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Preface

EUROGEN 2015 was the 11th of a series of International Conferences devoted to
bringing together specialists from Universities, Research Institutions and Industries
developing or applying Evolutionary and Deterministic Methods in Design
Optimization, with emphasis on solving industrial and societal problems.

The conference was organised around a number of parallel symposia, regular
sessions and keynote lectures and was open to everybody who wanted to present
recent advancements on optimization methods and applications. In particular, the
conference focused on:

• Surrogate-Based Optimization in Aerodynamic Design
• Adjoint Methods for Steady and Unsteady Optimization
• Multi-disciplinary Design Optimization
• Holistic Optimization in Marine Design
• Game Strategies Combined with Evolutionary Computation
• Optimization under Uncertainty
• Topology Optimization
• Optimal Planning
• Shape Optimization
• Production Scheduling

EUROGEN-2015 was an ECCOMAS Thematic Conference, organized by the
University of Strathclyde, in association with ECCOMAS and ERCOFTAC. The
conference took place at University of Strathclyde’s flagship Technology and
Innovation Centre (TIC), in Glasgow (UK), 14–16 September, 2015. It attracted
nearly 100 delegates, with almost 40% of the attendees being postgraduate students.

Among the 79 contributions to the conference, 33 extended full papers were
selected for publication in this volume after peer review by the members of the
organizing committee. The 33 papers are grouped into the following parts:

• Surrogate-Based Optimization in Aerodynamic Design
• Adjoint Methods for Steady and Unsteady Optimization
• Holistic Optimization in Marine Design

v



• Game Strategies Combined with Evolutionary Computation
• Optimization Under Uncertainty
• Algorithms and Industrial Applications

This volume presents up-to-date material on the state of the art in Evolutionary
and Deterministic Methods for Design, Optimization and Control with Applications
to Industrial and Societal Problems from Europe, Asia and America.

The Scientific Organizing Committee and the Local Organizing Committee
acknowledge the sponsorship of the following organizations through financial
support or/and assistance during the development of the event: European
Community on Computational Methods in Applied Sciences (ECCOMAS),
European Research Community on Flow, Turbulence and Combustion
(ERCOFTAC), IEEE Computational Intelligence in Aerospace (IEEE-CIAS),
Future Air-Space Transportation Technology Laboratory (FASTT-Lab),
OPTIMAD Engineering Srl, University of Strathclyde.

Special thanks are addressed to all the members of the European Scientific
Committee, and the International Corresponding members.

Finally, the editors acknowledge Nathalie Jacobs (Springer) and Eugenio Oñate
for the interest to this series in publishing the most representative scientific and
industrial material presented in the EUROGEN 2015 ECCOMAS Thematic
Conference in the Springer—ECCOMAS Series entitled: Computational Methods
in Applied Sciences, and Anneke Pot (Springer) for the infinite patience and the
invaluable support to put together the book.

Glasgow, UK Edmondo Minisci
Glasgow, UK Massimiliano Vasile
Barcelona, Spain Jacques Periaux
Kaiserslautern, Germany Nicolas R. Gauger
Athens, Greece Kyriakos C. Giannakoglou
Capua, Italy Domenico Quagliarella
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Risk, Optimization and Meanfield
Type Control

Olivier Pironneau and Mathieu Laurière

Abstract Risk is usually a criteria which involves the world’s state; for instance
the best policy to extract oil from a well of finite resource depends on the price of
oil which in turn depends on how much the world’s oil extractors produce. Many
optimization of systems with respect to profit and risk involve a very large number
of players who optimize the same criteria. Then the profit is the result of a global
optimization problem, which is coupled with a each player’s system design where
price appears as a passive variable. Meanfield type control is a mathematical tool
which can help solve such problem in the presence of randomness, an aspect essential
for the modeling of risk. We shall give a few examples and compare solutions by
calculus of variations plus gradient algorithms with extended dynamic programming
and fixed point.

1 Introduction

Risk quantification is important nowadays; several Risk Institutes have appeared in
universities around the world. Its emergence as a criterium of optimization in new
fields seems to be due to the computing power at our disposal, compatible now with
solution of large nonlinear systems with uncertainties.

However Risk in an old concept for insurance companies and in banking. Risk
is less when the number of contracts is large in insurance and yet the probability of
ruin of the company is still an important index to compute [1].

In Banking risk is everywhere: risk of default, credit risk [10], risk of propagation
of default, etc. Basel III imposes some stress tests to banks; they require to compute

O. Pironneau (B)
Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, UPMC Univ Paris 06,
UMR 7598, Boite courrier 187, 75252 Paris Cedex 05, France
e-mail: olivier.pironneau@upmc.fr

M. Laurière
Math dept. Université Denis Diderot, Paris, France
e-mail: mathieu.lauriere@gmail.com

© Springer International Publishing AG 2019
E. Minisci et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 48, https://doi.org/10.1007/978-3-319-89988-6_1
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4 O. Pironneau and M. Laurière

the CVA (credit valuation adjustment [3]) of each financial asset and derivative in
the banks’ portfolio leading to very time consuming computations and optimisation
problems.

Risk of failure of an engineering system requires the probability of rare events
when the system is subjected to random data; uncertainty quantification [9], while
still computationally very demanding, is routinely practiced in some industries.

It is also possible to combine engineering design optimization with financial risk
analysis. For instance a set of wind mills is planed in an area where the wind is
random [8]. There are many design parameters such as their shape, position and
numbers; each have a cost, an efficiency and a longevity which have to be optimized
in the face of alternative energy sources, themselves subject to uncertainties [11].
When there are many of these optimizable wind energy fields, they have a global
effect on the price of energy.

Several new mathematical studies have focused on problems where a system is
made of a large number of similar units which contributes to the properties of the
global system and the optimization is made both at the unit and global levels. Game
theory is the appropriate tool and the global system is called a meanfield game
[21, 23]. Optimization of such systems leads to so called meanfield type control
problems [6].

2 A General Framework for Meanfield Type Control

Consider the problem of minimizing J (u) := J0(u) with u ∈ Ud and

Jτ (u) :=
T∫

τ

E[H̃(Xt , t, u(Xt , t),E[h̃(Xt , t, u(Xt , t))])]dt + E[G(XT ,E[g(XT )])] (1)

U d = {u : u(x, t) ∈ Vd ∀x, t} for someVd ⊂ R
d . (2)

dXt = u(Xt , t)dt + σ(Xt , t)dWt , t ∈ [0, T ], X0 given (3)

where u(x, t) ∈ R
d , σ(Xt , t) ∈ R

d×k andWt is a k-vector of independent Brownian
motions and where h̃, g, H̃ , G are C1 functions taking values in R

r ,Rs,R and R,
respectively.

Under some regularity assumptions detailed in [22], (3) can be replaced by the
Fokker-Planck equation for the probability density (PDF) of Xt ,

∂tρ + ∇ · (uρ) − ∇2 : (
1
2σσ Tρ

) = 0, ρ|t=0 = ρ0(·). (4)

where ∇2 is the d × d matrix operator of element ∂i j . The notation A : B stands
for

∑d
i, j=1 Ai j Bi j and ∇ · u stands for

∑d
i=1 ∂i ui . Hence the following problem is

similar to the stochastic optimization of (1):
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min
u∈U d

J =
T∫

0

∫

Rd

H(x, t, u(x, t); ρt )ρ(x, t)dxdt +
∫

Rd

G(x, ξ)ρ(x, T )dx,

where H(x, t, u; ρt ) := H̃(x, t, u, χ(t))with (4) and

χ(t) :=
∫

Rd

h(x, t, u(x, t), ρ(x, t))ρ(x, t)dx, ξ :=
∫

Rd

g(x)ρ(x, T )dx (5)

Notice that H has a functional dependency on x �→ ρt (x). Here (5) is more gen-
eral than (1); they match when h = h̃ is not a function of ρ. Define the Quadratic
Programming value function by

V (τ ; ρτ ) := min
u∈U d

T∫

τ

∫

Rd

H(x, t, u(x, t); ρt )ρt (x)dxdt +
∫

Rd

G(x; ρT )ρT dx, . (6)

where ρt is the solution of (4) on (0, T ] with initial condition ρτ at τ . Let û ∈ Ud

be a solution and ρ̂ the corresponding solution of (5). Let V ′(x, τ ; ρ) be the Rietz
representative of the derivative of V with respect to ρ, i.e.

V (x, τ ; ρ + ν) = V (x, τ ; ρ) +
∫

Rd

V ′(τ ; ρ)(x)ν(x)dx + o(||ν||2), ∀ν ∈ L2(Rd);

Proposition 1 (Extended Hamilton-Jacobi-Bellman Principle)

0 = min
v∈V d

∫

Rd

[
H(x, τ, v; ρτ ) + ρτ ∂ρ H̃ +

( ∫

Rd

∂χ H̃ρτdx
)
(h + ρτ ∂ρh) (7)

+ ∂τV
′ + v · ∇V ′ + μ : ∇2V ′

]
ρτdx; V ′

|T = G + g
∫

Rd

∂ξGρ̂T dx .

(8)

Remark 1 V ′ is related to V at the optimum by

∫

Rd

V ′(τ ; ρτ )ρτdx =
T∫

τ

∫

Rd

(
ρt∂ρ H̃ +

( ∫

Rd

∂χ H̃ρtdx
)
(h + ρt∂ρh)

)
ρtdxdt

+
∫

Rd

((
G + g

∫

Rd

∂ξGρT dx
) · ρT

)
ρT dx + V (τ ; ρτ ). (9)
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3 Portfolio Optimization

A portfolio of value xt is made of a risky asset S1t and cash in a saving account S0t .
These are given by

dS0t = aS0t dt, dS1t = αS1t dt + σ S1t dWt (10)

where a is the interest rate at time t , α is the drift of S1, σ its volatility,Wt a standard
Brownian motion. Following [2], assume the amount invested in the risky asset at
time t is worth vt ; the rest is xt − vt in cash; over a period dt it changes dxt is due
to the change dS1t , i.e. vt (αdt + σdWt ) plus the change due to dS0t : (xt − vt )adt :

dxt = (xt − vt )adt + vt (αdt + σdWt ) (11)

A widely accepted definition of an optimally managed portfolio, in the sense
of risk versus yield, is when {vt }T0 minimizes of the mean variance 2J := E[x2T −
(E[xT ])2] at time T of exercise while maximizing the mean E[xT ]; the 2 is there for
numerical convenience. For each Nash equilibrium there will be a constant γ such
that {vt }T0 minimizes J := γ

2E[x2T − (E[xT ])2] − 1
2E[xT ]. This is a non-standard

stochastic control problem because J is function not only of xT but also of E[xT ]; it
is known as a mean-field type control problem. However it can be converted into a
deterministic control problem by introducing the probability density function of xt ,
which is solution of the Fockker-Planck equation associated with (11):

∂tρ + ∂x [(ax + bv)ρ] − ∂xx [σ
2v2

2
ρ] = 0, x ∈ � := R

+, t ∈ (0, T ] (12)

where b := α − a and ρ|0 is given, positive with unit mean. The problem is then to

min
v(x,t)∈V

J = 1

2

∫

�

(γ x2 − x)ρT dx − γ

2

⎡
⎣

∫

�

xρT dx

⎤
⎦

2

subject to (12). (13)

We assume that v is a feedback function x, t → v(x, t); there are bounds on v,
for instance,V = {v : m ≤ v(x, t) ≤ M, ∀x, t}. The problem deviates slightly from
framework [20] in that the control appears in the volatility but the methodology is
the same. With the same notations d = 1 and

H̃ = 0, h̃ = 0, G = 1

2
(γ x2 − x − γ x

∫

�

xρT dx), u = ax + bv, μ = σ 2v2

2
(14)

An adjoint state ρ∗ := V ′ is introduced, solution of
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∂tρ
∗ + (ax + bv)∂xρ

∗ + σ 2v2

2
∂xxρ

∗ = 0, ρ∗|T = 1

2
(γ x2 − x) − γ x

∫

R

xρT dx (15)

with ρ∗(±∞) = 0. The optimality conditions are, for all admissible δv,

δ J =
∫

R×(0,T )

[(b∂xρ∗ + σ 2v∂xxρ
∗)ρδv] (16)

It leads to

b∂xρ
∗ + σ 2v∂xxρ

∗ = 0 ∀x, t where m < v(x, t) < M
b∂xρ

∗ + σ 2v∂xxρ
∗ ≥ 0 ∀x, t where v(x, t) = m,

b∂xρ
∗ + σ 2v∂xxρ

∗ ≤ 0 ∀x, t where v(x, t) = M (17)

3.1 Polynomial Solution

Assume ρ∗ = qx2 + r x + s and v = Ax + B ∈ (m, M). Then the adjoint equation
gives solvable ODEs for q(t), r(t) and s(t). Because of the constraints, the general
solution has 3 regimes as shown on Fig. 1.

Proof In what follows we denote E[xT ] :=
∫
R

xρT (x)dx and I some interval for x .

By assuming ρ∗ and v polynomial, the adjoint equation becomes:

q̇x2 + ṙ x + ṡ + (ax + b(Ax + B))(2qx + r) + σ 2(Ax + B)2q = 0

In turn, it implies q̇ + q(2a + 2bA + A2σ 2) = 0, q(T ) = γ

2

ṙ + (a + bA)r + 2qBb + 2σ 2ABq = 0, r(T ) = −1

2
− γ

∫

R

xρT

-10 -8 -6 -4 -2 0 2 4 6 8 10
x

v (
x)

v versus x at time t

x0 x1

v=M

v= m

Fig. 1 The control is v = M when x < x0, affine when x0 < v < x1, and v = m when x > x1
with x0 = − Mσ 2

b + ( 1
2γ + E[xT ])e−a(T−t), x1 = −mσ 2

b + ( 1
2γ + E[xT ])e−a(T−t)
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ṡ + r Bb + σ 2B2q = 0, s(T ) = 0
b∂xρ

∗ + σ 2v∂xxρ
∗ = 2(b + σ 2A)qx + br + 2σ 2Bq . (18)

Regime 1: v = Ax + B = m(t) ∀x ∈ I ⇒ A = 0, B = m. This happens only
when b(2qx + r) + 2mσ 2q ≥ 0. Then

q = γ

2
e2a(T−t), r = −(

1

2
+ γE[xT ])ea(T−t) − bγ ea(T−t)

T∫

t

m(τ )ea(T−τ)dτ.

Hence

x > −mσ 2

b
− r

2q
= −mσ 2

b
+ (

1

2γ
+ E[xT ])e−a(T−t) + b

T∫

t

m(τ )e−a(τ−t)dτ

is required for this regime.
Regime 2: b + σ 2A = br + 2σ 2Bq = 0 and m < v = Ax + B < M . Then after
some algebra

−Mσ 2

b
+ (

1

2γ
+ E[xT ])e−a(T−t) < x < −mσ 2

b
+ (

1

2γ
+ E[xT ])e−a(T−t).

Regime 3: Similar to Regime 1, v = M(t) requires

x > −Mσ 2

b
+ (

1

2γ
+ E[xT ])e−a(T−t) + b

T∫

t

M(τ )e−a(τ−t)dτ. (19)

Remark 2 The advantage here compared with [2] is that we do not need to guess
the shape of the control nor of the adjoint state, once it is assumed polynomial. The
analysis also handles constraints.

4 Find the Best Production Strategy for an Exhaustible
Resource

Following [17], consider a continuum of producers exploiting an oil field. Each
producer’s goal is to maximize his profit, knowing the price of oil; however, this
price is influenced by the quantity of oil available on the market, which is the sum
of all that the producers have decided to extract at a given time. Hence, while each
producer does not affect the price of oil, in the end the global problem must take into
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account the market price as a function of oil availability. For a deeper understanding
of the relation between the individual and global games, readers are referred to [12].

4.1 Notations

Let X0 be the initial oil reserve and Xt be the quantity of oil left in the field at time
t , as seen by a producer. It is modeled by

dXt = −atdt + σ XtdWt , X0 given by its PDF, (20)

where at is the extraction rate, i.e. atdt is the quantity extracted by the producer
in the time interval (t, t + dt). Here W is a standard Brownian motion reflecting
the incertitude of the producer about the remaining reserve; σ > 0 is a volatility
parameter, assumed constant.

We assume that at := a(Xt , t) is a deterministic feedback function of t and Xt .
The cost of oil extraction is assumed to be C(a) := αa + βa2, for some positive

constants α and β. The price of oil as a function of extraction is assumed to be
pt := κe−bt (E(at ))−c, with positive κ, b and c. Note that by construction Xt takes
only positive values and ought to be bounded by, say L , the maximum estimate of
the reservoir content. However, nothing in the model enforces these constraints.

Each producer optimizes his integrated profit up to time T , discounted by the
interest rate r ; however he wishes also to drain the oil field, i.e., achieve XT = 0.
Thus his goal is to maximize over a(·, ·) ≥ 0 the functional:

J (a) :=E

⎡
⎣

T∫

0

(ptat − C(at ))e
−r tdt

⎤
⎦ − γE[|XT |η], subject to (20); (21)

γ and η are penalization parameters. Replacing p and C by their expressions gives

J (a) = E

⎡
⎣

T∫

0

(κe−bt (E[at ])−cat − αat − β(at )
2)e−r tdt

⎤
⎦ − γE[|XT |η].

4.2 Dynamic Programming Solved by a Fixed Point
Algorithm

To connect to Sect. 2 let us workwith u = −a, the reserve depletion rate. For the time
being, we shall ignore the constraints L ≥ Xt ≥ 0 and u ≤ 0; so Vd = R. Moreover
we shall work with η = 2 and comment on η > 2 at the end.
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Recall that ρ(·, t), the PDF of Xt , is given by the Fokker-Planck equation :

∂tρ − σ 2

2
∂xx

(
x2ρ

) + ∂x
(
ρu

) = 0 (x, t) ∈ R×]0, T ], (22)

with initial condition: ρ|t=0 = ρ0 given. Now ut := ∫
R
utρtdx = E[−at ] and

J̃ (τ ; ρτ , u) :=
T∫

τ

∫

R

(
κe−bt (−ut )

−cut − αut + βu2t
)
e−r tρtdxdt (23)

+
∫

R

γ |x |ηρT dx subject to (22) with ρ|t=τ = ρτ . (24)

The goal is now to minimize J̃ with respect to u. In this example we have

H(x, t; ut , ρt ) = (κe−btχ−c
t u(x, t) − αu(x, t) + βu(x, t)2)e−r t ,

χt = −
∫

R

utρtdx, hence h(x, t, u, ρ) = −u(x, t) and G(x, χT ) = G(x) = γ |x |η.

By Proposition 1 we have V ′
|T = γ |x |η and V ′ satisfies

∂t V
′ + σ 2x2

2
∂xx V

′ + u∂x V
′ = −

⎡
⎣H + ρ∂ρH + (h + ρ∂ρh)

∫

R

∂χ Hρdx

⎤
⎦ (25)

= − (
κ(1 − c)e−bt (−u)−cu − αu + βu2

)
e−r t. (26)

because ∂ρH = ∂ρh = 0 and ∂χ H = cκe−btχ−c−1u. Moreover, by (7),

− ∂x V
′ = (

κ(1 − c)e−bt (−u)−c − α + 2βu
)
e−r t , (27)

giving: u(x, t) = 1

2β

[
α − er t∂x V

′ − κ(1 − c)e−bt (−u)−c
]
. (28)

Now, using (27) to eliminate ∂x V ′ in (26) and the expression above for u leads to

∂t V
′ + σ 2x2

2
∂xx V

′ = e−r t

4β

(
α − er t∂x V

′ − κ(1 − c)e−bt (−u)−c
)2

. (29)

Note that this equation for V ′ depends only on u and not on u. Nevertheless (28)–
(29) is a rather complex partial-integro-differential system; we can now sketch a
numerical method to solve it:
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Algorithm 1.
Choose ω ∈ (0, 1). initialize u0, set i = 0.

1. Compute ρi by solving (22) ;
2. Compute ui = ∫

R
uiρi ;

3. Compute V ′
i by (29);

4. Compute ũi+1 by (28) and set ui+1 = ui + ω(ũi+1 − ui );

If not converged, set i = i + 1 and go back to step 1.

Although it seems to work numerically in many situations, as we shall see below,
nothing is known on the convergence of this fixed-point type algorithm.

Even though the problem is not linear-quadratic, when η = 2 we can still look
for V ′ solution of (29) in the form V ′(x, t) = Pt x2 + zt x + st . where Pt , zt , st are
functions of time only. Identification of all terms proportional to x2 gives,

Ṗt + σ 2Pt = er t

4β
P2
t , PT = γ, ⇒ Pt = 4βμγ e(T−t)μ

γ e(T−t)μ − γ + 4βμ
.

Then, u is found by (28). In particular ∂xu = − 1
8β ∂xx V ′ = − 1

4β Pt . However, the
Fokker-Planck equation must be solved numerically to compute u. This gives us a
method to validate the algorithm.

4.3 Numerical Implementation

To implement Algorithms 1, we need to localize the PDE. As x < 0 makes no sense
for this application, we shall work on QL = [0, L] × [0, T ] instead of R × [0, T ];
a stopping time for the event Xt = 0 would be better, but too costly. At x = L , we
set ρ(L , t) = 0,∀t , which makes sense when L is large.

Assigning boundary conditions to (29) is problematic. Our numerical tests show
that the computations depend strongly on L when it is not done correctly. When
η = 2, we know that V ′ and ρ∗ have asymptotically the same behavior as Pt x2,
giving 1

2σ
2x2∂x V ′ = σ 2x3Pt = σ 2xV ′, a relation which can be used as a boundary

condition in the weak form of the equation (and similarly for ρ∗): find ρ ∈ H 1(QL)

with V ′
T given and

∫

QL

[ − ν∂t V
′ + σ 2

2
∂x (νx

2)∂x V
′]dxdt +

T∫

0

σ 2LV ′(L , t)ν(L , t)dt

+
∫

QL

e−r t

4β

(
α − er t∂x V

′ − κ(1 − c)e−bt (−u)−c
)2

νdxdt = 0, (30)

for all ν ∈ H 1(QL) with νT = 0.
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To solve this non-linear PDE we use the fact that it is embedded into an iterative
loop in Algorithm 1, and semi-linearise it by evaluating the square term in the last
integral as a product of the same, where one factor is evaluated at the previous
iteration.

To discretise it we have used a space-time finite element method of degree 1 over
triangles covering QL . Admittedly it is an unusual method! However, it is somewhat
similar to a central difference method and it is feasible because the problem is one
dimensional in space and because it allows exact conservativity and exact dualitywith
respect to time and space in the integrations by parts. It handles also automatically
the storage of ρ, u, V, u at all times and solve the backward (and forward) equation
at all time steps by a single linear system. The linear systems are solved with the
library MUMPS as implemented in freefem++ [18].

We used 50 points to discrete (0, L), L = 10 and 50 time steps for [0, T ], T = 5.
The following values have been used: α = 1, β = 1, γ = 0.5, κ = 1, b = 0.1, r =
0.05, σ = 0.5 and c = 0.5. The initial condition ρ0 is a Gaussian curve centered at
x = 5 with volatility 1. We initialized u by u0 = −α/(2β). A local minimum ue is
known from the Riccati equation; the error ‖u − ue‖ is used as a stopping criteria in
Algorithm 1. We chose ω = 0.5. Figure2 shows the optimal control as a function of

Fig. 2 Optimal
x, t → u(x, t) and the
Riccati solution slightly
below

Fig. 3 PDF of resource Xt :
x, t → ρ(x, t)
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Table 1 Algorithm 1. Convergence history: H1-error,
∫
(∂x u − ∂x ue)2dxdt versus iteration num-

ber k

k 1 2 3 4 5 6 7 8 9 10

Error 1035 661.2 8.605 44.7 3.27 0.755 0.335 0.045 0.015 0.003

Fig. 4 Total (instantaneous)
production versus time
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production

(x, t). For each t the control is linear in x , as predicted by the Riccati equation; the
quadratic part of the Riccati solution of Sect. 4.2 is also plotted, and a small difference
is seen on the plot (two surfaces close to each other are displayed). Figure3 shows
the evolution in time of the PDF ρ for all x > 0 of the resource distribution Xt .
At time 0 it is a Gaussian distribution centered at x = 5; at time T the distribution
is concentrated around x = 0.5, so most producers have pumped 90% of the oil
available to them. Table1 gives the convergence history of the algorithm.

All above is obtained with L = 10, but there is almost no difference with
L = 40. Figures4 and 5 present the evolution of production (−ut ) and price
pt = κe−bt (−ut )−c.

5 Numerical Solution of a Systemic Risk Problem

Consider N banks, each with

dX j t = −hV ′(X j t )dt + σdWt + θ
( 1
N

∑
k

Xk t − X j t

)
, j = 1..N

with V = 1
2 x

2(x2 − 1). There are two limit states: limt→∞ ∈ {X j X± = ±1}. We
assume that X− is the normal state while X+ is the dangerous state. The parameter



14 O. Pironneau and M. Laurière

Fig. 5 Oil Price versus time
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h is the height of barrier potential, σ is the randomness intensity and θ is the speed
of return to equilibrium.

When N → ∞ the PDF of N−1 ∑N
1 X j tends to μ solution of [13]

∂tμ + ∂x (bμ) − σ 2

2
∂xxμ = 0, b = −hV ′(x) + θ(E[x] + x E[x] =

∫

R

xμ(x)dx (31)

In [14, 16] it is shown that the rare event probability that the state of the system
evolves from X− to X+ is proportional to exp(− N

2σ 2

∫
R×(0,T )

b2ρdxdt)
With κ = h − θ and χ = θ

∫
R
xρdx , the problem is restated as

min
u

J = 1

2σ 2

∫

R×(0,T )

(hx3 − κx − χ + u

ρ
)2ρ : ∂tρ − σ 2

2
∂xxρ = −∂x u, ρ|0, ρ|T given.

Finding solutions of the Fokker-Planck equation with initial and final conditions is
quite difficult (see a Monge-Kantorovich solution in [4]). We have tried use penal-
isation to impose the final condition with very mediocre results [19]. Now in one
dimension we notice that for a given ũ, if we denote ρ̃ the solution of the PDE
with the initial condition only, then ρ = ρ̃ + t

T (ρT − ρ̃T ) satisfies the PDE and both

conditions at 0 and T provided u = ũ − 1
T

∫ x
(ρT − ρ̃T )dx + tσ 2

2T ∂x (ρT − ρ̃T ).
The problem has been solved by 3 software packages which do not require deriva-

tives: NEWUOA, CMAES and IPOT. For the first 2, the control is in the space of
polynomial of degree n or less in x × t , n = 2 and 3. Both packages give the same
results, J decreased from J = 2.058 to J = 1.072. The solution is shown on Fig. 6
(all but bottom right). IPOPT is a differentiable optimization package so at each finite
element node there is a degree of freedom for the control. Then J can reach very
small values; for instance J = 0.49 after 10 iterations; the control is shown on Fig. 6
(bottom right); but as the number of iterations is increased the control becomes more
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Fig. 6 Top left: x, t �→ ρ(x, t); t = 0, x = −L is the top corner of the rectangle and x = L , t = T
is its lowest corner. All 3 packages give almost identical ρ. Top right: the control b = u/ρ when
a polynomial approximation is used for ρ of degree 2. Bottom left: same but with polynomials of
degree 3. Bottom right: same but with iPOPT

and more oscillatory. Some regularisation is required. In conclusion while one can
find a strategy that steers the system from a stable solution to an unstable one, yet it
is difficult to give the probability of that event.
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A Review of Surrogate Modeling
Techniques for Aerodynamic Analysis
and Optimization: Current Limitations
and Future Challenges in Industry

Raul Yondo, Kamil Bobrowski, Esther Andrés and Eusebio Valero

Abstract Recent progresses in aircraft aerodynamics have witnessed the introduc-
tion of surrogate-based approaches in design analysis and optimization as an alterna-
tive to address the challenges posed by the complex objective functions, constraints,
the high-dimensionality of the aerodynamic design space, the computational burden,
etc. The present review revisits themost popular sampling strategies used in conduct-
ing physical and simulation-based experiments in aircraft aerodynamics. Moreover,
a comprehensive and state-of-the art survey on numerous surrogate modeling tech-
niques for aerodynamic analysis and surrogate-based optimization (SBO) is pre-
sented, with an emphasis on models selection and validation, sensitivity analysis,
infill criterion, constraints handling, etc. Closing remarks foster on the drawbacks
and challenges linked with SBO aircraft aerodynamic industrial applications, despite
its increased interest among the academic community.

1 Introduction

High dimensional aerodynamic design problems require time consuming and com-
putationally expensive simulations or physical experiments to evaluate the complex
objectives functions and constraints for analysis and optimization. As an example
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while designing a new aircraft, a CFD (Computational Fluid Dynamics) campaign
provides the aerodynamicists with flow solutions from only few selected flight condi-
tions because it will be time-consuming and costly to evaluate all of them. To circum-
vent such burdens and enable a wider exploration of the design space, researchers
introduced cheap to evaluate surrogate models to accurately and speedily predict the
values of the model objectives and constraints at new design points, without a need
to necessarily repeat the original expensive physical or simulation experiment.

Optimization through the use of surrogatesmodels is calledSurrogate-BasedOpti-
mization (SBO). Gaining a good insight into SBO requires a knowledge in Design
of Experiments (DoE-spatial distribution of the samples—training set), simulation-
based (high-fidelity models, e.g. Reynold-Averaged Navier Stokes + fine mesh; low-
fidelity, e.g. Euler simulations) or physical models (e.g. Wind Tunnel Testing) and
Surrogate Models. Moreover, the SBO frameworks are heavily dependent on the
design objectives, the constraints. They should quantify the uncertainty (sensitivity
analysis) within the surrogate models, deal with ‘noisy’ data and pare down the prob-
lems posed by the high-dimensionality of the data (Dimensionality Reduction). A
vast number of papers review and group the various releases on Surrogatemodels and
SBO. Popular reviews are the ones from Queipo et al. [1], Forrester et al. [2], Ahmed
and Qin 2009 [3] or more recently Viana et al. [4]. However, it is not clear from the
readings if the approaches and frameworks presented in the above-mentioned papers
are suitable for aerodynamic analysis and optimization, and could fit the needs of
the aircraft industry.

Motivated by the lack of a review considering industrial views proper to aircraft
aerodynamics design analysis and optimization, the present paper aims at revisiting
the Classical DoE (CDoE), the Modern DoE (MDoE, a.k.a Design and Analysis
of Computer Experiments (DACE)) in Sect. 2 and provides a comprehensive sum-
mary on existing surrogate models categories, including Data Fit Models (DFM),
Reduced-Order Models (ROM) and Multi-Fidelity Models (MFM) in Sect. 3. Fur-
thermore, the issues of models selection and validation are investigated. The outline
of the subsequent part of the paper is as follows: Sect. 4 introduces the ‘conventional’
SBO framework, with an emphasis on sensitivity analysis, constraints handling and
sequential/adaptative sampling (infill criterion approaches) to guide in new samples
selection for surrogate models update and/or optimization. Section5 discusses the
limitations, known current and future challenges in applying SBO in aircraft aero-
dynamics, from an industrial perspective. The last section concludes the review.

2 Design of Experiments (DoE)

Design of Experiments (DoE) was originally introduced by Fisher and al. in the
beginning of the 20th century to plan and conduct experiments with the aim of
understanding the probabilistic behavior of agricultural crops systems [5]. In the early
beginnings, experiments were only concerned with physical experiments, for which
the basic principles of DoE (randomization, replication, and blocking) established
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by Fisher are applicable. Physical experiments means an experimenter ‘physically’
carries out the experiments (example of Wind Tunnel Testing—WTT), that are more
often corrupted by randomerrors (‘noise’) and consequentlymakes the datamodeling
complex. With the advent of numerical methods and computing facilities, it became
possible to design experiments through computer-based simulations. In contrast to
physical experiments where the process looked into is stochastic, simulation-based
experiments are deterministic, with no need of replication [6]. Sampling the design
space, i.e. selecting a good set of data points (also called observations or training
points) became a key issue in computer-based simulations, with the prevailing goal
of maximizing the amount of information gained from a limited number of sam-
ples.

Sampling techniques can be grouped into two main categories, namely Classical
DoE (CDoE) [5] and Modern DoE (MDoE or Design and Analysis of Computer
Experiments-DACE in some literature) [7]. Additionally, training point selection
approaches can be classified into domain-based (a.k.a non-adaptative, a priori, one-
shot, off-line or single-stage) and response-based (a.k.a model-based, adaptative,
a posteriori, sequential or online) approaches. In domain-based approaches, train-
ing points are chosen based on the information available from the design space
(e.g. distance between two training points); whereas in response-based approaches
the training points are chosen based on the information provided by the surrogate
model (e.g. mean squared error approach) to enhance their efficiency. Domain-based
approaches are based on space-filling techniques [6], that try to spread the sample
points uniformly throughout the design space (a possible guarantee for an eventu-
ally acceptable a priori global approximation of the surrogate model). Generally, it
is not possible in aircraft aerodynamics to a priori select the number of samples to
establish a given accuracy, mainly because of the non-linearities of the aerodynamic
functions. Nevertheless, space-filling approaches provide the opportunity to monitor
the refinement of the surrogate model and to choose to stop or prolong the sampling
process (update of the design space). A thorough introduction to response-based
approaches is given in Rai et al. [8] or Forrester et al. [9] and will be presented in
Sect. 4.

2.1 Classical DoE

Classical sampling techniques have known an extensive use in aerospace engineer-
ing for various design improvement applications. Originally developed for plan-
ning physical experiments, they assume the existence of a random error term in
the measured response and a non-repeatability of the latter, even with the use of
the same sample during two different measurements; hence the use of replicated
sampling. Classical sampling techniques presuppose a uniform distribution of the
training points with the aim to have a fixed number of samples in the design space,
so as to minimize the influence of the random error term in posterior simulations.
Therefore, a significant number of samples tend to locate in the neighborhood or
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on the boundaries of the design space, with very few samples in the interior of
the design space. A comprehensive review on the causes of such samples spread
is given by Myers and Montgomery [10]. Some of the CDoEs can be used to plan
simulation-based experiments, sometimes arising in good enough approximations
of the objective functions [11]. Commonly used classical sampling techniques in
Aerospace engineering are:

• Full and Fractional-Factorial designs (a.k.a grid designs) [12],
• Central Composite designs [13],
• Box-Behnken designs [14],
• Plackett-Burman designs [15],
• Optimal designs [16],
• Orthogonal arrays designs often referred as Taguchi designs [17].

2.2 Modern DoE

MDoE sampling techniques have known a comprehensive development in paral-
lel to the evolution of computer science and ease access to computing facilities
[6]. Contrary to physical experiments, simulation-based experiments are determin-
istic, i.e. not only samples with the same input setting produce the same outputs
but also no measurements inaccuracies inherent to randomness occur. MDoE have
become a substitute to CDoE when the latter are infeasible or too costy. MDoE
sampling techniques tend to locate the training data points in the interior of the
design space, with the aims to find an approximate model and to minimize the bias
errors—local gaps between the true response trend and its estimated trend (surrogate)
[9]. Therefore, MDoE sampling techniques require different approaches than CDoE
techniques.

Till date, there is no rule of thumb regarding the choice of a specific MDoE
sampling strategy for aircraft aerodynamics design and analysis purposes, a good
accuracy of the generated approximations being subject not only to the sampling
points and the choice of the surrogate, but also the nature of the underlying problems
[9]. Throughout the decades, statisticians have developed numerousmetrics to ensure
a reasonable coverage of the design space [6] (Euclidean distanced-based, Statistical-
based, Projection-based, etc.). Besides the previously-mentioned sampling metrics,
means that help to a posteriori improve the performance of these a priori sampling
strategies (constructed from narrow set of training points) may encompass the use
of some optimality criteria or other metrics/criteria that will be discussed in subse-
quent sections. Hybrid DoEs arising from combinations of the above ‘traditional’
sampling strategies (CDoE and MDoE) are sometimes possible and have seen an
increased interest during the past decade. As examples one may quote Orthogonal
Latin Hypercube [18] or Orthogonal Maximin Latin Hypercube [19], etc. Table1
introduces common a priori MDoE used in aircraft aerodynamics design and analy-
sis. The attached references mainly coin the theories behind each of the MDoE.
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Table 1 MDoE used in aircraft aerodynamic design optimization

MDoE Examples

Random samplings Simple Random samplings [20]

Monte Carlo samplings [21]

Quasi-random samplings Quasi-Monte Carlo designs [22]

Sobol designs [23]

Hammersley or Halton samplings [24]

Projection-based designs MDoE + OAs [17]

MDoE + Nearly OAs [18]

Euclidean distance-based designs Maximin [19]

Minimax [25]

Voronoi tesselations [26]

Uniform samplings [27]

Other MDoE Symmetric samplings [28]

Latin hypercube samplings [29]

Anisotropic designs [30]

Hybrid designs

3 Surrogate Models

Numerous aircraft aerodynamic design analysis and optimization require running
computation intensive and complex simulation codes, such as CFD solvers. Despite
the availability of advanced computing capabilities, the excessive computational cost
makes it absurd to exclusively rely on expensive simulations (also known as high-
fidelity simulations) for the purpose of optimization or design space exploration.
An attempt to circumvent the computational budget restrictions was introduced by
Box and Draper [31] through the use of surrogate models, known as metamodels,
emulators, proxymodels or response surfacemodels. Surrogatemodels are ‘cheap-to-
evaluate’mathematical approximations thatmimic the deterministic computationally
expensive response or behavior of an original system over the complete or part of the
design space [6]; once constructed, a surrogate is used in lieu of the expensive full-
order analysis in order to predict the values of the objective functions at locations
that do not belong to the set of points used during the fitting process. Most often
aerodynamic functions tend to be highly nonlinear and highly dimensional (‘curse
of dimensionality’ [32]), which required to introduce strategies to reduce the required
number of evaluations of the modeled functions.

Deciding on a preference for a surrogate model remains a quite cumbersome
task. Both the selection and accuracy of such approximations depend not only on
the nature of the underlying problem (e.g. of aerodynamic optimization) but also
on the industrial common practices and designer experience (e.g. of the a priori
knowledge of the related physics and of the features provided by certain surrogate
models) [9]. Ostensibly, to attain an acceptable preliminary approximation (that may
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not be necessary for a localmodeling), it is recommended tomake use of space-filling
samplings with a minimal number of calls of the modeled functions, while retaining
most of underlying features. This is generally not trivial in aerodynamic design,
since there is few or no a-priori knowledge of the trends of the modeled functions
in advance. Furthermore, the use of surrogate models depends on an interest either
in improving the global accuracy over the entire domain (global modeling or design
space exploration) or in an approximation of the optimum to locally improve the
current design (local modeling or design space exploitation). An extensive review
of surrogate modeling use in mechanical and aerospace systems is found in Viana
et al. [4]. A wide variety of surrogate models have been introduced into aircraft
aerodynamic design (flow control, estimation of aerodynamic coefficients, variable-
fidelity data calibration, aerodynamic shape optimization, etc.). They can roughly be
broken down into three categories:

1. Data fit surrogates models—are regression-based or interpolation-based
approximations generated from data arising from few calls of the modeled func-
tions. They are ranked as non-physics-based approximations (no attempt is made
to ensure that the surrogate model the flow physics). Gaussian Process Regression
(a.k.a Kriging), Radial Basis Functions, Artificial Neural Networks, Support Vec-
torMachines, Polynomial Regressions or chaos, Splines, are some of the common
data fit metamodels [3, 6, 33].

2. Reduced-order models (ROMs)—ROMs bring an added value to data fits mod-
els as they offer the possibility to model high dimensional functions (e.g. local
flow variables predictions in aerodynamics). These models can be used for aero-
dynamic flow field reconstruction, incomplete or ‘gappy’ data set reconstruc-
tion, aerodynamic inverse design, features extraction, flow control, etc.Moreover,
they could provide the designer with a deeper understanding of the flow physics.
Roughly speaking, two types of ROMs have been introduced into aircraft aero-
dynamics so far:

a. ROMs for linear aerodynamic systems—Linear methods (e.g. Low-rank
Gramian approximants or Moment matching methods) [34–36], Reduced-
Order Bases (ROB)-based ROMs [34, 36, 37], Proper Orthogonal Decom-
position (POD)-based ROMs + Interpolation methods (e.g. POD+RBF,
POD+Kriging, etc.) [38, 39], etc.

b. ROMs for nonlinear aerodynamic systems—Linear and weakly-linear
methods (e.g.Volterra series orPOD-basedROMs) [36, 40],Hyper-reduction
methods (e.g. trajectory piecewise linear approximation (TPWL))[41, 42],
Manifold learning-based ROMs + Interpolation [43, 44] (e.g. ISOMAP),
etc.

3. Multi-Fidelity Models (MFM)—Originally developed for gradient-based opti-
mization, MFM have their roots in attempts to solve, for high-speed and low-cost,
high-fidelity optimization expensive problems by combining data from low- and
high-fidelities [9, 45–47].
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4. Hybrid surrogate models—The combination of twoormore of the various surro-
gate models introduced above, with or without derivative-based or metaheuristic
algorithms [48, 49], has led to new research orientations in developing emula-
tors. Examples are multiple/ensemble of surrogates [50, 51] or gradient/hessian
enhanced surrogate models [9, 52].

Error estimation methods are used in assessing and improving the local or
global accuracy of the surrogate models. Popular error metrics found in literature
and suitable for pure exploration include the Hold-Out method, the Split Sample
method, Cross-validation (Random sub-sampling, Leave-One-Out-(LOO), k-fold),
Bootstrapping, Schwarzs Bayesian information criterion, Akaikes information crite-
rion, etc. [6, 9]. These figures ofmerit present advantages and disadvantages, depend-
ing on the type of surrogate model and on an interest in global or local accuracy.
They may give erronous estimations and therefore could appear not to be suitable
(e.g. cross-validation applied toKriging [33]). Fewmetrics other than the ones above-
listed have been proposed to overcome this burden: the Mean Square Error (MSE),
the Root MSE, the Adjusted MSE, the Weighted Root MSE, the Integrated MSE,
the Mean Absolute Error (MAE), the Prediction Error Sum of Squares (PRESS) [9,
53].

4 Surrogate-Based Optimization (SBO)

Till date, numerous industrial aerodynamic engineers still rely on manual optimiza-
tion to attain better designs. With the development of computational resources added
to the improvements achieved in numerical and stochasticmethods, simulation-based
optimizations (gradient-based, gradient-free, etc.) have gained an increasing interest
among the scientific and engineering communities. Taking advantage of the numer-
ous features display by surrogatemodels and the complexities of aircraft aerodynamic
design problems (noise and inaccuracies in aero data, curse of dimensionality, com-
peting objective functions and constraints, non-linearities, computationally expen-
sive simulations, etc.), a novel surrogate-based optimization framework (SBO) [1,
45] have gained popularity in the processes of rapidly and efficiently searching for
optima (local or global) in the range of all possible solutions.

SBO is an iterative optimization process within which the modeled functions are
evaluated at new sample locations. The choice of these locations is guided by the
so-called infill-criteria that lead to the enhancement of the surrogate model in the
regions of optimal solutions. One of the most known SBO approach is Efficient
Global Optimization (EGO) [54]. Early SBO algorithms utilized only high-fidelity
models. Keeping in mind the high computational cost linked with the latter, the
trends in the development of new SBO algorithms have moved towards the use
of few number of high-fidelity evaluations combine with more low-fidelity ones.
The process is continued until some stopping criterion is achieved or the allocated
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computational budget totally spent. Numerous infill criterion approaches exist to
guide the experimenter during the optimization [9, 55–57]:

• Two-stages approaches: Minimizing the Interpolation Surface or the Statistical
Lower Bound, Maximizing the Probability of Improvement (PI) or the (Con-
strained)Expected Improvement (EI), TrustRegionModelManagement (TRMM),
Surrogate Management Framework (SMF),

• One-stage approaches: Goal seeking or optimization.

Moreover, various optimization algorithms have been employed for finding opti-
mal space-filling samplings, including evolutionary, local search or simulated anneal-
ing algorithms [6]. Recent approaches proposed in sequential sampling can be read
from Pan et al. [2, 58].

To improve the approximations based on surrogate models, it has been a common
place to conduct a sensitivity analysis. Such analysis (that could be global or local)
allow to identify the correlated design variables, the insensitive design variables, the
design variables that contribute most in altering the responses (screening), model
tuning, etc. Moreover, sensitivity analysis may be used in model adjustment and
validation to reduce uncertainty and identify the optimal regions within the design
space, with the aim of evaluating the robustness of the designs [59]. A broad range of
methods tackling sensitivity analysis exist, including scatter plots, correlations coef-
ficients, qualitative screening methods, quantitative approaches based on variance
decomposition (Fourier Amplitude Sensitivity Test (FAST), Sobol’ methods and
regression analysis that are restricted to local sensitivities or to specific surrogate
model behaviors [59].

Most often aerodynamic objective functions are subject to constraints. If using
SBO for speedy optimization purpose, both the objective functions and the con-
straints are approximated with cheap surrogate models. A wide spectrum of SBO
methodologies and constraints handling in the context of SBO is reviewed in Queipo
et al. [1].

5 Aircraft Aerodynamic Industrial Applications: Use,
Limitations and Future Challenges

The present chapter introduces some of the known current and future challenges in
applying aircraft aerodynamic design SBO, from an industrial perspective. Those
challenges arose from drawbacks identified from past experiences in an aircraft
industry-leading manufacturer [60–64].1

1. Changing and complex requirements—Optimization procedures in aircraft
aerodynamics are very challenging tasks, that differs from their counterparts con-
sidered by academics or researchers. Constant test cases are not ubiquitous, with

1The content of the present section does not necessarily reflect the position or policies of any of the
industrialist firms here-mentioned. Therefore no official endorsement should be inferred.
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objectives, constraints, geometry parametrization or IT environments changing
frequently. Aeronautical industrialists and academics have a different mindset.
While the first think of robust methods applied to complex cases at reasonable
time frames, the latter are in general interested in generating new methods with
a high innovation rate and strive to continuously raise their recognition.

2. Integrated designs and accuracy requirements—High speed civil transport
aircrafts in classical configuration are already well optimized in present-days,
which makes further progress arduous. Therefore, advanced optimization proce-
dures that involve the complete aircraft should be introduced, in lieu of the actual
modus operandi where parts of the aircraft are optimized separately (example
of a clean wing optimized first and the engine integrated afterwards). Moreover,
further improvements require flow around the aircraft to be calculated with high
accuracy, with a drag error estimated below 1%. This can be achieved using high-
fidelity data, with sufficiently accurate calibrations of low-fidelity information.

3. Geometry parametrization–The choice of the shape parametrization method is
of significant importance in any aircraft aerodynamic design problems because it
largely affects the efficiency of the underlying shape optimization. A successful
parametrization scheme has to offer the capability to cover a large portion of the
design space with a limited set of design variables, a large number of design vari-
ables generally arising in slow convergence rates. Based on experienced gained,
the parametrization strategies to be developed should:

• be easily implemented in any aerodynamic design problem and be able to
tackle the issues posed by the ‘curse of dimensionality’ (reduced number of
design variables) for a complete aircraft configuration, that is to be considered
in future optimization processes,

• offer the possibility to include global parameters (e.g. angle of attack, wing
sweep, etc.) as design variables, the advantages such as continuous gradi-
ents and the advantages to attain any geometry (be independent of the initial
geometry),

• assess the deformations of aerodynamic surfaces, including intersections,
excrescences or gaps,

• be able to handle geometric constraints methodically.

Moreover, the parametrization techniques should not limit the use ofmajor numer-
ical optimization schemes nor violate the assumption that the aerodynamic geom-
etry surface should be continuous.

4. Computer experiments and Surrogate Models—Much work remain to be
achieved in the construction of efficient algorithms tailored to aerodynamic design
and to define strategies in the selection of suitable sampling techniques. Air-
craft industrial aerodynamic engineers interest lies on space-filling and adaptative
designs. There is a desire to improve the related algorithms for effective models
refinement, with a strong interest in improving the sequential designs starting
from best practices in computer experiments.
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Variable-Fidelity Models (VFM) have been applied in some test cases.
Aerodynamic engineers seek to bring higher-fidelity analyzes earlier into the
design process. Reducing the number of ‘high-fidelity’ CFD simulations by 70–
80% compared to low-fidelity simulations (Euler, empirical methods, etc.) remain
an essential goal,whilemaintaininghigh accuracy.Therefore, there is an industrial
need to develop algorithms that can iteratively calibrates lower-fidelity informa-
tion to the high-fidelity ones, in order to reach an optimum of the high-fidelity
aerodynamic design problem.
POD and its extensions have shown to be suitable in full aircraft configuration
cases for flow reconstruction, model reduction, data reconstruction and storage.
New trends concerned with POD involve:

• The development of advanced VFM and POD-basedmethodologies and tools,
• The development of a data model adaptation scheme, targeted towards an
overall data changes (targeted data adjustment). For example the use of POD
in the prediction of the aerodynamic flow field on a time-dependent deformed
shape (wing aeroelasticity, etc.),

• Investigating the use of POD for interpolation between configurations in more
complex conditions (high Mach numbers or angles of attack cases, presence
of non-linearities, etc.).

Data fit models are extensively used in the industry, especially for modeling
problems with low dimensional outputs (e.g. forces measurements during wind
tunnel testing). They are applied as direct surrogates of aerodynamic coefficients
and serve to estimate POD modal coefficients at different flow conditions other
than those associated with the original snapshots.
Another important requirement from an industrial point of view is the ability
to reuse constructed surrogate models for posterior tasks, such as optimization
problems with different objectives and constraints.

5. Computational efficiency (costs)—Performance of the optimization process is
the key to its success in industrial application. Important factors to assess the per-
formance are computational resources used (memory, bandwidth, etc.) and CPU
time to deliver the results. A selective use of higher-fidelity simulations, in con-
junction with surrogate modeling techniques, will allow to attain an acceptable
level of accuracy and help control the computational costs. From an industrial
point of view, time to deliver the results is a priority, and it is more favorable to
utilize, whenever possible, significantly larger number of CPUs to complete opti-
mization as soon as possible, rather than utilizing the resources more efficiently
but with longer delivery time (progress with the design loop requires deliver-
ing optimization results no longer than a week after the task was formulated).
Due to the large amount of data involved, the disk space limitations should be
kept in mind. For example, it is sufficient to store flow variables values only on
grid surfaces nodes, this approach requiring much less memory than handling
a whole volume solution. However, the question on how to spend the allocated
computational budget, in more low- and less high-fidelity simulations or just in
high-fidelity ones, remain an open issue.
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6. Grid deformations for small and large displacements—Adaptative mesh
variations—Despite the knowledge gained and numerous meshing roundtables,
the aircraft aerodynamic community is still demanding for new approaches and
improvements related to the problem of mesh deformation algorithms, especially
for large deformations. Mesh deformation algorithms are known to be expen-
sive and at the industrial level, there is a need of more and more efficient but
computationally cheap tools capable to cope with 3D grids of complete aircraft
configurations with thick/fine boundary layers, nacelles, high-lift devices, etc.
Designing algorithms to address the cost reduction have therefore be one of the
main visions for the next years. In response to these large mesh deformations,
‘remeshing’ the entire domain has been the solution proposed by some engineers
and scientists. Howbeit, regenerating the mesh is extremely time consuming and
may require manual adjustments for complex geometries. Therefore, it is desir-
able in aircraft aerodynamic optimization to develop robust and efficient mesh
deformation methods for large displacements that not only lead to significant
computational time savings (by automatizing the process) but also preserve a
consistent mesh quality and could be applicable to a variety of mesh types. Fur-
thermore, with the increasing interest in adjoint-based optimization, a particular
attention should be put in the grid quality aspect because a poor grid will defi-
nitely have considerable effects on the gradients.
Concurrently, one of the industrial unresolved issues with regards to small defor-
mations has been the definition of the validity of POD over a certain range of
deformations; a concern with the use of reduced-order models being to develop
some extensions of existing ones that could reliably handle the small deforma-
tions and their effects on the flow features. Adaptive Mesh Refinement (AMR)
remains a concern when trying to improve the resolution of the flow features at
reasonable computational cost.

7. Interactive process with inputs from designers—‘Manual’ optimization till
date remains the major strategy applied in aerodynamic shape optimization at
industrial level. It provided the designer with a good understanding of the under-
lying physics and an awareness on how the aerodynamics is affected by the
changes in geometry. The major disadvantages with such an approach are that
it is time-consuming, it limits an efficient exploration of the design space and it
largely depends on the designer expertise. Nevertheless, despite these drawbacks,
many industrial aerodynamicists wish to have a control on the optimization pro-
cess, that could be achieved through a ‘decision support scheme’ [46], making
the designer himself a stopping criteria.
Such a decision support scheme could be efficient in the context of SBO, within
which few designers have a good expertise on when to stop the optimization pro-
cess, without necessarily waiting for the allocated computational budget to run
out.
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6 Conclusion

The present paper provides a comprehensive and present-day overview of Design
of Experiments, Surrogate Models and their applications in support of aircraft aero-
dynamic design analysis and optimization. Topics such as models selection and
validation, constraints handling, sensitivity analysis are outlined. At last, the review
addresses the limitations and challenges in use of SBO in the aircraft industry. It is
hope the paper will serve as a good starting point for novices and will help aerody-
namicists to decide on new research orientations in the domain of SBO. An extensive
coverage of the approaches encountered on this short review are to be published as
a journal article.
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Constrained Single-Point Aerodynamic
Shape Optimization of the DPW-W1
Wing Through Evolutionary
Programming and Support Vector
Machines

E. Andrés-Pérez, D. González-Juárez, M. J. Martin-Burgos
and L. Carro-Calvo

Abstract The application of surrogate-based methods to the constrained
optimization of aerodynamic shapes is nowadays a very active research field due
to the potential of these methods to reduce the number of actual computational
fluid dynamics simulation runs, and therefore drastically speed-up the design pro-
cess. However, their feasibility when handling a large number of design parameters,
which in fact is the case in industrial configurations, remains unclear andneeds further
efforts, as demonstrated by recent research on design space reduction techniques and
adaptive sampling strategies. This paper presents the results of applying surrogate-
based optimization to the three-dimensional, constrained aerodynamic shape design
of the DPW-W1 wing, involving both inviscid and viscous transonic flow. The wing
geometry is parameterized by a control box with 36 design variables and the applied
approach is based on the use of Support Vector Machines (SVMs) as the surrogate
model for estimating the objective function, in combination with an Evolutionary
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Algorithm (EA) and an adaptive sampling technique focused on optimization, called
the Intelligent Estimation Search with Sequential Learning (IES-SL).

1 Introduction and Previous Works

1.1 Introduction

In the last few years, there has been an increasing interest in the topic of Surrogate-
based Optimization (SBO) methods for aerodynamic shape design. This is due to the
promising potential of these methods to speed-up the design process by the use of a
“low cost” objective function evaluation to reduce the required number of expensive
computational fluid dynamics (CFD) simulations. However, the application of these
SBO methods for industrial configurations still requires facing several challenges,
such as the so-called “curse of dimensionality”, the ability of surrogates when han-
dling a high number of design parameters, efficient constraints handling, adequate
exploration and exploitation of the design space, etc.

1.2 Recent Research Efforts in SBO for Aerodynamic Shape
Design

A physics-based surrogate model was recently applied in [1] to the drag minimiza-
tion of a NACA0012 airfoil in inviscid transonic flow and a RAE2822 airfoil in
viscous transonic flow, both using the PARSEC parameterization with up to ten
design parameters. The drag minimization problem was also addressed by SBO in
[2] for the NLF0416 airfoil, parameterized with ten design parameters.

Moreover, a combination of a genetic algorithm (GA) and an artificial neural
network (ANN) was applied in [3] to the shape optimization of an airfoil, parame-
terized by a modified PARSEC parameterization involving ten design variables. In
[4] a surrogate based on Proper Orthogonal Decomposition (POD) was applied to
the aerodynamic shape optimization of an airfoil geometry parameterized by sixteen
design variables defined with Class Shape Transformation method (CST). In sum-
mary, the ability of SBO methods to manage a high number of design parameters
still remains an open challenge and have been studied by several authors in the last
few years, as well as the strategies for efficient infill sampling criteria with constraint
handling [4, 5].

Finally, the authors also presented recent works on this topic [6, 7]. This paper is
an extension of previous research, here considering the constrained single-point aero-
dynamic optimization of the DPW-W1 wing for both inviscid and viscous transonic
flow.
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1.3 Garteur AD/AG52

This work is part of a GARTEUR (Group for Aeronautical Research and Technology
in Europe, www.garteur.org) Action Group that was established to explore these
SBO approaches. The main objective of the AG [8] is, by means of a European
collaborative research, to make a deep evaluation and assessment of surrogate-based
global optimization methods for aerodynamic shape design.

2 Definition of the Optimization Problem

2.1 Baseline Geometry: DPW-W1 Wing

The public domain transonicDPW-W1wing (a test case of the ThirdAIAADrag Pre-
dictionWorkshop) was used [9, 10]. Reference quantities for this wing are displayed
in the following table (Table 1):

The initial geometry (in IGES format) was downloaded from [9]. A set of grids
are also available in the website of the 3rd AIAA Workshop on Drag Prediction
(Table 2).

2.2 Parameterization

The DPW geometry is parameterized by a 3D control box (displayed in Fig. 1) with
5 control points in direction u, 10 in direction v and 5 in direction w. The parametric

Table 1 DPW reference quantities

Sref (wing ref. area) 290,322 mm2

Cref (wing ref. chord) 197.55 mm

Xref 154.24 mm (relative to the wing root leading edge)

b/2 (semi span) 762 mm

AR (aspect ratio, AR�b2/Sref 8.0

Table 2 Computational grids

#points (k) #surface points (k) #elements (k) #surface elements (k)

DPW-EULER 427 135 2112 276

DPW RANSa 3770 152 9335 310

aThe DPW RANS grid was downloaded directly from the 3rd Workshop on Drag Prediction web
page

http://www.garteur.org
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Fig. 1 DPW wing
parameterization

u direction corresponds to the y axis, the v direction to the x axis, and the w direction
to the z axis.

The design variables are the vertical displacement of those control points set up on
the aerodynamic surface. The wing is split in three profile sections and the transition
between sections is linear. Each section has 6 active control points for the upper side
and other 6 for the lower side, which are independent (the movement of a control
point at the upper side does not modify the lower side and vice versa), with a total
of 36 design parameters for the whole wing. Authors have previously applied this
parameterization technique to other local and global optimization problems [11].
During the optimization performed in this paper, the wing planform will be kept
fixed, as well the angle of attack and the twist angle distribution.

2.3 Aerodynamic Constraints

The following aerodynamic constraints are considered:

1. Prescribed constant lift coefficient (CL �C0
L)

2. Minimum pitching moment: CM ≥C0
M

3. Drag penalty: If constraint in minimum pitching moment is not satisfied, the
penalty will be 1 drag count per 0.01 increment in CM.

2.4 Geometric Constraints

Each design variable will be constrained by its minimum and maximum values
that will be chosen as the+or −20% of their original value. Apart from this, other
constraints have been defined, according to [10]:

1. Airfoils’ maximum thickness constraints:
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(t/c)section ≥ (t/c)0section

where the right term is the maximum thickness for the original wing sections, root,
mid-span and tip, which has the value of 13.5%.

2. Beam constraints

First, two locations (x/c) are fixed to represent the beam constraints:

(x/c)root,1 � (x/c)mid−span,1 � (x/c)tip,1 � 0.20

(x/c)root,2 � (x/c)mid−span,2 � (x/c)tip,2 � 0.75

The constraint here is that the thickness value of the optimized wing sections at
these locations should be greater or equal than the thickness of the original ones. It
is defined with the expressions:

(t/c)root,1 ≥ 12%, (t/c)mid−span,1 ≥ 12%, (t/c)tip,1 ≥ 12%

(t/c)root,2 ≥ 5.9%, (t/c)mid−span,2 ≥ 5.9%, (t/c)tip,2 ≥ 5.9

2.5 Design Point and Objective Function

This paper addresses a single-point optimization of theDPW-W1wing, for both invis-
cid and viscous transonic flow. Multi-point optimization will be also considered as a
future work within the GARTEUR AG52 group [8]. The flow conditions are: Mach
number 0.8, an angle of attack of zero degrees and a Reynolds number of 5 × 106.
The design goal is to achieve a geometry with the minimum drag, while maintaining
the specified aerodynamic constraints. Aerodynamic constraints are implemented as
penalties in the objective function. The pseudo-code implementation is:

lift_penalty=1-(Cl/Cl0);
if (lift_penalty<0) lift_penalty=0;
cm_penalty= (Cm0-Cm)*0.0001/0.01;
if (cm_penalty < 0) cm_penalty=0;
objective_function= (((Cd+cm_penalty)/Cd0))+5*lift_penalty;

2.6 Computational Grids

The following unstructured grids were used:
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3 Description of the Applied Approach

3.1 Adaptive Sampling Focused on Optimization

The Intelligent Estimation Search with Sequential Learning (IES-SL) is an algorithm
designed to implement an adaptive sampling directly focused on the optimization
search. From this point of view, the key feature of this novel approach is to use the
surrogate model to estimate the location of the optimum in the real function. To do
this, an optimization search is applied over the surrogate, obtaining an estimated
value of the real minimum position (an “intelligent guess”). Each of the estimations
of the optimum location gives us a new sampling point (it means a new geometry that
is also analyzed using the high fidelity CFD solver). Within a try-and-error cycle,
the surrogate proposes a new design which is again evaluated by the CFD solver and
then, in a sequential learning, the surrogate model is enriched with the associated
cost function.

3.2 Support Vector Regression Algorithm as Surrogate Model

SVMs represent appealing algorithms for a large variety of regression problems due
to they do not only take into account the error approximation to the data, but also
the generalization of the model, namely, their capability to improve the prediction of
the model when new data are evaluated. This kind of methods can be considered a
specific type ofANNs, and are commonly trained bymeans of a deterministicmethod
known as Sequential Minimal Optimization (SMO) which provides a significant
computational complexity reduction. The used SVM method for regression consists
of, given a set of training vectors C � {(xi, yi), i � 1, . . . , l}, training a model of the
form y(x) � f (x) + b � wTφ(x) + b, to minimize a general risk function of the form

R
[
f
] � 1

2
‖w‖2 + 1

2
C

l∑

i�1

L(yi, f (x)) (1)

where w controls the smoothness of the model, φ(x) is a function of projection of the
input space to the feature space, b is a parameter of bias, xi is a feature vector of the
input space with dimension N, yi is the output value to be estimated and L(yi, f (x)) is
the loss function selected. In this paper, the L1-SVR (L1 support vector regression)
is used, characterized by an ε-insensitive loss function.

L(yi, f (x)) � |yi − f (xi)|ε (2)

In order to train this model, it is necessary to solve the following optimization
problem
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min(
1

2
‖w‖2 + 1

2
C

l∑

i�1

(ξi + ξ ∗
i ) (3)

subject to:

yi − wTφ(xi) − b ≤ ε + ξi, i � 1, . . . , l

−yi + wTφ(xi) + b ≤ ε + ξ ∗
i , i � 1, . . . , l

ξi, ξ
∗
i ≥ 0, i � 1, . . . , l

(4)

The SVM can use different kernels to face non-lineal problems. On this case, a
radial basis function has been used as a kernel function. This training procedure must
be combinedwith the searchof three parameters (C, ε, andγ, namedhyperparemeters)
on which the final model depends. The influence of the three parameters on the SVM
model can be seen on Eq. (3) where C defines the optimization problem and in
Eq. (4) where ε represents the constraints for the optimization problems. Finally, the
radial basis kernel depends on the value of γ. To obtain the best SVM performance,
a search of the most suitable combination of these three parameters must be carried
on, usually by using cross validation techniques over the training set. To reduce the
computational time of this process, different methods have been proposed in the
literature to reduce the search space related to these parameters. In this case, it has
been applied the one developed in [12], which has proven to require pretty short
search times.

3.3 Evolutionary Programming

The EA implemented for this work has the following characteristics: the selection
operator is applied by replacing a portion of the current generation by new individ-
uals generated from parents. It is considered the replacement of the individuals in
the population with fitness value under the population’s mean fitness. A multipoint
crossover which selects the value of one of the parents with probability 0.5 is applied.
Regarding the mutation operator, the values of each new individual are mutated with
probability 1/Np, where Np is the number of parameters to be optimized. Amutation
parameter can be tuned in order to allow a more global or local search over a certain
design variable. More detailed information about the implemented algorithm can be
found in [7].
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3.4 Handling Constrains Within the Optimization Process

In the context of evolutionary optimization, constraints can be handled by adding
penalties to the objective function. These penalties can be imposed in a ‘soft’ or ‘hard’
manner. Soft penalties increment the unconstrained objective function proportionally
with information about how far from the constraint is a certain solution. This kind
of penalties allows the system to work with non-feasible but interesting solutions,
improving the search space and finally obtaining feasible solutions. Hard penalties
imply that the restriction must be fulfilled at any time of the optimization process.
In this case, the solutions are strongly penalized and therefore removed from the
search process. The constrained objective function is represented by the following
expression:

fobj � fobj∗ + soft_penalt + hard_penalt (5)

where fobj* is the unconstrained objective function.
In this paper, the constraints within the SBO process are handled in the following

way. First, the simulation system M allows computing the aerodynamic characteris-
tics (i.e. CD, CL, CM) of a geometry defined by a set of parameters P.

