 520 37

RAMBFIFO36E1 36 2 6 5 14 10 28

The JADE framework also provides the Agent migration capability, which
can be further exploited in the ML605 platform through the use of partial FPGA
reconfiguration. For this experiment, the algorithm was implemented in such a
way that the Agent application is able to switch the hardware in the reconfig-
urable region between the three different image resolution implementations of the
algorithm. One additional interesting result regarding this is the reconfiguration
time required to change this algorithm. As stated in Sect. 2, the reconfiguration
time is only dependent of the reconfigurable partition and partial bitstream size.
For a partition size which is roughly three times larger than our larger image
processing algorithm, the average reconfiguration block time was measured as
500 ms. This was measured on the ML605 board by performing partial recon-
figuration on the block described by Table 2, using the HWICAP driver on the
board. Table 2 shows the results in resource requirements and partition size.

The similar work presented in [3] shows times in the order of 20 s for a
full agent migration to hardware including dynamic FPGA configuration, so
500 ms can be considered as a reasonable gain. Given that this is a relatively
large partition with a large portion of the FPGA reserved for it, it is probably
acceptable for Agent applications to perform this reconfiguration on-the-fly. An
example application is as demonstrated by this work, where the hardware can
be reconfigurated to operate optimally with a given image resolution for image
processing.
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5 Conclusion

In this work, an architecture proposal for a MAS involving reconfigurable hard-
ware was presented. The architecture was detailed from a practical perspective
and it was validated in a case study of an embedded image processing system for
precision agriculture using UAVs. The case study algorithm was also described
and experiments implementing the case study algorithm were performed in three
different platforms, of which one is the reconfigurable hardware architecture. The
use of partial reconfiguration in this case study was also implemented and eval-
uated. The proposed framework and experiments are modeled considering the
JADE framework. The JADE framework is able to run on all of the presented
platforms however it is still not considered in the presented results.

The experiments were performed with both low and high resolution images,
and have shown performance gains for the implementation in FPGA even at a
relatively low frequency of operation. The use of DMA operations with the AXI
bus has shown to be efficient for transferring images to the image processing
algorithm implemented in FPGA, and this is a key factor to allow the archi-
tecture to maximize performance. The increased performance of the proposed
architecture may also allow for processing an increased number of images in
real-time or to improve the autonomy of the UAVs.

The proposed architecture is able to communicate with JADE agents through
the use of its host processor, which is a soft core processor. The use of the soft
core processor has proven to be worthy as it provides enough resources to run
the Agent framework and to interface to the FPGA in an easy and efficient way.

Measurements of reconfiguration time were performed and it is noted that
reconfiguration time is low even for reconfiguring a significative area of the
FPGA. The addition of partial reconfiguration also adds the possibility for multi-
ple hardware agents to coexist independently in the same FPGA platform, which
enhances the previous work where the entire FPGA had to be reconfigured. The
JADE framework can take advantage of reduced FPGA partial reconfiguration
time in order to provide better agent migration from and to hardware.

Further advancements in this work include evaluation of the energy consump-
tion of these implementations in an embedded target. This work has evaluated
the performance of the image processing algorithm itself, however end-to-end
tests including the JADE framework and actual deployment of the FPGA in the
UAV must still be performed.
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Abstract. In this paper, we introduce an approach for combining
embedded systems with Service-oriented Computing techniques based
on a concrete application scenario from the robotics domain. Our pro-
posed Service-oriented Architecture allows for incorporating computa-
tional expensive functionality as services into a distributed computing
environment. Furthermore, our framework facilitates a seamless integra-
tion of embedded systems such as robots as service providers into the
computing environment. The entire communication is based on so-called
recipes, which can be interpreted as autonomous messages that contain
all necessary information for executing compositions of services.
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1 Introduction

Embedded Systems such as mobile robots are usually restricted in their computa-
tional capabilities. Although technology is progressing and computing capacities
for embedded systems are gradually increasing, algorithms applied to embedded
systems usually have to be highly specialized in order to ensure feasibility. Fur-
thermore, although sophysticated algorithms may already exist for a problem
at hand, those algorithms might be too computationally expensive. Consider,
e.g., an autonomous robot that has to navigate based on visual information in a
non-deterministic environment. Camera images have to be processed (at least in
soft real-time), natural or artificial landmarks have to be detected, and a robust
localization mechanism has to estimate the robot’s pose.

In our work, we investigate to what extend techniques from Service-oriented
Computing (SOC) can be applied to the field of embedded systems in order
to overcome these limitations and consequently increase the functionality of
computationally restricted embedded systems. SOC represents a new gener-
ation distributed computing platform [4]. It is a cross-disciplinary paradigm
for distributed computing that gradually changes the way software applications
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are designed, delivered, and consumed. For our work, that means, that compu-
tational expensive functionalities are outsourced into a distributed computing
environment and provided as services to all entities in this environment. At the
same time, we investigate how embedded systems can be integrated as service
providers into the entire environment, so that distributed applications can make
use of them.

In this work, we make use of a concrete application scenario in the robotics
domain: autonomous, mobile robots have to accomplish an objective, which they
could not solve under normal circumstances due to their limited computational
capabilities. Apart from the robots, the realized system makes use of several
servers for computational expensive tasks. That is, functionality for tasks such
as an Extended Kalman Filter (EKF) [8] based localization are provided as
services. The whole system builds upon a Service-oriented Architecture (SOA),
which handles the overall communication.

The remainder of this paper is organized as follows. Section 2 introduces the
case study including the BeBot as embedded system and the concrete applica-
tion scenario. Section 3 introduces our SOA framework as basis for the entire
system. The node-based architecture that enables a BeBot to act autonomously
is described in Sect. 4. Section 5 presents the integration of the BeBot into the
SOA and briefly describes the overall system that realizes the application sce-
nario. Section 6 finally concludes the paper.

2 Case Study

The main purpose of our case study is to provide a concrete application context
for identifying promising application possibilities of techniques from Service-
oriented Computing to the field of embedded systems.

Embedded System: Miniature Robot BeBot. The BeBot is a minia-
ture chain driven robot, which has been developed at the Heinz Nixdorf Insti-
tute of the University of Paderborn [5]. Despite its small size (approximately
9 cm× 9 cm× 8 cm), it is equipped with modern technology such as an ARM
Cortex-A8 CPU with a maximum frequency of 600 MHz accessing up to 256 MB
RAM of main memory for running an embedded Linux environment. By illumi-
nating its so-called light guide in arbitrary colours during runtime, the miniature
robot can express its current state to human observers and other robots. The
network based TCP/IP communication is enabled by an integrated W-LAN
module.

In order to extend the field of view for our application scenario, we replaced
the built-in camera by a Firefly MV USB camera attached on top of the BeBot.
Furthermore, we additionally replaced the integrated W-LAN chip by a custom-
ary W-LAN USB stick, resulting in a significantly higher network performance
(117 kb/s vs. 2 mb/s). Attaching all devices on top of the BeBot finally leads to
the rather unconventional construction depicted in Fig. 1a.
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(a) BeBot

BeBot

Landmark
Object

(b) Environment (c) Landmarks (d) Object

Fig. 1. Ingredients and setting of the application scenario. (Color figure online)

Application Scenario. The objective to be solved in the application scenario
is (i) to utilize BeBots as mobile physical sensors in order to locate artificial
objects (henceforth simply referred to as objects) in a predefined yet partially
non-deterministic environment and to (ii) reconstruct 3-dimensional models of
these objects based on images taken by BeBots. Figure 1b shows the setup of
the scenario environment. The system may use several BeBots to fulfil the task
stated above. In order to facilitate the localization process of the BeBots, the
playground contains several artificial, colour-coded landmarks (cf. Fig. 1c).

The objects consist of fixed sized cubes with blue and magenta coloured
faces on the sides. The top and bottom face are coloured in black (cf. Fig. 1d).
Furthermore, the edges of the cubes are also coloured in black to allow a better
distinction between separate cubes next to each other.

3 Service-Oriented Architecture

The main goal of our Service-oriented Architecture (SOA) is to provide a dis-
tributed computing framework for all participating entities such as BeBots or
dedicated servers. The framework enables the BeBots to outsource computation-
ally expensive tasks, while it simultaneously enables the entire system to make
use of the BeBots as physical sensors in the environment.

Overview. The key concept of our framework are services. Services are dis-
tributed and usually stateless components that encapsulate distinct functional-
ity [3]. For addressing a composition of services, we developed a uniform and
data-driven protocol based on so-called recipes. Recipes are autonomous mes-
sages travelling through the network containing all information and data to
complete a complex task step by step. The main idea is that a service receives
a recipe, extracts the required data, processes this data, appends the processed
data (i.e., the result) to the recipe, and finally forwards the updated recipe to
the next services defined in the recipe. Please note that we use the terms recipe
and message synonymously in this work.



30 A. Jungmann et al.

’recipe ’ :
’id’ : 0,
’service ’ : ’GaussianFilterService ’,
’provider ’: (’192.168.0.1 ’, 5000) ,
’params ’ : ’k_size ’ : (-1, ’k_size ’),

’image’ : (-1, ’image’)
’id’ : 1,
’service ’ : ’DisplayImageService ’,
’provider ’: (’192.168.0.2 ’, 5000) ,
’params ’ : ’image ’: (0, ’result ’)

’data’ :
(-1, ’k_size ’) : 3,
(-1, ’image’) : [...]

(a)

Service Provider

Services Local 
Behaviours

Queue Manager

Dispatcher

Network

(b)

Fig. 2. (a) Exemplary recipe. (b) Fundamental components of our SOA.

Another building block of our SOA are service providers, which realize the
environment for executing services. Service providers are interconnected via net-
work and take care of the recipe packing, unpacking, and parsing, execution
management, as well as the routing and transmission of a recipe to the next
service-provider (if necessary). In fact, our SOA corresponds to a network of
loosely coupled service providers. That is, each entity (BeBot or server) partic-
ipating in the overall system features a local management unit in terms of a
service provider instance.

Recipes. A recipe is a data driven construct to define (i) an order in which
specific services have to be executed and (ii) how input and output parame-
ters of the services have to be connected to achieve a certain goal. That is, a
recipe defines and describes an orchestration of services. Initial input as well as
intermediate and final result values are stored in a dedicated data section of the
recipe.

Figure 2a shows an excerpt of an exemplary recipe. The ‘recipe’ section
contains two services. The first service (‘id’: 0) is provided by a service
provider located at IP 192.168.0.1 and accessible via port 5000. The service
implements a Gaussian filter for reducing image noise. The input parameters
(kernel size ‘k size’ and ‘image’ to be processed) are stored in the ‘data’
section. The second service (‘id’: 1) displays the processed image on a dif-
ferent entity in the network. The corresponding input data ‘image’ is not yet
available in the recipe, but will be stored with key (0, ‘result’) by the first
service in the data section.

Service Provider. A service provider resides directly on top of the network
and consists of multiple components on three different levels of abstraction
(cf. Fig. 2b). The dispatcher implements the application-level protocol for send-
ing and receiving messages over the network. On top of this, the queue man-
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Fig. 3. Internal processes of a service provider.

ager handles parsing of recipes, manages local services, and acts as intermediary
between them. The top layer consists of individual services and so-called local
behaviours.

Figure 3 gives a detailed overview of the processes within a service provider.
The dispatcher is responsible for the communication between different service
provider instances among the network. Each message is serialized before it is
sent across the network, and is de-serialized after it was received. In order to
allow concurrent message processing, each message reception and sending task is
handled in an individual thread. After de-serialization, the dispatcher puts the
respective recipe into the task queue of the queue manager.

The queue manager is the heart of a service provider: Recipes are parsed
and processed. That is, the next service to be executed and the associated input
parameters are extracted from the recipe. The extracted information is put into
the input queue of the corresponding service type. Service instances of the same
type are polling on this queue. Whenever data is available in a queue, one service
instance takes the data, processes it, and puts the result data into a public
result queue. The queue manager appends the computed result value to the
corresponding recipe. In order to keep track of which result belongs to which
recipe, unique task ids are generated and stored in a so-called task table. In this
way, the execution of services is strictly separated from any recipe parsing.

After being repacked, a recipe is processed by the routing component of the
queue manager in order to determine the next recipe-specific processing step. If
the next service is located at the same service provider, the recipe is put into the
task queue of the queue manager again. Otherwise, the recipe is forwarded to
the dispatcher, which takes care of sending the recipe to the respective service
provider in the network.
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Fig. 4. Node-based software architecture of a BeBot. Ports are not labelled.

Services vs. Local Behaviours. Within our SOA, there are two main types of
computation units: services and local behaviours. These modular units provide
a standardized way of computation steps that can be accessed and combined by
means of recipes. They form the main logic of every application that uses our
SOA for distributed computing.

According to the design principles of Service-oriented Computing [3], ser-
vices provide a stateless execution of a predefined task. However, in order to
cope with inherent stateful tasks such as localization, we introduce so-called
local behaviours as “stateful services”. In contrast to services, which are only
executed if input data is available, local behaviours can be executed periodi-
cally. Furthermore, local behaviours may have multiple input queues and have
full control over them. That is, behaviours are not automatically executed when
new recipes are available, but recipes are explicitly taken out of the input queues
by the behaviour according to its application logic. Finally, in comparison to ser-
vices, local behaviours can make use of other services by creating and emitting
recipes. That is, local behaviours access the routing component of the queue
manager (cf. Fig. 3) and directly inject new recipes into the overall system. This
concept allows to seamlessly integrate stateful and more complex functionality
into the SOA framework.

4 BeBot - Basic Node-Based Architecture

The robot’s software system for autonomous behaviour is built based on a node-
based software framework that facilitates the periodic execution of tasks. Figure 4
gives an overview of the node hierarchy of the system. Ports and port intercon-
nections implement the data flow between nodes. The control flow corresponds
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to the applied computation model such as sequential execution. Furthermore,
nodes can be initialized as a Thread with a distinct frequency. That is, execut-
ing a node’s application logic can be decoupled from other nodes. Copying the
data from one port to another, however, always depends on the defined compu-
tation model of the corresponding parent node.

Brain: The Brain node is the root node of the hierarchy. The Brain node’s own
input and output ports serve as a connection between node architecture and the
SOA framework of the overall system. The computation model corresponds to the
following sequence: [Vision, Localization, Behaviour, Move, Light Guide]. That
is, data is copied among the ports based on the defined port interconnections
according to the order of the nodes in this list. The Brain node itself is not a
Thread. Its compute handler is explicitly called by a Wrapper that glues together
node architecture and SOA framework (cf. Sect. 5).

Vision, Camera, and Image Processing: The functionality for capturing and
processing images is split up into three nodes: Camera node, Image Processing
node, and Vision node. The Camera node implements the image acquisition step.
Captured images are sent to the Image Processing node. However, if triggered
by its input port, single snapshots are additionally sent to the Brain node. In
this manner, whenever necessary, images can be provided to services. The Image
Processing node extracts scenario specific information from captured images by
means of a colour-based segmentation algorithm [7] and creates landmark- and
cube-data. Also, the intersection points that are used for the collision avoidance
are calculated in this node.

The Vision node implements no application logic but encapsulates the dis-
tinct functionalities of the Camera node and the Image Processing node. Further-
more, the Vision node is running threaded to decouple the vision functionality
from other functions such as localization. This is necessary, since the vision node
is the slowest node within the hierarchy: It runs with 3–5 Hz, depending on the
amount of features that were detected within an image.

Light Guide: The Light Guide node implements the interface to the robot’s
light guide and offers different functions. For example, the light guide gives a
visual feedback to indicate that a BeBot has captured an image for the 3D
reconstruction process: After an image was taken, the robot blinks three times.

Localization: The Localization node provides the currently estimated position
of the robot to the Behaviour node. Due to the high computational effort of the
necessary algorithms, an EKF-based estimation of the robot position cannot be
done on the BeBot. As a consequence, the functionality is outsourced into a local
behaviour within the SOA (cf. Sect. 3). The Localization node gathers the data
coming from the Vision node and the odometry data from the Move node and
transmits it to the localization provider.
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Behaviour and Move: The Behaviour node coordinates the robot’s behaviour.
In each computation cycle, it executes one step of a behaviour state machine [1]
according to the currently assigned task in order to obtain the next move com-
mand. A move command is composed of a translational velocity and a heading
direction, and is subsequently passed on to the Move node. The Move node
implements an abstraction layer for the actuator’s related functionality by map-
ping a move command to the actual chain speeds. It also incorporates collision
avoidance techniques based on an efficient occupancy grid map approach [2].
Furthermore, the Move node gathers the raw odometry data and transmits the
data to the Localization node in order to make a local pose prediction.

5 Integration: Service-Oriented Robotics

So far, we presented the application scenario, our proposed SOA framework, and
the BeBot with its node-based software architecture for autonomous behaviour.
We now describe how BeBot architecture and SOA framework are integrated.
Furthermore, we briefly describe the overall system that realizes the application
scenario.

BeBot Wrapper: A Local Behaviour. A BeBot is offering services such
as “drive to position” and demanding services such as EKF-based localization
at the same time. To enable a BeBot to interact with the SOA, a so-called
BeBot Wrapper is introduced as adapter. It allows for passing messages from
the SOA framework to the node hierarchy and offers an interface to the nodes
for emitting recipes into the system (e.g., a recipe that contains gathered data for
the EKF-based localization process). More precisely, the Wrapper implements a
local behaviour in the SOA and explicitly invokes the compute handler of the
BeBot’s Brain node. The wrapper encapsulates the entire node-architecture as
a local behaviour, which runs on a BeBot within the scope of a service provider
instance. After each execution cycle, a blocked service is unblocked if data was
produced for it.

A BeBot (i.e., the service provider instance running on a BeBot) also offers
services. These services can pass data to the input ports of the Brain node
by calling the Wrapper’s delegate methods. For example, if the system wants
a BeBot to drive to a specific position in the environment, the corresponding
service is executed with the desired position as input values. Internally, the
service uses the wrapper to delegate the task to the Brain node and blocks until
it is informed by the wrapper that the task terminated.

Overall System. Figure 5 shows a schematic overview of the basic functional
components. Please note, that only local behaviours are depicted. Stateless ser-
vices (e.g., for image processing) are not displayed. The entire system corre-
sponds to a network of loosely coupled service providers, which are either located
on BeBots or dedicated servers. The application logic is distributed in terms of
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Fig. 5. Overview of the entire system.

services and local behaviours among the service providers. The entire communi-
cation is based on recipes. We already introduced the Wrapper behaviour which
integrates the node-architecture of the BeBot into the overall system. For that
reason, let us take a closer look at the other functional components.

EKF-Based Localization and Mapping: The localization and mapping behaviour
encapsulates the EKF-based localization methods and maintains a global map of
the scenario. For each BeBot in the system, a dedicated instance of the EKF is
created. Each instance receives localization data (e.g., detected landmarks) from
the corresponding BeBot. More concretely, the localization node of a BeBot
gathers the localization data and emits a recipe by using the interfaces provided
by the Wrapper behaviour. After the computation step, the localization and
mapping behaviour emits a recipe with the newly estimated position to the
service provider instance of the corresponding BeBot. Furthermore, a notification
recipe is sent to the GUI behaviour for updating the visualization, and the global
behaviour is notified about newly tracked objects.

GUI: The GUI behaviour is created for monitoring the localization and map-
ping process. The behaviour receives notification updates from the localization
and mapping behaviour and visualizes the current state in a two dimensional
map. The actual GUI is running in a separate Thread created by the behaviour.
Furthermore, the GUI provides some convenient control elements, e.g., in order
to reset the EKF of a BeBot or to manually move a BeBot to a certain position
in the environment.

Global Behaviour: This behaviour is responsible for coordinating the BeBots and
delegating the 3D reconstruction process. It sends recipes including tasks such as
“explore environment and discover objects” or “capture image of side X of object
Y ” to a selected BeBot, which adjusts its strategy accordingly. Whenever the
global behaviour receives a notification about a newly tracked object, it organizes
the reconstruction process. That is, four waypoints for taking images from each
side of the object are created. The waypoints are subsequently used for assign-
ing tasks to the BeBots. Furthermore, the waypoints are also integrated into the
global map for enabling BeBots to identify waypoints in their direct surroundings.
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3D Reconstruction: This local behaviour is responsible for the actual reconstruc-
tion process. If four images of the same object (an image from each side) are
available, the reconstruction process takes place. The resulting 3D model is sub-
sequently sent to the GUI in order to visualize it. A detailed description of the
concrete reconstruction process, however, is beyond the scope of this paper.

6 Conclusion

In this work, we introduced an approach for combining embedded systems with
techniques from SOC. That is, computational expensive as well as coordination
tasks are outsourced as services and so-called local behaviours, and integrated
into a distributed computing environment. While services correspond to stateless
functional components, local behaviours allow for integrating statefull, period-
ically executed functionality into a distributed application. Furthermore, the
presented approach allows for a seamless integration of embedded systems into
a distributed application in order to provide distinct functionalities as services
to other entities.

In the future, starting from our latest results in the On-The-Fly Computing
project [6], we want to investigate to what extend processes such as service
composition (recipe generation) and service integration and deployment can be
automated in our SOA framework.
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Abstract. This work presents a technique for designing of real-time
systems embedded applied to multi-robots scenarios, exploiting High-
Level Architecture (HLA) standard for interoperability and simulation
platforms, and Robot Operating System (ROS) with Robot-in-the-Loop
simulations. The goal is to integrate existing consolidated standards and
tools, rather than separately design and later hardly integrate. Through
HLA, heterogeneous simulations can be synchronously co-simulated,
enabling the joint execution of consolidated embedded system design
tools for dedicated tasks, like, network simulation, circuits and algo-
rithms design, etc. In parallel, ROS simplifies the task of creating com-
plex robots across a wide variety of platforms. A bridge has been devel-
oped to provide an interface among HLA and ROS, exchanging data and
keeping both synchronized. As proof of concept, the Ptolemy framework
for Embedded System design has been integrated to Stage, a ROS com-
patible robotic simulator for 2D environments. This innovative integra-
tion has been successfully developed and validated, which enables future
generalizations and opens opportunities to co-simulation of diverse tools
for designing of embedded and robotics systems.

Keywords: Co-simulation · Robotics · Embedded systems
Real-time systems

1 Introduction

Robotics is a multidisciplinary field, which demands cooperation of expertises
and technologies from different research fields, i.e., Mechanics, Electronics, Arti-
ficial Intelligence, Embedded Systems. Each one brings consolidated methodolo-
gies and technologies that must perfectly work together.

Integration of different design tools, simulators and physical devices are not
an easy task. Different efforts mainly formed by large communities of industrial
and academic partners have successfully developed standards and tools to fill
this gap.
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When Embedded System Design is applied to Robotics normally gather dif-
ferent components with heterogeneous Models of Computation (MoC). Thus,
tools with higher abstraction power are necessary in order to model, simulate
and test all such MoCs, e.g., Finite State Machines (FSM), Synchronous Data
Flow (SDF), Discrete Events (DE) and Continuous Time (CT). The Ptolemy
II framework [1] is an example of a simulation and modeling tool intended to
support system designs that combine different MoCs.

In 2007, a group of scientists, industries and engineers created an open-
source robotic framework called Robot Operating System (ROS) [2]. It is a
flexible framework for designing robots, providing a collection of tools, libraries,
and conventions that aim to simplify the task of creating complex and robust
robot behavior across a wide variety of robotic platforms. There are many other
initiatives for merging different robot platforms [3].

Even more, high performance, availability and reliability of robots have turn
them into increasingly complex computing systems. Dealing with such complex-
ity requires most effective designing approaches, for example, using Hardware-in-
the-loop (HIL) simulation, which means to add the real device in the simulation
loop. This can enhance the quality of testing, reduce design time and anticipate
usability tests immersed in the environment. Although its relevance, combine
specific architecture designs and protocols with design tools is always a hard
task. Some approaches, like in [4], present some methods to assist designers with
hardware and simulation integration.

Thus, how would be possible to co-simulate different design standards and
tools to form a unique simulation platform for designing of multi-robots sce-
narios? Aiming at filling this lack of tools and techniques, we have developed a
simulation platform that combines Ptolemy (for Embedded System design), ROS
(for robot design and real robots) and HLA (for synchronization and coupling
of heterogeneous simulators). As proof of concept, a 2D robotic simulator called
Stage was integrated to Ptolemy. A real robot also was integrated to provide an
Robot-in-the-loop (RiL) simulation, this kind of simulation consists in using real
robot in simulations to provide more realistic results. It is useful when it is not
possible simulate an specific environment or when there is not enough robots to
perform some experiment [5].

The remaining of this paper is organized as follows. Related works is pre-
sented in Sect. 2, the proposed architecture is presented in Sect. 3, while the
experimental results are presented in Sect. 4. Finally, Sect. 5 tackles the main
discussions and concluding remarks.

2 Related Works

This work uses co-simulation environment where is possible test embedded sys-
tems and robotics. Works that perform only co-simulations of homogeneous mod-
els often are unable to implement the heterogeneity due to the great effort that
is employed for adaptation to different hardware platforms, communication and
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synchronization protocols. Such characteristics like heterogeneity, synchroniza-
tion and testing with different Models of Computation are provided in this work
through the integration of Ptolemy and ROS through HLA standard.

In [6] is presented the integration of heterogeneous simulators through HLA.
A framework was developed for rapid integration of different simulators. A car-
to-car communication application was presented, were SystemC is used to model
the electronic controller of a car, and Omnet++ and Sumo were used to simulate
network communication and car traffic, respectively. Present work also will pro-
vide interoperation between simulators using HLA, however to integrate Stage
and Ptolemy.

An Architecture for Robot-in-the-loop is present in [7]. It proposes to sep-
arate sensors/actuators from decisions models of robots using an interface that
allows different kinds of sensors to decision models. Also it cites the mainly
steps to develop simulations: to develop a conventional simulation in which all
robots are simulated; to develop an mixed environment with simulated and real
robots; and make an experiment with real system were all real robots execute
on real environment and have real sensors and actuators. We create a similar
environment, where developer choose which sensors/actuator want to use.

In citeartigoExemploTresRiL is proposed a continuation of [7]. It is presented
three examples of how Hardware-in-the-loop can be use on different situations.
It uses an Management Model that is parted in two: Time manager and space
manager. In first example, one robot was used to avoid obstacles, the second one
evolves robots formation with two robots where each robot try find other one.
In this experiment robots have not interconnections between themselves. When
they meet each other, an software named manager running on laptop creates an
connection between themselves and they work like a team. On experiment one
robot is leader and the other one is an follower. One is real and other is simulated.
In third scenario, an robotic patrol is used starting with an undefined number
of robots (n> 1). These robots stay on line, each one with two neighborhoods:
one forward and other backward. This experiment shows that is possible to
use more than one real robot on RiL simulation. This system does not use
global coordination. We develop a similar experiment, but to make a real robot
avoid simulated obstacles on Stage simulator, providing a Hardware-in-the-loop
Simulation.

This work represents a considerable advance compared to the last works, were
multiple instances of Ptolemy were integrated to performance improvement [8]
and, specially, hardware devices were integrated to Ptolemy for verification [9].

3 Architecture

The proposed architecture can be seen in Fig. 1. The environment is divided in
two parts, the first one is the ROS environment (in yellow) with ROS Robot
Nodes, the Bridge ROS Interface, and ROS Core, which is responsible for com-
munication between ROS nodes. The second part is the HLA environment (in
blue) with the RTI, the Bridge Ambassador and the Ptolemy Ambassador.
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Fig. 1. Proposed architecture (Color figure online)

The intersection point between these environments is the Bridge. It is possi-
ble because the Bridge is an ROS Node and also implements an Ambassador. To
became a ROS node, bridge uses Rospy library [10] that allows a Python appli-
cation subscribe and publish on ROS topics. The ROS topics are responsible
to share an specific information from ROS environment (e.g., speed, position,
data from sensors, etc.). The Ambassador is an interface with methods used by
HLA to share information and manage time simulation, it was developed using
Pyhla library [11]. Thus, it make possible to have multiple robots in ROS shar-
ing their data with any others simulators that implements an HLA Ambassador,
like Ptolemy.

3.1 Robot Description

In HLA an object-oriented paradigm is used to describe data, called Federate
Object Model (FOM). There, it is possible to describe classes, objects, attributes
and hierarchy of classes. Once configured, the Bridge maps all necessary ROS
Topics and attributes to objects and members of HLA. Both ROS and HLA
may use the publish-subscribe protocol, the Brigde must just know for each
subscribed variable from one side, to which variable it must publish in the other
side.

The description of these variables is presented following. For more details
about Federation Object Model (FOM) rules and syntax, refer to [12].

(FED
(Federation TestFed)
(FEDversion v1.3)
(spaces)
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(objects
(class ObjectRoot

(attribute privilegeToDelete reliable timestamp)
(class RTIprivate)
(class robot

(attribute id reliable timestamp)
(attribute battery reliable timestamp)
(attribute temperature reliable timestamp)
(attribute sensor1 reliable timestamp)

(attribute sensor2 reliable timestamp)
(attribute sensor3 reliable timestamp)
(attribute position reliable timestamp)
(attribute compass reliable timestamp)
(attribute goto reliable timestamp)
(attribute rotate reliable timestamp)
(attribute activate reliable timestamp))))

(interactions))

With conclusion of FED file, an Ptolemy Actor was necessary to provide
communication with HLA using this FED file, making possible to Ptolemy create
or join on federation. Previous works already develop this kind of actor [13,14],
so they were modified to work with new FOM.

The Slave Federate actor was changed to manage new variables of fed file.
The Fig. 2 shows old Slave Federate Actor and the new one.

(a) Old actor (b) New actor

Fig. 2. Actors that allows communication between Ptolemy and HLA

The Ptolemy Actors, like the bridge, implements an Ambassador. This make
possible to models from Ptolemy communicate with High Level Architecture,
sharing data and managing time simulation. To change the Object Model and
allows communication with stage, new ports were used to each specific informa-
tion from fed file. To send and receive data the inputs and outputs ports were
used respectively.
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3.2 General Architecture

According to HLA specification, individual simulators, called Federates, inter-
operate with each other through a Runtime Infrastructure (RTI), forming a
Federation. The RTI is responsible for data exchanging and synchronization.
Each Federate must implement an Ambassador, which translates the data and
timing policies of the specific simulator to a common standard used by all other
Federates. In this one we have used the implementation of a project named
CERTI [15].

As it can be seen in Fig. 3, two federates were used. The Ptolemy Federate,
which provides the interface among RTI and Ptolemy. On the other side is the
ROS Federate that interfaces with ROS environment.

Fig. 3. General architecture

In the Ptolemy side, a specific Director is responsible for coordinate the simu-
lation, send data to RTI when necessary and, when data arrives from there, send
them to specific actors also developed in this project. As proof of concept we have
integrated the Stage Robot Simulator (http://rtv.github.io/Stage), Ptolemy and
a real robot.

4 Methodology

To develop this environment, an Model was created on Ptolemy. The proposed
model must to contain the Slave Federate Actor to interact with federation and
other actors to process data from robot and generate commands to control the
robot. These commands also are send to ROS using the Slave Federate Actor.

http://rtv.github.io/Stage
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The model uses an DE Director, an extension of Discrete Events (DE) Director
from Ptolemy. It is responsible to manage the time in the Ptolemy simulation
and to communicate with Ptolemy Ambassador.

An Algorithm to control the robots was developed using Ptolemy. It receive
data from distance sensor of avatar robot and send command to avatar and
real robot go on, stop or go on slowly to wait mobile obstacles out of way. The
algorithm was created using the Python Actor, that allow Ptolemy use Python
Applications.

To use the Stage simulator, an world file is necessary. This file have informa-
tion of starting position of all robots and objects on Simulator. It was configured
to have three robots used as obstacles on simulations, one additional robot that
represent a real robot and a wall. A Real Turtlebot also is used on simulation to
compare behavior with the simulated robot. This make the simulation became
an Hardware-in-the-Loop simulation.

Some other applications are used to perform the environment. The Runtime
Infrastructure Gateway (RTIG), that is used to manage simulation and exchange
of messages and a python application that is an ROS node and is responsible to
control the obstacles robots.

4.1 Proof of Concept

An experiment using the proposed tools was perform as proof of concept. Stage
simulator was responsible to simulate the environment with the robots and obsta-
cles, and Ptolemy for simulate the control algorithm for avatar and real robot.
With this environment possible to create an environment for co-simulation with
Robot-in-the-loop to increase reality.

Figure 4 presents how components are communicating between themselves.
Blue side is composed by three components: the bridge, Ptolemy simulator run-
ning control algorithm, and RTIG. On green side, four robots are simulated on
Stage simulator, where three are virtual robots and the avatar.

On Stage simulator, three virtual robots are used as obstacles to avatar robot.
They do the same path going from left to right side crossing way of avatar robot.
Avatar robot has to pass by the robots without collide until it arrives at the wall.
Figure 5 shows the disposition of the robots on map, where the black square is
the avatar robot and the other squares are the obstacle robots.

On simulation, the virtual robots on Stage, walk right side for left side cross-
ing the avatar way. The Avatar must to go to wall and stop before clash with it.
The Ptolemy Control Algorithm will make Avatar stop walk or walk slowly when
the distance sensor of avatar detect some obstacle. When the obstacle move out
of range, avatar back to walk normally. Then Ptolemy subscribes the distance
sensor of avatar and publish linear and angular velocities on avatar and real
robot.

The model used by Ptolemy present on Fig. 6. Is possible see many compo-
nents, the clock is responsible to generate events that are used by other actors,
the HLA Actor receive information from RTI and send it to output ports, the
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Fig. 4. Experiment (Color figure online)

Fig. 5. Disposition of the robots on map

inputs values from HLA Actor are published to RTI. Control is the Python Actor
with algorithm that receives data from sensor, and generate output converted
into string and send to input of HLA Actor.
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Fig. 6. Ptolemy model

4.2 Results

The proof of concept was perform. The Ptolemy Simulator received information
from robotic environment (Stage Simulator), and generate outputs to move real
robot and avatar avoiding virtual obstacles. Both, avatar and real robot stops
to avoid the obstacles during simulation. When obstacles moves out range, they
back to walk.

One Hardware-in-the-Loop benefit was detected on experiment. During sim-
ulation was detected that Ptolemy was using too much velocity and was neces-
sary decrease it to avoid bumps. Using only simulator for development process
it would not be possible to detect this kind of problem.

5 Conclusions and Future Works

This work presents a technique for designing of real-time embedded systems in
multi-robots scenarios, exploiting High-Level Architecture (HLA) standard for
interoperability and Robot-in-the-Loop simulation, and Robot Operating Sys-
tem (ROS) framework for inter-operation among real robots and simulations.
Then, a Bridge was developed to interface HLA and ROS components, or Fed-
erate Ambassadors and ROS Nodes. Also, a unique data model was defined to
represent robot ports and attributes, and new actors in Ptolemy to send/receive
data to/from these ports and attributes were developed.

The presented technique make possible perform experiments with many
robots merging virtual and real robots. A benefit is when many robots are nec-
essary to perform a simulation but just one is available. So, the real robot can
be used to check characteristics from real world and the simulated robots can
interact with the real robot. Also is useful when an environment is hard to create
on real world, then it can be simulated.

Furthermore, other specific simulators could also be integrated and more
detailed outputs could be collected, like power consumption, data traffic in the
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network over different technologies and protocols, electro-mechanical and ther-
mal analysis, etc. These possibilities will be explored in future works.
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Abstract. Hardware/software codesigns are often modeled with the
system level design language SystemC. Especially for safety critical appli-
cations, it is crucial to guarantee that such a design meets its require-
ment. In this paper, we present an approach to formally verify SystemC
designs using the UCLID satisfiability modulo theories (SMT) solver.
UCLID supports finite precision bitvector arithmetics. Thus, we can
handle SystemC designs on a bit-precise level, which enables us to for-
mally verify deeply integrated hardware/software systems that comprise
detailed hardware models. At the same time, we exploit UCLID’s ability
to handle symbolic variables and use k-inductive invariant checking for
SystemC designs. With this inductive approach, we can counteract the
state space explosion problem, which model checking approaches suffer
from. We demonstrate the practical applicability of our approach with
a SystemC design that comprises a bit- and cycle-accurate model of a
UART and software that reads data from the UART.

1 Introduction

Embedded systems are ubiquitous in today’s everyday life, and they are often
used in safety-critical applications, e.g. in airplanes or cars. A failure of such a
system can lead to high financial losses and even human injuries or deaths. This
makes it crucial to verify their correctness under all circumstances.

One of the main challenges for embedded systems verification is that the
systems usually consist of deeply integrated hardware and software components.
There already exists a large variety of validation and verification techniques
for integrated HW/SW systems. However, the validation techniques are mostly
non-systematic and incomplete, such as simulation and testing. These techniques
cover neither the whole design nor all possible input scenarios. Opposed to that,
formal methods have the advantage of covering all possible input scenarios and
all possible behaviors of a given system. However, most of the existing formal
verification techniques for hardware/software codesigns are either tailored to
hardware or to software verification and can not cope well with designs that
contain both bit-precise hardware models and high-level software.
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In this paper, we present an approach to overcome this problem by using
the UCLID verification system. The UCLID system is used to specify and verify
systems modeled at the term level, and thus provides adequate abstractions for
the representation of high-level software. At the same time, it supports the theo-
ries of bitvector arithmetics and of arrays. As underlying verification technique,
UCLID uses a powerful Satisfiability Modulo Theory (SMT) solver supporting
both eager and lazy SMT solving and the constructed formulas can be checked
with any state-of-the-art SAT solver. Together, this makes UCLID a powerful
tool for (bit-precise) system level design verification.

Our main contribution is a fully-automatic transformation of digital HW/SW
co-designs that are modeled in SystemC into the UCLID specification language.
The transformation enables us to apply the UCLID SMT solver to SystemC
designs and thus to prove important properties like reliable safety and timing
behavior. UCLID has the potential to cover most of the expressiveness of Sys-
temC, including discrete time, static and dynamic sensitivity, inter-process com-
munication and bit-vector arithmetics. Our representation of SystemC designs
in UCLID and UCLID’s symbolic simulation mechanism enable scalable verifi-
cation using k-inductive invariant checking. By using inductive verification, we
avoid the state space explosion problem that model checking approaches typi-
cally suffer from. We demonstrate the scalability and practical applicability of
our approach with two case studies. The first is a simple producer-consumer
example, where we use varying buffer sizes. The second case study is a typical
industrial HW/SW codesign, namely a bit- and cycle-accurate model of a UART
together with a software component that reads data from the UART.

The paper is structured as follows: In Sect. 2, we briefly introduce SystemC,
UCLID, and k-inductive verification. In Sect. 3, we discuss related work. We
present our transformation from SystemC to UCLID in Sect. 4. We discuss exper-
imental results in Sect. 5 and conclude in Sect. 6.

2 Preliminaries

2.1 SystemC

SystemC is a system-level design language and a framework for HW/SW co-
simulation. The semantics of SystemC is informally defined in an IEEE stan-
dard [11]. It is implemented as a C++ class library, which provides language
elements for the description of hardware and software, and allows for modeling
of both hardware and software components on various levels of abstraction. It
also features an event-driven simulation kernel, which enables the simulation
of the design. A SystemC design consists of a set of communicating processes,
triggered by events and interacting through channels. Modules and channels rep-
resent structural information. SystemC also introduces an integer-valued time
model with arbitrary time resolution. Listing 1.1 shows an excerpt of a SystemC
producer module that writes to a FIFO buffer. The produce method (which is
executed within an SC THREAD process) contains an infinite loop where the
producer writes a value between 0 and 32 to the fifo port at every clock cycle.
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The execution of SystemC designs is controlled by the SystemC scheduler.
Like typical hardware description languages, SystemC supports the notion of
delta-cycles, which impose a partial order on parallel processes. Note that the
order in which processes are executed within a delta-cycle is not specified in [11],
i. e., it is inherently non-deterministic.

1 SC MODULE(producer) {
2 ...
3 sc port<myfifo if> fifo;
4 void produce(void) {
5 int c = 0;
6 while(true) {
7 wait();
8 c = (c + 1) % 32;
9 fifo−>write(c);

10 } }
11 };

Listing 1.1. A SystemC Module

2.2 UCLID

UCLID is a verification system developed in a joint project by Carnegie Mellon
University and University of California, Berkeley [13]. It incorporates a decision
procedure to verify (possibly infinite) state systems. The specification language
supports uninterpreted functions, bit-vector arithmetic and lambda expressions.
UCLID can handle symbolic simulation, which allows a design to be verified for
an arbitrary start state and thus enables an inductive verification approach.

A UCLID module consists of inputs, variables, constants, macros, and assign
expressions. The assign expressions define the state variables and the transition
relation of the underlying labeled transition system. UCLID interprets the model
together with the property to be verified as one formula and supports eager and
lazy Satisfiability Modulo Theories (SMT) solving.

2.3 K-Inductive Invariant Verification

For k-inductive invariant checking [16], two models are needed. One explicit
model representing the system from its initial state, and one symbolic model that
represents the system in an arbitrary state. Desired properties are expressed as
a predicate P(x), which determines whether a requirement P holds in simulation
step x of a given model. k-inductive invariant checking is done in two steps:

1. Base case: Simulate the explicit model k steps from its initial state and check
P (0) ∧ ... ∧ P (k).

2. Induction: Symbolically simulate the symbolic model from an arbitrary ini-
tial state for k+ 1 steps. Then check P (0) ∧ ... ∧ P (k) =⇒ P (k + 1).
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If there exists a k so that both base cases can be shown, then the property under
verification holds in all reachable system states. If the property under verification
does not hold, the system is unsafe and we get a counter example. Note that the
counter example may be spurious if k is too small.

3 Related Work

There exist several approaches to the automated formal verification of Sys-
temC designs. For example, in [8], the authors propose program transformations
from SystemC into state machines, but they ignore time, the transformation
is performed manually, and hardware data types are not explicitly considered.
Karlsson et al. [12] verify SystemC designs using a petri-net based represen-
tation and the PRES+ model checker. However, the petri-net based approach
introduces a huge overhead because interactions can only be modeled by intro-
ducing additional subnets. As it is based on model checking, the approach also
suffers from the state space explosion problem. Bit-precise hardware data types
are not explicitly considered. In [10,14], an approach for the formal verification of
SystemC designs using the model checker UPPAAL is presented. A large sub-
set of SystemC is supported. However, UPPAAL does not support inductive
verification techniques and thus suffers from the state space explosion problem.
Furthermore, it is not well-suited to support hardware data types.

