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Abstract In this paper we present a matrix-free geometric multigrid method for
solving a linear system of equations needed at every iteration of the topology opti-
mization process. The multigrid solver is parallelized on an Nvidia graphics card
using CUDA, therefore reducing simulation time drastically. This enables users to
derive optimal topologies represented with a high number of elements while having
low execution time. Computational domain is discretized with a regular structured
hexahedral mesh. To improve the accuracy of the non-conformal discretizazion, the
Dirichlet boundary conditions are imposed in a weak form using Nitsche method.

1 Introduction

Additive manufacturing is driving a revolution in manufacturing [17]. With this
technique we can produce objects by successively adding thin layers of material.
Nowadays this procedure is used to obtain a wide variety of items such as plastic
prototypes for engineers and designers, customized medical devices such as dental
implants, hip implants, or hearing aids. Significant breakthrough was the use of addi-
tive manufacturing in aerospace industry [7], which meant that less material could
be used compared to conventional production techniques. Therefore, the produc-
tion costs were reduced, and the lighter aircraft components lead to significant fuel
savings.

Since additive manufacturing results in nearly infinite design spaces, the
importance of topology optimization [1] is constantly growing. Topology opti-
mization represents an optimal placement of material within a given design space,
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boundary conditions, and loads in order to satisfy the prescribed objective functions.
During the design process, topology optimization enables engineers to explore dif-
ferent design solutions that meet the design requirements with optimum material
usage while preserving required structural integrity.

In recent years a lot of research was invested in exploring and establishing the
theory of topology optimization. The application field of topology optimization has
expanded beyond structural analysis to include fluid flow, acoustics, heat transfer,
nanophotonic devices, and material designs [4]. However, most of the research was
carried out for 2D models. Due to high computational costs, performing topology
optimization on 3Dmodelsmay require hours, or in some cases even days, which hin-
ders rapid prototyping design process. Ideally, the designer would like to have almost
instantaneous feedback when exploring the design space. Not as much research was
conducted in improving computational efficiency as it was done for establishing the
theory of topology optimization, hence it stays still an open topic for the research [13].
Therefore, in this paper we investigate the use of the multi-core architecture such
as GPU (Graphics Processing Unit) by utilizing parallel programming framework
CUDA (Compute Unified Device Architecture) [11]. Since the optimization pro-
cess comes with a high computational price of performing the finite-element method
(FEM) analysis at each optimization step, the main focus of this work is to develop
an efficient solver for performing FEM analysis. In order to accomplish this, several
steps are taken. The computational domain under consideration is discretized with
the help of hexahedral elements, yielding a system of linear equations. This enables
the use of highly efficient matrix-free geometric multigrid methods [10] for solving
the linear system of equations. Geometric multigrid algorithm is adapted in such a
way that it maps to GPU hardware [5], therefore resulting in execution times far
superior to those when solving the problem on CPU.

2 Previous Work

The goal of this section is to give a short overview of previous research conducted
in the field of topology optimization with a focus on computational efficiency. In
one of the earliest works [2] in this field, parallel computing in combination with
domain decomposition was used. Test geometries were discretized using approxi-
mately 196,000–884,000 elements depending on the test model. System of linear
equations was solved by using the preconditioned conjugate gradient method. Simu-
lations for several test cases were performed on a Cray T3E using 16–24 processors
depending on the test case, with solution times ranging from 4 to 43h. A lot of
improvements in numerical algorithms and in hardware were introduced since then,
reducing simulation times drastically.

One of the first works demonstrating the use of GPU in topology optimization
was presented in [14]. Here, the most time consuming part of the topology optimiza-
tion process, which is solving a system of linear equations, is parallelized on GPU
using CUDA. The author implemented a matrix-free conjugate gradient method with
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modifications to the single precision computation, necessary due to the hardware lim-
itations. The investigated GPU was a GeForce GTX280 with 1 GB device memory
and 240 CUDA cores each running at 1.30 GHz. The GPU execution time was up to
60 times faster in comparison to CPU. For a test case with resolution of nearly
1,000,000 elements and a lower class GPU such as GeForce 9600M GT with 32
CUDA cores, each running at 0.78 GHz, the authors reported simulation time under
2h.