[CD,CL,CM ] � M (P) (6)

The objective function to be minimized, including the mentioned constraints, can
be described as a combination of the output factors from the simulation system (aero-
dynamic characteristics), and other factors associated with the model (i.e. geometric
characteristics). This function can be represented as:

fobj � f (CD,CL,CM ,P) (7)

where the geometric restrictions are calculated from the set of model parameters
P and the aerodynamic constrains are directly computed from the aerodynamic
characteristics. Since the application of the simulator system to obtain the aero-
dynamic values is very expensive, the surrogate model is added to the system to
reduce the computational cost of the optimization process. There are three different
approaches to use the surrogate model to speed up the constrained objective function
computation.

The first option is to generate a surrogate that directly models the objective func-
tion. This is the simplest and more direct method to apply the surrogate. The indi-
vidual evaluation on this case is carried on by the surrogate model (i.e. the SVM).

fobj � SVM (P) ≈ f (CD,CL,CM ,P) (8)
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The second option is to extract from the objective function the restrictions that are
independent from the simulator output. In this case, the geometric constraints can be
calculated independently:

fobj � f (CD,CL,CM ,P)

� f 1(CD,CL,CM ) + f 2(P)

SVM (P) ≈ f 1(CD,CL,CM )

fobj � SVM (P) + f 2(P) ≈ f (CD,CL,CM ,P) (9)

This division reduces the complexity of the surrogate model, because it does not
have to model the geometric information (only aerodynamic features). On the other
hand, the system must perform an additional computation since in each evaluation
the system must compute both the SVM output and the value of f2.

The third option is another step to simplify the surrogate model. The penalties
in the objective function can add additional complexity to the function like dis-
continuities around the restriction boundaries. This can reduce the quality that a
surrogate can achieve with a fixed number of data points. To avoid this effect, a
multi-surrogate model can be implemented, and this is the approach considered in
this paper. Each simulator output (i.e. CD, CL, CM), is modeled by a different SVM
(SVM_Cd, SVM_Cl, SVM_Cm), and then applied to the f1 function that contains
the aerodynamic restrictions.

fobj � f 1(SVM _Cd (P), SVM _Cl(P), SVM _Cm(P))

+ f 2(P) ≈ f (CD,CL,CM ,P)) (10)

In this way, the penalties associated to f1, and their corresponding complexity, are
added after building the surrogate, allowing achieving simpler SVM models, with
higher quality and accuracy. On the other hand, the global system is more complex,
since now it is necessary to train now three different surrogates.

4 Numerical Results

The proposed approach is applied to the constrained single point optimization of the
DPW-W1 wing in both inviscid and viscous transonic flow conditions. In order to
handle the geometric constraints previously defined, the parameterization is prepared
by locating certain control points in specific locations, as displayed in Fig. 2.
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Fig. 2 Geometric
constraints handling through
the selected control box
parameterization (wing
section)

Table 3 Objective function and aerodynamic coefficients of baseline and optimized geometries

fobj Cd Cl Cm

DPW-W1 1 0.0307 0.5984 −0.02867

Optimized 0.77 0.0236 0.5981 −0.02653

4.1 Inviscid Transonic Flow

The following table shows the objective function of the original and optimized
geometries. The results show that the objective function has been improved by 23%
(after 192 iterations), while both aerodynamic and geometric the constraints have
been satisfied (Table 3).

Figures 3, 4 and 5 show theMach number distribution, shapes and Cp comparison
between the baseline geometry and the optimized shape.

The computational time for the whole optimization of the Euler case using 8
processors on a Linux x86_64 computational cluster was about 40 h.

4.2 Viscous Transonic Flow

The following table shows the objective function of the original and optimized
geometries. The results show that the objective function has been improved by 5%,
while both aerodynamic and geometric the constraints have been satisfied (Table 4).



Constrained Single-Point Aerodynamic Shape Optimization … 45

Fig. 3 Mach number distribution on the original (left) and optimized (right) geometries

Fig. 4 Original versus optimized geometries

Figures 6, 7 and 8 show the shapes and Cp comparison between the baseline
geometry and the optimized shape, which was obtained in the iteration number 175.
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Table 4 Objective function and aerodynamic coefficients of baseline and optimized geometries

fobj Cd Cl Cm

DPW-W1 1 0.0257 0.3636 −0.0687

Optimized 0.95 0.0245 0.3658 −0.0684

Fig. 5 Cp plots along wing span

Fig. 6 Original versus optimized geometries
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Fig. 7 Cp plots along wing span

Fig. 8 Cp distribution on the original (left) and optimized (right) geometries

The computational time for 175 iterations of the RANS case using 36 processors
on a Linux x86_64 computational cluster was about 170 h (7 days).
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5 Conclusions

This paper presented the application of a global optimization strategy using the Intel-
ligent Estimation Search with Sequential Learning (IES-SL) and the hybridization
of EA and SVMr to the single-point constrained optimization of a three dimensional
DPW wing in both inviscid and viscous transonic flow conditions, showing first
promising results.

Futureworkwill address themulti-point constrained optimization, for comparison
with the results obtained by Epstein and Jameson in [10]. This extension will be
performed within the GARTEUR AG52 group. In addition, research work on the
parameterization sensitivity to the SBO process is also being performed.
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Enabling of Large Scale Aerodynamic
Shape Optimization Through
POD-Based Reduced-Order Modeling
and Free Form Deformation

A. Scardigli, R. Arpa, A. Chiarini and H. Telib

Abstract Wepresent an approach for shape optimization of large-scale aerodynamic
problems, combining free-form deformation and POD based reduced-order model-
ing. An extension of the classical Free-Form Deformation techniques is derived in
order to handle efficiently constraints regarding fixed and deformable portions of the
geometry and to impose the smoothness at the interface between the two different
regions. The second aspect concerns the development of a hybrid model, combining
a POD-based reduced order model and a industrial CFD solver using a domain-
decomposition approach. A method on how determining automatically a suitable
domain decomposition is discussed. The effectiveness and drawback of the above
techniques are highlighted on a large-scale aerodynamic shape optimization and
control problem, i.e. the mainsail thrust optimization of a sailing boat.

1 Introduction

Besides being easily interfaceable with CFD solvers, evolutionary algorithms have
the capability to find the global optimum, a feature that is often consider attractive in
industrial application. On the other hand, they require a larger number of functional
evaluations than deterministic methods, and this number grows super-linearly with
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the number of design parameters. For this reason low-order approximation of the
functionals, like kriging and response surfaces, represent a key-point of evolutionary
optimization. Nevertheless for large-scale aerodynamics problems, the computa-
tional cost associated with high-order functional evaluations needed for the training
of the response surface is usually prohibitive within an evolutionary design loop: for
example, the driving force evaluation of a sailing boat requires typically a number
of grid point of order O (10 − 100 × 106) and O (1 − 10 × 103) CPU hours for a
standard RANS simulation. Such a cost is sustainable only for strategic aerodynamic
optimization problems as found for example in the aeronautical industry. For both
evolutionary and deterministic methods, another general burden is the interface to
CAD and parameterization of complex geometries. The capacity of modifying the
geometry resides within the CAD program and the designer, despite the fact that
neither of them is available in an automated design loop. We address the problems
discussed above as follows: in Sect. 2 we present our approach to parameterization
of complex geometries, with focus on continuity constraints handling. In Sect. 3, the

Fig. 1 Initial configuration of sails in the boat. The inflatable device is highlighted in red. Effect
of the inflatable device on pressure field around sails is shown, in comparison with a classical sail
configuration
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implementation of a reduced order model (ROM) based on a domain-decomposition
method to be employed in a multi-fidelity framework is described and discussed.

Finally,we demonstrate our results for a combined shape optimization and optimal
control problem applied to a sailing boat with inflatable devices, which modify the
shape of the mainsail profile (see Fig. 1). The final aim is to find the optimal shape
of the inflatable device and the correct trim angles of the mainsail and the jib, under
assumptions of rigid sails, close-hauled navigation and fixed wind conditions in
order to maximize the thrust developed by the sails. The aim of introducing an
inflatable device around the mainsail is twofold: (i) the inflatable chamber reduces
the separation zone between the mast and allows the flow to recover faster. (ii)
the thickness distribution introduces a new set of design variables which may be
used in order to enhance the sail efficiency. It is crucial to introduce manufacturing
constraints within the shape parameterization in order to avoid non-feasible designs.
In particular we will consider that (i) the inflatable chambers must be symmetric on
the port and starboard surface of the mainsail and that (ii) a fold is created where the
inflatable part attaches to the mainsail.

2 Geometry Parametrization

Free Form Deformation (FFD) [1, 2] has been developed in the frame of computer
graphics in order tomorph 3Dobjects, and it is widely used in several CAD/CAEpro-
grams for quick modifications of the original geometry. More recently, Désidéri and
co-workers [3] used FFD algorithms to manipulate geometry in the context of aero-
dynamic shape optimization for aeronautical applications. The basic idea is to wrap
the 3D-object in an envelope/3D-grid of control nodes (lattice) and define a defor-
mation field over the space embedded in it, by means of classical B-Spline/Bézier
volume parameterization. Regardless of the geometrical description of the object, its
shape can be deformed by manipulating those control nodes. Generally, the lattices
are simple hexahedra, cylinders or spheres [2, 3] which can be easily mapped on
their unit elemental primitives.

2.1 Continuity on Arbitrary Shaped Boundaries

Although this approach is direct and very flexible, practically it is only suited when
global deformations need to be introduced or when no constraints are present (see
Fig. 2). For real-life applications it is necessary to use arbitrary shaped lattices or
to impose arbitrary shape constraints. In other words, an accurate control over
deformable and undeformable portions of the surface is necessary, together with
the possibility to prescribe the continuity condition between these regions.

We denote withΩ the deformable part of the entire surface and with Γ its bound-
ary. S represents the tesselation of Ω , and a displacement field Q obtained through
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Fig. 2 Example of FFD global manipulation: original shape and lattice in blue, deformed ones in
red

an arbitrary FFD technique. The new tesselation reads:

S∗ = S + Q(x, α(1···J )) (1)

where S∗ is the deformed surface.
We want to restrict the effect of the displacement field on a portion Ω , so that

a continuity constraint (G0,G1,G2) can be imposed between the deformable and
undeformable parts of the surface. Our key idea is to introduce a filter scalar function
w(φ(S|Γ )), with values between 0 and 1, so that:

1. w = 0 outsideΩ

2. w ≥ 0 insideΩ

and where φ(S|Γ ) is a function which represents the topological information of each
point of S with respect to the boundary Γ . This implies that φ(Γ |Γ ) = 0 and that
φ(x1|Γ ) > φ(x2|Γ ) if x2 is closer to Γ than x1. Since we require that φ(Γ |Γ ) = 0
we denote this function the geodesic level set function.

The new constrained deformationS∗∗ can be determined bymodulatingQ through
w:

S∗∗ = S + w (φ(S|Γ ))Q(x, α(1···J )) (2)

By differentiating Eq. (2) twice, it can be seen that it is sufficient that in order to
obtain

G0 that S, Q(·, ·) are G0, w(·), φ(·) are C0, and w(Γ ) = 0
G1 that S, Q(·, ·) are G1, w(·), φ(·) are C1, and w(Γ ) = 0, w′(Γ ) = 0
G2 thatS,Q(·, ·) areG2,w(·),φ(·) areC2, andw(Γ ) = 0, w′(Γ ) = 0, w′′(Γ ) = 0

Some of these requirements are easily guaranteed:

• the final geometry cannot be smoother than the original geometry S
• the deformation fields Q derive from a tensor-product of Bezier curves and are
continuous to any order

• the weight functions w(·) are chosen to fulfill the requested requirements
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A candidate for φ(S|Γ ) is the geodesic distance function. This function can be
calculated for example by using a Fast Marching technique [4]. However, depending
on the shape of Γ , discontinuities in the gradients of the distance function can
develop. Consequently, the deformation field can be guaranteed at most to be G0

continuous.
In order to assure smoothness, a more regular level set field must be determined.

Crane et al. [5] proposed a new method to approximately evaluate the geodesic
distance on a 3D surface mesh, based on the solution of the time-dependent heat
equation. The method consists in the following steps:

1. solve the heat equation ut = Δu on Ω , with the boundary condition u = 1 on Γ ,
up to some fixed time tend

2. evaluate the vector field of the normalized gradient of the solution X = ∇u
‖∇u‖

3. solve the Poisson equation Δφ = −∇ · X, with Dirichlet boundary condition on
Γ

In this case, the desired level of smoothness of the level set solution can be
achieved tuning conveniently the heat propagation time tend (see Fig. 3), without
losing the topological information of the exact solution. In Fig. 4 an example of
a resulting deformation is presented. In this case the weight function is such that
an angle between the un-deformed and the deformed part is introduced, while the
interior of the deformation is G2 continuous.

2.2 Direct Surface Manipulation

Reinventing the wheel, the heat kernel level set representation of a 3D tessellated
surface can be used to generate directly its parameterizationwithout any extra efforts.

Lets have a deformable surface Ω , bounded by a generic contour Γ . Whenever
it is possible to split Γ in four distinct, consecutive curves Γ1, Γ2, Γ3 and Γ4, a

(a) Exact Level-Set (b) Smoothed Level-Set

Fig. 3 Exact geodesic distance function (left) and smoothed geodesic distance via heat kernel
method (right) on a quadrilateral patch with irregular boundary contour
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(a) G0 continuity (b) G2 continuity (c) Constraint control by
means of filter functions

Fig. 4 Deformation of a sphere imposing different continuity constraints on the boundary of the
green deformable patch

bi-variant map (ξ, η)t = M(S) ∈ [0, 1] × [0, 1] of the original surface can be calcu-
lated, where:

• ξ is the rescaled heat kernel level set calculated on Ω , imposing Dirichlet condi-
tions on Γ1 and Γ3, and natural conditions elsewhere

• η is the rescaled heat kernel level set calculated on Ω , imposing Dirichlet condi-
tions on Γ2 and Γ4, and natural conditions elsewhere

This kind of approach allows to map the original 3D surface on the new bi-
dimensional space (ξ ,η) as a unit square, where the parameterization of the object
becomes much simpler to define and easy to control. With respect to the inflatable
device upper surface in Fig. 5, here we choose to parameterize the surface in the

Fig. 5 Direct Surface
Parameterization, applied to
the upper surface of the
inflatable device: ξ is defined
along the width of the wing,
η along the height. A 5× 5
grid of control points of a
surface Bezier
parameterization is defined
in the mapped domain (ξ ,η),
and shown in the 3D original
space
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mapped domain (ξ ,η), with a 5× 5 grid of equi-spaced control nodes (in magenta),
defining a Bezier surface. The new deformed surface can be written as:

S∗∗ = S + w (ξ, η)

5∑

i=1

5∑

j=1

Pi, j B
i,5(ξ)B j,5(η) (3)

wherePi, j is the displacement, in the original 3D space, of the control node (i, j) of the
grid and Bk,K (·) are the Bernstein polynomials defined along themapped coordinates
ξ and η. Each Pi, j defines 3 degrees of freedom of the parameterization, for a total of
75. In this case the weight function w (ξ, η), which imposes the continuity condition
at the boundaries, can be calculated explicitly in the (ξ, η) space.

In order to create a realistic inflation of the surface and to reduce the number of
design parameters, the following assumptions were adopted:

1. nodal displacements Pi, j are allowed to move only along the local normal Ni, j of
S, where the control node is positioned;

2. nodal displacements variation is linear, along the η coordinate;
3. only displacements of control nodes in i = 2, 3, 4 are relevant for the deformation,

leaving those on the borders Γ1 and Γ3 unmoved;
4. the weight function imposes G0 continuity condition on Γ1 and Γ3 and free

conditions on Γ2 and Γ4.

Putting all into practice, Eq. (3) becomes:

S∗∗ = S + w (ξ, η)

4∑

i=2

5∑

j=1

Pi, j B
i,5(ξ)B j,5(η)

Pi, j = αi, jNi, j (S)

αi, j = αi,0 + (C1 − αi,0)ηi, j 0 ≤ η ≤ 1

(4)

where C1 is a constant and ηi, j is the η coordinate value of the control node (i, j).
Under this assumption, the total number of independent design parameters decrease
to 3. The lower part of the inflatable surface is forced to deform symmetrically to the
upper part.

2.3 CAMILO

The above features have been implemented in a software package called CAMILO
[6] (Computer Aided ManIpulation by Level-set for Optimization), which is a Text
Unit interface tool / C++ library to manipulate 3D object shapes, by means of FFD
techniques.
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3 POD Based Reduced-Order Modeling

We employ a hybrid low-order/high-order method based on domain decomposition,
first presented by Buffoni et al. [7], that we generalized for unstructured grids. The
main idea is to split the domain of interest in two subdomains and to use different
approximation methods in each of the regions. Where it is possible we use a POD
based ROM and where it is necessary we use the canonical CFD solver. In order to
reduce efficiently the overall cost (cpu time and memory) of this hybrid method, we
aim at decreasing the extent of the domain where we have to solve the high-order
model (e.g. steady incompressible RANS equations for 3D flows) since the cost of
the ROM and the overhead due to interfacing the two models can be considered
negligible.

POD based ROMs suffer generally from two aspects. The first issue concerns the
fact that the POD basis space is a linear combination of the solution space spanned
by the empirical observations. Consequently, if POD is employed in order to predict
a certain solution, it is required that this particular solution may be expressed as a
linear combination of the previous solutions. This requirement is generally violated
when simulating non-linear phenomena. The second issue derives from the fact that
the POD basis vectors are defined in physical space. During shape optimization the
domain boundaries change and so does the solution space. Hence it is necessary
to define the reduced basis in a reference domain and to map each solution to this
reference frame. This transformation is generally not available or very difficult to
calculate a posteriori. An alternative approach consists in applying POD in a discrete
vector space (degrees of freedom of the simulation). Also this approach is limited to
very special applications where a one-to-one correspondence between two different
computational grids has been assured.

In order to overcome the above mentioned difficulties we employ the canonical
CFD solver within a crucial region where linear effects may be present and where
geometry variations occur. Often these two criteria indicate the same zone.

3.1 Proper Orthogonal Decomposition

The POD [9] consists in an optimal representation of the solution space via a finite
number M of shape modes φ(i)(x). In our application, we compute the POD basis a
priori, starting from an appropriate database of N flow snapshots U (1···N )(x):

φ(i)(x) =
N∑

k=1

bikU
(k)(x) (5)

with 1 ≤ i ≤ M . In doing so, the solution can be represented by a small number of
unknowns, that are the coefficients bik of the Galerkin expansion. The decomposition
is performed individually for each primitive variable, i.e. pressure, flow velocity and
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Fig. 6 Decomposed
domain. The overlapping
region is denoted by the
color purple, whereas the
blue region represents the
reduced domain and the red
regions identifies where the
POD basis is evaluated

turbulent quantities, solving the N × N eigen-problem associated with the snapshots
correlation matrix. Since we have to deal with unstructured meshes, we define a
weighted inner product 〈·, ·〉W using the cell volumes.

Alternatively, it is possible to compute the basis through the singular value decom-
position (SVD) of the snapshots matrix S = U	V T : this approach allows to effi-
ciently update the POD basis during the optimization loop itself, as soon as a new
snapshot evaluated by the high-fidelitymodel becomes available, e.g. using one of the
methods suggested by Zimmermann [8] in his analysis of state-of-the-art algorithms.

3.2 Hybrid ROM Based on Domain Decomposition

The non-linear CFD model and the ROM are coupled through an overlapping region
via a least-square problem which minimizes the L2 norm of the distance between
the solutions, following the steps below (see Fig. 6 for reference):

1. integrate the governing equations in the reduced domain by the CFD solver in
order to obtain Un+1

c f d (blue and purple);

2. project the restriction to the overlapping region of the updated solution Un+1
c f d on

the subspace spanned by the POD modes Φi , and determine Un+1
pod (purple);

3. recover the boundary conditions to be imposed at the next solver iteration as the
trace of Un+1

pod on the boundary (red);
4. go to 1. until convergence.

3.3 Automatic Detection of the HFM/ROM Interface

The principal parameter of the above presented algorithm is the interface which
separates the ROM from the canonical CFD solver. We propose a strategy in order to
identify in an automaticway the zoneswhere the POD fails in representing non-linear
effects.
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3.3.1 By Using the Snapshot Database

The algorithm is based on a leave-one-out strategy. Within this strategy different
POD bases are computed by leaving one snapshot out.

This snapshot is projected on the computed basis and the representation error map
related to i th snapshot is calculated.

e(i)(x) = 1

Uref

[
U (i)(x) −

N∑

k=1

〈U (i)(x), φ(k)(x)〉φ(k)(x)
]

(6)

Let us denote with
ω(i) := ∀x|e(i)(x) > tol (7)

all points where the error map relative to one snapshot exceeds a user-defined toler-
ance. We define the region where to use the CFD solver by calculating the union of
these domains:

ΩCFD =
N⋃

i=1

ω(i) (8)

This strategy uses the snapshots of the database in order to built the error indicator.
Furthermore, the error measures the linear dependency between the different snap-
shots. Consequently, if the parameter space has not been sampled in an exhaustive
manner, the methodmay fail and indicate small reconstruction errors. In other words,
the database must contain significant information of non-linear effects all over the
parameter range of interest.

(a) tol = 0.1 (b) tol = 0.2 (c) tol = 0.4

Fig. 7 ΩCFD for three different tolerance values. The resulting error maps envelope is represented
by the blue isosurfaces, whereas the corresponding computational domain used in the hybrid runs
is delimited by the black lines
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Fig. 8 ei (x) envelope of
velocity using as Uref the
magnitude of velocity at the
top of the mast: section at
z = 4 m. The white lines
delimit the reduced domains
(a), (b) and (c). Close to the
sails the error goes to zero
since this region is excluded
from the POD

Table 1 Performance of the hybrid scheme for reduced domain (a), (b) and (c). εT represents the
relative error on the objective function, i.e. the sailing system thrust. It should be noted that the overall
speed-up factor is given not only by the ratio between the number of cells in the computational
domain, but it is enhanced by a faster convergence of the hybrid-ROM: the average number of
iterations required to obtain convergence on the forces is at least three times smaller than the
full-order case, thanks to a better flow initialization

Domain tol εT #cells [MIL] iters speed-up

full 25.7 3000 1

(a) 0.1 0.0066 5.3 1000 15

(b) 0.2 0.0093 4.8 1000 17

(c) 0.4 0.0099 4.1 1000 20

Figure7 and Fig. 8 show respectively the extent of the ΩCFD region for three
different tolerance choices and a section of the global error map of the velocity
field. Table1, instead, summarizes the performance of the hybrid scheme for the
corresponding reduced domains with respect to the full-order model.

4 Sail Optimization

With reference to Figs. 9 and 10, the following 5 design parameters are chosen to
modify wing trimming and device inflating stage:

1. θM : is the main rotation, applied to both wing sails, around their respective axes.
2. θJ : is the relative rotation of the jib around its relative axis.
3. p1, p2, p3: displacement along surface normals of the interior control points of

inflatable root contour Γ2, as explained in Sect. 2.2. Inflating of upper and lower
surfaces of the device is considered as symmetric.
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(a) Initial configuration of mainsail and jib (b) Rotations of mainsail and jib

Fig. 9 Trimming of sails around mast and jib axes. Positive rotations in counterclockwise direction

Fig. 10 Parameterization
and degrees of freedom of
the inflatable device

Limits of parameters space are reported in Table2. With the current set of pi
parameters, the maximum thickness on the chord of the inflatable device could vary
from aminimum value of 10cm up to a maximum of 30cm. The maximum thickness
of the baseline configuration is 14cm.

The optimization process was carried out employing the open-source tool chain
DAKOTA-OpenFOAM,with CAMILO handling the shape deformation of the inflat-
able device and the rigid rotation of the mainsail and the jib. The hybrid-ROMmodel
was directly implemented in the OpenFOAM environment, as a plugin (podFoam).
A surrogate-based model (kriging) was used, along with the hybrid-ROM as a high-
fidelity model to update the response surface construction. The hybrid-ROM model
required the definition of a database of 10 CFD simulations (RANS), on the full boat
model to build up the POD modes. Reaching the optimum required 12940 evalua-
tions of the surrogate model and 90 evaluation of the hybrid-ROM, for a total CPU
time of computation of 3000 cpuh. The boost factor given by the hybrid-ROMmodel
let us to save mostly the 87% of computational time, with respect to the case of a
surrogate model with full CFD simulations as a high-fidelity corrector.

Table 2 Parameters space limits

DoF θM θJ p1 (mm) p2 (mm) p3 (mm)

Inf.limit −10◦ −5◦ −10 −5 −5

Sup.limit 10◦ 5◦ 100 50 50
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Fig. 11 Velocity magnitude field on a plane cut at z = 4m, for the optimized wing configuration

Fig. 12 Static pressure field on a plane cut at z = 4m, for the optimized wing configuration

Fig. 13 Controlling flow separation near mast: comparison between reference (a) and optimized
(b) configurations
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Results of the optimization are collected in Figs. 11, 12 and 13. The optimum
configuration was found for θM = −0.726◦, θJ = 0.588◦, p1 = 93.8, p2 = 17.81,
p3 = 24.26mm. The optimum thrust was 435.195 N, with a net gain of +3.82%w.r.t.
the wing configuration without inflatable device.

5 Conclusions

The paper described an approach for shape optimization of large-scale aerodynamic
problems. We focused on two aspects of the optimization process, that are crucial
in any CFD industrial application: the geometry parameterization and the devel-
opment of feasible Reduced-Order Models to speed up large CFD computations
in optimization loops. In the first place, we presented an extension of the classi-
cal Free-Form Deformation techniques to parameterize complex geometries and
enable local deformations on them, handling with geometry continuity constraints
issues. Then, we developed a hybrid model, combining a POD-based reduced order
model and an industrial CFD solver using a domain-decomposition approach. We
discussed the overall accuracy of the model against different choices of the initial
decomposed domain size. Its main advantages relies on the possibility to re-use and
recycle avalaible data for CFD simulations, as well as in significant computational
cost savings without too much loss of overall accuracy in CFD final results. In the
end, the above tools were employed and tested, performing a global surrogate based
optimization of the mainsail thrust of a sailing boat.
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Application of Surrogate-Based
Optimization Techniques
to Aerodynamic Design Cases

Emiliano Iuliano and Domenico Quagliarella

Abstract The paper proposes the application of evolutionary-based optimization
coupled with physics-based and adaptively-trained surrogate model to the solu-
tion of both two- and three-dimensional aerodynamic optimization problems. The
shape parameterization approach consists of the Class-Shape Transformation (CST)
method with a sufficient degree of Bernstein polynomials to cover a wide range
of shapes. The in-house ZEN flow solver is used for RANS aerodynamic solution.
Results show that, thanks to the combined usage of surrogate models and smart
training, optimal candidates may be located in the design space even with limited
computational resources with respect to standard global optimization approaches.

1 Introduction

In the context of modern and innovative air vehicle design, the development and
assessment of new theoretical methodologies represents a cornerstone for reduc-
ing the experimental load, exploring trade-offs and proposing alternatives along the
design path. The fidelity of such methods is essential to reproduce “real-life” phe-
nomena with a significant degree of accuracy and to take them into account since
the very beginning of the design process. However, due to the high computational
effort of high-fidelity methods, a big issue rises when hundreds or thousands of anal-
ysis evaluations, like in parametric or optimization studies, have to be performed. In
order to speed up the computation while keeping a high level of fidelity, the scientific
community is increasingly focusing on surrogate methodologies like meta-models,
multi-fidelity models or reduced order models, which can provide a compact, accu-
rate and computationally efficient representation of the aircraft design performance.
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Nevertheless, the usage of such models is not straightforward as the amount and
quality of information the user has to provide in the learning phase is not known a
priori; furthermore, the efficient exploitation of learning data may be hampered by
the inherent complexity of the design problem, e.g. non-linearities in the physical
model, constraints handling, curse of dimensionality, multi-modal fitness landscape,
accuracy versus computational effort trade-off. Hence, no general rule exists on the
optimal choice of the type of surrogate model, the training and validation strategy,
the combination of surrogate model and optimization algorithm.

In order to reduce the computational effort in training accurate surrogate models
for aerodynamic shape design problems, this paper proposes the adoption of generic
(i.e. not specific to a single surrogate model) in-fill criteria to adaptively and intelli-
gently drive the training process. The adaptive criteria are formulated by explicitly
taking into account the goal function with the help of auxiliary functions which have
to be maximized. The aim is to find new “optimal” design space points which, once
added to the training dataset, provide a “better” surrogate approximation for the
optimization purpose. Two surrogate models will be investigated, namely a Kriging
model and a Proper Orthogonal Decomposition (POD) model coupled with Radial
Basis Function Networks for global interpolation of the modal coefficients. More-
over, two choices of the in-fill criteria are presented in the paper and compared to
already published adaptive sampling techniques, like Expected Improvement maxi-
mization for Kriging and in-fill criteria for PODmodel machinery. Two aerodynamic
optimization case studies are proposed to test different combinations of surrogate
models and adaptive sampling approaches once fixed the computational budget in
terms of number of high-fidelity simulations (i.e., CFD analyses). This allows to
measure the performances of the presented strategies in a real-world environment
and to draw some conclusions about the suitability of in-fill criteria to a specific
surrogate model for such a class of problems.

2 Literature Review

Jones et al. [11], among the first, proposed a response surface methodology based
on modelling the objective and constraint functions with stochastic processes (Krig-
ing). The so-called Design and Analysis of Computed Experiments (DACE) stochas-
tic process model was built as a sum of regression terms and normally distributed
error terms. The main conceptual assumption was that the lack of fit associated only
to the regression terms can be considered as entirely due to modelling error, not
measurement error or noise, because the training data are derived from a determin-
istic simulation. Hence, by assuming that the errors at different points in the design
space are not independent and the correlation between them is related to the distance
between the computed points, the authors came up with an interpolating surrogate
model able to provide not only the prediction of objectives/constraints at a desired
sample point, but also an estimation of the approximation error. After the construc-
tion of such a surrogate model, this last powerful property is exploited to build an
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Efficient Global Optimization (EGO), which can be considered as the progenitor of a
long and still in development chain of surrogate-based optimization (SBO) methods.
Indeed, they found a proper balancing between the need to exploit the approximation
surface (by sampling where it is minimized) with the need to improve the approxima-
tion (by sampling where prediction error may be high). This was done by introducing
the Expected Improvement (EI) concept, already proposed by Schonlau et al. [14],
that is an auxiliary function to be maximized instead of the original objective. Sam-
pling at a point where this auxiliary function is maximized improves both the local
(exploitation) and global (exploration) search.

An overview of SBO techniques was presented also by Queipo et al. [13] and
Simpson et al. [15]. They covered some of the most popular methods in design space
sampling, surrogate model construction, model selection and validation, sensitivity
analysis, and surrogate-based optimization. Forrester and Keane [4] recently pro-
posed a review of some advances in surrogate-based optimization. An important
lesson learned is that only calling the true function can confirm the results coming
from the surrogate model. Indeed, the path towards the global optimum is made of
iterative steps where, even exploiting some surrogate model, only the best results
coming from the true function evaluations are taken as optimal or sub−optimal
design. The true function evaluation has to be also invoked to improve the surrogate
model.With the term “in-fill criteria” it is usually meant some principles which allow
to intelligently place new points (in-fill points) at which the true function should be
called. The selection of in-fill points, also referred to as adaptive sampling or model
updating, represent the core of a surrogate-based optimization method and helps to
improve the surrogate prediction in promising areas of the objective space.

The right choice of the number of points which the initial sampling plan would
comprise and the ratio between initial/in-fill points has been the focus of several
recent studies. However, it must be underlined that no universal rules exist, as each
choice should be carefully evaluated according to the design problem (e.g., number
of variables, computational budget, type of surrogate). Forrester and Keane assumed
that there is a maximum budget of function evaluations, so as to define the number
of points as a fraction of this budget. They identified three main cases according to
the aim of the surrogate construction: pure visualization and design space compre-
hension, model exploitation and balanced exploration/exploitation. In the first case,
the sampling plan should contain all of budgeted points as no further refinement
of the model is foreseen. In the exploitation case, the surrogate can be used as the
basis for an in-fill criterion, that means some computational budget must be saved for
adding points to improve the model. They also proposed to reserve less than one half
points to the exploitation phase as a small amount of surrogate enhancement is pos-
sible during the in-fill process. In the third case, that is two-stage balanced exploita-
tion/exploration in-fill criterion, as also shown by Sóbester [16], they suggested to
employ one third of the points in the initial sample while saving the remaining for
the in-fill stage. Indeed, such balanced methods rely less on the initial prediction
and so fewer points are required. Concerning the choice of the surrogate, the authors
observed that it should depend on the problem size, i.e. the dimensionality of the
design space, the expected complexity, the cost of the true analyses and the in-fill



68 E. Iuliano and D. Quagliarella

strategy to be adopted. However, for a given problem, there is not a general rule. The
proper choice could come up past various model selection and validation criteria.
The accuracy of a number of surrogates could be compared by assessing their ability
to predict a validation data set. Therefore, part of the true computed data should be
used for validation purposes only and not for model training. This approach can be
infeasible when the true evaluations is computationally expensive.

Forrester also underlined that some in-fill criteria and certain surrogate models
are somewhat intimately connected. For a surrogate model to be considered suit-
able for a give in-fill criterion, the mathematical machinery of the surrogate should
exhibit the capability to adapt to unexpected, local non-linear behavior of the true
function to be mimicked. From this point of view, polynomials can be immediately
excluded since a very high order would be required to match this capability, imply-
ing a high number of sampling points. In general, a global search would require a
surrogate model able to provide an estimate of the error it commits when predicting.
Thus, the authors suggested to use Gaussian process based methods like Kriging,
although citing the work of Gutmann et al. [5] as an example of one−stage goal
seeking approach employing various radial basis functions. Finally, some interesting
suitable convergence criterion to stop the surrogate in-fill process were proposed. In
an exploitation case, i.e. when minimizing the surrogate prediction, one can rather
obviously choose to stopwhen no further significant improvement is detected. On the
other hand, when an exploration method is employed, one is interested in obtaining
a satisfying prediction everywhere, so that he can decide to stop the in-fill process
when some generalization error metrics, e.g. cross−validation, falls below a cer-
tain threshold. When using the probability or expectation of improvement, a natural
choice is to consider the algorithm converged when the probability is very low or the
expected improvement drops below a percentage of the range of observed objective
function values. However, the authors also observed that discussing on convergence
criterion may be interesting and fruitful, but “in many real engineering problems we
actually stop when we run out of available time or resources, dictated by design cycle
scheduling or costs”. This is what typically happens in aerodynamic design, where
the high-dimensionality of the design space and expensive computer simulations
often do not allow to reach the global optimum of the design problem but suggest to
consider even a premature, sub-optimal solution as a converged point.

3 Surrogate Model

The surrogate model consists of the Proper Orthogonal Decomposition (POD) of
known CFD flow fields coupled with Radial Basis Function (RBF) Networks to
realize the pseudo-continuous representation throughout the design space. The Sin-
gular Value Decomposition (SVD) solution of the POD basis vectors and coeffi-
cients for steady-state problems is described in references [6, 8–10]. This approach
is normally preferred to the eigenvalue/eigenvector solution as it is faster and eas-
ier to implement. The discussion will unfold with specific reference to compressible
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aerodynamic problems, hence the space domain will be the discretized volume occu-
pied by the flowing air and the snapshot vectors will be defined from computed flow
fields.

The POD/RBF surrogatemodels is built from the vectors s1, s2, . . . , sM represent-
ing the CFD flow fields and obtained by expensive simulations at representative set
of design sites x1, x2, . . . , xM . Finding a Proper Orthogonal Decomposition means
to compute a linear basis of vectors to express any other s j ∈ R

N with the condition
that this basis is optimal in some sense. To compute the optimal basis, we first define
the snapshot deviation matrix

P = (
s1 − s̄ s2 − s̄ · · · sM − s̄

)

where the ensemble mean vector is computed as

s̄ = 1

M

M∑

j=1

s j

The POD decomposition is obtained by taking the singular value decomposition
(SVD) of P

P = UΣVT = U

⎛

⎜⎜⎜
⎝

σ1 · · · 0
...

. . .
...

0 · · · σM

0 · · · 0

⎞

⎟⎟⎟
⎠
VT (1)

with U ∈ R
N×N ,V ∈ R

M×M ,Σ ∈ R
N×M and the singular values σ1 ≥ σ2 ≥ · · · ≥

σM ≥ 0. The POD basis vectors, also called POD modes, are the first M column
vectors of the matrixU, while the POD coefficients αi (x j ) are obtained by projecting
the snapshots onto the POD modes:

αi (x j ) = (s j − s̄,φi ) (2)

If a fluid dynamics problem is approximatedwith a suitable number of snapshots from
which a rich set of basis vectors is available, the singular values become small rapidly
and a limited number of basis vectors are adequate to reconstruct and approximate
the snapshots as they preserve the most significant ensemble energy contribution. In
this way, POD provides an efficient mean of capturing the dominant features of a
multi-degree of freedom system and representing it to the desired precision by using
the relevant set of modes. The reduced order model is derived by projecting the CFD
model onto a reduced space spanned by only some of the proper orthogonal modes or
POD eigenfunctions. This process realizes a kind of lossy data compression through
the following approximation

s j � s̄ +
M̂∑

i=1

αi (x j )φi (3)
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where

M̂ ≤ M =⇒
∑M̂

i=1 σ 2
i∑M

i=1 σ 2
i

≥ ε (4)

and ε is a pre-defined energy level. In fact, the truncated singular values fulfils the
relation

M∑

i=M̂+1

σ 2
i = εM̂

If the energy threshold is high, say over 99% of the total energy, then M̂ modes are
adequate to capture the principal features and approximately reconstruct the dataset.
Thus, a reduced subspace is formed which is only spanned by M̂ modes.

3.1 Pseudo-continuous Global Representation

Equation3 allows to get a POD approximation of any snapshot s j belonging to the
ensemble set. Indeed, the model does not provide an approximation of the state
vector at design sites which are not included in the original training dataset. In other
words, the POD model by itself does not have a global predictive feature, i.e. over
the whole design space. As the aim is to exactly reproduce the sample data used
for training and to consistently catch the local data trends, a Radial Basis Function
(RBF) network answers to these criteria and has been chosen for POD coefficients
interpolation. Gaussian, multi-quadric and inverse quadratic functions are used. The
RBF parameters are found by imposing the interpolation condition on the training
set for any modal coefficient i ≤ M̂ .

The RBF width parameters have a big influence both on the accuracy of the
RBF model and on the conditioning of the solution matrix. In particular, it has been
found (Refs. [3, 5]) that interpolation errors become high for very small and very
large values of the width parameter θ , while the condition number of the coefficient
matrix increases with increasing values of θ . Therefore, they have to be “optimal”
in the sense that a tuning of the width parameters is needed to find the right trade-off
between interpolation errors and solution stability (Ref. [3] for a discussion about
how to properly select the best set of parameters). The pseudo-continuous prediction
of the flow field at a generic design site w is then expressed as:

s(x) = s̄ +
M̂∑

i=1

αi (x)φi (5)

This provides a useful surrogate model which combines design of experiments for
sampling, CFD for training, POD for model reduction and RBF network for global
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approximation. In conclusion, an explicit, global, low-order and physics-basedmodel
linking the design vector and the state vector has been derived and will be used as
surrogate model.

4 Surrogate Model Sequential In-fill

The strategy for training a surrogate model is referred to as the process of selecting a
proper set x1, x2, . . . , xM on which the surrogate model is built. The training strategy
is heavily dependent on the type and scope of the surrogate model and, in principle,
has to be tailored on it. Indeed, the addition of new samples, if not completely ran-
dom, must follow some specific criteria that may be very different depending on the
purpose of the training process. For instance, Latin Hypercube Sampling (LHS) has
been designed to satisfy space-filling requirements and obtain a good coverage of the
design space. Here, the emphasis is given on sampling strategies which are able to
“adapt” to the response within an optimization process: in particular, they can aim at
improving the quality of the model prediction (error-driven strategies) or minimizing
the objective function (objective-driven strategies). Most of the adaptive sampling
approaches pursue the exploration/exploitation trade-off, where exploration means
sampling away from available data, where the prediction error is supposedly higher,
while exploitation means trusting the model prediction, thus sampling where the sur-
rogate provides global minima. It is clear that a trade-off between the two behaviors
is needed: indeed, exploration is useful for global searching, but it may lead to unveil
uninteresting regions of the design space; on the other hand, exploitation helps to
improve the local accuracy around the predicted optima, but it may result in local
minima entrapment. Figure1 provides a simple example of adding a new training
point by using respectively exploitation, exploration and balanced approaches. Given
a set of training points (black circle points) evaluated on the true function (solid black
line), a surrogate model (dashed black line) is built: if a new sample has to be added,
a pure exploitation approach would place it where the global minimum of the sur-
rogate is detected, i.e. very close to one of the training point (triangle point); a pure
exploration approach, instead, would lead to sample where themaximum uncertainty
in the model prediction is found, i.e. far from available training points (circle point);
a balanced exploration/exploitation approach combines the two aspects, thus pro-
viding a new sample which significantly improves the surrogate prediction (square
point).

Here, we are interested in designing balanced in-fill criteria for a generic surrogate
model. Such criteria are formulated in terms of an auxiliary function referred to as v

function hereinafter and called potential of improvement. Given the generic location
in the design space x, the objective function f (x) to minimize, a set of n available
sampling points {Xn} and the corresponding set of true objective function values
{FXn }

Xn = {x1, x2, . . . , xn} FXn = { f (x1), f (x2), . . . , f (xn)}
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Fig. 1 Exploitation versus exploration, 1D example

the update of the surrogatemodel can be realized by finding a new sample xn+1 which
maximizes the potential of improvement:

xn+1 = argmax
x

v(x, f̂ (x), Xn, FXn )

where x is the generic design space location and f̂ (x) is the surrogate prediction at
x.

Hereinafter, the maximization of the auxiliary function is achieved in the follow-
ing way: a huge Latin Hypercube Sampling dataset (e.g., five hundred times the
dimension of the design space) is computed and the values of the auxiliary functions
are computed at each point (this requires limited computational effort as the auxiliary
function only depends on the surrogate prediction, which is fast to obtain, and on the
true objective function values at already collected points); hence, the new sample is
located where the maximum value of the auxiliary function is met. In order to avoid
the duplication of the updating samples when iterating the in-fill process, the seed
of the Latin Hypercube is changed at each iteration.

As concerns the type and nature of the potential of improvement function, previous
investigations [7] showed that error-driven in-fill criteria may lead to intensively
explore the design space in order to reduce the prediction error, but, conversely,
this resulted in a lack of efficiency of the whole optimization process when fix-
ing the total computational budget. Hence, in the following section the discussion
will focus on objective-driven approaches which proved to be more suitable to
global optimization. In particular, two criteria will be proposed: the first is based
on the factorization of the potential of improvement in order to explicitly realize the
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trade-off between exploration and exploitation; the second is defined according to
the Expected Improvement concept.

4.1 Factorization Criterion

The first proposal of adaptive in-fill criterion aims at combining exploration and
exploitation by means of a generic factorization as follows:

v(x, f̂ (x), Xn, FXn ) = g(x, Xn)h( f̂ (x), FXn ) (6)

The functions g and h measure the exploration and model trust contribution
respectively. In particular, the exploration function g should estimate how strong
is the influence of the set of already collected samples Xn on a generic candidate x.
One of the preferred approaches is tomake the g function dependent on the Euclidean
distance d(x, xi ) between the generic design space location x and the i-th element
of the training set Xn:

g(x, Xn) = g(d(x, x1), d(x, x2), . . . , d(x, xn))

On the other hand, the exploitation function h should take into account how the
surrogate prediction f̂ compares with the available set of true objective function
values FXn . In particular, this contribution should put emphasis on trusting the model
prediction, hence the h function should exhibit its maxima in correspondance to the
minima of f̂ .

Of course, different in-fill criteria can be selected by properly designing the func-
tions g and h. In the present context, the following solution is adopted:

g(x, Xn) = minxi∈Xn d(x, xi )
maxxi ,x j∈Xn d(xi , x j )

(7)

h( f̂ (x), FXn ) = exp
(
−σ

f̂ (x) − fmin

fmax − fmin

)
(8)

where σ is a tuning parameter, fmin = min{ fx1 , . . . , fxn } and fmax = max{ fx1 , . . . ,
fxn }. This choice of the h function provides two main features:

1. the value of h approaches the unity when f̂ (x) approaches fmin;
2. for f̂ (x) < fmin −→ h( f̂ (x), FXn ) > 1;

As a consequence, “bad” candidates (from the surrogate model point of view) will
be filtered out, while “good” candidates (i.e., candidates with predicted objective
function values lower than the currentminimumof the true objective function)will be
recognized and rewarded with higher rank. However, if they are too close to samples
stored in Xn , they will be penalized by the g function. Hence, a trade-off is realized
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Fig. 2 Potential of improvement based on factorization criterion, 1D example

between surrogate prediction and location in the design space. Figure2 shows the
potential of improvement function for three values of the σ parameter. The case is the
one depicted in Fig. 1. The effect of the σ parameter is clearly observable: indeed, for
σ = 2 the peak of the potential of improvement is located around x � 0.35, i.e. in
a region which is uninteresting to discover the global optimum of the true objective
function. This occurs because, for σ = 2, the filtering power of the h function is
relatively small and so it is its weight within the factorization: as a consequence,
the g function dominates, the exploration-exploitation trade-off is not realized (the
exploration contribution ismuchhigher) andnewcandidateswill be chosen according
to their distance from collected samples. The landscape changes for σ = 10 and
σ = 20, as the levels of v are globally flattened and the peak moves to x � 0.7, i.e.
very close to the position of the true objective function optimum.

4.2 Expected Improvement-Like Criterion

This criterion has been designed trying to mimic the same rationale of the Expected
Improvement criterion, usually coupled to a Kriging-based surrogate, as highlighted
in Sect. 2. The present approach, named “EI-like” hereinafter, represents a general-
ization of that method: indeed, for a generic surrogate model, the information about
the uncertainty of the surrogate is not available, while a Kriging model, being a
Gaussian process, provides an estimate of the prediction variance together with the
prediction itself. The potential of improvement is designed to have the same form of
the Expected Improvement function, that is:
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v(x, f̂ (x), Xn, FXn ) = ( fmin − f̂ (x))Φ
( fmin − f̂ (x)

ŝ(x)

)
+ŝ(x)φ

( fmin − f̂ (x)
ŝ(x)

)

(9)
where ŝ(x) is an estimate of the prediction error and Φ(x) and φ(x) are respectively
the cumulative distribution and probability density functions of a standard normal
distribution. The prediction error is estimated as follows:

ŝ(x) = 1

2
| fmax − fmin| exp

(
−γ

maxxi ,x j∈Xn d(xi , x j )

minxi∈Xn d(x, xi )

)
(10)

where γ is a tuning parameter.
The ŝ function has been designed in order to quickly increase with increasing

distance from an available sample and to have an order of magnitude related to the
actual values of the objective function. Figure3 shows the potential of improvement
function for three values of the γ parameter. The case is the one reported in Fig. 1.
The γ parameter strongly alters the potential of improvement profile in terms of
potential levels and location of the peak. Indeed, for γ = 0.001 and 0.01, the peak
of the potential of improvement is around x � 0.7, i.e. in the vicinity of the true
minimum, thus providing a balanced prediction for a new sample. For γ = 0.1,
instead, the peak moves to x � 0.3 and the balance would significantly shift in favor
of pure exploration: in fact, injecting a new sample at x � 0.3 would not improve
the surrogate prediction of the true objective function in the vicinity of the global
optimum at the next iterate.

Fig. 3 Potential of improvement based on EI-like criterion, 1D example
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5 Surrogate-Based Optimization

Theworkflowof the surrogate-based shape optimization (SBSO) is depicted in Fig. 4.
Basically, it starts with an a-priori design of experiment (a Latin Hypercube sampler)
whose aim is to initialize the database population: typically, based on literature results
and author’s experience, the dimension of the initial sampling should not exceed one-
third of the total computational budget. A parameterization module transforms the
design vectors into geometrical shapes, for each shape a volume mesh is computed
by launching an in-house developed automatic mesh generator and a set of CFD
computations are executed in parallel with the in-house ZEN CFD flow solver [2].
Once the converged flow field variables are available, the POD/RBF surrogate model
is built as described in Sects. 3 and 3.1. After that, the workflow in Fig. 4 shows two
internal cycles, namely the sequential in-fill (also called adaptive sampling) and
the optimization update. These iterative phases reflect two different needs: first of
all, providing an improved and reliable model to the optimizer; then, iterating the
optimizer to refine the optimum search.

The first cycle (database updating by in-fill criteria) is based on the techniques
described in Sect. 4 and is aimed at improving the surrogate model prior to the
optimization phase by providing new design candidates xnew to be added to the
ensemble database. The condition to exit from this internal loop is based either on
pre-defined levels of improvement or on computational budget considerations.

Fig. 4 Workflow of surrogate-based evolutionary optimization: design database updating by adap-
tive in-fill and surrogate optima addition
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The second cycle (database updating by optimization) consists of a series of
sequential optimizations where, at i-th iteration, the surrogate model is updated
with the high-fidelity evaluation of the optimum candidate found at iteration
(i − 1)-th. This phase allows for including optimal or sub−optimal design sites
xopt , provided by the surrogate-based optimization, into the POD ensemble database
and should lead to refine the search process in the design space region where the
“true” optimum resides. The loop terminates either when the residual of the objec-
tive function of the predicted optima falls below a pre-defined threshold or when the
computational budget limit has been reached. The optimizer consists of an evolu-
tionary algorithm implemented within the in-house ADGLIB optimization library
[17].

6 Application to Aerodynamic Design Cases

In the next sections, two shape optimization cases are considered, i.e. the RAE
2822 airfoil and the isolated wing proposed within the 3rd AIAA Drag Prediction
Workshop. Both cases are set in transonic viscous flow conditions. The results of
global optimization by means of evolutionary algorithms and CFD evaluation of the
objective function will be taken as reference for surrogate-based studies.

6.1 RAE 2822 Airfoil Case

The shape optimization problem is formulated as follows:

minimize
x

Cd(x)

subject to Cl(x) = Cl,base = 0.824

Cm(x) ≥ Cm,base = −0.092

A(x) ≥ Abase = 0.7787m2

where x is the generic design vector, A(x) is the total area enclosed by the generic
airfoil and Abase is the corresponding value for the baseline RAE 2822 airfoil. The
lift constraint is explicitly satisfied by performing the flow simulation at fixed lift.
The pitching moment and the geometric constraint are treated by using a penal-
ization approach. A unit airfoil chord is assumed, the pitching moment is evalu-
ated at the quarter-chord, the Mach number is 0.734 and the Reynolds number is
6.5 × 106.
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6.1.1 Parameterization

The CST (Class-Shape Transformation) approach [12] describes an airfoil shape as
a function of the surface parameter ψ = x

c , where x is the x-coordinate along the
chord line and c is the chord length. The y-coordinate are obtained for upper and
lower side as follows:

yu
c

(ψ) = C0.5
1.0 (ψ)Su(ψ) + ψ

ΔzT E

2c
(11)

yl
c

(ψ) = C0.5
1.0 (ψ)Sl(ψ) − ψ

ΔzT E

2c
(12)

where C0.5
1.0 (ψ) is the class function for rounded leading edge and pointed trailing

edge airfoils and Su(ψ) and Sl(ψ) are the so-called shape functions for upper and
lower sides:

C0.5
1.0 (ψ) = ψ

√
(1 − ψ) (13)

Su(ψ) =
n∑

i=0

Aui Ki,nψ
i (1 − ψ)n−i (14)

Sl(ψ) =
n∑

i=0

Ali Ki,nψ
i (1 − ψ)n−i (15)

Shape functions are Bernstein polynomials of order n, ΔzT E is the trailing edge
thickness, Ki,n are binomial coefficients

Ki,n =
(
n

i

)
= n!

i !(n − i)!
and the Bézier coefficients Aui and Ali are designweights which can be either defined
a-priori in a design optimization process or computedwith a least-squares fit tomatch
a specified geometry. The first and last design parameters, i.e. Au,l0 and Au,ln , are
directly linked to well known airfoil shape parameters like leading edge radius Rle

and trailing edge angle β, being Au,l0 =
√

2Rle
c and Au,ln = tan β. In the present

context, 6th-order Bernstein polynomials are considered, hence each airfoil side
(upper and lower) is described by 7 design variables for a total number of 14 design
variables. The corresponding design weights, which define the RAE 2822 profile
according to the chosen parameterization, have been obtained by least-squares fit
and are reported in Table1. The design space bounds are defined by taking ±50% of
the baseline design weights.
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Table 1 Design weights representing the RAE 2822 airfoil shape with 6th-order Bernstein poly-
nomials

Design
weights

±
√

2Rle
c A1 A2 A3 A4 A5 tan (β)

Upper
side

0.12658 0.13786 0.16165 0.16418 0.22047 0.17191 0.21321

Lower
side

−0.12892 −0.14264 −0.13111 −0.26147 −0.02525 −0.11451 0.07275

6.1.2 Optimization Studies

Five optimization studies have been performed employing different methods and
computational load. Details are reported in Table2.

Three SBOSA (Surrogate Based Optimization with Sequential Adaptation) runs
have been launched, sharing the same setup but exploiting respectively the factor-
ization (SBOSA-FC) and the EI-like (SBOSA-EIL1 and SBOSA-EIL2) criteria. In
the latter case, two simulations have been launched with two different values of the
EI-like criterion tuning parameter γ in order to explore its effect on the search pro-
cess. All SBOSA simulations consist of three stages: a a-priori LHS sampling of
42 samples, a model updating stage with adaptive sampling (208 sequential calls of
the chosen in-fill criterion) and a surrogate-assisted evolutionary optimization stage
consisting of 50 iterative genetic algorithm calls with re-injection of the computed
surrogate-based optima in the POD/RBF model database. The total computational
budget comprises 300 CFD computations, a rather low effort if considering that the
dimension of the design space is 14 and the convergence of classical evolutionary
algorithms may require a number of evaluations tens of times higher. No criterion
for setting the convergence of the surrogate-assisted optimization is provided here:
indeed, the aim is to verify that the attained level of improvement, once run out of
the limited computational budget, is significant and possibly “close” to the solution
obtainedwithmore expensive algorithms. Thiswould demonstrate that the surrogate-

Table 2 Summary of optimization studies for RAE 2822 case

Opt. run ID SBOSA-EIL1 SBOSA-EIL2 SBOSA-FC EGO PGA

Opt. method EI-like + GA EI-like + GA FC + GA EI GA

Tuning
parameter

γ = 0.001 γ = 0.005 σ = 10 – –

Obj. func.
eval.

POD/RBF POD/RBF POD/RBF Kriging CFD

Total no. of
evaluations

300 300 300 224 6400
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assisted searchmethod is considerably efficient in exploring high-dimensional design
spaces.

EGO (Efficient Global Optimization) run is performed by using the DAKOTA
package [1]. As already stated in Sect. 2, the EGO algorithm searches for the design
space location which maximizes the Expected Improvement function and updates
the Kriging model database accordingly. The total number of iterations is set to 224.

PGA (Plain Genetic Algorithm) is a pure evolutionary optimization, it is not
assisted by any surrogate model and the objective function evaluation is carried
out by means of the CFD flow solver (true evaluation of the objective function). A
population size of 64 individuals is let evolve for 100 generations with a crossover
probability activation of 100% and a mutation rate of 2%.

The true objective function history of the SBOSA runs are reported in Fig. 5.
Candidate samples are clearly distinguished according to the criterion used to select
them (LHS, EI-like or FC and GA). The solid dark grey line marks the advancement
of the minimum value of the true objective function. It is clearly observable how
the initial LHS stage (dark grey diamonds) provides only for the initialization of the
surrogate, while the objective-driven in-fill points (light grey squares) contribute to
progressively drop the objective function levels. In all cases, the overall minimum
is not found within the GA-assisted final stage, but rather within the adaptive in-fill
phase: this is not surprising as the in-fill criteria are objective-driven, i.e. they rely
on the minimization of the surrogate objective function in a balanced exploration-
exploitation approach. Figure6 shows the progress of the true objective function
minimum for each of the five optimization studies. The x-axis (progressive number
of candidates) is reported in logarithmic scale for the sake of clarity as different
scales are involved. It is clearly observable how the surrogate-based optimizations
manage to achieve significant improvement with a limited number of CFD evalu-
ations with respect to the plain GA. In particular, Table3 summarizes the results
of each optimization study in terms of minimum objective function value attained
and number of effective CFD evaluations needed to capture it. SBOSA provides an
interesting compromise solution between the greater performance of PGA at much
higher computational cost and the reduced performance of EGO at increased speed
(best candidate found with only 81 evaluations).

(a) SBOSA-EIL1 ( = 0.001) (b) SBOSA-EIL2 ( = 0.005) (c) SBOSA-FC

Fig. 5 Objective function history of SBOSA optimization runs
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Fig. 6 Progress of minimum values of the objective function for RAE 2822 airfoil optimization
studies

Table 3 RAE 2822 optimization, comparison of best candidates

Run CFD evaluations Objective value Improvement

RAE 2822 baseline – 0.0194 –

PGA best 4200 0.0116 −40.2%

SBOSA-EIL1 best 174 0.0122 −37.1%

SBOSA-EIL2 best 88 0.0118 −39.2%

SBOSA-FC best 126 0.0130 −33.0%

EGO best 81 0.0132 −32.0%

Figure7a depicts a comparison of the RAE 2822 and the optimized airfoils con-
tour: it can be observed that, for all optimal shapes, there has been a significant reduc-
tion of the leading edge radius and an important de-cambering in the fore region (up to
50% airfoil chord). Figure7b better highlights this feature as the camber distributions
of baseline and optimized airfoil shapes are shown. Reducing the leading edge radius
is essential to increase the pressure peak and to dampen the shock wave strength,
while the negative camber helps to fit within the pitching moment constraint.

Figure8 shows a comparison of pressure coefficient and skin friction distribution
between the RAE 2822 and the optimized airfoils. The shapemodification shifted the
shock location forward and reduced the local Mach number upstream the shock, thus
reducing its intensity and preventing the incipient shock-induced separation which
is observed on the RAE 2822 skin friction profile.
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(a)Shape (b) Camber distribution

Fig. 7 Geometry comparison between RAE 2822 and optimized airfoils

(a) Cp distribution (b) Cf distribution

Fig. 8 Aerodynamic comparison between RAE 2822 and optimized airfoils

6.2 Drag Prediction Workshop Wing Case

The optimization case is inspired to one of the test cases issued within the 3rd AIAA
Drag Prediction Workshop (DPW). The viscous flow around an isolated wing at
Mach number of 0.78, Reynolds number of 5 millions and angle of attack (AOA)
of 1◦ is considered. Fully turbulent flow is assumed. The constrained minimization
problem is defined as follows:

minimize
x

− CL(x)
CD(x)

subject to max
s

(
t (x, s)

c

)
= 0.136

CL(x) ≥ 0.5

CM(x) ≥ −0.05

where c is the local wing chord value and t (x, s) is the wing thickness distribution
along the chordwise abscissa s for a generic design vector x.
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6.2.1 Parameterization

As an extension of the CST airfoil parameterization, a wing shape can be obtained
by distributing the airfoil shape function along another surface parameter η, rep-
resenting the wing span, with the desired law. Once selected Nx , the order of the
Bernstein polynomial which represents the wing airfoils, the complete wing shape
can be obtained by transforming the coefficients of the Bernstein polynomial into a
distribution along the spanwise direction using any appropriate numerical technique.
In this way, the entire wing surface is defined through the same basic component air-
foils of the root airfoil, but the magnitude of each of them varies across the wing span
according to the expansion technique. For example, using the Bernstein polynomial
as expansion technique, the spanwise variation of each coefficients Aui in Eqs. 14
and 15 can be stated in the form

Aui ≡ Aui (η) =
Ny∑

j=0

Bui, j S j,Ny (η) (16)

where
Sj,Ny (η) = K j,Nyη

j (1 − η)Ny− j

Ny is the order of the expansion Bernstein polynomial and K j,Ny is the usual binomial
coefficient.

By inserting Eq.16 into Eq.15 and adopting the same technique for the lower
surface, the bi-variate Bernstein polynomial shape function for the entire wing is
derived

Su(ψ, η) =
Nx∑

i=0

Aui (η)Si,Nx (ψ) = (17)

Nx∑

i=0

Ny∑

j=0

[
Bui, j K j,Nyη

j (1 − η)Ny− j
]
Ki,Nxψ

i (1 − ψ)Ny−i

Sl(ψ, η) =
Nx∑

i=0

Ali (η)Si,Nx (ψ) = (18)

Nx∑

i=0

Ny∑

j=0

[
Bli, j K j,Nyη

j (1 − η)Ny− j
]
Ki,Nxψ

i (1 − ψ)Ny−i

The wing shape will be then represented by 2 × (Nx + 1) × (Ny + 1) design
parameters, namely Bui, j and Bli, j , i = 0, . . . , Nx , j = 0, . . . , Ny . By multiplying
the wing shape function by the airfoil-like class function, the overall shape of the
wing can be computed. However, a wing is generally and naturally conceived with
spanwise distributions for twist angle, dihedral angle, sweep angle and taper ratio:
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this additional parameters have to be introduced in the CST model in order to cover
realisticwing concepts. The actualwing surface cartesian coordinates can be obtained
from the equations

x = ψL(η) + xLEroot +
∫ η

0
[sinΛ(η)]dη (19)

y = b

2
η (20)

zu,l = L(η)C0.5
1.0 (ψ)Su,l(ψ, η) + L(η)ψ[ΔzT E (η) − tan αT (η)] + (21)

L(η)

∫ η

0
[sin δ(η)]dη

where the following spanwise distributions have been introduced: L(η) chord length,
Λ(η) sweep angle,ΔzT E (η) trailing edge thickness, αT (η) twist angle, δ(η) dihedral
angle. b is the wing span length and xLEroot is the x-position of the leading edge of the
root airfoil. Several laws can be defined for spanwise distributions, but the standard
approach which assures the manufacturing feasibility of the wing shape is to assume
constant (e.g. sweep angle), piecewise constant (e.g. dihedral angle), linear (e.g. twist
angle) or piecewise linear (e.g. chord length/tapering) variations.

In the present case, one design variable is assigned to control the wing tip twist
angle while the twist angle at the root section is kept fixed. A linear twist distribution
is adopted along the wing span. The shape design variables are 16, as Nx and Ny are
chosen to be respectively 3 and 1. Hence, the total number of design variables is 17.

6.2.2 Mesh Generation

The computational mesh is generated by using the ICEMCFD commercial package.
Once defined the wing shape from a specific design vector by using the aforemen-
tioned CST approach, three wing sections, namely root, mid and tip sections, are
imported within ICEM CFD and employed to generate support curves and surfaces.
A replay script file is used to fully parametrize the blocking arrangement, the struc-
tured grid generation and the mesh export in a file format suitable for the CFD flow
solver. Eight blocks are designed around the wing shape and a family of two grids is
defined: the coarse and fine mesh consist respectively of 712,448 cells and 2,959,872
cells. A sketch of the surface mesh distribution is shown in Fig. 9. Both meshes are
conceived to respect the y+ = O(1) condition, as also shown in Fig. 10 where the
contour map of y+ distribution on the wing surface is depicted. The coarse mesh
will be used for optimization studies, while the fine mesh will provide more accu-
rate comparisons of the aerodynamic flow for optimized shapes at the end of the
optimization process.



