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Abstract The paper presents a global method for simulation-based design
optimization (SBDO) which combines a dynamic radial basis function (DRBF)
surrogate model with a sequential multi-criterion adaptive sampling (MCAS) tech-
nique. Starting from an initial training set, groups of new samples are sequentially
selected aiming at both the improvement of the surrogate model global accuracy
and the reduction of the objective function. The objective prediction and the associ-
ated uncertainty provided by the DRBF model are used by a multi-objective particle
swarm optimization algorithm to identify Pareto-optimal solutions. These are used
by the MCAS technique, which selects new samples by down-sampling the Pareto
front, allowing for a parallel infill of an arbitrary number of points at each itera-
tion. The method is applied to a set of 28 unconstrained global optimization test
problems and a six-variable SBDO of the DTMB 5415 hull-form in calm water,
based on potential flow simulations. Results show the effectiveness of the method in
reducing the computational cost of the SBDO, providing the background for further
developments and application to more complex ship hydrodynamic problems.

1 Introduction

Simulation-based design optimization (SBDO) techniques have developed in the
last decades in response to the high cost of the build-and-test design paradigm,
relying on the increasing accuracy of the simulation tools and availability of compu-
tational resources. SBDO requires the automated integration of design modification
tools, accurate computer simulations, and optimization algorithms. SBDO typically
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requires a large number of computer simulations to identify the global optimal solu-
tion to the design problem. The high-fidelity, complexity, and computational expense
of the simulation tools is approaching resource saturation, requiring therefore cost-
reducing solutions.

The application of surrogate models alleviate the computational cost of SBDO.
When performing surrogate-based SBDO, a sampling of the design space by design
of experiment (DoE) techniques is used to train a surrogate model of the desired
objective function, which is used by the optimization algorithm. Surrogates have
been widely used in performing SBDO, including optimization of stochastic black-
box functions [14], optimization under uncertainty [15], sampling-based reliability-
based design optimization [31], deterministic [5] and stochastic [10] hydrodynamic
optimization.

The sampling of the design space needs to be efficient an effective, possibly
achieving two competitive goals: an adequate global accuracy of the surrogate model
(especially when a global optimum is sought), and a fine investigation of promising
design regions [2]. DoEs defined on the basis of a priori methods can hardly achieve
these goals. For this reason, adaptive sampling techniques have been developed
which exploit information that becomes available during the optimization process.
The literature proposes a large variety of adaptive sampling criteria. Some examples
include: the Kushner’s criterion [19], which maximizes the probability of improving
the objective; the expected improvement criterion, used in the efficient global opti-
mization (EGO) algorithm [16]; the lower confidence bounding function [7], which
minimizes the linear combination of surrogate model prediction and surrogate model
uncertainty; locating the threshold-bounded extreme, locating the regional extreme,
and minimizing surprises [30].

The objective of the current research is the extension of a dynamic radial basis
function (DRBF) surrogate model [29], used in earlier work for uncertainty quan-
tification of ship hydrodynamic problems, to global, derivative free, deterministic
design optimization.

The current method implements a sequential multi-criterion adaptive sampling
(MCAS) technique based on DRBF-predicted objective and associated uncertainty.
Starting from an initial training set, groups of new samples are selected from the
Pareto front of non-dominated solutions obtained by a multi-objective extension of
the deterministic particle swarm optimization (MODPSO) algorithm [4, 18, 22]. An
additional single-objectiveDPSO [26] is performed over theDRBFmodel to improve
the selection of the global minimizer. The procedure is iterated until convergence.