In a more recent work [16], the author used the Jacobi-preconditioned conjugate-
gradient method for solving the system of linear equations on a GPU. The author
was using hexahedral elements which conform the boundary. The used hardware was
the Nvidia GeForce GTX 480 with 480 CUDA cores and 1.5 GB of device memory.
Numerical results for several test cases were presented which we will discuss in the
Results section.

3 Finite Element Formulation

Discretization of the computational domain is performed using hexahedral elements.
CAD (Computer-Aided Design) geometry in STEP (Standard for the Exchange of
Product model data) format is passed as an input and discretized using the Open
CASCADE (Computer Aided Software for Computer Aided Design and Engineer-
ing) [12] library. Using hexahedral elements implies that we do not have to perform
element rotation in space nor any other transformation. Every hexahedral element
has an identical stiffness matrix which can be analytically pre-computed.

3.1 Linear Elasticity Equations

Elastic deformation of a continuum body on the domain Ω with Dirichlet ΓD and
Neumann ΓN boundaries is described by the following equations [3, 18]:

∇ · σ + f = 0 ∀x ∈ Ω (3.1.1)

σ = C : ε ∀x ∈ Ω (3.1.2)

ε = 1

2
· (∇u + (∇u)�) ∀x ∈ Ω (3.1.3)

u = û ∀x ∈ ΓD (3.1.4)

σ · n = t ∀x ∈ ΓN (3.1.5)

where σ and ε represent stress and strain tensor respectively. f represents the force
term, C is the elasticity tensor, û is the prescribed displacement on the Dirichlet
boundary, n is a normal vector to the Neumann boundary, t is a traction vector.
After obtaining the weak form from Eq. (3.1.1) we use tri-linear shape functions to
approximate our solution uh of the problem:
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uh =
i∑

Ni (x) · ui (3.1.6)

where Ni (x) represent the shape functions that span the finite dimensional spaceVh ,
and ui are coefficients associated with shape functions. The element stiffness matrix
Ke obtained from discretization can be written as:

Ke =
∫

Ωe

B�
e CBedΩ (3.1.7)

where Be represents the strain-displacement matrix and C is the elasticity matrix.
The element stiffness matrixKe is computed only once and we use it for all elements
in our computational domain.

3.2 Per Node Equations

Following the work of [5], we do not want to assemble and store the full stiffness
matrix. We rather operate on per node equations. That is, each node is assigned with
3 degrees of freedom, and with 27 3 × 3 matrices which represent the interaction of
the node with its neighbors. These matrices are extracted from the element stiffness
matrix Ke which we precomputed. In order to show the assembling process of the
aforementioned per node equations, let us set up the per element equations in the
following manner:

8∑

j=1

kek
i, j · uek

j = feki i = 1, . . . , 8. (3.2.1)

We sum over all 8 nodes of a hexahedral element ek , where kek
i, j represents 3 × 3

block matrix extracted from k-th element stiffness matrix, and associated with each
node j . uek

j is the corresponding displacement and feki is the force term acting on
the given element. Equation (3.2.1) for a given node i represents the influence of
an element ek on the displacement of the node i . Since this node is shared by the 8
adjacent elements, we add up equations yielding from all k elements as well. Thus,
we obtain the per node equations:

(1,1,1)∑

i=(−1,−1,−1)

Mnod
i unod+i = fnod , (3.2.2)

where nod represents discrete coordinates of the node. By adding vector i to the
discrete coordinates of the node we visit all the neighboring nodes. Here, Mnod is
an array of 27 block matrices corresponding to the observed node and subindex i
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determines the block matrix corresponding to the neighbor of node. unod+i are the
displacements of the corresponding nodes and fnod is the force term. For more details
on the equation assembly process the reader may refer to the works [5, 8].