Application of Surrogate-Based Optimization Techniques … 85

(a) Coarse mesh (b) Fine mesh

Fig. 9 Computational mesh on DPW wing surface

(a) Coarse mesh (b) Fine mesh

Fig. 10 y+ distribution on DPW wing surface

6.2.3 Optimization Studies

Similarly to the previous case, three optimization approaches are compared: a plain
evolutionary-based optimization and two surrogate-assisted approaches. Table4 pro-
vides details of each study. In particular, PGA (PlainGeneticAlgorithm, also referred
to as DGA, Direct Genetic Algorithm) features a single-objective, genetic algorithm
run (40 generations with a population size of 96 candidates), calling the CFD flow
solver as fitness evaluator. As in the previous case, the EGO method is launched
through the Dakota interface. SBOSA-EIL approach is the same as for the RAE
2822 case, but here the total budget of true function evaluations is set to 102 and the
database breakdown is as follows:

• 16 samples are suggested by LHS and the POD/RBF surrogatemodel is initialized;
• 56 samples are iteratively provided by applying the EI-like in-fill criterion;
• 30 samples are finally suggested by optimizing on the surrogate with repeated GA
calls.
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Table 4 Summary of optimization studies for DPW wing

ID Obj. function eval. Opt. method Total no. evaluations

PGA CFD GA 3936

SBOSA-EIL POD/RBF SBO (EI-like + GA) 102

EGO Kriging Dakota EGO 502

The baseline shape is the wing geometry DPW-W1 proposed within the 3rd
Drag Prediction Workshop. With respect to the original design point (Mach = 0.76,
AOA = 0.5◦), some changes are introduced in order to make the optimization prob-
lemharder. Indeed, the primary interest is to verify the capability of surrogate-assisted
techniques to recover optimal or sub-optimal design solutions by using limited com-
putational resources. To this aim, a convincing test is to force the algorithm to start
frompoor aerodynamic solutions and observe howquick it is to fall back in promising
regions. Hence, a new design point suitable for optimization purposes is identified at
a higherMach number (= 0.78) and a higher angle of attack (= 1.0◦). Table5 reports
the aerodynamic coefficients and objective function values for three design points,
namely the original one, the optimization one and an intermediate one. The latter
has been reported in order to highlight that, by increasing only the Mach number
at fixed angle of attack, the lift coefficient and hence the induced drag would not
be altered significantly: as a matter of fact, moving the AOA to 1◦ would force the
optimizer to heavily work on twist and shape design variables in order to decrease
the lift coefficient and the induced drag accordingly.

The true objective function history of the SBOSA-EIL run is reported in Fig. 11.
For the sake of clarity, a constant is added to the objective function in order to allow
for using a logarithmic scale. Candidate samples are clearly distinguished according
to the criterion used to select them (LHS, EI-like and GA). The solid dark grey
line marks the advancement of the minimum value of the true objective function.
As in the airfoil case, the initial LHS stage (dark grey diamonds) provides only for
the initialization of the surrogate, as the aerodynamic performance is very poor. The
objective-driven in-fill points (light grey squares) contribute to progressively drop the
objective function levels prior to the final, steepest downhill during the GA-assisted
stage (black circles). Unlike the previous case, here the best candidate is found during
the GA-assisted search.

Figure12 shows the progress of the true objective function minimum for all
optimization studies. The x-axis (progressive number of candidates) is reported in

Table 5 Comparison of aerodynamic coefficients of the baseline wing

Mach AOA (◦) CL CD CM Obj. function

0.76 0.5 0.504 0.0237 −0.0722 −16.323

0.78 0.5 0.510 0.0283 −0.0785 −9.927

0.78 1.0 0.563 0.0337 −0.0781 −8.776
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Fig. 11 Objective function history of DPW wing SBOSA-EIL optimization run

Fig. 12 Progress of minimum values of the objective function for DPW wing optimization studies
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logarithmic scale for the sake of clarity as different scales are involved. The SBOSA-
EIL optimization, despite the very limited number of CFD evaluations, manages to
achieve the same performance level with respect to the plain GA. The EGO algo-
rithm once again turns out to stay somewhat in the middle in terms of computational
budget and performance. To better compare the algorithms, Table6 summarizes the
results of each optimization study in terms of aerodynamic coefficients, minimum
objective function value attained, number of effective CFD evaluations needed to
capture it and a measure of CFD evaluations saving with respect to PGA run. It can
be observed that PGA and SBOSA-EIL achieve the same objective function mini-
mum value, although the two optima candidates are clearly different as they exhibit
different aerodynamic coefficients. This suggests that the optimization case features
non-unique optima solutions. However, the valuable point of such a comparison
lies in the fact that, by employing surrogate-assisted procedures coupled to adaptive
objective-driven training, the global optimum can be detected by exploiting only
3% of the computational budget of a genetic algorithm optimization. Table7 sum-
marizes the aerodynamic coefficients and objective function values for DPW-W1,
SBOSA-EIL and PGA candidates as computed on the fine mesh: small deviations
can be observed with respect to the coarse mesh, a slight loss in the lift coefficient
for PGA optimum deteriorates the objective performance due to the triggering of the
corresponding penalty. On the other hand, the goal function of SBOSA-EIL optimum
is even better due to lower drag contribution and lower penalization of the pitching
moment coefficient.

In order to evaluate the difference between optimal candidates, aerodynamic com-
parisons are proposed in the following figures. Figure13 shows the contour map of
the pressure coefficient on the upper surface of each optimal candidate. A general
reduction of the wing loading can be observed which allowed to reduce the shock

Table 6 Optimal candidates comparison

ID CL CD CM Obj.
function

CFD
evaluations

CFD saving

Baseline 0.563 0.0337 −0.0781 −8.776 – –

PGA 0.500 0.0236 −0.0522 −21.14 3700 0.0

EGO 0.502 0.0260 −0.0554 −18.99 485 −87%

SBOSA-
EIL

0.514 0.0242 −0.0529 −21.14 100 −97%

Table 7 Optimal candidates comparison, fine mesh

ID CL CD CM Obj. function

Baseline 0.569 0.0340 −0.0796 −7.970

PGA 0.492 0.0228 −0.0489 −21.013

SBOSA-EIL 0.507 0.0234 −0.0505 −21.638
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Fig. 13 DPW wing optimal candidates comparison, pressure coefficient contour map

wave strength. This is also confirmed by the fact that the lift coefficient of all can-
didates are lower than the baseline value and close to the constraint threshold. The
SBOSA-EIL solution is very similar to the PGA one, some slight differences are
observed in the outboard wing isobars.

Moreover, the shape modification worked to push the wing loading forward in
order to satisfy the pitching moment constraint. This feature is more clear in Fig. 14,
where the sectional pressure distribution at two spanwise sections (26 and 82% of
the span length) is shown. The PGA and SBOSA-EIL solutions present different
design choices on the outboard wing, the former being more flat and less loaded, the
latter showing a peak near the leading edge followed by a gentle compression. For
the sake of completeness, the section shape comparison is also provided in Fig. 15.
The most evident geometry modifications can be summarized as follows:

• increase of the outboard twist angle for the SBOSA-EIL optimum candidate;
• airfoil de-cambering for SBOSA-EIL optimum to compensate for twist angle
increase;

• reduction of leading edge radius for all the optimized shapes.

Of course, each design choice is strictly related to other design features, but only
their combination affects the objective function/constraint evaluation. For instance,
PGA and SBOSA-EIL represent two different design examples, however they share
the same level of performance in light of the chosen objective function. Indeed, in
the former case the twist angle distribution in slightly higher than the DPW wing
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(a) Inboard section, y
b = 0.26 (b) Outboard section, y

b = 0.82

Fig. 14 DPW wing optimal candidates comparison, sectional pressure distribution

(a) Inboard section, y
b = 0.26 (b) Outboard section, y

b = 0.82

Fig. 15 DPW wing optimal candidates comparison, section shape

but the wing airfoils are shaped to lower the wing loading along the wing span; in
the latter case, the section shape in the inboard wing region is designed to minimize
the wing loading in order to reduce the main source of wing pressure drag as much
as possible and, to compensate this effect, the outboard wing twist is increased.
Figure16 provides a clarifying overview of such a concept as it reports the wing lift
and (pressure) drag loading along the wing spanwise direction. It can be observed
how the drag levels on the inboard region are reduced for the SBOSA-EIL candidate
by reducing the sectional lift accordingly, while the PGA optimum exhibits very low
drag contribution on the mid-outboard wing.
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(a) Lift loading cCl (b) Drag loading cCd

Fig. 16 DPW wing optimal candidates comparison, wing span loading

7 Conclusions

The paper proposed a surrogate-assistedmethodology suitable to aerodynamic shape
optimization. A physics-based surrogate model coupling Proper Orthogonal Decom-
position and Radial Basis Functions interpolation has been exploited to predict
approximate values of the objective functions throughout the optimization process.
The surrogate model database has been split in three stages, namely a space-filling
Latin Hypercube stage to initialize the surrogate, an adaptive sampling stage in
which the model is gradually improved and a final optimization stage in which opti-
mal candidates predicted by the surrogate model are re-injected in the database and
the model is updated accordingly. The adaptive sampling phase consists in applying
two ad hoc in-fill criteria which have been purposely designed to enrich the surro-
gate model database towards the realization of the exploration/exploitation trade-off.
The first in-fill criterion is designed to mimic the Expected Improvement Function
maximization, the second is based on a sort of factorization of the exploration and
exploitation effects.

Two aerodynamic cases have been proposed to test the methodology: the shape
optimization of the well-known RAE 2822 airfoil and of an isolated wing from the
AIAA CFD Drag Prediction Workshops. In the first case, the results obtained by
applying three in-fill strategies compare very well with classical evolutionary-based
optimization and surrogate-based EGO algorithm, taken as references. In particular,
the same aerodynamic performance level (−40% in terms of objective function) of
the computationally intensive genetic optimization can be reached by tuning the σ

parameter of the Expected Improvement-like criterion. The second test case involves
the solution of the flow field around an isolated wing in transonic viscous flow, hence
the number ofCFDdegrees of freedom is quite largerwith respect to two-dimensional
cases. Moreover, the design optimization problem has been intentionally made more
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difficult in order to stress the proposed methodology. Despite the increased intrinsic
complexity of the case, results are even better as the aerodynamic performance of
the global optimum (-140% in terms of objective function), as predicted by the high-
fidelity optimization, is achieved by the surrogate-assisted approach at very limited
computational cost (only 3% of the high-fidelity optimization).

Such results support the conclusion that surrogate models alone may not provide
the right answer within an aerodynamic shape optimization context, especially if
transonic viscous flow is considered. However, when coupled to smart adaptive sam-
pling techniques, they allow to catch the basic trends of the objective functionwithout
penalizing the design space exploration: indeed, in complex design cases with high
non-linearities and multi-modal landscapes, the latter has to be carefully balanced
as it may result in unveiling promising regions as well as leading the optimizer to
waste time in searching poor solutions.
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Efficient Global Optimization Method
for Multipoint Airfoil Design

Davide Cinquegrana and Emiliano Iuliano

Abstract In the frame of an investigation about surrogate models employed in
aerodynamic optimization problems, this work aims at illustrating the suitability
of adapted design space sampling to evolutionary optimization. The adaptive sam-
pling algorithm is based on the Weighted Expected Improvement idea applied to
a Kriging-based meta-model. A multipoint airfoil optimization is set as test case.
A deep investigation is devoted to the tuning of the weights of Expected Improve-
ment function to enhance the performance of the optimization process. A compar-
ison between a pure genetic optimization and a Weighted Expected Improvement
approach is proposed. Efficiency and quality of the obtained results are discussed.

1 Introduction

The present paper focuses on investigating smart strategies for guiding the training
of a stochastic-based meta-model to be used as fitness valuator in an aerodynamic
optimization context. The main aim is to design an in-fill criteria able to enhance
the global optimum search in a surrogate-based optimization. Efficient Global Opti-
mization (EGO), introduced by Jones et al. [5], can be considered as an alternative to
gradient-based and stochastic methods. Based on Expected Improvement Function
(EIF) estimation, it can be considered as a ‘smart’ sampler of the design space, since
it represents a good compromise between exploration and exploitation: indeed, the
search of global optimum can be theoretically achieved with a reduced number of
objective function evaluations. This adaptive sampling technique picks additional
points where a proper balance between high probability of improvement and high

D. Cinquegrana (B)
Fluid Mechanics Department, Computational Fluid Dynamics Group, Capua, Italy
e-mail: d.cinquegrana@cira.it

E. Iuliano
Fluid Mechanics Department, Multidisciplinary Analysis and Optimization Group,
Capua, Italy
e-mail: e.iuliano@cira.it

© Springer International Publishing AG 2019
E. Minisci et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 48, https://doi.org/10.1007/978-3-319-89988-6_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89988-6_6&domain=pdf


96 D. Cinquegrana and E. Iuliano

uncertainty in the surrogate prediction is realized. In fact, two different contribu-
tions can be identified in the EIF definition: the first is related to exploitation, which
consists in trusting the meta-model approximation and, hence, sampling close to the
predicted global optimum; the second is called exploration, which instead aims at
discovering unveiled portions of the design space, thus reducing the surrogate predic-
tion uncertainty. In the original version of the EGO algorithm, as reported by Jones,
these two contributions are perfectly balanced: however, a weighting approach can be
followed to give more emphasis to exploitation or exploration depending on the evo-
lution and the status of the search process. This topic will be extensively investigated
in Sect. 7 where different criteria for weighting the EIF will be proposed.

Several papers can be found dealing with optimization by EGO. Sasena et al. [10]
introduced the Generalized Expected Improvement and applied it to the design of
a hybrid electric vehicle, aiming at maximizing the fuel economy. In the context of
structural optimization problems, Sóbester [11] has showed a variable global-local
bias scheme via the Weighted Expected Improvement Function (WEIF) based on
Radial Basis Function (RBF)meta-models. Glaz et al. [4] applied the EGO algorithm
to noise reduction of rotor blades with a design space composed of 4 design variables,
representing the blade structural thicknesses and non-structural masses.

Themain effort of the present paper is focusedon assessing the effects ofweighting
the EIF within the context of an aerodynamic shape optimization problem. As a first
approach, a stepwise change of the weighting parameter is performed underlining the
significant role that it can play even when no prior knowledge of the problem at hand
is available. Furthermore, an adaptive change of the weighting parameter has been
designed: it is based on the correlation metrics computed through the meta-model
cross-validation. In fact, during the updating phase of the meta-model, this approach
aims at increasing the contribution of the exploitation termwhen themodel is deemed
to be more reliable. A similar attempt was also proposed recently by Xiao et al. [12],
consisting in adaptively changing the weight parameter by means of an artificial
intelligence algorithm: the method was applied to the design of an electromagnetic
device, but the author deferred the global conclusions to testing the algorithm on
more challenging cases.

The paper is organized as follows: the main topic and the optimization algorithms
are introduced in the first section, followed by a short section devoted to the theo-
retical background of Kriging model. Cross-Validation (CV) and the corresponding
metrics employed to evaluate the reliability of the surrogate model are presented in
a dedicated section. The main section is the one that illustrate the different updat-
ing strategies adopted in this work. Then a section is devoted to the main test case
description and also the results will be shown. A deep investigation on the effects of
the turbulence model are also reported in Sect. 7.2.3. Finally, discussion and future
work are described in the conclusions.
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2 Methods

This section is devoted to the description of the step defining the EGO chain, that
can be summarized as follow:

1. Generate an initial experimental design dataset.
2. Do the high-fidelity evaluations at the points generated in Step 1.
3. Fit a meta-model to the data generated in Steps 1 and 2.
4. Use the meta-model to evaluate the Expected Improvement at un-sampled points

in the design space to choose the location to the next expensive function evalu-
ation.

5. Perform the high-fidelity evaluation at the point(s) selected in Step 4.
6. Use the new data point(s) to update the meta-model.
7. Iterate through Steps 4 to 6 until the maximum number of fobj evaluations is

reached.

The initial dataset of samples is defined by means of Latin Hypercube Sampling,
LHS. The geometries that comes out from the design vectors so defined are succes-
sively analyzed by the high-fidelity aerodynamic model, i.e. a Computational Fluid
Dynamics (CFD), Reynolds-Averaged Navier-Stokes (RANS) code to evaluate the
objective function, fobj , for each sample. At this time, a first, approximated, meta-
model can be addressed by Kriging, that mimic the behavior of the fobj in the Design
Space. Then, as described in the procedure, the further samples are chosen sequen-
tially by various in-fill strategies tested for this work, all derived starting from EGO
approach.

The exiting criteria of the loop is based on the fixed computational CFD budget
devoted to evaluate the fobj . Two different budget are defined: the first one is equal
to five times the number of design variable, defining a Validation stage Data-Base
(DB); the second one, which will follow the surrogate model validation, is devoted
to the optimization stage. In details:

• Validation Stage

– Generate an a-prioristic DB consisting of 25% of the validation CFD budget
– Generate a DB of CFD simulation consisting of 5 times the Design Variable.
This analysis was performed to test the predictive potential of the surrogate
model.

• Optimization Stage

– Sequential CFD evaluation dedicated to the fobj optimization until to reach the
final CFD budget.

Effort of the work is focused on the sequential updating strategy, based on the
weighted Expected Improvement: several strategy, explained in a devoted Sect. 5 are
investigated and the results compared with a pure-genetic optimization and and with
a Surrogate-Based Optimization (SBO) approaches.
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3 Metamodel Building: Gaussian Process Approach

The meta-model that mimic the behavior of objective function, fobj , in the Design
Space of Variable is based on Kriging interpolation technique. Furthermore, since
that this method is able of evaluate an estimation of the error in its prediction, an
improvement function can be defined. Based on this findings, an in-fill criteria can
be built, as will be described in this section and in the next one.

Kriging is a Gaussian process [7, 8] based models, where the basis function are:

ψ(i) = corr
[
Y

(
x (i)

)
,Y (x)

] = exp
(
−

∑
θ j |x (i)

j − x j |p j

)
(1)

The variance of the basis function can be controlled in each of k dimensions by θ j ,
and also the exponent p j can be varied. The unknown parameters θ j and p j are
chosen to maximize the Maximum Likelihood Estimation (MLE) function (details
in McKay et al. [7] work):

ln(L) � −n

2
ln ˆ(σ 2

) − 1

2
ln(|Ψ |) (2)

where

σ̂ 2 = (y − 1μ)T Ψ −1 (y − 1μ)

n
(3)

and ψ is an n × n matrix of correlations between the sample data with each element
given by (1). After determined θ and p, function prediction can be made at unknown
design space vector x using:

y(x) = μ + ψTψ−1(y − 1μ) (4)

where, for Ordinary Kriging the mean term is defined as:

μ = 1Ψ −1y

1TΨ −11
(5)

In Universal Kriging, employed for this work, the mean term can be expressed as:

μ = μ(s) =
∑

μiνi (s) (6)

taking the form of a first order polynomial regression.
As explained before, EGO is founded on the provision of an estimated error by

kriging in its prediction, the Mean Square Error, valued as:

s (x) = σ 2

[
1 − ψΨ ψ + 1 − 1TΨ −1ψ

1TΨ −11

]
(7)

See Saks et al. [9] for the full derivation.



Efficient Global Optimization Method for Multipoint Airfoil Design 99

4 Rating a Metamodel: Cross Validation and Metrics

Cross-Validation (CV) analysis provides an average error when the meta-model is
applied to a sample not collected in the training DB. Here is adopted a K-fold CV,
that randomly breaks the Dataset into K partitions removing temporarily the j th
subset from the dataset. With this reduced set, the model is trained on the remaining
K − 1 subset. Then, the error is evaluated when predicting the j th part of the data,
and finally, this is combined with the K prediction error estimations. A sub case of
K-fold happens when K = N : in this case each subset contains only a single pattern
and is known as Leave-One-Out CV (LOO-CV). The information coming out from
this analysis shows the points where the meta-model works well and the regions of
the Design Space variables that need more data (i.e., additional CFD runs).

For prediction error estimation, different metrics are considered. The first is the
Pearson’s correlation coefficient, defined as:

ρ =
N

∑N

i=1
fi f̂ −k(i) (xi ) −

∑N

i=1
fi
∑N

i=1
f̂ −k(i) (xi )

√

N
∑N

i=1
f 2i −

(∑N

i=1
fi
)2

√

N
∑N

i=1

[
f̂ −k(i) (xi )

]2 −
[∑N

i=1
f̂ −k(i) (xi )

]2

(8)
that ranges between -1 and 1 and provides the ratio between the covariance of param-
eter of the modeled function f̂ and true function f , and the product of their standard
deviations. If it is close to zero, the functions are weakly correlated and, hence,
we can expect that the prediction model badly reproduces the variation of the true
function. On the other and, if approaches the unity value strong correlation between
function is expected.

Other loss function adopted is the R2 coefficient, defined as:

R2 = 1 −
∑N

i=1 ( fi − f̂ −k(xi ))2
∑n

i=1 ( fi − f )2
(9)

that express the ratio between the residual sum of squares and the total deviation.
It ranges between 0 and 1: the higher the value, the better is the goodness of fit.
Furthermore, the mean square error (MSE) metric:

MSE
(
f̂
)

= 1

N

N∑

i=1

(
fi − f̂ −k (xi )

)2
(10)

that gives an estimate of the expected test error by using the squared error as loss
function. It ranges between zero and plus infinity, and smaller values indicate smaller
errors.

The latest parameter that is keep in account to rate the meta-model is its mono-
tonicity property, valued with the G metric:
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G =
N∑

i=1

i∑

j=1

−min

[

0,
f̂ (xi ) − f̂ (x j )

f (xi ) − f (x j )

]

(11)

that is always positive, and the lower is G value, the better the behavior of the meta-
model in preserve the true data relations, in particular, G = 0 indicates that global
monotonicity is preserved.

5 Infill Strategy: Expected Improvement

The Expected Improvement (EI) is an auxiliary function based on actual minimum,
surrogate predictions and uncertainties [5]. It is a probabilistic quantity that predicts
the expected decrease in the currentminimumvalue if a new function evaluationwere
performed at that point. Hence, in a sequential sampling of the design space, the next
function evaluation in the optimization process should be performed at the point of
maximum expected improvement to maximum the probability of encountering a new
minimum value. In a minimization problem, the improvement over the current best
design is written as:

I (x) = max ( fmin − f (x) , 0) (12)

where fmin is the best design out of all the sample points on which the surrogate
is defined. Keep in mind the feature of a Gaussian process to model its error in
prediction with Eq.7, the expected improvement function can be derived from the
expected value of the improvement function:

E I = E[I (x)] =
{

( fmin − f (x)∗)�
(

( fmin− f (x)∗)
s(x)

)
+ s (x) φ

(
( fmin− f (x)∗)

s(x)

)
i f s (x) > 0

0 i f s (x) = 0
(13)

where Φ () and φ () denote the cumulative distribution function (cdf) and the prob-
ability density function (pdf) of the standard normal distribution, respectively. Ana-
lyzing the terms, on the left the exploitation contribution, related to the minimum
distance between the value predicted by meta-model and the actual minimum value,
while on the right is the exploration term, that keep in account the errors of the meta-
model itself. In the meanwhile the meta-model is in its training stage, especially
when it deal with high dimensional problems, in the early stage it is an hazard to
trust in a good prediction. Indeed, the choice of the next sample should be direct
toward an exploration direction.

Introducing a scalar weight, w, it is possible to give different emphasis to the two
terms composing the EI: the one related to themodel uncertainties and the one related
to the actual minimum value. Then the Weighted Expected Improvement (WEI) can
be defined as follows:
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WE I (x)=
⎧
⎨

⎩
w

(
fmin − f (x)∗

)
�

(
( fmin− f (x)∗)

s(x)

)
+ (1 − w) s (x) φ

(
( fmin− f (x)∗)

s(x)

)
i f s (x) > 0

0 i f s (x) = 0

(14)
According to the value of w, ranging from [0, 1] the infill criteria can be biased
towards exploitation, with high value ofw (more emphasis to the predictedminimum
value), or exploration (emphasis on regions of high uncertainty of the model) with
low value of w.

In this paper, different strategies are applied to enhance in efficiency the EGO
when deal with high-dimensional, multi-modal problem like the multi-point airfoil
design. After designed a starting dataset composed by 18 elements (30% of the DB
size considered for validation) by means of LHS, various EGO-based sequential in-
fill strategies are implemented. In particular, a first investigation regards a parametric
study in change the weightw to check the impacts on absolute value of the minimum
OFreached, its variance, andmetrics obtained in aCV to rate the different approaches.
The second and other approaches are described in the next subsections. As a term of
comparison a full LHS Dataset and SBO are performed. In summary:

• LHS(18) + EGO(52): for EGO are also included some attempt with w variations

– w = [0.25, 0.3, 0.5, 0.6, 0.75, 0.9]
– w assigned with a step law
– w = w(ρ)

• LHS(18) + SBO(52): SBO is intended as Surrogate Based Optimization with
Genetic Algorithm

• LHS(70)

in the bracket are reported the CFD evaluations of fobj .
Since that the first (and common) part of Database of CFD runs was based on

randomly generated LHS samples, in order to eliminate the effects of distorted per-
formance figures caused by one or more points of the initial design landing near the
global basin, five different LHS samplingwas conducted, and then different surrogate
model from sequential updating was statistically evaluated to estimate the incidence
of the different starting points.

5.1 Weighted EI—A Global-Local Approach

This approach is based on the previous considerations. Keeping in mind that the
larger values of weight w, the more local the scope of search will be, a small value
at beginning of in-fill is chosen and the it grows up in a step-wise manner. This
could help the model in the first stage when large uncertainty can characterize highly
multi-modal function. In the next equation is showed the step-wise manner in which
the weight grows up in the sequential infill of validation stage.
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w =
⌊

i

nCFD

⌋
0.1 + 0.5 (15)

where �� is the floor function, i is the current CFD evaluation, nCFD is the step
size, i.e. the number of CFD evaluation where the weight w is kept constant. Here,
the range of w is w ∈ [0.02, 0.6].

5.2 Adaptive Approach

The previous strategy is based on the assumption that in the early stage the meta-
model can fail in predict the improvement function, especially when dealing with
high-dimensional optimization problem. Then, it automatically grows up the weight
starting from low value of w. The following strategy instead relate the changing
weight of WEI according to a parameter that should rate the actual reliability of the
trainingmeta-model. The parameter is the Pearson’s Coefficient, Eq. 8 of Sect. 4. The
law is opportunely defined as follow;

w (ρ) = a + b tanh (2.5ρ − c) (16)

where the scalar parameter are chosen so that w ∈ [0.02, 0.6]. This strategy was
also defined in order to achieve better metrics value in the Validation phase of the
database, an trying to correlate a good rating with also optimum minimum value of
fobj .

6 Multipoint Airfoil Shape Optimization

The RAE 2822 airfoil [2, 3] has been selected as the baseline for a multi-point
aerodynamic optimization. The airfoil shape is shown in Fig. 1.

The airfoil is a rear-loaded, sub-critical geometry, designed to exhibit a roof-top
type pressure distribution at design conditions (Mach = 0.66, Cl = 0.56) [3]. The
coordinates of the lower and upper surfaces and the wind tunnel flow conditions can
be found [2]. The main geometric features of the airfoil are summarized in Table1.

Fig. 1 Baseline Airfoil
geometry of RAE 2822
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Table 1 Baseline airfoil features

Geometrical feat Value

Chord (m) 0.61

Maximum thickness-to-chord ratio 0.121@x/c = 0.38

Maximum camber-to-chord ratio 0.0126@x/c = 0.76

Leading edge radius (m) 0.00827

Airfoil area (m2) 0.0776

Trailing edge angle (deg) 9

Table 2 Free-stream conditions for design points

DPi M Re AoA (deg)

DP1 (Case9) 0.734 6.5 × 106 2.65

DP2 (Case10) 0.754 6.2 × 106 2.9

6.1 Problem Description

The flow conditions, the aerodynamic and geometric constraints for the different
design points, are the inputs for the optimization process. The flow conditions include
prescribed angle of attack (AoA),Mach number (M), Reynolds number (Re), for each
Design Point (DPi ), as it is shown in Table2.

The angle of attackwas chosen to reach, on the baseline, the experimental pressure
coefficient distribution. As will be show in the next sections, those value are sensitive
to the turbulence model employed in RANS computation. The fobj , concerning both
the Design Point, is defined in the following:

fobj = 1

2

(
Cd + Cd,t + Cd,l

Cl

Cd,0

Cl,0

)

DP1

+ 1

2

(
Cd + Cd,t + Cd,l

Cl

Cd,0

Cl,0

)

DP2
(17)

where: {(
Cd,t

)
DPi

= 0.01max
(
0,C0

m − Cm
)
DPi

;
(
Cd,t

)
DPi

= 0.1max
(
0, (C0

l )
2 − C2

l

)
DPi

(18)

The optimal solutions should also satisfy the design constraints, which are usually
classified as aerodynamic and geometric constraints. The first ones should ensure a
predefined level of performance in termsof aerodynamic coefficients, the secondones
are usually set to satisfymanufacturing and structural requirements. The aerodynamic
constraints and penalties for the present design task are the following:

• Prescribed minimum lift coefficient C0
l |k : Cl |k ≥ C0

l |k• Prescribed minimum pitching moment coefficient C0
m |k : Cm |k ≥ C0

m |k
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Table 3 Aerodynamic constraints threshold

C0
l |1 C0

l |2 C0
m |1 C0

m |2 C0
d |1 C0

d |2
Coarse grid 0.800 0.791 −0.0962 −0.112 0.0183 0.0285

Fine grid 0.801 0.785 −0.0956 −0.109 0.0177 0.0276

Experiment 0.803 0.743 −0.099 −0.106 0.0168 0.0242

Constraints 0.800 0.750 −0.100 −0.110 – –

Table 4 Geometric constraints threshold
( t
c

)
max

( t
c

)
min @80 Rminl.e.

0.121 0.04 0.004

where C0
l |k and C0

m |k are the lift and pitching moment coefficients, respectively, of
the initial geometry, resumed in Table3.

The Geometric constraints concerns a prescribed maximum and minimum thick-
ness ratio, and a minimum leading edge nose radius: those value are resumed in
Table4. As explained in the next subsection, those constrain are implicitly satisfied.

6.1.1 Airfoil Parameterization

The RAE2822 is parameterized by a volumetric NURBS [6] by means of 14 control
points that are considered the design variables, DV, of the design problem. A highly
desirable feature of the parameterization approach is the capability of handling and
satisfying the geometric constraints in order to generate feasible candidates at any
design vector. The control points, showed in Fig. 2, have been distributed to be able
to handle these constraints.

6.1.2 Computational Grid and Flow Solver

The grid generator employed to discretize the flow-field and the airfoil geometry is
an single block hyperbolic mesh generator with C-grid topology. The size is defined
with two level of refining: coarse, with 512 × 64 cells; and fine, with 1024 × 128
cells. For both the first cell height ensure an y+ = 1.

The solver that has performed the flow-fields evaluations is the CIRA in-house
code ZEN [1] (Zonal Euler-Navier Stokes), a multi-block structured, finite volume
method, a 2nd order spatial discretization (Jameson-Schmidt-Turkel scheme), with
5-stages Runge-Kutta time integration. The flow is assumed as Fully turbulent and,
as explained in previous section, the Spalart-Almaras was chosen for DP1 while for
DP2 the k-w SST by Menter. Other details on turbulence effect will be illustrated in
the last section.
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Fig. 2 NURBS control box

7 Results

The approach adopted to verify the efficiency of EGO algorithms is to fix the CFD
budget, i.e. a maximum number of fobj evaluation with CFD analysis. In details,
three steps are identified to different stage of CFD evaluations:

• LatinHypercubeSampling ofDesignSpace,with 18 samples evaluations bymeans
of CFD run.

• Sequential Updating:

– DB validation: up to 70 samples, performed to test the predictive potential of
the surrogate model

– DBoptimization: up to 120 samples, to achieve, eventually, further enhancement
of objective function

The validations and the optimization stages were repeated five times for each
strategies adopted, in order to evaluate the influence of the huge sampling of surrogate
EI function, employed to find maximum EI and then selected the new candidate to
be evaluated by means of CFD. In the Optimization paragraph are also included an
off-design analysis of the optimum airfoil obtained that gave the chance to discuss
about the proper choice of the turbulence model and its influence.

7.1 Validation Results

In this paragraph are compared the results of the in-fill strategies implemented, in
termsof fobj andofmetrics, obtainedwithK-foldCV.The aimof this comparison is to
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Fig. 3 Objective function values at end of validation stage

find a relation, if any, between agoodmetrics relative a specific dataset, and its success
in the final global optimum research. Figure3 resume the results of the minimum,
maximum and average fobj obtained by the various methodologies of Surrogate
Models adopted in this work. The plot indicates that the better performances, both
in average and absolute terms, comes from the EGO with step approach of changing
w of Eq.15.

As a terms of comparison are also included in this validation stage, a full LHS
dataset and a SBO dataset. As expected, the former approach lead to worst results
concerning the minimum fobj within the validation dataset in the Fig. 3, but also
a good metrics was evidenced in terms of Pearsons’s coefficients of Eq.8, MSE of
Eq.10 and R2 of Eq.9, not showed here. The latter, SBO, that has the label ‘one-shot’
in Fig. 3, showed a large variance of minimum fobj , but with an average value fobj
that is comparable to the other in-fill criteria with fixed weight w.

Further details of the in-fill criteria based on WEI can be found in the next sub-
paragraph.

7.1.1 Simple Weighted EI: Results

The numerical investigation conducted keeping constant theweight of the EI function
has revealed, in the validation phase of DB in-fill, that for this particular problem,
the larger the weight, the better are the metrics quality of MSE, R2 and Pearson’s
coefficients of the final DB, as shown in Fig. 4(a–c). The G-metric shows a not clear
trend and no conclusion can be argued at this stage (see Fig. 4d).
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(a) R2 metrics. (b) MSE.

(c) Pearson’s Coefficient. (d) G-metric.

Fig. 4 Metrics for DB validation

In terms of fobj , in the validation stage is not detected a clear trend, while for
the Optimization stage seems that the better performance in minimizing fobj are
achieved by infill with the lower value of w.

7.1.2 Step-Wise Weighted EI: Results

The strategies can be compared to a global-local approach: an exploring Strategy at
beginning with (w = 0.05) and Exploiting in last phase with (w = 0.65). This has
shown the better results in terms of absolute and average minimum fobj value in the
validation stage, as showed in Fig. 3.

7.1.3 Adaptive Weighted-Expected-Improvement: Results

This approach is adopted in the validation stage only. Referring to Fig. 3, the perfor-
mance in terms of mean and variance of minimum fobj are comparable to a constant
low weight approach, withw = 0.3 that has reached good results. In Fig. 5 is plot the
history of the Pearson’s coefficient valued in each step with the its standard devia-
tion. A quite difference can be noticed in the early stage of the in-fill process, where,
if compared with the step law results, this method seems to perform better, also in
terms of final values of the metric, with lightly broad deviation. The worst results
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Fig. 5 In-line CV results: Pearson’s

are the one relative to the SBO training approach, where the in-fill process picks up
the sample in the minimum OF predicted by surrogate model.

This approach should be further enriched by other investigation, changing the
metric or taking into account a global value that sum up all themetrics here proposed.

7.2 Optimization Results

In this section are shown the results coming from the further infilling stage with its
devoted CFD budget of 50 runs to evaluate the fobj . The processes involved at this
stage can be resumed as follow:

• LHS(18) + EGO(52)+ EGO(50):

– w = [0.25, 0.3, 0.5, 0.6, 0.75, 0.9]
– ‘step-wise’ w + EGO(50)

• LHS(18) + SBO(52) + SBO(50)
• LHS(70) + Standard EGO(50)
• LHS(70) + SBO(50)

In the next sub-paragraph, the comparison with a plain optimization conducted with
a genetic algorithm is showed drawing some conclusions about efficiency and quality
of results with the criteria here presented.

Figure6 confirms that, also during the optimization stage the better performance
of the step approach of step-wise changing weight of Eq.15. The worst results in
terms of minimum averaged OF value belongs to the Optimization based on the
dataset designed with full LHS (with 70 samples), and then optimized with SBO.
Starting from the sameDB, an EGO optimization shows better results. The pure SBO
approach (‘one-shot’ label in the Figure) shows results comparable with the constant
WEI approach when the wight is kept low (from 0.3 to 0.6).
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Fig. 6 EGO optimization. Of results

(a) Baseline and Other Strategies. (b) Baseline and constant weight ap-
proach.

Fig. 7 Optimized aerodynamic shape with various EGO strategies

The Figure in 7 resume the best airfoils coming from the various investigations,
compared with the baseline and the overall best (i.e. the w_step). The load distribu-
tions are showed in Fig. 8, that is lightly penalized in pitching moment.
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(a)Cp at DP1. (b)Cf at DP1.

(c)Cp at DP2. (d)Cf at DP2.

Fig. 8 Coefficients for the optimized EGO airfoil

7.2.1 Comparison with Plain Optimization

The results of the surrogate optimization are compared with a classical optimization
based on genetic algorithm. The strategy of optimization was based on a population
of 64 elements and 100 generations, starting from a random population, for a total
of 6400 CFD evaluation of the fobj . The plain optimization led to an improved
OF of 4%, but with a computational effort larger than EGO algorithm. In fact, to
obtain the same performance, plain optimization employed a 1:10 ofCFDevaluations
ratio (1200 evaluations versus 100 of EGO). Furthermore, to obtain further 4% of
improvement in terms of fobj , the ratio of CFD evaluations grows up to 1:50. In the
Fig. 9 are compared the evolution of the fobj through the iterations.
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Fig. 9 OF evolution: comparison of EGO and plain strategies

Fig. 10 Optimized Airfoil
shape with plain
optimization

The improvements of aerodynamics performances obtained with the plain opti-
mization are, in terms of drag coefficient, 4 drag count for DP1 and 12 drag count for
DP2. In Fig. 10 are compared the baseline and the optimized geometries with plain
optimization.
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Fig. 11 Efficiency branch of best airfoil from EGO

7.2.2 Off-Design Performance

The best airfoil coming from the EGO strategy based on the step law of Eq.15 is
selected for an off-design analysis aimed to check its performance around the two
DP’s. Figure11 shows two branches of Efficiency. For the DP1 the shape guarantees
a maximum value, while for DP2 the solution is strongly influenced by fixing the
angle of attack to a pretty high value, then the optimization results are negatively
impacted in terms of drag coefficients.

7.2.3 Impact of the Turbulence Model

This analysis was started considering the efficiency curves showed before in this
section that shows, for DP2, a surplus in terms of lifting coefficient payed in terms
of drag count, due to the high value of angle of attacks, that globally deteriorate the
value of aerodynamic efficiency. As discussed in the description of the Optimization
problem, for the DP2 test case, the turbulence model involved is the two equation
shear-stress transport (SST) k − ω, of Menter. Based on this model, the angle of
attack was chosen to reach on the baseline, the experimental pressure coefficient
distribution. A study with a different turbulence model was conducted switching
from SST to Kok’s (turbulent/non turbulent interface, TNT) k − ω model, for the
best airfoil obtained with the Step strategy. Furthermore, the lift coefficient was also



Efficient Global Optimization Method for Multipoint Airfoil Design 113

Table 5 Turbulence model influence on O.F

Model AoA Cl Cd Cm EDP2 fobj

SST 2.90 0.795 0.02086 −0.1067 38.12 0.668

TNT 2.13 0.743 0.01618 −0.1224 45.92 0.656

fixed while the angle of attacks changes to achieve the target. The results shows that,
withTNT, the angle of attacks to reach the lifting coefficient valuewas lower that SST,
AoA = 2.13 (deg). The fobj valued with the new airfoil performance shows a greater
reward if compared with the one obtained with SST. In the Table5 a comparisons
with the SST model in terms of aerodynamic coefficient for DP2.

8 Conclusions

The work has shown an investigation on the capability of an EGO method based on
theWeighted EI auxiliary function facingwith an aerodynamic optimization problem
of a multi-point airfoil design. A tuning of the weight was conducted and compared
with a global-local approach and strategies based on in-lineCross-Validatingmetrics.
A good comparisons between the implemented in-fill strategy was difficult, masked
from the particularly ‘stiff’ test-case. In future works, a single-point design problem
should clarify better the hierarchy of the presented approaches. The final comparisons
has shown the efficiency of the method if compared with a pure genetic optimization
with a different within 5% in terms of efficiency.
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Checkpointing with Time Gaps
for Unsteady Adjoint CFD

Jan Christian Hückelheim and Jens-Dominik Müller

Abstract Gradient-based optimisation using adjoints is an increasingly common
approach for industrial flow applications. For caseswhere the flow is largely unsteady
however, the adjoint method is still not widely used, in particular because of its
prohibitive computational cost and memory footprint. Several methods have been
proposed to reduce the peak memory usage, such as checkpointing schemes or
checkpoint compression, at the price of increasing the computational cost even
further. We investigate incomplete checkpointing as an alternative, which reduces
memory usage at almost no extra computational cost, but instead offers a trade-off
between memory footprint and the fidelity of the model. The method works by
storing only selected physical time steps and using interpolation to reconstruct time
steps that have not been stored. We show that this is enough to compute sufficiently
accurate adjoint sensitivities for many relevant cases, and does not add significantly
to the computational cost. The method works for general cases and does not require
to identify periodic cycles in the flow.

1 Introduction

The adjoint method is commonly used in academia and industry to compute the
derivative of a cost functionwith respect to its design variables. Its greatest appeal lies
in the fact that the computational cost is constant in the number of design variables, in
contrast to simpler approaches such as finite differences or tangent-linear derivatives.
This makes the method feasible for industrial applications with rich design space [4].

Many real-world problems however still present a challenge for the adjoint
method. A particular problem is severe unsteadiness, as can be found in turbines,
including wind turbines, aircraft wings in high-lift configuration, car engines and
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many more [12]. The adjoint method has been formulated for this kind of problem
in frequency [13] and temporal space [15], but requires the storage of the full flow
history, resulting in prohibitive memory requirements in most cases.

A well-known way to mitigate this problem is the REVOLVE checkpointing
algorithm [5]. It stores checkpoints only at carefully chosen time steps, and
recomputes each time step when it is needed, starting from the time steps that
have been stored. Another approach that has recently been proposed [17] is the
compression of checkpoints. Both ideas have one thing in common: the memory
requirements are relaxed at the cost of increased computational expense. Furthermore,
lossless data compression does not offer large savings in storage space [14], and so
the method becomes more useful if lossy compression is used, resulting in errors in
the reconstruction of the primal flow field.

We investigate incomplete checkpointing as an alternative,which reducesmemory
usage at no extra computational cost, but instead offers a direct trade-off between
memory footprint and the fidelity of the model. We use a dual time stepping scheme
inwhich the inner iterations are fully converged, so that only physical time steps need
to be stored and the adjoint field can be reconstructed based on the fully converged
checkpoint, which preserves the accuracy of the result if the inner iteration was
fully converged [3]. In addition, we store only selected physical time steps and use
interpolation to reconstruct time steps that have not been stored.

The scheme comes at negligible cost for linear or other low order interpolation
methods. In particular, the reconstruction from data available in memory is
significantly faster than reading the checkpoint from disk, which would be another
possible (but slow) way of addressing the memory limitations. Finally, our method
does not require any assumptions about the flow such as periodicity.

Since the computational cost of interpolation is negligible inmost cases, this work
focuses on assessing the accuracy of the adjoint results obtained with this approach.

2 Background

We use an unsteady viscous flow solver for unstructured grids, BDF2 dual time
stepping and an implicit solver to converge the inner iterationswhichwas presented in
[20]. The adjoint solver is generated using the automatic differentiation tool Tapenade
[7] with some hand-coded optimisations for improved speed [2].

2.1 Solving the Flow and Adjoint Equations

The viscous unsteady flow equations can be written as

∂U

∂t
+ R(U ) = 0

and can be discretised using a third-order accurate BDF2 time marching scheme as
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∂U

∂t
+ R(Ut ) = Ut−2 − 4 ·Ut−1 + 3 ·Ut

2Δt
+ R(Ut )

:= R̂ (Ut−2,Ut−1,Ut )

The above system can be evolved in time by solving the linearised system forUk and
successively updating the converged flow solution Ut at time t

[
∂ R̂(Ut−2,Ut−1,Uk)

∂Uk

]
δUk = −R̂(Ut−2,Ut−1,Uk)

Ut = Ut−1 + δUk

The unsteady adjoint system can be written as

−∂v

∂t
+

(
∂R

∂U

)T

v −
(

∂ J

∂U

)T

︸ ︷︷ ︸
:=Rv

= 0

and can, like the primal equation, be discretised using BDF2 as

−vt−2 − 4 · vt−1 + 3 · vt

2Δt
+ Rv(v

t )

:= R̂v (Ut−2,Ut−1,Ut )

and solved using the same method as the primal equation.
The solution of the adjoint equation requires the history of the flow solution

Ut at each time step for the calculation of Rv and the preconditioning matrix PT .
This flow field can be stored during the flow solution and loaded during the adjoint
solution, recomputed by running the flow solver again (e.g. following the REVOLVE
algorithm), restored approximately from a compressed data, or reconstructed using
interpolation, following our new approach.

2.2 Physical Checkpointing

Weuse an approach inwhich only the physical time steps are stored during the primal
computation and restored during the adjoint computation, as presented in [9] and
Algorithm 1. The memory requirements are orders of magnitude smaller compared
to the brute-force method of storing every iteration.

Aside from the memory requirements that arise from storing the flow trajectory,
one major challenge in this approach lies in the need to fully converge the inner loop
so that an efficient adjoint method for fixed-point loops can be used [3]. To address
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Algorithm 1: Dual timestep with physical checkpointing

n ← 0;
U0, V0 ← initial guess;
while t < t f inal do // primal loop

n ← 0;
while R(Ut,n) > cutoff do // primal loop

Ut,n+1 ← flow_pseudostep(Ut,n);
n ← n + 1

end
t ← t + Δt ;
Ut+1,0 ← Ut,n ; // init for next step
store(Ut );

end
while t > tini t do // adjoint loop

load(Ut );
Vt,0 ← Vt+1,n ; // init for next step
t ← t − Δt ;
while R(Vt ) > cutoff do // primal loop

Vt,n+1 ← adjoint_pseudostep(Vt,n,Ut );
n ← n + 1

end
end

this, we use an implicit solver with geometric multigrid and ILU preconditioning to
converge in an acceptable time [20].

For our proposed method, the calls to store() and load() in this algorithm
are replaced by calls to augmented routines gappyStore() and gappyLoad()
as described below.

3 Checkpointing with Gaps

The routine gappyStore() contains a logic that selects certain snapshots worth
storing, which are denoted by the set of stored time steps Ts which are a subset of
all time steps T .

In the simplest incarnation of this method, Ts would contain only every n-th
time step, for some fixed n. In some special cases it might be beneficial to vary the
checkpoint density over time, e.g. to capture a particular phenomenon with a higher
accuracy. This was not investigated in this work.

If our method is regarded as a very simple form of data compression, then the data
compression ratio is ‖T ‖/‖Ts‖. Obviously we get better compression ratios if we
store fewer time steps. For evenly spaced snapshots as suggested above, we obtain a
compression ratio ‖T ‖/‖Ts‖ = n.

Checkpoints that have not been stored need to be reconstructed. If linear
interpolation is used, we can formalise this method as follows. Let t denote the
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time for which a checkpoint needs to be reconstructed. Also, let t+ and t− denote
the unique time steps for which all of the following conditions hold:

t+, t− ∈ Ts
�t∗ ∈ Ts : t < t∗ < t+

�t∗ ∈ Ts : t− < t∗ < t

In other words, t+ and t− are the closest stored time steps just after and before t ,
respectively.

We can then implement the gappyLoad() routine that can perform linear
interpolation or constant interpolation as follows:

Function gappyLoad(t)
if t ∈ Ts then // t was stored

return load(Ut );
else

U− ← load(Ut− );
U+ ← load(Ut+ );

return U− + t−t−
t+−t− · (U+ −U−);

end

If the gap t+ − t− is larger than two, this method can be implemented much
more efficiently by storing most of the intermediate results. The routine could be
implemented for higher orders of interpolation, taking into account more of the
surrounding stored time steps.

4 Test Case

4.1 Primal Solver Setup

To test our method we use a RAE2822 aerofoil with a trailing edge that ia truncated
at 10% cord length and a 30◦ angle of attack to provoke a high amount of shedding.
The freestream velocity is 0.2Ma, we use viscous flow. The mesh has around 25000
cells, the solver is node-centred and uses 4 levels of geometric multigrid for faster
convergence. The setup and the primal and adjoint flow field are shown in Fig. 1.

For the reference setup, we use a time step size of tre f = 1ms which corresponds
to ca. 70 checkpoints for each flow period. While this flow does exhibit periodic
cycles, our solver does not exploit this periodicity. Our findings should therefore
apply to non-periodic flow as well.

To validate that the chosen time step is fine enough to resolve the primal
flow sufficiently we perform another simulation with a time step size of 0.5 · tre f .
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Fig. 1 Snapshots after 1.5s (1500 time steps) and 1.52 s (1520 time steps). Left: Specific entropy,
showing strong vortex shedding above the airfoil with a frequency of roughly 70 time steps per
period (0.07 s). Right: Adjoint momentum at the same time steps. A high sensitivity close to the
top surface in step 1500 appears where a vortex is about to form, which can be seen in the primal
flow at step 1520. This adjoint peak stems from the small adjoint momentum peaks that are above
the airfoil in step 1520 and are propagated back to the airfoil surface during the reverse sweep

Furthermore, to obtain benchmark results for the incomplete checkpointing method
we run a series of 6 additional simulations with time step sizes 2, 4, 8, 16, 64 and
256 times tre f . We will refer to these setups as t0.5, t2 . . . t256.

4.2 Incomplete Checkpointing Setup

We use the primal results generated with tre f to initialise the adjoint solver. To
investigate if this temporal resolution is also sufficient to get accurate adjoint results,
we perform another adjoint simulation with time step size 0.5 · tre f for comparison.

Finally, we create incomplete checkpoint trajectories from the reference primal
result tre f as follows: For the setup that we will refer to as a2, we discard all primal
states at even time step numbers, and reconstruct them using linear interpolation
from the nearest odd time steps. We replace all but every 4th time step by linear
interpolation for the a4 setup and proceed likewise to obtain a8, a16, a64 and a256.

4.3 Adjoint Solver Setup

The adjoint solver is set to the same time step size as the primal solver for the
t0.5, t2 . . . t256 setups. For the a2 . . . a256 setups the numerical time step size is tre f .
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The cost function is total drag of the airfoil averaged over a time window with a
weight function ω to progressively switch the averaging process on and off. Given
the total drag at each time step J (t), the average drag Javg can be formulated as

Javg =

t∞∑
t=1

J (t) · ω(t)

t∞∑
t=1

ω(t)

(1)

We use a weight function that ramps up linearly for 0.05s until it reaches its peak
at which it remains for 0.175s, then ramps down to deactivate the averaging after
another 0.05s. We study three design parameters that are shown in previous works:

1. Flow control: (e.g. [1, 6, 8]) We consider a valve that can inject or remove
tangential momentum on the airfoil top just behind the leading edge. This design
parameter can vary in time and thus allows us to study transient behaviour of the
adjoint field. We compute this sensor for each time step by integrating the adjoint
momentum field over a small circular area around the valve location.

2. Surface node displacement: (e.g. [10, 19]) We consider the surface nodes’
displacement in normal direction as the design vector, which is common for
shape optimisation applications. The design parameter does not allow variations
in time and is thus based on the time-averaged adjoint field. We use this to study
the spatial behaviour of the adjoint field. The spring analogy model is used to
project volume sensitivities onto the surface.

3. Angle of attack: (e.g. [11]) We consider the shape fixed and only allow an
adjustment of the angle of attack. Since this will hide oscillatory errors in space
and time, it can be used to study the overall trend of the adjoint field. This sensor
is computed based on the cross product of surface sensitivity vectors and point
vectors of surface nodes, integrated over the entire airfoil surface.

For the surface sensitivity and angle of attack sensors we require a time-averaged
adjoint field. The average is taken over a time window given by the window function
ωa . The adjoint averaging window is twice as long as the cost averaging window.

5 Results

The reference and t0.5 solution show very similar primal flow features and lift/drag
values match well, suggesting that the reference step size is small enough to resolve
the primal flow.Using coarser time steps t2 . . . t8, the primal flow is no longer correctly
resolved, see Fig. 2.

We observe strong unsteadiness for the adjoint field, see Fig. 1, with peaks of
sensitivity close to the leading and trailing edges, and a reverse wake propagated
from the leading edge towards the incoming flow. Just like in the primal solution, the
unsteadiness is strongest downstream of the airfoil.
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1000
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1000 2000 3000 4000 5000

dr
ag

lift

t×0.5
t×2
t×4
t×8

ref

tref × lift drag

0.5 3530 ± 1291 1552 ± 465
1 3517 ± 1192 1561 ± 458
2 2747 ± 846 1219 ± 318
4 2659 ± 700 1175 ± 242
8 1680 ± 134 797 ± 42

16 1446 ± 10−12 702 ± 10−12

64 1446 ± 10−2 702 ± 10−2

256 1445 ± 0.3 701 ± 0.15

Fig. 2 Lift/drag history of fully developed flow for various time step sizes. The reference solution
and the twice refined solution agree qualitatively. With coarser time steps, we are unable to resolve
the transient behaviour correctly. The table shows that results for tre f and t0.5 differ by 0.4%, which
is acceptable for many applications. With larger time steps, the unsteadiness vanishes and mean
values for lift and drag differ from the reference by more than 60%

5.1 Overall Accuracy: Angle of Attack

We first consider dJ
dα , which is the sensitivity of drag J with respect to changes in

angle of attack α. This is the least sensitive sensor that we investigate, in the sense
that it regards a time- and space-averaged result which allows temporal and spatial
error modes to cancel out to some extent, see Table1 for results.

Coarsening the primal temporal solution has a strong effect on the sensitivity
results: relative errors rise above 60% for setup t8 . . . t256. In contrast to this, we
observe that the sensitivity results produced with incomplete checkpointing are

Table 1 Centre column: dJ
dα for different time step sizes.Right column: dJ

dα for different gap sizes
using incomplete checkpointing. The sensitivity is more dependent on the time step size than the
primal result: The reference and t0.5 sensitivities differ more than 6%, an order of magnitude more
than the primal drag

step/gap dJ
dα for step dJ

dα for gap

0.5 3844.451056 N/A

1.0 3612.203084 3612.203084

2.0 2541.615522 3612.235254

4.0 2227.642980 3612.317687

8.0 1504.326992 3615.459025

16.0 1288.293729 3612.068629

64.0 1262.006153 3606.972954

256.0 1228.272627 3364.129272
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acceptable. To give an example from the table: the a64 setup only keeps every 64th
time step and results in a sensitivity that differs from the reference by less than 0.2%.
This is achieved with the same memory requirements as for the t64 setup, which has
an error of over 60%. The a4 result agrees with the reference result within 0.003%,
but requires 75% less memory than the reference computation.

5.2 Spatial Accuracy: Surface Sensitivity

We investigate the spatial accuracy of the adjoint field by studying the sensitivity
dJ

d(x·n)
of the cost function with respect to normal displacements of airfoil surface

nodes. This is based on the time-averaged adjoint field.
This sensor also shows that the temporal primal accuracy is crucial. There is a

significant difference in surface sensitivities between the tre f and t0.5 setup, and an
even larger one for coarser time steps. For setup t8 and beyond, the sensitivity on
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Fig. 3 Surface sensitivity scaled by a factor of 2e − 4 for plotting, superimposed on the airfoil
surface. Top: Results for different primal time step sizes. The results agree qualitatively, although
the sensitivity modes are shifted along the top surface. Reducing the temporal accuracy leads to a
decrease in sensitivity. For t8 and above, the surface sensitivity on the airfoil top is almost zero (i.e.
is aligned with the current shape). The airfoil bottom shows a strong sensitivity which is resolved
correctly regardless of time step size. Bottom: Different gap sizes for incomplete checkpointing.
The sensitivities match that of the reference solution to plotting accuracy
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the airfoil top vanishes completely, which is an indicator that the unsteadiness is no
longer resolved. The surface sensitivity on the airfoil bottom is resolved correctly
for large time step sizes and is the only contributor to the angle of attack sensitivity
above 8 · tre f .

Incomplete checkpointing results in relatively small errors for this case, see Fig. 3.
The error grows somewhat with the gap size. Surprisingly, the a16 setup is more
accurate than the a8 setup in this case, see Fig. 4. Looking at the spatial distribution
of errors, we find that errors are highest on the airfoil top and several orders of
magnitude smaller at the airfoil bottom, see Fig. 4. This is due to the more intense
unsteadiness above the airfoil (Fig. 1).

5.3 Temporal Accuracy: Flow Control

Finally, we study the sensitivity of average drag with respect to momentum injection
close to the leading edge by means of a flow control valve, the location of which
is shown in Fig. 5. The time window in which the drag is averaged is illustrated in
Fig. 6. We observe that the adjoint momentum field for all time step and gap sizes is
zero after the end of the cost function window, which is to be expected: An injection
of momentum at any given time will not affect the drag in the past.
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Fig. 4 Left: Surface sensitivity error along the airfoil surface. Node 1 is at the bottom centre, all
other nodes are numbered continuously and clockwise as shown in the bottom of the left plot. Errors
are larger on the airfoil top (nodes 50 to 95) than at the bottom (nodes 105 to 132 and 1 to 20).
Right: Maximum relative error of surface sensitivity for different gap sizes. The relative error for
a2 . . . a16 is labeled and surprisingly smaller for a16 than for a8
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adjoint energy magnitude
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Fig. 5 Adjoint energy magnitude field after 1.5 and 1.52 s. The flow control valve is marked with
a sphere above the leading edge. The flow control sensitivity results are based on a design variable
that is the momentum injection rate in airfoil surface tangential direction at this location
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Fig. 6 Bottom: cost function averaging time window ω. Top: Sensitivity of drag with respect
to momentum injection above the leading edge, plotted over time for a series of incomplete
checkpointing gap sizes. We observe a zero adjoint field for time step 1700 and above, as any
change happening after the averaging window can not affect the cost function. The sensitivity peaks
for a time frame that is slightly longer than the cost averaging window and shifted towards lower
time step numbers. The a8 setup is oscillatory with a growing amplitude towards earlier time steps
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If the flow is chaotic [18] or almost chaotic [16] the sensitivities can start to diverge
as the adjoint field is computed backwards in time. For some simpler test cases we
can expect the adjoint field to converge to zero as we proceed backwards in time from
the beginning of the cost averaging window. This behaviour can be observed for our
test case and is shown in Fig. 6. The sensitivity is largest for all points in time from
which an injection of momentum could be propagated to some point of the airfoil
surface during the cost function averaging time.

For gap sizes 8 and above, we find that the sensitivity does not settle down as we
proceed backwards in time, and instead starts to oscillate with an exponentially
growing magnitude. Surprisingly, this growing error mode canceled out in the
time-averaging process that we used for the angle of attack and surface sensitivity
studies.

In contrast to this, a coarsening of primal temporal resolution leads to a decrease
in transient oscillations. Due to the highly nonlinear nature of the primal flow, it
is impractical to compare the results of different time step or gap sizes directly for
a given point in time, since even a minor change in the frequency of oscillations
introduced by a change in time step size can accumulate over time, see Fig. 7. Hence,
we compare the range in which the sensitivity oscillates over time.
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Fig. 7 Left: Time history of flow control sensitivities for the reference, t0.5 and t2 . . . t8 setups. The
oscillation range for the finest 3 setups are highlighted with background colour. Due to the nonlinear
behaviour of the primal flow, sensitivity values at any particular time are highly dependent on the
temporal resolution. Right: Range of oscillation (difference between minimum and maximum
value over time) for a range of time step and gap sizes. Coarsening the time steps removes temporal
oscillations in the adjoint field, while incomplete checkpointing with increasing gap sizes leads to
stronger oscillations as the gap size becomes very large. The a2 and a4 setups reduce the oscillation
range to 91% and 71% of the original range, respectively
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6 Conclusion, Possible Extensions

We show that gaps in the stored time trajectory are an easy and effective way
of reducing the memory footprint of unsteady adjoint calculations. The effect on
the sensitivity accuracy is acceptable for many industrial cases even for relatively
large gap sizes, making our approach worth considering as an alternative to lossy
checkpoint compression, with a significantly smaller implementation effort and
computational cost.

In particular, the error introduced by storing an incomplete trajectory is much
smaller than the error introduced by under-resolving the physical time during the
primal flow computation. It is therefore preferable to perform the primal simulation
with a fine temporal resolution and to use incomplete checkpointing, compared to
the alternative of reducing the number of primal time steps to a number that fits into
memory.

An error estimation strategy for incomplete checkpointing would be useful to
choose the gap size and interpolation order. This could be used to adapt the checkpoint
storing interval during the primal simulation and the restoration order during the
adjoint simulation dynamically, e.g. to capture some flow features with a higher
accuracy.

Finally, a similar method could be implemented for spatial coarsening, using
interpolation or coarse grid multigrid solutions if available.
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Shape Optimization of Wind Turbine
Blades Using the Continuous Adjoint
Method and Volumetric NURBS on a
GPU Cluster

Konstantinos T. Tsiakas, Xenofon S. Trompoukis, Varvara G. Asouti
and Kyriakos C. Giannakoglou

Abstract This paper presents the development and application of the continuous
adjoint method for the shape optimization of wind turbine blades aiming at maxi-
mum power output. A RANS solver, coupled with the Spalart-Allmaras turbulence
model, is the flow (primal) model based on which the adjoint system of equations is
derived. The latter includes the adjoint to the turbulence model equation. The primal
and adjoint fields are used for the computation of the objective function gradient
w.r.t. the design variables. A volumetric Non-Uniform Rational B-Splines (NURBS)
model is used to parameterize the shape to be designed. The latter is also used for
deforming the computational mesh at each optimization cycle. In order to reduce
the computational cost, the aforementioned tools, developed in the CUDA environ-
ment, run on a cluster of Graphics Processing Units (GPUs) using the MPI protocol.
Optimized GPUmemory handling and GPU dedicated algorithmic techniques make
the overall optimization process up to 50x faster than the same process running on
a CPU. The developed software is used for the shape optimization of an horizontal
axis wind turbine blade for maximum power output.

1 Introduction

Wind turbines design, and in particular their blade shapes, is a major application
field in CFD. Though CFD methods are widely used for the aerodynamic analysis
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of wind turbines [3], their use in shape optimization optimization of their bladings
is still limited. The major drawback of CFD based optimization is its computational
cost, especially when dealing with turbulent flows around complex geometries. The
huge meshes (with millions of nodes) needed for the aerodynamic analysis of wind
turbine blades make the use of stochastic, population-based optimization methods
rather prohibitive. An alternative is the use of gradient-based optimization methods,
such as steepest descent or quasi-Newton methods. In such a case, the computation
of the gradient of the objective function is required. To do so, the adjoint method
can be used and this makes the cost of computing the gradient independent of the
number of design variables and approximately equal to that for solving the primal
equations.

Over and above to any gain from the use of the less costly methods to compute the
objective function gradient, a good way to reduce the optimization turnaround time
is by accelerating the solution of the primal and adjoint equation using GPUs. Both
the flow and adjoint solvers are ported on GPUs, exhibiting a noticeable speed-up
compared to their CPU implementations [1, 4]. Though the use of a modern GPU
can greatly accelerate CFD computations, its memory capacity is limited compared
to a modern CPU RAM, posing a limitation when using GPUs for industrial appli-
cations. To overcome this problem, many GPUs, on different computational nodes
if necessary, can be used to perform the computation in parallel, by making use of
the CUDA environment together with the MPI protocol.

The geometry of wind turbine blades is quite complex, consisting of airfoil pro-
files varying largely along the spanwise direction. As a result, employing a scheme
that parameterizes the exact geometry of the blade and incorporating it within the
optimization process is not an easy task. Here, a volumetric NURBSmodel is used to
parameterize the space around the blade over and above of the blade itself [5]. This
model additionally undertakes mesh deformation, which would have to be carried
out by a different method if a direct surface parameterization model was used. The
main cost of the parameterization model is the computation of the B-Spline basis
functions and their derivatives, which are herein required for the objective function
gradient, according to the chain rule. In order to reduce this cost, their computation
is also carried out on the GPUs.

The aforementioned methods and the corresponding software is applied for the
shape optimization of the blades of a horizontal axis wind turbine.

2 Navier-Stokes, Adjoint Equations and Sensitivity
Derivatives

The flow model is based on the incompressible flow equations using the Spalart-
Allmaras turbulence model. The derivation of the adjoint equations along with the
discretization of the resulting equations follows.
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2.1 Flow (Primal) Equations

The flow equations used are the incompressible Navier-Stokes equations by applying
the pseudo-compressibility approach, [2]. In order to predict the flow around the
rotating blades in steady state, a multiple reference frame technique is used, where
the equations are solved in a moving frame for the absolute velocity components.
The flow equations read

RUn = ∂ f inv
nk

∂xk
− ∂ f vis

nk

∂xk
+ Sn = 0 (1)

where Un = [p υ A
1 υ A

2 υ A
3 ]T is the vector of the state variables, υ A

i , i = 1, 2, 3 are
the absolute velocity components and p is the pressure divided by the density. The
inviscid and viscous fluxes fnk and source terms Sn are given as

f inv
nk =

⎡
⎢⎢⎣

βυR
k

υR
k υ A

1 + pδ1k
υR
k υ A

2 + pδ2k
υR
k υ A

3 + pδ3k

⎤
⎥⎥⎦ , f vis

nk =

⎡
⎢⎢⎣

0
τ1k
τ2k
τ3k

⎤
⎥⎥⎦ , Sn =

⎡
⎢⎢⎣

0
ε1mkωmυ A

k
ε2mkωmυ A

k
ε3mkωmυ A

k

⎤
⎥⎥⎦ (2)

with ω the blade rotational velocity and the stresses are

τmk = (ν + νt )

(
∂υ A

m

∂xk
+ ∂υ A

k

∂xm

)

where ν and νt stand for the kinematic and turbulent viscosity. In Eq.2, υR
i denote the

relative velocity components. The absolute and relative velocity vectors are linked
through υ A

i = υR
i − υF

i , with υF
i = εi jkω j dk and dk = xk − xCk are the components

of the position vector from the origin (xCk ) which lies on the rotation axis.
Equations1 are solved together with the Spalart-Allmaras turbulence model PDE

(Rν̃ = 0, [9]) according to a segregated time-marching scheme.