In [7], bounded model checking is used on untimed SystemC TLM designs.
They use k-inductive invariant checking using CBMC [4] and Boolector [15] as
underlying SMT solver. This work is very close to our approach. The main idea
is to transform a given SystemC TLM design into a sequential C program and
perform loop unwinding to achieve a complete model. However, compared to our
approach, they only support a small subset of untimed SystemC TLM designs
and disregard time and complex process interactions. Furthermore, bit-precise
hardware data types are not explicitly considered.

In [6,9], an encoding from SystemC into the verification toolbox CADP is
proposed. This approach is based on a manual definition of callback functions,
which are then used to natively execute SystemC/C++ code in the CADP veri-
fication system. Still, the transformation has to be done manually. Furthermore,
bit-precise hardware data types are not explicitly considered. In [3], Cimatti
et al. generate three different verification models from a given SystemC design,
each tailored to a specific aspect of the SystemC semantics on different levels of
abstraction, and use software model checking techniques. While this approach
is capable of handling the most important SystemC constructs including time
and communication, it can not handle bit-precise hardware data types. Further-
more, by using model checking techniques, it also suffers from the state space
explosion problem. In [5], the authors present an approach for the verification
of SystemC designs using the software model checker SPIN. Again, by using a
software model checker, they suffer from the state space explosion problem.

Note that there also exist some approaches to automated formal verification
of other system level design languages. For example, in [2], the authors present
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an approach for formal deadlock analysis of SpecC models using SMT. However,
they only consider the timing relations in a given design by formulating assertions
over time stamps, which are assigned to executable code. This is sufficient for
a deadlock analysis but does not allow for checking of other functional or non-
functional properties.

4 Transformation from SystemC to UCLID

The key idea of our approach for the bit-precise verification of SystemC designs
using satisfiability modulo theories solving is to transform a given SystemC
design into a semantically equivalent UCLID specification. Our transforma-
tion preserves the (informally defined) bit-precise semantics of a given Sys-
temC designs. The main challenges are to preserve the sequential simulation
semantics of SystemC in a synchronous target language, i. e., to model the non-
deterministic execution semantics of the SystemC scheduler, and to respect the
bit-precise semantics of all data operations. The basic idea of our transforma-
tion is to translate all SystemC processes into UCLID state machines, and to
control the execution of these processes by modeling the SystemC scheduler and
SystemC events as UCLID state machines. To capture the simulation seman-
tics of SystemC, our UCLID model of the scheduler interprets the operational
sequences of the SystemC kernel, which manages process scheduling and channel
updates.

The transformation result is a UCLID interpretation of the semantics of the
given SystemC design. This can then be automatically verified using the UCLID
verification system. The main advantage of our approach is that the formal
semantics we define for SystemC by translating it into the formal specification
language of UCLID is bit-precise, and that the underlying verification engine is
based on SMT solving and thus enables inductive proofs.

4.1 Assumptions

The following assumptions on a SystemC design define our supported subset.

1. No dynamic variable or process creation.
2. No recursion.
3. No inheritance nor pointers, no side effects.
4. No external code or library calls.
5. For division and modulo operations the divisor is an integer power of 2.
6. So far, we only support Boolean and integer variables with fixed bit width,

and arrays and structs thereof.

If all of these assumptions are fulfilled, we can transform a given SystemC design
automatically into a semantics-preserving UCLID representation and verify it
using the UCLID verification system.
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Fig. 1. Structure of a SystemC design in UCLID

4.2 Representation of SystemC Designs in UCLID

Our representation of a SystemC design in UCLID interprets the simulation
semantics of SystemC. This means that not only all the SystemC modules of the
design are represented in UCLID, but also the scheduler, processes, events and
primitve channels, which altogether define the execution semantics.

SystemC modules contain processes, events and member variables. Module
ports are connected to channels, which provide communication methods between
modules. Before simulation, the SystemC kernel creates the module hierarchy in
its elaboration phase and performs instantiation and binding. In this phase, all
module, channel, and process objects are created and bound together. Because
UCLID does not support dynamic module creation, we recreate the SystemC
design after elaboration. This means we create UCLID modules for all module
and channel instances and their connections. As a preprocessing step for our
transformation from SystemC to UCLID, we flatten the design. The hierarchical
structure is kept transparent in the UCLID specification using prefixes. To cap-
ture the state of a given SystemC design, we use the following state variables:
(1) All local and global variables, including all module and all channel variables,
(2) the state of each process (including its current program counter), (3) the
state of each event, (4) the state of the SystemC scheduler. The structure of
our representation of SystemC designs in UCLID is shown in Fig. 1. To cap-
ture the static part of a design, we create modules for each channel and module
(or, more general, struct) instance. The communication methods provided by a
channel are placed within the corresponding UCLID module that represents the
channel instance. To capture the simulation semantics, we create modules for the
scheduler and the simulation time, and for all processes and events of a given
design. We distinguish between an internal process module, which keeps track of
the program counter and performs event notifications and channel accesses, and
a process module, which determines the state of the process, and reacts to events
to implement static and dynamic sensitivity.

Scheduler and Simulation Time. We have defined two separate UCLID
modules for the scheduler and simulation time. The scheduler module non-
deterministically chooses the next runnable process and defines the phase the
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system is in (initialize, evaluate, update, or advance time). The simulation time
module manages the advancement of time. In the advance time phase, the sim-
ulation time module advances time to the earliest pending timed notification.

Processes. Processes are SystemC’s units of execution. For each process, we
introduce two modules. The internal process module ipm keeps track of the
program counter, notifies events and accesses channels. The process module pm
determines the state the process is in, and reacts to events to implement static
and dynamic sensitivity. When the scheduler chooses a process to be running, its
process module changes its state to running. This triggers the internal process
module, which runs until it reaches a wait statement or the process terminates.

An excerpt of the internal process module ipm is shown in Listing 1.2. It
realizes a state machine that keeps track of the program counter and evaluates
control flow conditions. The internal state istate is first set to initialized. As
soon as the state of the process module pm is set to running, istate is set to
the first program counter label line9 while loop where a while loop is entered.
Then, istate is set to the label line11 call wait. Next, the process is suspended
and waits to become runnable again. Function calls are realized by a similar
mechanism. For example, the write method of the channel module fifo is started
if the internal state is set to line13 call write. It returns control to the produce
process by setting its program counter to fifo done.

1 ASSIGN
2 init[istate] := not initialized;
3 next[istate] := case
4 ((istate = not initialized) & (scheduler.state = initialize)) : initialized;
5 ((istate = initialized) & (pm.state = running)) : line9 while loop;
6 ((istate = line9 while loop) & true) : line11 call wait;
7 ((istate = line11 call wait)) : line11 wait return;
8 ((istate = line11 wait return) & (pm.state = running)) : line13 call write;
9 ((istate = line13 call write)) : line13 wait for write;

10 ((istate = line13 wait for write) & (fifo.write = fifo done)) : line9 while loop;
11 ((istate = line9 while loop) & ˜(true)) : done;
12 default : istate;
13 esac;

Listing 1.2. Excerpt of the Internal Process Module ipm

Note that we did not include a program counter label for each line of code in the
istate state machine. Instead, we reduced the set of program counter labels to
represent the necessary atomic blocks. An atomic block comprises a sequence of
states in the control flow without branches or process suspension. As SystemC
uses a cooperative scheduler, atomic blocks can never be interrupted. Thus, it
is possible to abstract from some intermediate steps and to combine multiple
sequential actions in one (synchronous) simulation step as long as we ensure
that no data race may occur. So far, we just exclude cases where a potential
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data race may occur from this optimization. The benefit of the reduction is a
smaller UCLID model while preserving the execution semantics of SystemC.

An excerpt of the process module pm is shown in Listing 1.3. It implements
the process state, which may be one of process initialized, running, runnable,
process done, wait t, wait e, or wait s (the latter to wait for a given time, an
event or for the sensitivity list, respectively). Note that pm makes use of the
current state of ipm, the current process selected by the scheduler, and the
current state of the FIFO channel. The latter is necessary because the process
might be suspended by a wait call that occurs within the FIFO channel.

1 DEFINE

2 sensitivity list occurred := case clk edge event.occurred : true;

3 default : false; esac;

4 ASSIGN

5 init[state] := process no state;

6 next[state] := case

7 (ipm.istate = initialized) : process initialized;

8 (state = process initialized) : runnable;

9 ((scheduler.next = produce) & (scheduler.current = none)) : running;

10 ((state = wait s) & sensitivity list occurred) : runnable;

11 (ipm.istate = done) : process done;

12 (ipm.istate = line11 call wait) : wait s;

13 (ipm.istate = line13 wait for write & fifo.write = line31 call wait) : wait e;

14 (ipm.istate = line13 wait for write & r event.occurred & state = wait e) : runnable;

15 default : state;

16 esac;

Listing 1.3. Excerpt of the Process Module pm

Events. We create one UCLID module for each event. Additionally, we also
create timeout event modules for processes that suspend themselves by calling a
timed wait. Processes may notify events immediately, delta-delayed or timed. If
a process performs an immediate notification of an event, the event immediately
occurs and all processes that are sensitive to the event react by changing their
states. For a delta-delayed notification, the notification is delayed until the next
delta-cycle starts. If a process performs a timed notification, the event adopts
the time value and waits until the simulation time is equal to the target time. If
a process calls the wait function without any argument, its process module waits
for one of the events from the processes sensitivity list to occur. New notifications
overwrite pending notifications if they expire at an earlier target time.

An excerpt of a UCLID event module is shown in Listing 1.4. Initially,
the event state estate is set to no notification. Then, it reacts to all processes
that might notify the event and sets the state to immediate, delta or timed
accordingly. The event state is reset if occurred becomes true. This happens
whenever an immediate notification occurs, if we have a pending delta-delayed
notification and the scheduler starts a new delta cycle, or if we have a pending
timed notification and the simulation time becomes equal to the target time.
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1 DEFINE

2 occurred := case ((estate = immediate) | ((estate = delta) & scheduler.new delta)

3 | ((estate = timed) & (t = sim time.time))) : true;

4 default : false; esac;

5 ASSIGN

6 init[estate] := no notification;

7 next[estate] := case

8 occurred : no notification; (∗ reset the event state ∗)

9 process.notify event immediate : immediate;

10 ((estate != immediate) & process.notify event delta) : delta;

11 ((estate != immediate) & (estate != delta) & process.notify event timed) : timed;

12 default : estate;

13 esac;

14 init[t] := ...

Listing 1.4. Event Module

Channels. For each channel, we create a module that contains all channel
variables and all communication methods for all process modules that might
call those methods. If a channel method waits for an event to occur, the caller
process module changes its state to also wait for the event. Primitive channels
implement the request-update semantics. This means that they do not change
the state of the channel directly. Instead, they request the channel to be updated
during the update phase. For this purpose, primitive channels have a dedicated
update method, which is executed in the update phase after all evaluations are
finished. In UCLID, we represent this mechanism by setting a request update
variable in the channel module that activates an update state machine.

Variables. Beside process and event states, the state of a SystemC design com-
prises local and global variables. Using the program counter labels described
above, we can decide for each variable at what points in the program it is manip-
ulated. Using this information, we can construct one UCLID state machine for
each variable of a given SystemC design. An example for a state machine that
models the local variable c of our running example is shown in Listing 1.5.

Note that in UCLID, a declaration of a variable does not ensure that the
given number of bits is used for its representation. Instead, UCLID always uses
as few bits as possible. To ensure that the bit-precise semantics of SystemC is
preserved, we use the correct bitwidth for all arithmetic and logic operations and
we cast all expressions into the left hand side types within assignments.

So far, we support Boolean- and int-typed variables, sc int and sc uint,
arrays, and structs. We represent Boolean types by UCLID’s TRUTH type.
The types int, sc int and sc uint are represented as bitvectors using UCLID’s
BITVEC-type with the specified length respectively. Arrays are modeled using
lambda-expressions, as described in the UCLID documentation [1].
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1 ASSIGN
2 init[c] := (0 + 32 0);
3 next[c] := case
4 (istate = line9 while loop) : 0;
5 (istate = line13 call write) : (c + 32 1);
6 default : c;
7 esac;

Listing 1.5. Variable Handling

4.3 Verification of SystemC Designs Using UCLID

With our representation of SystemC designs within UCLID as described above,
we can automatically transform a given SystemC design into a UCLID spec-
ification. Then, it can symbolically be simulated and verified in UCLID using
k-inductive invariant checking [16]. To adapt k-inductive invariant checking with
UCLID, we create an explicit UCLID model and check the base case and a sym-
bolic model for the induction, as described in Sect. 2.3. The explicit model starts
in the same state as the SystemC design. For the symbolic model, we set all state
variables to symbolic constants (for truth types, bitvectors and bitvector func-
tions) or non-deterministic choice variables (for enum variables) respectively. If
UCLID returns a counter example, it might be spurious, i.e. it might not be
reachable by the original system. If UCLID returns that the induction step is
valid, we can conclude that the system never violates the requirement and it
is safe. There is no straightforward way to determine the value of k needed to
prove or disprove a property. Thus, we incrementally increase k until we reach
a predefined maximum value of k or the counter example is not spurious.

5 Evaluation

We have implemented our transformation from SystemC to UCLID in Java. The
resulting framework is shown in Fig. 2. A given SystemC design is preprocessed
and translated into our SystemC intermediate representation SysCIR. There,
we flatten the design and resolve all port and channel connections. Our novel
transformation engine then generates an explicit and a symbolic UCLID model.
Those are then used for k-inductive invariant checking as described above.

To evaluate our approach, we use two case studies and compare the verifi-
cation times with those achieved with UPPAAL [10,14]. In the first case study,
two producers and one consumer communicate over a FIFO buffer (3 processes,
1 channel). The second case study is a more complex UART design that consists
of a bit- and cycle-accurate UART model and software that reads data from
the UART (7 processes, 9 channels). We ensure that we cover all possible input
scenarios by modeling input data using selections in UPPAAL and symbolic con-
stants in UCLID. Note that the UART case study could not be handled with
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Fig. 2. Framework for verifying SystemC designs with UCLID

the approach presented in [7]. All experiments were performed on a 64 bit Linux
system with an Intel Core i7-4770 with 3.2 GHz and 32 GB main memory. All
designs are transformed into UCLID respectively UPPAAL in less than a second.

We have shown that the producer-consumer example does not cause a buffer
over- or underflow with our k-inductive invariant checking approach. The require-
ment we check is P (i) := fifo.n ≤ BS ∧fifo.n ≥ 0. To verify this, k must at least
be 10. This corresponds to the maximum number of steps until the desired prop-
erty is restored from an arbitrary start state. To evaluate the scalability of our
approach, we have varied the buffer size from 10 to 1000. As Table 1 shows, the
time it takes UCLID to verify the model with growing buffer capacities stays
nearly constant, while the verification time in UPPAAL increases exponentially.

Table 1. Verification times in [hh:]mm:ss

Producer-consumer UART system

Buffer size/bitwidth 10 50 100 1000 4 8 16 24 32

BMC <1 <1 <1 <1 10:30 10:25 10:03 10:07 10:03

k-induction 0:06 0:06 0:06 0:06 7:22:00 7:03:00 7:11:00 6:40:00 7:11:32

UCLID total 0:06 0:06 0:06 0:06 7:32:30 7:13:25 7:21:03 6:50:07 7:21:35

UPPAAL total 0:02 0:02 0:09 3:00:51 2:42:40 x x x x

For the UART system, we verify that the software correctly reads all data that
is sent over the UART. The requirement we check is P (i) := sw.error cnt ≤ 0,
where error cnt is used in the software component sw to mark if the values
differ. To verify the UART system, k must at least be 200. We evaluated the
scalability by varying the bitwidth of the transmitted data from 4 bit to 32 bit.
Table 1 shows the runtimes of both bounded model checking and the induction
step. Although the computational effort is considerable, we achieve a complete
proof for all possible input scenarios, and the verification time is similar for
varying bitwidths. UPPAAL is able to verify the 4-bit system in less time, but
exceeds resources for all larger bitwidths1.

1 UPPAAL did not return results after 48 h while using 32GB main memory.
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6 Conclusion

In this paper, we have presented an automatic transformation from SystemC
to the formal verification system UCLID. Our transformation is able to cover a
large subset of SystemC including static and dynamic sensitivity, time, primi-
tive channels, and bit-precise hardware data types. To capture the semantics of a
given SystemC design, we translate all variables and processes into UCLID state
machines, and we provide predefined state machines that model the execution
semantics of SystemC and the event notification mechanism. The structure of
the original design is kept transparent by using prefixing. This eases comprehen-
sibility of counter examples. With the result of our transformation, we can use
UCLID’s powerful verification mechanisms and underlying SMT solver to verify
a given SystemC design using k-inductive invariant checking.

To demonstrate the practical applicability of our approach, we have used
a simple producer-consumer example taken from the SystemC reference imple-
mentation and an industrial UART system. We have shown that our approach
scales well for increasing data ranges and bit widths, which is typically not the
case for model checking based approaches. With the UART system, we have also
shown the applicability of our approach to (small) industrial applications.

In future work, we plan to optimize our transformation by allowing parallel
executions whenever we can safely assume that no data race may occur. We
are confident that in doing so, we can significantly reduce the necessary k for k
induction, which in turn will significantly reduce the verification effort.
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Abstract. MATLAB/Simulink is a widely-used industrial tool for the
development of complex embedded systems. However, due to the com-
plexity and the dynamic character of the developed models, their anal-
ysis is a difficult challenge, in particular if timing aspects are involved.
In this paper, we present an approach for the construction of timed path
conditions for MATLAB/Simulink models. Timed path conditions allow
for fine-grained conclusions about the existence of possibly critical paths
through a model containing time-dependent elements. With the help of
timed path conditions, it is possible to identify interference and non-
interference between model parts. Furthermore, they have the potential
to reduce the complexity of models to improve verifiability, reason about
compliance with security policies as well as generate feasible, efficient test
cases. We demonstrate the applicability of our approach with a shared
buffer for public as well as confidential data.

1 Introduction

In the area of safety-critical embedded software, such as in the automotive and
aerospace domain, programming errors can lead to disastrous and, if occurring,
often fatal accidents. At the same time, the complexity of such systems has
increased dramatically over recent years. To cope with the steadily increasing
complexity, current design processes rely more and more on models. One of
the most widely-used tools for model-based design is MATLAB/Simulink[11]
by MathWorks, which supports the graphical design and simulation of time-
continuous as well as time-discrete systems using block diagrams. Simulink is
very well-suited to grasp the structure of a design on high abstraction levels
and to visualize its behavior by simulation. However, due to the complexity and
the dynamic character of the developed models, the analysis of a given model
is a difficult challenge, in particular if timing aspects are considered. At the
same time, knowledge about the existence of certain paths and the conditions
under which they are executed is highly desirable. In particular, if a Simulink
model becomes the main artifact in a model-based design process, the analysis
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of its properties becomes crucial for the correctness and reliability of the whole
development process. With the help of (timed) path conditions, it is possible
to identify interference and non-interference between model parts and, thus,
to reason about compliance with security policies. Furthermore, (timed) path
conditions can be used to compute areas of low dynamic coupling for subsequent
model separation. With that, they have the potential to reduce the complexity
of Simulink models and thus to improve verifiability and testability. Finally, they
provide a basis for generating feasible, efficient test cases for quality assurance.

In this paper, we present an approach for the construction of timed path
conditions in Simulink. The main challenge we face is that all dependencies in
a given design must be considered. Thereby, dependencies might be indirectly
introduced via control flow, or delayed, which introduces dependencies between
signals from different time slices. In our approach, we start with a static over-
approximation of all potential dependencies on a path between a timed output
signal and a timed input signals and collect all control flow conditions. Then,
for each path, we compute a set of constraints on all input signals by perform-
ing a backward propagation of control flow conditions, which also takes timing
dependencies into account. The result of our analysis is a precise description of
the timed dependencies between input and output signals, represented by timed
path conditions that solely depend on model-wide input variables. We demon-
strate the applicability of our approach by computing timed path conditions for
a case study containing a shared buffer for public as well as confidential data.

2 Preliminaries

In this section, we describe the basic concepts and tools employed by our app-
roach.

2.1 Path Conditions

In general, path conditions [9] describe sufficient conditions for paths to be exe-
cuted. In [5,6], path conditions are used to capture all paths where information
might flow from a source to a target. In contrast to static analyses, which consider
all syntactically possible dependencies, path conditions take data and control
flow conditions into account. With that, they exclude, for example, information
flow which is only possible if disjoint control flow conditions are satisfied. Thus,
a path condition based analysis is more precise than classical static analyses.

2.2 MATLAB/Simulink

MATLAB/Simulink[11] is an add-on to the MATLAB IDE by MathWorks that
enables graphical modeling and simulation of reactive systems. In its data-flow
oriented notation, Simulink employs blocks which are connected using signals.
Additionally, each block and signal is assigned a set of parameters.
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Simulation of Simulink models is performed using solvers which compute
the output of each block according to its semantics. Variable step solvers aim at
automatically finding a simulation step size for each block in the model to achieve
a level of precision set by the model developer. Fixed step solvers use a fixed
simulation step size at the expense of precision while increasing performance. The
former class of solvers is commonly used for hybrid or purely time-continuous
systems, while the latter is used for time-discrete models.

2.3 Information Flow Analysis

The protection of confidentiality of information inside a software system is a long-
standing and increasingly important problem in the areas of general computing
as well as embedded systems. Protecting not only the data itself but also the
integrity of the functionality that produces and handles data is a goal of software
non-interference policies [3]. Such policies, based on the assignment of security
levels to data elements, describe rules between which levels information flow
is allowed or forbidden [15]. When aiming at assuring confidentiality, data is
prohibited to flow to inappropriate locations, while in the context of integrity,
data is prohibited to flow from inappropriate sources. As non-interference refers
to the absence of information flow, it ensures both confidentiality and integrity.

3 Related Work

Path conditions [9] are heavily used in the area of symbolic execution and auto-
matic test generation. The use of path conditions to increase granularity of infor-
mation flow analysis has first been proposed in [10]. In this work, the authors
describe the combination of program slicing and Constraint Logic Programming
(CLP) to increase the precision of slicing for C programs, implemented in the
VALSOFT Slicing System. They consider purely static slicing as too conser-
vative and propose the extraction of conditions on the edges of the generated
Program Dependence Graphs (PDGs). Subsequently, the concatenation of these
conditions along paths of interest are analyzed by a constraint solver. However,
due to the inherent differences between C and MATLAB/Simulink, their app-
roach cannot directly be transferred to Simulink. For example, their work does
not take timing behavior into account. They report that the precision of slicing
operations can be considerably raised by the use of path conditions.

In [14], the authors present an approach for slicing of Simulink models. Their
algorithm identifies model parts that influence the computation of a given block.
However, as their approach does not have the characteristics of an Information
Flow Analysis (IFA), i. e., does neither consider conditions nor timing along
model paths, it only provides a coarse-grained dependency analysis.

In [18], the authors present an adaptation of the concept of path conditions
to MATLAB/Simulink. The authors describe the translation of Simulink models
into Lustre, a synchronous data-flow programming language [4]. On this basis,
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Fig. 1. A shared buffer for public as well as confidential data

they define an IFA notation and calculate path conditions on the translated mod-
els. Their approach has been implemented in the Gryphon tool suite and tested
using the example shown in Fig. 1, which we adapted from their publication.
With their approach, they are able to show non-interference between confiden-
tial and public data paths using path conditions. However, they assume that
the timing dependencies do not influence the information flow. Although they
discuss that this assumptions is violated in their own case study, they provide
no solution that takes timing dependencies into account. Possible solutions to
this problem have been presented in [7,12,17] via further translations of Simu-
link models into Lustre, SIGNAL and UCLID, respectively. However, as these
approaches rely on a translation of models into a target language using different
functional and timing semantics, properties of the original systems are lost. For
example, the translation to Lustre maps Simulink signals onto mathematical
data types, thereby losing the possibility to perform bit-precise analyses of data.

4 Timed Path Conditions in MATLAB/Simulink

In this section, we present our approach for the computation of timed path con-
dition in MATLAB/Simulink. The main idea is to transfer the concept of path
conditions from sequential programming languages like C to the Simulink model-
ing language. The main challenges are to take both data and control dependen-
cies into account and to cope with timing dependencies. Data dependencies can
simply be resolved by following signal lines where each connection corresponds to
a direct dependency. Control dependencies are more difficult to compute as they
introduce conditional dependencies which are locally resolved. To overcome this
problem, we propagate control flow dependencies backwards through the model
to the input signals. With that, we can decide whether a certain path actually
exists on a very fine-grained level. For both data and control dependencies, we
have to take timing dependencies into account. An output might only depend
on an input at certain points of time, and sophisticated routing policies might
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even take advantage of timing delays to make sure that two signals can never
interfere. A motivating example for this case is given in the following subsection
and used as a running example throughout this paper.

In order to take timing dependencies into account, we introduce the con-
cept of time slices, and incorporate timing dependencies into our approach for
the computation of timed path conditions by expressing all dependencies with
respect to relative time slices. For the computation of timed path conditions,
we use a two-step approach: (1) We (statically) identify all paths in a given
Simulink model and collect all path conditions on each path. (2) For each path,
we propagate all local control flow conditions backwards through the model in
order to compute timed path conditions that solely depend on input variables.

In the following subsections, we first present our running example. Then, we
introduce assumptions that define a Simulink subset our approach is currently
able to safely analyze. In Sect. 4.3, we present our notations. Then, we present
the computation of path conditions in Sect. 4.4.

4.1 Running Example

To illustrate our approach, we use a simplified version of the shared buffer pre-
sented in [18] (see Fig. 1).1 In this model, information of two different security
levels (public and confidential) is fed into a shared buffer, which is implemented
as a Mem block. According to the current operation mode, confidential (mode 1)
or public (mode 2) information is saved in the buffer and passed to the corre-
sponding output, or the contents of the buffer are erased (mode 0).

The most interesting aspect of this example is that it makes use of a sophis-
ticated routing scheme to avoid security violations. Although confidential and
public data share the same memory block as buffer, the routing conditions are
intended to ensure that confidential input data can never flow to the public out-
put. To this end, the operation mode defines which input should be routed to
the output. The designer did, however, not take the timing behavior of the Mem
block into account. When examining the timing of the output signals we discover
that if the operation mode switches from confidential to public, the outputs reg-
ister a spike of the data previously stored in Mem: the confidential contents are
sent to the public output. By computing path conditions without taking tim-
ing dependencies into account, one would falsely assume that information flow
is impossible, as the control flow conditions along the path from confidential
input to public output are disjoint. This shows that we can only safely use path
conditions for Simulink models if we take timing behavior into account.

4.2 Assumptions

In order to apply our approach for the computation of timed path conditions, a
given Simulink model has to fulfill the following assumptions:

1 Our simplified version does not contain the Stateflow controller used to set the
operation mode present in the original.



Timed Path Conditions in MATLAB/Simulink 69

1. It uses a time-discrete, fixed-step solver.
2. It does not contain algebraic loops or loop subsystems.
3. Only scalar signals are used.
4. So far, all blocks have to use the same sample time.
5. For conditional execution, we support Enabled and routing blocks so far.
6. Control signals only pass through simple arithmetic blocks without feedback.

The first two assumptions are acceptable as we target Simulink models from
the field of discrete embedded controller design, where time-continuous solvers,
loop subsystems, and algebraic loops are rarely used. Assumptions 3 to 5 are
imposed due to the current state of our implementation, we are confident that
our approach can easily be extended to vector or matrix signals, varying sam-
ple times, and other conditional subsystems. Assumption 6 is the most serious
restriction regarding typical Simulink models of interest. However, many practi-
cal Simulink models only use simple control logics. An extension of our approach
to support more complex blocks and subsystems is subject to future work.

4.3 Notations

We use the following notations: B denotes the set of blocks and S the set of
signals in a given model. In addition, we use I and O as the sets of incoming
and outgoing ports of a model, respectively. To describe paths, we use the set
P (bl, bk) that contains all paths between blocks bl and bk. On a path bl to bk, we
denote the condition for information to flow through a block bm as c(bm, bl, bk).
While arithmetic blocks always establish a connection between all input and
output signals (c(bi, ∗, ∗) = true), routing blocks and conditional subsystems
only establish a connection under certain conditions.

In order to take timing dependencies into account, we denote the dependency
of an output signal to the set of input variables at a certain point of time as
(note that tmax designates the maximum time slice depth over all paths):

otn = d(it1, . . . i
t−tmax
1 , . . . , itk, . . . i

t−tmax
k )

If a path starts at source block b0 and passes through b1, . . . , bn−1 to the
target bn, the timed condition for the complete path p(b0, bn) is denoted by:

C
(
p(b0, bn)

)
=

n−1∧

i=1

c(bi, bi−1, bi+1)t−ti

As described above, each atomic path condition applies to the connecting signals
between two neighboring blocks and not to the complete set of input and out-
put signals. Intersecting paths through the same routing block therefore create
different sets of conditions.
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4.4 Computation of Timed Path Conditions

In this section, we describe our approach to compute timed path conditions for
Simulink models. As mentioned above, we propose a two-step approach where
we first identify all paths and collect all path conditions on each path, and
then propagate all local control flow conditions backwards through the model in
order to compute timed path conditions that solely depend on input variables.
In the following, we first describe how we compute the set of all (potential)
paths using a backwards depth-first search. Then, we explain how we determine
timing dependencies and how we extract (local) path conditions for each path.
Finally, we present our approach for the backward propagation of the local path
conditions to achieve the final timed path conditions that solely depend on input
variables. We illustrate each step using our running example from Sect. 4.1.

Finding Paths. In the first step, we identify all potential paths between the
model inports I and outports O. This is a first step to make it possible to
analyze confidentiality of data as well as integrity of the model functionality, as
data flowing to and from inappropriate sources can be detected (see Sect. 2.3).
In order to find all paths P (ik, ol), we traverse the model from ol recursively.

Our path detection starts the model traversal with a given outport block
ol and implements a depth-first recursive search for all paths ik to ol while
marking already visited blocks. This makes it possible to detect cycles along
paths throughout the model. After completion of the path detection, the sets
P (i, o)

∣
∣ (
i ∈ I, o ∈ O

)
contain all paths from all input and output ports and can

be analyzed further.

Running Example. The results of the first step of our algorithm, the sets P (i, o)
of our example, are shown in Fig. 2.

Fig. 2. Detected paths through the model

Identifying Timing Dependencies. With the complete set of paths between
all model inports and outports, the next step in our analysis is the determination
of the timing dependencies on each path p(ik, ol). Three different cases can occur:
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(1) Untimed: The path neither contains time-dependent model elements nor is
part of a feedback loop. (2) Fixed-Delay: The path contains time-dependent
model elements but is not part of a feedback loop. (3) Feedback loop: The path
is part of a feedback loop.

To compute the timing dependencies for a given set of paths, we iterate over
each path and analyze it regarding time-dependent model elements and their
parameters. If no timed element is found and the path is not part of a feedback
loop, the untimed dependency relation otl = d(itk) is established.

If the path is not part of a feedback loop but time-dependent model elements
are encountered along the path during the iteration, a fixed-delay relation can
be established and type and parameters of the blocks decide its magnitude. As
explained above, we only consider discretely timed models with a fixed simulation
step size so far. The behavior of a Delay, UnitDelay and a Mem block is therefore
similar. Each time a Mem block is encountered, the magnitude of the fixed delay
for the current path is increased by 1. When encountering a Delay block, after
confirming the correct sampling time, its DelayLength parameter is read and
added to the delay magnitude m of the current path, which yields otl = d(it−m

k ).
A path that is part of a feedback loop presents an infinite delay relation.

Running Example. The result of the application of this step to our running
example is shown in Table 1. As illustrated, information from the data inputs
does never arrive at the outputs in the same time slice, as there are no paths
between i2t, i3t and o2t, o3t. Only information from the previous time slice arrives
at the outports. This also presents an indicator for the existence of a security
violation between the confidential data input and the public data output. At
each time t, confidential information from the previous time slice t − 1 is still
held inside the system and is released in case of a change in mode of operation in
the form of a spike. Note that we use the index c to denote indirect information
flow through the control signal of routing blocks [1].

Table 1. Timing relations between ports of our shared buffer example

it1 it−1
1 it2 it−1

2 it3 it−1
3

ot1 p(it1, o
t
1) ∅ ∅ ∅ ∅ ∅

ot2 p(it1, o
t
2)c p(it−1

1 , ot2)c ∅ p(it−1
2 , ot2) ∅ p(it−1

3 , ot2)

ot3 p(it1, o
t
3)c p(it−1

1 , ot3)c ∅ p(it−1
2 , ot3) ∅ p(it−1

3 , ot3)

Extracting Path Conditions. After the identification of timing dependen-
cies, in the next step of our analysis, we extract the conditions necessary for
information to flow along paths. These conditions are dependent on the type of
the block and its semantics. While it is true for blocks from the functionality and
timing categories, routing blocks are analyzed further to extract their behavior.
Thus, we iterate over each path in P (I,O) to check for the existence of routing
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blocks and create a set C
(
p(it−c

k , otl)
)

that holds the extracted conditions. If a
routing block br in time slice t − d with inputs sctrl, s1, . . . , sn, output sout and
neighboring blocks bl and bo is found, the necessary condition for the current
path is extracted and saved for later analysis by the constraint solving tool. The
condition is formed depending on the type of the encountered routing block.

Running Example. The goal of our running example, presented in Sect. 4.1, is
to prove whether there is information flow between the confidential inport and
the public outport. In the face of multiple routing blocks and a time-dependent
model element, we will only consider one path in this example application of our
approach: p(it−1

2 , ot3). After this step, the set of path conditions on this path is:

C
(
p(it−1

2 , ot3)
)

=
{
sctrl(pub out)t �= 0, sctrl(mode switch)t−1 == 1

}

Backward Propagation of Path Conditions. As shown above, a single
condition is extracted for each routing block on each path. However, as these
individual conditions only contain local information about a single control signal,
we propagate these control flow signals backwards to the inports of the model.
This requires to take the functionalities of each block between the control signal
and the inports into account. It elevates the local information about control
signals in path conditions to model-wide conditions for information flow, which
solely depend on input signals. To accomplish this, we analyze each control
signal separately and iterate over each path from the signal to its drivers while
collecting the functionality of each block. We denote the resulting dependencies
as:

sctrl(br) = d(it1, . . . , i
t−tmax
1 , . . . , it−tmax

j , . . . , it−tmax
j )

For a single block bl, we define its functionality as so(bl) = fbl(si1 , . . . , sin).
When considering a complete path p(b1, bn), the resulting function fp is formed
by the composition of each output function along the path according to its
structural connections. For example, a linear chain of blocks yields:

fp := fb1 ◦ fb2 ◦ . . . ◦ fbn

Note that for each block type, a specific set of parameters is extracted and
its resulting functionality is recorded. We currently support the following block
types on control paths: Bias, Gain, Abs, Compare, Add, Product.

While we support untimed and fixed-delay timing relations over control
paths, i. e., the existence of multiple time slices along these paths, we presently
do not support feedback loops inside control flow paths, as no conclusion can be
drawn under these circumstances. We plan to extend our approach with feed-
back loops and support for additional block types in control flow paths in future
work.

Running Example. Using the previously created set of path conditions
C(it−1

2 , ot3) as an input, this step of our analysis propagates the local path con-
ditions of the routing blocks backwards and collects the functionality of each
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block along these paths. The model inports driving the control signals in C can
be found in the first row of Table 1. There, untimed dependencies between i1,
the mode of operation and ot2 as well as ot3 leading through the control signals
of the routing blocks can be found and the paths between the control signal and
the inport i1 are identified:

p(it1, sctrl(mode switch)) = {it−1
1 }

p(it1, sctrl(pub out)) = {compare public, it1}

Subsequently, we need to record the functionality of each block along these
paths. The first path presents the trivial case that the control signal is directly
connected to the inport of the model, we can therefore note its function as:

sctrl(mode switch) = fInport(it−1
1 ) = it−1

1

When collecting the functionality of the second path, we encounter a Compare
block with a Const value of 2, which we translate into the following function:

sctrl(pub out) = fCompare ◦ fInport(it1) = it1 == 2

With both extracted control flow relations, we have raised the scope of the
path conditions from routing block-local to model-wide as path conditions are
now presented as directly depending on a set of model inputs instead of local
signals.

C
(
p(ot3, i

t−1
2 )

)
=

{
(it1 == 2) �= 0, it−1

1 == 1
}

Translating and Solving Path Conditions. We can analyze our timed path
conditions, which are expressed by sets of constraints, using a constraint solver.
We chose a format that resembles a set of constraints on signals. To translate this
representation into a set of constraints, we first declare all encountered signals as
decision variables, then to extract each condition as a constraint on the signals.
Finally, the solver is instructed to find an assignment to the decision variables
that does not violate any constraints. If such an assignment can be found, we can
conclude that the extracted conditions along the path overlap and there is indeed
the possibility for information flow. If the constraint system is unsatisfiable, the
path conditions prohibit information flow.

Running Example. The result from translating the path conditions extracted
in the previous step into a constraint system is shown in Listing 1.1. Decision
variables are declared first, then the two conditions extracted from the routing
blocks along the path are shown. When solving the constraint system, we con-
clude that it is in fact satisfiable due to the timing annotation at the input signal
i1, allowing for information to flow from confidential to public signals.
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1 % path condition variables
2 var int: i_1_t;
3 var int: i_1_t_sub_1;
4 % path conditions as depending on i_1
5 constraint (i_1_t == 2) != false;
6 constraint i_1_t_sub_1 == 1;
7 % find valid assignment
8 solve satisfy;

Listing 1.1. The translated constraint system

5 Evaluation

To evaluate our approach, we have implemented the analysis described above
in Java. Our implementation uses an existing Simulink model parser originally
developed for the Methods of Model Quality (MeMo) project [8]. We made our
computation and implementation accessible via an Eclipse plug-in. While in its
current state, our backward propagation algorithm only supports a small subset
of simple blocks, we are confident that it still can be applied to a broad range
of practical examples as this part of our approach must only be applied to the
part of the design that models control signals. As a CLP language, we chose
MiniZinc [13] for its simplicity and the possibility to be translated into multiple
solver back ends. As a back end, we utilize the Gecode [16] constraint solver.

Table 2 shows the results of our analysis of the running example. With a
complexity linear to the size of the model, our algorithm extracts the timed
path conditions and passes them to the constraint solver. As can be seen in
the table, both the extraction of path conditions as well as the solving of each
constraint file by Gecode is performed in under 100 ms.

For the two paths p(it−1
2 , ot2) and p(it−1

3 , ot3) connecting the confidential and
public inputs with their respective outputs, the satisfiable constraint system
shows that their path conditions overlap and information flow is therefore pos-
sible. Additionally, their timing relation shows that information fed into the
system at time t exits the corresponding output in the next time slice.

The constraint systems created for the two paths p(it−1
2 , ot3) and p(it−1

3 , ot2),
on which confidential information crosses to the public output and vice versa,
are satisfiable and therefore show that although the designer intended to use the

Table 2. Evaluation results

Path Constraints Sat Time

Extraction Solver

p(it1, o
t
1) ∅ - 73ms -

p(it−1
2 , ot2) {it−1

1 == 1, (it1 == 1) �= 0} � 38 ms

p(it−1
2 , ot3) {it−1

1 == 1, (it1 == 2) �= 0} � 29 ms

p(it−1
3 , ot2) {it−1

1 == 2, (it1 == 1) �= 0} � 27 ms

p(it−1
3 , ot3) {it−1

1 == 2, (it1 == 2) �= 0} � 33 ms
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operation mode to ensure non-interference, information flow does indeed occur
whenever the operation mode is changed. The security policy of non-interference
between the confidential and public data flows is therefore violated.

6 Conclusion

In this paper, we have presented an approach to extract timed path conditions
from Simulink models. These conditions can be used to reduce model complexity
and as an IFA tool to argue about the existence of paths between arbitrary blocks
in a model. We have shown how we find paths between inputs and outputs to
the model and how we determine timing dependencies of signals along these
paths. Further, we have demonstrated how we extract conditions from routing
blocks on paths and how we identify control flow relations between blocks to be
able to draw conclusions about the existence of paths using a constraint solving
tool. Using the example of a shared buffer for confidential as well as public data,
we have demonstrated the usability of our approach in the context of an IFA.
Thereby, we have shown how timed path conditions can be used to both detect
as well as rule out security policy violations.

To increase the precision of our approach, we are planning to extend its
functionality to include more parts of the Simulink design library, such as
IndexVector and Selector blocks to support non-scalar signals. Furthermore,
we see high potential to increase the width of our approach by supporting State-
flow [11], an extension to Simulink with functionality and semantics similar to
state machines. Stateflow is widely-used to model control logic within Simulink,
i.e., to drive the control signals of routing blocks within the model. Finally, we
aim at extending our approach to support more Simulink-specific features used
in industrial applications, such as bit-precise variable modifications and the Tar-
getLink block set [2] used in the development of implementation-level Simulink
models.
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Abstract. In our work we aim at a composable and consistent specifi-
cation and verification of contracts for extra-functional properties, such
as power consumption or temperature. To this end, a necessary precon-
dition for the semantical correctness of such properties is to ensure the
structurally correct modeling of their interdependences.

While this can be solved by a tailoring of the Component Based Design
(CmpBD) frameworks, the resulting design constraints are specific to
tools and viewpoints, not being sufficiently configurable for the design-
ers. To solve this problem within the contract framework, Contract Based
Design (CBD) with explicit port variables provides also no configurable
but sound methodology for structurally relating the properties between
different components and views. For that, we propose the idea of struc-
tural contracts. Using implicit structural ports, structural guarantees can
be given according to the Component Based Design structure. Express-
ing structural design constraints by the means of structural assumptions,
the CmpBD constraints can become part of the Contract Based Design
framework and, thus, can be checked for compatibility and refinement.