4 Multigrid Solver

Since the bottleneck of the optimization process is the performance of FEM analysis
on each iteration step, we propose a multigrid method based on the work of [5].
Multigrid methods [10], used to provide fast numerical solvers especially for elliptic
partial differential equations, can greatly improve simulation times if implemented
efficiently. In this workwe implemented a CUDAbasedmatrix-free geometric multi-
grid method. We used a standard multigrid V-cycle with Gauss-Seidel relaxation.

Algorithm 1Multigrid

1: function V- Cycle(Ah ,uh , f h ,nsteps ,level)
2: if level = numLevels then
3: Solve directly Ahuh = f h

4: else
5: Gauss-Seidel relaxation Ahuh = f h

6: Compute residual rh = f h − Ahuh

7: Restrict residual rh+1 = Rh+1
h rh

8: eh+1 ←V- Cycle(Ah+1,0,rh+1,nsteps ,level + 1)
9: Interpolate coarse grid error eh = Ph

h+1e
h+1

10: Apply correction uh = uh + eh

11: Gauss-Seidel relaxation Ahuh = f h

4.1 Per Node Equations Assembly for All Levels

Each level of the multigrid hierarchy is organized in such a way that if there is at
least one active fine grid cell that is covered by the coarse grid cell, we consider the
cell on the coarse level to be active as well. Before we start performing the V-cycle,
we assemble per-node equations for all simulation levels [5, 8]. On the finest level
we assemble equations using precomputed element stiffness matrix, afterwards we
use Galerkin coarse grid operator to assemble equations on the coarser levels.

4.2 Gauss-Seidel Relaxation

To apply the smoothing step to our linear system of equations we use a Gauss-Seidel
smoother. We first divide the set of nodes in 8 groups, such that we could perform
smoothing in parallel, as suggested in [5, 8]. With respect to our per node equations
the smoothing step can be formulated as:
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uk+1
nod = uknod + ω · (Mnod

0,0,0)
−1 ·

⎛

⎝fnod−
(0,0,−1)∑

i=(−1,−1,−1)

Mnod
i uk+1

nod+i −
(1,1,1)∑

i=(0,0,0)

Mnod
i uknod+i

⎞

⎠

(4.2.1)
where uk

nod is the current value, and uk+1
nod is the updated value of displacement at a

given node, and ω is a relaxation coefficient.

5 Topology Optimization Formulation

In our work we decided to use SIMP (Solid Isotropic Microstructure with Penaliza-
tion) approach for performing the topology optimization. This method is proposed
as “artificial density approach” by [1]. The domain is discretized with hexahedral
elements, where to each hexahedra a density variable ρ is assigned. These density
variables are used as design variables in the optimization process for meeting the
desired objective function requirements. The main advantage of the SIMP method
over other methods is an easy implementation and a well established theoretical
foundation. The topology optimization problem formulation is given by:

minimize
ρ

c(ρ) = f�u = u�K(ρ)u

subject to
V (ρ)

V0
= α

K(ρ)u = f

0 < ρmin ≤ ρ ≤ 1.

That is, we wish to minimize the compliance c(ρ) subjected to a volume constraint
of a given volume fraction α, being the ratio between the material volume V (ρ)

and the design domain volume V0. Displacement and force vectors are denoted
respectively u and f . The element stiffness matrix is denoted as K(ρ). For solving
the aforementioned optimization process we use the Optimality Criteria method.
Identical to work of [1, 15], we update our density design variables ρ as follows:

ρnew
e =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(ρmin, ρe − δρ)

if ρe B
η
e ≤ max(ρmin, ρe − δρ)

min(1, ρe + δρ)

if min(1, ρe + δρ) ≤ ρe B
η
e

ρe B
η
e

if max(ρmin, ρe − δρ) < ρe B
η
e < min(1, ρe + δρ)