2.2 Continuous Adjoint Formulation

For the wind turbine application under consideration, the objective function F is the
power output of the turbine blading for constant rotational velocity. Its maximization
is, in fact, equivalent to that of the torque w.r.t. the axis of the wind turbine shaft. If rk
denotes the components of the unit vector aligned with the shaft, F can be expressed
as

F =
∫
SBlade

εklm
(
xl − xCl

) (
pnm − τmqnq

)
rkdS (3)
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where SBlade denotes the blade surface. In Eq.3, nq are the components of the unit
vector normal to the blade surface, pointing towards the blade.

By introducing the adjoint mean-flow variables Ψn (n = 1, . . . , 4) and the adjoint
turbulent variable ν̃a , the augmented objective function is defined as

Faug = F +
∫

�

Ψn RUnd� +
∫

�

ν̃a Rν̃d� (4)

Upon convergence of the primal equations, Faug is equal to F . To compute the
variations of Faug w.r.t. the design variables bi , we start by differentiating Eq.4,
which yields

δFaug
δbi

= δF

δbi
+ δ

δbi

∫
�

Ψn RUnd� + δ

δbi

∫
�

ν̃a Rν̃d� (5)

By developing and eliminating the integrals including the variations in the flow
quantities w.r.t. bi , the field adjoint equations and their boundary conditions arise.
The remaining integrals form the expression of the gradient of F w.r.t. bi . The field
adjoint equations read

RΨn = − Amnk
∂Ψm

∂xk︸ ︷︷ ︸
Conv(Ψ )

− ∂φvis
nk

∂xk︸ ︷︷ ︸
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+ T ad j
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= 0 (6)

with

Anmk =

⎡
⎢⎢⎣

0 βδ1k βδ2k βδ3k
δ1k υR

1 + υ A
1 δ1k υ A

1 δ2k υ A
1 δ3k

δ2k υ A
2 δ1k υR

2 + υ A
2 δ2k υ A

2 δ3k
δ3k υ A

3 δ1k υ A
3 δ2k υR

3 + υ A
3 δ3k

⎤
⎥⎥⎦

San =

⎡
⎢⎢⎣

0
ε1mkωmΨk+1

ε2mkωmΨk+1

ε3mkωmΨk+1

⎤
⎥⎥⎦ φvis

nk =

⎡
⎢⎢⎣

0
τ a
1k

τ a
2k

τ a
3k

⎤
⎥⎥⎦

where δi j is the Kronecker’s symbol and

τ a
mk = (ν + νt )

(
∂Ψm+1

∂xk
+ ∂Ψk+1

∂xm

)
(7)

are the adjoint stresses.
In Eq.6, the terms marked as Conv(Ψ ) and Di f f (Ψ ) correspond to the adjoint

convection and diffusion respectively, Source1(Ψ ) corresponds to the adjoint source
terms resulting from the frame rotation and Source2(ν̃a) includes the contribution of
the adjoint turbulence model to the adjoint mean–flow equations. The derivation of
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the adjoint turbulencemodel equation can be found in a previous work [10] published
from the same group and will not be repeated here.

After solving the primal and adjoint equations, δF
δbi can be computed once the

geometric sensitivities δxl
δbi

and ∂
∂xk

(
δxl
δbi

)
at the mesh nodes become available. The

final expression of the sensitivity derivatives (gradF) reads

δF

δbi
=

∫
SBlade

εklm pnmrk
δxl
δbi

dS +
∫
SBlade

εklm
(
xl − xCl

)
prk

δ

δbi
(nmdS)−

∫
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εklmτmqnqrk
δxl
δbi

dS −
∫
SBlade

εklm
(
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)
τmqrk

δ

δbi
(nmdS)+

T MF + T SA (8)

where the terms T MF and T SA correspond to the differentiation of the flow equations
and the turbulence model respectively. These terms are herein omitted in the interest
of space. The reader may find them in [10] and this is irrelevant to the objective
function used.

2.3 Discretization and Numerical Solution

The primal and adjoint equations are discretized on hybrid meshes (consisting of
tetrahedra, pyramids, prisms or hexahedra) using the vertex-centered finite volume
method and solved using a time-marching scheme. The numerical fluxes crossing
the finite volume interfaces are computed with second-order accuracy. The primal
inviscid numerical flux crossing the interface between nodes P and Q reads

Φ PQ = 1

2

(
f inv,P
nk + f inv,Q

nk

)
nPQ
k − 1

2

∣∣∣APQ
nmknk

∣∣∣ (UR
m −UL

m

)

where nPQ
k are the components of the unit vector normal to the finite volume interface

between nodes P and Q and pointing to node Q and the Jacobian A
PQ

is computed
based on the Roe-averaged [7] flow variables. UR and UL are flow variables on the
right and left sides of the finite volume interface, obtained by extrapolating UQ and
U P , respectively.

On the other side, the adjoint inviscid numerical fluxes are computed using a
non-conservative scheme
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For the viscous fluxes, the derivatives of any primal flow or adjoint quantity W
on the finite volumes interface (between nodes P and Q) are computed as

(
∂W

∂xk

)PQ

=
(

∂W

∂xk

)
−

⎡
⎣

(
∂W

∂xm

)
t PQ
m − WQ − WP

√
(xQ

m − x P
m )2

⎤
⎦ t PQ

k (9)

where

t PQ
m = xQ

m − x P
m√

(xQ
m − x P

m )2
,

(
∂W

∂xk

)
= 1

2

[(
∂W

∂xk

)P

+
(

∂W

∂xk

)Q
]

The discretized equations are linearized and solved iteratively w.r.t. the correction
of the primal/adjoint variables using a point-implicit Jacobi method.

3 Parameterization Through Volumetric NURBS

Volumetric NURBS are rational trivariate (in 3D) B-Splines defined on non-uniform
knot vectors, used to parameterize the volume around the blade. Let (ξ, η, ζ ) be the
three parametric directions and Xi jk

m and wi jk the (i jk)th control point coordinates
and weight. Given the parametric coordinates of a point as well as the knot vectors
and control points coordinates/weights, its physical coordinates xm(m = 1, 2, 3) can
be computed as

xm(ξ, η, ζ ) =

Nξ∑
i

Nη∑
j

Nζ∑
k

Ξi,pξ
(ξ )Hj,pη

(η)Zk,pζ
(ζ )Xi jk

m wi jk

Nξ∑
i

Nη∑
j

Nζ∑
k

Ξi,pξ
(ξ )Hj,pη

(η)Zk,pζ
(ζ )wi jk

(10)

where, Ξi,pξ
is the i th B-Spline basis function of degree pξ defined on the knot

vector Kξ = {ξ0, . . . , ξmξ
} (Hj,pη

and Zk,pζ
are defined similarly), Nξ is the number

of control points in the ξ direction and it must hold that mξ = Nξ + pξ + 1 [6].
Knots must be arranged in non-decreasing order.

Specifying the control points, weights and knot vectors, a point inversion, via
the Newton-Raphson method, is used to compute the parametric coordinates of the
mesh nodes. The so-computed parametric coordinates as well as the knot vectors
remain fixed during the optimization. All variations in geometric quantities, such as
δxl
δbi

and ∂
∂xk

(
δxl
δbi

)
, involved in the computation of gradF are given by closed-form

expressions resulting from the differentiation of Eq.10.
During the optimization loop, the control point coordinates and weights are

updated and Eq.10 is used to deform the computational mesh and blade shape.
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4 Implementation on GPUs

Nowadays, GPUs have become powerful parallel co-processors to CPUs, offering
more than one order ofmagnitudemore floating point operations per second (FLOPS)
with lower memory latency compared to modern CPUs.

Although the GPU hardware capabilities are superior to the CPU ones, directly
porting a CPU code on a GPU does not necessarily yields the desired high speed-ups,
due to different architecture features. TheNavier-Stokes/adjoint equations solver this
paper makes use of, efficiently exploits the high computing capabilities that mod-
ern GPUs have, running on a GPU at least 50 times faster than the equivalent CPU
solver. Such a high parallel efficiency mainly results from (a) the use of Mixed Pre-
cision Arithmetics (MPA), which allows the l.h.s. matrices to be computed using
double-precision and stored using single-precision arithmetics [4], without harm-
ing the accuracy of the solver and (b) the minimization of random accesses to the
relatively high latency device memory by concurrently running threads.

For maximum speed-up, the primal and adjoint solvers employ different algorith-
mic techniques for the computation of the nodal residuals and l.h.s. coefficients. In
previous work by the authors [1], it is shown that, when processing large amount of
data on a GPU, minimizing memory usage and non-coalesced memory accesses is
more important than minimizing the number of (rather redundant) re-computations
of the same quantity. Thus, the primal solver, in which the memory consuming Jaco-
bians per finite volume interface need to be computed for the l.h.s. coefficients at
each pseudo-iteration, uses a one-kernel scheme. According to this scheme, a single
kernel is launched, associating each GPU thread with a mesh node. Each thread com-
putes and accumulates the numerical fluxes crossing all boundaries of this node’s
finite volume and their Jacobians and, thus, forms residuals and l.h.s. coefficients.
On the contrary, the l.h.s. coefficients in the adjoint system of equations depend only
on the primal solution, the Jacobians are computed once, before the iterative solution
of the adjoint equations. Thus, the adjoint solver employs a two-kernel scheme in
which the less memory consuming adjoint numerical fluxes are computed by the first
kernel (GPU threads associated with finite volume interfaces) and accumulated by
the second kernel (GPU threads associated with mesh nodes).

The primal/adjoint solvers run on a cluster of GPUs. In order to run a case in many
GPUs, the mesh is partitioned in overlapped sub-domains and each sub-domain is
associatedwith oneGPU.For instance, Fig. 1 (left) shows a triangularmesh generated
around an isolated airfoil partitioned in three overlapped sub-domains. The shared
regions of the mesh sub-domains are marked in white in Fig. 1. The whole mesh (i.e.
including the overlapped regions) of the 3rd sub-domain, with the boundaries shared
with sub-domains 1, 2, can be seen in Fig. 1 (right). To further reduce the wall-clock
time, computations and data transfers overlap. For instance, when computing the
primal/adjoint spatial gradients, each GPU associated with a sub-domain performs
the same sequence of steps. As an example, the GPU associated with the 3rd sub-
domain performs the following steps:
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Fig. 1 Mesh with triangular elements around an isolated airfoil partitioned in three overlapped
subdomains

Step A: Launches a kernel only for the computation of the gradients at the interface
nodes with sub-domains 1 and 2 (i.e. nodes lying on the blue and red lines
of Fig. 1 (right)).

Step B: Performs the data interchange between the sub-domains (assigned to differ-
ent GPUs).

Step C: Launches a kernel for the computation of the gradients at the remaining
nodes of the sub-domain.

Steps A, B are performed simultaneously with step C so that computations and data
transfers overlap. Data transfers among GPUs on different computational nodes use
the MPI protocol. The communication of GPUs on the same node is performed
through the shared (on-node) CPU memory.

The computations of the parametric coordinates of the mesh nodes and the objec-
tive function gradients,which are computationally intensive andmemory demanding,
also run on GPUs. Since δxl

δbi
, which is needed for δF

δbi
, are geometric quantities inde-

pendent of the primal/adjoint solution, they could be computed and stored just once.
However, the memory needed for storing δxl

δbi
often exceeds that required for the solu-

tion of the primal and adjoint equations. Hence, their storage is avoided and they are
re-computed at the end of each optimization cycle using pre-allocated GPUmemory.

The optimization flowchart is shown in Fig. 2. Steps performed exclusively on
CPU or GPU are clearly marked. Expensive processes associated with the compu-
tation/update of the mesh geometrical data, such as computing node distances from
the nearest wall, are performed on the GPU, while others such as computing the cells
volumes are performed at the same time on the CPU. Thus, all available computing
resources are exploited and the wall clock time needed to perform these tasks is
reduced.
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Fig. 2 Flowchart demonstrating the optimization algorithm steps. Steps performed on the CPU
and GPU are distinguished

Fig. 3 Parameterization of theHAWTblade and the surroundingmesh through volumetricNURBS.
Control points in red color are kept fixed during the optimization to ensure G0 continuity with the
surrounding undeformed/unparameterized mesh. The green control points are allowed to move
during the optimization
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Fig. 4 Optimization
convergence history. On the
vertical axis, the objective
function (power output to be
maximized) is divided by the
value this function takes on
for the starting blade
geometry
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Fig. 5 Comparison of the
optimized blade profile
(solid/red line) with the
starting (dashed/blue) at 35,
60 and 82% (from bottom to
top) of the wind turbine
blade span

5 Optimization of the Wind Turbine Blade

The developed software described in the previous sections, was used for the shape
optimization of the MEXICO [8] horizontal axis wind turbine (HAWT) blade for
maximum power output, when operating at 10m

s farfield velocity and 0◦ yaw angle.
For the parameterization of the blade, a 11 × 5 × 7 NURBS control volume is used,
as shown in Fig. 3. All boundary control points are kept fixed in order to ensure G0

continuity while the remaining ones are allowed to move along the z axis (Fig. 3)
leading to 135 (9 × 3 × 5) design variables in total. The computational mesh consists
of about 2.5 × 106 nodes and both the primal and adjoint solvers run on 4 NVIDIA
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Fig. 6 Comparison of the
pressure coefficient for the
starting (blue triangles) and
the optimized blade (red
circles), along with the
available experimental data
(black squares) on the
starting geometry, [8] at 35,
60 and 82% (from bottom to
top) of the wind turbine
blade span. The pressure
coefficient is defined as
cp = p−p f ar

1
2 (V 2

f ar+ω2R2)
, with R

the local radius and f ar
indexing farfield flow
quantities
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Fig. 7 Relative velocity streamlines (coloured based on the relative velocity magnitude) in the tip
vortex region

Fig. 8 Axial velocity (left) and turbulent viscosity (right) in a transversal slice through the wind
turbine origin. The velocity values are normalized with respect to the farfield velocity magnitude
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Kepler K20 GPUs, lying on two different nodes. On this platform each optimization
cycle needs less than 2 h, 1 h for the solution of the primal and 45min for the adjoint
equations to fully converge. The convergence history of the optimization is shown
in Fig. 4. The optimized blade yields 3% increased torque compared to the reference
blade. The improvement is minor due to the degrees of freedom used, i.e. the NURBS
control points were allowed to move only in the z direction.

Since the differences between the optimized and the reference blade are not visible
in a 3D surface comparison, the blade profiles at three spanwise positions of the blade
are compared instead (Fig. 5).

Figure6 presents the comparison of the chordwise distribution of the pressure
coefficient for the starting and the optimized blade, along with the experimental
results (from [8]) for the same spanwise positions. It is clear fromFig. 5 that the shape
of the blade airfoil changes significantly in the lower part of the blade. However, in
Fig. 6, it is shown that the difference in blade loading between the reference and the
optimized geometry is larger close to the tip, since this region has amajor contribution
in the torque generation. The relative velocity streamlines in the tip vortex region are
plotted in Fig. 7.

Figure8 shows the axial velocity and turbulent viscosity in a transversal slice
through the wind turbine origin.

6 Conclusions

This paper presented the development and use of the continuous adjoint method for
the shape optimization of a HAWT blade for maximum torque. Since wind turbine
blades are complex geometries, parameterization was based on volumetric NURBS
method, which also contributes to the mesh deformation at each optimization cycle.
In order to reduce the optimization turnaround time, the solution of both the flow
and the adjoint equations is carried out on 4 Nvidia Tesla K20 GPUs. In particular,
each optimization cycle requires approximately 1 h for the primal and 45min for the
adjoint equations solution.
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Aerodynamic Shape Optimization
Using the Adjoint-Based Truncated
Newton Method

Evangelos M. Papoutsis-Kiachagias, Mehdi Ghavami Nejad
and Kyriakos C. Giannakoglou

Abstract This paper presents the development and application of the truncatedNew-
ton (TN) method in aerodynamic shape optimization problems. The development is
made for problems governed by the laminar flow equations of incompressible fluids.
Themethodwas developed inOpenFOAM©with the aim to stress its advantages over
standard gradient-based optimization algorithms. The Newton equations are solved
using the Conjugate Gradient (CG) method which requires the computation of the
product of the Hessian of the objective function and a vector, escaping thus the need
for computing the Hessian itself. The latter has a computational cost that scales with
the number of design variables and becomes unaffordable in large-scale problems
with many design variables. A combination of the continuous adjoint method and
direct differentiation is used to compute all Hessian-vector products. A grid displace-
ment PDE (Laplace equation) is also used to compute the necessary derivatives of
grid displacements w.r.t. the design variables. The programmed method is used to
optimize the sidewall shapes of 2D ducts for minimum total pressure losses.

1 Introduction to the Truncated Newton Method

An unconstrained optimization problem, in which the target is to minimize the objec-
tive function F by controlling the design variables bi , i = 1, . . . , N can be solved by
means of the Newton method, according to which the design variables are updated
as follows
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bn+1
i = bni + δbi (1a)

δ2F

δbiδb j

n

δb j = − δF

δbi

n

(1b)

where n is the Newton iteration counter, to be omitted hereafter. The direct solution
of Eq.1b requires the computation of the Hessian of F, with computational cost that
scales with N .

Considering Eq.1b as a linear system of equations of the form Ax = q, a possible
way to solve it is through the Conjugate Gradient (CG) method, which is schemati-
cally given in Algorithm 1.

Algorithm 1 : The CG Method for the Solution of Ax = q
m ← 0
x ← init()
rm ← Ax − q; s ← −rm

while rm �= 0, (CG Iterations) do

η ← (rm )T rm

sT As
x ← x + ηs
rm+1 ← rm + ηAs

β ← (rm+1)T rm+1

(rm )T rm

s ← −rm+1 + βs
m ← m + 1

end while

Based on Algorithm 1, the cost of each CG iteration is dominated by the cost
of computing the matrix–vector product (As). In the so–called truncated variant
(Truncated Newton, TN, [3]), the stopping criterion in Algorithm 1 becomes m ≤
MCG , where MCG is a user-defined small integer (to be used instead of rm �= 0).
Regarding Eq.1b, since the Hessian matrix stands for A, the use of the TN method
in aerodynamic shape optimization problems means that the Hessian matrix itself is
no more needed and only its product with a vector must be computed. On the other
hand, the gradient of F must be available and the (continuous) adjoint method, [4],
can be used for this. Its major advantage is its ability to compute the exact gradient
of any function, at CPU cost which is independent of N .

2 The Continuous Adjoint Method for the Computation of
δF
δbi

The continuous adjoint method, [4], starts by differentiating the objective function
F augmented by the field integral of the flow equations multiplied by the so–called
adjoint fields, in order to derive the adjoint PDEs. The latter are, then, discretized and
numerically solved to compute the adjoint fields. The gradient of F is expressed in the
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form of field or boundary integrals of quantities involving the previously computed
flow and adjoint fields.

Let us assume a 2D laminar flow of an incompressible fluid governed by the
continuity (Rp = 0) and the momentum (Rv

i = 0) equations, where

Rp = − ∂v j
∂x j

(2)

Rv
i = v j

∂vi
∂x j

− ∂τi j

∂x j
+ ∂p

∂xi
, i = 1, 2 (3)

Here, vi are the velocity components, p the static pressure divided by the constant

density, τi j = ν
(

∂vi
∂x j

+ ∂v j
∂xi

)
the stress tensor and ν the constant viscosity.

Without loss in generality, let us assume that the objective function F to be
minimized is the volume-averaged total pressure losses (for the flow inside a duct;
internal aerodynamics), namely

F =
∫

SI,O

FS,i ni dS, FS,i = −
(
p + 1

2
v2k

)
vi (4)

where S = SI ∪ SO ∪ SW is the domain boundary with SI being the inlet, SO the
outlet and SW the wall boundary and n the outward unit normal vector on the surface.
Recall that, for any flow quantity Φ, the total derivative δΦ/δbn , which represents
the total change in Φ caused by variations in bn , is

δΦ

δbn
= ∂Φ

∂bn
+ ∂Φ

∂xk

δxk
δbn

(5)

In Eq.5, the partial derivative ∂Φ/∂bn represents only the variation in Φ caused
due to changes in the design and flow variables, without considering space deforma-
tions.

Then, the differentiation of F w.r.t. bn gives

δF

δbn
=

∫

S

∂FS,i

∂bn
nidS +

∫

S

∂FS,i

∂xk

δxk
δbn

nidS +
∫

S
FS,i

δ (nidS)

δbn
(6)

The development of the augmented objective function

Faug = F +
∫

Ω

ui R
v
i dΩ +

∫

Ω

qRpdΩ (7)

leads to the adjoint continuity (Rq = 0) and adjoint momentum (Ru
i = 0) equations,
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Rq = −∂u j

∂x j
(8)

Ru
i = u j

∂v j
∂xi

− ∂
(
uiv j

)

∂x j
− ∂τ a

i j

∂x j
+ ∂q

∂xi
, i = 1, 2 (9)

where τ a
i j = ν

(
∂ui
∂x j

+ ∂u j

∂xi

)
is the adjoint stress tensor. By satisfying Eqs. 8 and 9,

all field integrals in δFaug/δbn which depend on δvi/δbn and δp/δbn are eliminated.
The adjoint boundary conditions are derived by eliminating the total derivatives of
the flow variables along the boundaries, while also considering the flow boundary
conditions. In this paper, wewill refrain from further developing the adjoint boundary
conditions, see [4].

After satisfying the adjoint PDEs, Eqs. 8 and 9, the expression for the gradient of
F is

δF

δbn
=

∫

Ω

A jk
∂

∂x j

(
δxk
δbn

)
dΩ (10)

where

A jk = −uiv j
∂vi
∂xk

− u j
∂p

∂xk
− τ a

i j

∂vi
∂xk

+ ui
∂τi j

∂xk
+ q

∂v j
∂xk

(11)

3 Computation of Hessian(F)–Vector Products

As explained in Sect. 1, the TN method requires the computation of δ2F
δbnδbm

sm , where
sm might be the components of any vector.

Let us use overbar to denote the product of the total gradient δΦ
δbm

of any quantity
Φ and sm , namely

Φ = δΦ

δbm
sm (12)

It can be proved that

∂Φ

∂x j
= δ

δbm

(
∂Φ

∂x j

)
sm = ∂Φ

∂x j
− ∂Φ

∂xk

∂xk
∂x j

(13)

Also, for any pair of Φ and Ψ ,

δ

δbm

(
Ψ

∂Φ

∂x j

)
sm = Ψ

∂Φ

∂x j
+ Ψ

∂Φ

∂x j
− Ψ

∂Φ

∂xk

∂xk
∂x j

(14)

Based on the above, it is a matter of mathematical development to show that
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δ2F

δbnδbm
sm =

∫

Ω

A jk
∂

∂x j

(
δxk
δbn

)
dΩ +

∫

Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk
δbn

)]
smdΩ

+
∫

Ω

A jk
∂

∂x j

(
δxk
δbn

)
sm

δ(dΩ)

δbm
(15)

where

A jk = − uiv j
∂vi
∂xk

− uiv j
∂vi
∂xk

− uiv j
∂vi
∂xk

+ uiv j
∂vi
∂xλ

∂xλ

∂xk
− u j

∂p

∂xk
− u j

∂ p

∂xk

+ u j
∂p

∂xλ

∂xλ

∂xk
− ν

(
∂ui
∂x j

+ ∂u j

∂xi

)
∂vi
∂xk

+ ν

(
∂ui
∂xλ

∂xλ

∂x j
+ ∂u j

∂xλ

∂xλ

∂xi

)
∂vi
∂xk

− ν

(
∂ui
∂x j

+ ∂u j

∂xi

)
∂vi
∂xk

+ ν

(
∂ui
∂x j

+ ∂u j

∂xi

)
∂vi
∂xλ

∂xλ

∂xk

+ ui
∂

∂xk

[
ν

(
∂vi
∂x j

+ ∂v j
∂xi

)]
+ ui

∂

∂xk

[
ν

(
∂vi
∂x j

+ ∂v j
∂xi

)]

− ui
∂

∂xk

[
ν

(
∂vi
∂xλ

∂xλ

∂x j
+ ∂v j

∂xλ

∂xλ

∂xi

)]
− ui

∂

∂xλ

[
ν

(
∂vi
∂x j

+ ∂v j
∂xi

)]
∂xλ

∂xk

+ q
∂v j
∂xk

+ q
∂v j
∂xk

− q
∂v j
∂xλ

∂xλ

∂xk
(16)

and, [2],
δ(dΩ)

δbm
sm = ∂

∂xλ

(
δxλ

δbm
sm

)
dΩ = ∂xλ

∂xλ

dΩ (17)

since xλ = δxλ

δbm
. By denoting

xk,n = δ2xk
δbnδbm

sn (18)

it can be proved that

∫

Ω
A jk

δ

δbm

[
∂

∂x j

(
δxk
δbn

)]
smdΩ =

∫

Ω
A jk

∂xk,n
∂x j

dΩ −
∫

Ω
A jk

∂

∂xλ

(
δxk
δbn

)
∂xλ
∂x j

dΩ

(19)

4 Computation of vi and p

Computing vi and p is straightforward and can be done by formulating the product
of the direct differentiation (DD, i.e. derivation w.r.t. bn) of the flow equations and
sm . It is



150 E. M. Papoutsis-Kiachagias et al.

Rp = δRp

δbm
sm = 0 , Rv

i = δRv
i

δbm
sm = 0 (20)

where

Rp = ∂v j
∂x j

− ∂v j
∂xk

∂xk
∂x j

(21)

and

Rv
i =∂(vi v j )

∂x j
+ ∂(vi v j )

∂x j
− ∂

∂x j

[
ν

(
∂vi
∂x j

+ ∂v j
∂xi

)]
+ ∂ p

∂xi

− ∂(vi v j )

∂xk

∂xk
∂x j

+ ∂

∂x j

[
ν

(
∂vi
∂xk

∂xk
∂x j

+ ∂v j
∂xk

∂xk
∂xi

)]

+ ∂

∂xk

[
ν

(
∂vi
∂x j

+ ∂v j
∂xi

)]
∂xk
∂x j

− ∂p

∂xk

∂xk
∂xi

(22)

5 Computation of ui and q

Similarly, the product of the DD of the adjoint equations and sm yields

Rq = δRq

δbm
sm = 0 , Ru

i = δRu
i

δbm
sm = 0 (23)

where

Rq = ∂u j

∂x j
− ∂u j

∂xk

∂xk
∂x j

(24)

and

Ru
i =u j

∂v j
∂xi

+ u j
∂v j
∂xi

− ∂(uiv j )

∂x j
− ∂(uiv j )

∂x j

− ∂

∂x j

[
ν

(
∂ui
∂x j

+ ∂u j

∂xi

)]
+ ∂q

∂xi
− u j

∂v j
∂xk

∂xk
∂xi

+ ∂(v jui )

∂xk

∂xk
∂x j

+ ∂

∂x j

[
ν

(
∂ui
∂xk

∂xk
∂x j

+ ∂u j

∂xk

∂xk
∂xi

)]

+ ∂

∂xk

[
ν

(
∂ui
∂x j

+ ∂u j

∂xi

)]
∂xk
∂x j

− ∂q

∂xk

∂xk
∂xi

(25)
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6 Computation of xk and xk,n

In aerodynamic shape optimization problems, a widely used grid displacement
model, i.e. a mathematical model that propagates variations in the boundary shape
to the internal computational nodes, is based on the Laplace equation with Dirichlet
boundary conditions. Written for the derivatives of the grid coordinates XK w.r.t. the
design variables, it takes the form

Rx
i = ∂2

∂x2j

(
δxk
δbn

)
= 0 (26)

from which it can readily be deduced that

∂2xk
∂x2j

= 0 (27)

It can also be proved that

∂2xk,n
∂x2j

= 2
∂2

∂x j∂xλ

(
δxk
δbm

)
∂xλ

∂x j
(28)

which can numerically be solved to compute xk,n with appropriate boundary condi-
tions depending also on the adopted parametrization model.

7 The TN Algorithm—Comments on the CPU Cost

Using Eqs. 17–19, Eq.15 can be written as

δ2F

δbnδbm
sm =

∫

Ω

[
A jk + A jk

∂xλ

∂xλ

− Aλk
∂x j

∂xλ

]
∂

∂x j

(
δxk
δbn

)
dΩ

+
∫

Ω

A jk
∂xk,n
∂x j

dΩ (29)

where A jk is given by Eq.16. To compute A jk , apart from the flow and adjoint fields,
the “overbar” fields (vi , ui , p, q, as well as xi and their spatial derivatives) must be
available.

So, in each Newton cycle, the numerical solution of Rp = 0 and Rv
i = 0 (where

Rp and Rv
i are given by Eqs. 2 and 3) yields the flow fields (p, vi ). The solution of

Rq = 0 and Ru
i = 0 (where Rq and Ru

i are given by Eqs. 8 and 9) yields the adjoint
fields (q, ui ). So, far, the computational cost is approximately equal to that of twice
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solving the flow equations or 2 EFS (EFS stands for Equivalent Flow Solutions, i.e.
a way to measure computational cost).

Before solving for p and vi , xk must be computed by solving Eq.27 at the cost of
1 GDS (GDS stands for Grid Displacement Solutions, i.e.the cost of solving the grid
displacement PDE or any of the PDEs that result from its differentiation). It should
be mentioned that the cost of 1 GDS is significantly lower than the cost of 1 EFS.
Equation27 has to be solved once per CG iteration, contributing a total cost of MCG

GDS per optimization cycle.
Computing p and vi requires the numerical solution of Eqs. 20 (considering also

Eqs. 21 and 22). Similarly, to compute q and ui requires the numerical solution
of Eqs. 23 (considering also Eqs. 24 and 25). Both systems of equations should be
performed within the CG loop (i.e. MCG times) and contribute 2MCG EFS to the
overall cost of a Newton iteration or cycle.

Within each CG iteration, the computation of A jk also requires the availability of
the δxk/δbn and xk,n fields. To this end, Eqs. 26 and 28must be solved for n ∈ [1, N ].
This results to 2MCGN GDS per optimization cycle.

Based on the above, the overall CPU cost per Newton iteration is equal to 2 +
2MCG EFS and 1 + 2MCGN GDS. However, since the cost of a GDS is significantly
lower than that of an EFS, the GDS part can be considered negligible for a moderate
number of design variables. This leads to a cost per Newton cycle that is independent
of the number of design variables N .

8 Applications

In this section, two applications of the developed TN optimization algorithm are
presented.

The first one deals with the shape optimization of an S-bend duct. The flow is
laminar with a Reynolds number of Re = 785 based on the inlet height and a mesh
consisting of 27, 500 quadrilaterals is used. Each of the upper and lower sides are

Fig. 1 S-bend duct
optimization: dust shape and
the Bézier–Bernstein control
points parameterizing it.
Axes not in scale. Control
points depicted with a dark
cycle remain fixed during the
optimization
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Fig. 2 S-bend duct optimization: Convergence of the steepest descent (SD), Conjugate Gradient
(CG) and Truncated Newton (TN) optimization algorithms, w.r.t. optimization cycles (a) and EFS
(b)

Fig. 3 S-bendduct optimization:Velocitymagnitude for the initial (a) and optimized (b) geometries
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parameterized using 9 Bézier–Bernstein control points, Fig. 1. The first and last two
control points per side are kept fixed while the x and y coordinates of the rest are
allowed to vary, giving rise to a total of 20 design variables. In Fig. 2, the convergence
history of the developed TN algorithm is compared to those of steepest descent (SD)
and the Fletcher-Rives Conjugate Gradient (CG), [1], method. Both the iterations
required to reach a minimum and the corresponding EFS are compared. In addition,
an investigation of the effect of the MCG number can be seen in the same figures. It
can be observed that TN outperforms SD and CG, since it computes the optimized
duct shape using less optimization cycles and, especially, by requiring less EFS. In
addition, it can be seen that even though increasing the MCG number reduces the
number of optimization cycles required to reach the minimum, there is no obvious
gain from the EFS point of view. In Fig. 3, the flow velocity magnitude in the initial
and optimized ducts is presented.

The second case is concerned with the optimization of a divergent duct. The flow
Reynolds number is Re = 475 and amesh consisting of 20000 quadrilaterals is used.
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Fig. 4 Divergent duct optimization: dust shape and the Bézier–Bernstein control points parame-
terizing it. Axes not in scale. Control points depicted with a dark cycle remain fixed during the
optimization

Fig. 5 Divergent duct optimization: Velocitymagnitude for the initial (a) and optimized (b) geome-
tries
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Fig. 6 Divergent duct
optimization: Convergence
of the steepest descent (SD),
Conjugate Gradient (CG)
and Truncated Newton (TN)
optimization algorithms,
w.r.t. optimization cycles (a)
and EFS (b)
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The initial and optimized geometries along with the Bézier–Bernstein control points
used to parameterize the duct shape are depicted in Fig. 4. In Fig. 5, the flow velocity
magnitude in the initial and optimized ducts is presented. In Fig. 6, the convergence
history of the TN, SD and CG are illustrated. In this case as well, TN outperforms
SD and CG from the optimization cycles point of view; regarding EFS, TN and CG
compute the optimal solution almost at the same cost. Increasing MCG has the same
effect as in the first case, i.e. the optimized geometry is computed in less optimization
cycles but without a significant advantage in CPU cost. This seems to indicate that,
at least for the cases studied, a low MCG number should be chosen.

9 Conclusions

A Truncated Newton method for computing an approximation to the second-order
correction of the design variables by iteratively solvingNewton’s equation usingCon-
jugate Gradient was presented. The method built on previous work of the authors for
Euler flows and extended the mathematical background for incompressible, laminar
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flows. The proposed Truncated Newton method computes the required Hessian-
vector products by utilizing a combination of (continuous) adjoint and direct dif-
ferentiation. The cost per optimization cycle is approximately equal to 2 + 2MCG

equivalent flow solutions, where MCG is the number of CG iterations used to approx-
imate the solution of Newton’s equation; this cost is practically independent of the
design variables number. In the two applications presented, each with a moderate
number of design variables, it was shown that Truncated Newton outperforms other
optimization methods in terms of optimization cycles and is, at least, as fast as Con-
jugate Gradient in terms of CPU cost. A parametric study for MCG has also shown
that its value should remain as low as possible.
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Application of the Adjoint Method
for the Reconstruction of the Boundary
Condition in Unsteady Shallow Water
Flow Simulation

Asier Lacasta, Daniel Caviedes-Voullieme and Pilar García-Navarro

Abstract Hydraulic phenomena in open-channel flows are usually described by
means of the shallowwater equations. This hyperbolic non-linear system can be used
for predictive purposes provided that initial and boundary conditions are supplied
and the roughness coefficient is calibrated. When calibration is required to fully
pose the problem, several strategies can be adopted. In the present work, an inverse
technique, useful for any of such purposes, based on the adjoint system and gradient
descent is presented. It is used to find the optimal time evolution of the inlet boundary
condition required to meet the 20 measured water depth data in an experimental test
case of unsteady flow on a beach. The partial differential systems are solved using
an upwind finite volume scheme. Several subsets of probes were selected and the
quality of the reconstructed boundary tested against the experimental results. The
results show that the adjoint technique is useful and robust for these problems, and
exhibits some sensitivity to the choice of probes, which can be used to properly select
probes in real applications.

1 Introduction

Shallow water equations (SWE) have been largely used for a wide range of appli-
cations related to hydraulic phenomena. Their ability to reproduce open-channel
flow, for instance, makes them a very useful tool for engineering purposes. Nonethe-
less, their non linearity difficults calibration and their use for inverse design is not
straightforward.
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In recent years, the application of adjoint equations as a technique for the control
of PDEs has turned to be a good option [4]. Its application for inverse design of
airfoil shapes in aeronautics is a good example of the capabilities of the technique.

The same ideamay be applied for hydraulic phenomena. In [3, 7] the development
of the adjoint formulation, as well as examples of application for control, were pre-
sented. Additionally, the application for calibration of the model can be found in [5].

In this work, the adjoint formulation of the one-dimensional SWE is applied to
recover a boundary condition required to reproduce a laboratory experimental case
of unsteady flow over a beach. In particular, there was no information related to the
discharge or velocity of the flow at the seaside boundary, which made it impossible
to accurately reproduce the experiment numerically. Therefore, the adjoint set of
equations in combination with a gradient-descent optimizer is used to rebuild the
boundary condition at the sea side.

2 Mathematical Model

The 1D shallow water equations are derived from the equations of conservation
of mass and momentum when averaged over a cross section. They form a 2× 2
hyperbolic system of equations, which, for an arbitrary channel with arbitrary cross
sections is

G1 : ∂A

∂t
+ ∂Q

∂x
= 0 (1)

G2 : ∂Q

∂t
+ ∂

∂x

(
Q2

A

)
+ ∂

∂x
(gI1) − g[I2 + A(S0 − S f )] = 0

being (A, Q) the conserved variables that representwetted area and discharge respec-
tively. The friction S f and bed slope S0 contributions are

S f = Q|Q|n2
A2R4/3

h

, S0 = − ∂z

∂x
(2)

where n is Manning’s roughness coefficient, Rh = is the hydraulic radius and z is
bed elevation and hydrostatic forces I1 and pressure forces I2:

I1(x) =
∫ h

0
(h − η)χ(x, η) dη = 1

2
h2 I2(x) =

∫ h

0
(h − η)

∂χ(x, η)

∂x
dη = 0

(3)
Herein, for simplicity, a prismatic and rectangular channel with unit width is

considered, so that the conserved variables (A, Q) are transformed into (h, q), i.e.,
water-level and unit discharge respectively. Moreover, under such conditions, I1 =
0.5h2 and I2 = 0.
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2.1 Adjoint System

Control may be defined as the minimization of some functional J, such as

J =
∫ T

0

∫ L

0
E (x, t; h, q)dxdt (4)

where, T is the maximum simulation time and L is the length of the channel. The
error metric E may be defined by considering Np measured water depths

E (h, q) = 1

Np

Np∑
i=1

(hi − hobj,i )
2 (5)

where hi is simulated water depth and hobj,i is measured water depth at position xi .
In order to obtain a suitable formulation to calculate sensitivities to, in turn perform

control, the adjoint system of (1) is developed. An augmented functional is defined as
J+ = J + PwherePmaybe obtained bymultiplying both,mass (G1) andmomentum
(G2) equations by their adjoint variables (σ1, σ2)

P =
∫ T

0

∫ L

0
σ1 (G1) + σ2 (G2) dxdt (6)

This expression can be integrated by parts leading to

P =
∫ T

0

∫ L

0
−h

∂σ1

∂t
dxdt +

∫ L

0
[σ1h]

∣∣∣∣
T

0
dx +

∫ T

0

∫ L

0
−q

∂σ1

∂x
dxdt +

∫ T

0
[σ1q]

∣∣∣∣
L

0
dt+

∫ T
0

∫ L
0 − ∂σ2

∂t
dxdt + ∫ L

0 [σ2q]
∣∣∣∣
T

0
dx + ∫ T

0

∫ L
0 −

(
q2

h
+ gh2

2

)
∂σ2

∂x
dxdt+

∫ T
0 [σ2

(
q2

h
+ gh2

2

)
]
∣∣∣∣
L

0
dt − ∫ T

0

∫ L
0 σ2gh(So − S f )dxdt

(7)

Assuming stationary condition of the optimal solutions for the augmented func-
tional δJ+ = δJ + δP = 0, the first variation δP of system P is formulated by taking
increments with respect to h and q. The variation δJ is also computed as

δJ =
∫ T

0

∫ L

0

(
∂E

∂h
δh + ∂E

∂q
δq

)
dxdt (8)

When the following system holds

−∂σ1

∂t
+

(
q2

h2
− gh

)
∂σ2

∂x
− gσ2(S0 − S f ) + gσ2h

∂S f

∂h
+ ∂E

∂h
= 0

−∂σ2

∂t
− ∂σ1

∂x
− 2

q

h

∂σ2

∂x
+ σ2gh

∂S f

∂q
+ ∂E

∂q
= 0

(9)
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and imposing initial conditions for δh, δq and final conditions σ1, σ2

σ1(x, T ) = 0, σ2(x, T ) = 0 , 0 < x < L (10)

δh(x, 0) = 0, δq(x, 0) = 0 , 0 < x < L

δJ can be written as

δJ =
∫ T

0

[
σ1δq + σ2

(
2q

h
δq −

(
q2

h2
− gh

)
δh

)]∣∣∣∣
L

0

dt (11)

which relates functional J with variations on the boundary condition q(0, t).
Depending on the variable to be controlled, boundary conditions are required to

be properly chosen. Further details about this can be found in Sect. 3.2. It is important
to note that domain (0, L) must always represent the wet domain.

2.2 Numerical Method

It is possible to write (1) in non-conservative form as

∂U
∂t

+ M
∂U
∂x

= S (12)

where,

U =
(
h
q

)
, M =

(
0 1

c2 − u2 2u

)
, S =

(
0

gh
(
S0 − S f

))
(13)

being u = q/h the velocity and c = √
gh the wave celerity. Additionally, it is pos-

sible to write (9) similarly as

− ∂Ψ

∂t
+ Γ

∂Ψ

∂x
= R (14)

where

Ψ =
(

σ1

σ2

)
,Γ =

(
0 u2 − c2

−1 −2u

)
,R =

⎛
⎜⎜⎝

−∂E

∂h
+ gσ2

[
S0 − S f − h

∂S f

∂h

]

−∂E

∂q
− ghσ2

∂S f

∂q

⎞
⎟⎟⎠
(15)

An explicit Euler scheme for time integration and a first order, upwind finite
volume scheme for the spatial integration are applied to both systems. In the case of
the physical system (1), a compact updating formula using an augmented Riemann
solver is achieved [6]
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Un+1
i = Un

i − Δt

Δx

(
2∑

m=1

(λ̃+γ ẽ)mi−1/2 +
2∑

m=1

(λ̃−γ ẽ)mi+1/2

)n

(16)

where λ̃, are the linearised eigenvalues, γ are the wave strengths, ẽ are the linearised
eigenvectors and ± represents the two sides of the interface on which the Riemann
problem is defined. In the case of the adjoint equations and regarding backward
temporal-integration [5], the backward scheme for the adjoint system follows

Ψ n
i = Ψ n+1

i + Δt

Δx

(
2∑

m=1

(λ̃+
Ψ γΨ ẽΨ )mi−1/2 +

2∑
m=1

(λ̃−
Ψ γΨ ẽΨ )mi+1/2

)n+1

(17)

Additional considerations as well as details of the numerical techniques used herein
are described in [5, 6].

3 Application

The application of the adjoint technique for inverse modeling is demonstrated, ana-
lyzed and validated in this work. In particular, themain interest lies on the reconstruc-
tion of a boundary condition necessary to adjust the simulated results to a particular
experiment considering that the boundary data is not available. This is of course
useful in cases such as the one in this work, in which laboratory data is incomplete
for the modeling application. But it is also useful in real scale, practical applications,
in which it is not uncommon to have scarce or incomplete information to construct
numerical boundary conditions. Sometimes, no reliable information is available at
all. It is easy to imagine a problem inwhich, for example, buoys located at sea are used
to record information which may be too close to the shore so that the collected data
is not appropriate for numerical boundaries. Or perhaps a buoy is lost because of sea
or weather conditions, or even technical malfunction. In such cases, in which other
measurements are available, an inverse technique can be a helpful tool to complete
the data required to properly pose the numerical problem.

3.1 Case Description

An experiment presented in [1, 2] is used as benchmark for the technique. The
experiment was concerned with the formation of waves on a laboratory channel with
a variable bathymetry and a rough surface. The flume is a a reduced model of a
typical coastal region. It consists of a prismatic channel, 250 m in length, with a bed
profile as shown in Fig. 1. Initially, water in the flume was motionless, with constant
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Fig. 1 Sketch of the initial configuration of the channel and probes position (•). In (●) are displayed
those probes that have been included in the functional for subset A and (●) for the subset B

water surface elevation of h + z = 4m. On the seaside boundary (x = 0) a mechanic
piston would move the water, thus generating waves.

As Fig. 1 shows, 20 probes recorded the water depth along the channel. These
probes are categorized into subsets which will be discussed later. However, no infor-
mation of water depth or discharge was recorded at x = 0. Indeed, discharge or
velocity measurements are not available for any point in the channel.

As previously noted, in real applications there is often a lack of information
at the boundaries of the problem. It is therefore interesting to test if an inverse
technique, such as the one presented here, can reconstruct the boundary conditions
so a given experimental data set canbeproperly reproducedbynumerical simulations.
Therefore, several numerical experiments were carried out to test the applicability
and usefulness of the proposedmethodology. In particular, the numerical experiments
allow to study the following questions:

(i) Is it possible to reconstruct the boundary from depth data using the adjoint
method?

(ii) Howdoes the choice –number and location– of probes included in the functional
J affect the quality of the reconstructed boundaries?

(iii) How well do numerical and experimental results match, at probe locations not
included in the optimization functional?

The numerical setup consists of a mesh with 500 cells uniformly distributed
(Δx ≈ 0.57m). This choice of mesh responds to the high numerical diffusivity that
has been observed in this test problem for coarser meshes. The chosen mesh has
been observed to perform properly, with low and acceptable numerical diffusion.
Although it is likely that there is a relevant impact on control results and on the
controllability of the problem, thoroghly studying such behaviour is out of the scope
of this work. For friction modeling, Manning’s coefficient was set to n = 0.013 to
account for surface roughness. Additionally, CFL = 0.9 was set for both the SWE
solver and the adjoint solver. Temporal resolution for the control (i.e., frequency at
which the boundary is constructed) is Δt = 0.25s leading to a representation of the
controlled function (the boundary condition) using 1000 points. On the other hand,
an initial condition of h + z(x) = 4.0m and q(x) = 0 is imposed. The initial guess
for the time-dependant boundary function was quiescent flow with h0(t) = 4m for
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Table 1 Subsets of probes for the numerical experiments

Set x1 x2 x3 x4

A1 79.05 102.09 126.22 180.00

A2 – – 126.22 180.00

A3 – – – 180.00

B1 61.3 97.3 126.22 210.00

B2 – – 126.22 210.00

B3 – – – 210.00

all the numerical experiments The optimization method was applied with an initial
step-size of ε0 = 1.

From the numerical point of view, under subcritical flow conditions, inlet dis-
charge or water depth are required as inlet boundary condition. Either can be recon-
structed using the adjoint variables properly.

As previously described, the experimental data reports 20 probes [2]. The control
method has been tested using two different subsets of these probes, summarized in
Table1. Subset A = {A1, A2, A3} which contains three combinations of probes p5,
p10, p13 and p16 and subset B = {B1, B2, B3} containing p3, p9, p13 and p18. Both
have p13 in common and subset A is a tighter grouping of the probes than B.

Regarding these subsets, the six different combinations detailed in Table1 lead
to six different functionals JA1 , JA2 , JA3 , JB1 , JB2 and JB3 . The first group for each
subset contains 4 probes, the second contains two and the last contains one probe,
which is the farthest probe for both subsets.

3.2 Numerical Optimization

The optimization has been defined as the minimization of the cost function (4) con-
sidering different subsets of Np probes (from the complete set of 20 probes) in the
functional J. Each probe in the subset is equally weighted (ω = 1) in the functional.
Therefore Eq. (4) using (5) becomes

J =
∫ T

0

Np∑
i=1

ω

Np
(h(t) − hobj )

2
i (18)

By using the functional (18) in combination with (11), the sensitivity with respect
to perturbations over q0(t) as well as over h0(t) can be evaluated. To recover h0, the
following boundary conditions are required.

Boundary conditions for (δh, δq)

δq(0, t) = 0, δq(L , t) = 0, δh(L , t) = 0 , 0 < t < T (19)
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allowing to define the sensitivity of the functional as follows

δJi = σ2

(
gh − q2

h2

)
δhi

∣∣∣∣
x=0,t=ti

(20)

Using (20), a discrete version of the gradient is defined as the sensitivity of the
functional with respect to the inlet boundary condition:

∇Ji = δJ
δh(0, ti )

= σ2

(
gh − q2

h2

)∣∣∣∣
x=0,t=ti

(21)

The gradient (21) is then introduced in the gradient-descent optimizer to obtain a
new set of values for the boundary condition.

h(0, t)m+1 = h(0, t)m − εm∇J (22)

There aremany gradient basedmethods tominimize functions. Indeed, these tech-
niques are not only based on the first variation but also on Hessian information. In [8]
a large description of them can be found. Nonetheless, the gradient-descent algorithm
is used because its simplicity. In Algorithm 1 a brief description is displayed.

Algorithm 1: Gradient descent method
Result: A new set of values for f closer to the solution that minimizes J
input : f 0, ε, tol Xmax , tol Xmax , i termax

output: f n

nIter=0;
while ni ≤ i termax do

f n+1 ← f n − εn∇J;
if ||∇J( f n+1)|| ≤ tolmax then

/* converged on critical point */
return;

else
if || f n+1 − f n|| ≤ tol Xmax then

/* converged on an f value */
return;

else
if J( f n) < J( f n+1) then

/* It has diverged */
εn+1 = 0.5εn;

else
εn+1 = 1.1εn ;
ni++;
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4 Results and Discussion

Optimization was performed using each of the subsets described in Table1. The
evaluation of the adjoint system results in σ1(x, t), σ2(x, t) as displayed in Fig. 2.
Figure2 shows both σ1, σ2 in the time-space (x, t) domain for the first iteration
of the gradient method using subsets A1 and A3. It is very interesting to observe
how ∂hE is included as a source term for σ1 and the effect that it produces on σ2

where discrepancies are presented. In particular, the injection at each of the selected
probes in each subset can be observed as a modification of adjoint variables in the
(x, t) plane. This illustrates that, in fact, the adjoint equations model a transport
phenomenon for the sensitivity. In Fig. 2 it is possible to observe how the adjoint
variables act as a scalar tracer traveling through physical space similiar to how water
waves do.

Figure3 displays (σ1, σ2) for subset B2. When comparing Fig. 3 to Fig. 2, differ-
ences can be observed between cases B2 and A1, for example. These differences are
more significant on the landward end of the domain than at the seaward end. Com-
paring σ1(0, t) for both A1 and B1 subsets, differences are increasingly important
as time ’advances’ backwards. In particular, sensitivity for earlier times comes from
the combination of the waves coming from the farthest probe and the interaction of
the adjoint waves with the wet/dry front.

Fig. 2 Plot of σ1(x, t) (left) and σ2(x, t) (right) for the first iteration of the optimizer using the set
A1 (top) A2 (middle) and A3 (bottom)

Fig. 3 Plot of σ1(x, t) (left) and σ2(x, t) (right) for the first iteration of the optimizer using the set
A1 (top) A2 (middle) and A3 (bottom)
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In addition, both Figs. 2 and 3 show the wet/dry boundary approximately at x =
240m.Thewet/dry boundaryworks as an internal boundary condition that reflects the
adjoint variables, as happens also to the physical waves. This feature is tremendously
important because it shows the interaction between that front and the inlet boundary
condition which is sought.

In general, it was possible to reconstruct the boundary using different sets of
probes. Nevertheless, the results differ both in terms of convergence and quality.
Table2 summarizes convergence results for the six data sets analyzed, including the
criteria onwhich convergencewas achieved. In addition, Fig. 4 show the convergence
curves obtained using subsets A and B. Note that the whole metric (the complete
functional) achieves lower values as less probes are included. This is not due to the
overall error being reduced, but because less contributions are considered (probes
in the functional) are being considered. From Table2 and Fig. 4 it can be observed
that, in both subsets, as less probes are included in the functional, the algorithm
requires more iterations to achieve convergence. Additionally, subset A requires less
iterations than subset B, except in the third case, in which notably, the algorithm
was stopped by the maximum number of iterations criterion (tolerance as defined
as tol = 10−5). Otherwise, for all other cases the algorithm converged using the
same criterion. Interestingly, as further results will show, case A3 still results in a
reasonable solution although it exceeded themaximum number of allowed iterations.
Furthermore, subset A results in converged values for the functional lower than the

Table 2 Convergence results for the different numerical experiments

Set Set A Set B

A1 A2 A3 B1 B2 B3

Iterations 38 54 99 40 79 92

J 0.311216 0.222080 0.154499 0.474967 0.211037 0.1818

Stop
criterion

||δh0|| ≤
tol

||δh0|| ≤
tol

i ters ≥
i termax

||δh0|| ≤
tol

||δh0|| ≤
tol

||δh0|| ≤
tol

Fig. 4 Convergence of the gradient optimizer for the reconstruction of the inlet BC using subset A
(left) and for the subset B (right). Groups 1 (A1, B1) (-x-), 2 (A2, B2) (-x-) and three 3 (A3, B3)(-x-)
are displayed
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Fig. 5 Reconstructed time-dependent boundary condition using subset A (upper) and subset B
(lower). Boundary water depth for A1 and B1 (—), sets A2 and B2 (—) and sets A3 and B3 (—)

are shown.

one obtained with subset B, for the cases with 4 probes and a single probe. Case A2

shows a larger functional value than B2.
Fig. 5 shows the reconstructed boundary condition using each subset. When using

subset A, little differences are observed when the number of probes is varied, for
most of the simulation. On the other hand, when varying the number of probes
using subset B, specially when selecting B3, much larger differences appear in the
reconstructed boundary. For both cases, note that when decreasing the number of
probes, the boundary time evolution fails to capture phenomena in the latest parts of
the experiment. Very clearly, the green line goes flat before the orange, and this one
before the pink. This is reasonable and is caused by the fact that, for very late times,
adjoint information cannot travel all the way across the domain, and therefore, no
information is available at such late times to reconstruct the boundary. This is clearly
a limitation for this strategy,whichmay be effectively solved by taking a timewindow
larger for the optimization than the one intended for simulations.

From Fig. 4, it might be interpreted that, following the values of the functional,
cases with less probes achieve better results than cases with more probes. This is
not the case. Actually, as more probes are considered, the simulated results better
match experimental results. This is very clear in Table3 and in Fig. 7, where mean
square error (MSE) for all of the probes (not only those in the functional), obtained
with the optimal boundary condition for each of the subsets are shown. Overall,
A outperforms B, except for case 2. Moreover, case 1 outperforms case 2 which
outperforms case 3, for both subsets A and B, which is expected from the fact that
more information is being used to obtain a better boundary condition.

The influence of choosing the probe locations can be extracted from Table3.
Subset A2 reduces the mean global error using 2 probes as much as B1 using 4.
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Fig. 6 Comparison of experimental water depth (-◦-) for probe 13, with numerical results for
subset A (upper) and B (lower). Water depth using subsets A1 and B1 (—), subsets A2 and B2 (—)

and subsets A3 and B3 (—) are shown

Additionally using only one probe it is possible to fit the error for that position better
than when using more, but in general it is not enough for the rest of the positions
(the mean and also individual MSE is higher). This can be observed comparingMSE
at probe 18 with B3 and B1 where B3 reduces the error, but only for that position.
Results suggest that using a large number of points to perform this control is less
significative than choosing their position properly.

It was previously shown in Fig. 5 and discussed that by the end of the simulation
(t ≥ 200 s) the reconstructed boundaries are incorrect, because information does not
arrive to control them. This also implies that the error in all probes, towards the
end of the simulation should also increase, and specially in those probes close to the
boundary. Such probes will receive incorrect boundary information at later times, but
probes farther away, may not receive the incorrect information before the simulation
ends. This also shows the transport nature of the adjoint system, as well of course
as of the shallow water system. To illustrate this, consider the errors computed only
until t = 200, but with a control that goes on until t = 250, as shown in Fig. 8. It
is clear there that is a larger reduction of error in the seaward probes than in the
landward probes.

To further explore the effect of the different subsets, consider Fig. 6, which shows
the results for probe p13 which is included within both subset A and B. The results
obtainedwith the three subsets A show less differences than those obtainedwith B. In
the figure it is clear that simulated and experimental results match better when more
probes are used in the functional, for both A and B subsets, consistently with what
is observed in Fig. 7. Furthermore, in the case of subset A the energy (amplitude)
of the waves seems to be more affected than the shape of the wave structures. In
contrast, with subset B, the simulated results are somewhat distorted and shifted in
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Table 3 Mean Square Error for all probes and numerical experiments with the reconstruced bound-
aries (in bold, values which intervene in the functional in each case)

Set A Set B

Set A1 A2 A3 B1 B2 B3

p1 0.4416 0.5652 0.7306 0.5780 0.5525 0.8565

p2 0.4490 0.5421 0.7065 0.4981 0.5305 0.8321

p3 0.4142 0.5454 0.7113 0.5268 0.5318 0.8364

p4 0.3583 0.5049 0.6653 0.5213 0.5038 0.8128

p5 0.2972 0.4045 0.6028 0.4111 0.4108 0.7426

p6 0.2897 0.4431 0.6189 0.4725 0.4540 0.7602

p7 0.3769 0.4123 0.5976 0.3571 0.4155 0.7306

p8 0.3475 0.4249 0.5916 0.4066 0.4344 0.7379

p9 0.3375 0.4091 0.5851 0.3492 0.4154 0.7159

p10 0.3590 0.4269 0.5956 0.3507 0.4294 0.7160

p11 0.3301 0.4150 0.5808 0.3883 0.4075 0.6881

p12 0.3012 0.3223 0.5191 0.3858 0.3107 0.6429

p13 0.3560 0.2599 0.5454 0.2933 0.2419 0.6608

p14 0.3947 0.3673 0.4898 0.3609 0.3847 0.6186

p15 0.3295 0.3575 0.4266 0.3498 0.3672 0.5186

p16 0.2370 0.2218 0.1550 0.3880 0.3598 0.5022

p17 0.3370 0.3727 0.4120 0.3495 0.3304 0.4332

p18 0.3399 0.3756 0.3853 0.2994 0.2181 0.1818

p19 0.3000 0.3257 0.3286 0.3309 0.3237 0.4136

p20 0.4388 0.4289 0.4620 0.3912 0.4618 0.5748

Mean 0.3518 0.4063 0.5355 0.4004 0.4042 0.6488

Mean (200
s)

0.2851 0.2980 0.3766 0.3302 0.2910 0.4658

comparison to the experimental data. Importantly, this effect increases as the number
of probes reduces (Fig. 8).

This behavior is highly visible for farther probes. Figure9 shows the results for
probe p19, and plainly speaks that maximum amplitude peaks cannot be reproduced
by any of the combinations. It is interesting to note that numerical results are bounded
within the experimental measurements, for most of the time.

Notably, the lower quality results using subset B are likely caused by probe p19.
This is due to the fact that, as selected probes are located farther from the boundary,
the boundary optimization becomes more complex. In addition, phenomena near the
shore, where surf is produced, are strongly governed by vertical accelerations not
considered in the shallow water approach. Therefore, an uncomfortable contradic-
tion may be the cause of the problems: choosing probes for the functional where
shallow flow is observed, may result in inclusion of information related to incorrect
modellization, and may provide an incorrect solution. In turn, this means that the
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Fig. 7 Mean Square Error obtained at each probe location for all numerical experiments

Fig. 8 Mean Square Error obtained at each probe location for all numerical experiments, using
only results for t ≤ 200 s

Fig. 9 Comparison of experimental water depth (-◦-) for probe 19, with numerical results for
subset A (upper) and B (lower). Water depth using subsets A1 and B1 (—), subsets A2 and B2 (—)

and subsets A3 and B3 (—) are shown
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Fig. 10 Evolution of the problem at different times from t = 100 (red) to t = 200 (blue). Results
using controlled using BC A1

rather low quality of results obtainedwith B3 are not caused from the fact that a single
probe is used, but because this single probe is inappropriate for inverse modelling.

Figure10 shows the flume state at different times with the controlled BC using A1.
It is possible to observe how, when reaching the shore, wave amplitude is reduced,
while simultaneously a shock is formed. It is important to note that this non-linear
effect represents an important challenge for the optimization method.

5 Conclusions

The adjoint method has been applied on a hyperbolic system of PDEs with source
terms. In particular, the adjoint system of equations of the shallow water equations
has been obtained. It has been shown to be a useful technique to solve an inverse prob-
lem to reconstruct the boundary condition based on data from several experimental
measurement points, in order to fit simulated results to such experimental measure-
ments. Furthermore, several combinations of experimental points were selected to
test the sensitivity of the method to this choice. Depending on this combination, con-
trol achievements are different, both in terms of convergence and quality. The tests
show that, by increasing the number of measurements and constraints included in the
functional, the reconstructed boundaries produce better numerical results. However,
in light of the results, it is still possible to reconstruct such boundary using even a
single point, which makes this technique interesting and useful in real applications
with scarce field or experimental data. Nevertheless, care must be taken to feed the
optimization process with appropriate data, that is, close enough to the boundary so
that information can travel across the domain to reach the boundary during the time
window of the simulation, and that it falls not in a place where model assumptions
might break, such as wave breaking, surf regions or the dry region further landwards.

From the point of view of interpreting the results of the discrete adjoint problem,
it is interesting to note that, in the case of transient phenomena, the adjoint system
acts as a transport law for the sensitivity along the characteristic space. Because of
that, this technique is a very fast solution that does not require to cover all the solution
space, but only those regions in which the adjoint information goes in the optimal
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direction to find the correct solution. This advantage also implies a drawback, and
it is that, depending on the time-window selected for controlling, information may
not have enough time to travel across the domain and reach the controlled boundary,
thus failing to reproduce late times of the simulation.

Acknowledgements Authors would like to thank Dr. Alessandra Saponieri for the access to the
experimental background and data used in this work. This worked has been partially funded by the
Spanish Ministry of Innovation and Science trough research project BIA2011-30192-C02-01.

References

1. Damiani, L., Aristodemo, F., Saponieri, A., Verbeni, B., Veltri, P., Vicinanza, D.: Full-scale
experiments on a beach drainage system: hydrodynamic effects inside beach. J. Hydraul. Res.
49(sup1), 44–54 (2011)

2. Damiani, L., Vicinanza, D., Aristodemo, F., Saponieri, A., Corvaro, S.: Experimental investi-
gation on wave set up and nearshore velocity field in presence of a bds. J. Coast. Res. 55–59
(2011)

3. Ding, Y., Wang, S.S.: Optimal control of open-channel flow using adjoint sensitivity analysis.
J. Hydraul. Eng. 132(11), 1215–1228 (2006)

4. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow Turbul.
Combust. 65(3–4), 393–415 (2000)

5. Lacasta, A.,Morales-Hernández,M., Brufau, P., Gacía-Navarro, P.: Calibration of the 1d shallow
water equations using adjoint variables. In:Advances inNumericalModelling ofHydrodynamics
Workshop, Sheffield, UK (2015)

6. Murillo, J., García-Navarro, P.: Weak solutions for partial differential equations with source
terms: application to the shallow water equations. J. Comput. Phys. 229(11), 4327–4368 (2010)

7. Sanders, B.F., Katopodes, N.D.: Adjoint sensitivity analysis for shallow-water wave control. J.
Eng. Mech. 126(9), 909–919 (2000)

8. Wright, S.J., Nocedal, J.: Numerical optimization, vol. 2. Springer, New York (1999)



Aerodynamic Optimization of Car
Shapes Using the Continuous Adjoint
Method and an RBF Morpher

E. M. Papoutsis-Kiachagias, S. Porziani, C. Groth, M. E. Biancolini,
E. Costa and K. C. Giannakoglou

Abstract This paper presents the application of the continuous adjoint method, pro-
grammed in OpenFOAM©, combined with an RBF-based morpher to the aerody-
namic optimization of a generic car model. The continuous adjoint method produces
accurate sensitivities by utilizing the full differentiation of the Spalart–Allmaras
turbulence model, based on wall functions, while the RBF-based morpher provides
a fast and versatile way to deform both the surface of the car and the interior mesh
nodes. The integrated software is used to minimize the drag force exerted on the
surface of the DrivAer car model.

1 Introduction

During the last years, CFD-based aerodynamic shape optimization has been
attracting the interest of both academia and industry. The constituents needed for
executing an automated shape optimization loop include the flow solver, the
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geometry parameterization (the parameters of which act as the design variables),
an optimization method capable of computing the optimal values of the design vari-
ables and a way to adapt (or regenerate) the computational mesh to each candidate
solution.

Nowadays, a great variety of in-house and commercial flow solvers exist and are
in widespread use. In the study presented in this paper, the steady-state flow solver
of the open-source CFD toolbox, OpenFOAM©, is used to numerically solve the
Navier-Stokes equations for incompressible, turbulent flows.

