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Abstract The paper proposes the application of evolutionary-based optimization
coupled with physics-based and adaptively-trained surrogate model to the solu-
tion of both two- and three-dimensional aerodynamic optimization problems. The
shape parameterization approach consists of the Class-Shape Transformation (CST)
method with a sufficient degree of Bernstein polynomials to cover a wide range
of shapes. The in-house ZEN flow solver is used for RANS aerodynamic solution.
Results show that, thanks to the combined usage of surrogate models and smart
training, optimal candidates may be located in the design space even with limited
computational resources with respect to standard global optimization approaches.

1 Introduction

In the context of modern and innovative air vehicle design, the development and
assessment of new theoretical methodologies represents a cornerstone for reduc-
ing the experimental load, exploring trade-offs and proposing alternatives along the
design path. The fidelity of such methods is essential to reproduce “real-life” phe-
nomena with a significant degree of accuracy and to take them into account since
the very beginning of the design process. However, due to the high computational
effort of high-fidelity methods, a big issue rises when hundreds or thousands of anal-
ysis evaluations, like in parametric or optimization studies, have to be performed. In
order to speed up the computation while keeping a high level of fidelity, the scientific
community is increasingly focusing on surrogate methodologies like meta-models,
multi-fidelity models or reduced order models, which can provide a compact, accu-
rate and computationally efficient representation of the aircraft design performance.
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Nevertheless, the usage of such models is not straightforward as the amount and
quality of information the user has to provide in the learning phase is not known a
priori; furthermore, the efficient exploitation of learning data may be hampered by
the inherent complexity of the design problem, e.g. non-linearities in the physical
model, constraints handling, curse of dimensionality, multi-modal fitness landscape,
accuracy versus computational effort trade-off. Hence, no general rule exists on the
optimal choice of the type of surrogate model, the training and validation strategy,
the combination of surrogate model and optimization algorithm.

In order to reduce the computational effort in training accurate surrogate models
for aerodynamic shape design problems, this paper proposes the adoption of generic
(i.e. not specific to a single surrogate model) in-fill criteria to adaptively and intelli-
gently drive the training process. The adaptive criteria are formulated by explicitly
taking into account the goal function with the help of auxiliary functions which have
to be maximized. The aim is to find new “optimal” design space points which, once
added to the training dataset, provide a “better” surrogate approximation for the
optimization purpose. Two surrogate models will be investigated, namely a Kriging
model and a Proper Orthogonal Decomposition (POD) model coupled with Radial
Basis Function Networks for global interpolation of the modal coefficients. More-
over, two choices of the in-fill criteria are presented in the paper and compared to
already published adaptive sampling techniques, like Expected Improvement maxi-
mization for Kriging and in-fill criteria for PODmodel machinery. Two aerodynamic
optimization case studies are proposed to test different combinations of surrogate
models and adaptive sampling approaches once fixed the computational budget in
terms of number of high-fidelity simulations (i.e., CFD analyses). This allows to
measure the performances of the presented strategies in a real-world environment
and to draw some conclusions about the suitability of in-fill criteria to a specific
surrogate model for such a class of problems.

2 Literature Review

Jones et al. [11], among the first, proposed a response surface methodology based
on modelling the objective and constraint functions with stochastic processes (Krig-
ing). The so-called Design and Analysis of Computed Experiments (DACE) stochas-
tic process model was built as a sum of regression terms and normally distributed
error terms. The main conceptual assumption was that the lack of fit associated only
to the regression terms can be considered as entirely due to modelling error, not
measurement error or noise, because the training data are derived from a determin-
istic simulation. Hence, by assuming that the errors at different points in the design
space are not independent and the correlation between them is related to the distance
between the computed points, the authors came up with an interpolating surrogate
model able to provide not only the prediction of objectives/constraints at a desired
sample point, but also an estimation of the approximation error. After the construc-
tion of such a surrogate model, this last powerful property is exploited to build an



Application of Surrogate-Based Optimization Techniques … 67

Efficient Global Optimization (EGO), which can be considered as the progenitor of a
long and still in development chain of surrogate-based optimization (SBO) methods.
Indeed, they found a proper balancing between the need to exploit the approximation
surface (by sampling where it is minimized) with the need to improve the approxima-
tion (by sampling where prediction error may be high). This was done by introducing
the Expected Improvement (EI) concept, already proposed by Schonlau et al. [14],
that is an auxiliary function to be maximized instead of the original objective. Sam-
pling at a point where this auxiliary function is maximized improves both the local
(exploitation) and global (exploration) search.

An overview of SBO techniques was presented also by Queipo et al. [13] and
Simpson et al. [15]. They covered some of the most popular methods in design space
sampling, surrogate model construction, model selection and validation, sensitivity
analysis, and surrogate-based optimization. Forrester and Keane [4] recently pro-
posed a review of some advances in surrogate-based optimization. An important
lesson learned is that only calling the true function can confirm the results coming
from the surrogate model. Indeed, the path towards the global optimum is made of
iterative steps where, even exploiting some surrogate model, only the best results
coming from the true function evaluations are taken as optimal or sub−optimal
design. The true function evaluation has to be also invoked to improve the surrogate
model.With the term “in-fill criteria” it is usually meant some principles which allow
to intelligently place new points (in-fill points) at which the true function should be
called. The selection of in-fill points, also referred to as adaptive sampling or model
updating, represent the core of a surrogate-based optimization method and helps to
improve the surrogate prediction in promising areas of the objective space.