(5.0.1)

where the element density ρe is our design variable, δρ is a non-negative increment
of design variable, and the exponent η = 1/2 is a numerical damping coefficient.
The update value Be is given by the optimality condition:
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Bη
e = −∂c/∂ρe

λ∂V/∂ρe
(5.0.2)

where λ is a Lagrangian multiplier that we obtain by applying a bi-section algorithm.
From the equation (5.0.2) we compute the sensitivity of the objective function as:

∂c

∂ρe
= −p(ρe)

p−1u�
e K0ue (5.0.3)

∂V

∂ρe
= 1. (5.0.4)

6 Imposing Dirichlet Boundary Conditions

With the use of non-conformal hexahedral elements, as typically used in topology
optimization problems, the challenge of accurately imposing boundary conditions
arises. Different from tetrahedral meshes that conform the boundary, hexahedral
meshes are embedding the boundary. Hence, it is necessary to enforce Dirichlet
boundary conditions in a weak sense. By adding the terms to the weak formulation
of the elasticity equation we impose values on the embedded boundary. Identical
to the work of [3, 18], the strong formulation of the linear elasticity problem is
transformed into the weak form using the principle of minimum of potential energy.
The total potential energy Πtot of the body at rest is the sum of the internal Πint and
the external Πext potential energy:

Πtot = Πint + Πext (6.0.1)

where

Πint = 1

2

∫

Ω

ε(u) : C : ε(u)dΩ (6.0.2)

Πext =
∫

Ω

u · fdΩ +
∫

ΓN

u · tdΓ. (6.0.3)

After finding the first variation of the total potential energy, and setting it to zero, we
obtain the weak formulation:

∫

Ω

ε(v) : C : ε(u)dΩ =
∫

Ω

v · fdΩ +
∫

ΓN

v · tdΓ (6.0.4)

where v are the test functions and u are the shape functions.
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6.1 Nitsche Terms

Following the works of [3, 6, 18] constraint potentials are added to the total energy
potential Πtot . The Nitsche constraint potential is obtained by using a combination
of Langrange Multiplier Method and Penalty Method:

ΠLagrange =
∫

ΓD

λ · (u − û)dΓ (6.1.1)

ΠPenalty = 1

2
· β

∫

ΓD

(u − û)2dΓ (6.1.2)

where λ is defined as in [18]:

λ = −C : ε(u) · n. (6.1.3)

The β from equation (6.1.2) is typically chosen [6] as the ratio of the area of the
embedded surfaceΓe and the volume of the partial hexahedron He, cut by the embed-
ded surface:

β ≥ measure(Γe)

measure(He)
. (6.1.4)

Having added the constraint energy potentials (6.1.1) and (6.1.2) to the total
potential energy, we find the minimum of the potential by setting the first variation
to zero. Hence we obtain the weak formulation with the Nitsche terms:

∫

Ω

ε(u) : C : ε(u)dΩ −
∫

ΓD

(ε(v) : C) · n · udΓ − (ε(u) : C) · n · vdΓ + β

∫

ΓD

v · udΓ

=
∫

Ω

v · fdΩ +
∫

ΓN

v · tdΓ −
∫

ΓD

(ε(v) : C) · n · ûdΓ +
∫

ΓD

v · ûdΓ. (6.1.5)

After discretization [18], we have the following formulation for a hexahedral
element with the embedded interface:

∫

Ωe

B�
e CBedΩ −

∫

Γ e
D

B�
e C · n · NdΓ −

∫

Γ e
D

N� · n� · CBedΓ + β

∫

ΓD

N� · NdΓ

=
∫

Ω

N� · fdΩ +
∫

ΓN

N� · tdΓ −
∫

ΓD

B�
e C · n · ûdΓ +

∫

ΓD

N� · ûdΓ.