As a result, structural contracts enable the contract based specifica-
tion and verification of structural rules for the correct modeling of func-
tional and extra-functional interdependences. Providing both, property
specifications and Component Based Design constraints by contracts, the
approach is flexible and sound.

Keywords: Contracts · Contract based design · Components
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1 Introduction

Following the increasing opportunities to integrate more functionality and
improved performance in today’s integrated microelectronic systems has lead
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to continuously growing design complexity and an increasing number and het-
erogeneity of design requirements. As a result, the specification, modeling and
verification of such heterogeneous systems became a challenging task, requir-
ing a reliable collaboration of specialists from different design and verification
domains.

Following the paradigms of encapsulation, divide and conquer and separation
of concerns the concepts of components and viewpoints have been introduced to
master design complexity by Component Based Design (CmpBD) [9]. Commonly
a component is considered to be a design element, which internally encapsulates
its behavior, solely restricting its interaction with the environment to its well-
defined port interface. Hence, a main precondition of Component Based Design is
the components’ behaviors to be compositional. That means, that for each point
of time the interaction between connected components is clearly determined by
solely one of the components, controlling the information exchange across this
connection without being affected by undelayed influence from the environment.

Additionally, considering the further refinement and implementation of sub-
components to proceed independently, the compatibility of connected ports has
to be ensured. To this end, type systems [6] are applied, to declare the type of
the components’ ports and to verify that connected ports have compatible types.
Beyond the most common notion of untimed static types, such as boolean, inte-
ger etc., Contract Based Design (CBD) [3,11] enables a more dynamic notion
of compatibility. By the means of the contracts’ assumptions A all acceptable
inputs of the components M are formally described by timed traces, declaring
interconnections incompatible if the corresponding environment E is allowed to
provide a timed sequence of outputs which violates the components’ assump-
tions. Differently, when the assumptions are satisfied, the components provide
outputs according to the guarantee G, which correspond to the satisfied assump-
tion.

Nevertheless, static type and compatibility checking of contracts is not flexi-
ble enough to be applicable for the consistent specification and verification of the
interactions between the properties from multiple extra-functional viewpoints,
largely comprising physical properties w. r. t. power or temperature etc. Differ-
ently, a more flexible declaration of designer-defined types would be necessary,
to allow for complex, derived and configurable types, which appropriately com-
bine the value and time semantics of the ports with a viewpoint-specific physical
interpretation, such as ‘average power consumption per operation in μW ’.

Considering viewpoint-specific models of a heterogeneous (multi-viewpoint)
component to be viewpoint-specific components themselves, we assume that a
sufficiently flexible but sound declaration and verification of designer-defined
types can be achieved by extending the compatibility criteria of contracts to also
structural properties, which constrain the basic design elements of the decom-
position, such as the identifiers of components and ports. Since Contract Based
Design allows contracts to constrain only the explicitly declared ports of compo-
nents we propose a first concept of structural contracts. Based on an introspection
of the component structure we implicitly instantiate a decomposition component
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plus structural ports and structural nets, to enable the contract based reflection
of the component structure via these explicit ports. As a result, the usage of
structural assumptions allows us to systematically constrain the instantiation
and connection of subcomponents based on their component and port names.

To motivate our idea of structural contracts, Sect. 2 explains an artificial
example, for which the extra-functional failure of the design becomes hidden –
i.e. erroneously not visible – because of a semantically incorrect connection of
extra-functional ports. Next, in Sect. 3 we summarize the related work, before we
introduce the formal basics of components and contracts in Sect. 4. In Sect. 5 we
present our approach of structural contracts based on the introspection, compo-
nent extension and contract based reflection of the component structure. Then,
in Sect. 6 we outline a first proof of concept, using our initial example to success-
fully invalidate the previously hidden false negative verification using structural
contracts. In Sect. 7 we conclude and give an outlook to future work.

2 Motivating Example

To motivate structural contracts we consider the simplified, artificial example of
a composed component M given in Fig. 1, which is specified to hold an average
power consumption of at maximum 20μW. The component has one functional
input port x0, indicating two different operating modes, and one extra-functional
output port yp, denoting the average power consumption per clock cycle.

Fig. 1. Motivating example, composing a component M from subcomponents Mi, con-
necting their inputs x(·) resp. outputs y(·) from multiple extra-functional viewpoints
(functional, capacitive load and power) by interconnecting nets n(·) to evaluate the
composed system’s power consumption.

Refining M by a composition of three different subcomponents, the subcom-
ponents are M0, M1 and M2, with all of them having one functional input x0
and one functional output y0, decoding their operating mode in one bit. More-
over, for the purpose of calculating the power consumption, the subcomponents
provide inputs xc and outputs yc, which describe the components’ input or load
capacitance C

e

sw, responsible for consuming a certain amount of power during the
interaction of both components. Of course, in addition to that, each component
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consumes also an internal amount of power, based on the internally switched
capacitance C

i

sw. For simplification, the example contains no further ports for
the supply voltage VDD or clock frequency fclk, considering both of them to be
constant at VDD = 1.0V and fclk = 2.0MHz for components M1 and M2 and
M0.VDD = 1.0V and M0.fclk = 6.0MHz for component M0. Above that, fol-
lowing P = 1

2V 2
DDfclkCsw the average power consumption yp = P depends on

the average switched capacitance Csw = C
i

sw + C
e

sw, internally resp. externally
switched according to the functional activity of the component. Appropriately to
these specifications, Table 1 outlines the functional and extra-functional behav-
ior of the components w. r. t. their input resp. output ports. For example, the
switched capacitance of M1 is 3pF for M.x0 = 1. This is because of C

i

sw = 2
and M1.xc = M2.yc = C

e

sw = 1, following from exchanging the functional and
extra-functional information according to the interconnection of Fig. 1, so that
M0.x0 = 1, M1.x0 = 1 and M2.x0 = 0. As a result of this evaluation, the given
composition of M finally does not hold the specification of an average power
consumption of at maximum 20μW, consuming 23μW for the case of M.x0 = 1.

Table 1. Overview of the example’s functional and extra-functional component char-
acteristics, which belong to the functional, capacitive load and power viewpoints. To
consider the dependency on the functional inputs the expression (x0 ? a : b) shall logi-
cally denote (x0 → a) ∧ (¬x0 → b).

Viewpoint M.x0 M0 M1 M2 M.yp

fct 0/1 y0 = x0 y0 = ¬x0 y0 = x0

C
i
sw\[pF] 0/1 x0 ? 4 : 1 x0 ? 2 : 1 x0 ? 3 : 1

yc = C
e
sw\[pF] 0/1 – x0 ? 2 : 1 x0 ? 1 : 1

C
i
sw + C

e
sw\[pF] 0/1 x0 ? 4 + 2 : 1 + 1 x0 ? 2 + 1 : 1 + 1 x0 ? 3 : 1

VDD\[V] 0/1 1.0 1.0 1.0

fclk\[MHz] 0/1 6.0 2.0 2.0

P\[µW] 0/1 x0 ? 12 + 6 : 3 + 3 x0 ? 2 + 1 : 1 + 1 x0 ? 3 : 1 x0 ? 23 : 10

Contrary to this, the same calculation of the power consumption asserts
‘valid’ when during refinement the following – semantically inconsistent – con-
nection error occurs as given in Fig. 2. Refining M with n6 and n7 instead of n1

and n3, the externally switched capacitances M0.y0 and M1.y0 are interchanged,
leading to the erroneous power calculation M.y0 = (x0 ? 20 : 11) in Table 2.

Erroneously refining M with n6 and n7 instead of n1 and n3, the semanti-
cal meaning of the capacitive loads, corresponding to the real worlds functional
interconnections n0 and n2 gets violated. Without the possibility of strictly relat-
ing these ports by some concepts of derived complex types, such – and similar –
semantic errors can easily remain unrevealed. As a solution to this, we propose
structural contracts, to allow the designers to add composition constraints, and
an introspection and reflection of the component structure, making the structural
decomposition part of the contract-based specification and verification approach.
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Fig. 2. Erroneous composition resp. refinement of M from the same subcomponents
Mi, introducing semantically false connections n6 and n7 instead of n1 and n3, which
violate the physical semantics of allocating the capacitive loads in correspondence with
the real worlds functional interconnections n0 and n2, falsely verifying M.P < 20µW.

Table 2. Extra-functional characteristics of the erroneously refined example, leading
to a false negative verification of the power consumption, satisfying M.P < 20µW.

Viewpoint M.x0 M0 M1 M2 M.yp

C
i
sw + C

e
sw\[pF] 0/1 x0 ? 4 + 1 : 1 + 1 x0 ? 2 + 2 : 1 + 1 x0 ? 3 : 1

VDD\[V] 0/1 1.0 1.0 1.0

fclk\[MHz] 0/1 6.0 2.0 2.0

P\[µW] 0/1 x0 ? 12 + 3 : 3 + 3 x0 ? 2 + 2 : 1 + 1 x0 ? 3 : 1 x0 ? 20 : 11

3 Related Work

Considering the related work – to the authors’ best knowledge – no other work
aims at ensuring the semantical consistency of different components and view-
points – i.e. a verifiable but flexible type system with complex, designer-defined
types – by a contract based formulation of constraints for the logical decompo-
sition structure.

The probably most common approach to support semantical consistency and
compatibility would be to provide only a limited set of fixed types of components
and ports resp. design rules, which are defined and checked by the component
based design framework. While this tailoring may support complex type systems,
as e. g. the polymorphic and structured types [12] in Ptolemy II, it lacks flexibility
w. r. t. defining viewpoint-specific compatibility and refinement rules, meaning
constraints on how these types can bottom-up be constructed resp. top-down
refined, checking value-, causality- and time-aware construction rules.

In interface theories [1,2] the distinction between bottom-up components for
compositional abstraction on the one hand, and top-down interfaces for composi-
tional design on the other hand have lead to the general concepts of compatibil-
ity and refinement checking for component specifications using assumptions and
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guarantees. Applying timed languages to describe assumptions and guarantees,
the contracts allow to specify and to verify the compatibility of the components’
interaction protocols according to value and time resp. causality criteria. Nev-
ertheless – while building the general foundation for contracts based design –
without some introspection and reflection of the interface variables and their
interconnection relations via additional ports, top-down constraints w. r. t. the
logical decomposition structure are not possible that way.

Differently, to investigate and define behavioral types, in [4,5] the concepts of
glue operators and glue constraints are defined for the BIP (behavior, interaction,
priority) framework. Providing connectors with priorities and their own memo-
ryless behavior the interaction between components connected by a connector
can appropriately be synchronized w. r. t. to some timed or untimed causality
relation. Hence, again compatibility is meant only in the sense of interaction pro-
tocols, not concerning extra-functional semantics of e. g. different viewpoints.

4 Formal Basics

As given in Fig. 1, Component Based Design allows to structurally compose
the behavior of higher level components M from instantiating lower level sub-
components Mi ∈ M∗

M = {M0, . . . ,Mj}, j ∈ N. These subcomponents’ behav-
iors can interact via the directed ports of the components’ interface declara-
tion pi ∈ ⋃

m χm, χm = χin
m ∪ χout

m , m ∈ {M} ∪ M∗
M. Its input ports are

given by xi ∈ χin
m = {x0, . . . , xj}, j ∈ N and its output ports are given by

yi ∈ χout
m = {y0, . . . , yj}, j ∈ N. Their interconnection is denoted by directed

nets ni = (psrc, psnk) ∈ NM = NA
M ∪ND

M = {n0, . . . ,nj}, j ∈ N. Among these, the
assembly nets ni ∈ NA

M = {ni|(psrc ∈ χout
M∗

M
) ∧ (psnk ∈ χin

M∗
M
)} denote the connec-

tions between the different subcomponents M∗
M of M. In contrast, the delegation

nets ni ∈ ND
M = {ni|((psrc ∈ χin

M)∧(psnk ∈ χin
M∗

M
))∨((psrc ∈ χout

M∗
M
)∧(psnk ∈ χout

M ))}
denote the connections between subcomponents M∗

M and the composed compo-
nent M. Assuming both, the behavior of the components as well as their com-
munication, to be compositional, a top-down refinement resp. bottom-up virtual
integration of the composed behavior becomes possible, reducing the design com-
plexity by a – possibly hierarchical – structural decomposition.

Hence, we consider a component M as M = (tp(M), χM , SM ,DM , BM ),
with χM , SM , DM , BM being tuples or sets and tp(M) denoting a function
to resolve the component’s type name. For the top-level of a decomposition the
type tp(M) = ‘M ’ is also considered to represent the component’s instance name,
normally given by id(Mi) = ‘Mi’ for the lower levels of a decomposition. Similar
to the notation in Sect. 2, the component’s port interface is defined by the set
χM = χin

M ∪ χout
M of input ports xi ∈ χin

M and output ports yi ∈ χout
M . Besides a

function id(·) to resolve a port’s name, the declaration of each port (·) defines
also functions ν(·) to resolve its value domain – e. g.boolean or integer – and
dir(·) ∈ {in, out} to resolve its direction as input resp. output.

Using an extended linear temporal logic, contracts Ci := (Ai, Gi) are used,
to formally specify the assumptions Ai of a component M w. r. t. to the timed
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behavior of its environment E, combined with its guarantees Gi, provided for
the case that the corresponding assumptions Ai are satisfied. To this end, the
assumptions describe expressions, which observe (read) only the input variables,
while the guarantees are expressions, which control (write) only the output vari-
ables. Semantically, both expressions are interpreted as sets [[A]] resp. [[G]] of
timed traces sxi

resp. syi
with [[A]] = {(sx0 , . . . , sxj

)|(⋃j
i=0 xi = χin

M ) ∧ ([[A]] |=
A)}, [[G]] = {(sy0 , . . . , syj

)|(⋃j
i=0 yi = χout

M ) ∧ ([[G]] |= G)}, satisfying the
corresponding assertions A resp. G, and with sxi

= {e0(xi), e1(xi) . . .} resp.
syi

= {e0(yi), e1(yi) . . .} describing the timed traces of xi resp. yi as possibly
infinite sequences of events eι(xi) = (v(xi), tι) resp. eι(yi) = (v(yi), tι) with
variable value v(xi) ∈ ν(xi) resp. v(yi) ∈ ν(yi), time tι : (tι ∈ R

+
0 ) ∨ (tι ∈ N)

and ι ∈ N
+
0 . Using the contracts’ saturated interpretation (Ai → G

′
i), with

G
′
i := (A

′
i → Gi) and A

′
i ⊆ Ai, compositional assume/guarantee reasoning

becomes possible to prove the compatibility and refinement within a component
based decomposition.

Thus, we provide the component’s contract based specification SM =
⋃

i Ci,
which we onwards denote as behavioral specification. Accordingly, BM describes
the corresponding behavioral implementation, e. g. given as an executable pro-
gram, automata or formula. Furthermore, the tuple DM = (M∗

M , NM ) describes
the component’s structural decomposition, either for the purpose of a struc-
tural top-down refinement of the initial specification as well as for the structural
bottom-up implementation by instantiation and integration of available compo-
nents. Finally, the norm | · | shall for all sets denote their number of elements
and, if necessary for unambiguousness, we prefix identifiers and symbols by com-
ponent identifiers M or Mi, using a dot as delimiter, as e. g. M0.C0, M1.C0, etc.
For simplicity we identify components, contracts and ports by names equal to
their symbols, so that id(M) = ‘M ’, id(Mi) = ‘Mi’, id(xi) = ‘xi’, id(yi) = ‘yi’
etc.

5 Structural Contracts

In general, being based on interface theories, Contract Based Design is limited
to such specifications SM , declaring only the externally observable ‘behavioral
properties’ of the component – meaning ‘behavioral’ in that sense, that its prop-
erties refer only to the components’ explicitly declared ports. Differently, the
component’s inherently contained ‘structural properties’ can neither be specified
nor verified that way – meaning ‘structural’ not necessarily w. r. t. the physical
but w. r. t. the logical structure, such as available ports, the instantiated sub-
components or the interconnection of a structural decomposition DM etc. As a
solution, we suggest an introspection and reflection of these structural proper-
ties to introduce a structural point of view, enabling for structural contracts.
According to the interface declaration (χin

M , χout
M ) and the formal decomposition

DM we extract the available structural information and systematically add an
implicit interface χstruc

M of structural ports, which provide explicit access to the
structural information. As a result, the component’s decomposition structure
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becomes specifiable and verifiable via contract based constraints for its origi-
nal interface declaration, structural decomposition resp. the instantiation and
integration of the component within a hierarchical composition.

To explain our approach in detail, we follow its sequential steps according to:

1. extract structural information 4. add introspection components
2. build structural data types 5. add introspection subnets
3. insert introspection ports 6. add structural guarantee

First, the components’ structural information (tp(M), χM , SM ,DM , BM ) are
derived from the component model, to build the data structure of M accord-
ing to Sect. 4. In the second step – to avoid complete string analysis for the
first approach – we generate structural data types according to the following
enumerations:

dt cId : set of all components identifiers tp(M) and id(Mi) ∀Mi ∈ M∗
M

plus one additional ’open’ symbol to denote ports without a connection

dt pId : set of all port identifiers id(pi) ∈ χm of M and Mi ∈ M∗
M

plus one additional ‘open’ symbol to denote ports without a connection

Based on these structural data types, we then introduce the structural intro-
spection ports according to Fig. 3. That is, for each port pi ∈ χMi

of each
subcomponent Mi ∈ M∗

M of the decomposition DM two additional input ports
of type dt cId resp. dt pId are added. For each input port pi = xi ∈ χin

Mi
the

ports are named Mi.id(xi) cSrc and Mi.id(xi) pSrc resp. Mi.id(yi) cSnk and
Mi.id(yi) pSnk for each output port pi = yi ∈ χout

Mi
. Using these additional

ports the components are enabled to receive information about the connections
ni ∈ {NM , ‘open’} between their original ports, meaning the identifiers of the
‘source component’ and ‘source port’ resp. the ‘sink component’ and ‘sink port’
connected via the net ni, resp. to receive ‘open’ if ports remained unconnected.

Fig. 3. Overview of the implicitly inserted structural introspection ports, extending the
port interface of each subcomponent within a decomposition DM of a component M .

In the fourth step, an additional introspection component MDM is added to
the decomposition structure – i.e. M∗

M := M∗
M ∪ MDM – to reflect the compo-

nent’s structural information via the introspection ports. To this end, MDM pro-
vides the structural output ports MDM.id(Mi.xi) cSrc, MDM.id(Mi.xi) pSrc,
MDM.id(Mi.yi) cSnk and MDM.id(Mi.yi) pSnk, building the corresponding
counter part to the structural ports we introduced in step three.
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Fig. 4. Extension of a component’s decomposition DM by an introspection compo-
nent MDM and structural nets ncSrc(ni), npSrc(ni), ncSnk(ni), npSnk(ni), connecting the
introspection component with the subcomponents.

In the fifth step, we complete the communication structure of the structural
view according to Fig. 4, connecting the structural introspection ports of MDM

with the corresponding subcomponents Mi ∈ M∗
M . To this end, for all nets ni ∈

NM additional subnets NDM =
⋃

ni
ncSrc(ni) ∪ ⋃

ni
npSrc(ni) ∪ ⋃

ni
ncSnk(ni) ∪⋃

ni
npSnk(ni) are inserted to NM , according to the following rules:

ncSrc(ni) = (MDM.id(Mi.xi) cSrc,Mi.id(Mi.xi) cSrc),
npSrc(ni) = (MDM.id(Mi.xi) pSrc,Mi.id(Mi.xi) pSrc),
ncSnk(ni) = (MDM.id(Mi.yi) cSnk,Mi.id(Mi.yi) cSnk),
npSnk(ni) = (MDM.id(Mi.yi) pSnk,Mi.id(Mi.yi) pSnk).

Finally, the introspection component MDM is annotated with structural guar-
antees C : ((A : true), (G : 〈struc port〉 = 〈struc value〉)), reflecting the
information of the original component’s interconnections with struc value ∈
ν(struc port) and:

struc port ∈
⋃

xi∈χin
Mi

MDM.id(Mi.xi) cSrc ∪
⋃

xi∈χin
Mi

MDM.id(Mi.xi) pSrc

∪
⋃

yi∈χout
Mi

MDM.id(Mi.yi) cSnk ∪
⋃

yi∈χout
Mi

MDM.id(Mi.yi) pSnk

Differently, for the subcomponents Mi ∈ M∗
M the corresponding structural

introspection ports allow to constrain the components’ interconnections by struc-
tural assumptions C : ((A : 〈struc port〉 = 〈struc value∗〉), (G : true)), with
struc value∗ := {〈struc value〉|〈struc port〉}, struc value ∈ ν(struc port) and:
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struc port ∈
⋃

xi∈χin
Mi

Mi.id(Mi.xi) cSrc ∪
⋃

xi∈χin
Mi

Mi.id(Mi.xi) pSrc

∪
⋃

yi∈χout
Mi

Mi.id(Mi.yi) cSnk ∪
⋃

yi∈χout
Mi

Mi.id(Mi.yi) pSnk

That way, the structural information of a decomposition are treated as prop-
erties, which are provided from the compositional environment which embedds
the instantiated components, consequently allowing for a contract based assume-
guarantee reasoning in this structural view. Following from this, structural
assumptions can be specified top-down, becoming part of the functional and
extra-functional contracts and thus an additional validity constraints during the
compatibility and refinement checking within multiple viewpoints.

6 Proof of Concept

For a first proof of concept, we evaluated our approach of structural contracts
for the motivating example, outlined in Sect. 2. To this end, we implemented the
component interfaces of M and its subcomponents M0, M1 and M2 and provided
them with contracts according to the functional and extra-functional properties
given in Table 1. Based on this implementation we showed that structural con-
tracts are able to reveal the false negative verification of the erroneous logical
structure depicted in Fig. 2. Furthermore, we showed that for a correct struc-
tural decomposition our structural extension does not influence compatibility
and refinement checking of the other functional and extra-functional properties.
For the implementation and evaluation we used OTHELLO (Object Temporal
with Hybrid Expressions Linear-Time LOgic) [8] for the specification of con-
tracts and OCRA (OTHELLO Contracts Refinement Analysis) [7] to describe
the components as OSS (OCRA System Specification) [7] and to check their com-
patibility and their refinement. To reproduce our study, our example is online
available at [10].

7 Conclusion

Based on an artificial example we motivate the need for structural contracts
and show how structural contracts increase the reliability of composed extra-
functional multi-domain models. By the evaluation of the example we show
that structural contracts can reveal failures in the logical composition structure,
which otherwise remain hidden, enabling false negatives during extra-functional
verification.

In the future work, we want to investigate the abstraction and refinement
of our structural contracts and evaluate how structural contracts can be propa-
gated throughout the design and abstraction hierarchies. Furthermore, we plan
to examine if and which additional port annotations will become necessary enable
this hierarchies and to allow for the seamless and composable integration of
designer-defined extra-functional semantics based on structural contracts.
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Abstract. The analysis of real-time properties is crucial in safety crit-
ical areas like in automotive applications. Systems have to work in a
timely manner to offer correct services. Most of the applications in this
domain are distributed over several computation units, inter-connected
by bus systems. In previous works we have introduced a state-based
analysis approach to validate end-to-end deadlines for distributed sys-
tems. The approach is based on the computation of the state spaces of
all resources, such as processors and buses, in an iterative fashion. For
this, abstraction and composition operations were defined to adequately
handle task and resource dependencies. During the design process of a
system changes occur typically on both the specification and implemen-
tation level, such that already performed analyses of the system have to
be repeated. In this work, we extend our timing analysis with a refine-
ment checking approach, detail when it is appropriate to be used, and
compare the analysis times with the computation times to perform the
refinement check.

Keywords: Real-time systems · Scheduling analysis · Re-validation
Timing analysis · State-based timing analysis

1 Introduction

In recent years the co-operations and inter-connections between individual, geo-
graphically distributed systems heavily increased. Also in safety critical areas
the significance of these topics increased. As an example, much effort has been
invested in the development of Car-to-Car communications with the aim to
increase the safety in traffic and optimize traffic flows. Another example is the
dynamic partitioning of the airspace with respect to time investigated in the
SESAR (Single European Sky ATM Research) program. The recent partitioning
of the airspace is performed in a static manner with respect to time, i.e. the
trajectories are not changed during the whole landing approach and the takeoff.
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The shift to a dynamic partitioning, which is called 4D-trajectories, involves a
much more intensive co-operation between the tower and each airplane.

For the correct functionality of safety-critical functions of such systems, tim-
ing constraints are one crucial aspect. The final product has to satisfy those
constraints, as the violation of a requirement could result in high costs or even
threats to human life. Nissan for example had to recall the vehicles of its premium
segment cars due to some delays in the emergency program of their new steer-
by-wire system. Such a problem could have been avoided, if an early analysis
on timing constraints would have been performed. Unfortunately, many changes
occur during the design process, such that already performed analyses have to
be repeated. Our approach targets these problems.

In [1] we worked out a state-based approach for the analysis of timing prop-
erties. In analogy to model checking methods, we consider the full state space,
where all task interleavings are preserved. In order to alleviate the problem of
state space explosion due to state unfolding, the state space of an architecture
is constructed in an iterative manner. Abstraction methods are applied to keep
the interfaces between components as small as possible, while composition oper-
ations are used to combine a set of triggering sources of a component.

On top of this we worked out an impact analysis approach to minimize re-
validation efforts of timing properties needed when the considered system is
modified [2]. Adaptations of the architecture of an already existing and analyzed
system could be for example the addition of new tasks that are allocated to the
existing system. To minimize the effort of a re-validation, it is desirable to reuse
the previous results of the analysis that did not change. With this, only the parts
are re-validated, which were affected by the architectural changes.

This work is a consecutive extension of our previous work [2]. We illustrate the
implementation of the impact analysis. We describe in which cases a refinement
check can be applied to reduce the re-verification times when changes occur. We
evaluate our approach by a set of test systems demonstrating the computation
times needed to perform a full timing analysis and the times needed to perform
the impact analysis consisting of the loading and storing of state spaces, and
the refinement check between state spaces. Further, we discuss the benefit of
applying abstractions of resource interfaces for the refinement relation.

Related Work

Timing analysis on distributed systems is a very large research area. Thus, we
cover only the most relevant works for our approach. The classical approach
is a holistic one, as it was worked out in e. g. [3,4]. Local analysis is performed
evaluating fixed-point equations. These approaches are very fast and able to han-
dle large systems. Unfortunately, the analytical approaches deliver pessimistic
results if inter-ECU task dependencies exist. In [5] activation patterns for tasks
are described by upper and lower arrival curves realizing a compositional analy-
sis method. Based on this work a compositional scheduling analysis tool, called
SymTA/S, was created by SymtaVision [6]. The concept has been developed by
Richter et al. The main idea behind SymTa/S is to transform event streams



90 T. Gezgin et al.

whenever needed and to exploit classical scheduling algorithms for local anal-
ysis. Another related approach is the modular performance analysis (MPA) [7]
which is based on a formalism with many similarities to event streams named
Real-Time Calculus. Arrival functions are used to model the computation that
is requested by a process, and service functions are used to model the amount of
computation that can be delivered by a resource. In [8], the MPA approach has
been combined with timed automata while offering methods that allow to trans-
form the model of one formalism to another. CARTS is another tool for com-
positional real-time scheduling analysis [9]. Schedulability is checked for tasks
whose resource usage is bounded by periodic resource models developed by Lee
et al. Composition is done on the resource model level resulting again in periodic
resource models by using abstractions.

Another approach is based on model-checking: In [10] non-preemptive sched-
ulers are modeled in terms of timed automata. The advantage of this approach
is that one gets exact solutions with respect to the modeled scheduling prob-
lem. Since the state space of the analyzed system is preserved, checking com-
plex properties like safety is possible. Unfortunately, state-based approaches do
not scale well. The authors of [11] also use timed automata to model preemp-
tive scheduling and verify timing properties by using Uppaal. As a front-end
they employ sequence diagrams, from which timed automata are derived. In [12]
these automaton models were reused and the results were compared to other
techniques such as MPA or SymTA/S. In [13] timed automata are extended by
clocks which may be subtracted by a natural number to handle preemption in a
more natural way. The authors derive a sub-class of this formalism, where the
reachability is preserved.

Outline

First, we illustrate the considered problem domain. In Sect. 3 we will detail
our general analysis approach in a condensed form. In Sect. 4 we introduce our
implemented impact analysis methodology. Section 5 evaluates our concept and
compares plain verification times and refinement checking times. Finally, we
conclude the work and give an outlook for future work.

2 Problem Domain

We are interested in safety-critical real-time systems which are typically used in
the automotive domain. Typically, the design of the overall system is performed
by the original equipment manufacturer (OEM). The OEM designs the software
components in form of logical architectures by using, e.g., Autosar software com-
ponents (SWC), inter-connected by a high level virtual function bus (VFB) like
illustrated in the left part of Fig. 1. The components and parts of this system
are then realized by the suppliers. In order to get adequate realizations from
each supplier, the OEM has to specify the extra-functional properties and inter-
faces unambiguously. This is realized by the usage of so called contracts [14].
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Fig. 1. General concept of modeling and analysis.

Contracts are pairs consisting of an assumption (A) and a guarantee (G). The
assumption specifies how the context of the component, i. e. the environment
from the point of view of the component, should behave. Only if the assumption
holds, then the component will behave as guaranteed. To specify the assump-
tions and guarantees various formalisms like pattern-based languages could be
used. Contracts follow the principle of separation of concerns, i.e., a contract
does not just specify a guarantee about the behavior of a component, but also
an assumption about the behavior of the environment in which the component
will be integrated.

If all suppliers deliver the implementations of the SWCs, the OEM has to
verify whether all SWCs fit together, i.e., he has to perform the consistency check
in a black box manner, and whether some higher level requirements ranging over
several SWCs are realized by the decomposition structure.

After the implementation of all SWCs the logical architecture has to be allo-
cated to the hardware architecture, consisting of electronic control units (ECUs)
which are inter-connected by bus systems. At this design stage technical details
such as resource consumptions and timing latencies have to be verified. To per-
form such analyses, typically the architecture is abstracted in an appropriate
manner. The abstraction we perform for our analysis is illustrated in the right
part of Fig. 1: ECUs and bus systems are treated logically equivalent in the sense
that both represent computation units on which a set of tasks are allocated. The
order of executions of the tasks is determined by the corresponding scheduling
policy like fixed priority scheduling. Dependent tasks are directly connected,
tasks with no input edges are considered to work independent from other tasks.
A task is characterized by a tuple τ = (bcet, wcet, pr), where bcet, wcet ∈ N≥0,
bcet ≤ wcet, are the best and worst case execution times with respect to the
resource the task is allocated to, and pr ∈ N≥0 is the fixed priority of the task.
We will refer to the elements of a task by indexing, e.g. bcetτ for task τ . The
set of all tasks is called T . Independent tasks are triggered by events of a cor-
responding event stream (ES). An event stream ES = (p, j) is characterized by
a period p and a jitter j with p, j ∈ N≥. Such streams can be characterized by
upper and lower occurrence curves as introduced in the real-time calculus [15].
In this work we restrict to event streams where jτ < pτ for all τ ∈ T. Like stated
above we will further assume that dependent tasks are directly connected.
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3 State-Based Timing Analysis

Our timing analysis approach is based on model-checking. For each computation
resource its state space is computed. Such a state space encapsulates the relevant
timing information for tasks allocated to the corresponding resource, and end-
to-end latencies between a set of tasks. In contrast to standard model-checking,
our approach does work in an iterative fashion. The interfaces between resources
are tried to be kept as minimal as possible. Note that we assume cyclic free
systems. Parts of systems with cycles have to be handled in a holistic fashion.

To build the state space of a computation resource, we have to determine its
input behavior, which defines the activation times of all allocated tasks. State
spaces are represented by symbolic transition systems (STS): the states deter-
mine a range of valuations of clock variables, and include the information, which
task is currently running, is interrupted, or in the ready queue. A resource can
have multiple sources for its inputs: the independent tasks are triggered by event
streams, while dependent tasks are triggered when the tasks on which they
depend, terminate. Thus, we get multiple input state spaces. To determine a
single input state space for each resource, we have to combine all these inputs.

When the input is determined, the next step is to build the state space of the
resource itself. For this, the input STS, the behavior of the scheduling policy, and
the execution times and priorities of the allocated tasks are taken into account.
The approach to compute the state space is illustrated in Fig. 3, where two tasks
hp, lp are allocated to a single resource with a fixed priority scheduling policy.
For each task a clock cp which traces the periodic activation is needed. Further,
we need a clock cc to determine when a task is finished. If we are interested in
the exact response times of a task instance, we need multiple clocks cr, one for
each instance of a task.

The computed state space of a resource is then used as an input for dependent
resources, i. e. for resources on which dependent tasks are allocated. To keep the
interface between the resources as small as possible, parts of the state space that
are not relevant for the input behavior of the dependent resources are abstracted.

Consider the example in Fig. 2, which consists of three resources where on
each resource two tasks are allocated. The tasks task5 and task6 on resource
Resource3 depend on task2 on resource Resource1 and task3 on resource
Resource2 respectively. Tasks task1, ...,task4 are activated by event streams,
thus the inputs for both Resource1 and Resource2 are directly given and their
state spaces can be computed (illustrated in the left part of the figure). Next,
the input of Resource3 has to be determined, which depends on both the state
space of Resource1 and Resource2. As timing information for the tasks task1
and task4 is not relevant for Resource3, the corresponding STSs can be reduced
by abstracting from states encapsulating information about these tasks. After
this minimization, the product of both STSs is computed (indicated by the right
part of the figure).

The details of our timing analysis including the composition operation, the
minimization, and the resource construction can be found in [1].
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Fig. 2. Timing analysis approach; left: computation of resource state spaces; right:
computation of output interfaces.

Fig. 3. Two tasks hp, lp and the interrupt scenarios. The clocks refer to the task lp.
Clocks in curved brackets indicate a reset, P is the period of lp.

4 Impact Analysis Methodology

During the design process changes affecting the architecture of a system occur,
such as adding a new task on an existing resource, the merge of two tasks
in a single one, or even the change of the complete implementation. If such
changes occur, already performed analyses have to be repeated, increasing the
time needed to verify the functionality and properties of the design, and thus
increasing the time to market.

To minimize the effort of a re-validation, it is desirable to reuse the previous
results of the analysis that did not change. With this, only the parts are re-
validated, which were affected by the architectural changes. It is required to
perform an impact analysis, when changing or maintaining software because it
allows to judge the amount of work required to implement a change, proposes
software artifacts which should be changed, and helps to identify test cases which
should be re-executed to ensure that the change was implemented correctly [16].

As our timing analysis approach works in an iterative manner (and not holis-
tically), we are able to determine whether the interface of dependent resources is
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affected through the concept of our refinement analysis: we are able to check if
the new interface between dependent resources refines the old interface. In such
a case a re-validation of dependent resources can be omitted. The definition of
an appropriate refinement relation was the topic of our previous work [2].

In the next section, we illustrate our implementation approach of the impact
analysis. We demonstrate in which cases a complete re-verification of a compo-
nent is necessary, in which cases a refinement check is performed, and when ver-
ification steps can be omitted. Thereafter we discuss the advantages of our app-
roach when using further abstraction techniques on the interfaces of resources.

4.1 Concept

The concept of the implementation of our impact analysis is illustrated in Fig. 8
in terms of an UML activity diagram.

Each resource has a status flag for its resource state space called outputIs-
Consistent, initially set to false. The idea of this flag is to inform dependent
resources whether some non-refinement changes concerning the resource state
space occurred (and thus the resource state space has to be recomputed).

First, it is checked whether some inputs of the resource has changed (check-
InputStatus). If changes occurred, the check evaluates to false and the input STS
(computeInputSTS ) followed by the computation of the resource state space itself
(computeResourceSTS )is performed as usual. As the resource STS is newly com-
puted, the flag outputIsConsistent is set to false to signalize dependent resources
that this input has changed. Last, the resource STS is stored appropriately. If
on the other hand the output STSs of all resources, from which the current
resource depends on, did not changed, checkInputStatus evaluates to true. Then
it is checked whether an already computed resource STS of this resource exists
(from previous verification steps, where the resource STS was saved). If not,
it has to be computed as described above. Else, it is checked whether struc-
tural changes have occurred, i.e. changes concerning the scheduling policy of the
resource, the number of allocated tasks and their properties like priorities and
execution times. If these properties did not changed, the resource STS will also
be not affected. Thus, the existing STS can be restored (loaded from file system).
The flag outputIsConsistent is set to true indicating that nothing changed on
the output.

If else some changes on the resource occurred checkInputStatus will evaluate
to false. In this case, we have to re-compute the resource STS, load the previ-
ously computed resource STS and do a refinement check between both STSs.
If the refinement check evaluates to true, outputIsConsistent is also set to true
indicating that the resource STS changed in a good manner. Else it is set to
false. Note that before the re-computation of the resource STS the input STS
of the resource has also to be re-computed because if properties of independent
tasks change the input STS is also affected.
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4.2 Combination with Abstractions

Generally an impact analysis is useful in combination with analysis techniques
that involve abstractions. This is also a typical scenario for analytic techniques
such as in [17]. These techniques are based on the assumption that every interface
behavior can be characterized by event streams. To obtain event streams for the
outputs of a resource, the actual task behavior is generally over-approximated.

Hence changes in the behavior of a particular resource might indeed have an
impact on the already computed exact state-space representing its output behav-
ior, but might not have an impact on the over-approximated output behavior of
the resource. This can be exploited by our impact analysis.

We consider event streams as the maximal abstraction of the timing behavior
of a task, as these only contain information about best- and worst-case response-
times, without any information, in which cases the corresponding response times
occurs. For example a task could have a large response time when it is interrupted
by an high priority task which is allocated on the same resource, and an small
response time, when no interrupts occur.

Though our analysis approach is an exact analysis in general, it can be com-
bined with abstraction techniques in order to reduce the state space of the
interface transition systems. Such abstractions were the topic of our previous
works [18].

An abstraction indeed might affect the schedulability of a depending resource,
and hence may cause false negative results. On the other hand, suitable abstrac-
tion techniques may pave the way to omit re-validations.

5 Evaluation

In this chapter we will evaluate our methodology by the usage of the three test
systems illustrated in Fig. 4. Tasks with no input edge are considered as to be
independent, i.e. triggered by event streams. The scheduling policies of each
ECU is fixed priority with interruption, and the policy of the CAN bus is also
fixed priority but (of course) without interruption. The parameters of the tasks
are detailed in the table of Fig. 5, where p is the period of a task, ecec. is the

Fig. 4. Test systems.
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Fig. 5. Task parameters.

Fig. 6. Measured average computation times.

Fig. 7. Computation times for (a) ECU1 in System1 (left), (b) ECU2 on System2
(center), and (c) ECU3 on System3.
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Fig. 8. Methodology of the impact analysis (timing analysis combined with refinement
check).

execution time which may be a single value or an interval, if bcet �= wcet, and
pr is the priority of a task.

In our evaluation we compare the time needed for an analysis of each resource
and the times needed to store and load a corresponding state space, and check
the refinement of the state spaces of the resources. The idea is to demonstrate



98 T. Gezgin et al.

that the analyses times of the resources is always much larger than the times
needed to store and to load the state spaces, and to check whether – if a change
occurred – the old state space is a refinement of the new one.

Note that all times were measured on the same machine to preserve compa-
rability. Each check has been performed five times. The times illustrated here
are the average times of all measurements.

The measured times are illustrated in the table of Fig. 6. As an example: To
analyze the timings of ECU2 of System2 we need 6.75 s. In contrast to this,
the refinement check of the of state spaces (new and old) of ECU2 only takes
0.015 s. The cell Sum is the sum of the cells Refinement, Load and Store and is
used to compare the times needed to perform these three steps against the plain
verification time.

As an example we illustrated some cases graphically in Fig. 7.
The result of our evaluation is that the larger the state space of a resource

is (and therefore the verification time of that resource), the larger the difference
between the verification time and the computation times needed to load, save,
and check the refinement of the old and new state spaces is. Thus, for larger
systems our refinement methodology is a real gain for our analysis approach.
Note that of course, if the refinement check fails, i.e. the new state space of a
resource is not a refinement, than we have extra analysis times which we would
not have if we always perform the plain verification directly. But fortunately
these refinement checking times are not that large. Actually the complexity of
the refinement check is n(n − 1) where n is the number of states.

6 Conclusion and Outlook

We illustrated the implementation of our impact analysis approach which is
applied when architectural changes occur during the design state of a system.
We evaluated our approach by measuring the computation times needed to per-
form the full verification, the storage and load of state spaces, and the com-
putation of the refinement check, and compared these times. The result is that
for larger systems our refinement methodology is a real gain for our analysis
approach. Currently, we investigate new abstraction techniques which will yield
more accurate results than the classical analysis techniques and will boost the
scalability of our approach.
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Abstract. Hypervisor-based virtualization is a promising technology to
concurrently run various embedded real-time applications on a single
multicore hardware. It provides spatial as well as temporal separation of
different applications allocated to one hardware platform. In this paper,
we propose a concept for hierarchical scheduling of dependent real-time
software on multicore systems using hypervisor-based virualization. For
this purpose, we decompose offline schedules of singlecore systems based
on their release times, deadlines, and precedence constraints. Resulting
schedule fragments are allocated to time partitions such that task dead-
lines as well as precedence constraints are met while local scheduling
order of tasks is preserved. This concept, e.g., enables consolidation of
various dependent singlecore applications on a multicore platform using
full virtualization. Finally, we demonstrate functionality of our concept
by an automotive use case from literature.

Keywords: Embedded systems · Dependent real-time systems
Real-time virtualization · Multicore scheduling · Hierarchical scheduling

1 Introduction

Nowadays, there is a raising interest in multicore technology for embedded real-
time systems. Using multicore hardware promises not only more computational
power but also reduced system size, weight, and power consumptions. However,
many embedded applications require sequential interaction between different
components. Increasing system performance is not reached by parallelization of
dedicated software but rather by running various applications on one multicore
platform concurrently [12]. Virtualization provides means to separate various
applications. Multicore architectures and virtualization are therefore known as
symbiotic technologies [9].
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1.1 Hypervisor-Based Virtualization

In this paper we focus on type-1 hypervisor-based virtualization, i.e. an addi-
tional software layer – the hypervisor – is placed between hardware and operating
system (OS) respectively application software. As type-1 hypervisor run bare-
metal, they must provide, e.g., device drivers either by their own (monolithic)
or by means of some special guest system (console-guest). Hypervisor provide
virtual machines (VM) that represent duplicates of the real hardware. These
VMs allow to run various systems spatial and temporal separated on a sin-
gle hardware platform. Literature distinguishes full and para-virtualization [9].
While guest systems running at full virtualization are not aware of the hyper-
visor, para-virtualized systems are adapted to run in VMs. Consequently, para-
virtualization allows information exchange between guest system and hypervisor,
but full virtualization does not.