The right choice of the number of points which the initial sampling plan would
comprise and the ratio between initial/in-fill points has been the focus of several
recent studies. However, it must be underlined that no universal rules exist, as each
choice should be carefully evaluated according to the design problem (e.g., number
of variables, computational budget, type of surrogate). Forrester and Keane assumed
that there is a maximum budget of function evaluations, so as to define the number
of points as a fraction of this budget. They identified three main cases according to
the aim of the surrogate construction: pure visualization and design space compre-
hension, model exploitation and balanced exploration/exploitation. In the first case,
the sampling plan should contain all of budgeted points as no further refinement
of the model is foreseen. In the exploitation case, the surrogate can be used as the
basis for an in-fill criterion, that means some computational budget must be saved for
adding points to improve the model. They also proposed to reserve less than one half
points to the exploitation phase as a small amount of surrogate enhancement is pos-
sible during the in-fill process. In the third case, that is two-stage balanced exploita-
tion/exploration in-fill criterion, as also shown by Sóbester [16], they suggested to
employ one third of the points in the initial sample while saving the remaining for
the in-fill stage. Indeed, such balanced methods rely less on the initial prediction
and so fewer points are required. Concerning the choice of the surrogate, the authors
observed that it should depend on the problem size, i.e. the dimensionality of the
design space, the expected complexity, the cost of the true analyses and the in-fill
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strategy to be adopted. However, for a given problem, there is not a general rule. The
proper choice could come up past various model selection and validation criteria.
The accuracy of a number of surrogates could be compared by assessing their ability
to predict a validation data set. Therefore, part of the true computed data should be
used for validation purposes only and not for model training. This approach can be
infeasible when the true evaluations is computationally expensive.

Forrester also underlined that some in-fill criteria and certain surrogate models
are somewhat intimately connected. For a surrogate model to be considered suit-
able for a give in-fill criterion, the mathematical machinery of the surrogate should
exhibit the capability to adapt to unexpected, local non-linear behavior of the true
function to be mimicked. From this point of view, polynomials can be immediately
excluded since a very high order would be required to match this capability, imply-
ing a high number of sampling points. In general, a global search would require a
surrogate model able to provide an estimate of the error it commits when predicting.
Thus, the authors suggested to use Gaussian process based methods like Kriging,
although citing the work of Gutmann et al. [5] as an example of one−stage goal
seeking approach employing various radial basis functions. Finally, some interesting
suitable convergence criterion to stop the surrogate in-fill process were proposed. In
an exploitation case, i.e. when minimizing the surrogate prediction, one can rather
obviously choose to stopwhen no further significant improvement is detected. On the
other hand, when an exploration method is employed, one is interested in obtaining
a satisfying prediction everywhere, so that he can decide to stop the in-fill process
when some generalization error metrics, e.g. cross−validation, falls below a cer-
tain threshold. When using the probability or expectation of improvement, a natural
choice is to consider the algorithm converged when the probability is very low or the
expected improvement drops below a percentage of the range of observed objective
function values. However, the authors also observed that discussing on convergence
criterion may be interesting and fruitful, but “in many real engineering problems we
actually stop when we run out of available time or resources, dictated by design cycle
scheduling or costs”. This is what typically happens in aerodynamic design, where
the high-dimensionality of the design space and expensive computer simulations
often do not allow to reach the global optimum of the design problem but suggest to
consider even a premature, sub-optimal solution as a converged point.

3 Surrogate Model

The surrogate model consists of the Proper Orthogonal Decomposition (POD) of
known CFD flow fields coupled with Radial Basis Function (RBF) Networks to
realize the pseudo-continuous representation throughout the design space. The Sin-
gular Value Decomposition (SVD) solution of the POD basis vectors and coeffi-
cients for steady-state problems is described in references [6, 8–10]. This approach
is normally preferred to the eigenvalue/eigenvector solution as it is faster and eas-
ier to implement. The discussion will unfold with specific reference to compressible
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aerodynamic problems, hence the space domain will be the discretized volume occu-
pied by the flowing air and the snapshot vectors will be defined from computed flow
fields.

The POD/RBF surrogatemodels is built from the vectors s1, s2, . . . , sM represent-
ing the CFD flow fields and obtained by expensive simulations at representative set
of design sites x1, x2, . . . , xM . Finding a Proper Orthogonal Decomposition means
to compute a linear basis of vectors to express any other s j ∈ R

N with the condition
that this basis is optimal in some sense. To compute the optimal basis, we first define
the snapshot deviation matrix

P = (
s1 − s̄ s2 − s̄ · · · sM − s̄

)

where the ensemble mean vector is computed as

s̄ = 1

M

M∑

j=1

s j

The POD decomposition is obtained by taking the singular value decomposition
(SVD) of P

P = UΣVT = U

⎛

⎜⎜⎜
⎝

σ1 · · · 0
...

. . .
...

0 · · · σM

0 · · · 0

⎞

⎟⎟⎟
⎠
VT (1)

with U ∈ R
N×N ,V ∈ R

M×M ,Σ ∈ R
N×M and the singular values σ1 ≥ σ2 ≥ · · · ≥

σM ≥ 0. The POD basis vectors, also called POD modes, are the first M column
vectors of the matrixU, while the POD coefficients αi (x j ) are obtained by projecting
the snapshots onto the POD modes:

αi (x j ) = (s j − s̄,φi ) (2)

If a fluid dynamics problem is approximatedwith a suitable number of snapshots from
which a rich set of basis vectors is available, the singular values become small rapidly
and a limited number of basis vectors are adequate to reconstruct and approximate
the snapshots as they preserve the most significant ensemble energy contribution. In
this way, POD provides an efficient mean of capturing the dominant features of a
multi-degree of freedom system and representing it to the desired precision by using
the relevant set of modes. The reduced order model is derived by projecting the CFD
model onto a reduced space spanned by only some of the proper orthogonal modes or
POD eigenfunctions. This process realizes a kind of lossy data compression through
the following approximation

s j � s̄ +
M̂∑

i=1

αi (x j )φi (3)
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where

M̂ ≤ M =⇒
∑M̂

i=1 σ 2
i∑M

i=1 σ 2
i

≥ ε (4)

and ε is a pre-defined energy level. In fact, the truncated singular values fulfils the
relation

M∑

i=M̂+1

σ 2
i = εM̂

If the energy threshold is high, say over 99% of the total energy, then M̂ modes are
adequate to capture the principal features and approximately reconstruct the dataset.
Thus, a reduced subspace is formed which is only spanned by M̂ modes.

3.1 Pseudo-continuous Global Representation

Equation3 allows to get a POD approximation of any snapshot s j belonging to the
ensemble set. Indeed, the model does not provide an approximation of the state
vector at design sites which are not included in the original training dataset. In other
words, the POD model by itself does not have a global predictive feature, i.e. over
the whole design space. As the aim is to exactly reproduce the sample data used
for training and to consistently catch the local data trends, a Radial Basis Function
(RBF) network answers to these criteria and has been chosen for POD coefficients
interpolation. Gaussian, multi-quadric and inverse quadratic functions are used. The
RBF parameters are found by imposing the interpolation condition on the training
set for any modal coefficient i ≤ M̂ .