(6.1.6)

Additional terms in this equation with respect to the original discretization are used
to enforce Dirichlet boundary conditions by modifying the original system of linear
equations.
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7 Results

In this section we intend to present some of the results computed with the help of
our topology optimization tool. All of the following simulations were carried out on
a machine with Intel Core i7-4710HQ processor running at 2.5 GHz, RAMmemory
of 8GB, and commodity graphics card GeForce GTX 860M with 640 CUDA cores
and 4 GB of GDDR5 memory.

7.1 GE Challenge

General Electric (GE) raised an open challenge [9] where a jet engine bracket was
to be optimized to withstand the working loads while having minimum mass. Ten
selected designs were produced from a titanium alloy using a direct metal laser
melting (DMLM) machine, which uses a laser beam to fuse layers of metal powder
into a final shape [9]. Afterwards, the parts were sent to the destruction testing. We
wish to present our design solution which resembles some of the winning designs.

Initial geometry shown in Fig. 1 is discretized with the help of approximately
950,000 hexahedral elements. Topology optimization on GPU was carried out in
14.4 s for the total of 9 iterations. Performing FEM analysis on average took 0.9 s.
Optimized topology is illustrated in Fig. 2.

7.2 Bridge Design

For a design domain of a rectangular cuboid shape, subjected to the forces acting
perpendicular to the mid-plane of the design domain, we obtain the optimal bridge

Fig. 1 Initial design of jet
engine bracket provided by
the GE challenge [9]
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Fig. 2 Jet engine bracket, part of theGE challenge [9], optimizedwith volume fraction ofα = 0.35.
The initial geometry is shown as a transparent body

Fig. 3 Optimal topology of a bridge
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Fig. 4 Cantilever optimized
for volume fraction α = 0.35

Fig. 5 Cube embedded
within the hexahedral mesh

topology which is illustrated in Fig. 3a. Optimization domain was discretized using
400,000 hexahedral elements, and simulation was carried out in 10.32 s. For a com-
parison, in the work [16] for a similar test case of mid-plane loaded bridge with
113,000 degrees of freedom, the author reported execution time of 36.2 s when using
GPU. With our solver we achieved better execution time for approximately 4 times
higher mesh resolution.

Another bridge structure is shown in Fig. 3b. It was modelled using 465,000
hexahedral elements. The simulation was carried out in only 6.5 s.
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Fig. 6 Different approaches for enforcing boundary conditions at the interface of the elements cut
by the cube. The vertical axis denotes the displacement along z axis. The horizontal axis denotes z
coordinate of the cube hexahedral mesh

7.3 Cantilever

In this example we consider cantilever discretized using 740,000 hexahedral ele-
ments, and optimized in 13.8 s. The resulting topology is shown in Fig. 4. For a
similar case of a loaded cantilever in work [2], discretized with 245,760 elements,
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authors reported solution time of approximately 3.9h. In another variation of a loaded
cantilever in work [16], the author reported computing time of 4min for 324,000 ele-
ments when using GPU.

7.4 Dirichlet Boundary Conditions

We demonstrate the results with imposed zero Dirichlet boundary conditions by
the Nitsche method on a cube object. For this test case the cube with dimensions
2.5 × 2.5 × 2.5 mm is discretized with 6 hexahedral elements in each direction and
of side length 0.5 mm. Evenly distributed vertical forces are acting on the upper
surface of the cube. As it can be seen in Fig. 5, the cube is embedded within the
hexahedral mesh.

Zero Dirichlet boundary condition is imposed on embedded bottom surface of the
cube. Figure6a shows that zero displacement along z axis is located exactly at the
midpoint of the hexahedral element when using the Nitsche method. On the other
hand, when we use a strong method that assigns the same value to all the nodes of the
boundary elements, displacement is constant across the whole hexahedral element
as shown in Fig. 6b.

Thus, we observe that Nitsche method allows us to prescribe boundary conditions
for boundary non-conforming meshes in a much more precise way compared to the
strong method. As we have seen in the example where our mesh did not conform
to the boundary, with the help of Nitsche method we were able to enforce zero
displacement exactly at the intersection of the hexahedral elements and the Dirichlet
boundary of the cube.
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