Shape parameterization techniques can be divided into two categories, i.e. those
parameterizing only the surface to be optimized and those which also deform the
surrounding nodes of the interior mesh. The former include the normal displacement
of surface wall nodes [15], the control points of Bézier–Bernsteinor NURBS curves
or surfaces and CAD parameters [16, 18]. The latter include volumetric B-splines
or NURBS [11], Radial Basis Functions (RBFs) [2, 4, 7], the harmonic coordinates
method [8], etc. The great advantage of the this category is that the interior of the
computational mesh is also deformed, avoiding, thus, costly re-meshing and allow-
ing the initialization of the flow field from the solution obtained in the previous
optimization cycle, since the mesh topology is preserved. In this paper, a number of
parameters controlling the positions of groups of RBF control points are used as the
design variables, using technology and methods developed in the context of the RBF
Morph software [3].

Optimization methods can be separated into two main categories, i.e. stochastic
and gradient-based ones. Stochastic optimization methods, with Evolutionary Algo-
rithms (EAs) as their main representative, are extremely versatile and have the ability
to compute global optima but suffer from a computational cost that scales with the
number of design variables, making their use impractical for large scale optimization
problems. On the other hand, gradient-based optimization methods require a higher
effort to develop and maintain but can have a cost per optimization cycle that does
not scale with the number of design variables, when the adjoint method is used to
compute the gradients of the objective function. Both discrete and continuous adjoint
methods [5, 13], have been developed. In this work, a continuous adjoint method
that takes into consideration the differentiation of the turbulence model PDE is used
to increase the accuracy of the computed sensitivities of the drag force objective
function w.r.t. the shape modification parameters [14]. The continuous adjoint solver
has been implemented on an in-house version of the OpenFOAM© software.

The above-mentioned tools are combined in order to form an automated optimiza-
tion loop, targeting the minimization of the drag force exerted on the surface of a
generic carmodel. In specific, a configuration of theDrivAer carmodel [6], developed
by the Institute of Aerodynamics and Fluid Mechanics of TU Munich, is studied.
The constituents of the optimization loop were combined under the RBF4AERO
project. Funded in the Aeronautics and Air Transport (AAT) research thematic area
of the EU Seventh Framework Programme, the RBF4AERO Project aims at devel-
oping the RBF4AERO Benchmark Technology, namely a numerical platform con-
ceived to face the requirements of top-level aeronautical design studies such as
multi-physics and multi-objective optimization, fluid-structure interaction (FSI),
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adjoint-driven optimization and ice accretion simulation. Based on the RBF mesh
morphing technique, such a numerical platform allows to significantly boost the aero-
dynamic design process and a relevant impact is then expected in the ever-growing
technological demand posed by aeronautical manufacturers in relation to the per-
formance and reliability of aircrafts constituting components. To demonstrate the
general validity and the effective usage of the RBF4AERO platform in the indus-
trial field, one of its capabilities envisaging the adjoint-morphing coupling is, herein,
described for a car aerodynamics optimization problem.

2 The Continuous Adjoint Method

In this section, the formulation of the continuous adjoint PDEs, their boundary con-
ditions and the sensitivity derivatives (gradient) expression are presented in brief.
The development is based on the incompressible Navier-Stokes equations.

2.1 Flow Equations

The mean flow equations together with the Spalart–Allmaras turbulence model PDE
[17], comprise the flow or primal system of equations that reads

Rp = − ∂vi

∂xi
= 0 (1a)

Rw
i = v j

∂vi

∂x j
+ ∂p

∂xi
− ∂τi j

∂x j
= 0 (1b)

Rν̃ = ∂(v j ν̃)

∂x j
− ∂

∂x j

[(

ν + ν̃

σ

)

∂ν̃

∂x j

]

− cb2
σ

(

∂ν̃

∂x j

)2

− ν̃ P (̃ν,Δ) + ν̃ D (̃ν,Δ) = 0 (1c)

where vi are the components of the velocity vector, p is the static pressure divided

by the constant density, τi j = (ν + νt )
(

∂vi
∂x j

+ ∂v j

∂xi

)

are the components of the stress

tensor, ν and νt the kinematic and turbulent viscosity, respectively, ν̃ the Spalart–
Allmaras model variable and Δ the distance from the wall boundaries. Details about
the turbulence model constants, source terms and boundary conditions can be found
in [17].

2.2 General Objective Function

Let F be the objective function to be minimized by computing the optimal values of
the design variables bn, n ∈ [1, N ]. A general expression for an objective function
defined on (parts of) the boundary S of the computational domain Ω is given by
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F =
∫

S

FSi nidS (2)

where n is the outward facing normal unit vector.
Differentiating Eq.2 w.r.t. to bn and applying the chain rule yields

δF

δbn
=

∫

S

∂FSi

∂vk
ni

∂vk

∂bn
dS +

∫

S

∂FSi

∂p
ni

∂p

∂bn
dS +

∫

S

∂FSi

∂τk j
ni

∂τk j

∂bn
dS +

∫

S

∂FSi

∂ν̃
ni

∂ν̃

∂bn
dS

+
∫

S

ni
∂FSi

∂xk

δxk
δbn

nkdS +
∫

S

FSi
δ(ni dS)

δbn
(3)

where δΦ/δbn is the total derivative of any quantity Φ while ∂Φ/∂bn is its partial
derivative. These are related by

δΦ

δbn
= ∂Φ

∂bn
+ ∂Φ

∂xk

δxk
δbn

(4)

Computing the variation of the flow variables on the r.h.s. of Eq. 3, either through
Direct Differentiation (DD) or Finite Differences (FD) would require at least N
equivalent flow solutions. To avoid this computational cost that scales with N , the
adjoint method is used, as presented in the next subsection.

2.3 Continuous Adjoint Formulation

Starting point of the continuous adjoint formulation is the introduction of the aug-
mented objective function

Faug = F +
∫

Ω

ui R
v
i dΩ +

∫

Ω

qRpdΩ +
∫

Ω

ν̃a R
ν̃dΩ (5)

where ui are the components of the adjoint velocity vector, q is the adjoint pressure
and ν̃a is the adjoint turbulence model variable, respectively. Dropping the last inte-
gral on the r.h.s. of Eq. 5 would result to the so-called “frozen turbulence” assumption
which neglects the differentiation of the turbulence model PDE. This assumption
leads to reduced gradient accuracy, possibly even to wrong sensitivity signs [20].
To avoid making the “frozen turbulence” assumption, the Spalart–Allmaras model
PDE has been differentiated, see [20]. A review on continuous adjoint methods for
turbulent flows can be found in [14].
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The differentiation of Eq.5, based on the Leibniz theorem, yields

δFaug
δbn

= δF

δbn
+

∫

Ω

ui
∂Rv

i

∂bn
dΩ +

∫

Ω

q
∂Rp

∂bn
dΩ +

∫

Ω

Rν̃ ∂Rν̃a

∂bn
dΩ

+
∫

SW

(ui R
v
i + qRp + ν̃a R

ν̃ )nk
δxk
δbn

dS (6)

Then, the derivatives of the flow residuals in the volume integrals on the r.h.s. of
Eq.6 are developed by differentiating Eq.1 and applying the Green-Gauss theorem,
where necessary. This development can be found in [14, 20].

In order to obtain a gradient expression which does not depend on the partial
derivatives of the flow variables w.r.t. bn , their multipliers in (the developed form of)
Eq.6 are set to zero, giving rise to the field adjoint equations

Rq = − ∂u j

∂x j
= 0 (7a)
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+ (−P + D) ν̃a = 0 (7c)

where τ a
i j = (ν + νt )

(

∂ui
∂x j

+ ∂u j

∂xi

)

are the components of the adjoint stress tensor.

Equation7c is the adjoint turbulence model equation, from which the adjoint turbu-
lence model variable ν̃a is computed.

The adjoint boundary conditions are derived by treating the flow variations in the
boundary integrals (of the developed form of) Eq.6. This development is presented
in detail in [14, 20].

In industrial applications, the wall function technique is used routinely in analysis
and design. When the design is based on the adjoint method, considering the adjoint
to the wall function model becomes necessary. The continuous adjoint method in
optimization problems, governed by the RANS turbulence models with wall func-
tions, was initially presented in [21], where the adjoint wall function technique was
introduced for the k − ε model and a vertex–centered finite volume method with slip
velocity at the wall. The proposed formulation led to a new concept: the “adjoint law
of the wall”. This bridges the gap between the solid wall and the first node off the
wall during the solution of the adjoint equations. The adjoint wall function technique
has also been implemented for flow solvers based on cell-centered finite-volume
schemes, for the Spalart–Allmaras [14], and k − ω SST [9], turbulence models.
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After satisfying the adjoint PDEs and their boundary conditions, the remaining
terms in Eq.6 yield the sensitivity derivatives

δFaug
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SD −

∫

SWp

SD1
∂τi j

∂xm
n j t

I
i nmnk

δxk
δbn

dS −
∫

SWp

SD1τi j
δ(n j t Ii )

δbn
dS

+
∫

SWp

SD2,iv
I
〈t〉

δt Ii
δbn

dS −
∫

SWp

SD2,i
∂vi

∂xm
nmnk

δxk
δbn

dS

−
∫

SWp

[(

ν + ν̃

σ

)

∂ν̃a

∂x j
n j + ∂FSz

∂ν̃
nz

]

∂ν̃

∂xm
nmnk

δxk
δbn

dS

−
∫

SWp

(

−u〈n〉 + ∂FSWp ,k

∂τlm
nknlnm

)

T S1dS −
∫

SWp

∂FSWp ,k

∂τlm
nkt

I
l t

I
mT S2dS

−
∫

SWp

(

∂FSWp ,k

∂τlm
nk(t

II
l t Im + t Il t

II
m )

)

T S3dS −
∫

SWp

∂FSWp ,k

∂τlm
nkt

II
l t IIm T S4dS

+
∫

SWp

(ui R
v
i + qRp + ν̃a R

ν̃ )
δxk
δbn

nkdS (8)

where

SD1 = −uI〈t〉 + φi j t
I
i n j + φi j ni t

I
j , SD2,i = τa.i j n j − qni + ∂FSWp ,k

∂vi
nk , φi j = ∂FSWp ,k

∂τi j
nk

Functions T S1 to T S4 can be found in [14] while term TWF
SD results from the

differentiation of the law of the wall.
The deformation velocities, δxk/δbn , included in Eq.8 express the dependency of

the boundarywall nodes on the shapemodification parameters. This can be computed
by differentiating the surface parameterization scheme presented in the next section.

3 RBF-based Morphing

In this section the mesh morphing algorithm based on RBFs is described. The back-
ground theory of RBFs is first introduced providing details of its application in mesh
morphing field; the industrial implementation of the method as provided by the stand
alone version of the software RBF Morph is then described; finally the coupling of
the mesh morphing tool and the adjoint sensitivity is explained.
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Table 1 Typical RBF functions

Radial Basis Functions (RBF) with global support ϕ(r), r = ‖r‖
Spline type (Rn) rn, nodd

Radial Basis Functions (RBF) with compact support ϕ(r) = f (ξ), ξ ≤ 1, ξ = r
Rsup

Wendland C0 (C0) (1 − ξ)2

Wendland C2 (C2) (1 − ξ)4(4ξ + 1)

Wendland C4 (C4) (1 − ξ)6
(

35
3 · ξ2 + 6ξ + 1

)

3.1 RBFs Background

RBFs are powerful mathematical functions able to interpolate data defined at discrete
points only (source points) in a n-dimensional environment. The interpolation quality
and its behavior depends on the chosen radial basis function.

In general, the solution of the RBFmathematical problem consists on the calcula-
tion of the scalar parameters (sought coefficients) of a linear system of order equal to
the number of considered source points. The RBF system solution, determined after
defining a set of source points with their displacement, is employed to operate mesh
morphing to the discretized domain of the computational model. Operatively, once
the RBF system coefficients have been calculated, the displacement of an arbitrary
node of the mesh, either inside (interpolation) or outside (extrapolation) the domain,
can be expressed as the sum of the radial contribution of each source point (if the
point falls inside the influence domain). In such a way, a desired modification of the
mesh nodes position (smoothing) can be rapidly applied preserving mesh topology.

RBFs can be classified on the basis of the type of support (global or compact)
they have, meaning the domain where the chosen RBF is non zero-valued.

Typical RBFs with global and compact support are shown in Table1. RBFs are
scalar functionswith the scalar variable r , which is the Euclidean normof the distance
between two points defined in a generic n-dimensional space.

An interpolation function composed of a radial basisϕ and a polynomial h of order
m − 1, where m is said to be the order of ϕ, introduced with the aim to guarantee
the compatibility for rigid motions, is defined as follows if N is the total number of
contributing source points

s(x) =
N

∑

i=1

γiϕ
(∥

∥x − xki
∥

∥

) + h(x) (9)

The degree of the polynomial has to be chosen depending on the kind of RBF
adopted.A radial basis fit exists if the coefficientsγi and theweights of the polynomial
can be found such that the desired function values are obtained at source points and
the polynomial terms gives no contributions at source points, that is
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s(xki ) = gi , 1 ≤ i ≤ N (10)

N
∑

i=1

γi q(xki ) = 0 (11)

for all polynomials q with a degree less or equal to that of polynomial h. Theminimal
degree of polynomial h depends on the choice of the RBF. A unique interpolant exists
if the basis function is a conditionally positive definite function [12]. If the RBFs are
conditionally positive definite of order m ≤ 2 [1], a linear polynomial can be used

h(x) = β1 + β2x + β3y + β4z (12)

The subsequent exposition will assume that the aforementioned hypothesis is
valid. The values for the coefficients γi of RBF and the coefficients β of the linear
polynomial can be obtained by solving the system

(

M P
PT 0

)(

γ

β

)

=
(

g
0

)

(13)

where g are the known values at the source points and M is the interpolation matrix
defined calculating all the radial interactions between source points

Mi j = ϕ
(∥

∥xki − xk j

∥

∥

)

, 1 ≤ i ≤ N , 1 ≤ j ≤ N (14)

P is a constraint matrix that arises to balance the polynomial contribution and
contains a column of"1" and the x y z positions of source points in the other three
columns

P =

⎛

⎜

⎜

⎜

⎝

1 xk1 yk1 zk1
1 xk2 yk2 zk2
...

...
...

...

1 xkN ykN zkN

⎞

⎟

⎟

⎟

⎠

(15)

RBF interpolation works for scalar fields. For the smoothing problem, each com-
ponent of the displacement field prescribed at the source points is interpolated as
follows
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The RBF method has several advantages that make it very attractive for mesh
smoothing. The key point is that being a meshless method only grid points are
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moved regardless of which elements are connected to them and it is suitable for par-
allel implementation. In fact, once the solution is known and shared in the memory
of each calculation node of the cluster, each partition has the ability to smooth its
nodes without taking care of what happens outside because the smoother is a global
point function and the continuity at interfaces is implicitly guaranteed. Furthermore,
despite its meshless nature, the method is able to exactly prescribe known defor-
mations onto the surface mesh: this effect is achieved by using all the mesh nodes
as RBF centres with prescribed displacements, including the simple zero field to
guarantee that a surface is left untouched by the morphing action.

3.2 RBF Morph Tool

The industrial implementation of the RBF mesh morphing poses two challenges: the
numerical complexity related to the solution of the RBF problem for a large number
of centers and the definition of suitable paradigms to effectively control shapes using
RBF. The software RBF Morph allows to deal with both as it comes with a fast RBF
solver capable to fit large dataset (hundreds of thousands of RBF points can be fitted
in a fewminutes) andwith a suite ofmodeling tools that allows the user to set-up each
shape modification in an expressive an flexible way. A detailed description of the
usage of RBF Morph for the external aero optimization of the Volvo XC60 is given
in [10] where the 50:50:50 approach demonstrates how 50 different shape variations
can be explored using an high fidelity 50 millions cells mesh in less than 50 wall
clock hours.

RBF Morph allows to extract and control points from surfaces and edges, to put
points on primitive shapes (boxes, spheres and cylinders) or to specify them directly
by individual coordinates and displacements. Primitive shapes can be combined in
a Boolean fashion and allow to limit the action of the morpher itself. Two shape
modifications used in this study are represented in Fig. 1. It is worth noticing that the
shape information coming from an individual RBF set-up are generated interactively
with the help of the GUI and are used subsequently in batch commands that allows
to combine many shape modifications in a non linear fashion (non linearity occurs
when rotation axis are present in the RBF set-up).

3.3 Coupling of RBF Mesh Morphing with Adjoint
Sensitivities

Once the adjoint sensitivities are available as surface mesh information it is possible
to easily compute the sensitivities w.r.t. shape parameters exploiting the parametric
mesh available using the mesh morphing tool. In order to take into account the non
linear fashion of the morphing field the mesh deformation velocities are generated
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(a) rear window (b) boat tail

Fig. 1 Example of RBF points arrangement for the definition of two shape parameters. The rear
window angle is controlled imposing a rigid rotation to the nodes on the window whilst preserving
the shape of the roof and gently deforming the tail. The morphing volume is limited by a Box
Encapsulation. Boat tail angle is changed applying a rotation around a proper axis of part of the
rear car whilst preserving the shape of the wheel; also in this case the morphing action is limited
by a box

by numerical differentiation of the morphing field around the current design point in
the parametric space. For a given set of shape parameters the morpher is capable to
update the baseline mesh into the current one. A perturbed mesh, w.r.t. the current
one, can then be obtained for each shape parameter, computing the mesh resulting
from its perturbation (keeping all the other constant). The sensitivity w.r.t. each given
parameter is then obtained multiplying the surface perturbation field by the surface
sensitivities. It is worth noticing that the aforementioned coupling works not just at
the origin of the parametric space (baseline model) but at any given design point;
adjoint data need to be recomputed for each explored design point for which local
sensitivities are required. The coupling can be used to enrich DOE based exploration
for the parametric shape; in the industrial application presented herein, the parameters
sensitivities are used in a local optimization method based on the gradient.

4 Optimization Algorithm

The gradient-based algorithm used to minimize the drag force is described in brief
below:

1. Define the shape modification parameters, Sect. 3.
2. Solve the flow equations, Eq.1.

3. Compute the drag force value, FD = ∫

SW

(

−τi j + pδ j
i

)

n jridS, r = [0, 0, 1]T .
4. Solve the adjoint equations, Eq.7.
5. Compute the deformation velocities and through them, the sensitivity derivatives,

Eq. 8.
6. Update the design variables by Δbi = −ηδF/δbi , where η is a user-defined step.
7. Morph the car surface and displace the interior mesh nodes.
8. Unless the stopping criterion is satisfied, go to step 2.
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5 Applications

In this section, the optimization algorithm presented in in Sect. 4, in the form of an
automated software, is used to minimize the drag force exerted on the surface of the
DrivAer car model. In specific, the fast-back configuration with a smooth underbody,
with mirrors and wheels (F_S_wm_ww) is used as a test case.

Six shape deformation variables (design variables) are defined in total. The part
of the car surface parameterized by each of them and the corresponding deformation
velocities are depicted in Fig. 2.

Theminimization of the drag force is targeted by simultaneously varying all shape
deformation parameters. A computational grid of approximately 3.8 million cells is
used and turbulence is modeled by means of the Spalart–Allmaras model with wall

(a) boat tail (b) car height

(c) underbody front (d) underbody back

(e) mirror rotation (f) rear window

Fig. 2 DrivAer shape optimization: Part of car surface controlled by the six shape deformation
parameters and the corresponding deformation velocities (δxk/δbn)
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functions. Even though the flow around a car varies in time, the steady state primal
and adjoint PDEs are solved, to avoid the practical difficulties faced when solving the
unsteady adjoint equations in medium and large scale computational grids [19], by
proceeding backwards in time. Hence, the objective function cannot reach a constant
value within each optimization cycle but oscillates around a “mean” value. The
evolution of the objective function value during the flow solver iterations over the
optimization cycles is shown in Fig. 3.

The cumulative deformation magnitude after 15 optimization cycles, which led to
a reduction by more than 7% in the mean drag value, is shown in Fig. 4. The pressure
field plotted over the initial and optimized geometries is depicted in Fig. 5.

As expected, the area with the highest deformation is located, in the rear part of
the car. In specific, twomajor trends are present. The first one is to lower the height of
the rear window and to form a sort of a spoiler at the end of the trunk. This creates an
area of increased pressure at the bottom of the rear window and despite the increased
pressure on top of the formed spoiler, a resultant force that pushes the car forward is
generated, Fig. 6. The second trend is to create a “boat tail” effect (see Fig. 4c) which
leads to an increased pressure in the back side of the car, contributing thus to drag
reduction.
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Fig. 3 DrivAer shape optimization: Evolution of the drag force value through the iterations of
the flow solver over the optimization cycles, normalized with the mean value obtained using the
baseline geometry. The flow solver run for 1000 iterations for each optimization cycle (a previously
“converged” solution was used to initialize the optimization, so only 100 iterations were executed
during the first optimization cycle). Kinks in the objective function value correspond to the first
iterations after each shape update (new optimization cycle). A decrease of more than 7% can be
observed in the “mean” drag value
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Fig. 4 DrivAer shape optimization: initial (starboard side) and optimized (port side) geometries.
The latter is coloured based on the cumulative deformation of the car surface after 15 optimization
cycles. The areas with the highest deformation and, thus, the higher impact on the objective value
are the ones affected by the boat-tail and rear-window shape modification parameters

Fig. 5 DrivAer shape optimization: Pressure distribution over the initial (starboard side) and opti-
mized (port side) geometries
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Fig. 6 DrivAer shape optimization: initial (right) and optimized (left) geometries, coloured based
on pressure. Lowering the rear window, creating a spoiler at the end of the trunk and creating a
boat-tail shape for the rear side lead to an increased pressure at the rear part of the car, contributing
to drag reduction

6 Conclusions

In this paper, the continuous adjoint method and an RBF-based morpher, combined
into an automated optimization software in the context of a research project funded
by the EU, were used as the constituents of a gradient-based optimization algorithm,
targeting the drag minimization of the DrivAer generic car model. A significant
reduction in the drag value was observed after 15 optimization cycles which required
approximately 16h on 64 Intel(R) Xeon(R) CPUs E5-2630@2.30 GHz. The utiliza-
tion of the RBF-based shape modification parameters allowed the design of a smooth
and manufacturable car shape.

Acknowledgements Thisworkwas funded by theRBF4AERO“Innovative benchmark technology
for aircraft engineering design and efficient design phase optimisation” project funded by the EUs
7th Framework Programme (FP7-AAT, 2007–2013) under Grant Agreement no. 605396.
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Upfront CAD—Parametric Modeling
Techniques for Shape Optimization

S. Harries, C. Abt and M. Brenner

Abstract The paper presents an overview of parameter-based geometric modeling
as used for shape optimization with respect to fluid-dynamic performance. Para-
metric modeling is well established in Computer Aided Design, particularly in the
phases of detailed design and production. However, production-centric models often
require considerable effort, e.g. de-featuring, to prepare them for simulation, above
all for Computational Fluid Dynamics. Consequently, to investigate a large num-
ber of design variants special engineering models are built, deliberately omitting
certain details, especially if they cannot be captured by the simulation within rea-
sonable effort anyway. In the context of aero- and hydrodynamic design dedicated
parametric models are utilized that define shapes of high quality with as few param-
eters as possible. Parametric modeling for shape optimization can be subdivided into
fully-parametric and partially-parametric modeling. In fully-parametric modeling
the entire shape is defined and realized by means of parameters while in partially-
parametric modeling only the changes to an existing shape are described parametri-
cally. Prominent techniques of partially-parametric modeling are free-form deforma-
tion, shift transformations and morphing. The most popular techniques are summa-
rized, giving some of their mathematical background while discussing advantages
and drawbacks. Examples are drawn from the maritime and aerospace industries,
turbomachinery and automotive design.
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1 Introduction

In product development the potential of gaining a benefit by changing a design is
highest, not surprisingly, when undertaken early in the process. The later a problem
becomes apparent—and the more advanced a product is defined already—the higher
the expense and time required to fix it. Competition and risk mitigation increasingly
call for optimization as early as the concept and preliminary design phases. Those
products whose success depends critically on flow performance are more and more
analyzed by means of Computational Fluid Dynamics (CFD) not only when fine-
tuning the final shapes but already upfront when taking critical decisions.

Shape optimization of components and systems play a major role in the maritime,
aerospace, turbomachinery and automotive industries. At one end of the spectrum the
maritime industry is characterized by expensive one-off designswhile at the other end
the automotive industry frequently sees large series. Still, a common denominator
is that small concerted changes in shapes often lead to substantial improvements in
performance. Furthermore, even small improvements often yield important benefits
for the producer, the consumer and the environment, e.g. when reducing energy
consumption and emissions.

Clearly, the more variants are studied the better the chances of finding design
candidates that are outstanding. In order to study many variants, the process of
creating and analyzing them has to be streamlined. A key to success are engineer-
ing models that capture the essence of the product while deliberately omitting less
important details.More specifically, theComputerAidedDesign (CAD)models need
to be simulation-ready. Otherwise, lots of engineering resources go into individu-
ally preparing each single variant for subsequent investigations. For flow-related
shapes—both for external and internal flows—special parametric modeling tech-
niques have been developed to enable meaningful modifications with small sets of
parameters to control them.

Flow-related shapes, also known as functional surfaces [14], are typically char-
acterized by compound curvature. They can rarely be described by simple sweeps or
modeled as developable surfaces. Consequently, for flow-related shapes boundary
representation methods (B-reps) dominate over constructive solid geometry (CSG).
B-reps, furthermore, often serve as input to CSG in hybrid CAD models.

Therefore, within this paper focus will be put on B-reps, addressing parameter-
based geometric modeling for shape optimization, so-called “upfront CAD.” It gives
an overview of techniques, shows examples and looks at advantages and drawbacks.
It is important to note that no single method is considered the “Holy Grail” of
parametric modeling. Rather, the available techniques are seen as tools within an
engineering tool box that should be selected thoughtfully according to the task at
hand.
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2 Overview

Parametric modeling is the definition of a product (or the representation of system
behavior) by means of important descriptors. For shape optimization using CFD
special parametric models are needed, so-called engineering models, which describe
the product with as few significant parameters as possible, sometimes deliberately
leaving out characteristics that are of lesser importance for a specific design task (e.g.
fillets and bevels). Two major categories of parametric modeling are distinguished:
Fully-parametric modeling (FPM) and partially-parametric modeling (PPM) [1, 5,
7]. For surveys, primarily on PPM, see [9, 13, 15].

In fully-parametric modeling the entire shape is defined by means of parameters.
A hierarchical model is created in which parameters describe all features of the
envisioned product as required to quantify product performance. A parametric model
can be looked at as a system that takes parameters as input and produces a shape—i.e.,
an instance—as an output.Any shape is realized from scratch and variants are brought
about by simply changing the values of one or several of the inputs.

In partially-parametric modeling an existing shape—i.e., the initial shape or base-
line—is taken and changes are defined by parameters that then modify the baseline.
This results in an image that features much of the baseline’s characteristics but looks
different. The baseline may stem from any previous modeling process, for example
from a traditional CAD system. Prominent representatives of partially-parametric
modeling are free-form deformation (FFD), shift transformations and morphing.

There is a compromise tomakewith regard to flexibility tomodel and efficiency to
vary a shape. Figure 1 gives an overview. The traditional approach ofmodeling shapes
with various surface types (e.g. Bézier and B-splines, Coons patches) controlled by
point sets is very flexible. Any geometry can be represented even though it may take
the CAD engineer quite some time to establish the final shape.

If just one (instance of the) shape is needed this traditional path is often the
quickest. However, if many variants shall be investigated the additional investment of
setting up a suitable parametricmodel isworthwhile to spend. For optimization, fully-
parametric modeling is very powerful since it enables both large changes in the early
design phase and small adjustmentswhenfine-tuning the shape at a later point in time.
Depending on the complexity of the product (and the quality requirements needed
for the simulations) some lead time is required to establish a fully-parametric model.
Since a fully-parametric model is made with a dedicated purpose in mind it is rarely
applicable tomany different design tasks (e.g. you cannot create a slender super-yacht
with the model for a high-blockage tanker). Partially-parametric modeling can be
viewed as a trade-off between traditional modeling and fully-parametric modeling.
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Fig. 1 Flexibility versus
efficiency in geometric
modeling

3 Partially-Parametric Modeling (PPM)

There are quite a few partially-parametric modeling techniques that have gained
popularity in shape optimization.Very prominent is free-formdeformationwhichwas
first introduced in the mid 1980s [14]. Some approaches go back several decades and
were originally not called partially-parametric modeling. In the maritime industry,
for example, the swinging of the sectional area curve by shifting transversal sections
has been used regularly (and with great success) since the early 1950s [2, 11].

In general, partially-parametric modeling is applicable to both continuous (e.g. a
mathematically-closed surface definition) and discrete data (e.g. tri-meshes for STL
data exchange). For shape optimization this means that a modification can be applied
to the geometry only, requiring subsequent re-meshing for the simulation, or that the
changes are made directly to the CFDmesh (cp. Sect. 6), necessitating some reverse
engineering of the final design at the end.

3.1 Free-Form Deformation

In free-form deformation (FFD) [9, 14], sometimes simply called box deformation
or space deformation, the geometry to be modified is enclosed by a regular grid
of vertices, i.e., rows, columns and layers defining a B-spline volume

−→
Q (u, v,w).



Upfront CAD—Parametric Modeling Techniques for Shape Optimization 195

Fig. 2 Free-form deformation for curved diffusing duct

For any point
−→
P �

⎡
⎣
x
y
z

⎤
⎦ of the initial shape that lies within this lattice the triple

(u, v,w) of the B-spline volume is determined that yields the point’s coordinates in
Cartesian space, thus coupling the initial shape to the B-spline. Moving any vertex
then changes the B-spline volume and, alongwith it, the embedded baseline. Figure 2
depicts an example taken from the automotive industry.

The free coordinates of the vertices serve as parameters. Theoretically, the FFD
has as many degrees-of-freedom (DoF) as the number of vertex coordinates that
are allowed to change. A box of 3 * 3 * 6 vertices as shown in Fig. 2 would give
54 * 3�162 DoF. Practically, the actual DoF are reduced by (a) freezing quite many
vertices and (b) orchestrating the modification of several vertices.

Freezing vertex coordinates is done at symmetry planes and, furthermore, so as to
ensure geometric continuity. If the first layer of vertices is left unchanged positional
integrity (G0) ismaintained. If the first two layers are kept themodified shape features
a tangent-continuous transition (G1) to the unmodified part of the baseline. (It should
be noted, nevertheless, that continuity will at best be the same for the variant than it
was for the initial shape.)

A simple example for an orchestrated change of several vertices is to move all
vertices belonging to the same layer by the same distance into the same direction.
The variation illustrated in Fig. 2 shows such a concerted change of all vertices of
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the third and fourth layers in the middle of the box while the first two and the last
two layers are fixed.

3.2 Shift Transformations

Shift transformations are realized by moving any point of the initial shape by a
specified amount in the principle directions of the chosen coordinate system. Often

this is done in Cartesian space. Each point
−→
P �

⎡
⎣
x
y
z

⎤
⎦ receives its displacement

�x,�y and/or�z depending on its original position and the specified shift function.
Figure 3 illustrates a vertical shift for the bulbous bow of a cargo ship. The

baseline’s bulb is shifted upwards and downwards as shown in Fig. 3. The amount
of displacement is given by the curves (shown in red), starting with a zero value
at the keel line (close to the forward perpendicular) and ending with the maximum
displacement at the bulb’s tip.

In the example a cubic B-spline curve was used to define the shift function. Here,
�z � f (x) inwhich f (x) is simply the z-component of theB-spline curve at position
x . The z-value of the B-spline’s last vertex served as the only parameter (denoted
“moveBulb” in Fig. 3).

The geometric continuity of the shift function influences the quality of the vari-
ation. Choosing a horizontal tangent at the transition from the unmodified to the
modified part of the shape (see Fig. 3) ensures a tangent-continuous shift (G1). Zero
curvature of the shift function at the point of transition would yield a curvature-
continuous shift (G2) and so forth.

Shift transformations can be concatenated, directly summed up and/or multiplied
to form complex modifications. Figure 4 gives the superposition of shifts in vertical,
transversal and longitudinal directions (shown in green). The black lines correspond

Fig. 3 Vertical shift of geometry for a bulbous bow
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Fig. 4 Concerted shift for a complete ship hull form

to the sections of the baseline, here the same hull form as used for the bulb modifi-
cation in Fig. 3, while the red lines depict the sections of the variant.

Shift functions are often made of curves but can also be derived from surfaces.
In the latter case the shift becomes a function of two coordinates. For example,
�y � f (x, z) describes a transversal shift as a function of the longitudinal and
vertical coordinates x and z.

3.3 Added Patch Perturbation

Added patch perturbation can be looked at as a generalization of a surface shift. A new
surface patch, say �A(u, v), is added to the surface(s) of the initial shape, say �S(u, v).

Simply, any new variant is given by �N (u, v) �
⎡
⎢⎣
x(u, v)

y(u, v)

z(u, v)

⎤
⎥⎦ � �S(u, v) + �A(u, v).

Theoretically, a superposition in parameter space according to (u, v) is more
flexible than a surface shift undertaken in physical space (x, y, z). Practically, some
preparatory work may be necessary to define sub-surfaces or poly-surfaces for the
baseline such that the (u, v)-spaces of the surfaces align as needed.

Parameters of this partially-parametric model are those used to control the added
patch. A popular approach is to take a standard B-spline surface and select several
of its inner vertices for change, keeping vertices at the edge(s) fixed. Often, only one
or two of the vertex coordinates are modified [12].



198 S. Harries et al.

3.4 Morphing

Morphing, sometimes also called merging, is the interpolation (possibly the extrapo-
lation) between two or more baselines. The baselines need to be topologically iden-
tical in order to easily compute a new variant which is done by a linear superposition
of all initial shapes �Si .

For two baselines a one-parameter model is established, i.e., �N (u, v) � (1 − w) ·
�S1(u, v) + w · �S2(u, v) where w ∈ [0, 1]. Three baselines provide a two-parameter
model etc.

Figure 5 shows a sequence of four variants for a duct. The upper left duct (light
turquois) represents the first baseline, the lower right duct (dark green) the second.
The intermediate shapes are produced for w � 0.3 (upper right bluish duct) and
w � 0.7 (lower left greenish duct). The geometry for the inlet and the outlet are the
same for both baselines, giving the same inlets and outlets for all variants.

A practical approach taken in shape optimization is to generate a family of ini-
tial shapes based on experience and inspired by intuition. Subsequently, within the
optimization the best mix of the baselines is identified [8].

Fig. 5 Morphing of a duct
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3.5 Radial Basis Functions

A radial basis function (RBF) is a function whose value is directly coupled to its dis-
tance from a chosen center point. The value of the RBF tapers off from its maximum
at the center towards zero in all coordinate directions. Although being popular pri-
marily for regression analysis, it also is utilized as a mechanism to change geometry
smoothly within a confined region.

An example radial basis function is a cos-square function of amplitude A and
radius r , see for instance [1]. The center of the radial basis function is placed at some
arbitrary point in space. At this point the change to the original geometry is largest,
namely equal to the amplitude A. All points within the radius r also experience a
shift, albeit with decreasingmagnitude for increasing Euclidian distance to the center
point. Beyond radius r no more changes are introduced and the geometry remains
as-is.

Figure 6 illustrates this for the nose of an airplane. The modification is applied to
a discrete data set that stems from an STL description of the geometry. Here, just one
RBF is used whose center point is located in the tip. More complex modifications
can be realized by combining several RBFs, see e.g. [15].

Fig. 6 Modification of an airplane nose by a single RBF
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4 Fully-Parametric Modeling (FPM)

Fully-parametric models are built from scratch, i.e., the entire shape is defined by
parameters and each variant is generated as an instance according to the current
parameter values.

When looking at flow-related shapes often there are two distinct directions of
information. In one direction a design changes quite slowly, it rather evolves, while
in the other direction, mostly orthogonal to the first, there is a certain building pattern
that remains topologically unchanged. This is illustrated for different products in
Fig. 7.

As shown in Fig. 7a the blades of a propeller do not change significantly from
hub to tip. Rather, the profiles are continuously defined by the same parameter set,
typically chord length, maximum thickness and camber along with pitch, rake and
skew (see also below). Figure 7b depicts the sections of a volute where the building
pattern stays the same circumferentially even though from one angle to the next small
modifications occur. Likewise, the sections of a hull as shown in Fig. 7c change only
gradually in longitudinal direction when moving from stern to stem (see also Fig. 4

A: Radial distribution of information  B: Circumferential distribution of info. 

C: Longitudinal distribution of information

Fig. 7 Gradual change of information for different shapes
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for a different type of ship). From one station to the next the modifications are minor
while over the entire length of the vessel quite some differences occur.

4.1 MetaSurface Approach for Fully-Parametric Modeling

A powerful approach is to define both the building pattern (curve definition) and
the distribution of the inputs to this pattern in the other direction parametrically.
Figure 8 illustrates the superposition of information in an abstract form (left column)
and specifically for a propeller blade (right column). The outcome is amathematically
closed definition, a so-called MetaSurface [4], that allows computing and addressing
any point on the surface.

Figure 9 illustrates this MetaSurface approach for a propeller. The blade is pro-
duced from a chosen profile, here a modified NACA66 as the building pattern, along
with the radial distributions of all parameters defining the profile and its position
in space. As can be seen each parameter changes as a function of the radius. Every
cylindrical profile is fully defined by the values of all parameters at any given radius,
bringing about a closed mathematical description. In Fig. 9 the radial distribution
for chord length (shown in red) is changed, here by just one parameter, resulting in
blade variants.

The idea of combining information from two distinct directions is obviously
related to sweeping, i.e., the continuous transfer of a curve (often planar) along
a given path. However, typical sweeps either keep the generating curve as is or just
apply standard transformations (such as scaling and rotation) along the path. This
brings about a fully-parametric model, too, but with less control.

Another similar approach of surface generation is lofting (likewise skinning), i.e.,
the longitudinal interpolation of a set of transversal curves bymeans of a surface. This
also constitutes a fully-parametric model. However, each transversal curve is treated
individually, i.e., each curve is generated from its specific parameters. An important
difference to the MetaSurface approach is that the values of the input parameters are
not necessarily related. This independence leads to higher degrees-of-freedom (DoF)
and, quickly, to oscillations in stacking direction, in particular when each transversal
curve is handled separately during an automated optimization.

Suppose that within a lofting approach the propeller blade shown in Fig. 9
would be generated from twelve individual cylindrical profiles stacked from hub
to tip. With only five parameters per profile the design space would already feature
12 * 5�60 DoF. In comparison, the design space of the corresponding MetaSurface
(Fig. 8) is more compact as it is spanned only by the parameters that control the radial
distributions. If four parameters are used for each of these curves on average, the
design space shrinks to 5 * 4�20 DoF. In practice, during an optimization only sub-
sets of the parameters are employed as free variables. For instance, let the propeller
blade be varied for the inner radii by changing chord length (as shown in Fig. 9) and
camber. Taking two parameters to modify the chord length and camber distributions
would give two DoF for the MetaSurface. For the lofted surface one would choose



202 S. Harries et al.

Step 1: Defining a building pattern (in first direction)

Step 2: Setting up parameter distributions (in second direction)

Step 3: Combining the building pattern and the parameter distributions (MetaSurface)

Fig. 8 Shape definition by superposition of information given in different directions

maybe six to eight profiles, freezing hub and tip. This would give rise to 6 * 2�12
to 8 * 2�16 DoF.

4.2 Parametric Modeling of Building Patterns

Frequently, building patterns for fully-parametric models (see Fig. 8) are planar
shapes since they are easy to both generate and understand.
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Fig. 9 Variation of chord length distribution for a propeller and resulting blades

For propellers, turbine blades and airfoils often standard profiles are chosen, for
instance the NACA66 and NACA four digit series. Some of these shapes have ana-
lytical definitions. An option then is to utilize the coefficients as parameters for shape
control, particularly if they have a task-specific meaning (e.g. maximum camber).

Another approach is to define profile-like shapes such as airfoil sections, nacelles,
ducts and streamline bodies explicitly by the class-and-shape function transformation
(CST) as introduced in [10]. The non-dimensional ordinate of a profile is written as
y
c � C · S + x

c
�yT E

c with the class function C � (
x
c

)N1 · (
1 − x

c

)N2
and the shape

function S �
N∑
i�0

[
Ai · (

x
c

)i]
, xc being the non-dimensional abscissa. N1 and N2 define

the fundamental geometry, i.e., the class, while Ai serve as parameters of the actual
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Fig. 10 Instances of scaled CST shapes

shape. The shape functions can be cast into different polynomial representations,
making parameters Ai easier to interpret.

Figure 10 shows several instances of profiles (mirrored at the x-axis). Three
quadratic Bernstein polynomials, featuring partition of unity, are employed for S.
Different exponents Ni of the class function (left column) lead to wider metamor-
phoses while modifications of the shape coefficients Ao, A1 and A2 (right column)
yield slighter variations.

For free-form shapes often Bézier or B-spline curves are utilized. The coordinates
of the vertices are frequently treated as parameters. This has a smoothing effect on the
shape when changing vertex positions. Nevertheless, the B-spline vertices are only
indirectly related to shape properties such as tangents, curvatures, area and centroid.
These more sophisticated parameters frequently have a direct, task-related meaning.
If an additional fairing functional is introduced [6] the DoF become independent of
the number of vertices and the B-spline is computed from an (inner) optimization,
leading to so-called F-splines [4].

Figure 11 illustrates the variation of an F-spline for different inputs. A cubic open
B-spline with six vertices is varied for its area (with reference to the ordinate axis)
and its tangent at the upper right end. The start and end points along with the tangent
at the start point are fixed.
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Fig. 11 Instances of a two-parameter family of F-splines

4.3 Incorporated Handling of Constraints

Frequently, shapes have to comply with a set of equality and inequality constraints.
While some constraints can only be evaluated by means of a simulation, others may
directly relate to the shape itself. These constraints can be utilized such that a feasible
instance is produced for each parameter set which nicely speeds up any subsequent
optimization.

Fully-parametric modeling is particularly well-suited to incorporate equality con-
straints. Figure 12 illustrates this for the piston bowl of a Diesel engine. Here the
compression volume is supposed to stay constant during the variation of the bowl
(highlighted in red). The planar curve, i.e., the building pattern, used to define the sur-
face of revolution is determined such that the specified volume is met automatically
for each instance.
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Fig. 12 Four instances of a Diesel piston bowl featuring the same compression volume

5 Design Velocities

Comprehending a sophisticated parametric model is not always an easy task, partic-
ularly if the designer is not the person who set up the model or the model was defined
some time ago.

A nice way of illustrating the influence of each parameter in order to gain an
appreciation of the model is to depict the so-called design velocities. Changing one
parameter at a time just slightly allows computing the displacement of each point
form the initial to its new position. Figure 13 gives the design velocities for three
parameters of a pressure valve as computed by the displacement in normal direction
to the initial surface.
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Fig. 13 Design velocities for three parameters of a pressure valve

6 Simulation-Driven Design

Developing a good parametricmodel requires both experience in geometricmodeling
and knowledge about the design task at hand. An investment into a good parametric
model is worthwhile to make if variants need to be generated quickly and without
any need of further interactive work. Consequently, simulation-driven design (SDD)
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Fig. 14 Steps taken in simulation-driven design depending on modeling approach

is a key field of application for parametric modeling (upfront CAD) since tens, if not
hundreds or even thousands of variants are to be studied.

In the context of CFD simulation the flow field typically is discretized bymeans of
amesh. Depending on the parametricmodeling approach, different steps are involved
in the process from producing a variant to undertaking and assessing the CFD simu-
lation. Figure 14 summarizes the steps for both fully- and partially-parametric mod-
eling. In fully-parametric modeling (FPM) a shape variant is created (from scratch)
for which a new mesh is generated, ideally by keeping all mesh settings constant. In
partially-parametric modeling (PPM) there are two flavors, either a shape variant is
brought about for which a new mesh needs to be produced or the modifications to
the shape are directly imposed on the existing mesh, too. The latter approach may
lead to possible mesh deterioration when changes become too large while the former
may occasionally suffer if (re)meshing is not successful for all variants.
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7 Requirements and Comparison

A number of requirements can be formulated which characterize an ideal parametric
model:

• Independence of parameters:
Each parameter influences the shape uniquely and no combination of parameters
renders any other parameter superfluous,

• Fairness of resulting variants:
All potential variants are free of any unwanted shape characteristics,

• Balance:
Shapes can be produced beyond the current engineering practice while still avoid-
ing unacceptable artifacts, yielding a manageable design space,

• Direct incorporation of (equality) constraints:
(Geometric) constraints are used as part of the shape definition (reducing DoF),

• Fitness for simulation:
All variants are free of gaps, folds, overlaps etc. (robustness),

• Ease of understanding:
The parameterization has some task-related meaning, can be readily understood,
is reasonably documented and/or visualized.

Meeting all of these requirements is a challenge. Often a parametric model is
adapted or set up anew after some preliminarywork. A comparison of advantages and
disadvantages of thevarious techniques is given inTable 1 (refer also toFig. 1). It sum-
marized the discussion given in the previous sections. It should be noted that ratings
such as low, medium and high can only be indicative for standard implementations
without considering specific improvements as reported e.g. in [9, 15]. Recent devel-
opments are targeted towards further reducing parameter sets and ensuring parameter
independence [3]. The aim is to build a reduced-dimensionality representation of the
shape modification without losing the essence of the design space. Clearly, this is
particularly useful if expensive simulations are utilized and the degrees-of-freedom
shall be further lowered.

8 Conclusions

Parametric modeling techniques are a key prerequisite to successful shape optimiza-
tion with regard to fluid-dynamic performance. Different techniques are available,
ranging from partially-parametric to fully-parametric modeling. While partially-
parametric modeling is relatively easy to set up and apply, particularly when doing
detailed design and fine-tuning, fully-parametric modeling needs higher investment
but is applicable from concept design to fine-tuning and yields the highest potential
for substantial improvements of product performance.
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Table 1 Comparison of common parametric modeling techniques

Approach Design stages Preparation time
required

Know-high
required

Potential for
shape
optimization

FPM:
MetaSurface
approach

Concept design
to fine-tuning

Medium to high
(suitable for a
wide range of
shapes)

High (task
specific)

High (small
design spaces)

FPM: Lofting Concept design
to fine-tuning

Medium (easily
applicable to
blades)

Low to medium Low to medium

PPM: Free-form
deformation

Detailed-design
to fine-tuning

Medium (boxes
for complex
shapes non-trivial
to set up)

Medium Medium

PPM: Shift
transformation

Concept design
to fine-tuning

Small Low Medium

PPM: Morphing Concept design
to fine-tuning

Medium (various
traditional
baselines needed)

Medium Medium (for
good baselines)

PPM: Added
patch

Detailed-design
to fine-tuning

Small to medium Low Medium

PPM: Radial
basis functions

Detailed-design
to fine-tuning

Medium Low Medium

The right choicewhich parametricmodeling technique(s) to utilize and possibly to
combine, depends on the design task at hand. For optimization using CFD an upfront
CAD approach is recommended in which less important details are deliberately
left out, speeding up the process and increasing the chances of finding shapes with
substantially improved performance.
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Simulation-Based Design Optimization
by Sequential Multi-criterion Adaptive
Sampling and Dynamic Radial Basis
Functions

Matteo Diez, Silvia Volpi, Andrea Serani, Frederick Stern
and Emilio F. Campana

Abstract The paper presents a global method for simulation-based design
optimization (SBDO) which combines a dynamic radial basis function (DRBF)
surrogate model with a sequential multi-criterion adaptive sampling (MCAS) tech-
nique. Starting from an initial training set, groups of new samples are sequentially
selected aiming at both the improvement of the surrogate model global accuracy
and the reduction of the objective function. The objective prediction and the associ-
ated uncertainty provided by the DRBF model are used by a multi-objective particle
swarm optimization algorithm to identify Pareto-optimal solutions. These are used
by the MCAS technique, which selects new samples by down-sampling the Pareto
front, allowing for a parallel infill of an arbitrary number of points at each itera-
tion. The method is applied to a set of 28 unconstrained global optimization test
problems and a six-variable SBDO of the DTMB 5415 hull-form in calm water,
based on potential flow simulations. Results show the effectiveness of the method in
reducing the computational cost of the SBDO, providing the background for further
developments and application to more complex ship hydrodynamic problems.

1 Introduction

Simulation-based design optimization (SBDO) techniques have developed in the
last decades in response to the high cost of the build-and-test design paradigm,
relying on the increasing accuracy of the simulation tools and availability of compu-
tational resources. SBDO requires the automated integration of design modification
tools, accurate computer simulations, and optimization algorithms. SBDO typically
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requires a large number of computer simulations to identify the global optimal solu-
tion to the design problem. The high-fidelity, complexity, and computational expense
of the simulation tools is approaching resource saturation, requiring therefore cost-
reducing solutions.

The application of surrogate models alleviate the computational cost of SBDO.
When performing surrogate-based SBDO, a sampling of the design space by design
of experiment (DoE) techniques is used to train a surrogate model of the desired
objective function, which is used by the optimization algorithm. Surrogates have
been widely used in performing SBDO, including optimization of stochastic black-
box functions [14], optimization under uncertainty [15], sampling-based reliability-
based design optimization [31], deterministic [5] and stochastic [10] hydrodynamic
optimization.

The sampling of the design space needs to be efficient an effective, possibly
achieving two competitive goals: an adequate global accuracy of the surrogate model
(especially when a global optimum is sought), and a fine investigation of promising
design regions [2]. DoEs defined on the basis of a priori methods can hardly achieve
these goals. For this reason, adaptive sampling techniques have been developed
which exploit information that becomes available during the optimization process.
The literature proposes a large variety of adaptive sampling criteria. Some examples
include: the Kushner’s criterion [19], which maximizes the probability of improving
the objective; the expected improvement criterion, used in the efficient global opti-
mization (EGO) algorithm [16]; the lower confidence bounding function [7], which
minimizes the linear combination of surrogate model prediction and surrogate model
uncertainty; locating the threshold-bounded extreme, locating the regional extreme,
and minimizing surprises [30].

The objective of the current research is the extension of a dynamic radial basis
function (DRBF) surrogate model [29], used in earlier work for uncertainty quan-
tification of ship hydrodynamic problems, to global, derivative free, deterministic
design optimization.

The current method implements a sequential multi-criterion adaptive sampling
(MCAS) technique based on DRBF-predicted objective and associated uncertainty.
Starting from an initial training set, groups of new samples are selected from the
Pareto front of non-dominated solutions obtained by a multi-objective extension of
the deterministic particle swarm optimization (MODPSO) algorithm [4, 18, 22]. An
additional single-objectiveDPSO [26] is performed over theDRBFmodel to improve
the selection of the global minimizer. The procedure is iterated until convergence.

The method is applied to 28 unconstrained global optimization test problems, as
well as to the hull-form optimization in calm water and fixed speed of the DTMB
5415, an early concept of the USS Arleigh Burke-class destroyer DDG-51 used as
a benchmark for experimental [20, 27] and numerical optimization [12, 13, 25]
studies. A potential flow code [1] is used for the simulations. The performance of
the DRBF method is assessed by comparison with a direct application of DPSO.
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2 Optimization Problem Formulation

Given a design variable vector x of dimension N and a design objective

f (x) : R
N → R (1)

the optimization problem is formulated as

min
x∈Ω

f (x) (2)

where
Ω = {

x ∈ D ⊂ R
N | ci (x) ≤ 0, i = 1, . . . , Nc

}
(3)

is the feasible set, D is the design space defined by box constraints, and ci (x) are
inequality constraints. Herein, these are handled by a linearly penalized objective
function

f p(x) = f (x) + γ

Nc∑

i=1

max [ci (x), 0] (4)

3 Dynamic Radial Basis Function Method for Optimization

3.1 Surrogate Model

Given a set of M training points {zi }Mi=1 with associated function evaluations yi =
g(zi ), a power law RBF provides predictions as

h(x, ε j ) =
M∑

i=1

wiϕ (||x − zi ||) with ϕ = ||x − zi ||ε j (5)

where the exponent ε j ∈ R is a tuning parameter; w = {wi }Mi=1 is the solution of the
linear system that provides exact prediction at x = zi

Aw = y with ai j = ϕ
(||zi − z j ||

)
and y = {yi } (6)

TheDRBFmodel [29] provides the expected value of a sample of RBF predictions
over a stochastic distribution of ε j . Herein, ε j is assumed uniformly distributed
between εmin and εmax:

ĝ(x) = EV[h(x, ε j )] with {ε j }Nε

j=1 ∼ unif[εmin, εmax] (7)
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The uncertainty Ûg(x) associated to the prediction at x is quantified by the 95%-
confidence band of h(x, ε j ).

If multiple functions (gk , k = 1, . . . , Ng) are assessed, multiple surrogate models
need to be computed. If these are based on the same training points {zi }Mi=1, with

corresponding function evaluations yk = {gk(zi )}Ng

k=1, a single factorization of the
matrix A may be used. In fact, the system

AW = Y (8)

may be solved at once. In this case, W = [
w1| . . . |wNg

]
and Y = [

y1| . . . |yNg

]
.

When the surrogate model is used for unconstrained optimization, Ng = 1,
g(x) = f (x), and the model output is the couple { f̂ , Û f }. When the surrogate model
is used for constrained optimization, Ng = Nc + 1, g1(x) = f (x), g2(x) = c1(x),
…, gNc+1(x) = cNc(x), and the output is the Nc + 1 couples { f̂ , Û f }, {ĉ1, Ûc1}, …,
{ĉNc , ÛcNc }. The penalized objective function f̂ p(x) is computed using the predictions

f̂ , ĉ1, …, ĉNc , as per Eq.4.

3.2 Multi-criterion Adaptive Sampling

Starting from an initial training set, the MCAS identifies groups of new samples
balancing the surrogate model accuracy and the search for the global minimizer.
This is pursued by solving the multi-objective optimization problem

min
x∈D f̂ p(x) and max

x∈D Û f (x) (9)

Note that for unconstrained problems f̂ p(x) corresponds to f̂ (x), while Û f (x) is
always the uncertainty of the (non-penalized) objective.

The Pareto front obtained is down-sampled in order to identify m equally spaced
points along a curvilinear coordinate ξ (Fig. 1). In view of the fact that: (a) sampling
too close to available training points does not add useful information to the analysis,
(b) as the distance between training points decreases, the matrix A in Eq.6may result
ill-conditioned, and (c) the uncertainty at the training points is zero, i.e.

lim||x−zi ||→0
Û f (x) = 0, (10)

a constraint is defined such that Û f (x) ≥ umin, where umin = βÛrange with Ûrange =
{max[Û f (x)] − min[Û f (x)]}.
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Fig. 1 Pareto solutions of
the multi-objective problem
with samples

umin

U
(x

)
^

f(x)

Pareto front

^

3.3 Optimization Procedure

The optimization procedure using DRBF and MCAS is performed as per the follow-
ing algorithm.

Algorithm DRBF with MCAS

Step 1. Define an initial DoE {zi }Mi=1 and evaluate objective function and
constraints Y = [

y1| . . . |yNc+1
]
.

Step 2. Initialize the current optimum: yopt = min(y1) and xopt = argmin(y1).
Step 3. Build the DRBFmodel for objective and constraints { f̂ , Û f },…, {ĉNc , ÛcNc }

using the training set T ≡ {zi ,Yik}.
Step 4. Find the minimizer x∗ of f̂ p(x) by DPSO and compute the true objective

function y∗ = f (x∗).
Step 5. If y∗ < yopt then

update the current optimum xopt = x∗.
Step 6. If Û f (x∗) ≥ umin then

add z̃1 = x∗ to the new DoE;
define a new DoE {z̃i }mi=2 by MCAS;
evaluate objective and constraints at {z̃i }mi=2.

Else
define a new DoE {z̃i }mi=1 by MCAS;
evaluate objective and constraints at {z̃i }mi=1.

Step 7. Add the new m samples to T .
Step 8. Iterate step 3 to 7 until convergence.
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4 Deterministic Particle Swarm Optimization

Particle Swarm Optimization (PSO) belongs to the class of heuristic algorithms for
single-objective evolutionary derivative-free global optimization and was originally
introduced byKennedy and Eberhart [18]. In order tomake PSOmore efficient for its
use within SBDO, a deterministic version of the algorithm (DPSO) was formulated
by Campana et al. [4] as follows

{
vk+1
i = χ

[
vki + c1(xi,pb − xki ) + c2(xgb − xki )

]

xk+1
i = xki + vk+1

i

(11)

Equation11 represents velocity and position, respectively, of the i th particle at
the kth iteration. Particles are attracted by the personal best position xi,pb ever found
by the i th particle and by the global best position xgb ever found by all particles. The
effectiveness of DPSO depends on the constriction factor χ , the cognitive and social
learning rate c1 and c2, along with the number of individuals Np and their initial
distribution and velocity. Serani et al. [26] investigate the effect of such parameters
and propose guidelines for an efficient use of the algorithm in the context of ship
hydrodynamic optimization [24].

The extension of DPSO to multi-objective problems can be found, for instance,
in Pellegrini et al. [22]. This is based on extending the definition of the personal and
global best in the Pareto-optimality sense. Specifically, the personal attractor xi,pb is
the closest point to xi of the pesonal Pareto front. The global attractor xi,gb is different
for each particle and defined as the closest point to xi of the global Pareto front.

5 Optimization Problems

The DRBF model with the MCAS method is applied to unconstrained global opti-
mization test problems and to the hull-form optimization of the DTMB 5415. The
formulation of the problems is presented in the following.

5.1 Unconstrained Global Optimization Test Problems

The study includes the minimization of 28 unconstrained global optimization test
problems [3, 29] with a number of independent variables ranging from two to 12.
These include multimodal, highly nonlinear, and transcendental functions. Table1
provides details of the problems, such as their dimension and search domain.
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Table 1 Unconstrained global optimization test problems

Function No. variables ID Bounds

Alpine 2, 3, 4, 6, 12 A2, A3, A4, A6, A12 −10 ≤ xi ≤ 5

Exponential 2, 3, 4, 6, 12 E2, E3, E4, E6, E12 −10 ≤ xi ≤ 5

Griewank 2, 3, 4, 6, 12 G2, G3, G4, G6, G12 −5 ≤ xi ≤ 5

Hartmann 3, 6 H3, H6 0 ≤ xi ≤ 1

Levy 2, 3, 4, 6, 12 L2, L3, L4, L6, L12 −10 ≤ xi ≤ 10

McCormick 2 M2 −1.5 ≤ x1 ≤ 4,
−3 ≤ x2 ≤ 4

Styblinski-Tang 2, 3, 4, 6, 12 S2, S3, S4, S6, S12 −5 ≤ xi ≤ 5

5.2 Hull-Form Optimization of the DTMB 5415

The SBDO example is the hull-form optimization of the DTMB 5415 model (Fig. 2).
This has been widely investigated by towing tank experiments [20, 27] and SBDO
studies [12, 17, 25, 28]. In the present work, a single-objective SBDO is shown,
aiming at the reductionof the total resistance RT in calmwater at 18kn, corresponding
to a Froude number (Fr) equal to 0.25. Main particulars and design conditions are
summarized in Table2.

Fig. 2 A 5.720 m length model of the DTMB 5415 (CNR-INSEAN model 2340)

Table 2 DTMB 5415 model main particulars and test conditions (full scale)

Description Symbol Unit Value

Displacement ∇ Tonnes 8,636

Length between perpendiculars LBP m 142

Beam B m 18.9

Draft T m 6.16

Longitudinal center of gravity LCG m 71.6

Vertical center of gravity VCG m 1.39

Speed V kn 18

Water density ρ kg/m3 998.5

Kinematic viscosity ν m2/s 1.09 × 10−6

Gravity acceleration g m/s2 9.803
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An orthogonal representation of the shape modification is used, since more effi-
cient in the context of shape design optimization [3, 9]. Specifically, six orthogonal
functions Ψ1,...,6 are applied for the modification of the hull shape, controlled by six
design variables α1,...,6:

⎧
⎪⎨

⎪⎩

Ψ j (u, v) := α j sin

(
p jπu

A j
+ φ j

)
sin

(
q jπv

Bj
+ χ j

)
ek( j)

(u, v) ∈ [0; A j ] × [0; Bj ]
(12)

where u and v are curvilinear coordinates; p j and q j define the order of the function
in u and v direction, respectively; φ j and χ j are the corresponding spatial phases; A j

and Bj define the modification domain size; ek( j) is a unit vector. Table3 summarizes
the parameters used here, including upper and lower bounds of α j . The results will
be presented in terms of non-dimensional design variables x j ∈ [−1, 1] given by
x j = 2(α j − α j,min)/(α j,max − α j,min) − 1. Geometrical constraints include fixed
displacement and length between perpendiculars (automatically satisfied by the
geometry modification tool), and ±5% maximum variation of beam and draft.

The solver used is the potential flow code WARP [1] based on the double model
linearization [8]. The wave resistance is estimated by integrating the pressure over
the hull, whereas the friction resistance is estimated by a local approximation based
on flat-plate theory [23]. Simulations are performed for the right demi-hull taking
advantage of the symmetry about the xz plane. The computational domain for the free
surface is defined within 1 LBP upstream, 3 LBP downstream and 1.5 LBP sideways.
The associated panel grid used can be found in Serani et al. [25]. The validation of
the computations for the original hull is shown in Fig. 3 versus experimental data
collected at CNR-INSEAN [21] showing a reasonable agreement especially for low
speeds.CT = RT /0.5ρV 2Sw,stat , δ, and τ are shown, where RT is the total resistance,
Sw,stat is the static wetted surface area, δ is the sinkage (positive if the center of gravity
sinks), and τ is the trim (positive if the bow sinks).

Table 3 Orthogonal function parameters for shape modification

Description j p j φ j q j χ j k( j) α j,min (m) α j,max (m)

Hull modification 1 2.0 0 1.0 0 2 −1.0 1.0

2 3.0 0 1.0 0 2 −1.0 1.0

3 1.0 0 2.0 0 2 −0.5 0.5

4 1.0 0 3.0 0 2 −0.5 0.5

Sonar domemod-
ification

5 1.0 0 1.0 0 2 −0.3 0.3

6 0.5 π/2 0.5 0 3 −0.5 0.5
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Fig. 3 Total resistance coefficient (a), non-dimensional sinkage (b), and trim (c) in calm water
versus Fr, for the model scale DTMB 5415 (LBP = 5.72 m)

6 Numerical Results

The test problems are solved using the following setup. The initial DoE is a Ham-
mersley sequence sampling (HSS), Nε = 513, ε ∈ [0.75, 2.5], m = 5, β = 0.01,
and the maximum number of function evaluations Neval is 1000. The hull-form opti-
mization is solved using the following setup. The initial DoE is a HSS, Nε = 200,
ε ∈ [0.75, 2.5], m = 8, β = 0.01, and Neval = 1000. DPSO parameters are given in
Table4.

6.1 Unconstrained Global Optimization Test Problems

For the assessment of the test problems, the normalizeddifferencebetween the current
optimum and the true minimum Δ f is used as a metric [3]. DRBF and DPSO are
iterated until Δ f ≤ 0.1% or until the number of function evaluations reaches Neval .