The RBF width parameters have a big influence both on the accuracy of the
RBF model and on the conditioning of the solution matrix. In particular, it has been
found (Refs. [3, 5]) that interpolation errors become high for very small and very
large values of the width parameter θ , while the condition number of the coefficient
matrix increases with increasing values of θ . Therefore, they have to be “optimal”
in the sense that a tuning of the width parameters is needed to find the right trade-off
between interpolation errors and solution stability (Ref. [3] for a discussion about
how to properly select the best set of parameters). The pseudo-continuous prediction
of the flow field at a generic design site w is then expressed as:

s(x) = s̄ +
M̂∑

i=1

αi (x)φi (5)

This provides a useful surrogate model which combines design of experiments for
sampling, CFD for training, POD for model reduction and RBF network for global
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approximation. In conclusion, an explicit, global, low-order and physics-basedmodel
linking the design vector and the state vector has been derived and will be used as
surrogate model.

4 Surrogate Model Sequential In-fill

The strategy for training a surrogate model is referred to as the process of selecting a
proper set x1, x2, . . . , xM on which the surrogate model is built. The training strategy
is heavily dependent on the type and scope of the surrogate model and, in principle,
has to be tailored on it. Indeed, the addition of new samples, if not completely ran-
dom, must follow some specific criteria that may be very different depending on the
purpose of the training process. For instance, Latin Hypercube Sampling (LHS) has
been designed to satisfy space-filling requirements and obtain a good coverage of the
design space. Here, the emphasis is given on sampling strategies which are able to
“adapt” to the response within an optimization process: in particular, they can aim at
improving the quality of the model prediction (error-driven strategies) or minimizing
the objective function (objective-driven strategies). Most of the adaptive sampling
approaches pursue the exploration/exploitation trade-off, where exploration means
sampling away from available data, where the prediction error is supposedly higher,
while exploitation means trusting the model prediction, thus sampling where the sur-
rogate provides global minima. It is clear that a trade-off between the two behaviors
is needed: indeed, exploration is useful for global searching, but it may lead to unveil
uninteresting regions of the design space; on the other hand, exploitation helps to
improve the local accuracy around the predicted optima, but it may result in local
minima entrapment. Figure1 provides a simple example of adding a new training
point by using respectively exploitation, exploration and balanced approaches. Given
a set of training points (black circle points) evaluated on the true function (solid black
line), a surrogate model (dashed black line) is built: if a new sample has to be added,
a pure exploitation approach would place it where the global minimum of the sur-
rogate is detected, i.e. very close to one of the training point (triangle point); a pure
exploration approach, instead, would lead to sample where themaximum uncertainty
in the model prediction is found, i.e. far from available training points (circle point);
a balanced exploration/exploitation approach combines the two aspects, thus pro-
viding a new sample which significantly improves the surrogate prediction (square
point).

Here, we are interested in designing balanced in-fill criteria for a generic surrogate
model. Such criteria are formulated in terms of an auxiliary function referred to as v

function hereinafter and called potential of improvement. Given the generic location
in the design space x, the objective function f (x) to minimize, a set of n available
sampling points {Xn} and the corresponding set of true objective function values
{FXn }

Xn = {x1, x2, . . . , xn} FXn = { f (x1), f (x2), . . . , f (xn)}
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Fig. 1 Exploitation versus exploration, 1D example

the update of the surrogatemodel can be realized by finding a new sample xn+1 which
maximizes the potential of improvement:

xn+1 = argmax
x

v(x, f̂ (x), Xn, FXn )

where x is the generic design space location and f̂ (x) is the surrogate prediction at
x.

Hereinafter, the maximization of the auxiliary function is achieved in the follow-
ing way: a huge Latin Hypercube Sampling dataset (e.g., five hundred times the
dimension of the design space) is computed and the values of the auxiliary functions
are computed at each point (this requires limited computational effort as the auxiliary
function only depends on the surrogate prediction, which is fast to obtain, and on the
true objective function values at already collected points); hence, the new sample is
located where the maximum value of the auxiliary function is met. In order to avoid
the duplication of the updating samples when iterating the in-fill process, the seed
of the Latin Hypercube is changed at each iteration.

As concerns the type and nature of the potential of improvement function, previous
investigations [7] showed that error-driven in-fill criteria may lead to intensively
explore the design space in order to reduce the prediction error, but, conversely,
this resulted in a lack of efficiency of the whole optimization process when fix-
ing the total computational budget. Hence, in the following section the discussion
will focus on objective-driven approaches which proved to be more suitable to
global optimization. In particular, two criteria will be proposed: the first is based
on the factorization of the potential of improvement in order to explicitly realize the
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trade-off between exploration and exploitation; the second is defined according to
the Expected Improvement concept.

4.1 Factorization Criterion

The first proposal of adaptive in-fill criterion aims at combining exploration and
exploitation by means of a generic factorization as follows:

v(x, f̂ (x), Xn, FXn ) = g(x, Xn)h( f̂ (x), FXn ) (6)

The functions g and h measure the exploration and model trust contribution
respectively. In particular, the exploration function g should estimate how strong
is the influence of the set of already collected samples Xn on a generic candidate x.
One of the preferred approaches is tomake the g function dependent on the Euclidean
distance d(x, xi ) between the generic design space location x and the i-th element
of the training set Xn:

g(x, Xn) = g(d(x, x1), d(x, x2), . . . , d(x, xn))

On the other hand, the exploitation function h should take into account how the
surrogate prediction f̂ compares with the available set of true objective function
values FXn . In particular, this contribution should put emphasis on trusting the model
prediction, hence the h function should exhibit its maxima in correspondance to the
minima of f̂ .