1.2 Problem Statement

Temporal isolation is an important property of hypervisor-based virtualization
for embedded real-time systems. Current real-time hypervisor ensure tempo-
ral isolation of various VMs by some cyclic scheduling on hypervisor-level (cf.
Sect. 2.2). These approaches provide each VM a guaranteed share of processing
time during a predefined period, but dependencies between VMs remain an open
issue.

Dependencies between tasks hosted by the same VM must be solved by its
local scheduler. But dependencies between VMs must be solved by hypervisor
scheduler. Using para-virtualization, local schedulers could notify the hypervisor
when tasks are finished. This may enable solutions based on servers to schedule
VMs with precedence constraints. In contrast, full virtualization implies that
local and hypervisor scheduler cannot actively exchange information. Hence,
a-priori knowledge of local schedules and VM-dependencies are required to get
an appropriate global scheduling.

1.3 Contribution

In this paper, we focus on hierarchical real-time scheduling of dependent VMs
to enable full virtualization of singlecore systems deployed to multicore hard-
ware. Here, dependencies are given by precedence constraints. The challenge is
to share execution time of p > 1 cores to m > p VMs such that deadlines as
well as precedence constraints are met. Each VM encapsulates a periodic real-
time system driven by its separate local singlecore schedule. Time sharing shall
be realized by a fixed cyclic scheduling that guarantees holding task deadlines
and precedence constraints. We consider task sets with acyclic dependencies,
because cyclic task dependencies imply non-deterministic behavior. Neverthe-
less, resulting VM dependency graph may contain cycles. To meet deadlines as
well as precedence constraints of the overall system, hypervisor scheduler has
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to preempt execution of VMs. For this purpose, first we decompose local sched-
ules and then allocate time partitions of various length to those parts of VM
schedules. The result of our approach is an offline multicore schedule for VMs
that provides not only sufficient execution time for each VM but also considers
precedence constraints.

2 Related Work

In this paper, we address hierarchical scheduling of periodic tasks with prece-
dence constraints on a multicore platform. We therefore divide related work into
approaches related to multicore scheduling and hierarchical scheduling.

2.1 Multicore Scheduling

Multicore scheduling approaches are classified as partitioned or global [1]. Davis
and Burns [5] state that (i) most published research addresses independent
tasks and (ii) main advantage of partitioned multicore scheduling is reuse of
results from singlecore scheduling theory after allocation of tasks to cores has
been achieved. Considering periodic task sets with precedence constraints, par-
titioned scheduling allows to apply, e.g., adapted Earliest Deadline First (EDF*)
presented by Chetto et al. [2] or Deadline Monotonic (DM) based scheduling pro-
posed by Forget et al. [6]. Both approaches adapt deadlines to solve dependencies
between tasks allocated to a singlecore and thus enable deadline-based schedul-
ing as for independent task sets. But dependencies between tasks allocated to
different cores are not considered. For global multicore scheduling, e.g., some
scheduling policies from singlecore scheduling were adapted. For independent
tasks, global EDF schedules p tasks with earliest absolute deadline at each time,
where p is number of cores. Lee [11] extended global EDF to Earliest Deadline
Zero Laxity (EDZL) that was proven to dominate global EDF [1]. Cho et al. [3]
presented Largest Local Remaining Execution time First (LLREF). It is an opti-
mal offline real-time scheduling approach for independent periodic tasks with
implicit deadlines (d = T ) and it performs non-work-conserving scheduling, i.e.
cores can be idle even in case of ready tasks. Rönngren and Shirazi [15] proposed
static scheduling of periodic tasks with precedence constraints for multiproces-
sor systems connected by a time division multiple access (TDMA) bus network.
They adapt task deadlines – similar to [2,6] – and apply a heuristic that sched-
ules tasks w.r.t. earliest starting time, laxity, etc. In contrast to these approaches,
our work aims at global offline scheduling that does not adapt local schedules,
i.e. task parameters as well as local execution order keep untouched.

2.2 Hierarchical Scheduling

Most approaches for hierarchical scheduling at virtualization focus on indepen-
dent sub-systems, while our work allows dependencies between those systems. In
[7], Grösbrink and Almeida present hierarchical scheduling for hypervisor-based
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real-time virtualization of mixed-criticality systems. They address independent
periodic VMs and apply partitioned hierarchical scheduling, i.e. VMs are allo-
cated as periodic servers to cores and each core schedules its servers according
to Rate Monotonic (RM). Masmano et al. [13] present the monolithic hypervisor
XtratuM that provides para-virtualization. It schedules VMs – called partitions
– globally by a static cyclic schedule and locally by a preemptive fixed priority-
based policy [4]. Xi et al. [16] present the console-guest hypervisor RT-Xen. It
enables scheduling VMs as periodic or deferrable servers by EDF or DM priority
schemes. Masrur et al. [14] proposed the priority-based scheduling plus simple
EDF (PSEDF) to apply XEN hypervisor for mixed-criticality systems in auto-
motive domain. But in contrast to our work, none of these approaches allows
precedence constraints between VMs.

3 System Model

This paper focuses on hierarchical scheduling of periodic dependent real-time
systems on a multicore platform. Usually, periodic embedded real-time systems
get input from some sensors and compute output to control some acutators. But
resources are limited to get input respectively set output via direct I/O access or
network interfaces. To take this into account, we consider a periodic task model
that allows asynchronous release of tasks:

Γ = {τi = (Ci, Ti,Di, Oi) | 1 ≤ i ≤ n}. (1)

Each task τi ∈ Γ is characterized by its worst case execution time (WCET) Ci,
period Ti, constrained deadline Di ≤ Ti, and offset Oi. By means of constrained
deadlines and offsets, we are able to cover systems where the multicore platform
is connected to a time-triggered network. We denote jth instance of task τi by
τij and its absolute deadline by dij . Task dependencies are given by precedence
constraints τi ≺ τj meaning that τi must finish before τj can start execution. This
corresponds to implicit communication between tasks, i.e. tasks require input
just when they start and provide output when finished. To keep software behavior
deterministic, we assume acylic task graphs. Consequently, task dependencies
can be described by directed acyclic graphs (DAG). We define the set of source
respectively sink nodes as

source = {τi ∈ Γ | � ∃τj ∈ Γ : τj ≺ τi}, (2)
sink = {τi ∈ Γ | � ∃τj ∈ Γ : τi ≺ τj}. (3)

While tasks τi ∈ source make progress as soon as they are scheduled, tasks with
predecessors (τ ∈ Γ\source) can only progress when required input has been
delivered. Using hypervisor-based virtualization, task set Γ is mapped to a set
of virtual machines (VM)

Υ = {υk = (γk, σk) | 1 ≤ j ≤ m} (4)
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where VM υk is given by a task set γk ⊂ Γ and a scheduling σk. In general, σk

can be an online or offline scheduling. In this paper, however, we assume offline
singlecore scheduler running within VMs, i.e. σk represents a fix order how tasks
τi ∈ γk are scheduled. We denote worst case start time of task instance τij

scheduled by σk with σs
k(τij) and its worst case finishing time with σf

k (τij).
The hypervisor scheduler is a fix cyclic schedule, i.e. VMs are scheduled

by means of time partitions to keep temporal isolation. Each time partition
represents a time interval Ih = [ah, ah + lh[ defined by its start time ah and
length (duration) lh. A VM υk mapped to a time partition Ih will be scheduled
at time ah for lh time units. During this time, VM υk can progress according to
its schedule σk. The hypervisor schedule finally provides for each core a set of
time partitions where each partition Ih is associated to a dedicated VM υk. We
note this association by Iυk

h .

4 Hierarchical Scheduling with Precedence Constraints

Hierarchical scheduling comprises scheduling of schedules and thus introduces
different levels of scheduling. We consider hierarchical scheduling for hypervisor-
based virtualization that implies two levels: Global scheduling of VMs by hyper-
visor and local scheduling of tasks within each VM. We restrict local schedulers
to offline singlecore schedules, i.e. execution order of tasks is fix within each VM.
This restriction simplifies handling a-priori knowledge of local schedules that we
require to cover full virtualization.

The main idea of our approach is to combine knowledge of local schedulers’
task execution order with a-priori knowledge of tasks’ WCETs and dependencies
to compute worst case time partitions (WCTP) for VMs. That is, we calculate
worst case VM execution time required to guarantee that a dedicated task τ
has finished (cf. Sect. 4.2). In Sect. 4.3, we schedule these time partitions, which
represent activation slots of the corresponding VMs, on a multicore system.
In case of success, assigning execution time to VMs according to the resulting
schedule ensures that task dependencies as well as tasks’ deadlines are met.

4.1 Necessary Condition for Schedulability

To our best knowledge, literature provides no schedulability test that is necces-
sary as well as sufficient for periodic tasks with precedence constraints on mul-
ticore systems. For multicore scheduling, there are also no approaches known
that convert precedence constraints to real-time constraints – as proposed by
Chetto et al. [2] for singlecore scheduling. This makes transferring results of
multicore scheduling theory from independent to dependent task sets challeng-
ing. However, some results from multicore scheduling theory of independent tasks
can be transferred to task sets with precedence contraints at least as necessary
conditions. For instance, a trivial fact from scheduling theory is that a task set
Γ with computation demand higher than computation supply provided by some
hardware with p cores is not schedulable. Consequently, for multicore hardware
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with p identical cores, utilization of feasible task set Γ cannot be higher than
available number of cores, i.e.

n∑

i=1

Ci

Ti
≤ p (5)

Although Eq. 5 is just a necessary condition, it allows to exclude at least some
non-feasible task sets.

4.2 Decomposition of Local Schedules

Here, we consider local schedules that result from offline singlecore scheduling.
Precedence constraints of tasks which are mapped to the same VM are solved
by the corresponding local scheduler:

∀ τi, τj ∈ υk : τi ≺ τj =⇒ σf
k (τil) ≤ σs

k(τjl) ∀l ∈ N (6)

Hence, two challenges remain to be solved by hypervisor during VM scheduling:
it has to schedule VMs such that (i) deadlines of tasks running within VMs are
met and (ii) dependencies between tasks hosted by different VMs are taken into
account. For this purpose, we decompose local schedules of VMs based on

1. deadlines of tasks that are sink nodes of dependency graphs (τ ∈ sink)
2. release times of tasks that are source nodes of dependency graphs

(τ ∈ source)
3. dependencies between tasks that are hosted by different VMs

A first step towards enabling hypervisor to keep deadlines of tasks is done by
splitting local schedules at worst case finishing time of sink nodes τ ∈ sink. This
eases handling of different periods within task set Γ . Since execution order of
tasks is static within a local schedule σ, fulfilling an absolute deadline d requires
to run each local schedule until all task instances with absolute deadline d are
finished. Therefore, we split local schedule σ at worst case finishing time of a sink
node that is scheduled by σ last amongst all other sink nodes of equal absolute
deadline:

max
{
σf (τij) | τi ∈ sink, dij

}
j ∈ N (7)

Note, that each resulting fragment of a local schedule is associated with the
earliest absolute deadline d of all its tasks.

Hypervisor must also consider release time of task instances because VMs
with offline schedules cannot progress as long as the currently scheduled task is
not ready. To avoid that hypervisor schedules VMs that cannot progress because
of unrelased tasks, we apply another decomposition step onto local schedules
based on release times. We split local schedule σ at the beginning of a source
node that is scheduled first amongst all other source nodes of equal release time
by σ:

min {σs(τij) | τi ∈ source, rij} j ∈ N (8)



Hierarchical Multicore-Scheduling for Virtualization 109

Our last decomposition step is based on precedence constraints of tasks
hosted by different VMs. As tasks with precedence constraints are just released
when all predecessors have finished execution, we split local schedules based on
inter-VM dependencies as follows: if a task τ allocated to VM υk has predeces-
sors hosted by another VM υl, l �= k, we just split schedule σk at beginning
of τ .

The result of the described decomposition is a totally ordered set Φk of
scheduling fragments ϕh for each VM υk. The order within Φk is such that
composing all scheduling fragments ϕh ∈ Φk w.r.t. this order results in the orig-
inal local singlecore schedule σk. Finally, we compute worst case time partitions
(WCTP) based on these scheduling fragments and WCETs. For each local sched-
ule fragment ϕh, we sum up WCET of task instances covered by this fragment
and define a time partition Ih of this length. As this time partition is associated
with the VM that hosts these task instances, we note:

lυk

h =
∑

τij∈ϕh

Ci ∀ϕh ∈ Φk. (9)

4.3 Multicore Scheduling of Time Partitions

Our approach for hierarchical multicore scheduling is based on time partitions Ih

that were introduced in Sect. 3. While length of time partitions is set according
to the WCTP resulting from decomposition of local schedules (cf. Eq. 9), starting
time ah of time partitions as well as a core must be determined by hypervisor
scheduler. So, the challenge addressed by our multicore scheduling approach is
to allocate time partitions Iυk

h to cores Cj and set their starting time aυk

h such
that all precedence constraints are met and tasks finish before their deadlines
even in worst case.

We have to make scheduling decisions each time that a scheduling fragment
is released or finished. As we decomposed local schedules based on precedence
constraints, finishing one scheduling fragment usually implies that one or more
other scheduling fragments were released during this execution. Therefore, we
also make scheduling decisions when worst case finishing of a task τi ∈ γl with
successor task τj hosted by another VM is passed. However, we just need to
consider worst case finishing of the task τi ∈ γl that is scheduled by υl last
amongst all other predecessors of τ . Keeping order of local schedules guarantees
that all other predecessors hosted by VM υl are then finished, too.

As multicore decisions are not only based on deadlines but have to consider
dependencies as well, we define two sets of scheduling fragments that are updated
at each scheduling decision:

R ⊂
m⋃

k=1

Φk, N ⊂
m⋃

k=1

Φk (10)

R covers those scheduling fragments ϕV Mk

h that are ready, i.e. predecessors
required to execute ϕV Mk

h are finished and ϕV Mk

h is due according to local
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schedule σk. In fact, R is similar to a ready queue known from common task
scheduling. Analogous, N covers those scheduling fragments ϕV Mk

h that are next
to become ready w.r.t. order of local schedule. Both, R and N , contain at most
one scheduling fragment ϕυk

h of a VM υk. Scheduling decisions are based on the
following rules with decreasing priority:

1. Schedule the fragment ϕh ∈ R with earliest deadline (EDF)
Note: Here, we use deadlines associated to scheduling fragments during first
decomposition step (cf. Sect. 4.2)

2. Schedule the fragment that has most successor fragments ϕ ∈ N
While first scheduling rule aims at keeping deadlines, second rule addresses
dependencies between different VMs.

5 Application Example

We will use an application example to demonstrate how our approach presented
in Sect. 4 works. Based on the problem definition given in Sect. 1.2, we apply our
approach to a minimal system that consists of p = 2 cores and m = 3 VMs. The
task set Γ deployed to VMs is taken from Kandasamy et al. [8]. It covers three
applications from automotive domain: Adaptive cruise control (ACC), traction
control (TC), and electric power steering (EPS). Figure 1 shows the correspond-
ing direct acyclic task dependency graphs. In Table 1, we provide original task
parameters of these applications given in [8]. In addition, we adapted WCETs of
tasks by some reduction. This represents a scenario where singlecore applications
are consolidated on a multicore hardware with increased computational power
related to original singlecore hardware.

Fig. 1. Three application examples from automotive domain [8]: electric power steering
(EPS), adaptive cruise control (ACC), and traction control (TC).
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Table 1. Task parameters (original WCET CO
i , adapted WCET Ci, period Ti, and

relative deadline Di) of example applications shown in Fig. 1, cf. [8].

Fig. 2. Local schedules resulting from deployment of example applications to three
separate singlecore schedules σi, 1 ≤ i ≤ 3.

Task set Γ is deployed to VMs according to an approach presented by Klobe-
danz et al. ([10], “Algorithm 1: Initial Mapping”). This deployment originally
addresses singlecore ECU-networks and thus fits to the indicated scenario of
consolidating singlecore systems on a multicore platform. Figure 2 shows the
resulting local offline schedules based on original WCETs. These local schedules
define execution order of tasks within VMs.

5.1 Decomposition of Local Schedules

Now, we use schedule σ2 to demonstrate decomposition of local schedules. VM
υ2 hosts tasks of two example applications: EPS and TC. Tasks of EPS have
deadline D = 1500 while deadline of TC-tasks is D = 3000. Our first decom-
position step – splitting based on deadlines – therefore splits schedule σ2 after
finishing of τ6,1 and associates first fragment with absolute deadline d = 1500
and second fragment with d = 3000.

Next decomposition step – splitting based on release times – is driven by
second release of EPS system at host time t = 1500. According to our description
in Sect. 4.2, we split σ2 before beginning of τ2,2. Thus, second fragment resulting
from first step is splitted again. Note, that both fragments resulting from this
step keep associated with absolute deadline d = 3000.
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Fig. 3. Scheduling fragments resulting from decomposition of local schedules
σi, 1 ≤ i ≤ 3.

Table 2. Worst case time partition length for local scheduling fragments.

ϕυ1
1 ϕυ1

2 ϕυ1
3 ϕυ1

4 ϕυ2
1 ϕυ2

2 ϕυ2
3 ϕυ2

4 ϕυ2
5 ϕυ2

6 ϕυ2
7 ϕυ3

1 ϕυ3
2 ϕυ3

3 ϕυ3
4

l
υk
h 300 240 125 375 90 175 175 150 160 130 175 465 150 200 175

Last decomposition step – splitting based on precedence constraints – requires
to consider dependencies to other VMs. In particular, we split σ2 at the beginning
of tasks that require input from other VMs. In case of σ2, this results in splits
at the beginning of τ4,1, τ20,1, and τ22,1.

Applying these decomposition steps to the other local schedules of our appli-
cation scenario results in the scheduling fragments depicted in Fig. 3. Rectangles
clustering tasks correspond to the results of our decomposition steps: outmost
rectangles result from deadline-based decomposition, middle rectangles from
splitting based on release times, and innermost rectangles result from splitting
based on dependencies.

Next, we compute length of these scheduling fragments using Eq. 9. Due
to adaptation of tasks’ WCETs, handling of preemptions – e.g., task τ14,1 in
schedule V Mschedule1 – is challenging. Here, we just split WCET to execution
parts of τ14,1 in the same proportion as it was in case of original WCET. Results
are summerized in Table 2.

5.2 Multicore Scheduling by Time Partitions

Having local schedules decomposed into fragments, we now can allocate time
partitions to dedicated cores of a multicore platform. In this example, we consider
m = 3 VMs given by example applications introduced in this Section and p = 2
cores. Table 3 shows for each point in time – when the hypervisor can make
scheduling decisions – why scheduling point occurs, what the current host time
of hypervisor system is, which scheduling fragments are within sets R and N ,
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Table 3. Offline multicore scheduling of time partitions (scheduling fragments).

Reason for scheduling Host time R N Core C1 Core C2

0 ϕυ1
1 , ϕυ2

1 , ϕυ3
1 ϕυ1

2 , ϕυ2
2 , ϕυ3

2 ϕυ1
1 ϕυ2

1

σf
1 (τ1,1) 75 ϕυ1

1 , ϕυ2
1 , ϕυ3

1 ϕυ1
2 , ϕυ2

2 , ϕυ3
2 ϕυ1

1 ϕυ2
1

ϕυ2
1 90 ϕυ1

1 , ϕυ2
2 , ϕυ3

1 ϕυ1
2 , ϕυ2

3 , ϕυ3
2 ϕυ1

1 ϕυ2
2

ϕυ2
2 265 ϕυ1

1 , ϕυ2
3 , ϕυ3

1 ϕυ1
2 , ϕυ2

4 , ϕυ3
2 ϕυ1

1 ϕυ3
1

ϕυ1
1 300 ϕυ1

2 , ϕυ2
3 , ϕυ3

1 ϕυ1
3 , ϕυ2

4 , ϕυ3
2 ϕυ1

2 ϕυ3
1

σf
1 (τ7,1) 450 ϕυ1

2 , ϕυ2
3 , ϕυ3

1 ϕυ1
3 , ϕυ2

4 , ϕυ3
2 ϕυ1

2 ϕυ3
1

ϕυ1
2 540 ϕυ2

3 , ϕυ3
1 ϕυ1

3 , ϕυ2
4 , ϕυ3

2 ϕυ2
3 ϕυ3

1

σf
3 (τ17,1) 565 ϕυ2

3 , ϕυ3
1 ϕυ1

3 , ϕυ2
4 , ϕυ3

2 ϕυ2
3 ϕυ3

1

ϕυ2
3 715 ϕυ2

4 , ϕυ3
1 ϕυ1

3 , ϕυ2
5 , ϕυ3

2 ϕυ2
4 ϕυ3

1

ϕυ3
1 730 ϕυ2

4 , ϕυ3
2 ϕυ1

3 , ϕυ2
5 , ϕυ3

3 ϕυ2
4 ϕυ3

2

ϕυ2
4 865 ϕυ2

5 , ϕυ3
2 ϕυ1

3 , ϕυ3
3 ϕυ2

5 ϕυ3
2

ϕυ3
2 880 ϕυ1

3 , ϕυ2
5 , ϕυ3

3 ϕυ3
4 ϕυ2

5 ϕυ3
3

ϕυ2
5 1025 ϕυ1

3 , ϕυ3
3 ϕυ3

4 ϕυ1
3 ϕυ3

3

ϕυ3
3 1080 ϕυ1

3 , ϕυ3
4 ϕυ1

3 ϕυ3
4

ϕυ1
3 1150 ϕυ3

4 ϕυ3
4

ϕυ3
4 1255

σs
1(τ1,2) 1500 ϕυ1

4 , ϕυ2
6 ϕυ2

7 ϕυ1
4 ϕυ2

6

σf
1 (τ1,2) 1575 ϕυ1

4 , ϕυ2
6 ϕυ2

7 ϕυ1
4 ϕυ2

6

ϕυ2
6 1630 ϕυ1

4 , ϕυ2
7 ϕυ1

4 ϕυ2
7

ϕυ2
7 1805 ϕυ1

4 ϕυ1
4

ϕυ1
4 1875

and which scheduling fragments are scheduled next on cores C1 and C2. For
instance, applying rules defined in Sect. 4.3, hypervisor scheduling makes first
decision based on deadlines of scheduling fragments. That is, ϕυ1

1 and ϕυ2
1 get

higher priority than ϕυ3
1 .

Another interesting circumstance for making scheduling decision is at line 7
where “reason for scheduling” is ϕυ1

2 . This is the first time, R does not contain
scheduling fragments of all VMs because ϕυ1

3 ∈ N requires input from ϕυ3
2 that

in worst case has not finished yet. Therefore, ϕυ1
3 ∈ N is not passed to R and

thus is not considered by hypervisor. Finally, mapping of scheduling fragments
to cores is used to define time partitions Ih resulting, e.g., for core C1 in

Iυ1
1 = [0, 540[ (11)

6 Conclusion

In this paper, we presented an approach for hierarchical scheduling of periodic
dependent singelcore real-time systems on a multicore hardware. We introduced
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a system model that covers tasks with precedence constraints as well as VMs that
host subsets of these tasks. To schedule the set of VMs on a multicore hardware
with full hypervisor-based virtualization, we first proposed a concept to decom-
pose local singlecore schedules into fragments based on deadlines, release times
and inter-VM dependencies. Afterwards, we presented our approach for offline
scheduling of these fragments on a multicore platform. Finally, we applied our
approach to an automotive use case from literature to demonstrate functional-
ity of the proposed concept. Future work aims at taking overhead induced by
virualization as well as communication costs between VMs into account.
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Abstract. Current approaches for mapping Kahn Process Networks
(KPN) and Dynamic Data Flow (DDF) applications rely on assump-
tions on the program behavior specific to an execution. Thus, a near-
optimal mapping, computed for a given input data set, may become
sub-optimal at run-time. This happens when a different data set induces
a significantly different behavior. We address this problem by leveraging
inherent mathematical structures of the dataflow models and the hard-
ware architectures. On the side of the dataflow models, we rely on the
monoid structure of histories and traces. This structure help us formalize
the behavior of multiple executions of a given dynamic application. By
defining metrics we have a formal framework for comparing the execu-
tions. On the side of the hardware, we take advantage of symmetries in
the architecture to reduce the search space for the mapping problem.
We evaluate our implementation on execution variations of a randomly-
generated KPN application and on a low-variation JPEG encoder bench-
mark. Using the described methods we show that trace differences are
not sufficient for characterizing performance losses. Additionally, using
platform symmetries we manage to reduce the design space in the exper-
iments by two orders of magnitude.

1 Introduction

Architecture trends show a growing number of processors and heterogeneity in
embedded systems. The problem of leveraging the growing complexity of mod-
ern multi-processor systems-on-chip (MPSoCs) is as relevant as ever. In many
application domains it is well-established to use programming abstractions such
as Kahn Process Networks (KPN) [10] or actor-based data flow models like Syn-
chronous Data Flow (SDF) [12] and dynamic data flow (DDF) [3] for describing
applications. These abstractions allow synthesis tools to reason on a high-level
about physical resource allocation within the chip. They model the application
by using a directed graph, where so-called actors or processes, represented by
the nodes in the graph, communicate with each other via channels, which are
in turn represented by edges. Much work has been done regarding the problem
of mapping KPN and data flow applications to complex hardware architectures
c© IFIP International Federation for Information Processing 2017
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for optimal throughput, resource usage or energy-efficiency [16]. The heuristics
used for this, however, rely on a well-defined program behavior. In the case
of SDF applications, for example, the very nature of the model allows synthesis
tools to reason about mapping by using a topology matrix and finding repetition
vectors in its kernel, which fully describe the communication behavior between
actors [12]. Finding near-optimal solutions in more general models, which do
not have constraints on the program behavior as strong as those of SDF, is a
much more complex task. There are several current approaches to static map-
ping [7,7,14,18]. All these approaches are sensitive to the selection of the input
stimuli that induce the observed trace. To deal with multiple different execu-
tions, authors suggest to compute a mapping for every situation and then pick
the best configuration. For example, for buffer sizing, one approach is to select
the largest size across all configurations [2]. An alternative to deal with varia-
tions is to use the so-called real-time calculus [19], in which events are modeled
by arrival curves that describe upper and lower bounds on the event rates.

In this paper we seek to improve the current state of trace-based mapping
flows to better support multiple traces for one application. We do this in two
ways: by using trace theory, defining metrics in order to compare application
traces and by using group theory to describe and utilize symmetries in the
architecture. Trace theory has been a well-established model for concurrency
for decades since its first formal formulation in 1977 by Mazurkiewicz [13]. Met-
rics for traces have been defined in very different contexts [8], or for similar
applications very specific metrics have been considered [11]. To the best of our
knowledge, however, trace metrics have never been used in the general context
of analyzing KPN processes.

2 Process Traces and Histories

In this section we present our proposed trace analysis methods for the application
side. To this end we introduce the formal concepts of traces and histories, explain
their relationship and define a metric on the space of traces and of histories.
We then describe experimental results obtained by applying these methods to
randomly-generated KPN traces and on a JPEG encoder.

2.1 Traces and Histories

Traces and histories are both generalizations of strings. They are well-known as
models for concurrently executing processes. Informally, we model concurrently
executing processes as a string over an alphabet Σ, where the words of the
alphabet represent events of the system. In a regular string all occurring char-
acters (or events) have a well-defined sequential ordering. When two contiguous
characters, however, represent independent events in the system, then we do not
distinguish their order in the trace: we consider two traces as equal when we can
convert one to the other by just rearranging independent characters.



118 A. Goens and J. Castrillon

More formally, let Σ1, . . . , Σn be n alphabets, and consider the alphabet
Σ = Σ1 ∪ . . . ∪ Σn, the union of those alphabets. This union is not necessarily
disjoint. We define a dependence subset D of Σ2 by D = Σ2

1 ∪ . . .∪Σ2
n. From this

we define the set I = Σ2 \ D. It can be used to define an equivalence relation
∼ on the set of strings Σ∗. We say that ab ∼ ba, if and only if (a, b) ∈ I.
This induces an equivalence relation ∼ on Σ∗ by extending it to all strings
(the reflexive, transitive symmetric closure). We define the set of traces as the
factor set of equivalence classes Σ∗/ ∼. Since strings with concatenation have
the algebraic structure of a monoid, and concatenation and the epimorphism to
the equivalence class ∼ commute, Σ∗/ ∼ is also a monoid with concatenation.
It is therefore usually called the trace monoid [9].

Histories are similar. Instead of an arbitrary concatenation of the various
independent strings, we consider a history to be a tuple of strings, one in each
of the alphabets Σi. The individual alphabets represent the possible events for
individual processes. These alphabets can have some common characters between
them, in which case Σi ∩ Σj �= ∅ holds. These common characters represent
synchronization events: they happen in two or more processes at the same time.

We can think of a history as a log of an application which represents all events
in a parallel execution with different tasks or processes. The projection onto the
alphabet of a single process represents the individual history of that process,
independent of the others. With respect to component-wise concatenation, the
set of histories over the alphabet Σ = Σ1 ∪ . . . ∪ Σn is also a monoid, which is
why it is often called the history monoid [9].

These two structures, the trace and the history monoid, are isomorphic. We
either list events sequentially in a trace, where we don’t distinguish the order of
independent events, or we define the sequential history of each process indepen-
dently. A formal proof of this fact can be found in [9].

2.2 Metrics

A metric acts as a way of measuring distance between objects. If we consider
traces and histories as descriptions of the behavior of individual executions of a
software built of concurrent processes, a metric acts as a way of comparing said
execution behaviors.

There exists a plethora of metrics on strings, which are used from coding
theory to DNA analysis and approximate string matching. Notable examples
include the Hamming distance which only counts the number of equal letters, or
the edit distance, which counts the minimal number of deletions, insertions and
substitutions needed to go from one string to another. We can generalize these
metrics to histories (and thus, traces) with the following theorem:

Theorem 1. Let Σ = Σ1 ∪ . . . ∪ Σn be an alphabet and d be a metric on the
strings Σ∗ over Σ. Then d induces a metric d̄ on the set of histories H over
(Σ1, . . . , Σn) with projections π1, . . . , πn by
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d̄(x = (x1, . . . , xn), y = (y1, . . . , yn)) =
n∑

i=1

d(xi, yi) =
n∑

i=1

d(πi(x), πi(y)) (1)

Proof. Let x, y, z ∈ H be histories.

1. Let d̄(x, y) = 0. Then d(πi(x), πi(y)) = 0 for all i = 1, . . . , n. Since d is a
metric, it means that πi(x) = πi(y) for all i. This implies that x = y since it
holds for all projections.

2. By definition (Eq. 1) it is immediately obvious that, since d is a metric

d̄(x, y) =
n∑

i=1

d(πi(x), πi(y)) =
n∑

i=1

d(πi(y), πi(x)) = d̄(y, x)

3. Finally, the triangle equation also follows in a similar fashion:

d̄(x, y) =
n∑

i=1

d(πi(x), πi(y))︸ ︷︷ ︸
�d(πi(x),πi(z))+d(πi(z),πi(y))

�
n∑

i=1

d(πi(x), πi(z)) + d(πi(z), πi(y))

=
n∑

i=1

d(πi(x), πi(z)) +
n∑

i=1

d(πi(z), πi(y)) = d̄(x, z) + d̄(z, y)

Similar to this construction, and inspired by the lp norms, we can define
other metrics on histories (and traces).

Let p ∈ R�1 be a real number, greater than or equal to one. Further let
Σ = Σ1 ∪ . . . ∪ Σn be a history alphabet and let d′

i : Σ∗
i → R�0 be a metric on

Σi, i = 1, . . . , n. Let H ⊆ Σ∗
1 × . . . × Σ∗

n be the set of histories on Σ, with the
corresponding projections πi : H → Σi, i = 1, . . . , n. We call the mapping

dp : H × H → R�0, (x, y) 	→ p

√√√√
n∑

i=1

d′
i(πi(x), πi(y))p

the p-metric on the histories. Similarly, we can define a ∞ metric d∞ as
d∞(x, y) = maxi=1,...,d(πi(x), πi(y)). The proof that these induce metrics is
very similar to that of Theorem1.

2.3 Trace Analysis

To have controlled differences in our traces, we use random KPN traces. We
generate them with a modification of the open-source software tool sdf3 [17].
Concretely, we generate a random SDF application, and subsequently modify
it to have a less static behavior. We do this by generating a set of possible,
different input/output behaviors and randomly varying between them at run-
time. For realistic behavior, we do this only on some KPN processes, while others
keep their static (SDF) behavior. This method is inspired by the random KPN
generation described in [5]. Once the application has been generated, different
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traces are created. This is achieved by fixing the possible behaviors and only
randomizing the frequencies of occurrence.

For evaluating mappings we use a discrete-event-simulator similar to the one
described in [6]. As the target architecture we use a virtual platform, also similar
to the one described in [6]. It has two identical RISC (ARM) processors and four
identical vector DSPs. A diagram of this test architecture can be seen in Fig. 1.

Fig. 1. A diagram of the test architecture used

For evaluating the methods proposed in this section we used a fixed, randomly
generated process network which had four different processes and four FIFO
channels. We generated 1000 different random process traces of diverse lengths
and behaviors. For each of these 1000 traces we calculated the optimal mapping
by using the discrete event simulator and exhaustively evaluating all 64 = 1296
different possible (process-to-processor) mappings. For buffer sizing we used a
simple strategy assigning the same size to the buffers on all traces for an accurate
comparison. This approach is inefficient and time-consuming, but only by using
truly optimal mappings can we achieve a valid analysis. Without the optimality
of the mapping there is no guarantee that it is good for a trace, even if it was
specifically calculated for it.

Random traces provide only limited insight into this problem. To validate our
approach we also considered a JPEG encoder with an existing implementation as
a KPN. The JPEG encoder needs to perform run-length encoding, which exhibits
dynamic behavior for the KPN channels. We executed the JPEG encoder on a
benchmark consisting of 200 images adapted from the BSDS500 Benchmark [1].

The exponential scaling of the exhaustive mapping evaluation is also the rea-
son why a network with only four processes was chosen for the random traces.
For larger applications where the problem size makes exhaustive evaluation pro-
hibitively long, as is the case for the JPEG encoder, good meta-heuristics like
evolutionary algorithms can be considered as a replacement. While this does not
guarantee the same accuracy for the comparison, using the results of a good
meta-heuristic should produce a solid basis for comparison nevertheless. For the
JPEG encoder we use simple heuristics from the literature (e.g., load balancing).
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2.4 Results

We chose a reference trace for comparing. Then, for each of the 1000 random
traces we compared the optimal run-time obtained using the optimal mapping
with the run-time obtained using the reference mapping (in general only optimal
for the reference trace). From the quotient of both we obtained a slowdown
factor � 1. Similarly, we calculated the distance between each trace and the
reference one. Using this we analyze the correlation between trace distance and
the slowdown from using the sub-optimal mapping. The results can be seen in
Fig. 2. This figure uses three different induced metrics from two string metrics
for a total of six metrics. They have been normalized to one within the data-set
for comparison. The axes on Fig. 2b were adjusted not to show the trivial points
at (0, 1) (for the reference trace). This is for the sole purpose of a better visual
scaling of the plot.

(a) Induced from the edit distance (b) Induced from the Hamming distance

Fig. 2. Application slowdown as a function of different trace distances

As an example, consider the point marked in Fig. 2a. This point has the coor-
dinates (0.24, 1.42). It means that the distance between the trace corresponding
to the point, and the reference trace was 24% of the maximal distance in the
plot (concretely, d1 = 101 with a maximal distance of 424). The 1.42 slowdown
factor means that the execution time of the trace with the reference mapping
was 42% slower than with its own optimal mapping.

Altogether, Fig. 2 shows a low correlation between the trace distance and how
good the mapping of one trace is for the other one. Concretely, the correlation
coefficients are −0.014, −0.077, −0.095, 0.119, 0.010, and −0.059, for the d1, d2
and d∞ norms induced by the edit and Hamming distances, in that order.

JPEG Encoder

Figure 4 shows a histogram of different trace metrics for the 200 JPEG encoder
executions. The traces were normalized with the distance from the reference
trace to the empty trace, to give an idea of how much variation was between the
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traces. The JPEG encoder has variation in traces due to the run-length encoder,
which is a small function that sends a different amount of tokens depending
on the compressed data. However, the majority of the computation time is due
to the discrete cosine transform, which has a static behavior. Even though the
run-length encoder represents just a small fraction of the computation, we found
performance and trace behavior deviations. By using the mapping tailored for
a different trace, a slowdown of up to 1.77% was observed. More importantly
though, we see that different inputs yield different behaviors, represented by
different traces. We also see that these differences have a negative impact on
performance, albeit a small one in this case. In the future we plan to investigate
further applications where the dynamic data flow part of the application amounts
to a more significant percentage of the execution.

3 Permutations of Mappings

From the trace analysis above we see that distance analysis itself does not suf-
fice to infer the performance of different mappings. Instead, in this section we
consider the problem from the perspective of the mappings and the architecture,
as opposed to that of the traces and the application. We take advantage of the
fact that heterogeneous platforms have some degree of symmetry. We formally
define and explore this symmetry, and present a strategy to reduce the design
space that leverages it.

3.1 Problem Formulation

Mathematically, we can formulate our problem as follows: Let P be a set of
physical resources (e.g. processing elements, on-chip memories) and let L be a
set representing logical elements (e.g., processes, FIFO channels). We define a
valid mapping m : L → P as a mapping in the mathematical sense (a function),
such that it respects the KPN structure. Formally, let G be a subgroup of the
symmetric group of the physical resources SP . The canonical action of the group
G on P induces an action on the set of mappings m : L → P : for g ∈ G and m :
L → P a mapping, i.e. (g·m)(l) := g·m(l) for all l ∈ L. We require of a symmetry
group that the run-time for all traces is an invariant of the group action. In
particular, this means that the action of G on the set of mappings restricts
to an action on the set of valid mappings. This implies, for example, that we
only consider symmetries of the architecture that map processors to processors
and communication resources to equivalent communication resources. We define
equivalence classes for mappings: we say two mappings m,m′ are equivalent if
there exists a symmetry of the architecture g ∈ G such that g ·m = m′, i.e., if m
and m′ are in the same orbit under the action induced by G on the set of valid
mappings.

For example, let P = {RISC1,RISC2,DSP1, . . . ,DSP4} be the processor set
of the architecture from the experimental setup in last section (see Fig. 1), and
let L = {p1, . . . , p4} be the process set of the four-process KPN used in the
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example from last section. For simplicity, we consider an elementary, symmetric
communication model in this example where communication resources and pro-
cessors are coupled. Then the group G that can swap both RISC processors and
allows any permutation of the four DSP processors is the symmetry group of
this architecture. It is isomorphic to S2 ×S4, i.e., the direct product of the sym-
metric groups on two and four elements respectively. As an example, consider
the mappings

m1 : p1 	→ RISC1, p2, p3 	→ DSP2, p4 	→ DSP 3

m2 : p1 	→ RISC1, p2, p3 	→ DSP1, p4 	→ DSP 4

m3 : p1 	→ RISC1, p2, p4 	→ DSP2, p3 	→ DSP 3.

Then, m1 and m2 are equivalent, however neither of them is equivalent to m3.
The motivation for this definition of equivalence is that if two processors are

equal, then it usually should make no difference if one or the other is chosen for
the mapping. This can also be used for taking communication into account, for
example when there is additional symmetry from multiple memories or differ-
ences in local memories break the processor symmetry.

Groups with this structure are by far the most common symmetry group for
heterogeneous architectures. A heterogeneous architecture which has n1 equiva-
lent processing elements of type 1, n2 equivalent processing elements of type 2,
and so forth, will have a symmetry group isomorphic to Sn1 × Sn2 × · · · . How-
ever, the symmetry group of a subset of equivalent processing elements need not
be a full symmetric group. For example, consider a simple homogeneous four-
core architecture with a Network-on-Chip (NoC), such that the communication
latency between adjacent processors is considerably lower than to non-adjacent
ones. Then the adjacency of the processors should be kept with any symmetry
transformation, which means the symmetry group is a dihedral group of a reg-
ular polygon with 4 sides, instead of the full symmetric group on 4 points. This
group is called D4, though some references call it D8 because it has 8 elements.
Figure 3 shows a schematic of this symmetry and an example of an allowed sym-
metry, one of the two generators, and a permutation that is not a symmetry of
the architecture. It depicts the symmetry transformations with the green or red
arrows, and an example of the action on a mapping of four processes, represented
by the green or red circles.

3.2 Algorithmic Considerations

To identify equivalent mappings we need to find out if two elements are in the
same orbit. Specifically, if m,m′ are mappings, we need to test if m′ ∈ Gm. This
can in general be done with O(|Gm||S|) group element applications, where |S|
is a generating set of the group G, see Theorem 2.1.1 of [15]. Since we do not
plan to deal with very complex symmetry groups, however, we used a different
approach. Our approach is tailored for groups that have the form

Śk
i=1 Sni

, for
n1, . . . , nk ∈ N. It takes advantage of the fact that group membership testing is a
simple task in groups of this family. We devised a strategy that given mappings
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(a) The generator element for
the D4 symmetry

(b) A permutation not in-
cluded in the D4 symmetry

Fig. 3. Schematic representation on of the symmetry of a 4-core NoC architecture

m,m′ generates a tentative mapping σ : {1, . . . , |P |} → {1, . . . , |P |} such that
if there exists a τ ∈ S|P | such that τ · m = m′, then σ is a permutation and it
holds that σ · m = m′. We achieve this by iterating over all elements e in the
definition domain of mapping m and updating σ to be correct for that element
(i.e. (σm)(e) = m′(e)), without guaranteeing that it remains a permutation.
Using this tentative mapping strategy, we can find out if two mappings are in
the same orbit, and if so, obtain a permutation that maps one to the other.