The method is applied to 28 unconstrained global optimization test problems, as
well as to the hull-form optimization in calm water and fixed speed of the DTMB
5415, an early concept of the USS Arleigh Burke-class destroyer DDG-51 used as
a benchmark for experimental [20, 27] and numerical optimization [12, 13, 25]
studies. A potential flow code [1] is used for the simulations. The performance of
the DRBF method is assessed by comparison with a direct application of DPSO.
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2 Optimization Problem Formulation

Given a design variable vector x of dimension N and a design objective

f (x) : R
N → R (1)

the optimization problem is formulated as

min
x∈Ω

f (x) (2)

where
Ω = {

x ∈ D ⊂ R
N | ci (x) ≤ 0, i = 1, . . . , Nc

}
(3)

is the feasible set, D is the design space defined by box constraints, and ci (x) are
inequality constraints. Herein, these are handled by a linearly penalized objective
function

f p(x) = f (x) + γ

Nc∑

i=1

max [ci (x), 0] (4)

3 Dynamic Radial Basis Function Method for Optimization

3.1 Surrogate Model

Given a set of M training points {zi }Mi=1 with associated function evaluations yi =
g(zi ), a power law RBF provides predictions as

h(x, ε j ) =
M∑

i=1

wiϕ (||x − zi ||) with ϕ = ||x − zi ||ε j (5)

where the exponent ε j ∈ R is a tuning parameter; w = {wi }Mi=1 is the solution of the
linear system that provides exact prediction at x = zi

Aw = y with ai j = ϕ
(||zi − z j ||

)
and y = {yi } (6)

TheDRBFmodel [29] provides the expected value of a sample of RBF predictions
over a stochastic distribution of ε j . Herein, ε j is assumed uniformly distributed
between εmin and εmax:

ĝ(x) = EV[h(x, ε j )] with {ε j }Nε

j=1 ∼ unif[εmin, εmax] (7)
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The uncertainty Ûg(x) associated to the prediction at x is quantified by the 95%-
confidence band of h(x, ε j ).

If multiple functions (gk , k = 1, . . . , Ng) are assessed, multiple surrogate models
need to be computed. If these are based on the same training points {zi }Mi=1, with

corresponding function evaluations yk = {gk(zi )}Ng

k=1, a single factorization of the
matrix A may be used. In fact, the system

AW = Y (8)

may be solved at once. In this case, W = [
w1| . . . |wNg

]
and Y = [

y1| . . . |yNg

]
.

When the surrogate model is used for unconstrained optimization, Ng = 1,
g(x) = f (x), and the model output is the couple { f̂ , Û f }. When the surrogate model
is used for constrained optimization, Ng = Nc + 1, g1(x) = f (x), g2(x) = c1(x),
…, gNc+1(x) = cNc(x), and the output is the Nc + 1 couples { f̂ , Û f }, {ĉ1, Ûc1}, …,
{ĉNc , ÛcNc }. The penalized objective function f̂ p(x) is computed using the predictions

f̂ , ĉ1, …, ĉNc , as per Eq.4.

3.2 Multi-criterion Adaptive Sampling

Starting from an initial training set, the MCAS identifies groups of new samples
balancing the surrogate model accuracy and the search for the global minimizer.
This is pursued by solving the multi-objective optimization problem

min
x∈D f̂ p(x) and max

x∈D Û f (x) (9)

Note that for unconstrained problems f̂ p(x) corresponds to f̂ (x), while Û f (x) is
always the uncertainty of the (non-penalized) objective.

The Pareto front obtained is down-sampled in order to identify m equally spaced
points along a curvilinear coordinate ξ (Fig. 1). In view of the fact that: (a) sampling
too close to available training points does not add useful information to the analysis,
(b) as the distance between training points decreases, the matrix A in Eq.6may result
ill-conditioned, and (c) the uncertainty at the training points is zero, i.e.

lim||x−zi ||→0
Û f (x) = 0, (10)

a constraint is defined such that Û f (x) ≥ umin, where umin = βÛrange with Ûrange =
{max[Û f (x)] − min[Û f (x)]}.
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Fig. 1 Pareto solutions of
the multi-objective problem
with samples
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3.3 Optimization Procedure

The optimization procedure using DRBF and MCAS is performed as per the follow-
ing algorithm.