Of course, different in-fill criteria can be selected by properly designing the func-
tions g and h. In the present context, the following solution is adopted:

g(x, Xn) = minxi∈Xn d(x, xi )
maxxi ,x j∈Xn d(xi , x j )

(7)

h( f̂ (x), FXn ) = exp
(
−σ

f̂ (x) − fmin

fmax − fmin

)
(8)

where σ is a tuning parameter, fmin = min{ fx1 , . . . , fxn } and fmax = max{ fx1 , . . . ,
fxn }. This choice of the h function provides two main features:

1. the value of h approaches the unity when f̂ (x) approaches fmin;
2. for f̂ (x) < fmin −→ h( f̂ (x), FXn ) > 1;

As a consequence, “bad” candidates (from the surrogate model point of view) will
be filtered out, while “good” candidates (i.e., candidates with predicted objective
function values lower than the currentminimumof the true objective function)will be
recognized and rewarded with higher rank. However, if they are too close to samples
stored in Xn , they will be penalized by the g function. Hence, a trade-off is realized
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Fig. 2 Potential of improvement based on factorization criterion, 1D example

between surrogate prediction and location in the design space. Figure2 shows the
potential of improvement function for three values of the σ parameter. The case is the
one depicted in Fig. 1. The effect of the σ parameter is clearly observable: indeed, for
σ = 2 the peak of the potential of improvement is located around x � 0.35, i.e. in
a region which is uninteresting to discover the global optimum of the true objective
function. This occurs because, for σ = 2, the filtering power of the h function is
relatively small and so it is its weight within the factorization: as a consequence,
the g function dominates, the exploration-exploitation trade-off is not realized (the
exploration contribution ismuchhigher) andnewcandidateswill be chosen according
to their distance from collected samples. The landscape changes for σ = 10 and
σ = 20, as the levels of v are globally flattened and the peak moves to x � 0.7, i.e.
very close to the position of the true objective function optimum.

4.2 Expected Improvement-Like Criterion

This criterion has been designed trying to mimic the same rationale of the Expected
Improvement criterion, usually coupled to a Kriging-based surrogate, as highlighted
in Sect. 2. The present approach, named “EI-like” hereinafter, represents a general-
ization of that method: indeed, for a generic surrogate model, the information about
the uncertainty of the surrogate is not available, while a Kriging model, being a
Gaussian process, provides an estimate of the prediction variance together with the
prediction itself. The potential of improvement is designed to have the same form of
the Expected Improvement function, that is:
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v(x, f̂ (x), Xn, FXn ) = ( fmin − f̂ (x))Φ
( fmin − f̂ (x)

ŝ(x)

)
+ŝ(x)φ

( fmin − f̂ (x)
ŝ(x)

)

(9)
where ŝ(x) is an estimate of the prediction error and Φ(x) and φ(x) are respectively
the cumulative distribution and probability density functions of a standard normal
distribution. The prediction error is estimated as follows:

ŝ(x) = 1

2
| fmax − fmin| exp

(
−γ

maxxi ,x j∈Xn d(xi , x j )

minxi∈Xn d(x, xi )

)
(10)

where γ is a tuning parameter.
The ŝ function has been designed in order to quickly increase with increasing

distance from an available sample and to have an order of magnitude related to the
actual values of the objective function. Figure3 shows the potential of improvement
function for three values of the γ parameter. The case is the one reported in Fig. 1.
The γ parameter strongly alters the potential of improvement profile in terms of
potential levels and location of the peak. Indeed, for γ = 0.001 and 0.01, the peak
of the potential of improvement is around x � 0.7, i.e. in the vicinity of the true
minimum, thus providing a balanced prediction for a new sample. For γ = 0.1,
instead, the peak moves to x � 0.3 and the balance would significantly shift in favor
of pure exploration: in fact, injecting a new sample at x � 0.3 would not improve
the surrogate prediction of the true objective function in the vicinity of the global
optimum at the next iterate.

Fig. 3 Potential of improvement based on EI-like criterion, 1D example
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5 Surrogate-Based Optimization

Theworkflowof the surrogate-based shape optimization (SBSO) is depicted in Fig. 4.
Basically, it starts with an a-priori design of experiment (a Latin Hypercube sampler)
whose aim is to initialize the database population: typically, based on literature results
and author’s experience, the dimension of the initial sampling should not exceed one-
third of the total computational budget. A parameterization module transforms the
design vectors into geometrical shapes, for each shape a volume mesh is computed
by launching an in-house developed automatic mesh generator and a set of CFD
computations are executed in parallel with the in-house ZEN CFD flow solver [2].
Once the converged flow field variables are available, the POD/RBF surrogate model
is built as described in Sects. 3 and 3.1. After that, the workflow in Fig. 4 shows two
internal cycles, namely the sequential in-fill (also called adaptive sampling) and
the optimization update. These iterative phases reflect two different needs: first of
all, providing an improved and reliable model to the optimizer; then, iterating the
optimizer to refine the optimum search.

The first cycle (database updating by in-fill criteria) is based on the techniques
described in Sect. 4 and is aimed at improving the surrogate model prior to the
optimization phase by providing new design candidates xnew to be added to the
ensemble database. The condition to exit from this internal loop is based either on
pre-defined levels of improvement or on computational budget considerations.

Fig. 4 Workflow of surrogate-based evolutionary optimization: design database updating by adap-
tive in-fill and surrogate optima addition



Application of Surrogate-Based Optimization Techniques … 77

The second cycle (database updating by optimization) consists of a series of
sequential optimizations where, at i-th iteration, the surrogate model is updated
with the high-fidelity evaluation of the optimum candidate found at iteration
(i − 1)-th. This phase allows for including optimal or sub−optimal design sites
xopt , provided by the surrogate-based optimization, into the POD ensemble database
and should lead to refine the search process in the design space region where the
“true” optimum resides. The loop terminates either when the residual of the objec-
tive function of the predicted optima falls below a pre-defined threshold or when the
computational budget limit has been reached. The optimizer consists of an evolu-
tionary algorithm implemented within the in-house ADGLIB optimization library
[17].

6 Application to Aerodynamic Design Cases

In the next sections, two shape optimization cases are considered, i.e. the RAE
2822 airfoil and the isolated wing proposed within the 3rd AIAA Drag Prediction
Workshop. Both cases are set in transonic viscous flow conditions. The results of
global optimization by means of evolutionary algorithms and CFD evaluation of the
objective function will be taken as reference for surrogate-based studies.