Algorithm 1. Orbit membership testing for direct products of symmetric groups
INPUT: m, m′, n = |P |
OUTPUT:
if Gm = m′ then

an element g ∈ G: gm = m′,
else false
end if
ALGORITHM:
σ = tentativeMapping(m, m′, n);
permutation = isPermutation(σ);
ingroup = isInGroup(σ, G);
maps = mappingsEqual(σ · m, m);
if permutation and ingroup and maps then

return σ
else

return false
end if

Algorithm 1 is more efficient than the standard algorithm. It uses a constant,
single group application instead of O(|Gm||S|). However, it relies on the fact
that if the proposed element σ is not in G, then there exists no element g ∈ G



Analysis of Process Traces for Mapping Dynamic KPN Applications 125

mapping m to m′, which is by no means obvious if G is not of the form
Śk

i=1 Sni
.

For the general case, the standard black-box group algorithms should be used
(see [15]).

The permutation approach has limited scalability. Using Burnside’s Lemma
[4], it is straightforward to prove that the factor by which the size of the search
space is reduced is bounded by the cardinality of the symmetry group. In partic-
ular, the asymptotic scaling behavior of the size of the search space is the same,
it still is in O(|P ||L|). However, we see in the experiments in the next section
that not all equivalence classes of mappings are equally common. Further inves-
tigation could concentrate on identifying the most important equivalence classes
and their corresponding traces.

3.3 Experimental Results

For evaluating this approach, we used the same basic setup as in Sect. 2. Using
Algorithm 1 we identified equivalence classes in the optimal-run-time mappings
of the same set of 1000 random process from Sect. 2. We selected one trace
and identified all traces which yielded mappings equivalent to it. In general,
for a system with 6 processors total where there are two groups of 4 and 2
equivalent processors respectively, there exist exactly 83 possible mappings of
four processes. This fact can be verified using Burnside’s Lemma. Out of the 1000
traces a total 23 were equivalent to the first one. They all had a slowdown factor
of exactly 1, as would be expected of equivalent mappings. This is, however, only
a fraction of the 161 mappings with a slowdown factor of 1 compared to the first
trace.

Furthermore, of all 83 possible mappings, considering symmetry, only 30
were present in the traces. Figure 5 shows a bar plot of the percentage of traces
belonging to each group, for the 30 groups up to symmetry which had a trace
with an optimal mapping in this group. They are ordered from most common
to least common, and the remaining 53 unrepresented groups are not depicted.

Fig. 4. Histogram of normalized traces
differences (JPEG encoder)

Fig. 5. Frequency of the equivalence
classes of optimal mappings
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This results show that while there are quite a few possible equivalence classes
of mappings, 83 in this case, only very few are actually good mappings. The two
most common equivalence classes are optimal for almost 30% of the traces, while
the five most common ones actually account for more than half the traces.

The JPEG encoder was not considered for this since it would be too com-
putationally intensive to calculate optimal mappings, and it would have yielded
limited insight for the lack of optimality variations between traces.

4 Conclusion

In this paper we have considered the differences in execution behaviors of KPN
and dynamic data flow applications as process traces or histories. We defined a
metric space structure on traces and used it to measure the relationship between
the trace distance, and how good the optimal mapping of one trace works for
the other. For this, we also developed a framework for comparing them, which
included exhaustive search on small examples to find true optimal mappings, for
a solid comparison base.

The results from the JPEG encoder showed behavioral variations for different
inputs in a real application. Additionally, the results from our analysis on random
traces suggest no correlation between the trace distance and the goodness of the
mappings of one to the other. This is a very revealing result. Its implications
are twofold. First, it means that the difference between two traces does not
suffice to t if we can use the same mapping for both. In particular this means we
should devise more elaborate strategies for trace grouping, probably application-
specific ones. The second, less obvious implication, is that very small differences
in traces can have a very big impact on performance. Further work will focus on
real applications with more dynamic behavior than the JPEG encoder that was
used.

Apart form the behavior in the form of the traces, we also considered the
problem from the perspective of the mappings. We defined a strategy to leverage
symmetries in the architecture and evaluated it with the experiments used for the
traces. We managed to reduce the search space from 1296 possible mappings to
83 possible equivalence classes of mappings, and found that very few equivalence
classes of mappings account for the optimal throughput in the majority of traces.

Another direction for future work is to define strategies for identifying traces
at run-time and using trace-specific information about the optimal mapping
for dynamically improving adaptive execution. The analysis framework can be
used to consider the problem of buffer sizing for multiple traces, which was not
addressed in this work.
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Abstract. With increasing number of IP cores, parallel communication
architectures including NoCs have emerged for many-core systems. To
efficiently architect NoCs, early analysis of crucial run-time metrics such
as throughput, latency and saturation time is required. This requires
abstract modeling of NoCs. Modeling abstraction, and consequently the
modeling granularity impacts the accuracy and speed of simulation.
While a fine-grained model will slowly lead more accurate information, a
coarser model simulates faster and yields less accurate predictions. This
paper first identifies possible levels of abstraction for NoC models and
correlating captured features with the accuracy/speed trade-off. Second,
this paper proposes two NoC models at different abstraction levels: a finer
grained Bus-Functional Model (BFM), and a coarser Transaction-Level
Model (TLM). The BFM updates the system status after any events
happening during data unit transmission, while the TLM updates the
system status at the end of data unit transmission.

Our evaluation results show moving to higher abstraction (from BFM
to TLM) gains 10x to 50x speedup at the cost of 10%–20% accuracy loss
on average. Our analysis approach and results guide system architects
in exploring NoC architectural alternatives and help identifying suitable
abstract levels.

1 Introduction

Chip Multiprocessing (CMP) as one essential solution for parallel processing and
high performance computing has evolved to exploit parallelism in the form of
integrating multiple processor cores on a single chip which is known as System
on Chip (SoC). To power and performance efficiently connect the cores, reusable
interconnect architectures are required that provide scalable bandwidth and
parallelism.

These requirements cannot be met by traditional interconnect architectures
like single shared bus or even hierarchy of buses due to their poor scalability as
they allow only one (or a few number of) sender-to-receiver communication(s) at
a time [1]. Promising alternatives are Networks on Chip (NoCs). NoCs avoid the
need for dedicated wires for each individual communication, and connect IP cores
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through an on-chip network. Several advantages compared to dedicated wires
include delivering high-bandwidth, low-latency and low-power communication
over a flexible and modular medium [2,3].

Different NoC design parameters (e.g. topology, communication mechanism,
routing method and switching mode) impact a multi-dimensional trade-off space
between latency, throughput, communication load, energy consumption, and sil-
icon area. Therefore, early evaluation of NoC is in high demand [4]. Recent
approaches on NoC emulation aim for accuracy. However, they could be too
slow, especially when considering the tight time-to-market [5].

System level modeling can relieve time to market pressures and the expense of
NoC simulation/emulation tools with providing faster architecture exploration,
performance evaluation, and functional validation [6]. Abstract modeling of an
NoC poses the question of abstraction levels (the amount of detail to be retained
in the model). Ultimately, this poses a trade-off between simulation speed and
accuracy [7] as visualized in Fig. 1.

Accuracy

Sp
ee
du

p

Fig. 1. Speed accuracy trade-off

A highly abstract NoC model abstracts
away much of the underlying communication
details, and in result yields a very fast but
inaccurate simulation. Conversely, an accurate
model would capture more of the communica-
tion principles, resulting in a slower but more
accurate simulation. Although [8] discusses
about different abstraction levels, their precise
definition and modeling abstraction rules are
not clearly presented. Defining abstraction lev-
els helps designers to select communication fea-
tures to model given a desired speed/accuracy.

This paper first identifies different NoC
abstraction levels according to the visibility
of implementation details and communication
granularity. A most abstract model treats the whole NoC as one black box, only
revealing input and output traffic. Conversely, the most detail level exposes how
individual flits are handled at the micro-architecture level. This paper defines
accuracy impact factors at each level, highlights contention points over shared
resources within an NoC and identifies the required arbitration points.

Next, the paper proposes an abstract NoC model using Transaction Level
Modeling (TLM). It realizes the structure of Hermes router model [4] with 5
bidirectional (both input/output) ports to the four neighboring IP cores and
one port to the local IP core. The model implements XY routing and wormhole
switching. The proposed TLM captures all the router features and arbitration
events over its shared resources at cycle-level. It updates the system status at
each cycle independent of how many arbitration events are notified during that
cycle.

To evaluate the performance and accuracy of the proposed TLM versus
an accurate model, this paper also introduces a more detailed model, a Bus
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Functional Model (BFM). The BFM follows the bus functional modeling princi-
pals [6] aiming to be as accurate as an RTL implementation. The BFM captures
much more structural and micro-architectural detail and it updates the system
status upon any arbitration event. This improves accuracy at the cost of simu-
lation speed. Our TLM is 10 times faster than the BFM at the cost of 10% to
20% error.

The rest of this paper is organized as follows: Sect. 2 discusses related work in
NoC modeling and analysis. Section 3 defines different abstraction levels for NoC
modeling. Section 4 first presents the structure of modeled router, then proposes
our TLM and BFM NoC abstract models. Following that, Sect. 5 validates the
proposed BFM as accurate against an RTL implementation of NoC and then
evaluates the proposed TLM versus BFM. Finally Sect. 6 concludes the paper.

2 Related Work

Exploring the design trade-offs of NoC metrics including bandwidth, power,
performance and silicon area can be done at different levels of accuracy and
details based on the design requirements. For instance, SW development needs
fast simulation. Conversely, performance estimation demands a finer set of details
and higher accuracy for proper validation [9]. In general, work on evaluating NoC
can be categorized in 3 groups: emulation/simulation frameworks, static analysis,
and abstract modeling.

Emulation/Simulation Framework: Many NoC simulators and emulators
have been developed; the emulation platform proposed by Dally et al. as a flexible
emulation environment implemented on FPGA based on a complete mixed HW-
SW NoC emulation framework, Xmulator [10] as an event-driven simulator and
Booksim [11] as a cycle-driven simulator are a few instances of tools in this
category. All instances impose high implementation cost, maintenance difficulty
and long emulation/simulation time.

Some works [12,13] aim to reduce the emulation/simulation time by changing
the kernel scheduler, simulation/evaluation semantics by adding local clocks/
schedulers. Nevertheless, their improvements are case-specific, for instance [12]
gains more as the size of NoC gets larger.

Static Analysis: Static analysis like [14,15] rapidly yields timing parameters
such as router service time and packet arrival time. These methods have low
accuracy as they abstract away dynamic behaviors influencing NoC performance
and bandwidth.

Abstract Modeling: Abstract modeling might be placed in between two above
categories. It abstracts away some implementation detail (such as bit-level com-
munication details) and takes into account only the events occurring per trans-
mission of coarser data granularity. The goal is to accelerate the NoC evaluation
while maintaining some accuracy. The architectural model in [9] is one example.
It models the HERMES [4] router architecture as a bus and all cores/routers con-
nected to it as individual modules. With keeping track of all routers’ active flows
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in different FIFOs and prioritizing their requests based on the pre-defined prior-
ities, all the competitions over the shared resources are captured. The drawback
of this work compared to the proposed TLM is its evaluation for worst-cases;
when all possible contentions over the shared resources happen. Similarly, [16]
proposes an accurate abstract model for on-chip interconnects. It uses bus pro-
tocol specifications to identify a reduced set of timing points. Finding the set of
optimal timing points is the drawback of this work compared to the proposed
TLM.

3 NoC Abstraction Models

Conceptually, many abstraction levels are possible that may range from an
extremely coarse grain model the treats the whole NoC as one black box, to a
very fine-grained model that exposes micro architectural implementation details
of all the NoC elements. Abstracting NoC can occur with different levels of
details; from low covering details such as observing the whole NoC as a commu-
nication box to considering all micro-architectural implementation details of all
NoC elements. When comparing abstraction levels, the following aspects should
be considered:

Granularity of Data defines the smallest unit of data transferred through the
NoC.

Visibility defines the level of implementation details of NoC communication
observable in the model.

Arbitration Points lists the shared resources for which contention is dynami-
cally resolved.

Timing Accuracy outlines the resulting estimation accuracy; meaning that at
which level of accuracy, an NoC model can estimate the timing behavior of a
real NoC.

Given the characteristics above, we propose five abstraction levels. Table 1
summarizes the models, and Fig. 2 illustrates the 3 most abstract models.

Network-Level Model: models the whole NoC as a black box and only exposes
the local ports. This model abstracts away everything inside NoC including
traffic paths and contentions over the shared resources. The model estimates
network latency based on statistical information like average/worst case net-
work latency per pre-defined size of traffic and the amount of traffic trans-
ferred through the network.

Router-Level Model: realizes NoC as a set of routers connected to each other
via physical channels. In this model, routers are modeled as black boxes which
receive packets as input and sends output packets over a physical link to the
next router. This model estimates the NoC performance/latency based on
the number and size of packets as well as the length of path taken by each
packet. It dynamically resolves contention on physical links.
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Fig. 2. NoC modelling granularities

Transaction-Level Model: more details over the router-level model by model-
ing router internal modules, including input/output ports, cross-bar, routing
management, virtual channel (VC) allocation and flow control management.
In this model, at the end of any transaction, the contentions (and arbitration
events to resolve them) which change the system status are collected and the
system status is updated. Based on [17], a transaction is defined as injecting
the header flit (first part of a packet) by initiator and receiving the last flit
of the packet by the receiver.

Pin-Level Model: implements all the internal wires/pins per router modules
and updates the system status after any individual contention (and arbitra-
tion to resolve that) happening per transmission of each bit of the transaction.

Micro-Architectural-Level Model: implements the Pin-Accurate model and
all of it’s router operations at gate level for final validation. This model is
practically an RTL model, very close to the final implementation, most accu-
rate but also the slowest.

From the network-level model to micro-architectural level model, communi-
cation and implementation details are added to the model, increasing accuracy
at the cost of simulation speed. Table 1 summarizes the abstraction levels.

Table 1. NoC abstraction overview

Model Visibiltiy Granularity Arbitration Point Time Unit
Network-Accurate - Traffic - Loosely Time Estimated
Router-Accurate Channel Packet Routers Approximate Time Estimated
Transaction-Accurate Channel Flit Router Modules Cycle Estimated
Pin-Accurate Wire Bit Router Modules Cycle
Micro-Arch Wire Bit Router Modules Cycle
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4 Proposed NoC Models

4.1 Router Architecture

Our router models are based on the HERMES router architecture [4] with slight
changes.

Figure 3 outlines the router’s internal structure with 4 important functional
units: Input/Output Ports, Routing Management Unit (RMU), Flow Control
Unit (FCU) and crossbar unit. RMU includes Routing Logic Unit (RLU) and
central table to record the status of virtual channels (VCs) of the output ports.
FCU for promulgating free ports to the neighboring output ports. Crossbar unit
forwards the packets to the next router determined by the RMU.

Fig. 3. The router architecture in the proposed NoC abstract models

Each router is connected to 4 neighboring routers through the 4 input/output
ports. One local port connects the router to the local IP core. Each input port
has a configurable (8bits in Hermes, 32bits in our model) size of VC-buffers to
record the received data/control flits. A flit is the smallest part of a packet.
There is no buffer in the output ports as the buffer in the next router’s input
port is used. For this, a credit-based flow control mechanism is employed to
notify the sending side about the available space on the receiving side. This
way, flit is only sent if there is space on the receiving side. The RLU (part of
RMU) computes which output port to sent a packet to. The VC allocation unit
selects which VC to use for a given output port. One of our changes over the
Hermes architecture is supporting individual RLUs for each input port in order
to avoid congestion inside the router. Similar to Hermes, the routing method
is XY; approaching the destination always first horizontally, then vertically or



134 R. Hao et al.

vice versa. Routing decision is made per header flit which contains destination
information and packet length. Flits are switched using the wormhole method.

4.2 Packet Transmission

Example a received flit is stored in the VC buffers of that input port. In case of
a header flit, it’s destination is forwarded to the RMU to determine the output
port. After selecting the output port, the RLU consults RMU table to find an
available VC on the output port.

After selecting output port and VC, the input port refers to FCU to check if
there is enough room for receiving this flit in the next router. In our credit-based
flow control, each VC has a credit and when the VC is used by a flit, its credit
is decreased. When the flit leaves the input buffer of the destination router, a
credit is sent back to the sending router, increasing the VC’s credit count.

Assuming sufficient sending credit is available, the crossbar sends the flit from
the input port to the output port (and subsequently sends a credit upstream).
The remaining flits of this packet are then sent one by one consulting the FCU
about receive buffer credits to the next router. Upon receiving the tail flit, the
RMU de-allocates the output buffer and VC.

During packet transmission within a router, various shared resources are used
for which accesses need to be arbitrated. Detecting and resolving/arbitrating the
contentions impacts the accuracy.

4.3 Arbitration Points

One of the most important aspects impacting accuracy in modeling is detect-
ing contentions over shared resources and resolving them. Shared resources are
FCU, crossbar, and output ports. The way how access requests to these shared
resources are collected and arbitrated affects the modeling accuracy. We identify
one contention type for each resource (see also summary in Table 2):

1. Connection Establishment: if a router receives two header flits that target
the same output port, their requests contend for the RMU. An arbiter is
required to select one of requests. The selected request gets access to the
RMU (central table of RMU), then starts connection and sends data.

2. Request Flow Control Grant: simultaneous flow control requests at the
same FCU for different VCs create contention over FCU access. Concurrent
requests are feasible, as they have already received the credit to send data.
In order to guarantee that at one point of time, only one traverse is allowed
to a specific output port, an arbiter is necessary to give flow control grant
signal to one of the requests. We define this arbitration point as arbitration
for same output accesses.

3. Crossbar Access: when more than one VCs at the same input port gets the
flow control grant simultaneously, there is contention on the crossbar. In our
design, to avoid this contention, we define an arbiter for crossbar access from
the same input port. This arbiter grants crossbar access to only one of the
requests.



Modeling and Analysis of SLDL-Captured NoC Abstractions 135

Table 2. Contention events and arbitration points

Arbitration point location Resource Arbitration (BFM) Arbitration (TLM)
Connection Establishment RMU RMU table FIFO random
Request Flow Control Grant FCU output port FIFO random
Crossbar Access IP crossbar Round-robin random

4.4 NoC Abstract Models: TLM and BFM

This paper captures two abstract models of NoC; Transaction-Accurate Model
(TLM) and Pin-Accurate Model (BFM) in the System-level Design Language
(SLDL), SpecC [18]. Both models take into account the arbitration points
explained in Sect. 4.3 as well as the characteristics of Table 1. However, they
differ in the way that requests to the shared resources are collected and arbi-
trated. The BFM gathers resource access requests based on sampling and driving
of every single wire at each cycle. Conversely, the TLM gathers the access infor-
mation at transaction. Consequently, the BFM updates the system status at
any cycle, while the TLM updates at transaction boundaries. As the granularity
of updating the system status affects the accuracy, TLM is less accurate than
BFM.

Both models implement the same arbitration policies. However, as the TLM
makes a decision at a coarser granularity, it is more susceptible to the order in
which access requests appear. Within the same time quantum, the TLM cannot
distinguish between concurrent requests. As the execution order is not specified
by the underlying discrete event simulation semantics, the effective arbitration
policy for simultaneous (same quantum) becomes random.

Moreover, the BFM is driven by an explicit clock, while the TLM virtually
times routers by using the instruction waitfor. In some sense the TLM can be
considered time driven, while BFM is event-driven. Both models also differ in
the number of threads (sc module in SystemC, or behavior in SpecC) used for
simulation. The BFM employs active threads for each router module. Conversely,
the TLM is mainly channel based (ie. is call driven) and only uses one behavior
(or sc module) for each VC. For instance, assuming 4 VCs per physical link, the
BFM has 41 simultaneous threads and the TLM only 20. With the lower num-
ber of active threads, the TLM can perform faster (avoiding context switches).
Table 3 compares BFM and TLM.

Table 3. Comparing TLM and BFM

BFM TLM
Communication Implementation Behavior Channel
Arbitration Policy FIFO & Round-robin Random
Timing Event driven (explicit clock) Time driven (waitfor)
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5 Experimental Results

This section explores the proposed BFM and validates its accuracy and func-
tionality with respect to the RTL implementation. It then compares the TLM
versus the BFM based on speed and accuracy.

For evaluation of the models, we mainly use hot spot traffic [19]; some nodes
in the network receive most of the traffic.

5.1 BFM Validation

System performance and throughput are two important metrics for analyzing
NoC architectures. Average packet latency is a representative of system perfor-
mance, and link utilization is a representative of throughput. Packet latency is
the packet life-time defined as the difference between its start time label and its
end time label.

Link utilization/load is the ratio of link busy time over the whole simulation
time. Link busy time is defined as the total time when the link is busy carrying
traffic.

In this part and for validation of the proposed BFM, we adopted 40%-hot
spot traffic and defined packet size as 10 flits. 40%-hot spot traffic means that
40% of the nodes are the destinations of total traffic injected to the network.
Each injector (hot node) injects 100 packets to the network. Figure 4 shows the
simulation results including link load, average packet latency and simulation
time for hotspot traffic injected into the 8*8 mesh. The results are correlated
with the results of VC extended HERMES router structure on FPGA [20].

Figure 4a shows link load for different numbers of VCs as the injection rate
increases. At small injection rate, the link load increases linearly for all VCs.
However, the link load starts to level off from a specific injection rate, around
10%, 15%, 20% and 30% respectively for 1 VC, 2 VCs, 4 VCs and 8 VCs. Based
on [20], this point is called saturation point. The saturation degree of network for
multiple VCs in our model is higher than what is reported in [20]. The reason lies
in the different implementations of the network interfaces. In our work, we define
multiple VCs for local connections as well, which means at the destination node,
traffic from different ports can sink into the local PE without being blocked.
With the improved mechanism, the network throughput for VCs of 8 can reach
100% under hotspot traffic.

Figure 4b shows the average latency as injection rate increases. Up to the
saturation point, the average latency is constant for all VCs. With increasing
the number of VCs, the average latency drops in a half when VCs goes from 1 to
2. Similar situation for 2 VCs to 4 VCs. However, the average packet latency for
VCs of 4 and 8 are similar. The reason is that using 4 VCs has already eliminated
most of packet blocking.

Figure 4c shows the overall finish/transmission time as the injection rate
increases. This time is when all the packets reach their destinations. Since more
VCs leads to more traffic overlap on the fly, 8 VCs yields the shortest overall
transmission time.
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Fig. 4. BFM performance validation (8× 8 mesh, 40%-hot spot)

5.2 TLM Evaluation

This section evaluates the TLM compared to the BFM with respect to speedup
and accuracy.

SpeedUp: depending on the amount of implementation details and number of
context switches, the simulation time varies. For comparing the models, simu-
lation speedup is reported. Simulation speedup of the model with higher level
of abstraction (H) compared to the model with lower level of abstraction (L) is
defined as 1.

SpeedupH2L = Simu. T imeL/Simu. T imeH (1)

As the simulation time strongly depends on the number of context switches, the
simulation speed is closely correlated with the network size and traffic intensity.
Both network size and traffic intensity affect the number of behaviors and context
switches. Network size is the number of nodes in the network. Network intensity
is defined as the number of transactions (number of packets) from sender nodes
to the receiver nodes. With larger network or intense traffic simulation time
increases.

To evaluate the effects of network size and traffic intensity, 40%-hot spot
traffic is simulated with 4 VCs per physical link and 100% injection rate.
Figure 5a shows the simulation time for increasing network (mesh) size from
2 * 2 to 8 * 8. The TLM is 10x to 16x faster than the BFM. With larger net-
works, TLM achieves higher speedup as a result of abstracting away higher ratio
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of communication details. Figure 5b illustrates the simulation time for network
intensity. With increasing the transaction size (from 1 packet to 100 packets),
TLM achieves an increasing speedup (from 14x to 50x) again as res ult of the
more abstract simulation.

Fig. 5. Comparing simulation time of BFM and TLM (8 * 8 mesh, 40%-hot spot)

To measure the accuracy loss, we define accuracy error for each packet. As
Eq. (2) defines, this accuracy error has correlation with the difference between
packet latency in the TLM and BFM. Packet latency is the difference between
start time label and end time label of the packet.

Error = |PacketLatencyL/PacketLatencyH |/PacketLatencyL (2)

As the TLM differs from the BFM in the effective arbitration policy (due to
collection of requests and arbitration among them), measuring the accuracy loss
in the TLM requires simulation scenarios with different amount of contentions
(requests) over the shared resources. The amount of contentions over the shared
resources is determined by the amount of traffic injected to the network. The
more the injection rate, the higher the number of simultaneous requests for the
same resources and higher contention and accuracy loss as a result. To demon-
strate this, 40%-hot spot traffic is adopted into the TLM and BFM models of
6 * 6 NoC with 4 VCs per physical links and 100% injection rate. We simulate
100 transactions through the NoC and measure the transmission delay of packets
in both models BFM and TLM. To aggregate the results, we report the aver-
age error, as well as the cumulative error for 50-percentile and 96-percentile as
Fig. 6a. The 50-percentile (96-percentile) cumulative error indicates the maximal
error experienced by 50% (96%) of transactions. As Fig. 6a represents, increas-
ing the injection rate, increases the cumulative error probability. Increasing the
injection rate from 0.1 to 0.2 increases the average error from 10% to 20%. At 0.1
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injection rate 96% of packets observe less than 40% error, while 50% see less then
10% error. Increasing the injection rate to 0.6, makes 50% of packets experience
up to 30% error.

Increasing the injection of rate increases the contention over shared resources.
One indicator is the congestion rate over physical links. Figure 6b shows the
cumulative error probability over increasing congestion. All three metrics are
strongly related to congestion. And increase until congestion hits 50%. Then,
50% show at most 38% error, while the maximum error measured for 96% of
packets reaches 100%. Conversely, at lower congestion rate, e.g. 5%, 96% of
packets experience less than 20% error.
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Fig. 6. Cumulative probability of accuracy error

6 Conclusion

Modeling of NoCs is important for early exploration of NoC design alterna-
tives. In this context, fast and accurate simulation is important. However, when
abstracting NoC models, a trade-off between simulation speed and accuracy
exists. This paper has identified NoC abstraction levels, differing in data gran-
ularity, visibility of internal structures and modeling of contention points. This
paper has introduced two NoC models, an detailed Bus-Functional Model (BFM)
which models and arbitrates at each clock cycle and a more abstract Transac-
tion Level Model (TLM) that operates on coarser transactions. Both models have
been captured in the SpecC SLDL. We have validated our BFM to sufficiently
match the RTL implementation. The TLM simulates 10x to 50x faster than
BFM at a cost of 10%–20% accuracy. Both speedup and accuracy loss increase
with network size and traffic.
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6. Schirner, G., Dömer, R.: Abstract communication modeling: a case study using the
CAN automotive bus. In: Rettberg, A., Zanella, M.C., Rammig, F.J. (eds.) From
Specification to Embedded Systems Application. IFIPAICT, vol. 184, pp. 189–200.
Springer, Heidelberg (2005). https://doi.org/10.1007/11523277 19
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18. Gerstlauer, A., Dömer, R., Peng, J., Gajski, D.D.: System Design: A Practical
Guide with SpecC. Springer, Heidelberg (2001). https://doi.org/10.1007/978-1-
4615-1481-7

19. Fulgham, M.L., Snyder, L.: Performance of chaos and oblivious routers under non-
uniform traffic. Technical report (1993)

20. Mello, A., Tedesco, L., Calazans, N., Moraes, F.: Virtual channels in networks on
chip: implementation and evaluation on hermes NoC. In: Integrated Circuits and
System Design, pp. 178–183. ACM (2005)

https://doi.org/10.1007/b137175
https://doi.org/10.1007/b137175
https://doi.org/10.1007/978-1-4615-1481-7
https://doi.org/10.1007/978-1-4615-1481-7


Memory System Design



Taming the Memory Demand Complexity
of Adaptive Vision Algorithms

Majid Sabbagh(B), Hamed Tabkhi, and Gunar Schirner

Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA
{msabbagh,tabkhi,schirner}@ece.neu.edu

Abstract. With the demand for utilizing Adaptive Vision Algorithms
(AVAs) in embedded devices, serious challenges have been introduced to
vision architects. AVAs may produce huge model data traffic while con-
tinuously training the internal model of the stream. This traffic dwarfs
the streaming data traffic (e.g. image frames), and consequently dom-
inates bandwidth and power requirements posing great challenges to
a low-power embedded implementation. In result, current approaches
either ignore targeting AVAs, or are limited to low resolutions due to not
handling the traffics separately. This paper proposes a systematic app-
roach to tackle the architectural complexity of AVAs. The main focus of
this paper is to manage the huge model data updating traffic of AVAs
by proposing a shift from compressing streaming data to compressing
the model data. The compression of model data results in significant
reduction of memory accesses leading to a pronounced gain in power and
performance. This paper also explores the effect of different class of com-
pression algorithms (lossy and lossless) on both bandwidth reduction and
result quality of AVAs. For the purpose of exploration this paper focuses
on example of Mixture-of-Gaussians (MoG) background subtraction. The
results demonstrate that a customized lossless algorithm can maintain
the quality while reducing the bandwidth demand facilitating efficient
embedded realization of AVAs. In our experiments we achieved the total
bandwidth saving of about 69% by applying the Most Significant Bits
Selection and BZIP as the first and second level model data compres-
sion schemes respectively, with only about 15% quality loss according to
the Multi-Scale Structural Similarity (MS-SSIM) metric. The bandwidth
saving would be increased to 75% by using a custom compressor.

1 Introduction

The demand for vision capabilities in embedded devices is rising more than
ever. Embedded devices, ranging from tiny medical implants to smart cars and
distributed smart cameras, need advanced vision capabilities and visual scenes
analysis. Among different types of vision algorithms, the need is toward the
algorithms that can dynamically adapt to the varying scene conditions. AVAs
are considered as the dominating class of algorithms for advanced visual analysis.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Götz et al. (Eds.): IESS 2015, IFIP AICT 523, pp. 145–158, 2017.
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They are based on the machine-learning principles and are able to capture the
runtime changes in the scene (e.g. MoG background subtraction and Support
Vector Machine (SVM)).

While AVAs have been realized for fairly long time in algorithm-development
environment (e.g. Matlab), their embedded low power realization is still very
challenging. Embedded devices are bounded in computation/communication
resources with limited energy/power budget. In contrast, AVAs demand for a
significant computation and communication capabilities which results in a power
consumption far beyond the embedded system budgets. Realization of compu-
tation through custom design and High-Level Synthesis is well-formulated. On
the other hand, communication appears as the primary bottleneck hindering
implementation of AVAs on embedded devices.

The main limitation of AVAs is significant communication traffic imposed
by algorithm itself. Due to inherent learning properties of AVAs, they maintain
and continuously update model data of the scene. The model data is algorithm-
intrinsic and its existence is independent of algorithm implementation. The size
of model data is often very large exceeding the capacity of today’s on-chip mem-
ories, forcing the designers to utilize off-chip memory. In result, accessing and
updating the model data results in huge off-chip bandwidth demand and its asso-
ciated power consumption. For instance, the bandwidth demand for updating the
MoG background subtraction algorithm at Full-HD resolution is about 8 GB/s,
based on the analysis of the standard OpenCV algorithm. This contributes to
about 90% of total power consumption [1]. Therefore, to open efficient realization
of AVAs on embedded devices, the first step is to manage huge communication
demands associated with the model data.

Existing approaches often ignore embedded realization of AVAs and focus
on the non-adaptive ones, or only implement AVAs at very low resolutions
(300 * 400) [2–4]. However, current trend is toward utilizing AVAs to deliver
advanced vision capabilities at Full-HD resolution (1920 * 1080). Overall, opti-
mizing the model data has received less attention despite being crucial for
real-time low-power implementations of AVAs. The need is toward systematic
approaches that can provide a guideline on how to efficiently manage model data
communication traffic.

This paper introduces a system level approach for taming the memory
demand complexity of Adaptive Vision Algorithms. The main goal of this
research is to open a path toward efficient management of model data traffic. By
focusing on model data, we explore the opportunity of shifting the current trend
in compressing the streaming data (i.e. applying different video/image encod-
ing methods), toward compressing the model data to reduce the bandwidth and
power. Following a system-level approach, this paper also explores the effect of
different classes of compression algorithms, lossy and lossless, on both band-
width reduction and resulting quality. Based on the observations, this paper
offers design choices and trade-offs for finding the best compression methods.

For the purpose of exploration, this paper focuses on the example of MoG
background subtraction [5]. Our results on the example of MoG demonstrate
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50% reduction in communication bandwidth by applying a lossy linear com-
pression (Most Significant Bits selection) with minimal quality loss. A higher
bandwidth saving 69% can be achieved by BZIP general-purpose lossless com-
pression with no quality loss. Further bandwidth saving is also achieved by a
customized compression scheme (e.g. 75% in [6]).

This paper is organized as following: Sect. 2 overviews relevant prior work.
Section 3 briefly provides background and additional motivation. Following that,
Sect. 4 describes our systematic approach for bandwidth quality trade-off on dif-
ferent class of compression algorithms. Section 5 concludes the paper and touches
on future work.

2 Related Work

The embedded realization of vision algorithms is still at early stages. Most of
the previous work on embedded vision have been bounded to basic vision filters,
e.g., Canny edge detection, with regular computation and much less communi-
cation demand [7,8]. Only few researchers have targeted adaptive vision algo-
rithms (e.g., MoG, KLT, optical flow) on embedded devices. What all previous
approaches share in common is lack of insight about source and nature of the
traffic. Therefore, they mainly propose a common communication interface for
transferring all types of data. Thus, they either ignore the algorithm-intrinsic
traffic, or assume that it is hidden in the communication hierarchy. In the result,
their proposed solutions works at low resolutions (300 * 400) which is far below
Full-HD resolution (1920 * 1080) [2–4,9]. However, in [1] authors propose Data
Separation concept for Adaptive Algorithms, in which the streaming data is han-
dled differently compare to the model data. That helped them to realize the MoG
algorithm for background subtraction in Full-HD resolution at 30 frames per
second. We based our studies on [1] for applying different compression schemes
on model data and analyzing its effect on the system performance and output
quality.

A recent work [6] hints about the significant communication volume of MoG
background subtraction algorithm. It also provides a promising lossless com-
pression method which can reduce the bandwidth demand for updating MoG
parameters down to 50%. Although their compression method sounds to be very
efficient and promising, their approach lacks a holistic approach which studies
different compression schemes and can generalize the concept of compression on
model data for AVAs.

The general observation is that optimizing the model data has received much
less attention despite being crucial for real-time low-power implementation of
AVAs. In contrast to previous approaches, this paper focuses on optimizing and
managing huge communication demand for updating and accessing model data
in AVAs.
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3 Background

This section briefly provides background information on traffic separation in the
context of AVAs, and for MoG background subtraction algorithm as an example
of AVAs.

3.1 Data Separation

Data separation, proposed by [1], distinguishes two types of data: streaming data
and model data. Figure 1 highlights these two types of traffic in the context of
AVAs. The streaming data (pixels) is the input/output data to the algorithm,
while the model data is the intrinsic part of algorithm for realizing targeted
processing. In AVAs, typically the model data is much bigger than streaming
data. The size of model data exceeds the capacity of today’s on-chip memories,
forcing the designers to utilize the off-chip memory. Furthermore, since the model
data should keep up with the streaming data, the bandwidth demand for reading
and writing the model data from/to the memory would be a real limitation. Data
Separation provides the opportunity for targeted optimization on both streaming
data and model data.

Streaming Data Streaming Data

Model
Data

Adaptive 
Model

Adaptive Algorithm

Fig. 1. Streaming data vs model data

The traffic separation also streamlines the construction of complete vision
flow out of multiple AVAs executing different parts of applications over the
streaming data. Each AVA has its own model data which hits the memory hier-
archy while streaming data is passed across the kernels. This further motivates
us to have a systematic solution toward ever increasing communication com-
plexity of AVAs. The Data Separation insight helps us to explore and tailor the
compression opportunities on model data.

3.2 MoG Background Subtraction

MoG background subtraction is a very good representative of AVAs [5]. In this
paper, we also use this algorithm to present our results. MoG is used in vision
computing for identifying moving objects from the background scene. Figure 2
includes the MoG coarse-grain mathematical formulation. MoG uses multiple
Gaussian distributions, also called Gaussian components, to model a pixel’s
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Fig. 2. Memory access per pixel in MoG algorithm

background. Each Gaussian component has its own set of Gaussian components:
weight ωi, an intensity mean μi and a standard deviation σi. In Full-HD reso-
lution, for storing all Gaussian parameters about 74 MB of storage is required
which may exceed the on-chip memory capacity available in embedded plat-
forms. As a new pixel arrives, all Gaussian parameters are updated to track BG
changes of the pixel at frame basis. On the other hand, the bandwidth demand
for updating the Gaussian parameters, assuming 32 bit per Gaussian parameter
with 3 Gaussian components per pixel, is about 8 GB/s (for processing at Full-
HD resolution 60 fps), which is 30 times more than streaming bandwidth, which
is 265 MB/s for transferring 16-bit input pixel and 1-bit output foreground mask.

4 Systematic Model Data Compression

4.1 System-Level Roadmap

Real-time embedded realization of AVAs forces the system architects toward sys-
tematic approaches. Figure 3 highlights our design flow for tackling the complexi-
ties of AVAs. It starts from analysis of algorithms to identify orthogonal axises of
optimization with separated axises for computation and communication. There
is a computation/communication trade-off at which point the computation and
communication axises meet. The trade-off occurs when compressing the model
data adds to the computation demand while reduces the bandwidth demand.

Adaptive 
Algos.

Algorithms

CommunicationComputation

Floating/Fixed 
Point Comp.

Compression
Processing 

Coarse-Grain 
Pipelining

Data
Sepration

Model Data 
Compression

Comp/
comm

Computation / 
Communication 

Trade-off

Synchronization/
Memory Management

Fig. 3. System-level design flow
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In this study, we mainly focus on communication axis because of significant
communication demand in AVAs for periodically accessing and updating the
model data. Complexities in computation axis, include but not limited to, multi-
dimensional processing, complex operations, floating point computation which
can be explored separately and are not part of this study.

Using the data Separation insight, we propose a shift from current trend
in compressing streaming data toward compressing model data. As shown in
Fig. 4, compression/decompression units could be placed in the access interface
of model data, providing the opportunity of significantly reducing the model
update bandwidth.

Streaming gnimaertSataD  Data

Uncompresssed 
Model Data

Decompression Compression
Compresssed 
Model Data

Adaptive Algorithm

Adaptive 
Model

Fig. 4. Compression/decompression on model data access

There are two major categories in compression methods, lossy and lossless. In
lossy compression, there is a trade-off between the achievable bandwidth saving
and output quality while in the lossless compression schemes there would be
no quality loss probably with the cost of higher computation demand. Overall,
the primary metrics needed to be considered for choosing a suitable compression
algorithm are: (1) achievable bandwidth saving, (2) quality effect (lossy/lossless),
and (3) computation demand for compressing/de-compressing model data.

4.2 Experimental Setup

For the purpose of study, we focus on MoG background subtraction algorithm
explained in Sect. 3.2. We modeled MoG in SpecC System Level Design Language
(SLDL) [10]. The high-level diagram of the experimental model is shown in Fig. 5.
The stream of input pixels will be fed from stimulus block to the MoG which
at the same time receives the corresponding parameters, i.e. model data, from
the Read Param block. Read Param block receives the decompressed parameters
from the decompression unit. Decompression unit reads the compressed model
data from a file, decompress it, and sends the individual parameters out when
the corresponding pixel arrives at input of MoG. Then, after finishing the pro-
cessing, MoG block outputs foreground masks as the output stream and updated
parameters as model data. Model data will be written back to a file after being
compressed by the compression unit. In the following section, we will study the
effect of applying different compression methods on MoG’s model data.
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Fig. 5. High-level diagram of evaluation model for MoG

During the exploration, we assess the quality against the ground-truth (MoG
with no compressed Gaussian parameters). We use MS-SSIM metric. MS-SSIM
focuses on the structural similarity between two frames which is more similar
to human perception [11]. MS-SSIM quantifies the quality as a value between
0 to 1 where a higher value means closer similarity and thus lower quality loss
compared to ground-truth.

4.3 Evaluation of Compression Schemes

MSBSel. The simplest compression method is to statically select the most sig-
nificant bits of parameters. We call this method Most Significant Bits Selection
(MSBSel). Although MSBSel is a lossy compression, it has almost no compu-
tation overhead especially considering a hardware implementation. We call the
model with MSBSel compression method the reference model in later explana-
tions.

This compression scheme introduces the Quality-Bandwidth trade-off as illus-
trated in Fig. 6. Based on Fig. 6, the quality and bandwidth have a non-linear
relationship and it is possible to reduce bandwidth without quality loss (in the

Fig. 6. Quality-bandwidth trade-off in MSBSel compression scheme
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bandwidth range from 160 MB/s down to about 120 MB/s). Moreover, by reduc-
ing the bandwidth down to 50%, i.e. 80 MB/s, quality will not drop more than
15% according to MS-SSIM quality metric. Although this is due to the nature
of MoG algorithm, but same trend could be observed for other AVAs. Select-
ing fewer bits leads to higher bandwidth saving but also higher degradation in
quality. A high dynamic range or precision is essential for accurate background
subtraction. This raises a need for complex/advanced compression algorithms to
further reduce the bandwidth requirements for updating model data.

JPEG-2000. To further explore the compression effect on MoG parameters,
JPEG-2000 compression applied as the second-level compression after MSBSel
to evaluate if it can reduce the bandwidth without affecting the quality signif-
icantly. JPEG is a well-known image compression method developed by Joint
Photographic Experts Group [12]. JPEG-2000 is the newer version of JPEG,
which also supports 16-bit gray-scale images.

Fig. 7. Visual structure of Gaussian parameters.