Figure4 shows the convergence of DRBF and DPSO algorithms for the test prob-
lems E2, H6, and G12 as an example. The figure displays the value of the metric
versus the number of functions evaluations M . DRBF is found significantly more
effective than DPSO for E2 and G12, and slightly more efficient for H6. The average
performance of DRBF and DPSO is summarized in Fig. 5, taking into account all
the test problems. The average number of function evaluations needed to achieve
Δ f ≤ 0.1% is shown versus the number of design variables N . On average, DRBF

Table 4 DPSO parameters

Objective function Np Neval Initialization [χ c1 c2]
f p (no surrogate) 4N 1000 HSS v �= 0 [5] [0.721 1.655 1.655] [6]
f̂ p (surrogate, single-objective) 4N 256N HSS v �= 0 [5] [0.721 1.655 1.655] [6]
f̂ p, Û f (MCAS, multi-objective) 32N 1024N HSS v = 0 [0.9801 0.3333 0.6767]

[11]



222 M. Diez et al.

 0.01

 0.1

 1

 10

 100

1  10  100  1000

Δ
f [

%
]

No. function evaluations [-]

DRBF
DPSO

 0.01

 0.1

 1

 10

 100

 10  100  1000

Δ
f [

%
]

No. function evaluations [-]

DRBF
DPSO

 0.01

 0.1

 1

 10

 100

 10  100  1000

Δ
f [

%
]

No. function evaluations [-]

DRBF
DPSO

(a) (b) (c)

Fig. 4 Convergence of DRBF and DPSO for test problems E2 (a), H6 (b), G12 (c)
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Fig. 5 Average number of function evaluations needed to achieve Δ f ≤ 0.1%

Fig. 6 Sensitivity analysis of the design variables (a), and convergence of DRBF and DPSO for
the hull-form optimization of the DTMB 5415 (b)

requires fewer function evaluations to achieve the optimal solution.Moreover, DRBF
outperforms DPSO for N = 12 since the latter does not achieve Δ f ≤ 0.1% for any
of the problems within the prescribed budget Neval .
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(a) 50 function evaluations

(b) 100 function evaluations

(c) 1000 function evaluations

Fig. 7 Optimal design variables (left), and sections of the DTMB 5415 original and optimized
hulls, comparing DRBF and DPSO solutions (right)
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Table 5 Design variables and objective function values for the DTMB 5415 hull-form

No. function
evaluations

Design variables [–] RT × 105 [N]

x1 x2 x3 x4 x5 x6 Value Δ%

50 DRBF 1.00 −1.00 −0.57 −0.02 −1.00 1.00 3.07 −9.65

DPSO 0.83 −1.00 0.56 0.35 0.47 −0.13 3.16 −7.09

100 DRBF 1.00 −1.00 −0.59 −0.02 −1.00 1.00 3.07 −9.66

DPSO 1.00 −1.00 0.86 0.06 0.14 0.74 3.11 −8.46

1000 DRBF 1.00 −1.00 0.10 0.38 −1.00 1.00 3.06 −9.92

DPSO 1.00 −1.00 0.21 0.43 −1.00 1.00 3.06 −9.93

6.2 Hull-Form Optimization of the DTMB 5415

The penalized objective of Eq.4 is computed using a penalty coefficient γ = 100.
A preliminary sensitivity analysis for each design variable is presented in Fig. 6a.

Unfeasible designs are not reported. Changes in f reveal a potential reduction of the
total resistance (at Fr = 0.25) close to 2%.

The optimization process by DRBF is shown in Fig. 6b, including the comparison
withDPSO.The figure displays the convergence of f versusM . Note that all the solu-
tions correspond to feasible designs. Both methods reach a total resistance reduction

(a) DRBF

(b) DPSO

(c) Original

Fig. 8 Wave elevation pattern (left) and pressure field distribution (right) at Fr = 0.25 of the
optimizedDRBF (a) andDPSO(b) hulls compared to the original (c),with 1000 function evaluations
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Table 6 Summary of optimization results for DTMB 5415 hull-form

Parameter Unit Original Optimized Δ%orig

DRBF DPSO

Cw – 1.00E−03 −26.36 −26.77

C f – 1.61E−03 −0.04 −0.05

CT – 2.62E−03 −10.15 −10.30

δ/LBP – 1.37E−03 5.45 5.27

τ rad 9.90E−04 91.54 89.99

Sw,stat/LBP2 – 1.48E−01 0.25 0.42

Sw,dyn/LBP2 – 1.51E−01 0.36 0.52

close to 10%. DRBF provides a quite sudden convergence achieving 9.6% reduction
with 41 function evaluations, whereas DPSO requires nearly 400 evaluations to reach
the same improvement.

Figure7a, b, and c show the solutions for 50, 100, and 1000 function evalua-
tions, respectively, in terms of variable values and hull sections of the corresponding
designs. Table5 gives the design variables and the associated objective function val-
ues. The solutions provided by DRBF and DPSO differ in the objective reduction by
2.66%, 1.20%, and 0.01%, for 50, 100, and 1000 evaluations, respectively.

Figure8 shows the non-dimensional wave elevation pattern and the associated
non-dimensional pressure distributions on the hull comparing DRBF and DPSO
final designs to the original hull. The transverse wave is reduced and the pressure
shows a better recovery towards the stern.

Finally, Table6 summarizes the main parameters associated with the optimal
DRBF and DPSO designs. The resistance coefficients are defined as Cx = Rx/0.5
ρV 2Sw,stat, with Rw, R f , RT beingwave, frictional, and total resistance, respectively;
Sw,stat and Sw,dyn are static and dynamic wetted surface areas.

7 Conclusions and Future Work

The current study investigates the performance of a novel method for simulation-
based design optimization (SBDO), which combines a dynamic radial basis func-
tion (DRBF) surrogate model with a sequential multi-criterion adaptive sampling
(MCAS) technique. The MCAS selects groups of new samples sequentially, starting
from an initial deterministic DoE and using the function prediction and its associ-
ated uncertainty as provided by the surrogate model. Function value and uncertainty
of the surrogate are the two objectives of a multi-objective deterministic particle
swarm optimization (MODPSO) algorithm, which is used to obtain Pareto-optimal
solutions. TheMCAS performs the parallel infill of an arbitrary number of new train-
ing points by down-sampling of the Pareto front. Therefore, this sampling method
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pursues simultaneously the global accuracy of the surrogate and the refinement of
optimal regions, also exploiting the availability of parallel computing architectures.

Numerical results for a set of 28 unconstrained global optimization test problems
show that DRBF outperforms a direct application of DPSO, requiring on average
approximately 80% fewer function evaluations for two-dimensional problems and
35% for higher dimensions.

The application of DRBF to the six-variable hull-form optimization of the DTMB
5415 shows the potential of the method in performing constrained SBDO problems.
The hull is optimized using a potential flow solver and the total resistance is reduced
bynearly 10%.For a large number of simulations,DRBFandDPSOconverge approx-
imately to the same solution. DRBF is foundmore efficient than the direct application
of DPSO, showing a quite sudden convergence. Specifically, 9% resistance reduction
is achieved by DRBF requiring nearly ten times fewer simulations than DPSO.

Future developments include the assessment of optimal initial DoEs, in terms
of number of samples and distribution, along with the optimal number of samples
selected by the MCAS technique at each iteration. The promising result of DRBF
lays the groundwork for further investigations, including SBDO with larger design
spaces and the use of high-fidelity CFD methods, such as RANS solvers.
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Application of Holistic Ship Optimization
in Bulkcarrier Design and Operation

Lampros Nikolopoulos and Evangelos Boulougouris

Abstract The recent years have seen an evolution of traditional approaches in ship
design. Raising fuel costs, tough and volatile market conditions, the constant soci-
etal pressure for a«green»environmental footprint combined with ever demanding
international safety regulations pose a new challenge for today’s Naval Architect. As
a result of this current status of shipping commercial ship design is shifting towards
new approaches where holistic approaches are deemed necessary. Apart from con-
sidering all the interrelationships between the subsystems that consist the vessel,
lifecycle and supply chain considerations are the key in successful and«operator-
oriented»designs. The paper presents a methodology within the parametric design
software CAESES® for the optimization of the basic design of a new vessel and
the operation of an existing one with regards to the maximization of the efficiency,
safety and competitiveness of the final design. A case study with the design opti-
mization was undertaken based on the simulation of the anticipated operation of a
vessel engaged in the supply chain of Iron Ore. The target was the minimization of
costs, fuel consumptions as well as of the Energy Efficiency Operating Index (EEOI)
under conditions of uncertainty.

1 Introduction

For centuries the backbone of global trade and prosperity has been international
shipping, with the vast majority of transportation of raw material as well as manu-
factured goods being transported by ships. While the 20th century saw the expansion
of shipping in parallel with the industrial revolution, the first decade of the 21st posed
a series of challenges for commercial shipping. The economic recession combined
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Fig. 1 Major iron ore trades

with a fall in freight rates (due to tonnage overcapacity as well as a global economic
slowdown in terms of growth per capita) has threatened the financial sustainability
of numerous companies. At the meantime, the Kyoto [1] protocol and the societal
pressure for greener shipping, gave birth to a number of international environmental
regulations that set the scheme for future ship designs. These are required to have a
small carbon footprint and also incorporate ballast treatment systems to mitigate the
risk of reducing biodiversity (especially in sensitive ecosystems such as reefs) due
to the involuntary carriage of evasive species in the ballast water tanks.

Different cargoes have different main routes. Focusing on the seaborne trade of
major bulk commodities such as iron ore or coal, the trade routes are very specific
and shown in Fig. 1.

The rapid expansion of the Chinese economy created a constant demand for both
iron and coal. The major iron ore exporters are located in South America (primarily
Brazil) and Australia with million tons of exports per annum. The coal production
is concentrated in Indonesia, Australia and Russia with 383, 301 and 314 million
tons accordingly. The coal consumers are the Atlantic market consisted by Western
European countries (mainly Germany and the UK) and the Pacific market, which
consists of developing andOECDAsian importers, notably Japan,Korea andChinese
Taipei. The Pacificmarket currently accounts for about 57% of world seaborne steam
coal trade. For the past half century global bulk shipping has focused on providing
tonnage to serve the above trade with vessels of considerable size due to absence
of significant size restrictions. The latter being the outcome of the ever expanding
port terminals and the absence of physical restrictions (e.g. Panama Canal) on these
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routes. The present paper focuses on vessels intended for this trade which belong in
the Capesize/Very Large Ore Carrier (VLOC) segment of the shipping market.

The design of bulkcarriers was focused during the last 7 years on the increase of
efficiency by two means: increase of cargo carrying capacity and decrease of energy
demands. In most cases the optimization is evolved around a single design point in
terms of both speed and loading condition (draft and thus displacement). This paper
provides a holistic methodology [2] intended for the optimization of the basic design
of large bulkcarriers for their entire lifecycle, operational profile and supply chain.
The speed and trading profile is simulated for the entire economic life of the vessel
and the optimization focuses on the minimization of operating costs, maximization
of income, minimization of internal rate of return (IRR) summarized by the Required
Freight Rate (RFR) from one hand and from the other the minimization of the energy
footprint of the vessel expressed by the Energy Efficiency Design Index (EEDI) and
the simulated Energy Efficiency Operating Index (EEOI). In order to make sure that
the produced designs will be also safe, the optimization targets on the minimization
of the risk of structural failure without unnecessary increases the lightship weight.

2 Overview of the Holistic Methodology

Holism (from ×λoς holos, a Greek word meaning all, whole, entire, total) is the
idea that natural systems (physical, biological, chemical, social, economic, mental,
linguistic, etc.) and their properties, should be viewed as wholes, not as collections
of parts. This often includes the view that systems somehow function as wholes and
that their functioning cannot be fully understood solely in terms of their component
parts. Within this context the authors have developed such methodologies in the
Ship Design Laboratory of NTUA with the use of CAESES® [3] parametric design
software or other similar tools [4, 5]. This approach has been applied in a variety of
cases, e.g. to tanker design optimization [6] as well as to containership design [7].

The methodology is holistic in the sense that all the critical aspects of the design
are addressed under a common framework that takes into account the lifecycle per-
formance of the ship in terms of safety, efficiency and economic performance, the
internal system interactions as well as the trade-offs and sensitivities. The work-
flow of the methodology has the same tasks as the traditional design spiral with the
difference that the approach is not sequential but concurrent.

2.1 Design and Simulation Environment

The environment in which the methodology is programmed and is responsible for
the generation of the fully parametric hullform is CAESES®which stands for “CAE
system empowering simulation” [3]. It is a CAD-CFD integration platform which
was developed for simulation-driven design of functional surfaces like ship hulls,
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Fig. 2 Workflow of the proposed methodology

propellers and appendages. It may also be used for other applications like designing
turbine blades and pump casings. It provides a wide range of functionalities like
parametric modelling, integration of simulation codes, algorithms for systematic
variation and formal optimization. These capabilities make it an ideal tool for the
holistic ship design optimisation problem, where a parametric hullform should be
generated and its performances should be assessed by different software tools. The
holistic methodology proposed herein is depicted in Fig. 2 and will be analysed in
the next paragraphs.
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2.2 Geometric Core

The core of anyholistic designoptimisationmethoddeveloped in aCAD/CAEsystem
is the geometric model. For the ship hullform this poses unique challenges due to
the fairness and shaping requirements for both the forward and the aft area e.g. the
shape of the bulbous bow and the size of the transom respectively. In that respect,
the more flexible is the modelling environment, the better and higher the resolution
of the design space exploration would be. CAESES® offers such flexibility and this
is why it was selected for the definition of the original hull. The surface of the hull
was modelled as a group of parametric sub-surfaces.

2.3 Initial Hydrostatic Properties

The calculation of the hydrostatic properties is important for the verification of
integrity of the design by its displacement, the block coefficient and the centre of
buoyancy of the design. It is performed by an internal computation of CAESES®.
For its execution a dense set of offsets (sections) is required as well as a plane and a
mirror plane, defined by the user.

2.4 Lackenby Variation

In order to be able to generate the lines with the desired geometrical properties, the
Lackenby [8] variation is applied. This variation is a transformation that is able to
change the distribution of the enclosed volume longitudinally. Instead of applying
quadratic polynomials as shift functions, fairness optimized B-Splines are used. This
allows a better selection of the region influenced as well as smoother transition. The
required input for the transformation is its extent and the target values for the block
coefficient (Cb) and the longitudinal centre of buoyancy (LCB). In this case the extent
was from the propeller’s position to the fore peak. An example is shown in Fig. 3.

2.5 Cargo Hold Modelling

The cargo hold arrangement was generated on that resulting surface using a feature
of CAESES® and the capacity of the various holds was calculated. The cargo hold
surfaces and their respective parametric entity were realized within the CAESES®.
The parameters/variables controlling this area were the positions of the bulkheads,
the position of the Engine Room bulkhead, the frame spacing as well as some local
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Fig. 3 Hullform after the
application of Lackenby’s
variation

Fig. 4 Parametric cargo
hold surfaces

variables such as the hopper width and angle, the topside tank dimensions (width
and height), the lower stool height and length and double bottom height.

The capacity of each tank was calculated by creating offsets for each one of the
tank surfaces and joining them together. The calculation of the tanks’ hydrostatics
was performed then and the total capacity was checked. A calibration factor which
derived from the parent hull was applied to account for the volume losses due to the
structural frames inside the cargo holds. A similar factor was used for the estimation
of the Bale andGrain capacities. The result of the parametric tankmodelling is shown
in Fig. 4.
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2.6 Resistance Prediction

2.6.1 Calm Water Resistance

The resistance prediction of this model uses a hybrid method and two different
approaches, depending on the optimization stage.

Initially, during the design of experiment (DoE) and the global optimization phase,
where a large number of variants is created there is a need for a fast procedure. For this
particular reason Holtrop’s [9] approximate powering prediction method is used. It
derives from the statistical analysis ofmodel tests and is well-known for its very good
accuracy-to-computational cost ratio. Especially for bulkcarriers it is more accurate
as the wave making and the viscous pressure resistance are very small fractions
of the total resistance. It is the frictional resistance (directly related to the wetted
surface) that dominates the total resistance due to their small Froude number. The
entire Holtrop’s method was programmed within CAESES®. Thus, the actual data
from the geometric model (e.g. entrance angle, prismatic coefficients etc.) are used,
making the process more precise for the specific design.

An innovative feature of the methodology developed is that the parameters from
Holtrop’s statistical method were systematically calibrated in order for the pro-
grammed methodology to match the speed-resistance and speed-power curves of
the parent vessel as derived from its model tests. The calibration was performed by a
systematic optimization approach. The optimization variables were the coefficients
used in Holtrop’s methodology with a small margin of variance. Then the method-
ology would be applied for each speed/point of the model tests and the difference in
poweringwould derive. Theminimization of this difference is the optimization target
of this particular sub-problem. As 9 different speeds (from 12.5 to 16.5 knots) were
assessed the applied algorithm for the optimization was the NSGA II [10], while
900 variants were produced. The result was an average difference of 1.5% with the
Holtrop results being more conservative (over estimation) than the model tests.

At a later stage, in the optimization post processing, where local hullform param-
eters are considered, the CFD code package STARCCM+ is used in order to validate
the trends in terms of propulsion efficiency for the Pareto front designs. However,
the results of Holtrop are generally conservative and on the safe side compared with
CFD analysis while there are no discrepancies regarding the ranking of the designs
in terms of hull efficiency. Under these assumptions, the use of Holtrop’s method
at the preliminary design stage can be considered a prudent choice since the results
cannot be considered to be distorted and any errors are systematic and they do not
bias the results. Given the systematic calibration for the same«family»of hullforms
it argued that this is a sound strategy for both accuracy and computational efficiency.
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2.6.2 Main Engine and Engine Room Dimensioning

With the propeller dimensioned, the RPM and required power of the main engine
are determined. A margin for adverse weather conditions and fouling is considered
on the basis of 15% as per industry standard. A further 5% is also considered for
derating the main engine and ensuring smaller SFOC.

For the final requirements the main engine is matched with the existing G-Type,
ultra-long stroke, engines available from MAN [11]. An internal iterative procedure
ensures that the engine will have sufficient light running margin and that the layout
point on the diagram is close to the L2L4 line corresponding to larger torque/MEP
margins and smaller SFOC values.

From the above, the final SFOC curve from 50 to 100% is produced and corrected
for the actual engine layout.

The Diesel Generator output is calculated from an electrical balance while the
boiler output is based on the exhaust gas amount of the main engine in order to be
also sufficient for the steam production for the onboard heating of the fuel tanks.

2.6.3 Lightship Weight Prediction

The lightship calculation follows the traditional categorization in threeweight groups,
the machinery weight, the outfitting weight and the steel weight.
Machinery Weight
The machinery weight calculation is based on the average of two methods: the
Watson-Gilfillan formula and the calculation based on the Main Engines weight
respectively.

The machinery weight estimation is based on a empirical formula due to Watson-
Gilfillan [12]:

Wm � Cmd ∗ Pb0.89 (1)

The average is used to balance out any extreme differences, and the coefficients of
the Watson-Gilfillan formula are calibrated for low speed, two stroke engines based
on statistic data available for a fleet of bulkers.
Outfitting Weight
The outfitting weight is also based on the average of two independent calculations.
The Schneekluth method [12] is the first one and the use of empirical coefficients
for sub-groups of that particular weight group is the other.
Steel Weight
During the initial design stages, and the selection of optimal main dimensions, it is
necessary to identify the effect of the changeof the principal dimensions of a reference
ship on the structural steel weight. Thus, at first, an accurate calculation of the steel
weight of the reference ship is conducted. Following this, the “Schneekluth Lightship
Weight Method” was applied [12]. Given that the steel weight for the parent vessel
was available as derived from summing the individual steel block weights (from the
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shipbuilding process) a TSearch algorithm [3] was employed in order to vary the
values of the statistical coefficients and constants of subject methodology with the
objective of the minimization of the difference between the actual and calculated
values for the steel weight. The results have an accuracy of 0.3% which is more than
acceptable within the scope of basic/preliminary design.

2.7 Deadweight Analysis

The deadweight of the vessel is comprised by subgroups such as the consumables,
the crew weight and the deadweight constant. The deadweight analysis predicts the
payload of the vessel based on the calculation of the consumables.

As mentioned before, the consumables for the machinery is calculated, namely
the Heavy Fuel Oil for the main engines, and diesel generators, the Lubricating Oils
of the engines and generators.

Furthermore, based on the number of the crew members (30), the fresh water
onboard is calculated as well as the supplies and the stores of the vessel.

2.8 Stability and Loadline Check

The initial intact stability is assessed bymeans of the metacentric height of the vessel
(GM). The centre of gravity of the cargo is determined from the capacity calculation
within the framework while the centre of gravity for the lightship and consumables
is determined from non-dimensioned coefficients (functions of the deck height) that
derive from the information found in the trim and stability booklet of the parent
vessel. All the above are calculated according to the requirements of the IMO Intact
Stability Code [13].

2.9 Operational Profile Simulation

This module is an integrated code within the methodology that simulates the actual
operating conditions of the vessel for its entire lifecycle. Two trade routes are con-
sidered, the Brazil to China and the Australia to China roundtrips. Each voyage is
split into legs depending on distinctive sea areas.
Input Data
For each one of the legs (given distance in nautical miles) the average speed and
added resistance curves are input as well as the loading of the generators and the
manoeuvring time. If the leg includes discharging, loading or bunkering port the
corresponding time in hours is also used. Based on this profile, the voyage associated
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costs together with the fuel costs are calculated on amuchmore accurate and realistic
basis. The predictions of thismodule have been verified by actual data from real ships.
Added Resistance
In order to be consistent with the need for the simulation driven design it is necessary
to include a consideration for the added resistance in waves. Thus, a module has been
herein developed that utilizes Kwon’s method for the calculation of added resistance
in waves [14, 15].

Kwon’s added resistance modelling is an approximate method for the prediction
of loss of speed due to added resistance in rough weather condition (irregular waves
and wind). The advantage of this method is the prediction of the involuntary loss of
speed due to the effect of weather loading on an advancing displacement type of ship
with a limited number of input data. The module is described by Eqs. (2) and (3).

�V

V1
∗ 100% � Cβ ∗ CU ∗ CForm (2)

V2 � V1 −
(

�V

V1
∗ 100%

)
∗ 1

100%
∗ V1 � V1 − (

Cβ ∗ CU ∗ CForm
) 1

100%
∗ V1

(3)

where:

V1 Design (nominal) operating ship speed in calm water conditions (no wind, no
waves), given in m/s

V2 Ship speed in the selected weather (wind and irregular waves) conditions, given
in m/s

�V � V2 − V1, Speed difference, given in m/s.

Cβ Direction reduction coefficient, dependent on the weather direction angle
(with respect to the ship’s bow) and the Beaufort number BN (Bft), as shown
in Table 1

CU Speed reduction coefficient, dependent on the ship’s block coefficient b. The
loading condition and the Froude number n, as shown in Table 2

Table 1 Direction reduction coefficient CB due to weather direction

Weather direction Direction angle (with respect
to the ship’s bow) (deg)

Direction reduction coefficient
Cß

Head sea (irregular waves) and
wind

0 2Cß �2.0

Bow sea (irregular waves) and
wind

30–60 2Cß �1.7 − 0.03 * (BN-4)2

Beam sea (irregular waves)
and wind

60–150 2Cß �0.9 − 0.06 * (BN-6)2

Following sea (irregular
waves) and wind

150–180 2Cß �0.4 − 0.03 * (BN-8)2
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Table 2 Speed reduction coefficient CU due to Block coefficient Cb

Block coefficient Cb Ship loading conditions Speed reduction coefficient CU

0.8 Loaded or normal 2.6–13.1 · Fn−15.1 · Fn2

0.85 Loaded or normal 3.1–18.7 · Fn+28 · Fn2

0.8 Ballast 3.0–16.3 · Fn-21.6 · Fn2

0.85 Ballast 3.4–20.9 · Fn+31.8 · Fn2

Table 3 Ship form coefficient CForm due to ship categories and loading condition

Type of ship Ship form coefficient CForm

Full hull in laden condition 0.5 · BN+(BN6.5)/(2.7 · ∇2/3)

Full hull in ballast condition 0.7 · BN+(BN6.5)/(2.7 · ∇2/3)

CForm Ship form coefficient, as shown in Table 3.

The above formulas for speed loss need to be combined for all the sea states
and weather angles of each of the stages of the determined voyage legs (see Sect.
2.10) in order to include all the in service considerations. The derived reduced speed
from the Kwon calculation is in combined with Holtrop’s resistance for the powering
prediction. This results to four different Added Resistance–Speed curves, depending
on the weather angle (0–30, 30–60, 60–150 and 150–180 as in Fig. 5). Then, in
the operational simulation module (Sect. 2.10) for each stage and voyage leg, the
computation of these four curves is performed for Beaufort numbers of the following
groups: (0,2], (2,4], (4,6], (6,8].

For each stage of each leg, the probability of both the weather encountering
heading aswell as theBeaufort number range is set as input.At the end, a probabilistic
additional Propulsion Power given the known stage/leg average speed is derived.
Using this requirement, the engine load is estimated.

The developed methodology calculates the Operational Expenditure (OPEX), the
Capital Expenditure (CAPEX), the Required Freight Rate (RFR), the Internal Rate
of Return (IRR) as well as the IMOEnergy Efficiency Operational Index (EEOI). All

Fig. 5 Vessel heading directions
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the calculations are made under two uncertainties: Fuel Price and Market Condition
(expressed by the Baltic Dry Index and USD per ton of cargo paid as charter that is
translated into TCE afterwards). This is another key point of this methodology, as
it allows the optimization of the vessel’s design under uncertainty as the produced
designs correspond to a more realistic scenario and the dominant variants of the
optimization have a more robust behaviour over a variety of exogenous governing
market factors. The derived probabilistic values of RFR and the deterministic value
of the EEOI are the functions/targets used in the optimization sequence later.

2.10 Energy Efficiency Design Index Calculation

The Energy Efficiency Design Index (EEDI) is calculated according to the formula
proposed in the IMO resolution MEPC.212(63) [16], using the values of 70% dead-
weight and 75% of the MCR of the engines and the corresponding reference speed:

EEDI �

(
M∏
j�1

fj

)(
nME∑
i�1

PME(i) ∗ CFME(i) ∗ SFCME(i)

)
+ (PAE ∗ CFAE ∗ SFCAE)

fi ∗ Capacity ∗ V ref ∗ f w

+

{(
M∏
j�1

fj ∗
nPTI∑
i�1

PPTI (i) −
neff∑
i�1

feff (i) ∗ PAEeff (i)

)
∗ CFAE ∗ SFCAE

}
−

(
neff∑
i�1

feff (i) ∗ Peff (i) ∗ CFME ∗ SFCME

)

fi ∗ Capacity ∗ V ref ∗ f w
(4)

The minimization of this index is one of the primary objectives of the conducted
optimization. The engine power is directly related to the resistance of the hullform,
while the deadweight is also related to both the hullform in terms of displacement
and to ship’s lightship weight.

3 Design Concept

3.1 Large Bulkcarrier Market

The focus of the present study lies within the large bulkcarrier segment dominated
in numbers by Capesize ships as well as Very Large Ore Carriers (VLOCs). During
the last decade a new class of vessels has emerged, known as Newcastlemax as they
are the largest vessels that can enter and load in the Coal Terminal of Newcastle in
Australia.
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3.2 Baseline Vessel—208k Newcastlemax

It is imperative in a ship design optimization case study that a baseline is set in the
form of a parent vessel used as a primary source of reference as well as calibration
for the methodology and all the formulas/computations applied in the latter. For this
particular reason it is necessary to have as complete data as possible for the parent
vessel in order to achieve a better degree of accuracy as well as being able to make
proper comparison during the analysis of the dominant variants of the optimization
front.

The vessel chosen for this study belongs to the new category segment of New-
castlemax Bulkers and is a newly delivered vessel. The baseline parametric geometry
has been adapted to fit the hull lines available. Its model test results were used to
calibrate Holtrop’s prediction for resistance and powering. The principal particulars
of the vessel can be found in Table 4.

3.3 Proposed Design Concept Characteristics

A low Froude number (slow speed) and full hullform is herein proposed as the
base hull for the global optimization. The absence of a bulbous bow is evident as it
is a recent trend in bulkcarrier design. It results from the understanding that such a
geometry assists in the reduction of the vessel frictional resistance (primary resistance
component) while the wave making resistance is not increased. The effect of the
bulbous bowon the above aswell as the added resistancewere investigated in depth in
a separate study. Furthermore, the decision to limit the selection of the Main Engine
to only electronically controlled types was taken and no Energy Saving Devices
(wake equalizing duct, pre-swirl fin, bulbous rudder etc.) are considered since there

Table 4 Baseline vessel principal particulars

Baseline vessel principal particulars

Length over all 299.98

Length between perpendiculars 294

Beam 50

Scantling draft 18.5

Deck height 25

Cb 0.8521

Main engine specified MCR (kW) 17494 @ 78.7 RPM/MAN B&W 6G70ME-C9.2

Deadweight (tons) Abt 208,000

Lightship weight (tons) 26,120

Cargo hold capacity (m3) 224,712.1
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is no such device installed on the parent vessel. The improvements achieved by such
devices can be considered at a later stage.

3.3.1 Simulation Driven Design, Choice of Hullform Parameters

The assessment of the design is derived from the simulation of the operational,
economic and trading profile. In other words, instead of using only one design point
(in terms of draft and speed) multiple points are used derived from actual operating
data of a the baseline vessel.

3.3.2 Newcastlemax Design Concept

The maximum allowable dimensions (Length Over All and Breadth) in order to load
in the port Newcastle in Australia set the constraints for this optimization case study.

4 Optimization Studies

4.1 Optimization Target/Goals

The generic targets or objectives in this optimization problem were:

4.1.1 Competitiveness

Themarket and economic competitiveness of a design is the core of any optimization
as a vessel will always be an asset (of high capital value). This can be expressed by
the following indices:

1. Required Freight Rate

The required freight rate is the hypothetical freight which will ensure a break even
for the hypothetical shipowner between the operating costs, capital costs and its
income based on the annual voyages as well as collective cargo capacity and is such
expressed in USD per ton of cargo.

2. Operating Expenditure (OPEX)

The operating expenditure expressed on a daily cost includes the cost for crewing,
insurance, spares, stores, lubricants, administration etc. It can indicate apart from
the operator’s ability to work in a cost effective structure, how the vessel’s design
characteristics can affect. The lubricant cost is based on actual feed rates used for
subject engines as per the relevant service letter SL2014-537 of MAN [17].
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3. Capital Expenditure (CAPEX)

The CAPEX is a clear indication of the cost of capital for investing and acquisition
of each individual design variant. The acquisition cost is calculated from a function
derived from actual market values and the lightship weight for vessels built in Asian
shipyards, and more specifically in China.

4.1.2 Efficiency

The merit of efficiency is herein expressed by the IMO EEOI index. Although on the
design basis in practice the IMOEnergy Efficiency Design Index is used as a KPI and
measure of the merit of efficiency in new design concepts as well as for any newbuild
vessel, in this study the calculated Energy Efficiency Operating Index is used instead.
The reason for this change is the use of the Operational Profile simulation module
which contains from a wide statistical database of a bulker operator the daily average
speed per each stage of each voyage leg (see Sect. 2.10) thus given the cargo capacity
calculation (see Sect. 2.4) the EEOI can be accurately derived, which can depict
more accurately the efficiency of the design given the fact that it takes into account
all operating speeds (instead of one design speeds) and all operating drafts (instead
of the design draft) thus expressing the actual transport efficiency of each variant by
a simple ratio of tons of CO2 emitted (direct function of the tons of fuel consumed)
to the tons of cargo multiplied by the actual distance covered (in nautical miles).
In addition to the above, each operational practice such as slow steaming is taken
into account, also considering side implications (for example the use of two diesel
generators in the normal sea going condition instead of one in order to cover the
blower’s electrical load).

4.2 Design Variables

The design variables used are shown in Table 5. They can be categorized in three
groups; principal dimensions, hullform characteristics (Cb, LCB, Parallel Middle-
body) and cargo hold arrangement parameters. The more detailed design variables of
the hullform arrangement for the detailed shape of the bulbous bow (if any), flair and
stem shape as well as stern shape are going to be assessed in a separate optimization
study with the use of integrated CFD codes.

4.3 Optimization Procedure

The optimization procedure applied for this study is depicted in Fig. 6.
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Table 5 List and range of design variables of the optimization problem

Design variable Lower boundary Upper boundary

Length between perpendiculars 290 299

Length overall 298 300

Beam 48 50

Draft 18 19

Deck height 24 27

Hopper length 8 11

Hopper breadth (m) 3 6

Topside height (m) 8 14

Topside breadth (m) 9 13

Inner bottom height (m) 2.4 3

Block coefficient Cb 0.84 0.87

LCB (% Lbp) 0.49 0.53

Beginning of parallel midbody (Aft % Lbp) 0.35 0.45

End of parallel midbody (Fore % Lbp) 0.65 0.8

Stem overhang (% Lbp) 0 0.02

Fig. 6 The optimization loop applied

In each iteration the design variables receive their input values from the “design
engine” i.e. CAESES®. The design engine can either be a random number generator,
a design of experiments procedure or an optimization algorithm depending on the
optimization stage. The generated values trigger the creation of a new design from the
parametric model. The design’s performance, in the form of the calculated values of
theDesignObjectives, is logged and assessed accordingly and theDesignConstraints
imposed are checked for compliance. The Design constraints chosen for this study
were the calculated values for Deadweight, Cargo Specific Gravity and the Stability
Criteria of the 2008 Intact Stability Code. The size restrictions (in terms of vessel’s
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dimensions) were not used in constraints given the fact they were taken into account
in the applied range of the Design Variables.

The optimization procedure described in this paper can be described as a multi
stage one. At first, it is necessary to explore and fully understand both the design
space (potential for improvement with given constraints) as well as the sensitivity of
the methodology by a Design of Experiments (SOBOL) procedure. The sensitivity
analysis is a very important, preparatory step in which it is ensured that no major,
unreasonable manipulations occur. Furthermore, it is important to see that the results
are realistic both on a quantitative and qualitative basis, with the latter in need of
particular attention since the design ranking and selection is the essence of optimiza-
tion (the absolute value of a design is not important than the relationship with all the
other produced designs).

During the next stage a formal optimization is performed using a genetic algo-
rithm technique (NSGA II algorithm). The formal optimization runs involve the
determination of the number of generations and the definition of population of each
generation to be explored. The generated designs are ranked according to a number
of scenarios regarding the preference of the decision maker. One favoured design is
picked to be the baseline design of the next optimization run, where the same proce-
dure is followed. When it is evident that there little more potential for improvement
the best designs are picked using the same ranking principles with utility functions,
and are exported for further analysis.

Both the SOBOL and NSGA II algorithms as well as a plethora of other variant
generation and optimization algorithms are fully integrated and available within the
CAESES®.

4.4 Design of Experiment

The Design of Experiment has the primary purpose of calibration, test and sensitivity
check of the methodology from one hand as well as the investigation for the opti-
mization margin. In this case study, it was evident that there is a strong scale effect
that dominates this particular optimization problem. This effect is very common in
ship designwere the largest vessels usually dominate the smaller since the increase of
cargo capacity does not trigger an equivalent increase in the powering requirements
or the vessel’s weight.

In addition to the scaling effect it was observed as in the formal optimization
algorithm that therewas a strong linear correlation between theRequired FreightRate
(RFR) and the EEOI, which was expected since both functions use cargo capacity.

The feasibility index was in a very high level (above 90%). In total 250 designs
were created.
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4.5 Global Optimization Studies

In this stage the formal, global design optimization with the NSGA II algorithm was
utilized. The latter is a genetic, evolutionary algorithm that is based on the principles
of biological evolution [18]. As in the biological evolution each design variant is an
individual member of a population of a generation. Each individual of the population
is assessed in terms of the Optimization Objectives, as well as its relation to the
desired merits. For the application in ship design optimization it is usual to apply a
large population for each generation with an adequate number of generations. The
large population combined with a high mutation probability ensures that the design
space is properly covered, while the number of generations ensures that there is a
push towards the Pareto frontier for each case of objective combination. For this
particular application a combination of 10 generations with 100 variants population
each was selected.

The results of this run can be seen in Figs. 7, 8 and 9. In Fig. 7 the relation of the
RFR to the EEOI is depicted and is quite evident that their relationship as already
explained is strongly linear. The reason is the direct correlation to the cargo capacity
for both indices. It is interesting to note that the baseline vessel is in the middle and
towards the lower part of the range meaning that although it belongs to the better
performers it is away from dominant variants.

When it comes to the relationship between the CAPEX and RFR (see Fig. 9)
we can see that there is a contradicting requirement since the acquisition cost is
calculated with a linear function of the lightship weight, while the larger vessels
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boast a greater profitability and thus better RFR. A small area like a Pareto front is
created, however again there is a localized peak that dominates the majority of the
generated designs. The same relationship is also observed between the OPEX and
RFR values of the generated design (see Fig. 8).
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4.6 Dominant Variant Ranking

One of the most critical steps during optimization of any system is the selection and
the sorting of the dominant variants. For this particular reason it is necessary to follow
a rational, rather than an intuitive, approach in order to consider in an unbiased way
all trade-offs that exist. One such method is utility functions technique.

The optimum solution in our casewould dispose theminimumEEOI, RFR,OPEX
andCAPEXvalues. Instead of using fixedweights for the set criteria in the evaluation
of the variants, we rather assume a utility function as following

U � wEEOI · u(EEOI ) + wRFR · u(RFR) + wCAPEX · u(CAPEX ) + wOPEX · u(OPEX ) (5)

The maximization of this utility function is the objective now, and the dominant
variants of those 10 most favourable with respect to the 4 defined utility scenarios
(Table 6) resulting in the identification and sorting of 40 designs with best perfor-
mance according to each utility scenario.

From the above ranking (Figs. 10, 11, 12 and 13) it is very interesting to observe
that there is a certain repetition in the top three dominant variants from the ranking
procedure. Furthermore, for scenario U3 where there is an equal weight for all objec-
tives, the three top dominant variants are the ones from scenario’s U1 and U2. All the
above illustrate that the peak on the observed Pareto front is strong and apart from
that, the dominant variants that can be selected (e.g. 744, 937, 992) perform better
in a robust way under different assumptions and weights from the decision maker
point of view. The characteristics of these three variants can be found in Table 7.

5 Discussion of the Results—Future Perspectives

From Table 8 it is apparent that a 10–11% average improvement in the required
Freight Rate has been achieved, while the OPEX and CAPEX values have been

Table 6 Weights used for the utility functions

Maximum objective weight U1 U2 U3 U4

RFR_Brazil 0.2 0.1 0.125 0.1

RFR_NMAX 0.2 0.1 0.125 0.1

EEOI_Brazil 0.1 0.1 0.125 0.1

EEOI_NMAX 0.1 0.1 0.125 0.1

OPEX_Brazil 0.1 0.1 0.125 0.2

OPEX_NMAX 0.1 0.1 0.125 0.2

CAPEX_Brazil 0.1 0.2 0.125 0.1

CAPEX_NMAX 0.1 0.2 0.125 0.1
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Fig. 10 Ranking of
dominant variants with U1
scenario
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Fig. 11 Ranking of
dominant variants with U2
scenario
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Fig. 12 Ranking of
dominant variants with U3
scenario
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U3 Utility Function Scenario 

reduced in a lesser extent by approx. 6.5%. This can be justified by the reduction
of generally vessel size primarily in terms of beam and length (beam given the fact
that these vessels are not stability limited) and thus the reduction of the initial capital
cost, while in the meantime the cargo capacity has increased, boosting in this way
the Required Freight Rate. It is also interesting to observe that although beam has
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Fig. 13 Ranking of
dominant variants with U4
scenario
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Table 7 Comparison between the baseline and the three variants geometric properties

Particulars Baseline ID744 ID937 ID992

Lbp (m) 294 290.24926 290.26683 290.26464

Beam (m) 50 48.01819 48.07337 48.09241

Deck height (m) 25 26.98824 26.87828 26.98750

Cb 0.8538 0.86535 0.86533 0.86301

LCB 0.51986 0.52203 0.51169 0.51145

LOA (m) 299.98 299.15743 299.04591 298.07306

Draft (m) 18.5 18.00232 18.00220 18.03555

Topside breadth
(m)

12 9.11792 11.36893 12.87433

Topside height
(m)

9 9.09700 8.30011 8.20636

Hopper height
(m)

10 8.56892 8.53816 9.56466

Hopper breadth
(m)

4 3.30607 3.22715 3.08890

Double bottom
height (m)

2.5 2.82176 2.82140 2.51971

Bow overhang
(% Lbp)

0.01 0.00098 0.00120 0.00107

Beggining
parallel midbody
(% Lbp)

0.42 0.43373 0.40859 0.36219

End parallel
midbody (% Lbp)

0.72 0.73976 0.74282 0.76179

reduced the draft has been increased in order to facilitate and balance the decrease
in deadweight.

From the above discussion we can conclude that the novel methodology herein
proposed for the simulation driven design with lifecycle, supply chain and the actual
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Table 8 Design objectives of the baseline versus the dominant variants
Particulars Baseline ID 744 Diff% ID 937 Diff% ID 992 Diff%

RFR_Brazil 23.40 20.86 −10.86 20.64 −11.80 20.78 −11.17

RFR_Australia 11.69 10.40 −11.07 10.29 −11.99 10.36 −11.38

EEOI_Brazil 0.00 1.26E−06 −8.46 1.25E−06 −9.46 1.26E−06 −8.74

EEOI_Australia 0.00 1.16E−06 −8.49 1.15E−06 −9.49 1.16E−06 −8.78

OPEX_Brazil 5198.09 4911.06 −5.52 4913.97 −5.47 4918.75 −5.37

OPEX_Australia 5335.02 5043.68 −5.46 5046.64 −5.41 5051.42 −5.32

CAPEX 16920.61 15802.94 −6.61 15821.74 −6.49 15788.05 −6.69

operating in service parameters can successfully trigger a reduction in the RFR and
EEOI via systematic variation and advanced optimization techniques. However, this
is a preliminary work restricted only into illustrating the applicability and potential
of this method. The following work is planned for the next steps:

1. Integration of the STAWAVE 2 methodology for added resistance prediction.
2. Refinement of the statistical data for in service conditions.
3. Investigation of larger bulker concepts for the iron ore supply chain by waving

the restrictions of the Port of Newcastle and thus scaling up to theVLOC segment
while also utilizing dual loadline characteristics.

4. Optimization of the in service operating profile of the vessel. For the baseline
vessel, given the results of a pending trim optimization study (with use of STAR
CCM+) the in service speeds and trims (trims only for the ballast leg) are going
to be re-assessed in a rational way with systematic variation while taking into
account exogenous factors such as Port Congestion as well as trade route supply
and demand functions.

5. Local Hullform optimization of Bow and Stern Area. Three different bow types
(ledge bow, bulbous and semi bulbous) are considered and further optimized for
the baseline vessel.

Finally, given the developed library of modules for several calculations in«feature
format» in the CAESES® the operational, supply chain and lifecycle simulation is
going to be expanded for the case of a containershipwhere the optimizationproblem is
farmore challenging due to the slender hullform and the inherent stability limitations.
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Designing Networks in Cooperation
with ACO

E. D’Amato, E. Daniele and L. Mallozzi

Abstract In this paper we present a cooperative game for a network design. The
game model adopts for the cooperating players the profit maximizing requirement.
Since the players may use different paths, there is the possibility to cooperate and
design the optimal network satisfying the requests of all the players and minimizing
the cost. The solution of the game is determined by the core concept, well known
in cooperative game literature. By means of several examples, both analytical and
numerical solutions are proposed. Concerning the computational procedure, in this
work an algorithmic approach based on ant colony model is employed. Finally, an
application to the airline network design is discussed, providing a numerical example
for intercontinental air traffic routes.

1 Introduction

A particularly interesting class of problems is the study of optimization problems on
networks, closely related to cooperative and non-cooperative game theory, in which
networks and related graph theoretic concepts play a prominent role. The subject
has been intensively studied in literature for the computational complexity and the
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design of efficient algorithms, as well as from a theoretical and economics point of
view [2, 6, 10, 19].

In the economics literature, several analytical contributions have considered the
effect of network topology on competition within the airline industry. In [12] the
competion ismodelled as a noncooperative gamewhere airlines select networkdesign
and prices for transportation between any two nodes. In [13] the network is analyzed
and the schedule is chosen by a profit maximizing airline, using four network types,
finding that it is optimal for airlines to design networks and schedules to minimize
the sum of airline and passenger costs.

In [21] the evolution of several airline networks from linear to hub system is
demonstrated, and a description of hub’s effect on airline cost and passenger travel
time is reported. Hub and spoke systems could be regarded as one of themajor change
within the airline industry after the introduction in 1978 of the Airline Deregulation
Act in U.S.A [11].

The equilibria formergers and alliances under competitionwithin a game theoretic
framework is introduced by a network design in a non-competitive environment [1].
Their computation is pursued by adapting the non-competitive network designmodel
to one of profitmaximization, given the best responses of competitors in the field. The
integration of near-surface temperature change as climate target in airline network
design for a single airline is proposed in [4], in addition to economical targets.

The assessment of airline network design policy is an important goal for many
countries. In order to achieve a high-performance Air Traffic Management infras-
tructure which will enable the safe and environmentally friendly development of air
transport, EuropanCommission is funding the SESAR Joint Undertaking partnership
[22]. In 2011, the European Commission nominated EUROCONTROL as European
Network Manager [9]. The main aim of these activities is reducing travel time, fuel
consumption and CO2 emission.

A network design model could be regarded as a cooperative game model [23]
which can describe decision-making processes and economic interactions of players.

We focus on network design games, namely cooperative games, where players
share the profit of shipping some commodity from a given origin to a given destina-
tion. The profit is the revenue minus the cost of installing infrastructures on edges,
in order to ship the commodity. Since the players may use different paths, there is
the possibility to cooperate and design the optimal network satisfying the requests
of all the players and minimizing the cost.

Wepresent the network design game and study core solutions as a possible solution
concept. A numerical procedure based on the ant colony approach is illustrated. The
paper is organized as follows: in Sect. 2 we present the network design cooperative
game; in Sect. 3 we define approximated core solutions for the game and a numerical
procedure based on an ant colony approach; in Sect. 4 we discuss a test case for the
airline network design game. Some concluding remarks are in Sect. 5.
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2 A Network Design Model

Let us consider a set of players N = {1, . . . , n} (n ∈ N ) and a graph G = (V, E)

where V = {1, . . . , k} is the finite set of vertexes or nodes and E = {1, . . . ,m} the
set of directed edges (k,m are natural numbers). Each player i ∈ N has to ship
hi > 0 units of a commodity i between a given ordered pair of nodes (oi , di ) with
oi , di ∈ V , for any i ∈ N . We denote by h = (h1, . . . , hn) vectors of Rn and by
OD = {

(o1, d1), . . . , (on, dn)
}
the set of origin/destination for any player.

From the shipment player i receives a return ri . The initial capacity of each edge of
E for accomodating shipments of the players’ commodities is set at zero, and there
is an investment cost c j (x) for installing x units of capacity on edge j ∈ E . Any
coalition S ⊆ N of players could construct capacities on the edges of E to create
a capacitated network in which the requirements of any player of S are satisfied
(admissible network). Coalition S chooses the admissible network of minimum cost.
Define for any player i ∈ N the set

Pi = {path connecting oi and di } (1)

and for any edge j ∈ E the set

Q j = {path of edges from E including j}. (2)

A path is the union of consecutive edges (i j k is the path given by edge i , then
edge j , then edge k).

For each player i in the coalition S, fix a path pi ∈ Pi ; then we consider the
quantity ∑

j∈E
c j

( ∑

i :i∈S,pi∈Q j

hi
)

(3)

that represents the sum of the costs of each edge j by considering all the players of
coalition S that are using that edge j when they choose the paths pi ∈ Pi , ∀i ∈ S.

We denote by r = (r1, . . . , rn) the revenue profile vector (ri > 0) and IC =
(c1, . . . , cm) the installing cost functions (c j : [0,+∞[→ [0,+∞[, c j (0) = 0, c j
strictly increasing in [0,+∞[). We call the tuple (N ,G, h, OD, r, IC) a network
design situation.

Definition 1 Given a network design situation (N ,G, h, OD, r, IC), we define the
network design cooperative game < N , v > where N = {1, . . . , n} is the set of the
players and v : 2N → R is the characteristic function such that v(∅) = 0 and for
each coalition S ⊆ N the worth of the coalition is given by

v(S) =
∑

i∈S
ri − c(S) (4)

being c(S) the cost of the coalition S defined as
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c(S) = min
pi :pi∈Pi ,∀i∈S

∑

j∈E
c j

( ∑

i :i∈S,pi∈Q j

hi
)

(5)

A natural solution concept for this cooperative game is the core [17]. The core
C (v) of the cooperative game < N , v > is defined by

C (v) = {(x1, . . . , xn) ∈ Rn :
∑

i∈N
xi = v(N ), (6)

∑

i∈S
xi ≥ v(S),∀ S ⊆ N }, (7)

i.e. the set of vectors in Rn satisfying the two properties:

Budget balance
∑

i∈N
xi = v(N ) (8)

Core property
∑

i∈S
xi ≥ v(S),∀ S ⊆ N (9)

The core of a network design cooperative game may be empty [24].

Example 1 Let us consider a network design situation (N ,G, h, OD, r, IC) where
N = {1, 2, 3}, V = {1, 2, 3, 4, 5, 6, 7} and E = {1, 2, 3, 4, 5, 6, 7, 8, 9} (with
G = (V, E)),h = (1, 1, 1),OD = {

(1, 7), (3, 7), (5, 7)
}
, r = (13, 12, 14), c j (x) =√

x, j ∈ E . In this case (see Fig. 1)

P1 = {
18, 67, 123457, 1239

}
, P2 = {

2167, 28, 3457, 39
}
, P3 = {

57, 49, 432167, 4328
}
(10)

Fig. 1 Scheme for the
network described into
Example 1
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Q1 = {
18, 123457, 1239, 2167, 432167

}
, Q2 = {

123457, 1239, 2167, 28, 432167, 4328
}
,

Q3 = {
123457, 1239, 3457, 39, 432167, 4328

}
, Q4 = {

123457, 3457, 49, 432167, 4328
}
,

Q5 = {
123457, 3457, 57

}
, Q6 = {

67, 2167, 432167
}
,

Q7 = {
67, 123457, 2167, 3457, 57, 432167

}
, Q8 = {

18, 28, 4328
}
, Q9 = {

1239, 39, 49
}

(11)
and it is easy to compute

c({1}) = c({2}) = c({3}) = 2
c({1, 2}) = c({2, 3}) = c({1, 3}) = 2 + √

2
c({1, 2, 3}) = 4 + √

2.
(12)

The characteristic function is

v({1}) = 11, v({2}) = 10, v({3}) = 12
v({1, 2}) = 23 − √

2, v({2, 3}) = 24 − √
2, v({1, 3}) = 25 − √

2
v({1, 2, 3}) = 35 − √

2
(13)

and the core of this game is empty.
If we consider c j (x) = x2, j ∈ E , the characteristic function is

v({1}) = 11, v({2}) = 10, v({3}) = 12
v({1, 2}) = 21, v({2, 3}) = 22, v({1, 3}) = 23

v({1, 2, 3}) = 33
(14)

and the vector (11, 10, 12) is in the core.

We call minimum cost network any tuple ( p̄1, . . . , p̄n)with p̄i ∈ Pi for any i ∈ N
such that

min
pi :pi∈Pi ,∀i∈N

∑

j∈E
c j

( ∑

i :i∈N ,pi∈Q j

hi
) =

∑

j∈E
c j

( ∑

i :i∈N , p̄i∈Q j

hi
)

(15)

Of course, there are different minimal cost network with cost c(N ), depending
on the chosen path. In Example 1, the procedure gives as core solution the vector
(11, 10, 12) and there are three optimal path giving the minimum cost (Fig. 2, red
for player 1, blue for player 2 and green for player 3).

Remark 1 In the special case where the following assumption is satisfied

each Pi consists of a single path p′
i (H)

the characteristic function is

v(S) =
∑

i∈S
ri −

∑

j∈E
c j

( ∑

i :i∈S,p′
i∈Q j

hi
)
, (16)

by assuming concave cost functions c j , j ∈ E , the cooperative game is a convex
game and there exist core solutions [24].
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Fig. 2 Optimal paths of Example 1

Remark 2 Let us observe that the network design situation, given the installing cost
functions IC and without revenue, is nothing but the congestion situation [14, 15],
studied from a noncooperative point of view. For such games, there exists a pure
Nash equilibrium, because they are potential games.

3 The Modified Network Design Model

Let us consider the graph G as given in Sect. 2 and an additional data set: a m-
dimensional vector D = (δ1, . . . , δm) where δ j > 0 is a weight on edge j for any
j = 1, . . . ,m.We consider the network design situation as (N ,G, h, OD, r, IC, D)

where N ,G, h, OD, r, IC are defined in Sect. 2.

Definition 2 Given a network design situation (N ,G, h, OD, r, IC, D), we define
the network design cooperative game < N , v > where N = {1, . . . , n} is the set of
the players and v : 2N → R is the characteristic function such that v(∅) = 0 and for
each coalition S ⊆ N the worth of the coalition is given by

v(S) =
∑

i∈S
ri − c(S) (17)
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being c(S) the cost of the coalition S defined as

c(S) = min
pi :pi∈Pi ,∀i∈S

∑

j∈E

[
c j

( ∑

i :i∈S,pi∈Q j

hi
) + δ j

]
(18)

Unfortunately, also in this case the core may be empty as shown in the next example.

Example 2 Let us consider a network design situation (N ,G, h, OD, r, IC, D)

where N = {1, 2, 3}, V = {1, 2, 3, 4, 5, 6, 7} and E = {1, 2, 3, 4, 5, 6, 7, 8, 9} (with
G = (V, E) given as in Example 1), h = (13, 12, 14), OD = {

(1, 7), (3, 7), (5, 7)
}
,

r = (13, 12, 14), c j (x) = √
x, j ∈ E andwe consider the vector ofweights on edges

D = (0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.5, 0.7, 0.8).
In this case it is easy to compute

c({1}) = 3.1, c({2}) = 3.2, c({3}) = 3.1
c({1, 2}) = 3.7 + √

2, c({2, 3}) = 3.9 + √
2, c({1, 3}) = 3.7 + √

2
c({1, 2, 3}) = 6.8 + √

2.
(19)

The characteristic function is

v({1}) = 9.9, v({2}) = 8.8, v({3}) = 10.9
v({1, 2}) = 21.3 − √

2, v({2, 3}) = 22.1 − √
2, v({1, 3}) = 23.3 − √

2
v({1, 2, 3}) = 32.2 − √

2
(20)

and the core is empty.

This leads to consider approximate core solutions. As done in [19], we will relax
the Budget balance property (8) as follows: we search vectors satisfying for a real
number γ ≥ 1 the property

γ − Budget balance v(N ) ≤
∑

i∈N
xi ≤ γ v(N ) (21)

The set of vectors in Rn satisfying the γ -Budget balance property (21) and the core
property (9) is called the γ -core.

In Example 2 it is possible to compute a lower bound for γ in such a way that
the corresponding γ -core is not empty. More precisely it results that γ ≥ 1.014.
Consider the smallest value γ̄ = 1.014: the solution of the set of conditions

x1 + x2 + x3 = 1.014(32.2 − √
2)

x1 ≥ 9.9, x2 ≥ 8.8, x3 ≥ 10.9
x1 + x2 ≥ 21.3 − √

2, x1 + x3 ≥ 23.3 − √
2, x2 + x3 ≥ 22.1 − √

2
(22)

is (10.54, 9.34, 11.34) that is a vector of the γ̄ -core.
Being γ ≥ 1 and for γ = 1 the 1-core is nothing but the core, the quantity γ − 1

represent the cost of cooperation: it is the quantity necessary to find the core solution.
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The non emptiness of the γ -core is guaranteed by the Bondareva-Shapley theorem
[19].

3.1 Computational Procedure

A numerical procedure to compute core solutions given a network design situation
(N ,G, h, OD, r, IC) can be divided in two phases:

• 2n combinatorial optimization problems must be solved to find the shortest paths
for players, considering all the feasible coalitions;

• once collected all the coalition values, the core can be computed by using a con-
strained optimization procedure.

The first phase is based on an ant colony optimization algorithm (ACO) to find
the shortest path with variable weight on edges in line with previous papers [5, 7, 8,
16, 18].

ACO is a metaheuristic approach based on ant social behaviour. The organization
of an ant colony and its interaction rules have been developed in a computer system
to replicate the ability to find shortest paths (or equivalent cost functions) in a well-
defined environment.

The ant agent is a heuristic algorithm, capable to move between the nodes of
a graph to look for an optimal path. However a heuristics could find a suboptimal
trajectory due to the non-linearity of the objective function.

To overcome the problem, an ACO use a colony of ants that can communicate
through the so-called stigmercy, a form of indirect communication induced by chem-
ical changes applied to the environment. This kind of communication is based on a
pheromone trail, that represents a sort of shared memory for the ant colony, spread
over the chosen paths.

Let us consider the minimization of a typical N-P hard combinatorial problem.
Artificial ants will construct solutions making random steps on a graph G = (V, E)

where V represents the set of nodes and E the set of edges.
A pheromone trail τ j and a heuristics η j can be associated to each edge j whose

endpoints are the nodes a j and b j . Usuallyη j is strictly connected to the cost function,
giving to the ants a valuable support in choosing the best component routes.

Analogously to other evolutionary approaches, the ACO is a succession of several
procedures, were epochs represent the time-base of the evolution. For each epoch,
ants concurrently build solutions moving themselves on the construction graph, on
the basis of the pheromone trails and heuristic information.

In the state xr = {xr−1, j}, the ant moves to a node j of its neighbourhood Nk(xr )
via a probabilistic choice biased on a proportional-random rule:

pkj = [τ j ]α[η j ]β∑
l∈L [τl]α[ηl]β (23)
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where pkj is the probability of transition on edge j for the k-th ant via node b j ; τ

is the pheromone information associated to the array of edges; η is the heuristic
information which definition depends on the specific problem; exponents α and β

are parameters used to bias the influence of pheromone trail, and L is the set of edges
connected to node a j .

In our implementation, the heuristic information is based on the length of edges:

η j = 1/d j (24)

When one of termination criteria is meet, the ant stops and the algorithm start
the upgrade procedure based on ASRANK ([5]) metaphor, where only the (w − 1)
rank-ordered ants, plus the best-so-far one (the best solution found until the current
epoch) are allowed to deposit pheromone.

The best-so-far ant will furnish the greatest feedback, expressed by the weight w,
while the rank-based antswill contributewith a rank-weighted amount of pheromone,
as expressed by the following expression:

τ j = τ j +
w−1∑

r=1

(w − r)�τ r
j + w�τ

bs f
j (25)

with �τ k
j = 1/Cr and �τ

bs f
j .

To avoid a monotonic growth of the pheromone, allowing the system to forget
bad choices and weak solutions, the algorithm preliminarily provides for a reduction
of the overall pheromone intensity via an evaporation factor by using the following
expression:

τ j = (1 − ρ)τ j ∀( j) ∈ L (26)

where ρ ∈ [0, 1] denotes the pheromone evaporation rate.
It should be remarked that all the ants move in parallel and independently of one

another, except for the pheromone tracking phase, that is performed in a synchronous
mode. This circumstance can be seen as a sort of shared learning, where each ant
does not adapt itself, but adapt the representation of the problem for the other ones.

Concerning the second phase of the computational procedure, for the core solu-
tions or approximate core solutions, we solve an optimization problem to find the
smallest γ ≥ 1 for which the γ -core is nonempty. It consists of minimizing γ con-
strained with 2n − 2 conditions of core property (9) and the γ -budget property (18),
considering the optimization variables (x1, . . . , xn, γ ) ∈ Rn × [1,+∞[.

4 Airline Network Design

In line with previous papers [3, 23] we present the particular case of airline network
design.
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Let us consider k given cities and a graph G = (V, E) where V = {1, . . . , k} is
the finite set of vertexes or nodes where the cities are located and E = {1, . . . ,m} the
set of directed edges representing the possible airline routes between pair of cities.
Suppose that n airline companies intend to flight on this set of cities, particularly
company i wants to connect a given ordered pair of cities (oi , di ) with oi , di ∈ V ,
for any i ∈ N . Here N = {1, . . . , n} represents the set of the airline companies, that
are cooperating players in this model.

The initial capacity of each edge of E for transportation is set at zero, and there
is an investment cost c j (x) for installing a new operating flight on edge j ∈ E for x
passengers. The i th company has an income ri from the transportation of hi units from
oi to di (these numbers can be interpreted as the estimated number of passengers).

Any coalition S ⊆ N of airline companies could construct capacities on the edges
of E to create a capacitated network in which the requirements of any company
(player) of S are satisfied (admissible network). The scope is to find an optimal
network, namely the admissible network of minimum cost for the grand coalition
S = N .

Let us denote by D the m-dimensional vector D = (δ1, . . . , δm) where δ j is the
distance between the two airports linked by the route j . We consider the distance
between any pair of nodes as an additional criterium in order to achieve the minimal
cost network (in the following these distances are rescaledwith a positive real number
k, so δ j = length j

k for any j). We consider the tuple (N ,G, h, OD, r, IC, D) as an
airline network design situation.

Definition 3 Given an airline network design situation (N ,G, h, OD, r, IC, D),
we define the network design cooperative game < N , v > where N = {1, . . . , n} is
the set of the airline companies and v : 2N → R is the characteristic function such
that v(∅) = 0 and for each coalition S ⊆ N the worth of the coalition is given by

v(S) =
∑

i∈S
ri − c(S) (27)

being c(S) the cost of the coalition S defined as in (18).

We are interested in core solutions or approximate core solutions for the coopera-
tive game defined above. The problem is solved by means of the procedure presented
in Sect. 3.1 and we show the results of a test case concerning the cooperation of three
airline companies dealing with operative flights reaching Narita Airport in Tokyo.
The real data are the routes lenghts from [20]. The model, as given in this paper,
leads to a cooperation suggestion situation where the involved companies try to
make coalitions in order to share the operating flight between possible cities.

Example 3 Let us consider the airline network design situation (N ,G, h, OD, r,
IC, D) where G = (V, E) and:

1. N = {Air France, Lu f thansa, Delta} is the set of the airline companies
involved;



Designing Networks in Cooperation with ACO 265

CDG

FRA

IST

TPE

NRT

BKK

HNL

LAX

Fig. 3 Minimum cost network for Example 3

2. V ={Paris, I stanbul, Frank f urt, Honolulu, LosAngeles, Bangkok,
Tokyo, Taiwan} is the set of the cities, denoted in short by the corresponding
airport acronym V = {CGD, I ST, FRA, HNL , L AX, BK K , N RT, T PE}

3. E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} is the set of the possible routes denoted also
E = {CDG − FRA,CDG − I ST, FRA − I ST, FRA − T PE, I ST − N RT,

BK K − N RT, BK K − T PE, T PE − N RT, T PE − HNL , T PE − L AX,

HNL − L AX}
4. h = (1, 1, 1)
5. OD = {

(CDG, N RT ), (FRA, N RT ), (L AX, N RT )
}

6. r = (13, 12, 14),
7. c j (x) = √

x, j ∈ E
8. D = (447, 2239, 1866, 9377, 9006, 4654, 2492, 2183, 8153, 10934, 4113) in

Kilometers, multiplied by 10−3 ([20]).

In this case the characteristic function is

v({1}) = 9.8755, v({2}) = 8.9128, v({3}) = 10.6883
v({1, 2}) = 19.9709, v({2, 3}) = 20.3364, v({1, 3}) = 20.2917

v({1, 2, 3}) = 30.9630
(28)

and the vector (10.3218, 9.6481, 10.6873) is in the core.
The computational procedure gives the following minimal cost network (Fig. 3,

red for player 1, blue for player 2 and green for player 3):
The optimal network suggests Air France and Lufthansa to share the flight from

Instanbul to Tokyo, while Delta flights separately from Los Angeles via Taiwan. In
this example Player 1 and Player 2 end up to a sky team.
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5 Concluding Remarks

In the paper we presented the airline network design model in the context of coopera-
tive games. Themain idea is to search the optimal path in a given networkminimizing
the costs due to the distance of the arc and also to the number of users on that arc.
So, this implies that cooperation could help in a cost sharing process.

Themodel has been applied to a very popular problem, namely the airline network
design: the formation of alliances between a group of airline companies is very actual
subject. Our model, depending on the cost functions, suggests that cooperation can
lead to minimal costs and the final network has the minimum cost property.

We studied a simplified model of the airline network design by considering the
number of users of a given route and the lenght of that route. It is possible to refine the
investigation adding in the model additional optimizing criteria, for example the fuel
consumption or the passengers flow. This analysis will be developed in a forthcoming
paper.
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Augmented Lagrangian Approach
for Constrained Potential Nash Games

Lina Mallozzi and Domenico Quagliarella

Abstract An approach to the resolution of inequality constrained potential games
based on a dual problem is here presented. The dual problem is solved by using
a two-level optimization iterative scheme based on a linear program for the dual
problem and a classical hybrid evolutionary approach for the primal problem. An
application to a facility location problem in presence of obstacles is described.

1 Introduction

In this paper we present an approach to the resolution of inequality constrained
potential games based on a dual problem. The dual problem is introduced to take
into account the constraints and is based on a two-level optimization iterative scheme.
The dual problem is approximated using a linear program in a discrete subdomain
which is updated after each iteration and leads to a global suboptimal approxima-
tion of Lagrange multipliers. The primal problem, instead, is solved using a classi-
cal hybrid evolutionary approach which includes in the set of hybrid operators for
local search, both classical gradient based methods like Broyden Fletcher Goldfarb
Shanno (BFGS) algorithm [14, pp. 136–143] and advanced stochastic derivative-free
algorithms like Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8]. A
formulation based on the augmented Lagrangian, capable of handling inequality con-
straints, is finally introduced to take into account any non-convexity in the objective
function and constraints [14, pp. 523–524], [17].

The developed method is applied to the search of Nash equilibrium points of a
classical constrained potential game, namely the facility location problem in presence
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of obstacles, because in the potential case the problem of finding Nash equilibrium
solution is an optimization problem. Two illustrative examples of such a game in the
context of facility location games are here reported and their solutions illustrated.