6.1 RAE 2822 Airfoil Case

The shape optimization problem is formulated as follows:

minimize
x

Cd(x)

subject to Cl(x) = Cl,base = 0.824

Cm(x) ≥ Cm,base = −0.092

A(x) ≥ Abase = 0.7787m2

where x is the generic design vector, A(x) is the total area enclosed by the generic
airfoil and Abase is the corresponding value for the baseline RAE 2822 airfoil. The
lift constraint is explicitly satisfied by performing the flow simulation at fixed lift.
The pitching moment and the geometric constraint are treated by using a penal-
ization approach. A unit airfoil chord is assumed, the pitching moment is evalu-
ated at the quarter-chord, the Mach number is 0.734 and the Reynolds number is
6.5 × 106.
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6.1.1 Parameterization

The CST (Class-Shape Transformation) approach [12] describes an airfoil shape as
a function of the surface parameter ψ = x

c , where x is the x-coordinate along the
chord line and c is the chord length. The y-coordinate are obtained for upper and
lower side as follows:

yu
c

(ψ) = C0.5
1.0 (ψ)Su(ψ) + ψ

ΔzT E

2c
(11)

yl
c

(ψ) = C0.5
1.0 (ψ)Sl(ψ) − ψ

ΔzT E

2c
(12)

where C0.5
1.0 (ψ) is the class function for rounded leading edge and pointed trailing

edge airfoils and Su(ψ) and Sl(ψ) are the so-called shape functions for upper and
lower sides:

C0.5
1.0 (ψ) = ψ

√
(1 − ψ) (13)

Su(ψ) =
n∑

i=0

Aui Ki,nψ
i (1 − ψ)n−i (14)

Sl(ψ) =
n∑

i=0

Ali Ki,nψ
i (1 − ψ)n−i (15)

Shape functions are Bernstein polynomials of order n, ΔzT E is the trailing edge
thickness, Ki,n are binomial coefficients

Ki,n =
(
n

i

)
= n!

i !(n − i)!
and the Bézier coefficients Aui and Ali are designweights which can be either defined
a-priori in a design optimization process or computedwith a least-squares fit tomatch
a specified geometry. The first and last design parameters, i.e. Au,l0 and Au,ln , are
directly linked to well known airfoil shape parameters like leading edge radius Rle

and trailing edge angle β, being Au,l0 =
√

2Rle
c and Au,ln = tan β. In the present

context, 6th-order Bernstein polynomials are considered, hence each airfoil side
(upper and lower) is described by 7 design variables for a total number of 14 design
variables. The corresponding design weights, which define the RAE 2822 profile
according to the chosen parameterization, have been obtained by least-squares fit
and are reported in Table1. The design space bounds are defined by taking ±50% of
the baseline design weights.
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Table 1 Design weights representing the RAE 2822 airfoil shape with 6th-order Bernstein poly-
nomials

Design
weights

±
√

2Rle
c A1 A2 A3 A4 A5 tan (β)

Upper
side

0.12658 0.13786 0.16165 0.16418 0.22047 0.17191 0.21321

Lower
side

−0.12892 −0.14264 −0.13111 −0.26147 −0.02525 −0.11451 0.07275

6.1.2 Optimization Studies

Five optimization studies have been performed employing different methods and
computational load. Details are reported in Table2.

Three SBOSA (Surrogate Based Optimization with Sequential Adaptation) runs
have been launched, sharing the same setup but exploiting respectively the factor-
ization (SBOSA-FC) and the EI-like (SBOSA-EIL1 and SBOSA-EIL2) criteria. In
the latter case, two simulations have been launched with two different values of the
EI-like criterion tuning parameter γ in order to explore its effect on the search pro-
cess. All SBOSA simulations consist of three stages: a a-priori LHS sampling of
42 samples, a model updating stage with adaptive sampling (208 sequential calls of
the chosen in-fill criterion) and a surrogate-assisted evolutionary optimization stage
consisting of 50 iterative genetic algorithm calls with re-injection of the computed
surrogate-based optima in the POD/RBF model database. The total computational
budget comprises 300 CFD computations, a rather low effort if considering that the
dimension of the design space is 14 and the convergence of classical evolutionary
algorithms may require a number of evaluations tens of times higher. No criterion
for setting the convergence of the surrogate-assisted optimization is provided here:
indeed, the aim is to verify that the attained level of improvement, once run out of
the limited computational budget, is significant and possibly “close” to the solution
obtainedwithmore expensive algorithms. Thiswould demonstrate that the surrogate-

Table 2 Summary of optimization studies for RAE 2822 case

Opt. run ID SBOSA-EIL1 SBOSA-EIL2 SBOSA-FC EGO PGA

Opt. method EI-like + GA EI-like + GA FC + GA EI GA

Tuning
parameter

γ = 0.001 γ = 0.005 σ = 10 – –

Obj. func.
eval.

POD/RBF POD/RBF POD/RBF Kriging CFD

Total no. of
evaluations

300 300 300 224 6400
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assisted searchmethod is considerably efficient in exploring high-dimensional design
spaces.

EGO (Efficient Global Optimization) run is performed by using the DAKOTA
package [1]. As already stated in Sect. 2, the EGO algorithm searches for the design
space location which maximizes the Expected Improvement function and updates
the Kriging model database accordingly. The total number of iterations is set to 224.

PGA (Plain Genetic Algorithm) is a pure evolutionary optimization, it is not
assisted by any surrogate model and the objective function evaluation is carried
out by means of the CFD flow solver (true evaluation of the objective function). A
population size of 64 individuals is let evolve for 100 generations with a crossover
probability activation of 100% and a mutation rate of 2%.

The true objective function history of the SBOSA runs are reported in Fig. 5.
Candidate samples are clearly distinguished according to the criterion used to select
them (LHS, EI-like or FC and GA). The solid dark grey line marks the advancement
of the minimum value of the true objective function. It is clearly observable how
the initial LHS stage (dark grey diamonds) provides only for the initialization of the
surrogate, while the objective-driven in-fill points (light grey squares) contribute to
progressively drop the objective function levels. In all cases, the overall minimum
is not found within the GA-assisted final stage, but rather within the adaptive in-fill
phase: this is not surprising as the in-fill criteria are objective-driven, i.e. they rely
on the minimization of the surrogate objective function in a balanced exploration-
exploitation approach. Figure6 shows the progress of the true objective function
minimum for each of the five optimization studies. The x-axis (progressive number
of candidates) is reported in logarithmic scale for the sake of clarity as different
scales are involved. It is clearly observable how the surrogate-based optimizations
manage to achieve significant improvement with a limited number of CFD evalu-
ations with respect to the plain GA. In particular, Table3 summarizes the results
of each optimization study in terms of minimum objective function value attained
and number of effective CFD evaluations needed to capture it. SBOSA provides an
interesting compromise solution between the greater performance of PGA at much
higher computational cost and the reduced performance of EGO at increased speed
(best candidate found with only 81 evaluations).