Algorithm DRBF with MCAS

Step 1. Define an initial DoE {zi }Mi=1 and evaluate objective function and
constraints Y = [

y1| . . . |yNc+1
]
.

Step 2. Initialize the current optimum: yopt = min(y1) and xopt = argmin(y1).
Step 3. Build the DRBFmodel for objective and constraints { f̂ , Û f },…, {ĉNc , ÛcNc }

using the training set T ≡ {zi ,Yik}.
Step 4. Find the minimizer x∗ of f̂ p(x) by DPSO and compute the true objective

function y∗ = f (x∗).
Step 5. If y∗ < yopt then

update the current optimum xopt = x∗.
Step 6. If Û f (x∗) ≥ umin then

add z̃1 = x∗ to the new DoE;
define a new DoE {z̃i }mi=2 by MCAS;
evaluate objective and constraints at {z̃i }mi=2.

Else
define a new DoE {z̃i }mi=1 by MCAS;
evaluate objective and constraints at {z̃i }mi=1.

Step 7. Add the new m samples to T .
Step 8. Iterate step 3 to 7 until convergence.
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4 Deterministic Particle Swarm Optimization

Particle Swarm Optimization (PSO) belongs to the class of heuristic algorithms for
single-objective evolutionary derivative-free global optimization and was originally
introduced byKennedy and Eberhart [18]. In order tomake PSOmore efficient for its
use within SBDO, a deterministic version of the algorithm (DPSO) was formulated
by Campana et al. [4] as follows

{
vk+1
i = χ

[
vki + c1(xi,pb − xki ) + c2(xgb − xki )

]

xk+1
i = xki + vk+1

i

(11)

Equation11 represents velocity and position, respectively, of the i th particle at
the kth iteration. Particles are attracted by the personal best position xi,pb ever found
by the i th particle and by the global best position xgb ever found by all particles. The
effectiveness of DPSO depends on the constriction factor χ , the cognitive and social
learning rate c1 and c2, along with the number of individuals Np and their initial
distribution and velocity. Serani et al. [26] investigate the effect of such parameters
and propose guidelines for an efficient use of the algorithm in the context of ship
hydrodynamic optimization [24].

The extension of DPSO to multi-objective problems can be found, for instance,
in Pellegrini et al. [22]. This is based on extending the definition of the personal and
global best in the Pareto-optimality sense. Specifically, the personal attractor xi,pb is
the closest point to xi of the pesonal Pareto front. The global attractor xi,gb is different
for each particle and defined as the closest point to xi of the global Pareto front.

5 Optimization Problems

The DRBF model with the MCAS method is applied to unconstrained global opti-
mization test problems and to the hull-form optimization of the DTMB 5415. The
formulation of the problems is presented in the following.

5.1 Unconstrained Global Optimization Test Problems

The study includes the minimization of 28 unconstrained global optimization test
problems [3, 29] with a number of independent variables ranging from two to 12.
These include multimodal, highly nonlinear, and transcendental functions. Table1
provides details of the problems, such as their dimension and search domain.
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Table 1 Unconstrained global optimization test problems

Function No. variables ID Bounds

Alpine 2, 3, 4, 6, 12 A2, A3, A4, A6, A12 −10 ≤ xi ≤ 5

Exponential 2, 3, 4, 6, 12 E2, E3, E4, E6, E12 −10 ≤ xi ≤ 5

Griewank 2, 3, 4, 6, 12 G2, G3, G4, G6, G12 −5 ≤ xi ≤ 5

Hartmann 3, 6 H3, H6 0 ≤ xi ≤ 1

Levy 2, 3, 4, 6, 12 L2, L3, L4, L6, L12 −10 ≤ xi ≤ 10

McCormick 2 M2 −1.5 ≤ x1 ≤ 4,
−3 ≤ x2 ≤ 4

Styblinski-Tang 2, 3, 4, 6, 12 S2, S3, S4, S6, S12 −5 ≤ xi ≤ 5

5.2 Hull-Form Optimization of the DTMB 5415

The SBDO example is the hull-form optimization of the DTMB 5415 model (Fig. 2).
This has been widely investigated by towing tank experiments [20, 27] and SBDO
studies [12, 17, 25, 28]. In the present work, a single-objective SBDO is shown,
aiming at the reductionof the total resistance RT in calmwater at 18kn, corresponding
to a Froude number (Fr) equal to 0.25. Main particulars and design conditions are
summarized in Table2.