Since JPEG has been customized for compressing images, we only limit the
JPEG compression for parameter Mean. Parameter Mean keeps background
mean values for pixels and it has a visual structure similar to an image. Figure 7
illustrates the visual structure of all Gaussian parameters. On top from left
to right, the original, background and foreground frames are shown. Below the
frames, Fig. 7 also presents the images of all Gaussian parameters for three Gaus-
sian components: Mean, Standard Deviation and Weight, from left to right.

Figure 8a shows the effect of JPEG-2000 compression on Mean parameter
over the bandwidth demand for updating parameter Mean. Figure 8b plots the
total bandwidth saving (over all parameters), by compressing only parameter
Mean. For this experiment, a sequence of 650 frames with resolution of 320× 240
has been chosen as the input test set. Both figures show the effect of different
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JPEG compression ratios (2:1–10:1). The JPEG-2000 is significantly reducing
the bandwidth demand for updating the Mean parameter. For the best com-
pression ratio of 0.1 (10:1), the bandwidth saving for updating parameter Mean
is about 85%, indicating that the size of compressed Mean image is on average
15% of its original size. Also, as shown in Fig. 8b, overall bandwidth saving is
about 29%. The overall bandwidth saving is limited as JPEG-2000 is not appli-
cable on other MoG parameters (Standard Deviation and Weight).

Fig. 8. Bandwidth demand vs. compression ratio for JPEG-2000 compression

The bandwidth saving corresponding to the compression ratio was less than
the expected value. For example, the expected bandwidth saving of 10:1 com-
pression ratio, is 90%. However, in practice it is about 85%. The effect of noise
on degrading the performance of compression methods is already studied in
literature. For example, a study in [13] shows that noise reduces the inter-pixel
correlation which compression ratio increased. Some approaches, such as [14,15],
filters the effect of noise from the source image. However, all based on assump-
tion that feature of filtering solutions is that they consider noise in images as
unwanted data. In contrast, the visual distortion that is observable in MoG
parameters are actually the values produced by the algorithm and are required
in next iteration for computation. Therefore, eliminating the distortion which is
seen in MoG parameters in fact reduce the quality of MoG.

To study the effect of JPEG bandwidth saving on the MoG quality (the
foreground masks), we compared the output of MOG with JPEG compression
against the reference model. The outputs are compared using the MS-SSIM
quality metric in a simple scene, with few object movements and variations, and
a complex scene, with lots of object movements and crossings. Figure 9 plots
the quality across total bandwidth saving when applying JPEG compression for
parameter Mean. The maximum achievable output quality is about 0.46 out of
1, in the simple frame sequence. This is even worse in complex frame sequence
which the maximum output quality is 0.22 with bandwidth saving of only 2%
on average. With increasing compression rate to further reduce the bandwidth,
the quality degradation would be more pronounced reaching to a point which
basically MoG is not functional anymore.
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Fig. 9. Quality-bandwidth trade-off when for simple and complex frame sequences

Overall, we conclude that JPEG-2000 have severe degradation effect on the
final output quality of MoG. We can trace back this issue to the adaptive behav-
ior of the MoG algorithm, meaning that since the MoG parameters are recur-
sively accessed and updated, even a small error can accumulate, resulting in
degradation of background subtraction robustness and eventually output qual-
ity loss. All of these observations motivate us to explore other possibilities for
compression of model data, therefore we will look into the opportunity of using
lossless compression schemes.

Lossless Compression. The principal feature of lossless compression algo-
rithms is that they do not affect the quality of data being compressed. Therefore,
rather than quality loss, the designer may change the focus to other character-
istics of compression algorithms, such as the achievable compression ratio and
computation demand. In our study, five different lossless compression methods
have been explored: QZIP, LZ4, BZIP, GZIP and ZIP. QZIP and LZ4 are two
compression algorithms which are in high-speed categories, while BZIP, GZIP
and ZIP are three regular compression methods. The experiments are done over
4500 parameter images that are the MoG parameters of 3 Gaussian components,
each having 3 parameters (Mean, Standard Deviation and Weight) for 500 frames
of original 1024× 768 resolution. All of the lossless compression methods are
applied as the second level compression after MSBSel. To further explore the
granularity of source data which a certain algorithm will operate on, we divide
the input frames to smaller blocks. A 1024× 768 frame could be divided into
25.6 blocks of 40× 30, 12.8 blocks of 80× 60, 6.4 blocks of 160× 120, 3.2 blocks
of 320× 240, 1.6 blocks of 640× 480 and 1 block of 1024× 768 resolution.

Figure 10a presents the average bandwidth saving over different block sizes for
all compression algorithms. The maximum bandwidth saving could be achieved,
when using the 1024× 768 block size. In fact, by reducing the block size to
less than 1024× 768, all algorithms perform poorly in bandwidth reduction, at
the best case reaching to less than 10% bandwidth saving. The best average
bandwidth savings captured in lossless experiments is about 38%, corresponding
to BZIP compression scheme with block size of 1024× 768.
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Fig. 10. Bandwidth saving and computation demand over different block sizes.

Figure 10b shows the average computation demand over different block sizes
for all compression algorithms. To estimate the computation demand, we used
Pin - Dynamic Binary Instrumentation Tool [16], from Intel. The block size
of 1024× 768, equal to full image size, leads to largest computation demand.
Overall, the computation demand varies across the algorithms. In QZIP and
ZIP, the lowest computation demand is achieved by using block size of 80× 60,
for LZ4 320× 240 and for GZIP and BZIP 40× 30. Figure 10a and b also present
the result of LZ4 algorithm in the high-compression mode (LZ4 High-Comp.).
In high-compression mode, LZ4 could provide better compression ratio with the
cost of higher computation demand.

Combining Fig. 10a and b, we can derive Fig. 11 showing the trade-off
between bandwidth saving and computation demand. In Fig. 11, the numbers
over the stars show the average bandwidth saving, while the crosses show the
range of achievable bandwidth demand corresponding to a certain computation
demand. For different algorithms, the trend is that lower bandwidth demand or
higher bandwidth saving, is achievable by having more computation. Among all
algorithms, LZ4 in fast-mode has the lowest computation demand, which is about
100 millions instructions for compression and decompression of a frame, and at
the same time the lowest bandwidth saving of 17%, while the BZIP achieves high-
est bandwidth saving of 38% with the highest computation demand of about 1
billion instructions. Note that, computation demand of LZ4 for compression and
decompression of a frame in high-compression mode is about 10 times higher
than its computation demand in fast-mode.

Custom Compression. The previous studied lossless compression methods
are general algorithms developed to compress any sort of data. The results of
our experiments illustrate that although there are lots of options for compressing
the model data, but for AVAs such as MoG, which have special type of model
data produced by statistical and non-linear processing, general purpose image
or data compression methods might not provide the desirable performance for
designers. There is a demand for lossless compression algorithm customized for
compressing model data in context of AVA. This fact, motivates designers such
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Fig. 11. Bandwidth saving/computation demand trade-off

as in [6] to devise custom model data compression schemes only for a certain
type of algorithm. One preliminary example, has been already proposed by [6].

In [6], the authors propose a DPCM-based compression algorithm for com-
pression of MoG parameters. Their algorithm, extracts and uses the inter-
correlation of parameters for different Gaussian Components of MoG and intra-
correlation of parameters for within the Gaussian Components, to represent
every two parameters with one compressed parameter, in a lossless process,
reducing the bandwidth demand down to 50%. In terms of computation demand,
the FPGA implementation of their algorithm shows reasonable resource utiliza-
tion of about 2282 LUTs and 1876 FFs in Virtex-5 FPGA, without any use of
DSP Blocks and more importantly Block RAMs.

4.4 Results Summary

To summarize, Using the Data Separation insight, we explored the opportunity of
applying different compression schemes on model data, to shift the compression
trend from streaming data to model data. During the experiments we evaluated
several trade-offs:

– Lossy Compression
• Quality-Bandwidth Trade-off (for MSBSel only and MSBSel+JPEG-

2000): For having better quality, higher bandwidth is needed
• Bandwidth-Compression Ratio (for MSBSel+JPEG-2000): By changing

the configurable compression ratio in JPEG-2000, different bandwidth
demands are achievable

– Lossless Compression
• Computation Demand-Block Size Trade-off (For all 5 lossless algorithms):

Different block sizes lead to different computation demands, highest com-
putation demand is when the block size is equal to the whole frame being
compressed
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• Bandwidth Saving-Block Size Trade-off (For all 5 lossless algorithms):
Different block sizes lead to different Bandwidth Saving, biggest saving
in Bandwidth achieved when largest block size is used

• Bandwidth Demand-Computation Demand Trade-off (For all 5 lossless
algorithms): For having lower bandwidth demand or highest bandwidth
saving, there is need for more computation

• Bandwidth Demand-Computation Demand Trade-off for LZ4 algorithm
in high-compression mode and fast-mode: By using LZ4 in high-
compression mode, higher bandwidth saving is achievable with the cost
of higher computation demand.

Overall, by applying BZIP as the second level compression scheme over MSB-
Sel, the total bandwidth saving of about 69% is achievable, while the bandwidth
saving could be increased to about 75% by using a custom compressor instead of
BZIP. The overall output quality loss would not be more than 15% according to
the MS-SSIM metric for both of these cases. These trade-offs could help the sys-
tem architects for AVAs, choose the right compression algorithm for model data
based on the application requirements. Furthermore, designers might have to
use or devise tailored algorithms for AVAs’ model data, such as the compression
method proposed in [6] for compressing the MoG parameters.

Altogether, using the Data Separation insight and by applying compression
on model data, realization of AVAs could be facilitated as the overall system
bandwidth demand became manageable, taming the complexity of AVAs real-
ization. We would consider power consumption in future works as it is a very
important factor in embedded systems, while in this work we focus on evaluating
the compression ratio and computation demand in lossless compression schemes.

5 Conclusions

This paper proposes a systematic approach for tackling the complexity of AVAs.
We focus on the main challenge which is the communication complexity due
to huge bandwidth demand for updating model data in AVAs. Using the Data
Separation insight and by applying compression on model data, realization of
multiple vision kernels could be facilitated on a single platform. Also, throughout
our study we evaluated different lossy and lossless compression algorithms, pro-
viding the system architects with various trade-offs and intuitions for choosing
the right method of compression for model data.
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Abstract. The evolution of main memories, from SDR to the current
DDR, presents multiple technological breakthroughs, but still far from
the requirements of the processors. With the advent of Hybrid Mem-
ory Cube (HMC), a promise of high bandwidth with low energy con-
sumption and less area may provide better efficiency than the tradi-
tional DDR modules. This is especially attractive for embedded sys-
tems. In this paper, we perform a comprehensive performance compar-
ison between HMC and DDR memories, to understand the capabilities
and limitations of both. Simulation results running SPEC-CPU2006 and
SPEC-OMP2001 benchmarks show that applications with low memory
pressure behave similarly with HMC or DDR. We make the new obser-
vation that HMC performs better than DDR specially for applications
with a high memory pressure and low spatial data locality. However, for
applications with a streaming behavior, commonly present in the embed-
ded system domain, our experiments show that current HMC row-buffer
specifications do not take advantage of the spatial locality present in
those applications.

Keywords: HMC · DDR · Main memory · Performance evaluation

1 Introduction

Due to increasing requirements from embedded applications, the architectures of
embedded systems are becoming similar to high performance computers in the
sense that performance techniques are being adapted to this new context. Fol-
lowing this trend embedded systems are commonly applying Double Data Rate
(DDR) memories. The evolution of DDR systems brought benefits in terms of
performance, while keeping power consumption levels constant. However, for the
new Hybrid Memory Cubes (HMCs), the trade-off between energy consumption
and performance is more interesting. The industry is predicting that HMC will
provide both higher performance and considerably lower energy consumption in
comparison to the current memory systems [1,20]. However, simulation platforms
and evaluation experiments are required to understand the new trade-offs.

In this paper, we aim to understand the performance difference between
the HMC and traditional DDR 3 memories. In addition, we intend to evaluate
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what type of application exploits more efficiently each memory architecture. We
also adapt a cycle-accurate simulator to model both memory systems to perform
detailed experiments, which are capable of explaining the sources of performance
differences between these two memory systems.

The main contributions of this paper are the following:

HMC simulator: We extended a cycle-accurate simulator to implement a
detailed HMC model, considering the internal vaults, the DRAM signal latencies
and the link bandwidth.

DDR and HMC comparison: Using 29 single-threaded and 7 multi-threaded
benchmark applications, we performed an analysis comparing HMC to DDR 3
memories, in order to understand the limits imposed by the number of DDR 3
channels and HMC links, as well as the characteristics that allow each application
to benefit most from each memory system.

Application behavior correlation: In our experiments we show, as expected,
that applications with low memory pressure keep the performance at the same
level when changing between HMC and DDR 3 memories. We make the new
observation that applications with high memory pressure (i.e., memory pressure
higher than 0.5 GB/s) with low spatial memory locality benefits more from the
HMC, because of the closed-row policy and the high bank parallelism. However,
applications with a high memory locality performs better with DDR 3 memories
mainly because of its 8 KB row buffer.

We evaluate the HMC and DDR 3 memories modeling an Atom-inspired
embedded system consisting of 8 cores with 32 KB L1 and 256 KB L2 caches.
Simulations executing the SPEC-CPU2006 and SPEC-OMP2001 benchmarks
show that HMC with 4 links improves the performance by up to 27% for SPEC-
CPU2006 and up to 109% for SPEC-OMP2001 when compared to the DDR 3
with 4 channels, and improves up to 27% and 50% respectively when compared
to the DDR 3 with 8 channels. Such improvements are observed for those appli-
cations with high memory pressure and non-contiguous data access behavior.
However, for applications with high memory pressure and a contiguous data
access behavior, DDR 3 with 8 channels performed up to 26% better.

2 Technological Constraints of Memory Designs

In this section, we present the architecture of DDR devices and the HMC inter-
nals. For the rest of this paper, we focus on the DDR 3 and HMC specification
version 2.0. The DDR and the HMC systems are presented at a level of abstrac-
tion that is sufficient to understand the terminology and key concepts of this
paper. For a detailed description, we refer the reader to [5,6,9].

2.1 DRAM and DDR Architectures

Traditional main memory modules are formed by multiple devices that act in a
coordinated way [9]. The highest memory structure level is the module, which
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Fig. 1. DDR 3× 8 functional block diagram of a single device. Adapted from [12].

consists of a set of devices. A module may have multiple ranks, each rank con-
sisting of multiple devices, which will operate in synchrony. The devices are
composed of a set of banks, and all the devices in a given rank react to an
operation signal, always operating in the same bank for a given signal. These
banks are composed of sub-arrays, formed by rows that are accessed per column.
Figure 1 shows a basic schematic of the DDR 3 × 8 device.

The DRAM protocol manages these arrays using these 5 basic, simplified
operations: precharge (prepares the arrays and sense amplifiers to read a new
row), row access strobe (reads a specific row using the sense amplifiers into a
SRAM row buffer, with 1 buffer for each bank), column access strobe (bursts
data of a specific column of the row buffer from the DRAM devices to the bus),
column write (receives data from the bus and overwrites the addressed column
of an opened row) and refresh (refresh capacitor charges a row, usually done
automatically by each device).

Since processors have been increasing their throughput demand, DRAM-
based memories have evolved trying to meet the requirements of modern proces-
sors. DDR memories emerged as a major technological breakthrough, providing
the ability of transmitting data at both clock edges. However, its evolutions as
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DDR 2, DDR 3, DDR 4 and so forth generally increased the I/O frequency
by increasing the data burst capability and bus operating frequency. However,
the organization of a DDR device in all versions experienced few architectural
modifications. Despite these advancements in memory technology, the operat-
ing frequency of the basic devices to a certain data width is limited, providing a
lower throughput than what is required by modern processors. Thus, besides the
burst technique, sets of devices are deployed in a module to increase parallelism
and increase data throughput.

To achieve high bandwidth using the DDR memories, the multi-channel tech-
nique is widely adopted. This approach allows accessing multiple memory mod-
ules in parallel and independently, enabling data transfers from more than one
row buffer at same time. Thus, if a system requires large bandwidth, for example,
four channels may be required, using 256 wires in a half-duplex fashion. How-
ever, such a large number of wires in a bus is prohibitive for embedded systems,
mainly because of area and power consumption constraints. To control all the
devices of each channel, the memory controller must issue all the signals to the
devices’s bank. This control also increases with the number of channels [21].

2.2 HMC Architecture

Breaking the traditional way of DDR evolution, HMC is not concerned with
increasing I/O frequency by using burst techniques. Despite using the same
DRAM cell and its restrict accessing times, HMC changes the paradigm by
hiding its device latencies internally, mostly with the aid of 3D integration and
Through-Silicon Via (TSV) technology [13], which enables the integration of a
massive bank parallelism [5,10,15].

Basically HMC memories are composed of up to 8 layers of DRAM memory
and one logical layer per vault, all integrated in the same device. Figure 2 illus-
trates the main HMC architectural details. The three main components inside
the HMC are the following:

Memory vaults: HMC memories store data on contiguous row buffers, inter-
leaving throw the memory vaults and then to memory banks inside the vaults.
HMC may have up to 32 vaults, each one can be composed by up to 16 banks,
where each row in the bank has up to 256 bytes. In theory, the HMC can fetch
data from 32 different banks (one per vault) in parallel and copy it to the inter-
nal read buffers. Only after the data is ready in the read buffers, the links may
send it to the processor’s memory controller.

Memory controller: The 3D integration technology enabled the integration
of memory and logic in the same chip on different layers. Thus, an HMC has a
dedicated memory controller attached to each vault, providing great data access
parallelism. In this way, the processor’s memory controller can be simplified to
work with simple data request commands, reducing its complexity, area and
energy consumption.

Serial links: Unlike DDR 3 memories, which transmit 64 bits per channel,
HMC memory uses serialization, to transmit data through 16 full-duplex lanes
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Fig. 2. HMC block diagram formed by 32 vaults with 8 banks each. Adapted from [5].

per link (each lane is a pair of differential signal lines). However, each link is
not strongly attached to a specific portion of the memory, which means that
any link can be used to transfer data from/to any HMC vault. The adoption of
this communication technique leads to a smaller area for buses. Moreover, these
links are capable of achieving higher frequencies with less interference during the
transmissions [5,19].

As mentioned, other differences between HMC and DDR memories are the
row buffer size and the bank parallelism. Typically, DDR memories have row
buffers of 8192 bytes per bank (split among the devices), while HMC specifies
row buffers of up to 256 bytes per bank. Meanwhile, the DDR modules provides
only 8 memory banks which can act in parallel, while the HMC has up to 512
DRAM banks.

Previous work mentions that these architectural differences in the HMC
architecture may result in up to 70% less energy consumption than DDR3-1333,
and a 15 times theoretical speedup of the system [5,10,15]. However, it is not
clear if all applications can benefit from the HMC. In the remainder of this
paper, we present the methodology for our experiments and the results showing
the most important aspects of an application to perform better in the HMC
compared to DDR memories.

3 Evaluation Methodology

This section presents the simulation details, the application kernels and the
evaluation methodology, showing how we compare our mechanism to the baseline
embedded system and previous work.
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3.1 Modeling DDR and HMC Simulation

To evaluate DDR and HMC memories, we used an in-house cycle-accurate simu-
lator [2,3]. Simulator of Non-Uniform Cache Architectures (SiNUCA) is a trace-
driven simulator, thus it executes traces generated on a real machine with a real
workload without the influence from the OS or other processes. The traces are
simulated in a cycle-accurate way, where each component is modeled to execute
its operations on a clock cycle basis. SiNUCA currently focuses on the x86 32
and x86 64 architectures.

SiNUCA originally offered support only for modeling DDRx memories with
an open-row policy. However, few modifications in the source code were neces-
sary to model HMC, due to SiNUCA’s high parameterization. To model a HMC,
the memory controllers are used as HMC controllers, which are located inside
the HMC device. The channels can be configured to act as memory vaults. How-
ever, changes were made to provide support on closed-row policy and new HMC
instructions. Although HMC-aware compilers are not available yet, synthetic
codes can be evaluated with this version of SiNUCA.

3.2 Configuration Parameters and Workload

The simulation parameters are inspired by Intel’s Atom processor with the Silver-
mont Out-of-Order (OoO) micro-architecture [8]. Table 1 shows the simulation

Table 1. Baseline system configuration.

OoO Execution Cores - 2 GHz; 8 cores; Front-end 2-wide; 16 B fetch block size

14 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit);

24-entry fetch buffer, 32-entry decode buffer, 32-entry ROB; 16-entry BOB;

INT: 2-alu, 1-mul. and 1-div.; FP: 1-alu, 1-mul. and 1-div. (1-3-20; 5-5-20 cycle);

1-load and 1-store functional units (1-1 cycle); MOB entries: 10-read and 10-write;

Branch Predictor - 1 branch per fetch; 4 K-entry 4-way set-associative BTB;

Two-Level PAs predictor; 16 K-entry BHT, 2-bits prediction;

L1 Data + Inst. Cache - 32 KB, 8-way, 2-cycle; 64 bytes line; LRU policy;

MSHR entries: 10-request, 8-write-back; Stride Prefetcher: 1-degree, 16-strides table;

L2 Cache - 256 KB shared for every 2 cores; 8-way, 4-cycle; 64 bytes line; LRU policy;

MSHR entries: 10-request, 6-write-back; Inclusive LLC; MOESI coherence;

Stream Prefetcher: 2-degree, 16 prefetch distance, 32-streams;

Low Power DDR3-1600 Controller and Interconnection - Bi-directional ring,
1∼8-channels; 8 LP-DRAM banks, 8 KB row buffer per bank (1 KB per device), 8 burst
length; Open-row first policy; CAS, RP, RCD, RAS and CWD latency (12-17-14-34-6 cycles);

HMC Module and Interconnection - Bi-directional ring, 1∼4-links @ 8GHz;

32 Vaults, 16 LP-DRAM banks per Vault @ 800 MHz, 256 B row buffer per bank, 2 burst
length; Closed-row policy; CAS, RP, RCD, RAS and CWD latency (12-17-14-34-6 cycles);
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parameters used for our tests. The Silvermont micro-architecture only supports
2 memory channels. In order to build a possible future scenario for comparison,
we also extrapolate the baseline configuration with up to 8 memory channels.
We apply the same extrapolation idea to the HMC, in order to evaluate the
influence of the number of links to the performance.

As the workloads for our experiments, we chose the 29 serial applications from
the SPEC-CPU2006 [7] and 7 parallel applications from the SPEC-OMP2001 [18]
benchmark suite. The SPEC-CPU2006 benchmark suites (integer and floating
point) were executed using the reference input set, executing a representative
slice of 200 million instructions selected by PinPoints [14]. The SPEC-OMP2001
benchmarks were executed using the reference input set as well, executing up to
one time step from its parallel region.

4 Experimental Results

This section presents the results for SPEC-CPU2006 and SPEC-OMP2001
benchmark suites when simulating HMC and DDR memories.

4.1 SPEC-CPU2006 Results

The first result regarding the SPEC-CPU2006 benchmark suite shows the aver-
age performance when executing all the applications for each one of the systems,
with DDR 3 varying the number of channels and the HMC varying the number
of links. Figure 3 presents the speedup results over the DDR 3 with 1 channel.
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Fig. 3. Performance results for SPEC-CPU2006.

Memory Usage and Pressure: In order to understand the behavior of the
different applications executing on HMC 4 links and DDR 3 8 channels, we cor-
relate performance compared to the memory footprint and the memory pressure.

Figure 4 presents the SPEC-CPU2006 applications sorted by their perfor-
mance. It shows the speedup of the HMC over the DDR 3, also showing in the
secondary axis the amount of requests per second (pressure) the HMC serviced
on average. On the top of the figure, the memory footprint is presented.

The plot shows some performance difference between DDR 3 and HMC only
for those applications with pressure higher than 0.50 GB/s. This also correlates
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Fig. 4. HMC speedup over DDR 3 and the memory pressure (GB/s) for SPEC-
CPU2006 applications.

with the memory footprint, where applications with more than 32 MB tends to
have some performance difference between DDR 3 and HMC.

Both metrics show insignificant performance change for applications with low
memory footprint and consequently low memory pressure. However, both metrics
(memory footprint and pressure) cannot explain alone if a specific application
will benefit or not from the HMC.

Memory Contiguity: Selecting only the SPEC-CPU2006 benchmarks with
pressure higher than 0.50 GB/s, we obtained the list of applications with a rea-
sonable memory pressure. For those applications, Fig. 5 correlates the HMC
speedup with the memory access contiguity observed. The contiguity was
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HMC and DDR Performance Trade-offs 167

obtained for the 8 KB row buffer hit ratio of the DDR 3. Thus, the higher
contiguity indicates that more contiguous accesses happened in a short period
of time.

The main aspects from the DRAM architecture that influence the perfor-
mance of contiguous accesses are the row buffer size, and the row buffer policy.
In the case of the DDR 3, the row buffer contains 8 KB of contiguous data, while
for HMC it holds only 256 B. Regarding the row buffer policy, the DDR 3 usu-
ally adopts the open-row policy, while the HMC specification describes the use
of closed-row policy.

The HMC uses smaller row buffers compared to DDR 3 mainly to reduce
the energy DRAM array consumption while it also increases the parallelism
between the vaults. Open-row policies makes more sense with large row buffers.
Considering that smaller row buffers will service less cache misses, the closed-
row policy will close the row buffer as soon as the actual request is serviced.
Performing the early row precharge command improves the performance for
future accesses to different rows, while it can hurt performance if future accesses
map to the recently closed row.

In our experiments, we implemented a smart closed-row policy, which iden-
tifies if multiple requests inside the read/write buffer map to the same row, and
just close the actual row after all the requests have been serviced. However, even
with such scheme, the performance is reduced when contiguous accesses happen.

4.2 SPEC-OMP2001 Results

In order to understand if scenarios with higher memory pressure would change
our conclusions, we evaluated the multi-threaded applications from SPEC-
OMP2001. Figure 6 presents the results when executing the applications with
a different number of threads. The speedup results are normalized to the DDR 3
with 1 channel.
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Fig. 6. Performance results for SPEC-OMP2001.

We can observe that HMC with a single link performed 50% better than
DDR 3 with a single channel. Comparisons considering the maximum commercial
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products, HMC with 4 links and DDR 3 with 4 channels, show and average
speedup of 1.75 for HMC. Comparing the best version of the DDR 3 and the
HMC, we can observe that HMC performed 15% better.

Memory Contiguity: To evaluate the speedup change between the HMC and
DDR memories, we took the DDR 3 with 8 channels and HMC with 4 links
execution cycles in order to calculate the speedup between the HMC and its
counterpart with DDR. Figure 7 presents the results with different numbers of
threads, showing the HMC speedup for each application, compared to the same
application with same amount of threads using DDR. In order to observe how
contiguous the applications from the SPEC-OMP2001 benchmark suite are, the
figure also presents in the secondary axis the contiguity ratio (8 KB row buffer
hit ratio) for each application with different numbers of threads.
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Fig. 7. HMC speedup over DDR 3 and the contiguity ratio for SPEC-OMP2001 appli-
cations.

We can observe for SPEC-OMP2001 the same behavior reported previously,
that HMC can perform better than DDR for applications with lower contigu-
ity. In this case, the number of parallel threads influences the contiguity of the
accesses arriving to the main memory. Another factor that influences the perfor-
mance of the multi-threading applications is the higher memory pressure present
in the main memory.

4.3 Summary of Evaluations

As we could observe in the results with single and multi-threaded applications,
the performance improvements when using HMC are for the applications with
high memory pressure and low spatial data locality. For those applications with
low memory pressure, the performance differences between HMC and DDR mem-
ories are negligible. Due to its smaller row buffers and closed-row policy, the HMC
can hurt the performance of applications with contiguous data access behavior.

We can observe that when executing parallel applications, the spatial locality
of the addresses arriving to the main memory reduces. It can be explained by
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the domain division per thread, where each thread tends to work in a different
range of addresses. Moreover, with multi-threads generating requests, the mem-
ory pressure rises leading to a better exploration of the multiple HMC vaults.

In our experiments, we showed that applications with low memory pressure
do not benefit from a different memory architecture. In this sense, low-end sys-
tems with very low performance processors may not benefit from HMC memories.
The same can be said for streaming applications with high spatial locality, which
benefit more from the DDR row buffer size. Furthermore, for systems with higher
processing capabilities, the HMC can become more interesting when executing
multi-threaded or multi-programmed workloads, which may create enough mem-
ory pressure with low spatial locality.

5 Related Work

The work presented in [16,17] verifies the maximum HMC memory band-
width achievable, evaluating different high performance computing systems. The
authors used the HMC-Sim simulator [11] varying HMC configurations coupled
to a 16-core x86 processor. The authors only performed the experiments based
on the HMC specification version 1.0 [4], which states a maximum theoretical
bandwidth of 160 GB/s through 256 memory banks.

Fujitsu XIfx [20] introduces the usage of 8 HMC memories coupled to a set
of SPARC64 processors. The work shows the performance achieved when HMC
memory is adopted replacing DDR 3 memories. The processor coupled with
HMC memories is 3.5 times faster on average, than previous DDR 3 memories
with 4 channels. Due to the great reduction of the main memory bottleneck with
the adoption of HMC, processor performance is dramatically expanded.

The HMC-Sim [11] is a cycle accurate simulator for HMC memories only, not
modeling the cache hierarchy, interconnections and the processor. We choose to
adapt the SiNUCA [3] memory model to support HMC, due to its capabilities
of simulating the full system. Thus, we provide another tool capable to model
HMC, while we can compare the findings with the other simulator.

Previous work explore only high performance processors, leaving it unclear
whether the same behavior presents itself in the embedded system domain. In
this work, we model an embedded system environment comparing the HMC 2.0
specification which supports up to 512 DRAM banks. In our evaluations we show
the performance difference between HMC (with 1∼4 links) and DDR 3 (with 1∼8
channels), explaining the application behavior behind the performance results.

6 Conclusions and Future Work

Following the trend to move embedded systems closer to the high performance
system domain, several high-end embedded systems are adapting multiple high
performance mechanisms, such as DDR memories. However, the new HMC mem-
ories lack evaluations regarding their trade-offs when compared to DDR memo-
ries, especially in the embedded domain.



170 P. C. Santos et al.

In this paper, we present a performance evaluation comparing HMC and
DDR memories, in order to understand the possible speedup scenarios of this new
memory architecture. We point the new finding that applications with streaming
behavior that have high memory access locality perform better on DDR 3 memo-
ries, while sparse accesses are better serviced by the HMC. However, applications
with low memory pressure keep the same performance in both systems.

As future work, we intend to extend the evaluation for the energy consump-
tion domain. We also plan stress different processor parameters that most affect
the memory pressure, such as the number of entries in the Memory Order Buffer
(MOB), and cache Miss-Status Handling Registerss (MSHRs), as well as memory
disambiguation techniques.
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Abstract. In the last decades, the increasing amount of resources in
embedded systems has been leading them to the point where an efficient
management of these resources is mandatory, especially for the memory
subsystem. Current MPSoCs have more than one application running
concurrently. Hence, it is important to identify the memory needs of
these applications and provide them accordingly. In this work we pro-
pose the use of a cluster-based, resource-aware approach to provide this
efficient environment. The solution proposed here improves the overall
performance of these systems by aggregating memory resources in clus-
ters and redistributing these resources among applications based on a
fairness criterion. For this memory clustering proposal, we use the infor-
mation of external memory access-es as an estimate of the amount of
memory required by each application. T Experimental results show that,
depending on how the redistribution of memory resources among appli-
cation occurs, the overall system can improve performance up to 18%
and the energy savings can reach up to 20%.

Keywords: Many-core · Resource management
Adaptable memory hierarchy · Network-on-chip

1 Introduction

The memory resources in many-core systems must be even more abundant than
processing elements. As a classical and perennial bottleneck of computer systems,
the memory resources must be managed with the outmost efficiency in order to
provide decent performance.

The aggregation of resources as well as their efficient distribution among con-
current applications may lead to substantial gains for the overall system. It is
a well-known fact that applications may have different needs of processing and
memory requirements. Processing requirements refer to the needs of the appli-
cation to execute its code faster, for instance using TLP (Thread Level Paral-
lelism) and ILP (Instruction Level Parallelism) techniques. As a usual solution,
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processing demands must be addressed by assigning more processor elements
(e.g. cores or specialized hardware) and/or more time slices to applications. On
the other hand, certain applications manipulate considerably higher amounts
of data and, therefore, the use of more memory resources (e.g. L1/L2 caches)
would increase their efficiency. Figure 1 shows the memory demands of applica-
tions from the SPEC benchmark [1]. For these applications, it is possible to see
that the amount of memory access instructions (read or write) can range from
30% to 70% of all instructions. It is clear that an efficient memory resource dis-
tribution system, in an environment that can run several applications like those,
can be advantageous. In this work, we explore various aspects of a memory
resource management approach in an NoC-based MPSoC platform used as case
study. First, we introduce a mechanism that is able to assign each L2 memory
bank in the system to the exclusive use of a given application (and its respective
tasks). This mechanism is based on dynamically changeable association tables
present in every L1 cache, which indicate the L2 cache banks assigned to the
application, their memory address range, and their NoC addresses. Second, we
establish a mechanism to redistribute the L2 cache banks among the applica-
tions. Experimental results show that an overall system improvement can be
reached at the expense of the performance of some individual applications. The
key observation is that some applications have more impact on the overall sys-
tem execution than others, and, consequently, reducing the memory latency of
these critical applications can lead to performance gains. Results show that the
overall execution time decreases up to 18% and energy savings reach up to 20%
in the best case.

The remaining of this paper is organized as follows. The next section presents
the baseline architecture considered in this work and the Memory Clustering
mechanism itself, including the redistribution approach and redistribution map-
ping. Section 3 exposes the experimental setup, while Sect. 4 presents the results.
Related work is discussed in Sect. 5, and, finally, in Sect. 6 conclusions are drawn
and future work is outlined.

Fig. 1. Memory requirements from SPEC. [1]
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2 Memory Clustering

Let us consider the baseline architecture for this mechanism as an NoC-based
MPSoC whose nodes are as presented in Fig. 2. In this case, the memory sub-
system is homogeneous and composed of local private L1 caches and distributed
shared L2 caches. Inside each of the four nodes in the corners, there is also an
external memory controller, which has a very important role in this approach.
The key idea of this methodology, called Memory Clustering, is to assign the L2
memory blocks according to the needs of each application. The intuition here is
that reserving more memory resources to applications that deal with more data
will lead to a faster execution overall.

It is important to notice that, as the goal is to improve the overall perfor-
mance and energy savings, the Memory Clustering approach must act on the
address spaces of all applications (through the L2 caches) instead of simply
redistributing the L1 cache resources, which apply only to the address space of
the application currently running in the processor to which each L1 is attached.

The mechanism proposed in this work is a cluster-based resource-aware app-
roach for the memory subsystem. In a previous work [2], this cluster-based app-
roach for resource management has been introduced. However, only processing
resources have been considered. In this paper we consider a cluster as an aggre-
gation of physical resources (more specifically, L2 caches) delegated to an appli-
cation. More than one application may be running in the system, and each one
has its own set of resources. Due to the importance of the memory subsystem
to the overall system performance, it is desirable to reduce memory latency for
data-intensive applications.

Fig. 2. Example of data space for a set of applications.

The proposed process for redistributing memory resources occurs as follows.
Since the beginning of the execution, the memory controllers count the number
of external memory accesses made by each application cluster (each application
cluster being the aggregation of resources initially assigned to each application,
as shown in Fig. 2). At some point during the system execution, these memory
controllers (located in the corners of the MPSoC, as presented in Fig. 2) use these
statistics to define which application has more cache misses. A synchronization
step is performed when one of these memory controllers (henceforth known as mas-
ter controller) receives messages from the other controllers informing the number
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of cache misses of the various applications. After that, this master controller uses
some redistribution policy (to be detailed in the next sections) to establish how
many memory resources (L2 memory banks) each application cluster should have.
This number of L2 memory banks allocated to each cluster will be proportional to
the percentage of cache misses from the corresponding application. This strategy
is an attempt to reproduce, at runtime, the knowledge presented in Fig. 4, which
shows, for a system concurrently running four applications, the amount of memory
accesses extracted from an application profile at design time.

In order to redistribute memory resources, this approach takes advantage
of a previously introduced directory-based cache coherence mechanism [3]. This
mechanism uses a small table called ATA table on each cache in the system,
which relates an address range to the memory module in the system that may
have blocks that belong to such range. This means that each cache memory only
perceives a certain amount of physical memory modules in the system, depending
on the memory address range of its current memory blocks.

As explained before, at the beginning of the execution each application cluster
has its own set of L2 caches and all L1 caches in this cluster have an ATA table
that indicates which range of addresses is possibly available in each L2. Each L2
cache controller also knows which addresses should be placed in its own memory.

Let us assume a small scenario of only four L2 caches for an application.
As presented in Fig. 3, each cache bank can have a certain contiguous range of
addresses from the external memory address space. On the left side of the figure,
there is a representation of the ATA table of L1 caches in the cluster assigned to
this particular application, where each line corresponds to the range of addresses
assigned to each node of the cluster.

Fig. 3. ATA table and MPSoC before and after resource distribution.
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After the synchronization step, as illustrated in Fig. 3, the master controller
may reach to the conclusion that this cluster needs four additional memory
banks. After choosing which memory banks in the system shall be aggregated to
this cluster (the dashed L2 cache banks represent these recently added resources),
the ATA tables must be updated. On the bottom-right side of Fig. 3, the new
ATA table is illustrated. It is important to notice that the addresses from the
application address space are equally divided among the L2 cache banks.

3 Redistribution Policies and Mapping

Once established how the number of L2 caches associated to each L1 cache
can be modified, the next decision in the memory clustering mechanism regards
the moment when resources (in this case, L2 caches) are taken/given from/to
a cluster, thus creating a resizable cluster. Two main approaches are presented
here: Pre-defined Distribution and On-demand Distribution.

The Pre-defined distribution is the model used as baseline for the experimen-
tal results. The idea is, based on a design time profiling of the application, to
establish beforehand the number of L2 memory modules that each application
should have. This distribution takes into account the amount of input data for
each application. Since external memory accesses can be very costly, the goal
here is to minimize this situation by giving more cache memory space for the
most data-intensive applications. This is a static offline approach and is used
only to establish how good the second approach is. The graph on Fig. 4 presents
the amount of memory accesses for each application used in the experiments
and for each scenario with different MPSoC sizes (number of nodes). The mem-
ory resources (in this case, L2 cache memory banks) can be divided among the
applications proportionally to the amount of data that each one handles.

Fig. 4. Pre-defined distribution.
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However, this information depends on profilling and it may not always be
available. Therefore, some runtime approach should be considered. In the On-
demand distribution, all clusters initially use the same amount of L2 caches.

After a certain amount of cycles, the external memory cache controllers
(located on the corners of the MPSoC) exchange information, and, based on
the number of external memory accesses, the master controller defines which
clusters need more memory nodes. The master memory controller then redefines
the ATA tables of L1 caches (potentially, all of them), thus redistributing the
memory resources in the system.

The biggest question here is how we define the time instant at which the
memory controllers must take action to redistribute resources. In this paper
we will call this instant in the execution a redistribution point. Intuitively, this
point must not happen too soon along the overall system execution, because the
clustering mechanism needs values that characterize the memory demands for
each application and are statistically significant. On the other hand, by doing it
too late in the execution time, the pattern will be well defined, but it may be
too late to overcome the overhead caused by the redistribution itself. Therefore,
some trade-off should be considered in this approach.

By giving more L2 memory banks to some applications, there is no alter-
native but to take these resources away from other applications. The hope is
to efficiently take the correct amount of L2 caches from applications that need
them less and give them to applications that need them most. The aspect to be
explored is which L2 caches shall be taken away at the moment of the redistri-
bution.

The policy used in this case is to gather new resources that are closer to the
resources originally allocated to the application. In this policy, it is reasonable
for the applications to exchange resources placed on the edge of their clusters.
That condition has the goal of keeping the resources close together, thus avoiding
cluster fragmentation. The master memory controller starts by assigning the new
resources to the cluster with more memory needs. Next, this process is repeated
with the second cluster with more memory needs. This process goes on, with each
cluster taking turns on the resource assignment, until the number of resources
to be redistributed is reached.

4 Experimental Setup and Results

The experiments consider four applications: a matrix multiplication, a motion
estimation algorithm, a Mergesort algorithm, and a JPEG encoder.

Considering the data inputs for the applications described above, Fig. 5 rep-
resents their communication workload regarding different numbers of processors.
Based on this chart, it is expected that the Motion Estimation algorithm will
generate a larger amount of data exchanges. This shows that the benchmarks
used here are capable of generating significant amount of communication traffic.
This would make an efficient memory hierarchy even more required in order to
avoid unnecessary memory requests.
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Fig. 5. Communication workload.

Experiments evaluate two characteristics: performance, measured by the total
execution time of each application, and the overall dynamic energy spent, includ-
ing processors, network, and memories. For the energy of the processors, a cycle-
accurate power simulator [4] is used. For the network (including buffers, arbiter,
crossbar, and links), the Orion library [5] is applied, and for the memory and
caches the Cacti tool [6] is used.

All experiments were performed in a SystemC cycle-accurate MPSoC virtual
platform that can instantiate architectural components as illustrated in Fig. 2.
Due to their smaller size, this virtual platform uses MIPS processors as cores
implementing MIPS I ISA. The configuration used in all experiments in this
platform is presented in Table 1.

The remainder of this section presents results regarding the memory clus-
tering experiments using the Pre-defined and On-demand Distribution policies.
In this second policy the experiments were performed using four distinct redis-
tribution points. Goal of these experiments is to find the best moment during
the execution of applications to perform a memory redistribution, in a way that,
after this point, the system can have an overall performance boost. The ideal
time point at which the redistribution of the memory subsystem must be per-
formed depends on each scenario, considering number of cores, number of L2
caches, execution time of all applications, etc. Since we are dealing with differ-
ent MPSoC sizes, the overall execution time can vary drastically. Therefore, the

Table 1. Configuration of the virtual platform.

Number of processors 16; 32; 64

Number of L2 caches 16; 32; 64

Total number of initial tasks per application 32

L1 cache size 8192 bytes

Block size 32 bytes
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redistribution points for the four experiments were defined at 10%, 25%, 50%
and 75% of the overall execution time in each case, such that we can explore the
impact of different values for this parameter.