(a) SBOSA-EIL1 ( = 0.001) (b) SBOSA-EIL2 ( = 0.005) (c) SBOSA-FC

Fig. 5 Objective function history of SBOSA optimization runs
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Fig. 6 Progress of minimum values of the objective function for RAE 2822 airfoil optimization
studies

Table 3 RAE 2822 optimization, comparison of best candidates

Run CFD evaluations Objective value Improvement

RAE 2822 baseline – 0.0194 –

PGA best 4200 0.0116 −40.2%

SBOSA-EIL1 best 174 0.0122 −37.1%

SBOSA-EIL2 best 88 0.0118 −39.2%

SBOSA-FC best 126 0.0130 −33.0%

EGO best 81 0.0132 −32.0%

Figure7a depicts a comparison of the RAE 2822 and the optimized airfoils con-
tour: it can be observed that, for all optimal shapes, there has been a significant reduc-
tion of the leading edge radius and an important de-cambering in the fore region (up to
50% airfoil chord). Figure7b better highlights this feature as the camber distributions
of baseline and optimized airfoil shapes are shown. Reducing the leading edge radius
is essential to increase the pressure peak and to dampen the shock wave strength,
while the negative camber helps to fit within the pitching moment constraint.

Figure8 shows a comparison of pressure coefficient and skin friction distribution
between the RAE 2822 and the optimized airfoils. The shapemodification shifted the
shock location forward and reduced the local Mach number upstream the shock, thus
reducing its intensity and preventing the incipient shock-induced separation which
is observed on the RAE 2822 skin friction profile.
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(a)Shape (b) Camber distribution

Fig. 7 Geometry comparison between RAE 2822 and optimized airfoils

(a) Cp distribution (b) Cf distribution

Fig. 8 Aerodynamic comparison between RAE 2822 and optimized airfoils

6.2 Drag Prediction Workshop Wing Case

The optimization case is inspired to one of the test cases issued within the 3rd AIAA
Drag Prediction Workshop (DPW). The viscous flow around an isolated wing at
Mach number of 0.78, Reynolds number of 5 millions and angle of attack (AOA)
of 1◦ is considered. Fully turbulent flow is assumed. The constrained minimization
problem is defined as follows:

minimize
x

− CL(x)
CD(x)

subject to max
s

(
t (x, s)

c

)
= 0.136

CL(x) ≥ 0.5

CM(x) ≥ −0.05

where c is the local wing chord value and t (x, s) is the wing thickness distribution
along the chordwise abscissa s for a generic design vector x.
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6.2.1 Parameterization

As an extension of the CST airfoil parameterization, a wing shape can be obtained
by distributing the airfoil shape function along another surface parameter η, rep-
resenting the wing span, with the desired law. Once selected Nx , the order of the
Bernstein polynomial which represents the wing airfoils, the complete wing shape
can be obtained by transforming the coefficients of the Bernstein polynomial into a
distribution along the spanwise direction using any appropriate numerical technique.
In this way, the entire wing surface is defined through the same basic component air-
foils of the root airfoil, but the magnitude of each of them varies across the wing span
according to the expansion technique. For example, using the Bernstein polynomial
as expansion technique, the spanwise variation of each coefficients Aui in Eqs. 14
and 15 can be stated in the form

Aui ≡ Aui (η) =
Ny∑

j=0

Bui, j S j,Ny (η) (16)

where
Sj,Ny (η) = K j,Nyη

j (1 − η)Ny− j

Ny is the order of the expansion Bernstein polynomial and K j,Ny is the usual binomial
coefficient.

By inserting Eq.16 into Eq.15 and adopting the same technique for the lower
surface, the bi-variate Bernstein polynomial shape function for the entire wing is
derived

Su(ψ, η) =
Nx∑

i=0

Aui (η)Si,Nx (ψ) = (17)

Nx∑

i=0

Ny∑

j=0

[
Bui, j K j,Nyη

j (1 − η)Ny− j
]
Ki,Nxψ

i (1 − ψ)Ny−i

Sl(ψ, η) =
Nx∑

i=0

Ali (η)Si,Nx (ψ) = (18)

Nx∑

i=0

Ny∑

j=0

[
Bli, j K j,Nyη

j (1 − η)Ny− j
]
Ki,Nxψ

i (1 − ψ)Ny−i

The wing shape will be then represented by 2 × (Nx + 1) × (Ny + 1) design
parameters, namely Bui, j and Bli, j , i = 0, . . . , Nx , j = 0, . . . , Ny . By multiplying
the wing shape function by the airfoil-like class function, the overall shape of the
wing can be computed. However, a wing is generally and naturally conceived with
spanwise distributions for twist angle, dihedral angle, sweep angle and taper ratio:
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this additional parameters have to be introduced in the CST model in order to cover
realisticwing concepts. The actualwing surface cartesian coordinates can be obtained
from the equations

x = ψL(η) + xLEroot +
∫ η

0
[sinΛ(η)]dη (19)

y = b

2
η (20)

zu,l = L(η)C0.5
1.0 (ψ)Su,l(ψ, η) + L(η)ψ[ΔzT E (η) − tan αT (η)] + (21)

L(η)

∫ η

0
[sin δ(η)]dη

where the following spanwise distributions have been introduced: L(η) chord length,
Λ(η) sweep angle,ΔzT E (η) trailing edge thickness, αT (η) twist angle, δ(η) dihedral
angle. b is the wing span length and xLEroot is the x-position of the leading edge of the
root airfoil. Several laws can be defined for spanwise distributions, but the standard
approach which assures the manufacturing feasibility of the wing shape is to assume
constant (e.g. sweep angle), piecewise constant (e.g. dihedral angle), linear (e.g. twist
angle) or piecewise linear (e.g. chord length/tapering) variations.