Fig. 2 A 5.720 m length model of the DTMB 5415 (CNR-INSEAN model 2340)

Table 2 DTMB 5415 model main particulars and test conditions (full scale)

Description Symbol Unit Value

Displacement ∇ Tonnes 8,636

Length between perpendiculars LBP m 142

Beam B m 18.9

Draft T m 6.16

Longitudinal center of gravity LCG m 71.6

Vertical center of gravity VCG m 1.39

Speed V kn 18

Water density ρ kg/m3 998.5

Kinematic viscosity ν m2/s 1.09 × 10−6

Gravity acceleration g m/s2 9.803
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An orthogonal representation of the shape modification is used, since more effi-
cient in the context of shape design optimization [3, 9]. Specifically, six orthogonal
functions Ψ1,...,6 are applied for the modification of the hull shape, controlled by six
design variables α1,...,6:

⎧
⎪⎨

⎪⎩

Ψ j (u, v) := α j sin

(
p jπu

A j
+ φ j

)
sin

(
q jπv

Bj
+ χ j

)
ek( j)

(u, v) ∈ [0; A j ] × [0; Bj ]
(12)

where u and v are curvilinear coordinates; p j and q j define the order of the function
in u and v direction, respectively; φ j and χ j are the corresponding spatial phases; A j

and Bj define the modification domain size; ek( j) is a unit vector. Table3 summarizes
the parameters used here, including upper and lower bounds of α j . The results will
be presented in terms of non-dimensional design variables x j ∈ [−1, 1] given by
x j = 2(α j − α j,min)/(α j,max − α j,min) − 1. Geometrical constraints include fixed
displacement and length between perpendiculars (automatically satisfied by the
geometry modification tool), and ±5% maximum variation of beam and draft.

The solver used is the potential flow code WARP [1] based on the double model
linearization [8]. The wave resistance is estimated by integrating the pressure over
the hull, whereas the friction resistance is estimated by a local approximation based
on flat-plate theory [23]. Simulations are performed for the right demi-hull taking
advantage of the symmetry about the xz plane. The computational domain for the free
surface is defined within 1 LBP upstream, 3 LBP downstream and 1.5 LBP sideways.
The associated panel grid used can be found in Serani et al. [25]. The validation of
the computations for the original hull is shown in Fig. 3 versus experimental data
collected at CNR-INSEAN [21] showing a reasonable agreement especially for low
speeds.CT = RT /0.5ρV 2Sw,stat , δ, and τ are shown, where RT is the total resistance,
Sw,stat is the static wetted surface area, δ is the sinkage (positive if the center of gravity
sinks), and τ is the trim (positive if the bow sinks).

Table 3 Orthogonal function parameters for shape modification

Description j p j φ j q j χ j k( j) α j,min (m) α j,max (m)

Hull modification 1 2.0 0 1.0 0 2 −1.0 1.0

2 3.0 0 1.0 0 2 −1.0 1.0

3 1.0 0 2.0 0 2 −0.5 0.5

4 1.0 0 3.0 0 2 −0.5 0.5

Sonar domemod-
ification

5 1.0 0 1.0 0 2 −0.3 0.3

6 0.5 π/2 0.5 0 3 −0.5 0.5
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Fig. 3 Total resistance coefficient (a), non-dimensional sinkage (b), and trim (c) in calm water
versus Fr, for the model scale DTMB 5415 (LBP = 5.72 m)

6 Numerical Results

The test problems are solved using the following setup. The initial DoE is a Ham-
mersley sequence sampling (HSS), Nε = 513, ε ∈ [0.75, 2.5], m = 5, β = 0.01,
and the maximum number of function evaluations Neval is 1000. The hull-form opti-
mization is solved using the following setup. The initial DoE is a HSS, Nε = 200,
ε ∈ [0.75, 2.5], m = 8, β = 0.01, and Neval = 1000. DPSO parameters are given in
Table4.