Figure 6 presents the performance and energy results using the Pre-defined
Distribution. One can notice that the applications with higher input data
(Motion Estimation and Matrix Multiplication) have large benefits, as opposed
to the JPEG and Mergesort applications. These last two applications actually
present a drop in performance, down to 22%. However, there has been an increase
in the overall system performance (i.e. the amount of time to execute all appli-
cations) of 34% in the best case. As for the energy results, they present a very
similar pattern when compared to the performance results, reaching up to 40%
of savings.

Fig. 6. Pre-defined distribution performance and energy results.

These performance and energy improvements happen because the larger
applications have higher impact on the system. Obviously, due to the overhead
discussed previously, these numbers are virtually impossible to achieve in prac-
tice. However, they give a good basis for understanding how good this approach
can be.

Table 2 presents the results of the On-demand Distribution policy considering
redistribution points of 10%, 25%, 50% and 75% of system execution time. By
the results of overall performance it is possible to see that the best results occur
when a redistribution point of 50% is used. This means that the execution at
this point is enough to obtain a reasonable distribution of memory resources
in the system. When this redistribution point occurs too early, as in the case
of 10%, it almost does not affect the performance of the system. This seems
to be due to the fact that this short amount of execution time is not enough
to characterize memory demands of all applications correctly. Experiments with
later redistribution points do not present the best results as well. There are two
explanations for this behavior. First, when leaving the redistribution to occur
that late in the system, the applications that needed more memory resources
were not prioritized for the most part of their execution. This would have a
considerable impact on the overall performance. Second, at 75% of execution
time, there is not much time left to compensate the overhead caused by the
memory redistribution itself.
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Table 2. Performance results for on-demand distribution.

Redistrib. pts 10% 25% 50% 75%

No. of cores 16 32 64 16 32 64 16 32 64 16 32 64

Motion Est. 3% 2% 1% 18% 12% 7% 23% 20% 16% −5% −3% −2%

Matrix Multipl. 3% 2% 2% 11% 7% 5% 17% 14% 10% −3% −2% −1%

JPEG −4% −5% −6% −3% −8% −10% −9% −14% −20% −2% −1% −1%

Mergesort −2% −3% −5% −3% −6% −7% −2% −5% −8% −3% −2% −1%

Overall 1.2% 0.1% −0.6% 12% 6% 3% 18% 14% 11% −3.5% −2.3% −1.4%

Table 3 presents the energy results for the On-demand Distribution. As in the
case of the Pre-defined Distribution, the energy results follow a similar pattern
when compared to the performance results. There are slightly higher energy sav-
ings than performance gains, probably due to the higher energy costs of accessing
the external memory if com-pared to the time access penalty. Conversely, the
penalty using a redistribution point at 75% of execution is higher.

Table 3. Energy results for on-demand distribution.

Redistrib. pts 10% 25% 50% 75%

No. of cores 16 32 64 16 32 64 16 32 64 16 32 64

Motion Est. 4% 1% 1% 20% 19% 8% 25% 23% 18% −7% −4% −3%

Matrix Multipl. 5% 3% 2% 12% 7% 7% 21% 19% 12% −6% −4% −2%

JPEG −5% −6% −7% −3% −8% −9% −9% −15% −22% −3% −2% −3%

Mergesort −2% −4% −6% −4% −7% −6% −3% −8% −10% −4% −3% −1%

Overall 2% 0.6% −0.2% 13% 9% 4% 22% 18% 13% −5.6% −3.7% −2.3%

5 Related Work

Even though no approaches using dynamic cluster-based approaches for manag-
ing memory resources were found in the literature, some works propose resource
management techniques that could be extended to the memory subsystem. In
this section we present some of these works.

Qureshi and Patt [7] present a redistribution mechanism in an L1 private/L2
shared cache architecture. In this mechanism, the evicted lines from one cache
(called spiller) can be allocated in another cache (called receiver) in the system
through a snooping mechanism. This is an approach with the goal of extending
the size for one cache (the spiller) and to make the data stay inside the chip
longer. This approach considers a single address space and several threads from
the same application while ours is a global approach.

Recent works propose a paradigm of multicore programming called Invasive
Computing [8–10]. The proposal is to take advantage of a large many-core proces-
sor in the best possible way. The idea leverages on malleable applications where
the degree of parallelism can change on the fly. At the application level, the
programmer uses functions that trigger the invasion process. When an appli-
cation sends an invade request, a distributed resource manager evaluates the
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request based on the amount of resources required and the estimated speed-up
per core. This Invasive Computing works at different levels of abstraction, and,
therefore, the programmer must have some notion of the methodology. In the
case of the Memory Clustering approach proposed in this paper, all mechanisms
are transparent to the programmer.

6 Conclusion

In this paper we introduce the con-cept of Memory Clustering. Since some appli-
cations have more memory needs than others, the key idea of this mechanism
is to reserve more memory resources (in fact L2 caches) for the more time-
consuming applications, taking them away from other applications that do not
need them as much. Overall results presented show that, depending on the time
point where the redistribution of memory resources occurs, there is room for
performance and energy gains for the system as a whole.

In the future, we intend to investigate other methods to determine the right
moment for the memory redistribution. In the experiments presented here, the
best time points for the redistribution (25% and 50% of the overall system execu-
tion time) have been identified for specific experiments. Therefore, in a situation
where there is no previous knowledge of the applications, the best redistribution
point can be different from those values. In the future, we will investigate further
the cache misses before and after the redistribution points, in order to better
characterize causes of the initial performance loss and effects of the memory
redistribution.
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Abstract. When modelling architecture of complex embedded systems
proper architecture languages and tools are necessary. UML [1] has
become a proven and well accepted design language to express system
as well as software architecture. For definition of internal behavior of
components composed and specified during software design, Simulink is
commonly used, especially for automotive and aerospace applications. As
common practise, code is generated directly from such behavior models.
Therefore, code generators such as TargetLink [2] are used. In this paper
we propose a UML profile to describe specific properties necessary to
adapt UML models to the code generator TargetLink.

1 Motivation

To cope with today’s growing complexity of requirements in embedded systems
development adequate development methods are crucial to develop high quality
systems. Today’s embedded systems often consists of distributed functionalities
where software components could run on the same or on a different hardware
platform within the distributed system. To define such complex system struc-
tures an architectural design phase in the development process is essential. As
a de-facto standard language to be used in software and system architecture
modelling the Unified Modelling Language (UML) [1] and the System Modelling
Language (SysML) [3] is widely used in different fields. At a certain step during
development of embedded systems, one have to model and implement the behav-
ior of the defined software components. A common tool for behaviour modelling
is Simulink from The Mathworks [4]. Especially in the automotive industry but
also for development of airborne software both modeling environments UML and
Simulink are used extensively. After modelling the behavior of a software compo-
nent, in best case the embedded code to be integrated on the electronic control
unit is directly generated from the behavior model, in this paper from Simulink.
c© IFIP International Federation for Information Processing 2017
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Generating code from Simulink software specifications which is then directly
used on electronic control units is de-facto standard in state of the art develop-
ment processes especially in the automotive industry. The technique of autocode
generation is well accepted and widely used especially in safety critical projects.
One of the major tools used by the industry is TargetLink from dSPACE GmbH
[2]. In this paper we propose a mapping between UML component architecture
models and TargetLink models.

2 Related Work

Various research work deal with mapping of Matlab/Simulink models to UML
like [5]. In contrast to this paper, [5] discusses a possibility to illustrate the
Matlab/Simulink models and the behaviour of it in UML and replaces Simulink
hereby.

Other publications discuss a possibility to describe systems with UML and
redescribe it in Matlab/Simulink. In [6] it is discussed how software architec-
tures which are described in UML could be transformed to simulation models
which are described with Matlab/Simulink. These publications describe a sim-
ilar approach compared to this paper. In contrast to other publications this
paper describes a possibility to map a TargetLink model, which is based on
Matlab/Simulink, to UML. The benefit is to reuse properties such as interface
description, etc. from an architecture model and annotate it to a TargetLink
model, which is later used for automatic code generation.

3 TargetLink

TargetLink is a Toolbox for Matlab/Simulink in order to generate series pro-
duction code by a push of a button from a Simulink model. Beside generation of
regular ANSI-C code for fixed point or floating point processors it is also possi-
ble to generate code for certain processor/compiler combinations. To enhance a
Simulink model to a TargetLink model used for code generation, certain parame-
ters need to be set, to describe how the code generated by TargetLink looks like.
To maintain all parameters for all blocks within the TargetLink model the Tar-
getLink Data Dictionary is used. The TargetLink Data Dictionary represents a
data container in order to describe all elements. These elements represent infor-
mation for the model design, the code generation and the implementation of a
model on an electronic control unit. TargetLink elements are described by var-
ious properties and can be referenced by TargetLink models. In the following
section we will introduce and discuss the relevant TargetLink elements used for
UML mapping.

3.1 TargetLink Data Dictionary Elements

The TargetLink Data Dictionary is used to parameterize and describe all ele-
ments used in TargetLink models. Below all elements which are relevant to be
mapped to UML are specified. A more in-depth and formal description of the
various element properties can be found in [7,8].
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Pool. The TargetLink Data Dictionary is divided into three areas Config, Pool,
and Subsystem. In this paper only the Pool -area is considered. This area contains
all data elements which are required for code generation. Examples of elements
in the Pool area are scaling values of fixpoint variables the or type definition of
variables.

Blocks. Blocks are the main elements in TargetLink Data Dictionary and there-
fore essential for the code generation. Based on the Block description, Simulink
Blocks could be generated directly from the TargetLink Data Dictionary. Even
though various types of Blocks are available inside the TargetLink Data Dic-
tionary, this paper focusses only on Blocks of type TL Function. Those Blocks
represent the base architecture of the software component to be developed.

Signature and SignaturePort. A Signature contains Signature-Ports, whereas
Signature-Ports are divided in in-, out-, and user -ports. Signatures are used to
describe which in- and out-ports are available at the TL Function Block. In con-
trast to in- and out-ports, user-ports are freely configurable for different use cases,
e.g. calibration-ports.With ports it is possible to connect TL Function Blocks with
Variables, either incoming or outgoing.

Variable. Variables are used to exchange information between different
TL Function Blocks. The properties of variables define the appearance within
the generated code. The actual type of Variable is defined by a Typedef element
as described in the following paragraphs. A min, max range can be set by a
reference to a Scaling element as described in the following paragraphs.

Typedef. The Typedef element specifies the datatype of a Variable element. In
the TargetLink Data Dictionary Typedefs are referenced by Variables.

Scaling. A Scaling is used to define the value range of a Variable. This is
necessary in case of fixed-point code generation. Furthermore, it is possible to
define values for Least Significant Bit (LSB), Offset, and, physical unit within
the Scaling properties.

Module. The characteristics of the code modules in the generated code are
specified by Module elements, e.g. the memory location. Properties of these
elements are TargetLink specific and do not have any implication on architecture
level. Due to this fact it is not considered in scope of this paper.

FunctionClass. FunctionClass properties define how the generated code for
a referenced TL Function Block would look like. Because FunctionClasses are
usually predefined, they are not considered in the further course of this paper.
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VariableClass. VariableClasses are similar elements compared to Function-
Classes. The difference is that VariableClasses specify Variables in the generated
code. Because VariableClasses are usually predefined, they are not considered in
the further course of this paper.

TargetLink Data Dictionary Model. In the context of this paper a Tar-
getLink Data Dictionary model is a finite set of all above described elements. In
Sect. 4 of this paper a mapping of TargetLink Data Dictionary model to UML
is described.

3.2 Relationship Between TargetLink Elements

This section describes the relationship between the TargetLink Data Dictio-
nary elements as specified in Sect. 3.1. This description could be later used to
derive the connection between the different UML elements in an UML profile.
An analysis of the dependencies could be realised by a tree structure diagram
with breadth-first search.

Pool

TL Function Block Variable

Signature FunctionClass Module VariableClass Typedefinition Scaling

Module Scaling

Variable

Signature-Port

Fig. 1. Tree structure diagram of the Pool area

Figure 1 shows the Pool area with all defined elements of the TargetLink
Data Dictionary. The figure clearly shows the dependencies between all elements.
It is obviously depicted in Fig. 1 that Variables are independent from other
TargetLink Data Dictionary elements. This means a Variable could exist without
a TL Function Block, e.g. global Variables. Figure 1 also indicates that Variables
and TL Function Blocks are split into different branches. This implies that those
two elements need to be considered differently when defining the UML profile.

Another fact of the tree structure shows that a TL Function Block is linked
to Variables over a Signature and Signature-Port, whereas one Signature-Port
of a Signature is linked to exactly one Variable. On the other hand a Variable
could be linked to different Signature-Ports.
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4 Prototype TargetLink Model in UML

Based on the previous definitions, in this section a prototype for describing
TargetLink models in UML is suggested. The section is subdivided into two
subsections. The first subsection explains the UML diagram type selected to be
used for expressing the TargetLink model elements. In the second subsection it
is described which element of the selected UML diagram type is mapped to a
specific element of the TargetLink Data Dictionary.

4.1 Composite Structure Diagram

With composite structure diagrams it is possible to describe the internal struc-
ture of a class or the collaboration between different classes. It is similar to the
component diagram and therefore as described in [9] on page 93 it could be
combined with such diagram types. In addition, a composite structure diagram
provides two different views on a system. The first view is the structural-dynamic
view which focusses on the function of the system and which parts are needed
for the functions. The second view is shown in Fig. 2 as a class diagram.

System

Subsystem 1 Subsystem 2

Component 1 Component 2

Class 1

Attribute 1

Class 2

Attribute 2

Class 3

Attribute 3

Class 4

Attribute 4

... ...

Fig. 2. Structural static view [8, p. 194]

In a first step the system is partitioned into various subsystems. In the fol-
lowing these different subsystems are divided into various components. Each
component comprises several classes with attributes. This way to describe sys-
tems can be found on system level (Hardware) or on software level (GUI split
into application, windows, etc.) [8, p. 194].

The metaclasses of the composite structure diagram are classes, parts, ports,
interfaces and connectors. In the following all relevant elements are shortly
described. A class is a kind of construction plan for an object. Parts are used to
split a class into subsets. Parts could be extended by ports in order to implement
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interaction points for communication between elements. To connect different
ports of parts connectors are used. In the following section a possible prototype
which describes how TargetLink Data Dictionary elements are mapped to UML
elements is presented [9, p. 125ff].

4.2 Prototype

The prototype differentiates between a system and variable level. The distinction
was made based on results of the previously described tree structure diagram
analysis. On system level it is possible to describe TL Function Blocks, Signa-
tures and Signature-Ports. Whereas on variable level Variables, Typedefs and
Scalings are described. In Figs. 3 and 4 both, the system level and variable level
is depicted.

Sensor correction and

throttle throttle(estimated)

<<Part>>

Fault Redundancy
Airflow calculation

est air flow

<<Part>>

speed speed(estimated)

EGO EGO(estimated)

fail THROT MAP(estimated)

speed(estimated)

feedback correction

throttle(estimated)

EGO(estimated)

MAP(estimated)

Fig. 3. System level in UML

UML Parts are used to separate a system into different subsystems whereas
one Part contains the specification of a subsystem as a piece of the entire sys-
tem. A TL Function Block is an element that encloses all other elements except
the global Variables with its Typedefs, Scalings, etc. A TargetLink model can
consist of several TL Function Blocks. Therefore, a TL Function Block contains
a certain aspect of the specification of a model. Thus, in Fig. 3 TL Function
Blocks are depicted as Parts. The formal description as defined in [8, p. 23f]
summarizes TL Function Blocks and Signatures. For this reason Parts include
the description of Signatures as well.

Signature-Ports are mapped to UML Ports in the concept described in this
paper. Parts could use UML Ports for communication with other UML Parts.
Signature-Ports enable communication between TL Function Blocks using Vari-
ables, as shown in Fig. 1. On Variable level all variables a TL Function Block
could contain are specified.
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throttle uint8 VOID SCALING

<<Interface>> <<Class>> <<Class>>

Fig. 4. Variable level in UML

As shown in Fig. 1, on Variable level it is possible to describe Variables and its
dependencies. Furthermore, specification of variable types (Typedefs) and scal-
ings are done on Variable level. Figure 4 shows an excerpt from a specification of
Variable, Typedef and Scaling elements on Variable level used for communica-
tion between different TL Function Blocks via Ports. In the TargetLink context
Variables specify the interface of TL Function Blocks. Therefore, in this concept
Variable elements are mapped to UML interfaces.

Typedefs and Scalings represent a construction plan for Variables in Tar-
getLink Data Dictionary. These elements describe the appearance of Variables
in the production code. In UML classes have a similar functionality. They influ-
ence objects and provide so some kind of construction plan by attributes and
operations [9, S.32]. For this reason Scaling and Typedef elements are represented
by classes.

With mapping UML Parts to Signatures and TL Function Blocks, UML
Interfaces to Scalings and Typedefs, UML Class to Variables and UML Ports
to Signature-Ports all profile relevant TargetLink elements are described in the
UML profile. These elements are a subset of all TargetLink elements.

5 Definition of the TargetLink UML Profile

In the previous section a possibility on how to specify TargetLink Data Dic-
tionary elements in UML was described. To enable specifying TargetLink Data
Dictionary relevant elements in UML composite structure diagrams, the seman-
tics of those diagrams need to be extended. In UML such kind of extensions are
defined in UML profiles, mainly consisting of stereotypes, tagged values and con-
straints. Stereotypes expand the UML metaclasses and represent the extended
elements. Tagged values expand stereotypes by properties as name-value pairs.
Constraints define additional constraints for the stereotypes and enable users to
check a model by the specified constraints. In the further course of this paper
first the structure of different packages of the TargetLink Data Dictionary UML
profile is described. In a second step the structure of the profile is illustrated. A
more in-depth description of the UML profile can be found in [8].
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5.1 Package Structure

This subsection describes the structure of the various packages of the TargetLink
Data Dictionary UML profile. Different UML packages partition the various
required elements of the UML profile. Figure 5 shows the structure of the Tar-
getLink Data Dictionary profile with different packages.

Definition

<<profile>>
TL-DD-Profil

<<metamodel>>
UML 2.x

Fuelsys

<<reference>> <<import>>

<<apply>>

Fig. 5. Package structure

The figure shows a subdivision of the structure in four different UML pack-
ages. The package UML 2.x provides all metaclasses of the UML version 2.x.
Because the TargetLink Data Dictionary profile expands the semantics of a com-
posite structure diagram it is essential to use UML 2 or higher [10].

The UML 2 metaclasses used by the package TL-DD-Profil are provided via
<<reference>>-connection to the package UML 2.x. This connection enables
to expand metaclasses, such as ports or classes, with stereotypes. This kind of
connection is called metamodel-reference because all metaclasses of UML 2.x
which are provided with the <<metamodel>>-package are referenced by the
profile package.

The definition of the profile itself can be found in the package TL-DD-
Profil. The stereotype <<profile>> is used to declare that the package contains
UML profiles. The TL-DD-Profil represents the key package within the pack-
age diagram. It contains all required metaclass extensions such as stereotypes,
tagged values representing the TargetLink Data Dictionary properties and addi-
tional constraints. Using the <<import>>-connection the TL-DD-Profil pack-
age imports different predefined elements from the Definition-package.

As mentioned above, the Definition-package describes different elements to
be used in the TL-DD-Profil. Among others, basic data types of the TargetLink
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Data Dictionary are determined in this package. For example, predefined ele-
ments such as VariableClasses are defined in this package. The Fuelsys-package
represents the actual application model which is described by applying the Tar-
getLink UML profile.

5.2 Profile Structure

The following section explains the internal structure of the profile package TL-
DD-Profil based on the previous prototype. The different metaclasses in the
profile package are extended by stereotypes. The different metaclasses are pro-
vided by the <<reference>>-connection between profile package and UML 2.X
package which is illustrated in Fig. 5. The different extensions of metaclasses by
stereotypes are depicted in Fig. 6. This paper concentrates on the structure and
the dependencies between the different stereotypes. A precise description of the
UML profile is given in [8].

<<metaclass>>
Connector

FBConnection

<<metaclass>>
Part

FunctionBlock

<<metaclass>>
Port

TLInport

TLOutport

SLInport

SLOutport

User

<<metaclass>>
Class

Scaling

<<metaclass>>
Interface

VariableTypedef

<<use>> <<use>>

<<use>>

<<use>>

Fig. 6. Profile structure

The different <<use>>-connections, as depicted in Fig. 5, represent the asso-
ciations between the different stereotypes. Furthermore, the connection shows
which elements are in communication. For example the figure obviously shows
the connection between TL Function Blocks and different ports (e.g. TLInport,
SLInport, ...).

Moreover, Fig. 5 shows which metaclass is extended by which stereotype. The
prototype in Sect. 4.2 defines Scaling elements as a UML class. Therefore, the
metaclass Class is extended by the stereotype Scaling. Another example is the
stereotype Typedef which extends the metaclass Class as well. The Scaling ele-
ment and the Typedef element will be provided by both extensions in the UML
profile. Another element that is provided by the UML profile is the stereotype
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Variable. In Sect. 4.2 Variable elements are defined as interchangeable elements
that carries information. These elements are mapped to UML interfaces. There-
fore, the UML metaclass interface is extended by the stereotype Variable. The so
called variable level that is described in Sect. 4 only contains those three element
types.

TL Function Blocks, Signatures, and all kinds of Signature-Ports are applied
on system level. Each TL Function Block specifies a part of the entire system
in the prototype and are therefore mapped to UML Parts. Thus, in Fig. 6 it is
depicted that the metaclass Part is extended by stereotyp TL Function Block.

Various stereotypes, representing different kind of communication ports,
extend the metaclass Port. In UML, ports specify interaction points of parts
and its environment. In the profile ports are used to represent the different
Signature-Ports. Signature-Ports are interaction points of TL Function Blocks
used to consume and provide Variables. Signature-Ports can represent in-, out-,
or user-ports. This is the reason why the metaclass Port is extended by different
stereotypes. In detail the stereotypes differentiate only by its names. With the
various Signature-Port stereotypes a user can directly recognize the kind of the
Signature-Port.

The stereotype FBConnection extends the metaclass Connector. Signature-
Ports can be connected to each other via FBConnection. These connections
can not be mapped to the TargetLink Data Dictionary but in UML it shows
the connection between all elements via ports. A user could easily recognize
the interconnection between different TL Function Blocks. Those connections
represent the information flow within a system. A more detailed description of
the UML profile can be found in [8]. The following section gives an overview
on how to couple UML tools and the TargetLink Data Dictionary to exchange
information.

6 Information Exchange UML - TargetLink Data
Dictionary

With the UML profile defined in this paper it is possible to already add Tar-
getLink Data Dictionary properties which will be used in a later step for pro-
duction code generation to UML elements during system design. However an
automatic exchange of those properties between the UML model specified dur-
ing design phase and the TargetLink Data Dictionary is not yet possible. A
common format to exchange information between programs and software tools
is XML. Also the TargetLink Data Dictionary is able to import XML files con-
taining a specific data structure. By importing XML files into the TargetLink
Data Dictionary it is possible to either expand or overwrite available elements.

A standard for exchanging models between UML tools is the XML Meta-
data Interchange (XMI) which is published by the Object Management Group
(OMG). The import and export of this XML based data format is supported
by all major UML tools. XMI files describe complete UML diagrams in textual
form. Even if XMI is a standard data format, each UML tool implements its own
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interpretation of this standard, which slightly differs in structure of properties
and used XMI vocabulary. In other words although XMI is a standard, each
XMI-file exported from a different UML tool looks different. For this reason it
is difficult to design a generic compiler for the transformation between XMI and
TargetLink Data Dictionary XML.

In the following section we briefly describe the steps undertaken to design
a transformation between UML XMI and TargetLink Data Dictionary XML.
Due to the variations in the XMI standard as mentioned in the previous section,
we focussed our analysis on the two most commonly used tools in the industry,
Enterprise Architect [11] and Rational Rhapsody [12]. As a first step we have
implemented the previously described UML profile in both tools. Based on this
profile we design a demo system that includes all in Sect. 5 defined elements.
In the second step the demo model was exported to XMI, using the standard
export mechanism of the UML tools. Based on the exported XMI files we have
to analyse the structure and the different vocabularies of both files. On the basis
of analysis results a grammar is developed which describes the relevant items of
the XMI export of both UML tools.

After the gramatic was derived from the XMI export, now the TargetLink
Data Dictionary XML file is analysed. For each export, the structure and the
vocabulary of this file is always the same. Therefore, it is sufficient to consider
all in Sect. 3.1 defined TargetLink Data Dictionary elements. Also for the Tar-
getLink Data Dictionary export a grammar is defined, which is similar to the
one developed for the XMI export. By specifying transformation rules the XMI
grammar is mapped to the XML grammar of the TargetLink Data Dictionary.
The transformation rules describe an unambiguous mapping between the infor-
mation of the TargetLink Data Dictionary and the XMI file.

As a last step an algorithm was implemented that is able to compile the
XMI grammar in the XML grammar. If the grammar is expressed in an ade-
quate language, e.g. antlr [13], a parser generator could be used to generate this
algorithm automatically. The definition of the grammar and the transformation
rules is not focus of this paper. A detailed declaration of these grammars can be
found in [8].

7 Conclusion and Future Work

This paper summarizes a possibility to describe TargetLink Data Dictionary
elements in UML to provide a smoother transition between software architec-
ture definition and functional component design. Therefore, a UML profile was
defined which provides various TargetLink Data Dictionary elements to be used
in UML diagrams. The specified UML profile extends semantics of the composite
structure diagram. Using this UML profile it is possible to connect UML tools
to the production code generator TargetLink. This coupling is an important
step in development of complex software architectures where software design
tools such as UML as well as automatic code generators such as TargetLink
became a defacto standard. The smooth transition between UML tools and
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TargetLink supports the consistent exchange of software components and its
interfaces between different engineering teams, responsible for software archi-
tecture and software component design. Following this approach, each develop-
ment team could import their subsystems from the entire software architecture
description automatically into the TargetLink Data Dictionary to describe the
functional behaviour with Matlab/Simulink and generate production code with
TargetLink.

With the concept described in this paper we could not solve the problem
that every UML tool needs its own compiler due to the ambiguous definition
of XMI structure and vocabulary. A generic methodology of transforming UML
XMI files to TargetLink Data Dictionary readable XML files is subject to future
work.

This paper is a rough overview about the topic. More in-depth information
on different aspects e.g. details on grammar specification and complete definition
of the UML profile can be found in [8].
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Abstract. Automated Design Space Exploration (DSE) is a critical part
of system-level design. It relies on performance estimation to evaluate
design alternatives. However, since a plethora of design alternatives need
to be compared, the run-time of performance estimation itself may pose
a bottleneck. In DSE, fastest performance estimation is of essence while
some accuracy may be sacrificed. Fast estimation can be realised through
capturing application demand, as well as Processing Element (PE) sup-
ply (later on called weight table) in a matrix each. Then, performance
estimation (retargeting) is reduced to a matrix multiplication. However,
defining the weight table from a data sheet is impractical due to the
multitude of (micro-) architecture aspects.

This paper introduces a novel methodology, WeiCal, for automatically
generating Weight Tables in the context of C source-level estimation
using application profiling and Linear Programming (LP). LP solving
is based on the measured performance of training benchmarks on an
actual PE. We validated WeiCal using a synthetic processor and bench-
mark model, and also analyse the impact of non-observable features on
estimation accuracy. We evaluate the efficiency using 49 benchmarks on
2 different processors with varying configurations (multiple memory con-
figurations and software optimizations). On a 3.1 GHz i5-3450 Intel host,
25 million estimations/second can be obtained regardless of the appli-
cation size and PE complexity. The accuracy is sufficient for early DSE
with a 24% average error.

1 Introduction

Recent advances in technology have expanded the design options in terms of
number and type of processors as well as their configurations such as inter-
connects and memory hierarchy. When this flexibility of design is coupled
with the increasing pressure of time to market, performance exploration of the
design space becomes exponentially difficult. Current approaches try to auto-
mate the Design Space Exploration (DSE). In any DSE, two questions need to
be addressed. One is how to traverse the design space and other is how to assess
c© IFIP International Federation for Information Processing 2017
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the fitness of each design instance - all unique combinations of platforms and
mappings. Millions of design options will be traversed before making a design
decision. Evaluating the fitness of each design option falls on the time critical
path of DSE and is at most importance here. Simulation based approaches can
be highly accurate but too slow for DSE. New approaches are needed for rapid
high-level performance estimation in context of DSE.

This paper revisits the retargetable profiling for rapid, early system-level
design space exploration, introduced in [1] and improves upon it. The retargat-
able profiler [1] uses a weight table, which is a matrix of Processing Element’s
(PE) performance cost (cycles) of each high-level operation for all data types.
One of the main challenges of retargetable profiling is that the weight tables
need to be manually defined. The accuracy of weight table impacts the accuracy
of final estimation. Due to manual extraction of these weight tables from the
data sheet, this process is time consuming and error prone. Moreover, because
of the high-level abstraction, only a few features of the processor are observ-
able (can be quantified). For example, C statements do not reveal from where
an operand needs to be fetched from within the memory hierarchy. Therefore,
the cycles captured in the weight tables have to statistically include these non-
observable characteristics such as memory accesses and pipeline stalls. These
elements which can affect the performance but are not observed during execu-
tion make it very difficult to manually populate the weight table. In this paper,
we present a methodology and a framework Weight Calibration (WeiCal) to
automatically populate more realistic weight tables paving the way to efficient
DSE.

The WeiCal framework consists of Calibration and Retargeting. A set of
training benchmarks are profiled along-with the actual execution of those bench-
marks on the target PE in calibration phase, generating a Linear Program (LP).
This is fed to an LP Solver which defines the weight table of the particular PE,
implicitly considering the vast number of architectural and micro architectural
features. To estimate the performance of a target application, in the retargeting
phase, it is profiled once to extract computational demand. Then, performance
is estimated purely through a static approach by a simple matrix multiplica-
tion of the PE weight table and the application’s computational demand. With
this, multiple iterations of the retargeting step can rapidly estimate the perfor-
mance of different target processors. The advantage of this method is that the
application is simulated only once (for profiling), avoiding long repetitive simu-
lations. In addition, due to fast computation in retargeting stage, this approach
is particularly suitable for rapid comparisons in early DSE.

We validate WeiCal using a synthetic processor and benchmark model, and
also analyse the limitations of this approach. We evaluate the efficiency of the
proposed methodology using 49 benchmarks on 2 different processors with vary-
ing configurations (multiple memory configurations and software optimizations).
On a 3.1 GHz i5-3450 Intel host, 25 million estimations/second can be obtained
regardless of the application size and PE complexity. The accuracy is sufficient
for early DSE with a 24% average error.
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The rest of this paper is organised as follows: Sect. 2 presents an overview
of work related to this approach. Section 3 introduces retargetable profiling.
Section 4 presents WeiCal and Sect. 5 presents implementation. Section 6 presents
a synthetic model to validate the approach. Section 7 shows experimental results
and Sect. 8 concludes the paper.

2 Related Work

Many estimation methods have been proposed trying to solve different challenges
in estimation such as accuracy, speed and being application specific. They gener-
ally estimate based on one of three abstraction levels: : source-level (high-level),
intermediate-level and binary-level (low-level). At high-level, fewer details are
taken into account. It is faster and retargetable but less accurate in terms of
absolute performance numbers. On the other side, low-level estimation benefits
from more target architecture knowledge increasing accuracy at cost of simu-
lation speed. While low-level may produce cycle approximate estimations for
detailed analysis, high-level estimation is more suitable for DSE due to estima-
tion speed.

Various high-level estimation techniques have been proposed. The authors
of [2] propose an approach which has limitations due to compiler optimizations.
Wang and Herkersdorf [3] present an approach which takes compiler optimiza-
tions into account. However, both these approaches rely on simulation for estima-
tion. The authors of [4] propose a compiler-assisted technique to rapidly estimate
without simulation. However, this approach is developed for the FPGA based
processors. Oyamada et al. [5] present an integrated approach for system design
and performance analysis. An analytic approach based on neural networks is
used for high-level software performance estimation. This approach takes about
17 s to estimate the performance of an MPEG4 encoder application. A hybrid
simulation method is introduced in [6] which also uses a cache simulator to mea-
sure memory access delay. [9] presents a complementary method for increasing
the accuracy of approaches that are annotating timing information into source
code by mapping binary representation to source level. This approach requires
the source code and the binary-level CFG. In [7], an estimation approach is
proposed for transaction level. One drawback of this work is that the mapping
between the C processes to PEs should be determined before using this estima-
tion approach. These approaches are suitable for estimating the performance of
a PE, but efficient design space exploration requires faster retargetability.

Javaid et al. [8] propose two estimation mechanisms whose goal is to minimise
the estimation time. Though the approach is retargetable for pipelined MPSoCs,
the performance estimation of individual component of design space is yet not
retargetable. Mohanty and Prasanna [10] present a mechanism for DSE using
interpretive simulation which requires specific inputs to the proposed model.

We base our work on [1] for DSE as it is retargetable and does not involve
simulating the target application across the design space. However, the estima-
tion accuracy of this approach is largely dependent on the weight table entries
of PEs in the design space.



200 K. Moazzemi et al.

3 Retargetable Profiling

Retargetable profiling [1] is a high-level estimation technique, which is divided
into two stages - Profiling and Retargeting.

In the profiling stage, the system specification is instrumented and simulated
to gather basic block execution counts. Static analysis then computes the number
of operations executed (distinguished by type) for each data-type executed and
stored in the form of specification characteristic table. This specification char-
acteristic table has the format same as weight table of a PE. Note, the profiling
stage is done only once per application.

In the Retargeting stage, the designer decides the mapping of behaviour to
a PE. Performance of executing the behavior on the selected PE is estimated
by multiplying specification characteristics (obtained from profiling) with delay
values stored in the weight table of that PE. The total performance (E) of that
PE is computed through a matrix multiplication and sum.

E =
∑

OpType

∑

DataType

(FOpType.DataType × WOpType.DataType) (1)

where WOpType.DataType is the weight (i.e. clock cycles) and FOpType.DataType is
the occurrence frequency of each operation type OpType of data-type DataType.
Since retargeting consists of a pure static approach, it avoids the time-consuming
steps of simulation and profiling.

With its extremely fast estimation speed, retargetable profiling is very suit-
able for DSE. However, it requires a tedious manual step of extracting the weight
table information (execution delay for each operation and datatype combina-
tion) from the data sheet of each PE. Considering that the IP vendors have
their unique way of representing this information, data collection can be time-
consuming. Furthermore, dedicating only one table for each processor limits the
designer to one configuration in terms of compiler optimizations and hardware
configurations. This limitation makes the design space too simplistic. Moreover,
some affecting elements are unknown, such as details of pipeline and data for-
warding, because the vendors often do not release this information. This poses
many challenges to manually define weight tables. This paper, introduces a
framework for automatically generating the weight tables by calibration.

4 Weight Calibration (WeiCal)

This section proposes a technique for calibrating PE weight tables. It automati-
cally populates the weight tables using a training set of benchmarks and a Linear
Programming Formulation (LPF). This methodology expands flexibility of the
retargetable profiling approach [1], and can increase the accuracy by implicitly
considering more architectural features.
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4.1 An Overview of the Framework

As shown in Fig. 1, WeiCal generates weight tables for PEs according to a set of
training benchmarks. Every benchmark is captured in SpecC language (based on
ANSI-C) and then profiled with SCProf profiler [1] to determine the application
computation demand. It includes the frequency of all operation types for each
data type for the whole application. Each benchmark is also executed on a real
processor (Processing Element (PE)) to obtain accurate benchmark execution
cycles. An LP formulation is constructed using the benchmark characteristics
and measured execution cycles. Solving this linear system yields the weight table
for the PE.

Fig. 1. Framework flow

4.2 Linear Programming Formulation (LPF)

This section describes the LPF to obtain weight tables. For each benchmark i on
a particular PE, (Bi) specifies the measured execution time (cycles). Dij denotes
the computational demand of benchmark i as determined by profiler. For ease
of explanation, we fold every combination of operation-type and data-type into
one index j. Wj denotes the weight of one operation and datatype combination.
An equation is generated for each benchmark which includes the weights of each
operation-data-type combination, occurrence frequency of each combination and
total execution time. The number of equations would be equal to the number of
benchmarks available. The weights in each equations are the unknowns, which
will be solved by LPF. However, as not all factors impacting the performance can
be measured, the linear equation system cannot be accurately solved. To allow
for some error in the estimation of each benchmark, we introduce a Calibration
Fudge factor (CF). Finding the weights with the overall least absolute error (CF)
will yield the most accurate estimation. The LPF is as follows:

Minimise:
Σi |CF(i)|
Subject to:
Benchmark1 : D11.W1 + D12.W2 + ... + D1M .WM + CF1 = (B1)
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Benchmark2 : D21.W1 + D22.W2 + ... + D2M .WM + CF2 = (B2)

...
BenchmarkN : DN1.W1 + DN2.W2 + ... + DNM .WM + CFN = (BN )

where N is the number of benchmarks and M is the number of operation type
and data-type combinations. Each benchmark is represented by one equation.
Adding benchmarks will increase information for the LP Solver to find the
weights of that PE, to then produce a more realistic weight table leading to
a better future estimation.

5 Implementation

This section presents the benchmarks, tools, PEs and metrics that are used for
evaluating the approach.

Benchmarks used in the framework play an important role in estimation
process. Balance in distribution of these benchmarks allows more accurate esti-
mation for future applications. A major effort has been devoted to gather a
suitable set of benchmarks that can cover most of operations, data types and
coding structures. Table 1 shows the benchmarks. In Table 1, Randomly Gener-
ated benchmarks have been generated using the modified Randprog tool [15].
Synthetic benchmarks predominately focus on a operation and data-type com-
bination. They are only used for calibration only. The WCET benchmarks are
a subset of those presented in [16].

Table 1. List and categories of benchmarks

Source Names of benchmarks

MiBench [12] &
DSP-Stone [13]

AES whetstone bcnt blit bubblesort cnt crc crc2 edn
fft1 fir2 gamma hanoi heapsort linpack lms lms2 ludcmp
matmult matrix basicmath ndes nsichneu peakSpeed1
prime queens v42 wavelt

Randomly Generated frand1 frand10 frand12 frand13 frand16 frand17 frand18
frand19 frand2 frand20 frand3 frand4 frand6 frand8
frand9 rand3 rand5 rand6 rand7 rand8 rand9

Synthetic synadddouble synaddfloat synaddlonglongint
syndivdouble syndivint syndivlonglongint synmindouble
synminfloat synminint synmulfloat synmulint
synmullonglongint synmuldouble synaddint
synminlonglongint syndivfloat

WCET adpcm crc2 edn fft1 fir2 lms ndes nsichneu qurt

We used the SCProf [1] profiler to extract application demand and gcc to
compile the benchmarks for real hardware. We used the open source SCIP solver
[17] to solve LPF. We have applied WeiCal to two different processors (Black-
fin527 [14] and ARM9 [11]), with various hardware configurations (SRAM and
SDRAM with Blackfin527 [14]) and compiler optimizations (O0, O1, O2, O3
with ARM9 [11]).
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Table 2. Grouping of operations and data types for dimensionality reduction

Groups Pristine entries in original weight table

constant constant

array access array access, content of

function call function call, return

post increment post increment, pre increment, post decrement, pre decrement

not bitwise not, logical not

multiply multiply, multiply/assignment

divide divide, modulo, divide/assignment, modulo/assignment

add add, subtract, add/assignment, subtract/assignment

branch if, if else, for, while, do while, default, switch, case, break,
continue

shift left shift right, shift left

equal all compare operations

or bitwise or, logical or, exclusive or, and, logical-and

assignment all possible assignment operations

int unsigned long int, unsigned char, char, unsigned short, pointer,
bool short, unsigned int, long int, unsigned long

long long int long long int, unsigned long long int

float float, unsigned float

double double, long double, unsigned double

As metrics, we mostly use absolute error, comparing real execution cycles
with estimated cycles. However, absolute accuracy may not always be required.
During DSE, different design alternatives are compared. In this setting, the cor-
rectness of a relative comparison is sufficient. Fidelity quantifies the correctness
of a relative comparison.

The dimensions of the weight table and specification characteristic table are
defined by the number of possible operations (number of rows) and datatypes
(number of columns). The SCProf profiler distinguishes 55 operations and 16
datatypes. This leads to 880 different pairs of operations over datatypes. In
order to estimate 880 weights (execution delays), the LP formulation needs at
least 880 training benchmarks. It is challenging to collect such a large number of
suitable benchmarks. In addition, it would lengthen the LP solver run-time. To
reduce the number of required benchmarks, we reduce the dimensionality of the
weight table by grouping similar operations and datatypes based on architec-
tural assumptions. Table 2 summarizes our assumptions. Overall, we group all
operations into 12 different operation groups and all datatypes into 4 datatype
groups. This dramatically reduces the of combinations from 880 down to 48
combinations of operations and datatypes.
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6 Validation Through Synthetic Model

Any estimation approach is limited by the number of observable features (pro-
filing restrictions), and by the complete availability of processor performance
information (limited micro-architectural knowledge). To initially validate and
optimise our approach under known conditions, we employ a synthetic model. We
designed a statistical model which produces synthetic PEs and synthetic bench-
marks to be used in WeiCal. Using synthetic model increases visibility over real
measurements and processors. Each processor is modelled by a set of elements
that contribute to delay in execution (such as execution of an operation, cache hit
and cache miss). To mimic the effect of partial observability by the profiler, we
declare some of these effects as observable, while other effects as non-observable.
The number of training benchmarks and non-observable elements are varied
to study their impact on the estimation accuracy. In order to realise the non-
observable elements, their effect was deliberately included when calculating the
measured execution time. However, the occurrence of non-observable elements
in benchmarks is hidden from the profiler. In result, the profiler counts only the
observable elements, while the timing measurement includes delay (cycles) due
to observable as well as non-observable elements. The LPF will attribute the
effects of non-observable elements to the observable elements. As such, the num-
ber of cycles will increase for each observable feature. This is similar to other
models which for example fold memory access delay statistically into operations.