In the present case, one design variable is assigned to control the wing tip twist
angle while the twist angle at the root section is kept fixed. A linear twist distribution
is adopted along the wing span. The shape design variables are 16, as Nx and Ny are
chosen to be respectively 3 and 1. Hence, the total number of design variables is 17.

6.2.2 Mesh Generation

The computational mesh is generated by using the ICEMCFD commercial package.
Once defined the wing shape from a specific design vector by using the aforemen-
tioned CST approach, three wing sections, namely root, mid and tip sections, are
imported within ICEM CFD and employed to generate support curves and surfaces.
A replay script file is used to fully parametrize the blocking arrangement, the struc-
tured grid generation and the mesh export in a file format suitable for the CFD flow
solver. Eight blocks are designed around the wing shape and a family of two grids is
defined: the coarse and fine mesh consist respectively of 712,448 cells and 2,959,872
cells. A sketch of the surface mesh distribution is shown in Fig. 9. Both meshes are
conceived to respect the y+ = O(1) condition, as also shown in Fig. 10 where the
contour map of y+ distribution on the wing surface is depicted. The coarse mesh
will be used for optimization studies, while the fine mesh will provide more accu-
rate comparisons of the aerodynamic flow for optimized shapes at the end of the
optimization process.
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(a) Coarse mesh (b) Fine mesh

Fig. 9 Computational mesh on DPW wing surface

(a) Coarse mesh (b) Fine mesh

Fig. 10 y+ distribution on DPW wing surface

6.2.3 Optimization Studies

Similarly to the previous case, three optimization approaches are compared: a plain
evolutionary-based optimization and two surrogate-assisted approaches. Table4 pro-
vides details of each study. In particular, PGA (PlainGeneticAlgorithm, also referred
to as DGA, Direct Genetic Algorithm) features a single-objective, genetic algorithm
run (40 generations with a population size of 96 candidates), calling the CFD flow
solver as fitness evaluator. As in the previous case, the EGO method is launched
through the Dakota interface. SBOSA-EIL approach is the same as for the RAE
2822 case, but here the total budget of true function evaluations is set to 102 and the
database breakdown is as follows:

• 16 samples are suggested by LHS and the POD/RBF surrogatemodel is initialized;
• 56 samples are iteratively provided by applying the EI-like in-fill criterion;
• 30 samples are finally suggested by optimizing on the surrogate with repeated GA
calls.
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Table 4 Summary of optimization studies for DPW wing

ID Obj. function eval. Opt. method Total no. evaluations

PGA CFD GA 3936

SBOSA-EIL POD/RBF SBO (EI-like + GA) 102

EGO Kriging Dakota EGO 502

The baseline shape is the wing geometry DPW-W1 proposed within the 3rd
Drag Prediction Workshop. With respect to the original design point (Mach = 0.76,
AOA = 0.5◦), some changes are introduced in order to make the optimization prob-
lemharder. Indeed, the primary interest is to verify the capability of surrogate-assisted
techniques to recover optimal or sub-optimal design solutions by using limited com-
putational resources. To this aim, a convincing test is to force the algorithm to start
frompoor aerodynamic solutions and observe howquick it is to fall back in promising
regions. Hence, a new design point suitable for optimization purposes is identified at
a higherMach number (= 0.78) and a higher angle of attack (= 1.0◦). Table5 reports
the aerodynamic coefficients and objective function values for three design points,
namely the original one, the optimization one and an intermediate one. The latter
has been reported in order to highlight that, by increasing only the Mach number
at fixed angle of attack, the lift coefficient and hence the induced drag would not
be altered significantly: as a matter of fact, moving the AOA to 1◦ would force the
optimizer to heavily work on twist and shape design variables in order to decrease
the lift coefficient and the induced drag accordingly.

The true objective function history of the SBOSA-EIL run is reported in Fig. 11.
For the sake of clarity, a constant is added to the objective function in order to allow
for using a logarithmic scale. Candidate samples are clearly distinguished according
to the criterion used to select them (LHS, EI-like and GA). The solid dark grey
line marks the advancement of the minimum value of the true objective function.
As in the airfoil case, the initial LHS stage (dark grey diamonds) provides only for
the initialization of the surrogate, as the aerodynamic performance is very poor. The
objective-driven in-fill points (light grey squares) contribute to progressively drop the
objective function levels prior to the final, steepest downhill during the GA-assisted
stage (black circles). Unlike the previous case, here the best candidate is found during
the GA-assisted search.

Figure12 shows the progress of the true objective function minimum for all
optimization studies. The x-axis (progressive number of candidates) is reported in

Table 5 Comparison of aerodynamic coefficients of the baseline wing

Mach AOA (◦) CL CD CM Obj. function

0.76 0.5 0.504 0.0237 −0.0722 −16.323

0.78 0.5 0.510 0.0283 −0.0785 −9.927

0.78 1.0 0.563 0.0337 −0.0781 −8.776
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Fig. 11 Objective function history of DPW wing SBOSA-EIL optimization run

Fig. 12 Progress of minimum values of the objective function for DPW wing optimization studies
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logarithmic scale for the sake of clarity as different scales are involved. The SBOSA-
EIL optimization, despite the very limited number of CFD evaluations, manages to
achieve the same performance level with respect to the plain GA. The EGO algo-
rithm once again turns out to stay somewhat in the middle in terms of computational
budget and performance. To better compare the algorithms, Table6 summarizes the
results of each optimization study in terms of aerodynamic coefficients, minimum
objective function value attained, number of effective CFD evaluations needed to
capture it and a measure of CFD evaluations saving with respect to PGA run. It can
be observed that PGA and SBOSA-EIL achieve the same objective function mini-
mum value, although the two optima candidates are clearly different as they exhibit
different aerodynamic coefficients. This suggests that the optimization case features
non-unique optima solutions. However, the valuable point of such a comparison
lies in the fact that, by employing surrogate-assisted procedures coupled to adaptive
objective-driven training, the global optimum can be detected by exploiting only
3% of the computational budget of a genetic algorithm optimization. Table7 sum-
marizes the aerodynamic coefficients and objective function values for DPW-W1,
SBOSA-EIL and PGA candidates as computed on the fine mesh: small deviations
can be observed with respect to the coarse mesh, a slight loss in the lift coefficient
for PGA optimum deteriorates the objective performance due to the triggering of the
corresponding penalty. On the other hand, the goal function of SBOSA-EIL optimum
is even better due to lower drag contribution and lower penalization of the pitching
moment coefficient.