6.1 Unconstrained Global Optimization Test Problems

For the assessment of the test problems, the normalizeddifferencebetween the current
optimum and the true minimum Δ f is used as a metric [3]. DRBF and DPSO are
iterated until Δ f ≤ 0.1% or until the number of function evaluations reaches Neval .

Figure4 shows the convergence of DRBF and DPSO algorithms for the test prob-
lems E2, H6, and G12 as an example. The figure displays the value of the metric
versus the number of functions evaluations M . DRBF is found significantly more
effective than DPSO for E2 and G12, and slightly more efficient for H6. The average
performance of DRBF and DPSO is summarized in Fig. 5, taking into account all
the test problems. The average number of function evaluations needed to achieve
Δ f ≤ 0.1% is shown versus the number of design variables N . On average, DRBF

Table 4 DPSO parameters

Objective function Np Neval Initialization [χ c1 c2]
f p (no surrogate) 4N 1000 HSS v �= 0 [5] [0.721 1.655 1.655] [6]
f̂ p (surrogate, single-objective) 4N 256N HSS v �= 0 [5] [0.721 1.655 1.655] [6]
f̂ p, Û f (MCAS, multi-objective) 32N 1024N HSS v = 0 [0.9801 0.3333 0.6767]

[11]
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Fig. 4 Convergence of DRBF and DPSO for test problems E2 (a), H6 (b), G12 (c)
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Fig. 6 Sensitivity analysis of the design variables (a), and convergence of DRBF and DPSO for
the hull-form optimization of the DTMB 5415 (b)

requires fewer function evaluations to achieve the optimal solution.Moreover, DRBF
outperforms DPSO for N = 12 since the latter does not achieve Δ f ≤ 0.1% for any
of the problems within the prescribed budget Neval .
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(a) 50 function evaluations

(b) 100 function evaluations

(c) 1000 function evaluations

Fig. 7 Optimal design variables (left), and sections of the DTMB 5415 original and optimized
hulls, comparing DRBF and DPSO solutions (right)
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Table 5 Design variables and objective function values for the DTMB 5415 hull-form

No. function
evaluations

Design variables [–] RT × 105 [N]

x1 x2 x3 x4 x5 x6 Value Δ%

50 DRBF 1.00 −1.00 −0.57 −0.02 −1.00 1.00 3.07 −9.65

DPSO 0.83 −1.00 0.56 0.35 0.47 −0.13 3.16 −7.09

100 DRBF 1.00 −1.00 −0.59 −0.02 −1.00 1.00 3.07 −9.66

DPSO 1.00 −1.00 0.86 0.06 0.14 0.74 3.11 −8.46

1000 DRBF 1.00 −1.00 0.10 0.38 −1.00 1.00 3.06 −9.92

DPSO 1.00 −1.00 0.21 0.43 −1.00 1.00 3.06 −9.93

6.2 Hull-Form Optimization of the DTMB 5415

The penalized objective of Eq.4 is computed using a penalty coefficient γ = 100.
A preliminary sensitivity analysis for each design variable is presented in Fig. 6a.

Unfeasible designs are not reported. Changes in f reveal a potential reduction of the
total resistance (at Fr = 0.25) close to 2%.