2 Iterative Scheme

We consider an optimization problem (primal problem)

min
x :g(x)≤0

f (x) (1)

where f : D ⊆ R
n → R, g : D ⊆ R

n → R
m and thedomainD is assumednonempty.

We say that x ∈ D is feasible if g(x) ≤ 0 (i.e. gi (x) ≤ 0 ∀i = 1, . . . ,m). Denote the
optimal value of (1) by p∗.

Let us consider the Lagrangian L : Rn × R
m → R associated with the problem

(1) defined by

L(x, λ) = f (x) +
m∑

i=1

λi gi (x) (2)

being λi is the Lagrangian multiplier associated with the i th constraint gi (x) ≤ 0.
For any λ, consider the Langrangian dual function or dual function

l(λ) = inf
x∈D L(x, λ)

The dual function is concave. It gives lower bounds on the optimal value p∗:

Proposition 1 For any λ ≥ 0 we have

l(λ) ≤ p∗ (3)

Proof Let x̂ a feasible point for (1) andλ ≥ 0. Then
∑m

i=1 λi gi (x̂) ≤ 0 and L(x̂, λ) =
f (x̂) + ∑m

i=1 λi gi (x̂) ≤ f (x̂). Hence

l(λ) = inf
x∈D L(x, λ) ≤ L(x̂, λ) ≤ f (x̂)

for any feasible point x̂ , then the inequality (3) follows.

What is the best lower bound that can be obtained from the dual function l? This
question leads to the optimization problem (dual problem)

max
λ:λ≥0

l(λ) (4)
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that is a convex problem since the objective to be maximized is concave and the
constraint is convex. Denote by d∗ the optimal value of (4). We have

d∗ ≤ p∗ (5)

(weak duality property). The difference p∗ − d∗ is called the optimal duality gap
and is always nonnegative. If the equality p∗ = d∗ holds, then we say that the strong
duality holds. Let us call x∗ a primal optimal point, i.e. a solution of problem (1),
and λ∗ a dual optimal point, i.e. a solution of problem (4).

Recall the following result [7]:

Proposition 2 Let λ ≥ 0 such that L(x, λ) = f (x) + λg(x) admits a minimum
point x∗ in D. Suppose that g(x∗) = 0. Then x∗ is primal optimal point.

This leads to solve the problem inf x∈D L(x, λ) for a given λ, that is (under the
assumption of the previous proposition) equivalent to the following linear problem

max h
h ≤ L(x, λ) ∀x ∈ D

(6)

the solution of which is h̄ = L(x∗, λ). Let us observe that if we solve

max h
h ≤ L(x, λ) ∀x ∈ D′ (7)

with D′ ⊆ D, then the solution h̄′ will satisfy h̄′ ≥ h̄.
We give in the following a procedure to compute an optimal primal point or a

suboptimal primal point of problem (1). The methods requires that the constraint g
is active at the optimum (as stated in proposition 2).

Solve the problem (7) with D′ = {x1, . . . , xN } ⊆ D a discrete subset of D. Then
with λ ≥ 0 we solve the linear programming problem

max h
h ≤ L(x1, λ)

· · · · · · · · · · · ·
h ≤ L(xN , λ)

(8)

Let us call the solution (h′, λ). This solution represents (as stated above) an upper
limit to the dual function l(λ), and the related multiplier vector λ is an approximation
of the Lagrange multiplier related to the true dual optimum. This λ vector can be
used to solve the unconstrained problem, and three different results are possible:

1. all constraints are active;
2. one or more constraint is violated (o equivalently, some constraints are inactive

and other violated).
3. one or more constraint is inactive;
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In the first case, proposition 2 ensures that the obtained solution is optimal. In the
second case, the new unfeasible points found allow to add to the auxiliary problem
a new set of inequalities that permits to find an updated solution vector (h′′, λ′) that
will exclude from the optimal solution of the unconstrained problem the previously
found unfeasible solution. In the third case, a feasible solution is found but some
constraints are still not active. In this case, maximizing h may lower the values of
λk if the gk constraint is not active. If the k-th constraint has not influence on the
problem, then the corresponding λk is equal to zero.

Summingup, a two stepoptimizationprocess is iterateduntil a satisfactory equilib-
rium point is found. The optimization process is described by the following scheme:

1. The initial (λk, k = 1, . . . , n) is arbitrarily chosen.
2. An evolutionary optimizer works to the minimization of the Lagrangian (2).
3. A linear programming solver maximizes the h in problem (8). The λk values are

updated using the results of the optimization.
4. The process is repeated starting from step 2 until a satisfactory equilibrium is

reached.

When the approximated convexity requirements for the objective-constraint space
stated in [7] are satisfied, the procedure admits an equilibrium point that corresponds
to the constrained optimum sought. Non-convex objective-constraint spaces can be
treated using an augmented Lagrangian approach [14] or transforming the constraints
using monotonic functions, as it is illustrated, again, in reference [7].

3 Augmented Lagrangian

Here the method illustrated in [14, pp. 523–524] is slightly reformulated to adapt it to
the convention here followed on the constraints that are satisfied if their value is less
than or equal to zero. As in the above cited reference, we suppose for simplicity that
the problem has no equality constraints. Thus, using the proximal point approach, the
constrained primal optimization problem (1) can be expressed as an unconstrained
one:

min
x∈Rn

F(x) (9)

where

F(x) = max
λ≥0

{
f (x) +

m∑

i=1

λi ci (x)

}
=

{
f (x) if g(x) ≤ 0
∞ otherwise

(10)

If x is infeasible then it is ci (x) > 0 for some i . Therefore it is possible to have F(x)
infinite by choosing the λi arbitrarily large and positive and letting λ j = 0 for all
j �= i . If x is feasible then it is ci (x) ≤ 0 for all i = 1, . . . ,m, and the maximum is
obtained at λ = 0 with F(x) = f (x). Summing up, we have
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min
xεRn

F(x) = min
x :g(x)≤0

f (x) (11)

which is the original inequality-constrained problem. Function (10) is not directly
usable to obtain the constrainedminimumof f because it is non-smooth. For practical
uses F should be replacedby a smooth approximation F̂(x, λk, μk)whichdepends on
a penalty parameterμk and on a Lagrangemultiplier estimate λk . This approximation
is defined as follows:

F̂(x, λk, μk) = max
λ≥0

{
f (x) +

m∑

i=1

λi ci (x) − 1

2μk

m∑

i=1

(
λi − λk

i

)2
}

(12)

The final term in (12) applies a penalty for any move of λ away from the previous
estimate λk . Therefore the new maximizer λ will remain proximal to the previous
estimate λk . Since (12) is a bound-constrained quadratic problem in λ, separable in
the λi , it can be easily solved explicitly, obtaining

λi =
{
0 if ci (x) + λk

i /μk ≤ 0
λk
i + μkci (x) otherwise

(13)

By substituting these values in (12), we find that

L A(x, λ
k, μk) = F̂(x, λk, μk) = f (x) +

m∑

i=1

Ψ
(
ci (x), λ

k
i , μk

)
(14)

where Ψ is a function of three scalar arguments defined as follows:

Ψ (c, λ, μ)
def=

{− 1
2μλ2 if c + λ/μ ≤ 0

λc + μ

2 c
2 otherwise

(15)

An iterative optimization process can be set up by minimizing LA(x; λk, μk) with
respect to x . The classical approach consists in increasing gradually the value of μk

at each iteration and in using the formula (13) to obtain a new estimate λk+1 of the
Lagrange multipliers.

The approach we take here is different because the estimation of Lagrange mul-
tipliers is again obtained through the solution of the linear programming problem
(8), while two possible approaches are possible to obtain the new estimates of μk .
The first one is the classical gradual increment of μk , while the second one uses
the computed and stored values of the discrete subset D′ to solve a new auxiliary
optimization problem:

μk = minμ (16)

subject to:
L A(x

∗, λk, μ) ≤ L A(xi , λ
k, μ) ∀i = 1, . . . , N
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where x∗ ∈ D′ is the current feasible optimum. This approach has the advantage of
giving the lower limit of μk needed to solve exactly the optimization problem in
the discrete subset D′. For practical uses, however, a slightly increased value of the
parameterμ∗

k > μk should be given in the subsequent iteration because the algorithm
has to search the optimum value in the whole feasible set D.

4 Optimization Procedure Implementation

The above described two-level optimization procedure was implemented coupling a
linear programming code that is aimed to solve the approximated dual problem (8) in
the discrete subset D′ with an evolutionary optimizer that solves the smoothed primal
problem (14). Figure1 shows the coupling between the dual and primal optimizer
and the data flux between each software module.

Fig. 1 Augmented Lagrangian dual level optimizer scheme
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The dual optimizer is based on the “GNULinear Programming Kit” (GLPK). The
GLPK [10] software package is intended for solving large-scale linear programming
mixed integer programming, and other related problems. It is a set of routines written
in ANSI C and organized in the form of a callable library.

The optimizer used for the primal problem is, instead, based on an in-house
developed ANSI C library capable of solving both single and multi-objective prob-
lems using evolutionary computing methods [2, 15, 16]. A distinctive feature of
this library is the ability to easily implement and use hybrid algorithms. Hybrid
evolutionary algorithms are able to mix, at variable integration levels, two or more
search techniques with, possibly, complementary features and have been one of the
first techniques adopted for improving genetic algorithm performance, while keep-
ing the desirable flexibility features of genetic algorithms [3]. The hybridization is
here obtained coupling a plain genetic algorithm with two hill-climbing operators.
The first one is based on the well known BFGS method for unconstrained minimiza-
tion [9, 19], and the gradient of the objective function can be evaluated either using
finite differences or through ad hoc defined software procedures. In case of finite
differences both forward and central difference schemes can be used for gradient
computation. The second operator, instead, is based on the CMA-ES [8] algorithm,
that is an advanced stochastic derivative-free algorithms that belongs to the class
of evolutionary algorithms and evolutionary computation. As in classical Evolution
Strategies, new candidate solutions are sampled according to a multivariate normal
distribution in R

n . The covariance matrix of this distribution accounts for pairwise
dependencies between the problemvariables, and adaptation of the covariancematrix
amounts to learning a second order model of the underlying objective function sim-
ilar to the approximation of the inverse Hessian matrix in the Quasi-Newton method
in classical optimization. The CMA-ES source code used to implement the operator
was the one in C language provided by N. Hansen and available at https://www.lri.
fr/~hansen/cmaes_inmatlab.html.

The interface between the two levels of the optimizer is realized in python lan-
guage, as well as the filter that is used to select the individuals generated by the
module primal and that are entered in the database (discrete set D′) used by the dual
module to update the estimates of λk, μk and h.

An elitism mechanism is used to preserve the best individual obtained during the
evolution process.

5 A Test Problem with Duality Gap

The problem presented below is taken from [6] and its numerical primal solution is
reported in [5]. The problem has n = 8 primal and m = 22 dual variables.

https://www.lri.fr/~{}hansen/cmaes_inmatlab.html
https://www.lri.fr/~{}hansen/cmaes_inmatlab.html
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min x1 + x2 + x3
s. to:

1000(−1 + 0.0025(x4 + x6) ≤ 0
1000(−1 + 0.0025(x5 + x7 − x4)) ≤ 0
1000(−1 + 0.01(x8 − x5)) ≤ 0
0.001(−x1x6 + 833.33252x4 + 100x1 − 83333.333) ≤ 0
0.001(−x2x7 + 1250x5 + x2x4 − 1250x4) ≤ 0
0.001(−x3x8 + x3x5 − 2500x5 + 1250000) ≤ 0
100 ≤ x1 ≤ 10000, 1000 ≤ x2 ≤ 10000, 1000 ≤ x3 ≤ 10000
10 ≤ x4 ≤ 1000, 10 ≤ x5 ≤ 1000, 10 ≤ x6 ≤ 1000
10 ≤ x7 ≤ 1000, 10 ≤ x8 ≤ 1000

(17)

The first six constraints are active at the minimum and the multiplier values are
computed in [18] using the Karush-Kuhn-Tucker (KKT) optimality conditions.

In the present work, the CMA-ES hybrid operator was used in the primal opti-
mizer. The problem is non-convex and thus required the augmented Lagrangian for-
mulation to be solved. The best solution obtained is xP = (579.325017, 1360.02555,
5109.89716, 182.019236, 295.604109, 217.980772, 286.415136, 395.604111)with
f P = 7049.24773, and it is in good agreement with the numerical solution given in
[5].

The dual solution, instead, is given by the Lagrange multiplier vector computed
solving the problem (8), before the correction provided by Eq. (13). The dual solution
obtained is λD

j = 0,∀ jε{1, . . . , 22} \ {7, 9, 11} and is equal to 1,∀ jε{7, 9, 11} with
h = 2100. This result is in perfect agreement with the dual solution reported in [6].

6 Facility Location Problem

The multifacility location is concerned with the problem of locating n new facilities
(n ∈ N, n > 1)with respect tom existing facilities (demand points,m ∈ N), in order
to minimize a total cost function. We assume that there are n firms competing in
order to locate the new facilities and the location problem can be stated as a Nash
equilibrium problem [1]. Each firm decides the location of one facility.

The facility location game is the n-player strategic form game

Γ FL =< N ; S; f1, . . . , fn >

where N = {1, ..., n} and S, f1, . . . , fn are defined by the following assumptions:

(i) Each firm i has to set up a new facility in a point xi ∈ S ⊂ R
2, where S is

the compact set of the feasible locations. Firms 1, . . . , n are the players and
S the strategy set of each player. We denote x = (x1, . . . , xn) ∈ Sn and x−i =
(x1, . . . , xi−1, xi+1, . . . , xn).
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(ii) m demand points (existing facilities) denoted by t k ∈ R
2, k = 1, ...,m have to

be connected to any new facility.
(iii) The function d(y, z) is a measure of the distance between any two points y and

z in R
2. The distance d(y, z) is expressed by a l p norm in R

2. A l p norm is
defined by ||v||p = [|v1|p + |v2|p]1/p, v = (v1, v2) ∈ R

2 and 1 ≤ p ≤ +∞;
for p = 2 we have the Euclidean norm.

(iv) The transportation cost between two new facilities xi and x j is given by a
function of the distance, i.e. C

(
d(xi , x j )

)
; the transportation cost between the

new facility xi and the demand point t k is given by a function of the distance,
i.e. B

(
d(xi , t k)

)
.

(v) The new facilities will be located in (x̄1, ..., x̄ n) ∈ Sn such that each firm i
wants to minimize the total transportation cost

fi (x
1, . . . , xn) =

∑

1≤ j≤n, j �=i

C
(
d(xi , x j )

)+

∑

1≤k≤m

B
(
d(xi , t k)

)

The function fi defined on Sn is the cost function of player i th.
A solution to the facility location game is a Nash equilibrium [1] of the game

Γ FL =<N ; S; f1, . . . , fn >, i.e. a vector x̄ = (x̄1, . . . , x̄ n) ∈ Sn ⊂ R
2n such that

fi (x̄) ≤ fi (x̄
1, . . . , x̄ i−1, xi , x̄ i+1, . . . , x̄ n) ∀xi ∈ Si

for any i ∈ N .
It is possible to study the existence of Nash equilibrium strategies thanks the

potential structure of the facility location game.
The facility location game Γ FL is a potential game [11, 13], with potential func-

tion defined on Sn by

P(x1, ..., xn) =
∑

1≤h< j≤n

C
(
d(xh, x j )

)+

∑

1≤ j≤n

∑

1≤k≤m

B
(
d(x j , t k)

)
.

Recall that the game< N ; S; { fi , i ∈ N } > is called apotential game [11, 13] if there
is a (potential) function P : Sn 
→ R such that for all i ∈ N and for each x−i ∈ Sn−1

fi (y, x
−i ) − fi (z, x

−i ) = P(y, x−i ) − P(z, x−i ) ∀y, z ∈ Si ,

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn).
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Clearly, elements of argmin (P) are Nash equilibria of the game. This implies
that the solutions to the facility location problem are the solution of the optimization
problem

min
(x1,...,xn)∈Sn

P(x1, . . . , xn).

In situations where the functions C, B are decreasing in the distance, the admis-
sible set can be reduced: for example [12] if C(t) = B(t) = 1

t2 , t > 0 being t the
distance between two facilities, we must define the facility location problem in the
set

A = {(x1, . . . , xn) ∈ Sn : xi ∈ S, xi �= x j , xi �= t k,

∀i, j, k = 1, . . . , n, j �= i}.

As it happens in several concrete situations, there could be a forbidden place
(obstacle) in the region, say a subset O ⊂ S. The facility location problem has to
be set in the admissible region T = S \ O (or T = A \ O), and the facility location
problem is solved by the constrained optimization problem

min
(x1,...,xn)∈T n

P(x1, . . . , xn). (18)

Usually the obstacle (convex set or non convex set) canbedescribedby inequalities
and the problem (18) can be solved with the iterative scheme of Sect. 2.

6.1 Test Case 1

Let us consider S = [0, 1]2, n = m = 4 and C(t) = B(t) = 1
t2 , t > 0. We want

to locate four facilities x1, x2, x3, x4 in the square given the demand points t1 =
(0, 0), t2 = (1, 0), t3 = (1, 1), t4 = (0, 1). Suppose that in this region there is a
forbidden zone located outside the circle {x = (x1, x2) ∈ S : (x1 − 0.5)2 + (x2 −
0.5)2 < 0.0625}.

The problem is to find a solution to (18) with T = A \ O where

A = {x = (x1, x2, x3, x4) ∈ Sn : xi ∈ S, xi �= x j , xi �= t k,

∀i, j, k = 1, . . . , 4, j �= i}

and
O = {x ∈ A : (xi1 − 0.5)2 + (xi2 − 0.5)2 > 0.0625, i = 1, 2, 3, 4}.
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In terms of coordinates, if xi = (xi1, x
i
2) and t k = (t k1 , t

k
2 ) (i, k = 1, 2, 3, 4), the

potential function P is given by

P(x1, x2, x3, x4) =
∑

1≤i< j≤4

1√
(xi1 − x j

1 )
2 + (xi2 − x j

2 )
2
+

∑

1≤i≤4

∑

1≤k≤4

1√
(xi1 − t k1 )

2 + (xi2 − t k2 )
2
.

The constrained problem is to find the minimum point of P in the set A with the
four constraints

(xi1 − 0.5)2 + (xi2 − 0.5)2 ≤ 0.0625

for i = 1, 2, 3, 4.
Figure2 reports the results obtained using the presented approach to the facility

location test problem Sect. 6.1.

0
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0.8

1

0 0.2 0.4 0.6 0.8 1

constraint
optimal solution
demand points

Fig. 2 Nash equilibrium to the constrained potential game Sect. 6.1
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6.2 Test Case 2

The problem here reported is obtained by adding a further non-convex constraint
to the test example described in Sect. 6.1. This new constraint reduces the feasible
region to the set defined below:

T = {x = (x1, x2) ∈ A :
(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.0625,

x1 ≤ x2, x2 ≤ 1 − x1, for x1 ≥ 0.5}.

In terms of coordinates, if xi = (xi1, x
i
2) and t k = (t k1 , t

k
2 ) (i, k = 1, 2, 3, 4), the

potential function P(x1, x2, x3, x4) is the same as in Test case 1 and the constrained
problem is to find the minimum point of P in the constrained set A \ O .

Figure3 reports the results obtained using the presented approach to the above
defined test problem.

Fig. 3 Optimal Nash equilibrium solution to the constrained potential game Sect. 6.2
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7 Conclusions

A technique for constrained optimization based on Lagrange multipliers and a non-
cooperative two-player hierarchical game has been introduced and applied to the
solution of constrained potential games. The two players in competition are two opti-
mization procedures that solve two connected problems, namely an unconstrained
minimization of the Lagrangian (2) related to the original problem (1), and a compan-
ion linear maximization problem (8) built using the values of the objective function
and constraints computed by the first player in the previous step. When non-convex
problems in the objective-constraint space have to be dealt with, the Lagrangian (2)
is substituted by a smooth augmented Lagrangian formulation (14) which is able to
address inequality constraints. The value of the penalty parameter μk is estimated
at each iteration solving the auxiliary problem (16). The advantage of the proposed
approach for the estimation of λk and μk , compared to better known and used tech-
niques of local adjustment of these parameters, is that in their calculation and update
all the past history of the optimization process is taken into account, and, conse-
quently, the method is much better suited to global optimum search problems.

The developed evolutionary optimization framework was used to solve a con-
strained multifacility location problem that can be modeled within the framework
of potential games. Both convex and non-convex constraint set were addressed suc-
cessfully.
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A Diversity Dynamic Territory Nash
Strategy in Evolutionary Algorithms:
Enhancing Performances in
Reconstruction Problems in Structural
Engineering

David Greiner, Jacques Périaux, J. M. Emperador, B. Galván and G. Winter

Abstract Game-theory based Nash–evolutionary algorithms are efficient to speed-
up and parallelize the optimum design procedure. They have been applied in several
fields of engineering and sciences, mainly, in aeronautical and structural engineer-
ing. The influence of the search space player territory has been shown as having
an important role in the algorithm performance. Here we present a study where a
diversity enhanced dynamic player territory is introduced and its behavior is tested in
a reconstruction problem in structural engineering. The proposed diversity dynamic
territory seems to increase the optimization procedure robustness, and improves the
results from a classical dynamic territory, in a structural frame test case.

1 Introduction

Enhancing the efficiency of global population-based stochastic optimizers is an
important research focus, especially when the problem to solve is a real world prob-
lem implying a high CPU cost. That is the frequent case in solving optimum design
problems in different fields of computational engineering (such as aeronautical engi-
neering [1] or structural engineering [2]), where numerical methods such as finite
element methods or boundary element methods are involved. One of the tools which
has been shown promising in improving the efficiency of these methods, is through
the use of game-theory based evolutionary algorithms.
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Among the game-theory based evolutionary algorithms (EAs), Nash EAs [3–6]
have been shown efficient to speed-up and parallelize the optimum design proce-
dure. The Nash player domain decomposition territory has been proven a possible
factor of great influence in the success of the approach and in the algorithm per-
formance. Different domain decomposition territory are tested in this work in the
context of a reconstruction problem in structural engineering, showing their impact
in the algorithm performance. Moreover, a dynamic territory where the diversity
of the population is enhanced is proposed, and compared with a standard ‘a priori’
dynamic territory. In Sect. 2, Nash EAs are described, including the dynamic territory
procedure and introducing the diversity enhanced dynamic territory proposed here.
The structural problem handled is explained in Sect. 3, and the frame structural test
case in Sect. 4. This paper continues with the results and discussion in Sect. 5, and
finalizes with the conclusions in Sect. 6.

2 Nash–Evolutionary Algorithms

Nash–EAs were introduced in Sefrioui et al. [3] for solving computational fluid
dynamics problems in aeronautical engineering. They hybridize mathematical con-
cepts fromNash equilibrium [7, 8] (competitive game theorywhere playersmaximize
their payoffs while considering strategies of their competitors) in the evolutionary
optimization process. A set of subpopulations co-evolve simultaneously dealing each
of them, only with a territory of the search variables. These subpopulations inter-
act towards the equilibrium. A virtual Nash game approach has been applied in
inverse shape optimization computational fluid dynamics problems [5] and in struc-
tural engineering problems [9–12] as an improvement technique versus the standard
panmictic EA. In virtual Nash games approach [13] only a single global objective
is considered, linked to one discipline, in contrast of real Nash games where more
than one objective and disciplines (multidisciplinary design) are taken into account.
It has been applied with success in inverse problems where the fitness function is a
sum of separable terms (such as the case of many shape optimization problems). The
allocation of the search variables (genes of the chromosome) to the Nash player sub-
populations defines the Domain Decomposition (DD) territory of the game-theory
based EA. For every player (subpopulation) the chromosome genes are partitioned
in two subsets: the first corresponds to the variables that will be considered as opti-
mization variables in this subpopulation, and the second corresponds to the variables
that will be assigned values from the best individuals of the other player/s (subpop-
ulation/s). This distribution could have great influence in the results of the optimum
design procedure [12, 13]. Among the factors to take into account in the domain
decomposition allocation are the number of variables assigned to each territory and
their distribution according to the physics of the handled problem. Three different
territory Domain Decomposition (DD) strategies will be tested in this paper: Static
Nash, Dynamic Nash and Diversity Dynamic Nash. They are explained as follows.
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2.1 Static Nash Territory DD

This is the standard Nash EA, where the territory splitting among the players is
allocated ‘a priori’ and it is fixed without changes throughout all the algorithm
evolution, until the stopping criterion of the EA search is satisfied.

2.2 Dynamic Nash Territory DD

When the territory splitting is allowed to change during the algorithm evolution, then
a dynamic territory DD is defined. The number of generations where the selected ter-
ritory is fixed defines the ‘epoch’ parameter. Therefore, every epoch generations, the
territory DD changes during the optimization procedure. In this paper, this territory
DD will be chosen randomly every time the epoch is activated, among a predefined
set of possibilities.

2.3 Diversity Dynamic Nash Territory DD

A diversity enhanced dynamic Nash territory DD is an approach introduced in [12]
(called there Nash-EA dynamic DD and here diversity dynamic territory (DDT)
domain decomposition). When the epoch is activated, this DDT constructs a transi-
tory population buffer where each chromosome is composed of the optimized (not
fixed) territory of each player of the virtual Nash game; see schematic process in
Fig. 1. This transitory population buffer is taken as reference for constructing the
next Nash player subpopulations with the new chosen territory DD (where genes will
be fixed by the best individual values of the new allocation distribution according
to each player allocation). Next, the influence of these territory domain decomposi-
tions is tested in the context of the reconstruction problem in structural engineering,
comparing the Nash strategies defined in Sects. 2.1–2.3.

3 The Structural Problem

Thiswork handleswith the structural reconstruction problem. Its aim is to achieve the
structurewhichmost fits themaximum reference stresses. The optimumstructural bar
design is defined as a design in which some allocation of every bar in the structure has
a maximum stress value as accurately equal as the maximum reference stress for that
bar. Expression (1) shows the fitness function (FF) to be minimized (reconstruction
problem).
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Fig. 1 Diversity dynamic Nash territory DD: transitory population buffer (every epoch). Example
in 2 player case

Fitness Function �
√
√
√
√

Nbars
∑

i�1

(σMAX−i − σMAX−Ri )2 (1)

where σMAX-i is the maximum calculated stress and σMAX-Ri the maximum reference
stress, in bar i. A null value of FF (or reconstruction problem) means a perfect match
of stresses and a location of the aimed structural design.

4 Test Case

A fifty-five bar sized frame structural test case [14] is handled here shown in Fig. 2,
and considering the case of discrete cross-section type variables. Particularly, the
frame structure of reference considered is the one corresponding to IPE330 cross
section type in all beams (being the search space an interval between the IPE080 and
the IPE500) and HEB450 cross section type in all columns (being the search space
an interval between the HEB100 and the HEB450). Details about the corresponding
maximum stress in each bar can be consulted in [11].

Here, a two player (two subpopulations) splitting territory approach will be used.
Six Domain Decomposition (DD) player territories are tested in Sect. 5. The dis-
tribution of bars in every case are shown as follows in Fig. 3 (black and light gray
colors indicate membership to each territory, respectively): an alternating every one
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Fig. 2 Computational domain, boundary conditions and loadings available in [14]

Fig. 3 Nash static T1-T6 domain decompositions bar frame

bar DD-T1, an alternating every two bars DD-T2, an up-down DD-T3, an upper-left
corner DD-T4, a left-right DD-T5, and a beam-column DD-T6. In all cases territo-
ries divide the variable search space in two subsets of 27 and 28 bars; except in the
beam-columnDD, where subsets are of 25 and 30 bars, respectively. These set of DD
territories will be also the predefined set of random selection DDs in the dynamic
and diversity dynamic Nash EAs.
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Fig. 4 Panmictic EA and Nash EAs results—fitness evaluations required to obtain the optimum
design out of 30 independent runs

5 Results and Discussion

A population size of 80 individuals, a mutation rate of 0.4% and an elitist genera-
tional replacement strategy keeping the two best individuals in every generation has
been used. Thirty independent runs have been executed in every DD case, with stan-
dard reflecting Gray EAs codification, uniform crossover and a stopping criterion
of 200,000 maximum fitness evaluations per subpopulation (on average one fitness
function takes 1.08 × 10−4 s. on an Intel Core i7-3770-3.40 GHz). The standard
dynamic territory and the diversity enhanced dynamic territory have been tested
with epoch values of V1, V2, V4, V8, V16, V24 and V32 (Vk means exchange
of Nash territory DD every k generations). Figures 4, 5, 6, 7 and 8 show the aver-
age number of fitness evaluations (x-axis) and the standard deviation (square root
of variance) of fitness evaluations (y-axis) required to achieve the optimum design
solution after all the 30 independent executions (results are shown in terms of per
subpopulation values). All Nash EAs achieve the optimum design after 30 runs.

In addition, a statistical analysis for evolutionary computation results will be held
(see e.g. [15]). Table 1 shows results of a first test for normality (Lilliefors test), where
the null hypothesis corresponds to a normal distribution assumption—if h�1, then
the null hypothesis is rejected with a statistical significance level α of 0.05-. The
probability value, or p value is the probability of obtaining a statistic as different
or more different from the parameter specified in the null hypothesis as the statistic
computed from the data. p values of the significance test are in Table 1 (if p≤0.05,
then H0 is rejected and h�1; if p>0.05, then H0 is not rejected and h�0).
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Fig. 5 Nash EAs results—fitness evaluations required to obtain the optimum design out of 30
independent runs

Fig. 6 Nash EAs Results—static player territory—fitness evaluations required to obtain the opti-
mum design out of 30 independent runs

As there are samples where the null hypothesis is rejected, a Gaussian distribution
of data cannot be assumed, and therefore a non-parametric statistics (also known as
order or ordinal or rank statistics) will be considered, using ranks instead of actual
values to perform statistics. Non-parametric multi-level analysis (when comparing
multiple samples instead of just two), particularly, Kruskal-Wallis tests—based on
mean-rank analysis- are taken in the following Sects. 5.1–5.5, to compare results.
As 2 players are used, 2 populations are mentioned in every case. When performing
statistical analysis, if the samples do not come from the same distribution (null



290 D. Greiner et al.

Fig. 7 NashEAs results—‘a priori’ dynamic player territory—fitness evaluations required to obtain
the optimum design out of 30 independent runs

Fig. 8 Nash EAs results—proposed diversity dynamic player territory—fitness evaluations
required to obtain the optimum design out of 30 independent runs

hypothesis is rejected) it is desirable because that means that there are samples
(methods, here Nash EAs partitioning types) that perform better than others. Result
of the Kruskal-Wallis test is shown by the Q value (if lower than 0.05 when statistical
significance level α�0.05, then the null hypothesis is rejected) and box-plot figures
showing quartile based representation of the statistics data.
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Table 1 Results of 30 independent runs. Lilliefors test; null hypothesis H0: data come from a
normal distribution; statistical significance level α�0.05

Territory type Population 1 Population 2

h p h p

Nash altern. every 1, T1 0 0.219840 0 0.342045

Nash altern. every 2, T2 0 0.127510 0 0.500000

Nash up-down, T3 1 0.040685 0 0.161271

Nash upper-left corner, T4 0 0.134268 1 0.019577

Nash left-right, T5 0 0.156495 1 0.006724

Nash beam-column, T6 0 0.082490 1 0.047410

Nash dynamic every 1 0 0.500000 0 0.500000

Nash dynamic every 2 0 0.117470 0 0.097099

Nash dynamic every 4 1 0.005590 1 0.007075

Nash dynamic every 8 0 0.429216 0 0.174908

Nash dynamic every 16 1 0.032835 1 0.024703

Nash dynamic every 24 1 0.021349 1 0.028928

Nash dynamic every 32 0 0.147423 0 0.179531

Nash divers. dynamic ev.1 1 0.018510 0 0.092044

Nash divers. dynamic ev.2 0 0.500000 0 0.500000

Nash divers. dynamic ev.4 0 0.085307 0 0.070318

Nash divers. dynamic ev.8 1 0.045142 0 0.062507

Nash divers. dynamic ev.16 0 0.180167 0 0.172296

Nash divers. dynamic ev.24 0 0.089251 0 0.169355

Nash divers. dynamic ev.32 0 0.332962 0 0.393541

Panmictic population 0 0.334726 – –

5.1 Comparing Static Nash Domain Decomposition

The static Nash DDs are compared in this section. This results are shown in Figs. 9
and 10. The null hypothesis (all samples correspond to the same distribution) is
rejected (α�0.05) with a Q value�1.06 × 10−7 and after a multicomparison test,
it is statistically significant that samples corresponding to executions of the Nash
Beam-Column territory are worse than the other static DD samples. Therefore, it is
shown here that the DD can have a significative impact in the algorithm results. To
guess which DD could be worse or better ‘a priori’ is not an easy exercise, and it
could depend on the physics and type of the handled problem, even the particular
test case. Here, the obvious difference of this beam-column DD with respect of the
other DDs is its different non-homogeneous territory size.
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Fig. 9 Static Nash. Kruskal Wallis test results. (Order is 1–2: Nash Alt. every 1; 3–4: Nash Alt.
every 2; 5–6: Nash up-down; 7–8: Nash upper-left corner; 9–10: Nash left-right; 11–12: Nash
beam-column). Q value�1.06 × 10−7

Fig. 10 Static Nash. Multicomparison test. Samples from Nash beam-column territory are worse

5.2 Comparing Dynamic Nash Domain Decomposition

The standard dynamic Nash DD is compared in this section. Each time the DD is
changed, a random DD is chosen among the values tested in the static Nash DD
section (from T1 to T6, as in Figs. 2, 3, 4, 5, 6 and 7). The epoch parameter has been



A Diversity Dynamic Territory Nash Strategy in Evolutionary … 293

Fig. 11 Dynamic Nash. Kruskal Wallis test results. Epoch values, order is 1–2: 1; 3–4: 2; 5–6: 4;
7–8: 8; 9–10: 16; 11–12: 24; 13–14: 32). Q value�2.61 × 10−8

tested with values 1, 2, 4, 8, 16, 24 and 32 generations. These results are shown in
Figs. 11 and 12. The null hypothesis (all samples correspond to the same distribution)
is rejected (α�0.05) with a Q value�2.61 × 10−8 and after a multicomparison test,
it is statistically significant that the samples with the lower mean ranks: executions
of the epoch values: 24 and 32 have better mean ranks than those from value 1. It is
shownhere that this parameter can have a significative impact in the algorithm results;
it seems that a reasonable number of generations are required to let the algorithm
exploit the genetic information towards the optimum. It is also remarkable that this
dynamic Nash DD maintains the high robustness of the procedure, because all the
independent executions were able to achieve the optimum.

5.3 Comparing Diversity Dynamic Nash Domain
Decomposition

The diversity enhanced dynamicNashDD is compared in this section. As in Sect. 5.2,
epoch has been tested with values 1, 2, 4, 8, 16, 24 and 32 generations. These results
are shown in Figs. 13 and 14. The null hypothesis (all samples correspond to the same
distribution) is rejected (α�0.05) with a Q value�0 and after a multicomparison
test, it is statistically significant that samples corresponding to executions of epoch:
8, 16, 24 and 32 are better than those of values 1 and 2. Therefore, this parameter has a
significative impact in the algorithm results; it seems also that a reasonable number of
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Fig. 12 Dynamic Nash. Multicomparison test. Samples from epoch values 24 and 32 have better
mean ranks than those from value 1

generations are required to let the algorithm exploit the genetic information towards
the optimum. As in Sect. 5.2, this diversity enhanced dynamic Nash DD maintains
the high robustness of the procedure, as all the independent executions were able to
achieve the optimum.

5.4 Comparing Dynamic Nash Domain Decomposition with
Diversity Dynamic Nash Domain Decomposition

The best values of epoch of the dynamic Nash DD and the diversity dynamic Nash
DD are compared in this section. Particularly, the epoch parameter has been com-
pared with values 16, 24 and 32 generations. These results are shown in Figs. 15
and 16. Null hypothesis (all samples correspond to the same distribution) is rejected
(α�0.05) with Q value�3.0 × 10−4 and after a multicomparison test, it is statisti-
cally significant that samples corresponding to executions of the epoch value 32 of
the diversity dynamic Nash DD are better than those of values 16 of the standard
dynamic Nash DD. In addition, in every case, mean ranks of diversity dynamic Nash
EAs are lower than those of the dynamic Nash EA.
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Fig. 13 Diversity dynamic Nash. Kruskal Wallis test results. Epoch values, order is 1–2: 1; 3–4:
2; 5–6: 4; 7–8: 8; 9–10: 16; 11–12: 24; 13–14: 32). Q value�0

Fig. 14 Diversity dynamic Nash. Multicomparison test. Samples from epoch values 8, 16, 24 and
32 have better mean ranks than those from values 1 and 2
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Fig. 15 Dynamic Nash versus diversity dynamic Nash. Kruskal Wallis test results. Dynamic Nash,
epoch values, order is 1–2: 16; 3–4: 24; 5–6: 32; diversity dynamic Nash, order is 7–8: 16; 9–10:
24; 11–12: 32. Q value�3.0 × 10−4

5.5 Final Comparisons

The convergence curves of the average and best values of the fitness function through-
out the optimization process are compared in Figs. 17 and 18, respectively (static
Nash Beam-Column, dynamic Nash with epoch 24, and diversity dynamic Nash with
epoch 32, and panmictic population).

A Kruskall Wallis test where the best values of the Static Nash DD (discarding
the beam-column DD) and the diversity dynamic Nash (epoch�32) is performed
(see Fig. 19). With a Q value of 0.8748, the null hypothesis (all samples correspond
to the same distribution) is not rejected. Therefore, although the diversity dynamic
Nash has the highest mean rank among all this set, from a statistical significance
point of view we cannot reject the hypothesis that all these samples came from the
same distribution. From the engineering optimization point of view, nevertheless, a
crucial difference lays in the fact that when using the diversity enhanced dynamic
Nash approach, ‘a priori’ no decision has to be made about assuming a particular
DD.

Finally, these sample set is compared with the standard panmictic EA (Fig. 20).
With a Q value of 1.077 × 10−13, the null hypothesis (all samples correspond to
the same distribution) is rejected. The multi comparison test, confirms that is this
panmictic EA the one which shows a significantly worst mean rank (Fig. 21).
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Fig. 16 Dynamic Nash versus diversity dynamic Nash. Multicomparison test. Samples from epoch
values 32 of diversity dynamic Nash have better mean ranks than those from values 16 of dynamic
Nash

Fig. 17 Average convergence of several territory DDs

5.6 Overall Discussion

The numerical results of a reconstruction problem in structural engineering obtained
in this paper, suggest the following general remarks:
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Fig. 18 Best convergence of several territory DDs

Fig. 19 Best static Nash DD and diversity dynamic Nash (epoch�32). Order is 1–2: Nash Alt.
every 1; 3–4: Nash Alt. every 2; 5–6: Nash up-down; 7–8: Nash upper-left corner; 9–10: Nash
left-right; 11–12: diversity dynamic Nash; Kruskal Wallis test results. Q value�0.8748; Multicom-
parison test

(a) It has been evidenced that the selection of the DD in the Nash EAs can affect
the convergence speed of the algorithm;

(b) Using a diversity dynamic Nash EA diminishes the possibility of choosing ‘a
priori’ a not optimal domain decomposition.With an increase of the epoch value



A Diversity Dynamic Territory Nash Strategy in Evolutionary … 299

Fig. 20 Best static Nash DD versus diversity dynamic Nash (epoch�32) and Panmictic EAs.
Kruskal Wallis test results. Q value�1.077 × 10−13

Fig. 21 Best static Nash DD, diversity dynamic Nash (epoch�32) and Panmictic EAs. Multicom-
parison test. Samples from panmictic EA have worse mean ranks
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Vk, a diversity dynamic Nash EA is able to evolve at least as quickly as the ad
hoc static DDs from a statistical significant point of view;

(c) The diversity enhanced dynamic Nash EA proposed here, obtain the overall
lowest mean ranks when compared to the standard dynamic Nash EA;

(d) At least considering the bar frame reconstruction problem, Nash EA has shown
a high robustness, being able to achieve the best solution in all executions (static
and dynamic cases);

(e) Again, the advantage of using a Nash EA is significant, measured in terms of the
number of fitness evaluations required to find the best design, when compared
with the panmictic EA.

6 Conclusions

A new dynamic territory approach of a Nash EA has been proposed in this research,
and tested with a bar frame reconstruction problem in structural engineering. The
comparison with the standard static and dynamic Nash DD has shown that this
diversity enhanced dynamic Nash EA is a promising game-theory based tool in
engineering optimization, avoiding the ‘a priori’ choice of a territory split.

As future work, the parallelization of this new approach, as well as its application
in other structural engineering inverse and optimization problems—such as the fully
stressed design problem- will be investigated to test its potentiality in performances
and quality design.
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Interactive Inverse Modeling Based
Multiobjective Evolutionary Algorithm

Karthik Sindhya and Jussi Hakanen

Abstract An interactive version of the inverse modeling based multiobjective evo-
lutionary algorithm is presented. Instead of generating a representation of the whole
Pareto optimal front, the algorithm aims at producing solutions in the regions where
the decision maker is interested in. This is facilitated through an interactive solution
process where the decision maker iteratively evaluates a set of solutions shown to
her/him and the preference information obtained is used to adapt the search process
of the algorithm.

1 Introduction

Recently, preference-based multiobjective evolutionary approaches have become an
important research topic among evolutionary multiobjective optimization (EMO, see
e.g. [4]). Instead of approximating the whole Pareto front, that is, the set of all Pareto
optimal solutions in the objective space, it is typically of interest to approximate only
some region of the Pareto front that the decision maker (DM) is interested in (see e.g.
[1]). In order to enable theDM to learn about the behaviour of the problem considered
and about his/her own preferences, (s)he should be able to change her/his preferences
based on the solutions obtained during the solution process. This can be achieved
by using interactive methods on top of preference-based multiobjective evolutionary
approaches [8].More informationon interactivemultiobjective optimizationmethods
in general can be found in [10]. Interactive EMO algorithms are especially useful for
problems having more than three objectives when the traditional EMO algorithms
are no longer efficient [6].

Several interactive multiobjective evolutionary algorithms have been proposed
in the literature. For an extensive review of these interactive algorithms refer [11].
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Here we present some prominent ones. In [5], a novel interactive optimization tool
called I-EMO was proposed. Here first a set of Pareto optimal solutions were gen-
erated using an EMO algorithm and then a DM was helped through a graphical
user interface to find her/his preferred solution(s) among them. Thiele et al. [12]
proposed a preference based evolutionary algorithm for multiobjective optimization,
wherein the DM progressively provided preference information in every generation
as desirable objective function values and directed the search towards only prefer-
able regions of the Pareto optimal front. In [6], Deb et al. proposed a progressively
interactive EMO algorithm called PI-EMO. In PI-EMO algorithm, the DM is asked
to provide preference information after every fixed interval of generations. The pref-
erence information is provided as a ranking of selected solutions shown in the current
generation, which is subsequently used to construct an utility function. This utility
function is further used to direct the search towards preferable solutions of the DM.

An emerging approach in EMO is estimation of distribution algorithms which
instead of traditional reproduction operators build probabilistic models estimating
the distribution of promising candidate solutions, New solutions are then produced
by sampling the obtained distributions. A recent example of such an algorithm is
the inverse modeling based multiobjective evolutionary algorithm (IM-MOEA) [3]
which builds inverse Gaussian process based models from the objective space to the
decision space in order to approximate the distribution of promising solutions. This
enables generating new candidate solutions via sampling directly in the objective
space.

This paper introduces an interactive IM-MOEA algorithm where the DM is able
to guide the search towards her/his preferred regions of the Pareto front. To facilitate
this, a decision making module is added to the IM-MOEA algorithm which takes
into account the preferences of the DM for a prefixed number of interactions during
the search. Through the decision making module, the DM is shown a number of
solution candidates among which (s)he needs to select one, select two (that is, define
a region in the Pareto front) or disregard all the solutions. Based on her/his actions,
the search mechanism of the algorithm is adjusted accordingly.

The rest of the paper is divided into two parts. First, the proposed interactive IM-
MOEA algorithm is described along with the necessary description of the original
IM-MOEA algorithm. Then, the paper ends with a brief description of the numerical
experiments and some concluding remarks.

2 Interactive IM-MOEA Algorithm

2.1 IM-MOEA

The main idea of the IM-MOEA algorithm presented in [3] is to enable sampling
in the objective space instead of the decision space. This is implemented by intro-
ducing Gaussian process based inverse mapping from the objective functions to
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the decision variables. When sampling in the objective space, the corresponding
decision variable values are obtained by using the approximated inverse mapping.
To ease the computation, the multivariate inverse model is decomposed into sev-
eral univariate inverse models. The number of inverse models is reduced by using
a random grouping strategy where some of the decision variables are assigned to a
specific objective function. In practice, inverse modelling is performed inside sub
populations created from the whole population with the help of fixed number of
uniformly distributed reference vectors in the objective space. More information can
be found in [3].

2.2 Incorporation of Decision Maker Preferences Through
Adapting Reference Vectors

The original IM-MOEA method [3] uses K uniformly distributed reference vectors
to divide the population into sub populations. Each individual of the population is
assigned to the closest reference vector and the solutions that are assigned to the same
reference vector form a sub population resulting in K sub populations. In order to
improve the performance for problems with discontinuous Pareto fronts, an adaptive
reference vector schemewas proposed in [2]. In each generation, one of the reference
vectors will be replaced by another randomly generated vector. In the beginning of
the solution process, that is the exploration phase, the vector which has the most
solutions assigned will be replaced. As opposed to that in the exploitation phase, the
vector with the lowest number of solutions assigned will be replaced. More details
of the adaptive version of the IM-MOEA algorithm can be found in [2].

The main idea of the interactive IM-MOEA algorithm presented here is to take
advantage of the adaptive reference vector generation suggested in [2] and generate
solutions that are desirable to theDM.Here, instead of replacing the reference vectors
with randomly generated ones, such reference vectors will be added that can yield
solutions reflecting the preferences expressed by the DM. The proposed interactive
IM-MOEA algorithm consists of a decision making module attached to the original
IM-MOEA algorithm. The interactive algorithm follows the general algorithm of
IM-MOEA (see [3]) except the interaction step (step 4 shown in the Algorithm 1).
The interaction step is executed not in each generation but only when interaction
with the DM is needed. This can be determined, for example, based on how many
times the DM wants to interact during the solution process (value of this parameter
can come from the decision). In that case, generations when the interaction is needed
can be determined based on the number of interactions and the maximum number of
function evaluations. Additionally, the crowding distance measure used for selection
in [3] is replaced by a distance based selection in order to favour more solutions
preferred by the DM. The details of the decision making module will be described
in the next subsection.
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Algorithm 1 The pseudo code of interactive IM-MOEA
1: initialization
2: while termination condition is not satisfied do

3: partition of the combined population
4: if interaction required then decision making module
5: non-dominated sorting and selection
6: for k = 1 to K do

7: inverse modeling
8: reproduction

9: end for
10: update the combined population

11: end while

2.3 Decision Making Module

In this subsection we extend the IM-MOEA algorithmwith the addition of a decision
making module, which can be conveniently used to handle DM’s preferences. As
mentioned earlier, the decision making module presented in Algorithm 2 is based
on the idea of adaptive reference vectors presented by Cheng et al. [2]. In addi-
tion to the parameters inherited from the original IM-MOEA algorithm, interactive
IM-MOEA has two additional parameters, i.e. the number of interactions the DM
wishes to have with the interactive IM-MOEA algorithm and the number of solutions
(s)he wishes to see in each interaction. It must be noted that the DM has the freedom
to change these two parameters during any interaction.

The decision making module is classified into four steps, i.e. classification of
reference vectors, generate solutions for the DM, preference information from the
DM and adjustment of reference vectors. In the first step, the current set of reference
vectors are classified into active and inactive reference sets. The reference vectors
with associated individuals form an active reference set and reference vectors with
no associated individuals form an inactive reference set. In addition, the reference
vector having the most solutions associated with is identified as the lead reference
vector vlead. In the second step, the active reference set is clustered into NDM clusters
and one representative reference vector from each cluster is chosen. Next for each
NDM reference vectors, an individual that makes minimum angle with it is chosen.
Thus NDM individuals are shown as candidate solutions to the DM, based on which
the DM provides her/his new preference information. The value for the parameter
NDM can be asked from the DM (that is, howmany different solutions the DMwants
to see at a time) or, otherwise, a default value can be used.

In step 3, the decisionmaker can either choose to explore further without choosing
any solution, choose one solution or choose a preferred region identified by two
different solutions. Based on what the decision maker chooses, different actions are
taken in step 4. If the DM disregards all solutions shown to her/him in step 3, the
lead reference vector vlead is replaced by a randomly generated reference vector
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Algorithm 2 Decision making module
Step 1: Classification of reference vectors:

• For each reference vector vi, i = 1, . . . , K , calculate the number of individuals (nsoli ) of the
population associated with it.

• The set of all reference vectors with no associated individuals form an inactive reference set
I R and the rest of the reference vectors form an active reference set AR.

• From the set AR, the reference vector with maximum number of associated individuals is
termed as lead reference vector vlead.

Step 2: Generate candidate solutions for the DM

• Cluster the elements of AR into NDM clusters (If |AR| < NDM , then NDM = |AR|). From
every cluster choose one reference vector as a representative index of the corresponding cluster.
Subsequently, for every reference vector among all associated solutions, a solution zi is chosen
whose position in the objective space has minimum angle with the reference vector. Thus zi,
i = 1, . . . , NDM candidate solutions are shown to the DM.

Step 3: Preference information from the DM. DM follows one of the following three paths:

• disregards all NDM solutions shown to her/him and wishes to explore more. Go to Step 4a.
• chooses one solution among NDM solutions as his preferred solution zpref . Go to Step 4b.
• identifies a preferred region defined by two solutions (zpref and zpref+1) to explore further. Go

to Step 4c.

Step 4: Adjustment of reference vectors

• Step 4a: Replace vlead with a new randomly generated reference vector.
• Step4b:Thewhole set of reference vectors is updated as follows: If this is not the last interaction,

the extreme reference vectors ei = (0, . . . , 1, . . . , 0)T , that is, unit vectors, are included. Then,
the reference vector vnear having the minimum angle with the reference vector associated
with zpref (vpref ) is added. Accordingly, the vector vref that is obtained by reflecting vnear

with respect to vpref is also added. The remaining reference vectors are uniformly distributed
between vnear and vref . The procedure is illustrated in Figure 1.

• Step 4c: The whole set of reference vectors is updated as follows: If this is not the last interac-
tion, the extreme reference vectors ei are included as in Step 4b. Then, the reference vectors
associated with zpref and zpref+1 are added and the rest of the reference vectors are equally
distributed between these two vectors.

in step 4a. Alternatively, if the decision maker chooses one solution, all reference
vectors other than the vpref (i.e. the one that the preferred solution is associated with)
are deleted. The entire set of reference vectors is regenerated between the reference
vector vnear that is the closest with the vpref and its reflected counterpart vref with
respect to vpref as shown in Fig. 1. This is done in order to bias the search towards
region of interest to the decision maker. Finally, if the decision maker prefers two
solutions (i.e. is interested in the region between them), the set of reference vectors
is generated between the two reference vectors that the preferred solutions indicated
by the DM are associated with. Additionally, at each interaction (except the final),
the extreme reference vectors are included to be able to allow changes in preference
information and maintain diversity in the population. They are not included in the
final interaction in order to guarantee convergence according to preferences specified
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Fig. 1 Illustration of
reference vector generation
in step 4b of the Algorithm 2

by the DM. Note that the number of the reference vectors remains fixed throughout
the search.

3 Numerical Experiments

The performance of the interactive IM-MOEA algorithm consisting of the proposed
decision making module in conjunction with the IM-MOEA algorithm is demon-
strated here by using two and three objective problems. The problems selected are
bound constrained problems F2 (two objective problem, modified from the ZDT2
problem) and F4 (three objective problem, modified from the DTLZ2 problem) from
[3], both having 30 decision variables. The population size used was 50 for both
problems and the maximum number of function evaluations was 50000 and 100000
for F2 and F4, respectively. The number of reference vectors was set to K = 10
for both problems as suggested in [3]. The random group size was set little higher
(L = 10) than proposed in [3] in order to get more accurate results. Clustering in
step 2 of the decision making module is performed by using K-means clustering [7].
The interaction between the DM and the interactive IM-MOEA algorithm for both
problems F2 and F4 are summarized in Table1. In every interaction the solutions
chosen by the DM are marked in bold font.
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Table 1 Candidate solutions shown to DM during four interactions for problems F2 and F4

Interaction Solution number Candidate solutions
(problem F2) ( f1, f2)

Candidate solutions
(problem F4) ( f1, f2, f3)

1 1 (0.000, 1.000) (0.146, 41.3, 0.012)

2 (0.122, 0.988) (0.000, 6.81, 27.8)

3 (0.267, 0.932) (73.9, 0.022, 0.002)

4 (0.415, 0.830) (4.95, 6.27, 9.39)

5 (26.8, 0.000 33.2)

2 1 (0.507, 0.747) (0.553, 0.602, 1.01)
2 (0.475, 0.788) (0.000, 0.000, 1.37)

3 (0.354, 0.878) (0.001, 12.7, 0.000)

4 (0.312, 0.907) (19.0, 1.56, 0.000)

5 (0.000, 1.000) (5.33, 1.04, 5.90)

3 1 (0.000, 1.000) (0.000, 0.000, 1.03)

2 (0.482, 0.770) (0.297, 0.747, 0.718)

3 (0.471, 0.780) (0.015, 1.54, 0.212)
4 (0.502, 0.751) (0.654, 0.353, 0.750)
5 (0.492, 0.761) (4.79, 0.000, 1.05)

4 1 (0.000, 1.000) (0.413, 0.889, 0.282)

2 (0.361, 0.873) (1.67, 0.000, 0.101)

3 (0.224, 0.953) (0.002, 1.03, 0.000)

4 (0.149, 0.980) (0.000, 0.000, 1.02)

5 (0.471, 0.780) (0.649, 0.603, 0.569)

5 1 (0.000, 0.000, 1.06)

2 (0.587, 0.693, 0.495)
3 (0.656, 0.558, 0.553)
4 (1.02, 0.000, 0.002)

5 (0.049, 1.00, 0.008)

3.1 Example with a Biobjective Problem

In the first example, problem F2 with a nonconvex Pareto front will be used. The
DM wants to interact four times (Nia = 4) and he wants to see five solutions at each
interaction (NDM = 5). Initially, his preferences are to get as close to f1 = 0.5 as
possible. In the first interaction, the candidate solutions shown to him are presented
in Table1. Note that there are only four candidate solutions since only four of the
reference vectors are active (i.e., have associated solutions) at this phase.
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The range of the solutions shown for f1 is [0.000, 0.415] and, according to his
preferences, he selects candidate solution number 4 as the preferred one. Figure2
shows the candidate solutions, a solution selected by the DM and the updated set of
the reference vectors where the bounding reference vectors are highlighted. Note that
it is only possible to show this kind of visualization to the DM when the number of
objective functions is two or three. For problems with more objectives, other types of
visualization techniques need to be used (see e.g. [9]). In addition, reference vectors
are not meant to be shown to the DM but are in this paper included for illustrative
purposes. Based on the preferences, the candidate solutions shown to the DM for
the second interaction are presented in Table1. This time, there are five candidate
solutions since at least five reference vectors have associated solutions.

Candidate solution 1 has a value very close to the initial preferences of the DM
( f1 = 0.507). Next, he wants to see more solutions between candidate solutions 1
and 2 and selects them as preferred solutions. Figure2 shows the candidate solutions,
solutions selected by the DM and the updated set of the reference vectors where the
bounding reference vectors are highlighted. Note that now the spread of the reference
vectors is smaller when the DM wants to zoom in to a specific region in the Pareto
front. Based on those preferences, the next five candidate solutions are shown in
Table1.

Now all the candidate solutions except number 1 are very close to the initial
preferences of the DM. Having examined the solutions in more detail, he is not
interested in them anymore but wants to improve f1 further. To zoom out from the
region of his initial preferences, he selects the candidate solutions 1 and 3 as he wants
to examine the region for lower f1 values. Accordingly, Fig. 2 shows the candidate
solutions, solutions selected by the DM and the updated set of the reference vectors
where the bounding reference vectors are highlighted. Note that now the spread of the
reference vectors is bigger since the DM wants to zoom out. The resulting candidate
solutions are now shown in Table1.

Based on the candidate solutions shown, the DM was able to move towards a
region where f1 values are smaller than 0.5. This is now the final interaction and he
wants to focus in the area between candidate solutions 2 and 3. Figure2 shows the
candidate solutions, solutions selected by theDMand the updated set of the reference
vectors where the bounding reference vectors are highlighted. Note that after the last
interaction, the extreme reference vectors are not anymore included since the focus
is now on converging according to the last preferences. The set of final solutions
obtained is shown in Fig. 2 along the final set of reference vectors. As can be seen,
the solutions obey nicely to the final set of reference vectors that are based on the last
preferences of the DM. In addition, the interactive IM-MOEA algorithm showed in
this example that it can follow the changes in the DM’s preferences.
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Fig. 2 Interactions with the DM for problem F2
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3.2 Example with a Three Objective Problem

To illustrate the behavior of the interactive IM-MOEA algorithm in three objective
problems, we use the problem F4 from [3]. In this case, the DM wants to interact
five times (Nia = 5) and, again, he wants to see five solutions at each interaction
(NDM = 5).

Initially, his preferences are to get as well balanced solution between the three
objectives as possible. In the first interaction, the candidate solutions shown to him
are presented in Table1. None of the candidate solutions are acceptable for the DM
(they are still very far from the Pareto front) and, thus, the DM does not select any of
the solutions. This means that only one of the reference vectors is updated according
to step 1 in Algorithm 2.

The candidate solutions for the second interaction are shown in Table1. Although
many solutions are still not acceptable, the candidate solution number 1 seems to be
best of them for the DM and, therefore, he selects that one. Figures3 and 4 show the
candidate solutions, solutions selected by theDMand the updated set of the reference
vectors where the bounding reference vectors are highlighted. In addition, the real
Pareto front is also illustrated here to ease the visualization of the performance. For
practical problems, the Pareto front is not known and, therefore, can not be visualized
to the DM. The resulting candidate solutions for the third interaction are shown in
Table1.

Since most of the candidate solutions start to be in the ranges acceptable for
the DM, next he wants to aim at finding a good balance between the objectives.
Therefore, he selected candidate solutions 3 and 4 and the Fig. 3 shows the candidate
solutions, solutions selected by the DM and the updated set of the reference vectors
where the bounding reference vectors are highlighted. As can be seen in Fig. 3, he
tries to aim towards the middle region of the Pareto front. The resulting candidate
solutions are shown in Table1.

Based on the candidate solutions obtained, number 5 seems to represent a good
compromise between the objectives so that is selected by the DM next. Again, the
resulting data is shown in Fig. 4 and the resulting candidate solutions for the last
interaction can be seen in Table1.

Among the resulting candidate solutions, three (1, 4 and 5) represent solutions
where one of the objectives has not so good value and the other two (2 and 3) represent
good balance between all the objectives. Therefore, the DM chose 2 and 3 (see Fig. 4
for illustration). The final solutions obtained are shown in Fig. 4 and it can be seen
that they approximate balanced compromises between the objectives.
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Fig. 3 Interactions 2–4 with
the DM for problem F4
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Fig. 4 Interaction 5 with the
DM and final solutions for
problem F4
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4 Conclusions

In this paper we have proposed a novel interactive IM-MOEA algorithm that pro-
gressively considers the preference information of the DM and finally generates a
set of solutions desirable to the DM. This algorithm strives to minimize the cognitive
burden on the DM by providing the DM flexibility to decide on the number of solu-
tions (s)he wishes to investigate and how many times (s)he wishes to interact. The
algorithm presented considers a simple approach of generating reference vectors in
the regions preferable to the DM, thereby generating preferred solutions. The results
indicate the easewithwhich theDMwas able to direct his search using the interactive
IM-MOEA algorithm and find her/his preferred solution.

Our future research topics include enhancing reference vector adaptation for prob-
lems havingmore than two objectives and adding constraint handling to the proposed
algorithm. In addition, testing the algorithm with real-world problems having larger
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number of objectives is required, for example, the General Aviation Aircraft problem
[13].
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Multi-disciplinary Design Optimization
of Air-Breathing Hypersonic Vehicle
Using Pareto Games and Evolutionary
Algorithms

Peng Wu, Zhili Tang and Jacques Periaux

Abstract The design integration of a supersonic combustion ramjet engine
(SCRAMJET) with an airframe remains a critical task for guarantying a success-
ful mission of trans atmospheric or hypersonic cruise vehicles. For this purpose, the
operational efficiency has to be established by the effective specific impulse and the
thrust to weight ratio of the accelerating vehicle. In order to analyze the foregoing
problems, a designmethodology based on EvolutionaryAlgorithms (EAs) andGame
Strategies (GS) is developed. In this study, EvolutionaryAlgorithms (EAs) are used to
solveMDO problems. The proposed methodology is tested and its performances and
quality design evaluated for optimizing a 2-D air-breathing hypersonic vehicle shape
at cruise flight conditions: Euler flow, Mach number�8; angle of attack�0°; flight
altitude�30 km, involving aerodynamics, thermodynamics and propulsion disci-
plines. The set up of an operational flight corridor requires a compromise among
air-breathing engine performance, vehicle aerodynamic performance, and structural
thermal load limit resulting from aero-heating. For this purpose, the operational effi-
ciency is established by the effective specific impulse and thrust to weight ratio of the
accelerating vehicle. In order to analyze the foregoing problems, a methodology is
developed, which permits a quick performance evaluation of an idealized, integrated
SCRAMJET vehicle for preliminary design analysis. A Pareto-EAs methodology is
used to find design and off design solutions of an integrated vehicle consisting of the
fore body inlet, the supersonic flow combustor and the after body expansion nozzle.
From preliminary numerical experiments on a generic test case 2-D air breathing
vehicle and analysis of results, the Pareto-EAs numerical approach is a promising
methodology with game coalition for its use in industrial aeronautical design and
well suited for its implementation on HPCs for increasing its efficiency.
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1 Introduction

Game Strategies and Pareto Games (PG) in particular are gaining importance for
solving Multi- Disciplinary Optimization (MDO) in Aerospace Engineering prob-
lems over the past decade. Quite often the solution of aMDO problem can be viewed
as a cooperative game between several Pareto Players linked to the physics.

In this study, Evolutionary Algorithms (EAs) are combined with (PG) to solve
MDO problems. The proposed methodology is tested and its performances and qual-
ity design evaluated for optimizing the 2-D air-breathing hypersonic vehicle shape
considering simultaneously aerodynamics, thermodynamics and propulsion disci-
plines [1–4]. The set up of an operational flight corridor requires a compromise
among air-breathing engine performance, vehicle aerodynamic performance, and
structural thermal load limit resulting from aero-heating.

The ad hoc design integration of a supersonic combustion ramjet engine (SCRAM-
JET)with an airframe drives the success of themission of trans atmospheric or hyper-
sonic cruise vehicles. A special attentionmust be given to the hypersonic atmospheric
boost phase of the mission when most of the propulsive energy is expended. For this
purpose, the operational efficiency is established by the effective specific impulse
and the thrust to weight ratio of the accelerating vehicle. In order to analyze the
airbreathing problem, a methodology is developed, which allows a fast performance
evaluation of an idealized, integrated SCRAMJET vehicle [5] in the context of a
preliminary design analysis. The capabilities of methodology require to master the
following steps: (i) designing an integrated vehicle configuration made of the fore
body inlet, the supersonic flow combustor and the after body expansion nozzle; (ii)
generating the design and off-design performances data of the configuration and (iii)
performing several design iterations for tradeoff studies.

The hypersonic flight conditions of the associated multidisciplinary optimization
problem are: Mach number�8; angle of attack�0°; flight altitude�30 km. An
inviscid Euler flow model is used with no chemistry model. In the sequel, a method-
ology is developed, which permits a quick performance evaluation of an idealized,
integrated SCRAMJET vehicle for preliminary design analysis. The four objective
functions to be optimized include: acceleration performance (maximization), lift
coefficient (maximization), drag coefficient (minimization) and ratio of lift to drag
(L/D) (maximization).

Samples of design and off-design optimizations with analysis of generic hyper-
sonic vehicle configurations are presented and discussed using Pareto games coupled
to real coded Genetic Algorithms (GAs).
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2 Integrated Forebody Surface/SCRAMJET Inlet Analysis

At hypersonic speed, the displacement angle of the bow shock wave emanating from
the nose of the vehicle is very small (within a few degrees). This fact combined with
the mass flow requirement of the SCRAMJET engine can cause the longitudinal
length of the external wedge or conical compression device to become very large.
In order to optimize the SCRAMJET performance and to keep the overall vehicle
length to a minimum, it is suggested that the lower surface of the vehicle fore body be
integrated to form part of the external compression device. For a preliminary design
analysis, the fore body compression surfaces aremodeled as a two-dimensional multi
ramp wedge. The behavior of the flow field through shock waves is described using
inviscid oblique shock theory. The effect of displacement thickness and friction as a
result of viscous flow interaction are briefly discussed later.