In order to evaluate the difference between optimal candidates, aerodynamic com-
parisons are proposed in the following figures. Figure13 shows the contour map of
the pressure coefficient on the upper surface of each optimal candidate. A general
reduction of the wing loading can be observed which allowed to reduce the shock

Table 6 Optimal candidates comparison

ID CL CD CM Obj.
function

CFD
evaluations

CFD saving

Baseline 0.563 0.0337 −0.0781 −8.776 – –

PGA 0.500 0.0236 −0.0522 −21.14 3700 0.0

EGO 0.502 0.0260 −0.0554 −18.99 485 −87%

SBOSA-
EIL

0.514 0.0242 −0.0529 −21.14 100 −97%

Table 7 Optimal candidates comparison, fine mesh

ID CL CD CM Obj. function

Baseline 0.569 0.0340 −0.0796 −7.970

PGA 0.492 0.0228 −0.0489 −21.013

SBOSA-EIL 0.507 0.0234 −0.0505 −21.638
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Fig. 13 DPW wing optimal candidates comparison, pressure coefficient contour map

wave strength. This is also confirmed by the fact that the lift coefficient of all can-
didates are lower than the baseline value and close to the constraint threshold. The
SBOSA-EIL solution is very similar to the PGA one, some slight differences are
observed in the outboard wing isobars.

Moreover, the shape modification worked to push the wing loading forward in
order to satisfy the pitching moment constraint. This feature is more clear in Fig. 14,
where the sectional pressure distribution at two spanwise sections (26 and 82% of
the span length) is shown. The PGA and SBOSA-EIL solutions present different
design choices on the outboard wing, the former being more flat and less loaded, the
latter showing a peak near the leading edge followed by a gentle compression. For
the sake of completeness, the section shape comparison is also provided in Fig. 15.
The most evident geometry modifications can be summarized as follows:

• increase of the outboard twist angle for the SBOSA-EIL optimum candidate;
• airfoil de-cambering for SBOSA-EIL optimum to compensate for twist angle
increase;

• reduction of leading edge radius for all the optimized shapes.

Of course, each design choice is strictly related to other design features, but only
their combination affects the objective function/constraint evaluation. For instance,
PGA and SBOSA-EIL represent two different design examples, however they share
the same level of performance in light of the chosen objective function. Indeed, in
the former case the twist angle distribution in slightly higher than the DPW wing
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(a) Inboard section, y
b = 0.26 (b) Outboard section, y

b = 0.82

Fig. 14 DPW wing optimal candidates comparison, sectional pressure distribution

(a) Inboard section, y
b = 0.26 (b) Outboard section, y

b = 0.82

Fig. 15 DPW wing optimal candidates comparison, section shape

but the wing airfoils are shaped to lower the wing loading along the wing span; in
the latter case, the section shape in the inboard wing region is designed to minimize
the wing loading in order to reduce the main source of wing pressure drag as much
as possible and, to compensate this effect, the outboard wing twist is increased.
Figure16 provides a clarifying overview of such a concept as it reports the wing lift
and (pressure) drag loading along the wing spanwise direction. It can be observed
how the drag levels on the inboard region are reduced for the SBOSA-EIL candidate
by reducing the sectional lift accordingly, while the PGA optimum exhibits very low
drag contribution on the mid-outboard wing.
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(a) Lift loading cCl (b) Drag loading cCd

Fig. 16 DPW wing optimal candidates comparison, wing span loading

7 Conclusions

The paper proposed a surrogate-assistedmethodology suitable to aerodynamic shape
optimization. A physics-based surrogate model coupling Proper Orthogonal Decom-
position and Radial Basis Functions interpolation has been exploited to predict
approximate values of the objective functions throughout the optimization process.
The surrogate model database has been split in three stages, namely a space-filling
Latin Hypercube stage to initialize the surrogate, an adaptive sampling stage in
which the model is gradually improved and a final optimization stage in which opti-
mal candidates predicted by the surrogate model are re-injected in the database and
the model is updated accordingly. The adaptive sampling phase consists in applying
two ad hoc in-fill criteria which have been purposely designed to enrich the surro-
gate model database towards the realization of the exploration/exploitation trade-off.
The first in-fill criterion is designed to mimic the Expected Improvement Function
maximization, the second is based on a sort of factorization of the exploration and
exploitation effects.

Two aerodynamic cases have been proposed to test the methodology: the shape
optimization of the well-known RAE 2822 airfoil and of an isolated wing from the
AIAA CFD Drag Prediction Workshops. In the first case, the results obtained by
applying three in-fill strategies compare very well with classical evolutionary-based
optimization and surrogate-based EGO algorithm, taken as references. In particular,
the same aerodynamic performance level (−40% in terms of objective function) of
the computationally intensive genetic optimization can be reached by tuning the σ

parameter of the Expected Improvement-like criterion. The second test case involves
the solution of the flow field around an isolated wing in transonic viscous flow, hence
the number ofCFDdegrees of freedom is quite largerwith respect to two-dimensional
cases. Moreover, the design optimization problem has been intentionally made more
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difficult in order to stress the proposed methodology. Despite the increased intrinsic
complexity of the case, results are even better as the aerodynamic performance of
the global optimum (-140% in terms of objective function), as predicted by the high-
fidelity optimization, is achieved by the surrogate-assisted approach at very limited
computational cost (only 3% of the high-fidelity optimization).

Such results support the conclusion that surrogate models alone may not provide
the right answer within an aerodynamic shape optimization context, especially if
transonic viscous flow is considered. However, when coupled to smart adaptive sam-
pling techniques, they allow to catch the basic trends of the objective functionwithout
penalizing the design space exploration: indeed, in complex design cases with high
non-linearities and multi-modal landscapes, the latter has to be carefully balanced
as it may result in unveiling promising regions as well as leading the optimizer to
waste time in searching poor solutions.
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