The optimization process by DRBF is shown in Fig. 6b, including the comparison
withDPSO.The figure displays the convergence of f versusM . Note that all the solu-
tions correspond to feasible designs. Both methods reach a total resistance reduction

(a) DRBF

(b) DPSO

(c) Original

Fig. 8 Wave elevation pattern (left) and pressure field distribution (right) at Fr = 0.25 of the
optimizedDRBF (a) andDPSO(b) hulls compared to the original (c),with 1000 function evaluations
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Table 6 Summary of optimization results for DTMB 5415 hull-form

Parameter Unit Original Optimized Δ%orig

DRBF DPSO

Cw – 1.00E−03 −26.36 −26.77

C f – 1.61E−03 −0.04 −0.05

CT – 2.62E−03 −10.15 −10.30

δ/LBP – 1.37E−03 5.45 5.27

τ rad 9.90E−04 91.54 89.99

Sw,stat/LBP2 – 1.48E−01 0.25 0.42

Sw,dyn/LBP2 – 1.51E−01 0.36 0.52

close to 10%. DRBF provides a quite sudden convergence achieving 9.6% reduction
with 41 function evaluations, whereas DPSO requires nearly 400 evaluations to reach
the same improvement.

Figure7a, b, and c show the solutions for 50, 100, and 1000 function evalua-
tions, respectively, in terms of variable values and hull sections of the corresponding
designs. Table5 gives the design variables and the associated objective function val-
ues. The solutions provided by DRBF and DPSO differ in the objective reduction by
2.66%, 1.20%, and 0.01%, for 50, 100, and 1000 evaluations, respectively.

Figure8 shows the non-dimensional wave elevation pattern and the associated
non-dimensional pressure distributions on the hull comparing DRBF and DPSO
final designs to the original hull. The transverse wave is reduced and the pressure
shows a better recovery towards the stern.

Finally, Table6 summarizes the main parameters associated with the optimal
DRBF and DPSO designs. The resistance coefficients are defined as Cx = Rx/0.5
ρV 2Sw,stat, with Rw, R f , RT beingwave, frictional, and total resistance, respectively;
Sw,stat and Sw,dyn are static and dynamic wetted surface areas.

7 Conclusions and Future Work

The current study investigates the performance of a novel method for simulation-
based design optimization (SBDO), which combines a dynamic radial basis func-
tion (DRBF) surrogate model with a sequential multi-criterion adaptive sampling
(MCAS) technique. The MCAS selects groups of new samples sequentially, starting
from an initial deterministic DoE and using the function prediction and its associ-
ated uncertainty as provided by the surrogate model. Function value and uncertainty
of the surrogate are the two objectives of a multi-objective deterministic particle
swarm optimization (MODPSO) algorithm, which is used to obtain Pareto-optimal
solutions. TheMCAS performs the parallel infill of an arbitrary number of new train-
ing points by down-sampling of the Pareto front. Therefore, this sampling method
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pursues simultaneously the global accuracy of the surrogate and the refinement of
optimal regions, also exploiting the availability of parallel computing architectures.

Numerical results for a set of 28 unconstrained global optimization test problems
show that DRBF outperforms a direct application of DPSO, requiring on average
approximately 80% fewer function evaluations for two-dimensional problems and
35% for higher dimensions.

The application of DRBF to the six-variable hull-form optimization of the DTMB
5415 shows the potential of the method in performing constrained SBDO problems.
The hull is optimized using a potential flow solver and the total resistance is reduced
bynearly 10%.For a large number of simulations,DRBFandDPSOconverge approx-
imately to the same solution. DRBF is foundmore efficient than the direct application
of DPSO, showing a quite sudden convergence. Specifically, 9% resistance reduction
is achieved by DRBF requiring nearly ten times fewer simulations than DPSO.

Future developments include the assessment of optimal initial DoEs, in terms
of number of samples and distribution, along with the optimal number of samples
selected by the MCAS technique at each iteration. The promising result of DRBF
lays the groundwork for further investigations, including SBDO with larger design
spaces and the use of high-fidelity CFD methods, such as RANS solvers.
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