Processor P is modelled as

P = [Wk][Wu] (2)

where [Wk] is the set of delays for known elements and [Wu] is the set of delays
of unknown elements. The particular values for [Wk] and [Wu] are randomly
chosen (linear distribution) during the generation of a processor model.

Similarly, a synthetic benchmark is defined as recurrence of elements known
and unknown to the Profiler.

B = [Rk][Ru] (3)

where [Rk] is the set of recurrence for known elements and [Ru] is the set of
recurrence of unknown elements. The particular values for [Rk] and [Ru] are
randomly chosen (linear distributed) during the generation of a benchmark.

The delay of a specific synthetic benchmark i on a particular synthetic PE j
is defined as

(Delay)ij = [Rk]i[Wk]j + [Ru]i[Wu]j (4)

Figure 2 shows the effect of non-observable elements evaluated by changing
the ratio of observable elements to non-observable elements in the synthetic
model. The total number of elements was constant (60), while varying the non-
observable elements as 2%, 25%, 40% and 60%. The non-observable elements
was set to contribute 15% of the total computation demand.
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In the upper left graph of Fig. 2, the mean estimation error quickly converges
to 2% when the number of training benchmarks reaches 60. With 25% non-
observable elements, the mean estimation error stays at 12% with more than 60
training benchmarks (upper right). When non-observable elements increase to
40% or even 60%, both the average and absolute estimation error are high. The
estimation error is no longer improved with more than 60 training benchmarks.

It indicates that the number of training benchmarks need to be necessarily
larger than the number of elements in order to converge the estimation error.
However, even a large number of training benchmarks does not improve the accu-
racy of the weight table and corresponding estimation when the non-observable
elements are more than 40%. At least 50 training benchmarks are required for
the estimation error to converge. The number of training benchmarks should be
greater than the number of weights in the weight table for correct estimations.

Fig. 2. Effect of number of benchmarks on average error

The synthetic model allowed us to evaluate the effect of the non-observable
elements and training benchmarks on the estimation error. The estimation accu-
racy improves with fewer non-observable elements. It is impossible to achieve a
meaningful estimation with non-observable elements over 40% of all (observable
and non-observable) architectural elements. Furthermore, the estimation error
converges when the training benchmarks is slightly more than the desired observ-
able elements. Adding more training benchmarks does not further improve the
accuracy largely.
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7 Experimental Results

The efficiency of our approach affects the high-level design decisions. On one
hand, accuracy is desired to correctly guide the DSE. On the other hand, per-
formance estimation should be fastest to evaluate many design combinations.

Accuracy is evaluated is terms of absolute error and fidelity. In order to
measure estimation error, we excluded one benchmark from the training bench-
marks and used it as a target application to determine estimation accuracy. The
procedure was repeated through all the real benchmarks. Real and synthetic
benchmarks were used for calibrating the weight tables. However, only the real
benchmarks were used as test applications as they better reflect the character-
istics of an actual workload. The results are aggregated in Fig. 3.

Fig. 3. Estimation error on real platforms

Figure 3 shows the median, quartiles, minimum and maximum of the esti-
mation errors among all benchmarks across all PEs. The box plot shows these
static quantities, while the violin plots show the distribution of estimation error
across the benchmarks. Figure 3 also shows the effect of compiler optimizations
and hardware configurations on the estimation error. The majority of bench-
marks have an estimation error close to median (−6%) for Blackfin with SRAM.
Moving from SRAM to SDRAM deteriorates the median to −30%. Most accu-
rate results are achieved with low optimization. The ARM9 with O0 has the
median at −11% with most of the benchmarks having an estimation error close
to median. As the optimization increases, the association of source code with the
execution time reduces. This is due to the weak correlation between source-level
C code and binary at higher optimization levels. With an increased optimization
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to O1 for ARM9, the median is at −57%. WeiCal is able to distinguish between
various software and hardware configurations. Some applications do not perform
well in this approach in terms of the estimation accuracy. This is the cost being
paid for estimating at the highest level of abstraction. In some configurations,
WeiCal has a higher absolute error than what was reported in [1] as we are now
using more complex processors, memory hierarchies and compiler optimizations.

In early DSE, fidelity (i.e. relative comparison) is sufficient and absolute
accuracy is less important. In order to analyse fidelity, we describe fidelity matrix,
which shows the fidelity between all the possible pairs of PEs from the design
space. Table 3 presents the fidelity matrix. To further analyse fidelity, we plot
also fidelity over the measured performance gap between the investigated PE
configurations. Fidelity depends on closeness between real performance of PEs
being compared.

Table 3. Fidelity matrix

BF527 SRAM BF527 SDRAM ARM9 O0 ARM9 O1 ARM9 O2 ARM9 O3

BF527 SRAM 100% 90% 89% 76% 80% 80%

BF527 SDRAM - 100% 76% 90% 93% 92%

ARM9 O0 - - 100% 94% 96% 100%

ARM9 O1 - - - 100% 57% 61%

ARM9 O2 - - - - 100% 55%

ARM9 O3 - - - - - 100%

Table 3 shows that performance estimation using calibrative weight tables has
high fidelity with average fidelity being 82%. Fidelity increases when performance
gap between the compared PEs is larger. The estimated comparison of ARM9
O0 with its higher optimization counterparts is correct in more than 94% of the
cases.

In addition to accuracy, the value of estimation methodology also depends
on the time it takes for making an estimation. A separate aspect is the duration
for generating a weight table (i.e. performance of WeiCal). The weight table
is determined only once in the lifetime of a PE and is less important. Hence,
calibration takes place only once. We have automated executing benchmarks on
target PEs and measuring execution duration (clock cycles). The average time it
takes to load each benchmark is 2.5 s. The LPF took 0.6 s to generate the weight
table for 48 given equations (48 benchmarks). The calibration phase took nearly
120 s in addition to the actual execution time of all benchmarks on the hardware.

Conversely to calibration, the estimation in retargeting to different PE con-
figurations occurs very frequently during DSE. Thus, its performance is highly
critical. Estimation is merely a matrix multiplication of the PE weight table and
application profile table. As the dimensions of weight table and application pro-
file table are fixed, the estimation time is independent of the application size and
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PE complexity. On a single core of 3.1 GHz i5-3450 Intel host, 25 million estima-
tions/second can be obtained regardless of application size and PE complexity.
Additionally, as the estimation is only a matrix multiplication, it’s paralleliza-
tion has been studied a lot. The average error of 24% is acceptable for early DSE
where fidelity and high speed of estimation are more prominent factors.

8 Conclusion

Rapid estimation with sufficient fidelity is essential for DSE. In this context,
retargetable source-level profiling [1] is a promising approach. It profiles a spec-
ification once to determine the specification computation demand. Then, esti-
mating the application’s execution time is as simple as a matrix multiplication
of the specification computational demand and weight table capturing the PE’s
computation supply. However, this approach heavily relies on the quality and
availability of weight tables.

The work presented in this paper proposes a calibration-based framework
to automatically determine a processor’s weight table(s). It avoids the manual
and error-prone process of manual capturing processor characteristics (execution
time). In particular, it mitigates the challenge of limited visibility of the source-
level profiling (i.e. C statements) and the associated challenge of attributing
non-visible characteristics into the accounted operations.

We devised a synthetic model in order to validate the approach and anal-
yse the bounds. We measured efficiency of the WeiCal using 49 benchmarks
(mainly MiBench and DSP Stone) on ARM9 and Blackfin BF527 processors
and considered memory configurations (SRAM and SDRAM) and software opti-
mizations (O0, O1, O2 and O3). With the weight table approach 25 million
estimations/second can be performed on a single core of 3.1 GHz i5-3450 Intel
host. The average estimation error was 24%. However, the approach offers higher
fidelity especially with larger performance gap between (e.g. above 94% fidelity
for comparing ARM0 at O0 with other optimizations). The high estimation
speed with good fidelity makes this methodology an ideal cornerstone for an
automated DSE.
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Abstract. The Izhikevich’s simple model (ISM) for neural activity
presents a good compromise between waveform quality and computa-
tional cost. FPGAs (Field Programmable Gate Array) are powerful, flex-
ible, and inexpensive digital hardware that can implement such model.
In this paper, we present a highly combinational, low latency imple-
mentation of ISM for FPGA. In the absence of official benchmark to
compare different implementations, we propose two different metrics to
compare the technical literature with our implementation. In this bench-
mark, we can implement a system that, when compared to the literature,
has almost 1.5 times the number of digital neurons (DN), and latency
more than 56 times smaller. This shows that our implementation is best
suited for hybrid network systems and presents a fair performance for
only-artificial networks.

1 Introduction

The human brain has about 1011 neurons, and each one can have more than 104

synaptic connections with others neurons [8]. As the most inspiring and powerful
computing machine we know at present, it is normal to try breaking the code
and understand how it works. We believe its computer capacity comes from a
three-level complexity: (a) the number of adaptable cells, the neurons; (b) the
capability of configurable connections, the synapses; and (c) the waveform that
is at the same time robust against noise and capable of encoding information,
the spike or action potential.

Considering the waveform, the literature presents various spike models, each
one with respective biological plausibility and computational complexity. The
Izhikevich’s Simple Model (ISM) [9] presents one of the best compromises
between waveform quality and computational cost at the moment. It is com-
posed of a system of two ordinary differential equations of the first order that
can be easily digitalized. Regarding capability of configuration connections and
the number of cells, it is important to find hardware that can at the same time be
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powerful, flexible, and inexpensive. FPGAs (Field Programmable Gate Array)
seem to fill all these requirements as reprogrammable digital circuits.

Some papers describe different implementations of ISM in FPGA [1,4–
6,10,11]. They differ from how serial or parallel the computations are imple-
mented and the number of pipeline stages used. Our implementation is highly
combinational and present low latency.

No other paper before has proposed any benchmark. To compare our work
with others, we propose two different metrics. The first one is neural lattice
network. It estimates the maximum number of cells we can simulate in a single
hardware.

The second metric we propose is the latency of one neuron. It is the time a
variation on the input takes to propagate to the output. This metric has a direct
correlation to how parallel an implementation is. Depending on the application,
this performance can or cannot be important. Hybrid neural networks, like [2],
are an example of systems where such performance is fundamental. These are
systems where the whole network is composed of the real-time communication
between an artificial and a living part. Low and reliable latency is fundamental
to ensure the real-time communication integrity between networks. As biological
neurons have latency slower than digital ones, we expect to reuse the hardware,
virtualizing a greater number of neurons.

In Sect. 2, we review the simple model proposed by Izhikevich and adapt its
equation for digital computing. Section 3 presents the hardware implementation
of the neuron and shows a lattice network for comparison reasons. Section 4 shows
the hardware results of the implementation to compare it to current literature.
Section 5 concludes with the potential of this work and comments about future
projects.

2 Izhikevich’s Simple Model

2.1 Equations Model

Ensuring some biological plausibility, the ISM reduces the Hodgkin-Huxley
model in two-dimensional system of ordinary differential equations [9]:

dv

dt
= 0.04v2 + 5v + 140 − u + I (1)

du

dt
= a(bv − u) (2)

with the auxiliary after-spike resetting:

v ≥ 30mV =⇒
{
v ← c
u ← u + d

(3)

where v is the membrane potential of the neuron and u is the membrane recovery
variable, both in millivolts (mV); t is the time in milliseconds (ms); I is the total
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Table 1. Parameters for each neurocomputational feature and injected current used
in the implementation

Neural behaviour

Tonic
spiking

Phasic
spiking

Tonic
bursting

Phasic
bursting

Mixed mode Spike-frequency
adaptation

Parameters a* 0.015625 0.015625 0.015625 0.015625 0.015625 0.0078125

b* 0.15625 0.1953125 0.15625 0.1953125 0.1953125 0.1953125

c −65 −65 −50 −55 −55 −65

d* 4.6875 4.6875 1.56125 0.0390625 3.125 6.25

Input I* 10.9375 5 11.71875 4.6875 9.375 23.4375

injected currents in nanoamperes (nA); a, b, c, and d are parameters to set the
desired waveform or the neuronal activity.

The parameter a describes the time scale of the recovery variable u. The
parameter b represents a sensitivity of the recovery variable u to the subthreshold
fluctuations of the membrane potential v. The parameter c describes the after-
spike reset value of the membrane potential v. The parameter d represents after-
spike reset of the recovery variable u. Different choices of the parameters a, b, c,
and d result in different intrinsic firing patterns.

2.2 Change of Variables

To facilitate the model implementation in a digital circuit, it is possible to rewrite
Eqs. (1) to (3) as:

h
dv

dt
=

1
32

v2 + 3.90625v + 109.375 − u∗ + I∗ (4)

h
du∗

dt
= a∗(b∗v − u∗) (5)

v ≥ 30mV =⇒
{
v ← c
u∗ ← u∗ + d

(6)

where h = 0.78125, u∗ = hu, and I∗ = hI; the parameters a, b, and d are
replaced by a*, b*, and d*, respectively, each one also multiplied by h. This
transformation is suggested in [4] and [1], but both neglect the factor h.

The new system of differential Equations (4) to (6) ensures the same behavior
of Eqs. (1) to (3). We can solve by Euler’s Method [3], a numerical method of
the first order, which produces accurate results. This approach results on:

vn+1 = vn + Δt

[
1
32

v2n + 3.90625vn + 109.375 − u∗
n + I∗

n

]
= vn + Δt.kv (7)

u∗
n+1 = u∗

n + Δt [a∗(b∗vn − u∗
n)] = u∗

n + Δt.ku (8)

where Δt is the time increment of the Euler’s Method. Moreover, in Eq. (7) we
also approximate 3.90625v ≈ 4v [4]. kv and ku are used further in the imple-
mentation and they represent the variation for each iteration.
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The parameters in Table 1 are adapted from the original publication [9] con-
sidering the factor h, and it depends on the type of the simulated neuron. The
choice of parameters is beyond the scope of this paper, as it is a current research
topic. The input current is set to an appropriated input to reveal a realistic
behavior.

In the next section, we show the methodology for ISM implementation on
FPGA.

3 Neuron Implementation

3.1 One Neuron

For our implementation, we use combinational logic for the most of the circuit.
The circuitry is as parallel as possible, optimized for latency rather than the
area without the reuse of hardware. Figure 1 presents a single neuron, and Fig. 2
the computation for the new value of v, u* as well as the activity log. For the
calculation of the next v and u*, we opted for two parallel operations, one for the
case with a spike and other without a spike and select between them afterward.

Fig. 1. Implementation of one neuron

Each neuron receives the parameters (a*, b*, c, d* ) from a top module and
stores locally the initial values for v and u*. We use an 18-bit fixed point two’s
complement representation: 1 sign bit, 9 bits for the integer part and 8 bits for the
fractionary part. This representation is better suited for digital implementations
than floating point, and 18 bits uses more efficiently the available hardware
without compromising the accuracy as presented on [1].

The initial values of v and u* are, respectively -70 mV and -15.63 mV. The
time incremental is Δt = h = 0.78125 ms (milliseconds). The parameters and
injected currents are exhibited in Table 1.
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Fig. 2. Schematics of one neuron, the operations to compute Eqs. (4) to (6). All vari-
ables and parameters in this figure already account for the variable change presented
in Sect. 2.

3.2 Network for Tests and Metrics

We have chosen a lattice network: one neuron is directly connected to the next,
by I[N ] and I[N+1], Fig. 3. Even though this has low biological meaning, it can
be used estimate the maximal number of neurons that can be implemented on
a single FPGA chip.

Fig. 3. Schematics of the lattice network used.

We use an Altera’s DE4 Board (EP4SGX230KF40C2) to estimate the num-
ber of cells that we could implement, and measure latency. Figures 4 and 5 repre-
sent about 200 ms in biological time and about 1.8 ms in FPGA with a 250-MHz
clock. The maximum and minimum tensions are, respectively, +32 mV and -70
mV. Table 1 contains the parameters used for the implementation as well as the
input current. These results were obtained with the SignalTap II, provided in
the Quartus II software, and will be presented in the next section.
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Fig. 4. Simulation results of the lattice network used.

Fig. 5. Measurement of the lattice network used.

4 Results

Figure 4 shows the simulation of our Verilog description of lattice network using
ModelSimTM. Figure 5 shows the measurement of the lattice network on the
FPGA, with only the first and last neuron being presented. The data for Fig. 5
was obtained using the SignalTap II tool from Quartus II Software. This tool
implements a circuit on the FPGA that acquires data directly on the logic circuits
and then send it through a JTAG connection to the computer. The data can be
displayed and handled on SignalTap II or exported to other software. Only one
neuron activity is shown, but we have tested the activity of the six neurons
presented in Table 1.

Table 2. Comparison of our implementation with literature

Ref Digital
neurons

HW Use Time performance Representation
(bits)

FPGA

FF LUT Clock
(MHz)

Pipeline
Stages

Latency
(ns)

Total Integer
Decimal

Vendor Family

[5] 32 28% 44% 50 0 320 - Xilinx Spartan

[4] 64% 78% 40 5 150 18 10.8

[1] 1 1% 1,5% 84.81 7 94.33 Virtex-4

[10] 25 79% 198 23 121.21 44 32.12

[6] 32 32% 36% 110.47 6 63.37 18 9.8 Virtex-5

[11] 256 3.39% 307 96 315.96 32 -

7.04% 214 147 453.27 64

This 364 93% 250 0 8 18 10.8 Altera Stratix IV

With a lattice network, we can fit 364 digital neurons (DN) on an FPGA.
This is 1.5 times more than previous from the literature, [11], which presented
256 DN (Table 2). Our estimative is from a lattice network, but this number
alone is expressive. And it is important to estimate how many realistic DN we
can implement in a realistic physical network.
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We consider that there is no coherence of network implementations and avail-
able data in the literature since each paper implements a different network.
Therefore, we do not compare values for virtual neurons at the network level.
Indeed, we have not found any paper comparing it either.

There is much evidence of biological data from experiments indicating that
the information in brain structures can be coded, among other ways, in the time
interval between spikes [12]. Because of this, we have considered paramount to
our implementation to have a high precision on the spike timestamp, which is the
instant that the spike occurred. That is achieved with low latency and reliable
system.

The latency is the time that the cell takes to provide a valid output from a
variation on the input. We have shown that our latency (8 ns) is more than 56
times smaller than the literature, the best comparison being with [11] (453.27
ns), Table 2.

The pipelines presented in the literature do not show a parallel load, causing
to have a bigger latency. And also it implies an approximation of the spike times-
tamp as high as the pipeline extension. We suppose that such an approximation
do not interfere with their applications [1,4,6,10,11], but the same cannot be
said for all applications.

5 Conclusion

In this paper, we presented a highly-combinational low-latency implementation
for Izhikevich’s Neuron Model in FPGA. This approach is better suited for hybrid
network applications as it has the best latency in the literature, Table 2. Some
other implementations can be better suited for emulation of networks purely
artificial with less precision in spike timestamp, as they use fewer resources than
ours.

We could also implement more DN in a single FPGA board than the liter-
ature when we consider our lattice network. Although as in many cases with
bioinspired circuits, these implementations are very particular, and a fair com-
parison between two different networks is near impossible.

Future works include: (a) to implement a network with more biological mean-
ing; (b) to reuse logic blocks and to implement a pipeline for some calculations
to achieve a better speed without compromising latency; (c) to use precomputed
values in auxiliary shared memory to reduce computation time and latency; and
(d) to explore the parallelism technique for multiple virtual neurons, increasing
the maximum size of a network in a single FPGA chip.

As our application is to study and interface with natural living neural net-
works, the FPGA implementation is preferable for it has easier configurability,
reconfigurability, and test. Other implementations such as artificial networks
implemented on a full-custom analog [7], or digital integrated circuits may be
interesting to implement the short-term objectives (a) through (d) are achieved.
Such long-term implementation can improve power consumption, timing perfor-
mance, and area occupation at the expense of configurability.
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Abstract. Coarse-Grained Reconfigurable Arrays (CGRAs) have
emerged as a powerful solution to speedup computationally intensive
applications. Heterogeneous MPSoC architectures containing such recon-
figurable accelerators have the advantage of providing high flexibility,
power-efficiency, and high performance. However, CGRAs may suffer
from a data access bottleneck. To mitigate this problem, we present a
reconfigurable buffer architecture for CGRAs. Here, the buffers can be
configured at runtime to select between different schemes for memory
access, i.e., addressable RAMs or pixel buffers. We showcase the bene-
fits of our approach by prototyping a heterogeneous MPSoC architecture
containing a RISC processor and a class of CGRA called Tightly Cou-
pled Processor Arrays (TCPAs). The architecture is prototyped in FPGA
technology. For basic image processing algorithms, we demonstrate that
our proposed buffer structures for system integration allow to increase
the memory bandwidth utilization and allow for a performance improve-
ment of up to 7% in comparison to state-of-the-art solutions for image
processing.

1 Introduction

Semiconductor technology has already hit the power wall and is not far away
from hitting the utilization wall [1]. These effects are caused by shrinking tech-
nology, which continuously leads to higher energy densities. However, chips can
only handle a limited power budget. As a consequence, the potentially avail-
able chip area might not be fully utilized or at least not simultaneously. Thus,
these days, energy efficiency has become more important than pure computing
power. This means, that in order to scale computing performance in the future,
systems’ energy efficiency has to be significantly improved. The design of embed-
ded systems containing heterogeneous hardware and customized resources, such
as accelerators dedicated for one application domain, is a promising solution to
address this challenge.

In this realm, CGRAs are appealing by providing programmability with the
potential for high computational throughput and at the same time high energy
efficiency [2]. There are many possible ways of integrating such reconfigurable
c© IFIP International Federation for Information Processing 2017
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accelerators into System-on-Chip (SoC) designs. For instance, they can be tightly
coupled with a processor and the communication can be realized by a specialized
interface or via a shared register file. An alternative is to share the last level cache
of a CPU. In this case, a dedicated controller for the shared cache (e.g., shared
L2 cache) is needed for connecting CPU and accelerator. However, this approach
requires cache coherency models and protocols that need to be adapted according
to the targeted application. Apart from these system integration options, it is
also possible to connect a hardware accelerator to a shared bus or NoC. Here, the
communication with the rest of the system could be realized by message passing,
for example, using DMA transfers to/from a local accelerator memory. Although
this solution scales very well, the overhead for accessing shared resources may
compromise the performance of such accelerators. As a solution for this challenge,
we propose to use a very flexible buffer structure that can be configured at
runtime either as addressable RAM or pixel buffer as first presented in [3].

In this paper, we propose to use such buffers for coupling a RISC processor
directly to the border processing elements of a class of CGRAs called TCPAs
(tightly coupled processor arrays [3]). We are using an edge detection algorithm
as a case study to demonstrate how the image processing throughput can thereby
be increased up to the memory bandwidth available in the system. In the remain-
der of this paper, we first compare our solution with the state-of-the-art solutions
in literature. Then, the target class of TCPA accelerators is presented in Sect. 3.
Section 4 describes in detail our proposed system integration of a TCPA to a
RISC processor and its implementation as an FPGA prototype. Experimental
results on memory bandwidth and performance improvements are provided in
Sect. 5. Finally, we conclude our work in Sect. 6.

2 Related Work

Often, there is only a fine line between on-chip processor arrays and coarse-
grained reconfigurable architectures (CGRA) since the provided functionality
is similar. CGRA examples include architectures such as PACT XPP [4] and
ADRES [5], both of which are arrays that can switch between multiple contexts
by runtime reconfiguration. Whereas ADRES is a CGRA that is tightly coupled
with a VLIW processor, PACT’s XPP architecture provides a column of RAMs
at two borders of the array, which can be configured to two different modes:
addressable or streaming mode. However, except one simple counter per buffer,
the architecture does not provide any sophisticated address generators. Thus, if
complex buffer addressing schemes are required, the PEs of the array have to
be involved in the task of address computations. In [6], the authors propose a
generic VHDL template based on a full buffering approach which allows a fast
and efficient parallel and pipelined processing of 2-D stencil code applications.
This approach is limited to regular window-based applications and the stencil
mask has to move always in the same scanning order. In order to cover different
applications, Liang et al. [7] describe different kinds of buffering schemes such as
full buffering, partial buffering, packing, and buffering with packing. However,
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at runtime, there is no possibility to switch between these configurations and
the selection of the buffer operation has to be defined as a parameter at synthe-
sis time. In the area of high-level synthesis, there exist two tools, ROCCC [8],
which provide so-called smart buffers, and PARO [9], which allows to generate
dedicated pixel buffers automatically. Unlike all aforementioned research works,
the reconfigurable buffer structure introduced in [3] is able to adapt according
to different application requirements.

3 Accelerator Architecture

A TCPA [10] as shown in Fig. 1 denotes a class of CGRAs being highly param-
eterizable. The heart of this accelerator consists of a massively parallel array of
tightly coupled Very Long Instruction Word (VLIW) Processing Elements (PEs)
complemented by peripheral components such as I/O buffers as well as several
control, configuration, and communication companions. Some parameters, such
as number of PEs, interconnect topology, number of functional units as well as
the register organization within the PEs, are defined at synthesis time, whereas
other parameters such as programmable delays between neighbor processors and
inter-PE interconnect can be reconfigured at runtime. Each PE at the bound-
ary can read/write data directly from/to a local buffer (denoted I/O buffer in
Fig. 1) connected to it and each PE can exchange data with its neighbor PE in
a single clock cycle. A TCPA can exploit a parallel and direct PE-to-PE com-
munication, as long as input data is available as well as space is available for
accepting processed output data at the surrounding I/O buffers of the array.
Through the VLIW nature of each PE and the parallel and synchronous execu-
tion of mainly loop nest iterations, a TCPA nicely exploits both instruction and
loop-level parallelism while achieving a much higher energy efficiency compared
to general purpose Commercial Off-The-Shelf (COTS) embedded processors [11].
TCPAs can be integrated into SoC designs, e.g., using a bus-based interconnect
architecture, shared registers, or a shared data cache. Thus, they can be used
as accelerators in different platforms in order to speedup computationally inten-
sive applications. The building blocks of a TCPA are briefly described in the
following.

Processor Array: Before synthesis, the rows and columns defining the total
number of PEs of an array need to be specified. The array may be even configured
to have regions of heterogeneous PEs. For instance, some of the processors at the
borders might include extra functionality for the purpose of address generation.
However, in the rest of the paper, we consider only homogeneous arrays.

Array Interconnect: The PEs in the array are interconnected by a circuit-
switched mesh-like interconnect, which allows data produced in one PE to be
used already in the next cycle by a neighboring PE. An interconnect wrapper
encapsulates each PE and is used to describe and parameterize the inter-PE
network topology. The wrappers are arranged in a grid fashion and may be
customized at compile time to have multiple input/output ports in the four
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Fig. 1. An abstract architectural view of a TCPA is shown on the left. The abbrevi-
ations AG and GC stand for address generator and global controller, respectively. On
the right side is the configuration manager (CM) shown that provides the interface to
reconfigure the entire TCPA architecture.

directions, i.e., north, east, south, and west. Using these wrappers, indeed dif-
ferent topologies like a 2-D mesh, but also other topologies such as torus or
4-D hypercube can be implemented and changed dynamically. Thus, the array
interconnect can be reconfigured to support different applications. To define all
possible interconnect topologies, an adjacency matrix is defined for each intercon-
nect wrapper in the array at compile time. Each matrix explains how the input
ports of its corresponding wrapper and the output ports of the encapsulated PE
are connected to the wrapper output ports and the PE input ports, respectively.
If multiple source ports are allowed to drive a single destination port, then a
multiplexer with an appropriate number of input signals is generated. The select
signals for such generated multiplexers are stored in configuration registers and
can therefore be changed at runtime [12]. Two different networks, one for data
and one for control signals, can be defined by their data width and number of
dedicated channels in each direction. For instance, two 16-bit channels and one
1-bit channel might be chosen as data and control network, respectively.

Processor Element: A PE itself is again a highly parameterizable component
with a VLIW (very long instruction word) structure. Different types and num-
bers of functional units (e.g., adders, multipliers, shifters, logical operations)
can be instantiated as separate functional units, which can work in parallel. We
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call the processing elements weakly programmable [12] since the functional units
have only a reduced, domain-specific instruction set, which is tailored for a spe-
cific field of applications. Additionally, the control path is kept very simple (no
interrupt handling, multi-threading, instruction caching, etc.).

Buffers/Address Generators: As the PEs are tightly coupled, they do not
have direct access to a global memory. Data transfers to and from the array must
be performed through the border PEs. Instead of using FIFOs, the border PEs
are connected to highly adaptable surrounding I/O buffers that are explained in
more detail in Sect. 4.

Global Controller: Due to the regularity of the considered loop programs, and
since most of the static control flow information is needed in all PEs that are
involved in the parallel computation of a given loop nest, we can move as much as
possible of the common control flow out of the PEs to a global controller (GC) per
application. The GC generates branch control signals, which are propagated in
a delayed fashion over the control network to the PEs where they are combined
with the local control flow (program execution). Moreover, this orchestration
enables the execution of nested loop programs at zero-overhead loop.

Configuration and Communication Processor: The admission of an appli-
cation on the processor array, as well as the communication with a network via
a network adapter (NA), and TCPA programming is managed by a companion
RISC processor (LEON3 in Fig. 1) that is named configuration & communica-
tion processor (CCP). In consequence, the companion handles resource requests
and initiates appropriate DMA transfers via the NA to fill and flush the I/O
buffers around the array.

Configuration Manager: The Configuration Manager (CM) holds configura-
tion streams for the TCPA. This includes both the assembly codes to be loaded
into the PEs as well as interconnect reconfiguration. Since TCPAs are coarse-
grained reconfigurable architectures, the size of their configuration streams nor-
mally amounts to a few hundred bytes, which enables ultra fast context switches
in the system. The configuration loader transfers a configuration stream to the
PEs via a configuration bus. It is possible to group a set of PEs in a rectangular
region to be configured simultaneously if they receive the same configuration,
thereby reducing significantly the configuration time. As also depicted in Fig. 1,
the CM is mainly composed of three parts, a hardware/software interface, config-
uration loader, and configuration memory. The interface decodes the commands
sent from a CCP, which can read or write into a configuration memory that
stores the interconnection configuration as well as the binary code for all PEs.
Once the configuration memory is populated, the configuration loader starts to
configure the interconnection topology between the PEs. Afterwards, each PE
is loaded with its assembly (binary) code, and finally, the CM issues a reset to
trigger the start of parallel computation on the configured array.
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4 Reconfigurable Buffer Structures

TCPAs are envisioned to be used as programmable accelerators in MPSoCs and
are very suited for domain-specific computing from the areas of signal, image,
and video processing, as well as other streaming processing applications. Based
on the inherent algorithmic nature of an application and the chosen paralleliza-
tion strategy (e.g., pipelining, loop partitioning), different I/O and buffering
approaches might be appropriate. For example, consider an one-dimensional dig-
ital signal processing application for a continuous audio signal where input data
(audio samples) are streamed into a filter, are processed and after some ini-
tial latency filtered data are streamed out. For such 1-D applications, streaming
buffers (e.g., a FIFO) at the input and the output would be ideally suited in order
to decouple the filtering from the rest of the system. Especially in case of systems
that are comprised of buses or NoCs, which do not offer any guaranteed service,
asynchronous streaming buffers are vital in order to increase performance and
quality.

For two-dimensional image processing (e.g., edge detection, Gaussian filter-
ing) or linear algebra algorithms (matrix-matrix multiplication, LU decompo-
sition, etc.), the requirements are quite different. In this case, the data often
already resides somewhere in the system—e.g., in the main memory—and has
to be transported to the accelerator before it can be computed. If large problem
instances have to be computed, partitioning techniques [13,14] are used to break
down the data into several smaller chunks, which have to be transported and
processed one after the other in the accelerator. Data locality is a key concept for
efficient execution (performance, energy consumption) in such cases. Thus, the
amount of reads and writes to the main memory has to be minimized as much as
possible, and redundant data copies should be avoided in order to increase energy
efficiency. For instance, when blocking is applied to map stencil computations
to multiple processors that can process the input data independently in parallel,
border problems may occur, i. e., input data on the border area is needed in two
partitions. The size of this overlap region varies according to the window size
of the local operator. For a window with w × w pixels, the total of data that
overlaps into neighboring regions is equal to the kernel radius, r =

⌊w
2

⌋
. Yet,

because the pixels are shared in two directions, the overlap area is twice the
radius r of the window, i.e., 2r. Thus, when an input image of size W × H is
partitioned in M horizontal tiles, the total of data shared between all partitions
is given by Eq. (1)

Toverlap = 2r ·W · (M − 1) (1)

In the case where only N vertical tiles are computed in parallel, Eq. (1) can be
rewritten by replacing the terms W and M by H and N , respectively.

Moreover, the additional overhead for transferring all the border elements
from the local memory to the input buffers is defined by Eq. (2)

Overhead = Toverlap · L, (2)
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where L is the latency to copy these data from the local memory to the input
buffers. To avoid this additional overhead, a hardware mechanism is desirable
that does not affect the performance and does not require any data copies.

In order to fulfill the aforementioned demands, we propose a highly adapt-
able architecture, which can be configured to either work as addressable memory
banks (RAM), provide data in a streaming manner, or function as buffers cus-
tomized for stencil operations. Figure 2(a) presents an overview of the proposed
I/O buffer architecture, which uses dual-ported RAMs (DPRAMs) as interface
for data transfer and clock domain transition between the local bus (AHB1) on
the top and the processor array on the bottom. To reduce the amount of connec-
tors to the AHB, several DPRAMs may be wrapped as a single buffer, where the
individual RAMs are associated to the most significant bits of the target address,
presented by the AHB. The connection between the DPRAMs and the processor
array can be established in several ways, as each of the RAM components has a
discrete data channel to the TCPA. To increase the storage capacity, the address
space of DPRAMs can be combined, as it is shown for combinations of two and
four DPRAMS in Fig. 2(b) and (c), respectively. Although Fig. 2(a) shows the
read and the write direction between the buffer and the TCPA, the two subse-
quent figures (b) and (c) omit the write direction from the array to the buffer for
better visibility. Data reads and writes between the DPRAMs and the TCPA are
generated by a single address generator (AG) for the buffer, which can be con-
figured to follow arbitrary addressing schemes, for instance, to facilitate dense or
sparse stencil operations. Depending on the configuration, the most significant
bits of the address, generated by the AG are used to select between concate-
nated memories. Data partitioning onto neighboring processing elements and
loop-carried data dependencies between iterations may introduce offsets between
computations [15], however, the addressing scheme for data access remains the
same, thus it is sufficient to delay the values generated by the AG through the
use of configurable shift registers (CSRs). Instead of enabling every part of the
CSR individually, the amount of necessary control logic can be greatly reduced
by following a logarithmic scheme, which also reduces the energy consumption.

In addition to the so far introduced capabilities, it is very often necessary
to propagate entire image lines between neighboring processing elements for
computation. To reduce memory transfers into the buffers over the local bus,
also a chained buffer is supported, referred to as pixel buffer. The key idea is to
initially fill the buffers from the local bus and to pass data from one buffer to
the next as it is read out. Operating the buffers in this way only requires a single
port to maintain data streaming to the buffer. However, the contents can be
fed to the array via individual ports in parallel. For instance, three interlinked
buffers provide also three output ports to the TCPA, whereas new data will
only be written to the first buffer in the sequence. Since the two ports of the
DPRAM also provide Y clock transition between the bus and the TCPA, the
bus-side port of the memory must provide a means to switch between the bus

1 Advanced High-performance Bus (AHB) is a bus protocol introduced by ARM Ltd.
as part of the Advanced Microcontroller Bus Architecture (AMBA) for SoC designs.
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Fig. 2. In (a), (b), and (c), a reconfigurable I/O buffer architecture is shown which
may be configured into different modes and trade-off the buffer sizes with the number
of available independent ports to the processor array [3].

and TCPA clock domain. Despite of the individual representations shown above,
the buffer architecture is a combined implementation, which allows to select one
of the introduced modes.

5 Experimental Results

In order to demonstrate the concepts and benefits of our proposed I/O buffer
architecture, the TCPA shown in Fig. 1 has been synthesized on a Kintex-7
FPGA prototyping platform. The architecture consists of a RISC processor and
a TCPA, both connected through an AMBA bus. An SRAM of 256 MB is also
available and used to store the input image frames arriving over the network
adapter (NA) as shown in Fig. 1. The RISC processor is a LEON3, which is a
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Table 1. Resource utilization of our reconfigurable buffer structure on a Kintex-7
FPGA.

Component Slice register LUT DPRAM

Reconfigurable buffer 825 1,658 5

synthesizable VHDL model of a 32-bit processor compliant with a SPARC V8
architecture and can run up to 120 MHz. This processor is highly configurable
at synthesis time and is particularly suitable for SoC designs. In our prototype,
the TCPA is composed of a 5× 5 array of VLIW processing elements operating
at 60 MHz. The considered target application is a 5 × 5 Laplace operator used
to detect the vertical and horizontal edges in an image. This algorithm is widely
used as a pre-processing step in many image processing and computer vision
applications. In the prototyped architecture, only five read ports are necessary
to deliver data to the TCPA. Each PE computes one convolution coefficient and
the last PE in the last row also performs the addition of all convolved values
and outputs the final result of the computation.

We assume two DMA engines to read and write data from/to buffers. Using
the addressable RAM, the DMA has to provide data to all individual channels of
the input buffer. Instead, by using the pixel buffer, only the first channel receives
data and automatically delivers the pixel values to adjacent channels.

To achieve similar granularity and access pattern as succeeded in the pixel
buffer, the addressable RAM would require a double buffer scheme to hide the
additional access for copying data of the consecutive image lines that are swept
by the scanning window. This option is not considered, because the implemen-
tation of a double buffer scheme would demand more hardware resources. Fur-
thermore, an additional controller would be required to transfer data from the
main memory. Therefore, we use a blocking operation for the addressable RAM.
Hence, the input image is divided into 5 horizontal tiles and each tile is indi-
vidually processed by a group of 5 PEs. On the other hand, using the pixel
buffer the input data is a steady stream. In both buffer schemes, the number
of hardware resources is the same. Table 1 presents the resource utilization of
one reconfigurable buffer structure that has 5 I/O channels. Since the accelera-
tor is connected to a shared bus, it is possible to minimize the communication
latency by transferring the input data simultaneously along with computation in
an overlapping fashion. Thus, the input buffer can constantly deliver data.The
output results are displayed by using a dedicated connection to a DVI interface.
Hence, the AMBA bus is not involved in this operation and these two processes
do not compete with each other. However, if there is any other application using
the bus at the same time as the DMA attempts to read data from the local
memory, it would result in a bus contention and the system performance would
be affected.

Before starting the computation on the TCPA, it is necessary to define the
mode of operation of all input and output channels of the reconfigurable buffer.
For that, we use the LEON3 to load a configuration data into the buffer structure.
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Fig. 3. Average performance of a 5 × 5 Laplace operator running on an FPGA-based
TCPA implementation at 60 MHz and using different buffer schemes.

Unlike [6,7], our proposed work has the possibility to change the mode of oper-
ation at runtime. The reconfiguration overhead is equal to 840 cycles, i.e., 7 µs,
since the bus operates at 120 MHz. For measuring the system performance, we
consider three different frames sizes, i.e., 1024× 768, 1280× 800, and 1440× 900.
For evaluating the performance, we first configure the input buffers as address-
able RAM and observe the average throughput obtained from the TCPA. In the
second experiment, we configure the input buffers to work as a pixel buffer. In
both cases, the channel size is equal to the width of the input image. Thus, it
is possible to perform the kernel computation of entire lines without fetching
new data from the global memory. Figure 3 presents the average performance
in frames per second by taking into account the reconfiguration overhead for
switching between the different buffer schemes. There, we observe that although
the addressable RAM can be very customized for irregular memory access, it
does not propagate the input data to adjacent input PEs, which share data in
their borders.

By applying Eq. (1), we conclude that these additional data amount to 16,
20, and 22.5 KB for the three different frame sizes, i.e., 1024× 768, 1280× 800,
and 1440× 900, respectively. The latency for transferring data from the SRAM
to input buffers corresponds to 8 cycles per transfer and using Eq. (2), we observe
that the performance loss depicted in Fig. 3 corresponds exactly to the time for
copying the pixels located at the border of the image. However, by using the
pixel buffer, it is possible to achieve higher performance. This is because it is
designed for increasing data locality by means of propagating the input data to
different channels. Thus, we can avoid to provide redundant data copies to the
input buffers and consequently may increase the memory bandwidth utilization,
in this example up to 7%.
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6 Conclusion

This paper presents a reconfigurable buffer structure for coarse-grained reconfig-
urable arrays. In addition to traditional address-based memory banks, the buffer
architecture can deliver data in a streaming manner to the processing elements
of the array. Moreover, to minimize data transfers to the buffers, the design
contains an interlinked mode which is especially targeted at 2-D kernel com-
putations. For demonstrating the advantages of our reconfigurable I/O buffer
structure, we synthesized a heterogeneous architecture consisting of a RISC pro-
cessor and a tightly coupled processor array (TCPA). The processor is used for
starting DMA transfers between a SRAM memory and the TCPA composed of
a 5 × 5 array of VLIW processing elements. The target application chosen for
performance evaluation of different I/O buffer modes is an edge detection algo-
rithm that is widely used in computer vision and embedded applications. In the
case of such stream-based applications, the pixel buffer mode outperforms the
addressable RAM mode. As image lines will be needed in subsequent steps of the
image kernel computation, the feedback concept reduces the amount of required
memory transfers to the buffers to a minimum by propagating the image data
from one memory to the next. Therefore, by means of selecting the right buffer
configuration, a considerably higher performance may be achieved. In the case of
an input frame resolution of 1024× 768, the performance could be increased by
7%. Due to the higher data locality, the TCPA was able to compute 60 frames per
seconds, while the reconfiguration overhead was only 7 µs. By performing such
an ultra-fast reconfiguration, the overhead for switching between the different
buffer schemes can be neglected.

However, the addressable RAM mode of operation can be more efficient in
the case of partial buffering or non-raster scanning. As a future work, we intend
to analyse not only the power efficiency of our approach, but also the system
performance by considering different window sizes, partitioning schemes as well
as scenarios of concurrent applications competing for shared resources such as
in invasive computing [16].
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