The geometry of the fore body compression surface is designed in order to capture
100% of the free stream air mass flow at an arbitrarily selected design flight condi-
tion. Parameters that define the design flight condition are: Mach number (M�8),
angle of attack (AoA�0°), and altitude (30 km). There are several ways to specify
the geometry: (1) the slope of each ramp on the wedge, the longitudinal distance
between the vehicle nose and the inlet lip of the cowl are given; (2) a mass flow
requirement and the distance between the nose and cowl inlet position are given; (3)
a mass flow requirement and an initial ramp angle are given. For designs having a
constrained fore body length, the vertical position of the cowl is adjusted so the bow
shock wave intercepts the cowl lip. The subsequently downstream ramp positions
are longitudinally adjusted so as to make all the shock waves generated by the multi
ramp wedge coalesce and intercept the cowl lip (see Figs. 1 and 2).

The strength of the bow shock is dependent upon the total compression angle
measured relative to the free stream. This angle includes the initial ramp deflection
and angle of attack. The greatest loss in total pressure occurs across the bow shock.
Because of this, the overall total pressure recovery of the local flow field may not

Fig. 1 Integrated fore body/inlet schematics: three shock waves converged at the lip



320 P. Wu et al.

Fig. 2 Integrated after body/nozzle schematics

be improved much by having a smooth isentropic compression downstream of the
nose. For this reason and for analytic simplicity, a compression surface with three
ramps appears to suffice for the fore body design analysis.

The subsequent internal compression processes downstream of the cowl inlet to
the combustor inlet are tailored to align the final flow direction to be parallel with
respect to the vehicle body coordinate system with flux, temperature, and pressure
values defined at the combustor entrance point and used as initial conditions for the
subsequent combustor inlet analysis.

3 Divergent Area Supersonic Combustor Analysis

Many complexities and uncertainties exist in the supersonic combustor design, for
example and among others, the turbulent mixing process of fuel in a supersonic
air stream; the residence and reaction times of the fuel/air mixture that determine
the supersonic combustor size; the burning characteristics of the fuel/air mixture
in an environment of high-speed (order of 3 km/s) and low-pressure (order of 0.1
atmosphere) flow; the high-enthalpy flow contributing to the real-gas effects such as
species dissociation of gas; the chemical reaction of combusting media,….

Many CFD analyses are being done by researchers to enhance the understand-
ing of these complex phenomena. However, these CFD approaches are costly and
unsuitable for conducting preliminary design studies. To provide a more rapid, less
costly alternative methodology for use in preliminary design analysis, an idealized
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Fig. 3 Coarse grid about 30000 cells

supersonic combustor analytical model is derived. Essentially, all of these uncertain-
ties about the combustion process are considered as if they exist in a “black box”
[5]. Then engineering judgment is applied to establish a reasonable efficiency factor
of energy conversion based upon the energy balance, i.e., the work exerted by the
vehicle to the surrounding atmosphere is directly proportional to the available heat
content of the fuel.

For a generic hypersonic vehicle with a flat top surface, the aerodynamic forces
induced by the leeward surface are considered negligible. However, in reality, the
aerodynamic contributions induced by the non-flat upper vehicle components should
be included. For the present analysis in this lecture, aerodynamic contributions are
derived from the forces on the lower fore body surface and the external cowl, which
are not included in the definition of the propulsive forces.

It is often quoted in the literature that SCRAMJET performance analysis should
be conducted along a constant dynamics pressure flight path. However, the imposed
aero heating rate is proportional to the cube of velocity so that the heating rate
increases proportionally with the velocity along a constant dynamic pressure flight
path. In this case, the heating rate becomes unacceptable at higherMach numbers. For
flight in the constant heating rate corridor, the SCRAMJET performance drops off
proportionally with increasing altitude. Therefore, a considerable amount of tradeoff
study is required to design a viable system. The present computational methodology
permits us to conduct these tradeoff studies quickly and economically.

Figures 3 and 4 describe coarse and fine mesh for simulating an Euler flow at
Mach number�8, an angle of attack�0° and an altitude�30 kmwhile the simulated
zoomed flow region around the scramjet configuration is presented on Fig. 5.
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Fig. 4 Fine grid about 80000 cells

Fig. 5 Mach number contours of the flow field

4 Multi Disciplinary Optimization of Airbreathing Vehicle

In this section the optimization of a generic air breathing vehicle configuration test
case described above on Figs. 1 and 2 and using evolutionary tools coupled with a
Pareto game is implemented, simulated and discussed.
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4.1 Introduction

This test case provides the requested computational information data to solve the
multi-objective design optimization of an air breathing vehicle configuration con-
sistingof twodesign elements: the fore body and the after bodyof a scramjet operating
at hypersonic flow conditions.

4.2 Definition of the Test Case

Design the geometry of a scramjet with respect to the geometrical variables of its
two forebody (Fig. 1) and after body (Fig. 2) elements described above.

Fore body shape design: three wedge shapes, three shock waves converged at the
lip.

The height of the after body is equal to the forebody, once the turning angle of the
upper wall θa f terbody and the length Lsp and the turning angle of the lower θsp wall
is determined, the geometric size can be determined.

by
maximizing Q: recovery of total pressure at inlet
maximizing CL/CD: lift to drag ratio
maximizing Isp:
specific impulse (is defined by dividing the thrust component oriented in the

flight-path direction by the fuel mass flow).
maximizing Isp−eff:
minimizing Tmax: maximum temperature in flow field.

4.3 Software Requirement Requirements

Three main software are requested to perform the optimization of this test case:

• an in house compressible Euler flow analyser with no chemistry
• a mesh generator used repetitively during the optimization procedure
• an EAs based evolutionary optimiser,

The optimizer is coupled with a Pareto game software.

4.4 Computational Domain

A zoomed illustration of the discretized computational domain can be found on
Figs. 3 and 4.
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4.5 Baseline Configuration with Prescribed Boundary
Conditions on the Fore Body and After Body Geometries

Definition of the flow solver:
The mathematical modeling of the flow environment around the scramjet is de

fined with the following physical hypotheses:

• Implicit Euler solver
• Perfect gas
• No chemistry reaction

The combustion process provides both the inlet computational condition as
pressure-outlet, and the outlet as pressure-inlet.

The far-field is taken as pressure far-field, the wall is considered as no through
wall.

The fore body and simulator equations are described below (cf. Fig. 1.).
Forebody:

L1 � L f orebody − l

L2 � H0 − L1 tan α1

tan(β2 + α1) − tan α1

H1 � H0 − L2 tan(β2 + α1)

L3 � L2 tan(β2 + α1) − L2 tan(α1 + α2)

tan(β3 + α1 + α2) − tan(α1 + α2)

H2 � L2 tan(β2 + α1) − L3 tan(β3 + α1 + α2)

H3 � (L3 + l) tan(α1 + α2 + α3)

H0 � H1 + H2 + H3 + h

tan β � H0

L1

tan α � Ma2 sin2 β − 1

[1 + γ+1
2 − sin2 β)Ma2] tan β
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tan(β − α)

tan β
� (γ − 1)Ma2 sin2 β + 2

(γ + 1)Ma2 sin2 β

Simulator (according to P. J. Waltrup et al. results [8]):

Lisolator � 0.01(0.971875(H0/h)
2 − 24.0875(H0/h) + 162.3)

• Multi-stage simulation: Standard mesh for a 2-D hypersonic flow field analysis

4.6 Optimization and Objective Functions

The objective of the design optimization of this air breathing vehicle test case is to
find the shape of the scramjet configuration. It consists of the following optimization
with four (4) objective functions:

The Pareto shape optimization procedure used in this air breathing vehicle test
case is implemented with the real coding NSGA II software. We refer to Pareto [6]
and Deb [7] for the description of this optimizer.

4.7 Cooperative Games: Pareto Optimality

The main interest of a Pareto based evolutionary algorithm is that the optimization
process has not to aggregate objectives. It provides the fitness values of a candidate
solution directly from the comparison of their respective objective vectors.

An usual way to represent the solutions of a multi-objective problem is based on
the concept of Pareto optimality or non-dominated individuals [6]. Figure 6 shows the
Pareto optimality concept for a two conflicting objectives problem. The solution of
a multi-objective problem is the Pareto optimal set or Pareto Front which is captured
using a cooperative game identifying the set of non-dominated solutions. This process
spans the complete range of compromised designs between the two objectives. Most
real world problems involve a number of inseparable objectives where there is no
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Fig. 6 Pareto optimality

unique optimum, but a set of compromised individuals known as Pareto optimal
(or non-dominated) solutions. We use in this air breathing vehicle multi objective
optimization problem the Pareto optimality principle: a solution to a multi-objective
problem is considered Pareto optimal if there is no other solutions that better satisfy
all the objectives simultaneously. The Pareto optimal solutions then represent a trade-
off information among the objectives.

Definition of a non dominated solution:
For a two objectives minimization problem, a vector x1 is said partially less than

vector x2 if and only if:

∀i : fi (x1) ≤ fi (x2) and ∃i : fi (x1) < fi (x2)

In this case the solution x1 dominates the solution x2.
As EAs consider multiple points simultaneously, they are capable of finding a

number of solutions in a Pareto set. Pareto selection ranks the population and selects
the non-dominated individuals for the Pareto front. A comprehensive theory, liter-
ature review and implementation of Multi-objective EAs (MOEAs) including the
NSGAII and VEGA algorithms can be found in Deb [7].

More details and applications of Pareto games can be found in Periaux et al. [8].
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Design Variables primary standard search range

1α 6.06 2~10

2α 6 2~10

3α 7.68 2~10

spL 200 20~1000

spθ 6.0 2~10

afterbodyθ 12.0 2~30

Fig. 7 Design upper/lower bounds for the air breathing vehicle geometry

4.8 Design Point

The optimizer requires information of candidate solutions provided by the flow ana-
lyzer operating at the following cruise flight conditions:

• Altitude�30 km M�8, α�0

Atmospheric parameters:

• Pressure 1197 Pa
• Density 0.0180 kg/m3
• Temperature 226.65 K
• Sonic speed 301.7 m/s

4.9 Design Parameters: Search Space for Shape Optimization

Six (6) design variables are used to optimize the shape of the scramjet geometry.
For each variable, upper and lower bounds give limits of the search space of non
dominated solutions.

Design bounds for the optimization problem are shown on Fig. 7.

4.10 Outputs Results

The major outputs of the geometry optimization include:

• The capture of the non-dominated solutions of the Pareto front;
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• Optimized design variables of a non dominated solution named Pareto Member
(PM)

• Values of the objective functions of a non-dominated solution named ParetoMem-
ber (PM)

• Zoomed Mach numbers of one Pareto member (PM) flow field.

4.11 Some Preliminary Results Obtained with NSGA II
Software for the Shape Optimisation Scramjet Problem

Two (2) non-dominated solutions members (Pareto members PM1and PM2) on the
Pareto Front shows optimized shape geometries of airbreathing vehicles.

The total computational time in terms of CPU spent for functions evaluations
a 40 generations run on a PC cluster of 72 CPU with 80 individuals using NSGA
II software and a mesh of 100000 cells takes 77 h 20 min to capture the Pareto
Front. The convergence history of the Pareto Front of the five objective functions are
represented on Figs. 8, 9 and 10.

Figure 11 shows the optimal shape geometry of the air breathing vehicle obtained
with optimal values of the design variables given above.

Figure 12 shows the optimal shape geometry of the air breathing vehicle obtained
with optimal values of the design variables given above.

Fig. 8 Non dominated solutions capture of Cl/Cd, Isp and Isp-eff
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Fig. 9 Non dominated solutions capture of Cl/Cd, Isp and Tmax

Fig. 10 Non dominated solutions capture of Cl/Cd, Isp and Q

5 Conclusion

From the preliminary numerical experiments and presentation of results, it is con-
cluded that the Pareto-EAs methodology is satisfactory for conceptual designs of
hypersonic air breathing vehicles considering multi disciplines and constraints. In
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Fig. 11 Non dominated design solution with design variables and values of objective functions
(PM1)

Fig. 12 Non dominated design solution with design variables and values of objective functions
(PM2)

order to be used in industrial design environments, computational efficiency taking
into accountmore complex physicsmodeling has to be improvedwith the coupling of
EAs with others games (Nash, Stackelberg) or games coalition (Nash-Pareto) with
EAs, Periaux et al. [8] Due to their easy implementation on HPCs a significantly
increase of efficiency will be available in the next phase of this study.
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Innovative Methodologies for Robust
Design Optimization with Large Number
of Uncertainties Using ModeFRONTIER

Alberto Clarich and Rosario Russo

Abstract This paper describes the methodologies that have been developed by
ESTECO during the first phase of UMRIDA European Project, in the field of Uncer-
tainty Management and Robust Design Optimization, and that have been imple-
mented in the software platform modeFRONTIER. In particular, in the first part
there are proposed two methodologies, one based on SS-ANOVA regression applied
directly to the uncertainties variables and one based on a stepwise regressionmethod-
ology applied to the Polynomial Chaos terms used for the uncertainty quantification.
Aeronautical test cases proposed by UMRIDA consortium are used to verify the
validity of the methodologies. In the second part, the state of art methodologies for
Robust Design Optimization are compared with a new proposed approach, based
on a min-max definition of the objectives, and the application of Polynomial Chaos
coefficients for an accurate definition of percentiles (reliability-based robust design
optimization). Also in this case an Aeronautical CFD test case is proposed to validate
the methodologies.

1 Introduction

As proved by recent studies [1], one of the most efficient methodology to manage
accurately the uncertainties is the application of Polynomial Chaos expansion [2].
This methodology however requires a minimum number of samples which increases
heavily with the number of uncertainties, and a typical industrial optimization case
(for instance at least 10 simultaneous uncertainties) can be hardly treated as a feasible
task.

For this reason, we propose in this paper some approaches to handle efficiently
industrial problems of this kind, both on the side of Uncertainty Management (UQ)
and on the side of Robust Design Optimization (RDO).

A. Clarich (B) · R. Russo
ESTECO SpA, Area Science Park, Padriciano 99, 34151 Trieste, Italy
e-mail: engineering@esteco.it

© Springer International Publishing AG 2019
E. Minisci et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 48, https://doi.org/10.1007/978-3-319-89988-6_20

335

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89988-6_20&domain=pdf


336 A. Clarich and R. Russo

For the UQ, the proposed solution is to use methodologies that allow to identify
which are the uncertainties having higher statistical effects on the performances of the
system, this way allowing to apply the Polynomial Chaos expansion with a smaller
number of uncertainties, and therefore a significant smaller number of samples, on a
system which is statistically equivalent to the original. As alternative, the uncertain
parameters effects analysis can be applied directly to the Polynomial Chaos terms,
this way reducing the number of unknown coefficients and therefore the number of
needed samples to complete theUQ,without discarding necessarily at all an uncertain
variable from the problem (keeping this way an higher accuracy).

For the RDO methodologies, we propose a methodology based on the min-max
formulation of objectives, which guarantees the reduction of objectives numbers with
respect to a classical RDO approach [3], and therefore the possibility of reducing
drastically the number of configurations to be evaluated and of simulations to be per-
formed. In order to guarantee an accurate application of this methodology, we devel-
oped an approachwhich is based on the exploitation of PolynomialChaos coefficients
to evaluate accurately the percentiles of the quantities to be optimized/constrained.
This methodology is also called reliability-based design optimization [4], and the
solution we propose, based on Polynomial Chaos exploitation, is innovative and
very promising in terms of efficiency.

2 UQ of Large Number of Variables: SS-ANOVA and
Stepwise Regression for Sparse Collocation

Smoothing Spline ANOVA (SS-ANOVA) [5] models are a family of smoothing
methods suitable for both uni-variate and multi-variate modeling/regression prob-
lems characterized by noisy data, given the assumption of Gaussian-type responses.
In particular, SS-ANOVA is a statistical modeling algorithm based on a function
decomposition similar to the classical analysis of variance (ANOVA) decomposition
and the associated notions of main effect and interaction. Each term - main effects
and interactions—can be used to reveal the percentage contribution of each single
uncertain parameter, and of any uncertain variables pair, on the output global vari-
ance, since in a statistical model the global variance can be explained (decomposed)
into single model terms.

A generic multi-variate regression problem could be stated as a constrained min-
imization problem, that can be expressed in Lagrangian terms as:

minL ( f ) +
λ

2
J ( f ) (1)

where L(f) is defined as minus log likelihood of the model f(x) given the data, to
be minimized to maximize the data fit, and J(f) is defined as a quadratic roughness
functional, to be subjected by a constraint—J(f)≤ρ—that can be used to preserve
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the overfitting (a large roughness guarantees a smoother model, while smaller values
imply rougher functions but better agreement to the data).

We can generally assume that the regression model f(x) can be expressed as a sum
of N independent components f j(xj), each one function of a single variable xj. By
this approximation, the regression model would take into account only main effects
(the effect of each single variable).

Amore complete regression model, which has to consider also interaction effects,
will include in f(x) also the interaction terms f ij(xi, xj).The smoothing parameters,
needed to solve the regression problem, can be determined by a proper data-driven
procedure, such as the generalized cross validation (GCV), as described in [6]. The
number of decomposition terms, which is equal also to the minimum number of
needed sampling points, is equal to N(N − 1)/2 with N number of variables.

We can therefore apply the definition of internal product projecting the f(x) to
any component f k obtaining the value of its contribution (or probability), by the
(normalized) expression:

πk � 〈 fk, f 〉
‖ f ‖2 (2)

Expression 2 is called contribution index k and expresses the relative significance
of the different terms composing the model, therefore the contribution of each vari-
able main effect or interaction effect.

As alternative to the first methodology for UQ here proposed, we have adopted
another approach [7], which consists in applying a regression analysis directly on the
Polynomial Chaos expansion (PCE) expression, in other words the PCE will keep
only those terms which actually affect the output, discarding the others.

The methodology consists first in ranking the terms using a Least Angle Regres-
sion (LAR) technique [8] and then in assessing how many PCE terms should be
kept.

The LAR ranking is accomplished by the following procedure (Pai represents a
generic PCE term).

• Set residual Res � output − mean (output)
• The first selected polynomial term Pa1 is the one with the highest correlation with
Res namely: Pa1 such that corr

(
Pa1 ,Res

) � max
(
corr

(
Pai ,Res

))

• Set Pai � Pa1
• For k from 1 to the number of PCE terms to be ranked do:

– Set Res � Res − λPai where λ is such that: corr
(
Pai ,Res

) �corr
(
Pa j ,Res

)
,

the polynomial Pa j is selected.
– Solve a least square problem: find ci and cj that minimize (ciPai + cjPa j −Res)2

– Set Pai � ciPai + cjPa j (new direction)

• Next k

The order of selection of the PCE terms will reflect a ranking based on how much
each term affects the output. Once the ranking is done it is necessary to establish a
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way to choose how many PCE terms should be kept. The criterion for this is based
on the Mean Leave one Out Error (ErrLOO ).

ErrLOO � 1

N

∑N

i�1
�2

i (3)

where N is the number of samples and

�i � output(xi ) − M
∧

(xi ) (4)

i.e. the difference between the output corresponding to the i-th sample and the output
computed from the PCE obtained excluding from the training samples the i-th.

It is possible to show [6] that �i can be estimated by the following expression:

�i � output(xi) − M (xi )
1 − hi

(5)

where M (xi ) is the output evaluated by the PCE computed this time using all the
samples and

hi � diag
(
P

(
PTP

)−1
PT

)
(6)

where Pi j ≡ Pa j (xi )i�1...N; j�1...Nterms

Using the previous expressions, given a certain number of PCE terms, it is possible
to compute the corresponding ErrLOO .

The criterion to select the number of terms consists in monitoring the two quan-
tities:

RLOO ≡ 1 − ErrLOO

var (output)
(7)

Rsquared ≡ 1 − Errsquared
var (output)

(8)

where Errsquared is the squared error sum, i.e. the sum of the squared differences
between each sample output and the corresponding output value estimated using the
PCE (this time using all the samples); var (output) is the output variance considering
all the samples.

Rsquared and RLOO are functions of the number of PCE terms: the first will gen-
erally increase as the number of terms increases, while the second tends initially to
increase as the number of terms increases, but from a certain number of terms on, it
starts showing a decreasing trend.

Rsquared is sensitive on how much the PCE expansion is able to approximate the
output, while RLOO is sensitive to overfitting problems: the ideal number of terms
should guarantee a good compromise, namely Rsquared around 0.9, or higher, and
RLOO close to its maximum before the decreasing trend due to overfitting.
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Table 1 List of uncertainties

Uncertainty Most likely value
(m)

Minimum value
(a)

Maximum value
(b)

PDF-type

Free stream mach 0.729 (case 6)
0.734 (case 9)

95% m 105% m Symmetric
beta-PDF

Angle of attack 2.31° (case 6)
2.54° (case 9)

98% m 102% m Symmetric
beta-PDF

Thickness-to-
chord

Nominal value
from geometry

97% Nominal 103% Nominal Symmetric beta-
PDF

Camber line Nominal value
from geometry

Nominal-0.01%
chord

Nominal+0.01%
chord

Symmetric beta-
PDF

Of course any different strategy for ranking the PCE terms and choosing the
proper number of terms could be chosen, it is important however to employ a strategy
somehow sensitive to both accuracy and overfitting control. In any case the proposed
strategy has got the advantage of keeping separated the ranking algorithm from the
number of terms choice.

The described approach gives the important benefit of reducing the global number
of unknown coefficients for the PCE expansion, and therefore giving the possibility
as well of reducing the number of sampling points, needed for the PCE training.

Conversely from the SS-ANOVA methodology, however, the great advantage is
that any uncertainty is not necessarily discarded, but its effect might be included in
a smaller set of polynomial terms.

3 UQ Test Case Application

To validate the methodologies proposed in previous section, we have applied them
to the test case BC-02 of UMRIDA European Project [9].

The test case consists in the UQ quantification of a RAE 2822 airfoil [10], for a
specified conditions, and for a total of 13 uncertainties (operational and geometrical).
Nominal parameters and uncertainties type and parameters are defined in Table 1.

In particular, the geometrical uncertainties refer to the camber line and the
thickness-to-chord ratio of the nominal profile, which have been fitted by a Bezier
parametric curve [11], of respectively 7 and 8 control points, uniformly spaced in the
abscissas. Since the extreme points are fixed, we consider a total of 5 uncertainties
for the (ordinates of) control points of the thickness-to-chord curve (named from
Y1_thickness to Y5_thickness), and 6 for the camber curve (named from Y1_chord
to Y6_chord).

Figure 1 reports the process workflow created for the set-up of this test case in
modeFRONTIER software fromESTECO. Each component of the process is defined
by dedicated modules (input variables, CAD/CAE interfaces, output variables) inter-
connected between them, in order to allow the automatic execution of the simulations
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Fig. 1 Workflow for process automation in modeFRONTIER

Fig. 2 Mesh overview and detail in FINE/open model

for each design sample which is proposed by the selected algorithm for the UQ.mod-
eFRONTIER software contains aswell all the tools needed to complete automatically
the UQ of the required parameters.

The mesh provided for this test case has been elaborated by ESTECO in
FINE/Open software from NUMECA. The mesh is characterized by an overall num-
ber of cells equal to about 1/2 million, which require an average time to complete
the simulation of one design sample in about 1 h, using a 2-cpu machine. Around the
airfoil the mesh is refined, because it is important to reduce the effect of numerical
uncertainties, which are not considered in the problem.

Figure 2 reports a detail of the mesh used.
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Fig. 3 SS-ANOVA (modeFRONTIER) for each output

Inlet conditions are specified in function of the Reynolds number defined for this
test case (Re�6.5 × 106) and of the Mach number specified for this test case (see
Table 1).

In the remaining lateral boundaries of the model, an outlet condition is specified,
while a symmetry condition is specified on the planes parallel to the flow.

A full turbulent (Spalart-Allmaras) model is used; an adaptivemeshing procedure
is defined, to refine the mesh where the gradient of the pressure is higher.

The first step in the UQ of the test case is the definition of a large DOE (Design
of Experiments) using a Latin Hypercube algorithm, considering all the 13 original
uncertainties.

For this purpose we have evaluated a series of 105 designs, which is the minimum
number of samples to apply a Polynomial Chaos Expansion of order 2 for the UQ,
and then repeated the analysis for a larger number (200) of samples.

These samples are also used to apply the SS-ANOVA screening analysis, which
indicates the relative effect of each parameter for the selected output (Cd, Cl and
Cm). Figure 3 in fact illustrates for one of the outputs (Cd) the relative effect of each
uncertain parameter (using the name conventions described above in this section),
including in the analysis also the interaction effects.

Considering for each output a cumulative effect of at least 90%, we can conclude
that the parameters most important are:

• For CD: Mach, Y3_thickness, Y4_thickness;
• For CL: Mach, angle, Y1_chord, Y5_chord;
• For CM: Mach, Y2_chord.
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Table 2 UQ results for test case defined in Table 1

Cd mean Cd Sigma CI mean CI Sigma Cm mean Cm Sigma

200
samples-13
uncertains

1.951E−2 2.12E−3 6.39E−1 1.93E−2 1.035E−1 4.04E−3

100
samples-13
uncertains

1.953E−2 1.96E−3 6.39E−1 1.82E−1 1.035E−1 3.86E−2

err: 0.1% err: 7.6% err: 0% err: 8.4% err: 0% err: 8.6%

45 samp/es-
SS-
ANOVA (7
uncertains)

1.951E−2 2.09E−3 6.39E−1 2.01 E−2 1.035E–1 4.11E−3

err: 0% err: 1.4% err: 0% err: 4.1% err: 0% err: 1.7%

30 samples-
stepwise
regression

195E−2 2.14E−3 6.39E−1 1.86E−2 1.035E−1 3.96E−3

err: 0% err: 0.6% err: 0% err: 3.5% err: 0% err: 2.0%

So, globally, the 7 common parameters most important are: Mach, angle,
Y3_thickness, Y4_thickness, Y1_chord, Y2_chord, Y5_chord.

In other words, we could exclude from the analysis the less significant uncertain-
ties, keeping statistically almost the same information on the UQ of the outputs.

To validate this hypothesis, we have in a second step fixed the 6 not significant
uncertainties (to their nominal values), and defined a UQ problem of 7 uncertainties
only.

For this reduced problem, a much smaller number of simulations is required and
precisely at least 45 samples to apply a Polynomial Chaos expansion of order 2;
Table 2 more over will report the results of the UQ analysis.

Applying instead the second methodology (LAR), we have found that only 10
terms are needed to give acceptable errors on a database of 30 samples only, and
precisely (the number in the terms notation below refer to the defined order of the
variables, which is: 1-Mach, 2-Angle, 3-Y1_camber, 4-Y2_camber, 5-Y3_camber,
6-Y4_camber, 7-Y5_camber, 8-Y6_camber, 9-Y1_thickness, 10-Y2_thickness, 11-
Y3_thickness, 12-Y4_thickness, 13-Y5_thickness; the apex refers to the exponent
of the term, and the _ character refers to an interaction between two terms):

• For CD: 1, 1ˆ2, 11, 2, 1_12, 2_9, 1_3, 10, 1_7, 1_11;
• For CL: 1, 1ˆ2, 2, 1_7, 1_13, 13, 6, 10, _13, 3;
• For CM: 1, 1ˆ2, 2, 13, 1_7, 8, 1_13, 11, 10, 1_4.
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Table 2 therefore reports the UQ results for the test case, after the application
of Polynomial Chaos expansion (in modeFRONTIER software) of order 2 for the
different DOEs analyzed, and in particular: (1) 200 samples with all the uncertainties,
(2) 105 samples with all the uncertainties, (3) 45 samples with 7 most important
uncertainties (SS-ANOVA application), (4) 30 samples with 10 most important PCE
terms.

The results of the test are satisfactory. Applying the first methodology, using 45
samples only it was possible to determine the main momentum averages with a
practically absolute accuracy and the standard deviation by an error (computed on
the basis of the largest DOE results) between 1 and 4% (higher for lift coefficient
and lower for drag).

Applying the second methodology, the results are even slightly improved, since
by a lower number of samples, 30, the highest error on standard deviation has been
reduced from 4.1 to 3.5%. This second method, in addition, is independent from the
significance of the single parameters, that in this particular test case may have given
advantage to the first method (having one variable, Mach, predominant in the global
variance).

In general, it emerges clearly that a significant reduction of the number of needed
samples, reachable by any of the twomethodologies, produces an accurate evaluation
of the statistical moments, with a contained maximum estimated error.

4 RDO: Classical Versus MINMAX Approach

In order to apply RDO to a problem of industrial relevance, i.e. a problem character-
ized by a large number of uncertainties and by simulation times which are expansive,
it is not just needed to define only an efficient UQmethodology, which can give accu-
rate results with few simulations, but also an efficient optimization approach.

The first approach that we propose in this chapter as the state of the art, is the
classical RDO approach [3] based on the definition of a multi-objective optimization
problem, consisting generally on the optimization of the mean value of the perfor-
mances and on the minimization of their standard deviation.

This approach guarantees the definition of a complete Pareto frontier as trade-off
of the optimal solutions, in terms of mean performance and in terms of their stability
or robustness. This means that at the end of the optimization the designer has the
freedom to select the best solutions accordingly to a large variety of possibilities
depending on which criteria should be privileged.
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The problem of this approach is that a Multi-objective Optimization algorithm
is to be chosen, since the definition of a single objective as weighted sum of the
different criteria cannot be proposed for the impossibility of knowing a priori the
proper weights of the particular optimization problem. Multi-objective Optimization
algorithms are in fact generally very robust, but they require a number of simulations
generally very much consistent with respect to a single objective optimization case,
and for aRDOproblem the number of simulationsmaybenot feasible fromapractical
point of view (this number being multiplied by the sampling size for each design to
obtain the overall number of simulations required).

In order to reduce the overall number of simulations for a RDO problem, we
propose in this section another approach, described in one of our previous works [4].

The basic idea is to reduce the number of objectives, so that a single-objective algo-
rithm, which requires much less simulations for the convergence, could be applied.

To achieve this purpose the so called min-max or max-min approach is followed.
The idea is tomaximize theminimum orworst performance of a distribution function
that is to be maximized (for instance the aerodynamic efficiency of a wing), or to
minimize the maximum or worst limitation that is to be minimized (for instance the
drag coefficient of a wing).

The effect of this approach is the “shift” of the performance distribution in the
desired direction, so in a certain sense both the average performance and the stability
at the uncertainties are optimized. Considering for instance the drag coefficient dis-
tribution of an airfoil: the optimized configuration distribution by this approach will
be shifted below the baseline distribution, since we minimize the maximum value of
the distribution or the value of its higher tail.

Besides of this one objective, of course other criteria shall be considered (like
lift and momentum), but if they can be expressed as constraints, a single-objective
algorithm could still be applied.

At this point, before analyzing the possible single-objective algorithms that may
be chosen, it is opportune to discuss about the definition of maximum and minimum
values of a distribution.

In the case of a Normal distribution of the performance, since it is unlimited, the
concept of the extremes may be replaced by a given percentile of the distribution,
for instance 95 or 99%. Usually, the reference value is 99.73% because for a Normal
distribution it corresponds to the 3Sigma level.

This analysis is also called Sig-Sigma, since six time standard deviation corre-
sponds to the 99.73% of the complete distribution, a value that can be assumed
enough representative of the whole distribution.

Now, since by Polynomial Chaos analysis we can compute mean and standard
deviation with high accuracy, the computation of the maximum or minimum value
with the expression MEAN ± 3σ can be made for each design of the RDO optimiza-
tion, therefore the objective function can be defined this way.
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The limitation of this approach occurs when the performance does not follow a
Normal distribution: in this case, the Six-Sigma formulation may not correspond
exactly to the correct percentile of the distribution, so from design to design the
computation of the objective function could be not accurate. This problem is even
more evident for a particular class of RDO problems, the Reliability-based design
optimization, where any constraint should be defined accurately on a given percentile
of the distribution.

In next chapter we will propose a new methodology, based on the application of
Polynomial Chaos on the Reliability-RDO, in order to solve the problem of the accu-
racy of the min-max approach and make the RDO optimization more efficient. For
the moment, as illustration of the state of the art, we follow the Six-Sigma approach
for the min-max strategy, compared with the classical two-objectives approach.

In this case we consider a test case derived from the one illustrated in Table 1. For
simplicity, we consider only 3 uncertainties for the RAE2822 airfoil, with nominal
values equal to 0.734 for free stream Mach number, 2.79° for angle of attach and
Reynolds number equal to 6.5E6. The uncertainties are given by a Normal distribu-
tion for Thickness-to-chord profile (a single uncertainty factor which multiplies the
thickness profile), Mach number and angle of attack, defined by a standard deviation
respectively equal to 0.005, 0.005 and 0.1.

The first optimization strategy applied is the multi-objective approach (3.1), con-
sidering the following objectives and constraints:

• Obj.1: Minimize mean value of Cd
• Obj.2: Minimize standard deviation of Cd
• Constraint 1: mean value of Cm+3* standard deviation of Cm<0.1305
• Constraint 2: mean value of Cl − 3* standard deviation of Cl>0.9

The last two constraints are imposed by the necessity to guarantee a minimum
value of Cl and amaximum value of Cm respectively less and higher than an arbitrary
extreme percentile of the baseline distributions, here 99.97%, that can be approx-
imated considering a Normal distribution using the expressions above (Six Sigma
rule). A number of 10 sampling points for design was found to be necessary to
guarantee an accurate UQ using a Polynomial Chaos expansion of the second order.

The multi-objective approach then consists in the minimization of the mean value
and of the standard deviation of the drag coefficient, and we applied a Game Theory
algorithm [12] (MOGT in modeFRONTIER) in order to obtain good compromise
results by a lower number of simulations than a classical GA algorithm.

Nonetheless, after the evaluation of more than 50 designs (for a total of 500 CFD
simulations, that corresponds to about 20 days using a double cpu machine), it was
practically impossible to find feasible solutions that improve the original baseline.
The optimization approach has been stopped, because the optimization time was
considered already excessive for a problem of industrial relevance.
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Fig. 4 Optimization results using classical RDO approach

Figure 4 above reports the results obtained following this approach: the two objec-
tives are reported in ordinate (average) and in abscissa (standard deviation), and each
point represents a different designproposedduring the optimization.Theorange color
indicates that the design is unfeasible, i.e. that does not respect the constraints, while
the blue color indicates that all the constraints are respected.

Beside design 0 (the baseline), only another feasible design has been obtained,
without however improving significantly the objectives (standard deviation is higher).

At this point we have then decided to adopt the second methodology, i.e. consid-
ering a single objective optimization problem, following the max-min approach.

The optimization problem becomes then described as follows:

• Obj.1: Minimize mean value of Cd+3* standard deviation of Cd
• Constraint 1: mean value of Cm+3* standard deviation of Cm<0.1305
• Constraint 2: mean value of Cl − 3* standard deviation of Cl>0.9

Besides the two constraints on Cl and Cm distributions, mean and standard devi-
ation of Cd have been compacted together into a single objective, which is the min-
imization of a given high percentile (still 99.97) of the Cd distribution, that can be
considered as the “maximum” target value.
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Fig. 5 Optimization results using min-max approach

Table 3 UQ results with different methodologies

Design Mean Cd STDV Cd Mean Cl STDV Cl Mean Cm STDVCm

Baseline 6.693E−2 2.918E−3 9.491E−1 1.575E−2 1.286E−1 6.237E−4

Optimized 5.207E−2 2.860E−3 9.423E−1 1.251E−2 1.127E−1 6.318E−4

To solve efficiently this single-objective optimization, we have applied a Simplex
algorithm [13], with a global number of simulations not higher than the one consid-
ered for the multi-objective case. Figure 5 reports the results obtained, with same
parameters (mean and standard deviation) reported in the axis; in green, baseline
point and optimized point are highlighted.

The results are in this case much more satisfactory than the previous approach:
the percentage of feasible designs is much higher than before, and after just few
iterations a possible convergence trend is found, improving in an important way the
baseline performance (similar standard deviation, but much lower mean value; see
Table 3 for more details).
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For the purpose of this comparison, we decided to stop the optimization after
less than 40 designs, with a total number of CFD simulations equal to 370, which
corresponds to about two weeks of analysis.

Table 2 reports the results obtained following the min-max approach, which are
definitively satisfactory.

5 Reliability-Based RDO

We have pointed out in previous section that the main moments of the distribution
of the performance of any design can be used to quantify its robustness, i.e. they
can be used as criteria for a RDO problem (for instance, one could maximize the
mean performance and minimize the standard deviation). Conversely, the min-max
approach or more in general a Reliability-based Optimization (RBDO) problem,
needs for the optimization criteria the definition of a reliability index or a failure
probability. This approach can in fact be used, as noted above, to define accurately
a min-max criteria (objective or constraint) also when the output performance is not
necessarily of Normal type.

Manymethodologies exist in literature to determine the failure probability, such as
FORM/SORM [13], which for a RDO optimization could be very expansive from the
numerical point of view. For this reason, we propose here a different methodology,
based indeed on the Polynomial Chaos polynomial exploitation.

In fact, the evaluation of the performance function in industrial cases can be
very demanding, since they often involve expensive CFD or structural numerical
simulations. In the approach we propose, these expensive evaluations are required
only to determine the coefficients of the PCE (Polynomial Chaos expansion). Once
found them, it is possible to express the CDF (cumulative distribution function) of
any system response using directly the PCE polynomial, which can be considered
as a meta-model of the response, practically free in terms of CPU. Once the CDF
is accurately obtained, from the given constraint value we can easily retrieve the
corresponding percentage of the distribution, i.e. the failure probability.

In this way, a Robust Design Optimization problem can be defined, using as
criteria for the optimization the minimization of the failure probability: in other
words, we search for a new design whose failure probability for the given uncertain-
ties distribution is minimum, either for a new design for which a given percentile
(e.g. 99%) of its distribution is minimum. The big advantage of this approach with
respect to using FORM/SORM methodologies is the reduced number of sampling
points needed to obtain the Polynomial Chaos based meta-model, if compared to
the iterations needed to compute the reliability index for each design required by
FORM/SORM methodologies.

To validate the efficiency of the methodology proposed in this chapter, we have
applied it to the same benchmark case used to describe the State of the Art techniques
of RDO in previous section.
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Table 4 RDO constraints accordingly to 6a and PCE-RBDO

Constraints 6 sigma definition PCE-based

Constraint 1: min lift mean_Cl – 3 * σ Cl�0.90 0.03%�0.887

Constraint 2: max drag mean_Cd+3 * σ_Cd�0.0757 99.97%�0.0747

Constraint 3: max momentum mean_Cm+3 *
σ_Cm�0.1305

99.97%�0.1305

Table 5 Results of Six-Sigma based and RBDO method

Design Cd-max Cl-min Cm-max

Baseline 7.47E−2 8.87E−1 1.302E−1

Optimized by 6sigma *6.06E−2
**(6.33E−2)

*9.04E−1
**(8.94E−2)

*1.145E−1
**(1.129E−1)

Optimized by
reliability

6.05E−2 8.95E−1 1.127E−1

In the previous case, we have approximated the needed percentile distributions
of the performances (99.97%) by a Six-Sigma interval, that is however correct only
under the hypothesis, not verifiable a priori, of aNormal distribution of the responses.

Following the new approach proposed, we can instead compute accurately the
needed percentile distribution (99.97%) directly from the CDF distribution function
defined by the Polynomial Chaos expansion, which is more accurate and valid also
if the output distributions are generally different from a Normal distribution.

The definition of the constraints are therefore slightly different from the other
approach, and Table 4 above reports the constraints values in the two cases.

In Table 5 we report a comparison of the performances (mean and standard devia-
tion values) of the baseline configuration and of the optimized configuration obtained
in each approach (also in this case SIMPLEX has been used).

The optimized solution is generally slightly different, considering the performance
distributions, following the two approaches, but in both cases the constraints are
respected and the selected objective is minimized.

Nevertheless, if in the first approach (Six-Sigma) the hypothesis followed is not
necessarily correct (the performance distribution of the response does not necessar-
ily follow a Normal distribution) and therefore not necessarily the 99.97% of the
distribution really take the values estimated, by the new approach we can estimate
with much more accuracy the needed percentile of the distributions, therefore we
have can assume with an higher accuracy that the extreme values of the distributions
take the values indicated, therefore respecting accurately the constraints.

To prove this assumption, we have re-evaluated the performances of the optimal
design found by the Six-Sigma approach (* in Table 5), using this time the reliabil-
ity approach, i.e. extracting the real 99.97%-ile value from the Polynomial Chaos
expansion. These corrected values are reported inside brackets in the second row (**
in Table 5). As we can note, the performances originally estimated by the Six-Sigma
approach are in reality worse, and even though the differences are in this case not very
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large, the results obtained applying the reliability criteria for the whole optimization
(third row of Table 5), i.e. following the new methodology proposed in this section,
are better, in particular for what concerns the objective function (drag minimization:
6.05E−2 instead of 6.33E−2).

In conclusion, to solve with highest efficiency the min-max approach for a RDO
problem, a reliability-based approach is needed, and the Polynomial Chaos Expan-
sion approach here described has revealed to be the most efficient approach.

6 Conclusion

In this paper we have illustrated some innovative methodologies for the Robust
Design Optimization with large number of uncertainties, which is a typical require-
ment from the industry.

Two different UQ methodologies have been proposed, one based on SS-ANOVA
andone based on a step-wise regressionmethodology,which can be used to reduce the
number of sampling points for an accurate uncertainty quantification (either reducing
the number of significant parameters, or reducing the number of Polynomial Chaos
terms).

In addition, a methodology for efficient Robust Design Optimization (based on
the application of min-max criteria combined with reliability-based optimization
formulation and Polynomial Chaos exploitation for percentiles estimation) has been
presented.

All the methodologies have been validated by the application of selected test
cases in aeronautical field; in the future steps of UMRIDA Project, the proposed
methodologies will be applied to an industrial problem of challenging relevance.
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A Novel Method for Inverse Uncertainty
Propagation

Xin Chen, Arturo Molina-Cristóbal, Marin D. Guenov, Varun C. Datta
and Atif Riaz

Abstract Proposed is a novelmethod for inverse uncertainty propagation, ultimately
aiming to facilitate thewider uncertainty allocation problem. The approach is enabled
by techniques for the reversal of computational workflows and for the efficient prop-
agation of uncertainty. The method is validated with analytical and numerical exam-
ples. Also a representative aircraft sizing code is used to illustrate the application in
a more realistic setting.

1 Introduction

The need for competitive, robustly designed products with optimizedmargins has led
to the establishment in recent decades of uncertainty quantification and management
(UQ&M) as a field of its own right. Broadly, it includes identification of the sources
of uncertainty, quantification and propagation of this uncertainty through the design
computation, and analysis of its effects on the output variables of interest. UQ&M
research has already addressed a number of theoretical and computational challenges,
especially with regard to uncertainty propagation (e.g. method of moments, poly-
nomial chaos, Monte-Carlo Simulation, etc.). These techniques have been widely
adopted in practice [1].

One of the remaining challenges involves the lack of decision-support methods
for handling pre-defined uncertainty associated with design objectives (targets) or
constraints (requirements). In such cases the designer will need to know where to
inversely allocate or specify desired uncertainty for the input variables or parameters,
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to meet the allowable uncertainty in the outputs. This problem will be referred to
as Uncertainty Allocation in this paper. There is relatively little published on this
subject. A related issue can be found under the topic of ’tolerance allocation’ in
the manufacturing community, where the individual tolerances of components are
decided on the basis of requirements for the overall assembly tolerance [2]. Lööf et
al. [3, 4] have developed a method to find the optimal way of allocating tolerances
considering the cost and quality loss. This method requires the explicit relationships
between different tolerances (e.g. via partial derivatives). However from the design
point of view, these relationships may not be directly available due to extensive
usage of non-linear or even black-box models. Baumgärtel et al. [5] have developed
a method to estimate the input uncertainties based on a given output uncertainty
bound, which is referred to as Inverse Uncertainty Propagation. This method is
based on a forward propagation technique which applies Gaussian processes as sur-
rogates, and uses approximation approaches to calculate the statistical moments [6].
A considerable number of supporting (sampling) points are needed to train the sur-
rogate, which may lead to relatively high computational cost, especially for complex
problems. Another related but distinct subject is the Inverse Problem. Generally it
refers to parameter identification or model reconstruction given existing data of the
system response [7]. In the field of uncertainty analysis, it is used to determine the
unknown distributions based on measurements or observations. Bayesian Approach
andMaximumLikelihood estimation arewidely used for this area and it is sometimes
called Inverse Uncertainty Quantification [8].

In this context, the wider objective of our research as part the European project
TOICA (Thermal Overall Integrated Conception of Aircraft) [9] has been to develop
an efficient uncertainty allocationmethod. This should enable the designer to quickly
assess how much uncertainty is accepted from different sources to guarantee the
results’ variance(s). In this paper we deal specifically with the efficient inverse uncer-
tainty propagation problem as an essential enabler. The rest of the paper is organized
as follows: In Sect. 2, the problem definition is discussed in more detail. The enablers
and proposed methodology are explained in Sects. 3 and 4, respectively. Two simple
test-cases are used for validation in Sect. 5. In Sect. 6, a representative aircraft sizing
code is used to demonstrate amore practical application of the approach. Conclusions
and future work are presented in Sect. 7.

2 Problem Definition

In this paper, the scope is restricted (but not limited) to the model-based design
approach where a set of models are used to deduce the design variables and evaluate
the performance. The models are assembled as a computational workflow (shown
in Fig. 1 Left) with its inputs specified by the designer and all dependent variables
calculated automatically as the outputs [10, 11].

For a deterministic case, the outputs will be known once all the inputs are given
fixed values. In reality however, uncertainty may be induced mainly from three
sources:
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Fig. 1 Left: Example of a simple aircraft sizing workflow [11], Right: Randomization treatment
to capture the model uncertainty [12]

1. The input variables may not be strictly defined, which means that they may vary
within a certain range.

2. The models may not be fully calibrated; therefore the results produced may
contain errors from the true values.

3. The computational code may introduce numerical uncertainty (e.g. noise).

In this work the focus is on the first two types of uncertainty. Here a probability
approach is used; and uncertainty will be represented by statistical moments, in
particular, standard deviations (std) of the input and output variables. Regarding
model uncertainty, a method has been developed by Molina-Cristóbal et al. [12],
where the output of a deterministic model is assigned with a random variable which
makes the result varying according to a specified probability distribution (Fig. 1
Right); therefore themodel uncertainty can be represented by the std of the associated
random variable.

Mathematically this random variable is equivalent to an uncertain input. In this
way, the problem could be defined as shown in Fig. 2. Assuming a workflow F with
p inputs, m random variables (representing model uncertainty), and q outputs.

Y = F(X, RV) (1)
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Fig. 2 Forward and Inverse uncertainty propagation

Here X, Y and RV are vectors of inputs, outputs and random variables
respectively.

X = (x1, x2, ..., xp)

Y = (y1, y2, ..., yq)

RV = (RV1, RV2, ..., RVm) (2)

Their uncertainties are represented by the associated std respectively.

σ X = (σx1 , σx2 , ..., σxp )

σ Y = (σy1 , σy2 , ..., σyq )

σ RV = (σRV1 , σRV2 , ..., σRVm ) (3)

In forward propagation, σ Y is calculated based on pre-defined σ X and σ RV.
Regarding the inverse uncertainty propagation problem, we will set desired values
for σ Y (or part of the vector σ Y), and inversely propagate through the workflow to
find out the proper values of σ X and σ RV (or part of σ X and σ RV) which can produce
the targeted σ Y.
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3 Enablers

Before presenting our proposed methodology, we briefly describe two essential
enablers that we have developed in previous work.

3.1 Univariate Reduced Quadrature (URQ) Method

URQ is a forward uncertainty propagation method based on the quadrature approach
[13]. Compared with Monte-Carlo Simulation (MCS), it enables a much faster and
computationally cheaper estimation of the outputs’ uncertainty with lower, but still
comparable accuracy.

To construct a URQ propagation, the user needs to specify the first four moments:
Mean, Standard Deviation, Skewness and Kurtosis (μx , σx , γx , Γx respectively) for
each stochastic input variable. URQ will then select 2p + 1 sampling points to be
evaluated, where p is the number of the uncertain input variables. If m random
variables representing model uncertainty are also considered, then the total number
of sampling point should be 2(p + m) + 1. Based on the 2p + 1 (or 2(p + m) + 1)
evaluation results, themethod approximates themeans and variances of the stochastic
outputs. More details on the derivation of this method are given by Padulo et al. [13].

Fig. 3 Example of workflow reversal: original workflow (left) and reversed workflow (right)
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3.2 Workflow Reversal

Reversal refers to the capability to swap input and output variables of a workflow.
A simple example is shown in Fig. 3, where one of the original (default) inputs:
a is swapped with one of the original (default) outputs: c. This technique has been
implemented in a prototype tool called AirCADia [14, 15], where the user is able to
define such a reversal by specifying the variables he or she wants to swap, and con-
sequently the new reversed workflow is created. This capability allows the designer
to ask what-if questions and conduct flexible computational studies. The reader is
referred to ref [10, 11, 16, 17] for more details of this capability.

4 Method for Inverse Propagation

Recall the objective of this research: to calculate input and model uncertainty (via
their associated std) given the specified std of the selected outputs. The proposed
method is comprised of three steps:

1. The first step (optional) is to rank the contribution from different sources of
uncertainty, by conducting Global Sensitivity Analysis (GSA) [18]. Ultimately
this step is aimed at reducing the number of variables involved in the subsequent
steps. Variance-based GSA techniques [19] are preferred for their adaptabil-
ity to different models (especially black-box models). Such techniques include
the Sobol’ Indices method [20–22], Fourier Amplitude Sensitivity Test (FAST)
[23, 24] etc.

2. The second step involves the creation of an ‘Outer Workflow’ which accommo-
dates the standard deviations as parameters. The original workflow and URQ
method are embedded inside the outer workflow which takes the four moments
of the original inputs as additional inputs, and the two moments of the outputs
as additional outputs. Without loss of generality, Fig. 4 shows a workflow with
two inputs and two outputs. The Outer workflow takes μx1 , σx1 , γx1 , Γx1 , μx2 ,
σx2 , γx2 , Γx2 as the new inputs which are passed to the URQ method to generate
sampling points for repeated executions of the original workflow. Still through
the URQmethod, evaluation results are used to calculate μy1 , σy1 , μy2 , σy2 as the
new output variables.

3. The third step utilises AirCADia’s workflow reversal capability to swap the
inputs’ standard deviations with those of the outputs. That is, the user assigns the
desired values and executes the reversed workflow in AirCADia. The workflow
reversal in this step is illustrated in Fig. 5. By reversing the Outer Workflow, σy1 ,
σy2 have now become the inputs and σx1 , σx2 have been swapped to become the
outputs. The user could set values for σy1 , σy2 and calculate σx1 , σx2 as the results
of the reversed workflow.
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Fig. 4 Set up of an outer workflow

Fig. 5 Reversal of an outer workflow
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5 Validation

The methodology proposed in the previous section is tested with progressively more
complex examples.

5.1 Test Case 1: Linear Functions

Assuming a simple workflow composed of two equations,

y1 = x1 + 2x2
y2 = 3x1 − 4x2 (4)

x1 and x2 are the two input variables which follow the normal distribution indepen-
dently.

x1 ∼ N (μx1 , σ
2
x1)

x2 ∼ N (μx2 , σ
2
x2) (5)

Based on the linear combination of independent normal distributions, it could be
analytically obtained that,

y1 ∼ N (μx1 + 2μx2 , σ
2
x1 + 4σ 2

x2)

y2 ∼ N (3μx1 − 4μx2 , 9σ
2
x1 + 16σ 2

x2) (6)

Therefore,

σx1 =
√

σ 2
y2 − 4σ 2

y1

5

σx2 =
√
9σ 2

y1 − σ 2
y2

20
2σy1 ≤ σy2 ≤ 3σy1 (7)

We tested a series of targeted values for σy1 and σy2 . The theoretical values for σx1
and σx2 are listed in Table1 compared with those calculated by the proposed method.
It should be mentioned that although μx1 and μx2 do not influence the standard
deviations, we need to set their values to execute the workflow. Here they are all
set as 1. From Table1, it could be seen that the proposed method is able to provide
considerable accuracy for such linear models.
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Table 1 Results from testcase 1 (T stands for Theoretical values and A stands for Actual values)

σy1 σy2 σx1 (T ) σx1 (A) σx2 (T ) σx2 (A)

0.05 0.12 0.0296648 0.0296666 0.0201246 0.0201254

0.7 1.7 0.4312772 0.4312772 0.2756810 0.2756810

1 2.5 0.6708204 0.6708204 0.3708099 0.3708099

2 5 1.3416408 1.3416407 0.7416198 0.7416199

3 8 2.3664319 2.3664319 0.9219544 0.9219544

5.2 Test Case 2: Non-Linear Functions

y3 = x23 + ex4

y4 = sin x3 + x4 (8)

x3 and x4 are the two input variables which follow the uniform distribution indepen-
dently.

x3 ∼ U (lx3, ux3)

x4 ∼ U (lx4 , ux4) (9)

To simplify the calculation process, we assume that lx3 , ux3 , lx4 and ux4 are all
positive; also (lx3 , ux3) ∈ [0, π ]. By solving E((yi − μyi )

2), i = 3, 4, the analytical
relationship between σx3 , σx4 and σy3 , σy4 is obtained:

σ 2
y3 = (μx3 + √

3σx3)
5 − (μx3 − √

3σx3)
5

10
√
3σx3

−[(μx3 + √
3σx3)

3 − (μx3 − √
3σx3)

3]2
108σ 2

x3

+
e2μx4 (e2

√
3σx4 − 1

e2
√
3σx4

)

4
√
3σx4

−
e2μx4 (e

√
3σx4 − 1

e
√
3σx4

)2

12σ 2
x4

σ 2
y4 = sin(2μx3 − 2

√
3σx3) − sin(2μx3 + 2

√
3σx3)

8
√
3σx3

−[cos(μx3 − √
3σx3) − cos(μx3 + √

3σx3)]2
12σ 2

x3

+ σ 2
x4 + 1

2
(10)

Here σx3 , σx4 , μx3 , and μx4 are calculated from lx3 , ux3 , lx4 , and ux4 .

μxi = lxi + uxi

2
, σxi = uxi − lxi

2
√
3

, i = 3, 4 (11)
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Table 2 Results from test case 2 (T stands for Theoretical values and A stands for Actual values)

μx3 μx4 σy3 σy4 σx3 (T ) σx3 (A) σx4 (T ) σx4 (A)

1 0.7 1.3365169 0.4803470 0.5 0.50056679 0.4 0.39962203

1.2 1 1.1466395 0.2514633 0.4 0.40020410 0.2 0.19975415

1.4 1.2 2.7178940 0.5461466 0.7 0.70569482 0.5 0.49625501

1.6 0.8 1.7575017 0.3184329 0.5 0.50022576 0.3 0.29935355

2 1.5 3.6073339 0.5755963 0.65 0.65359010 0.5 0.49792451

1.7 3 17.1103914 0.7187758 0.6 0.56182699 0.7 0.70320786

1.3 1.6 3.3116937 0.5587234 0.7 0.76526044 0.5 0.47931307

1.7 2 6.3964317 0.7050625 0.4 Not
converged

0.7 Not
converged

Since it is difficult to give analytical solutions of these equations, we can firstly
set σx3 , σx4 to calculate σy3 , σy4 from the equations and then pass the values of σy3 , σy4
to the inverse propagation method to check if the same σx3 , σx4 could be achieved.
In this case, μx3 and μx4 will also have an impact on the values of σy3 and σy4 . The
settings are shown in the Table2.

As could be seen from Table2, while most of the settings produce satisfactory
results, the last three groups show relatively lower accuracy. For the last one, the
reversal solver did not converge to the theoretical value. By running a sensitivity
analysis, it is noted that for these three settings, the output uncertainty is very sensitive
to σx4 due to the relatively large value of μx4 . This might create more difficulty for
the solver to find a solution. Future work will involve determining the limitations of
the solver and proposing adequate solvers for highly non-linear problems.

6 Industrial Testcase

6.1 Testcase Setup

To demonstrate a practical application, we applied the method to an aircraft sizing
code, USMAC (Ultra Simplified Model of Aircraft), which was provided by an
industrial partner, in the context of the European project VIVACE [25]. Figure6
shows the workflow of USMAC, where green and red ovals represent input and
output variables respectively. Models are represented as purple boxes.

Here we consider five sources of uncertainty shown in Table3. Among them, the
Bypass Ratio (BPR), Sea Level Static Thrust (FNslst) and Temperature at Cruise
(Tambcrz) belong to the input uncertainty, which are caused by non-fixed design
variables or changing working conditions. The uncertainty of the Drag model and
SFC model is treated using the method mentioned in Sect. 2.
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Fig. 6 Workflow of USMAC

Table 3 Sources of uncertainty

Source Type Distribution Standard deviation

Bypass ratio Input uncertainty Uniform 0.2886

lBPR = 7.5

uBPR = 8.5

Sea level static thrust (N) Input uncertainty Uniform 3752.7767

lFNslst = 123500

uFNslst = 136500

Temperature at cruise (K) Input uncertainty Normal 10.9000

μTambcrz = 218

σTambcrz = 10.9

Drag model Model uncertainty Normal 0.0500

μRVdrag = 1

σRVdrag = 0.05

SFC model Model uncertainty Triangular 0.0122

aRVSFC = 0.97

bRVSFC = 1.03

cRVSFC = 1
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Table 4 Results from forward uncertainty propagation

Output variables Mean std

RA (km) 10003.3178 511.7080

MTOW (kg) 104164.1357 274.6514

6.2 Forward Propagation

The allocation of uncertainty to the outputs of a design computation (e.g. objectives,
constraints) can be based on various considerations, including the experience of the
analyst. In this case we use the following scenario, leading to the assignment of
targets for the output uncertainty.

First,we assume that aMonteCarlo simulation (MCS)was run a priori to establish
the means and standard deviations of two critical output variables: Range (RA) and
Maximum Take-off Weight (MTOW) with no restriction on their values. The results
are shown in Table4.

Second, we now assume that we wish to place constraints on RA to be larger
than 9500km and on MTOW to be lower than 104460 kg. The inferred probabilities
of meeting these constraints are 84.357% and 83.887%, respectively (Fig. 7). These
are calculated from the ratio of sampling points meeting the requirements to the
total sampling points of the MCS. If we wished to increase both probabilities, for
example, up to 90%, we need to reduce the output uncertainty, which in this case is
represented by standard deviations. Padulo and Guenov [26] developed a method for
mapping the expected probability into desired standard deviations. With this method
the target std of outputs are estimated as shown in Table5.

6.3 Inverse Propagation

As discussed in Sect. 4, and following the assignment (allocation) of output uncer-
tainty to MTOW and RA, we start with the first (optional) step of the method, sensi-
tivity analysis, to identify the most influential uncertainty sources. In this particular
case FAST is utilised via a MATLAB toolbox developed by Cannavó [27].

According to the results shown in Fig. 8 we could determine that the uncertainties
in input variable: FNslst, and Drag model are the main contributors to the uncer-
tainties in outputs. Now a new outer workflow is set up which includes the standard
deviations as variables. This outer workflow is then reversed with σMT OW and σRA as
inputs; σ ′

FNslst and σ ′
RVdrag

as outputs. With the desired values in Table5, we execute
this reversed outer workflow which calculates σ ′

FNslst and σ ′
RVdrag

as 2924.5705 and
0.0236, respectively. The results indicate that, to achieve the target std in Table5,
σFNslst should be lower than 2924.5705 and σRVdrag should be lower than 0.0236.
This process is illustrated in Fig. 9.
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Fig. 7 Histogram plot of RA (upper) and MTOW (lower). Black lines represent for constraints;
blue and green lines represent the actual and desired output std respectively

Table 5 Original and target standard deviations of the outputs

Output variables Original std Target std

RA (km) 511.7080 271.1957

MTOW (kg) 274.6514 198.4718

To demonstrate the efficiency, we also conducted a benchmarking study, where a
‘brute-force’ strategy, shown in Fig. 10 was adopted.

In this strategy, Monte-Carlo simulation is implemented in an optimization loop,
in which the input std are updated by the solver repeatedly to minimize the gap
between actual output std and the target ones. This setup was conducted in MAT-
LAB environment with its built-in solver: fminsearch. The computational cost is the
number of the optimization iterations (limited up to 400) multiplied by the number
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Fig. 8 First order sensitivity indices of different inputs for MTOW (left) and RA (right)
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Fig. 9 Overview of the process in the testcase

of MCS runs in each loop. We tested a number of different settings and the results
are shown in Table6.

For validation, the new values of σ ′
FNslst and σ ′

RVdrag
are put back intoMonte-Carlo

forward propagation (1000000 runs) to check if the desired output uncertainty can
be achieved. The results are shown in Table7.

It could be seen that the proposed method provides not only better efficiency, but
in this particular case also higher accuracy. By definition the ‘brute-force’ method
should have achieved a higher accuracy. One possible explanation which needs a
further investigation is that by using the URQ, the problem is smoothened. URQ
could be taken as a deterministic approach of calculating the statistical moments
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Fig. 10 A brute-force’ strategy to realize inverse propagation

Table 6 Comparison between different settings for ‘brute-force’ strategy and the proposed method

Test no. Num of
simulations in
each opt. iteration

Total time (s) σ ′
FNslst σ ′

RVdrag

1 MCS: 100 Solver not
converged

2 MCS: 1000 45.94 2905.7106 0.0229

3 MCS: 10000 428.33 2900.8375 0.0236

4 MCS: 20000 871.59 2896.805 0.0237

5 MCS: 30000 1312.87 2918.4910 0.0234

6a URQ: 11 3.57 2924.5705 0.0236
aProposed Method in AirCADia

Table 7 Validation of the results

Test no. Actuala σMT OW Error (%) Actualb σRA Error (%)

1 N.A N.A N.A N.A

2 196.9392 −0.7722 265.4866 −2.105

3 197.1362 −0.6730 271.7015 0.1865

4 196.8078 −0.8384 272.0898 0.3297

5 198.1202 −0.1772 270.0255 −0.4315

6 198.6092 0.0692 271.4027 0.0763
aTarget σMT OW is 198.4718
bTarget σRA is 271.1957
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of the outputs. Once the four moments of the inputs are specified, the sampling
points are ‘decided’ accordingly, therefore the outputs’ means and variances could
be calculated as fixed values. On the other hand, MCS are based on random sampling
points, themeans and variances been calculated are still randomvariables, whichmay
be different every time running the whole MCS (although they will converge to the
true values as the number of sampling points increases). This limits the performance
of the solver. (Actually the limitation of 400 optimization iterations was reached in
each of the tests 1–5). Accuracy might be improved by refining the solver settings
which is beyond the scope of this research.

7 Conclusion and Future Work

Presented in this paper is a novel method for inverse propagation of uncertainty.
It incorporates enablers for the reversal of computational workflows, and for the
efficient propagation of uncertainty. This contributes towards the identification and
allocation of desired variances to design inputs. The methodology is illustrated with
representative analytical and numerical examples. The results demonstrate its accu-
racy and efficiency.

Future work will investigate further the robustness of the reversal process and
the limitations of many-to-many reversals (regarding the existence of a solution).
Also the scalability of the proposed method with regard to application to the wider
uncertainty allocation problem will be investigated.

Acknowledgements The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2013-2016, TOICA project) under grant agreement
n◦ 604981.
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Uncertainty Sources in the Baseline
Configuration for Robust Design
of a Supersonic Natural Laminar Flow
Wing-Body

Domenico Quagliarella and Emiliano Iuliano

Abstract An aerodynamic configuration of a supersonic business jet wing-body
is proposed as baseline for a robust aerodynamic shape design problem. This con-
figuration has been analyzed to identify the main dependencies and interactions of
the parameters that describe the uncertainty sources in the robust design problem.
Subsequent steps of the research activity will be related to the robust natural laminar
flow design optimization of this configuration.

1 Introduction

This work is related to a research activity carried out within the framework of the
UMRIDA (Uncertainty Management for Robust Industrial Design in Aeronautics)
research project that has received funding from theEuropeanUnion’s Seventh Frame-
work Programme for research, technological development and demonstration under
grant agreement n° ACP3-GA-2013-605036.

Within this project an aerodynamic configuration of a supersonic business jet
wing-body was defined and proposed as baseline for a robust aerodynamic shape
design problem. This configuration, while being of industrial interest, is not cov-
ered by copyright or confidentiality clauses and can be used for benchmarks and
comparisons even outside of the UMRIDA consortium.

Here a preliminary parametric analysis has been performed to identify, using
the Analysis of Variance (ANOVA), the main dependencies and interactions of the
parameters that describe the uncertainty sources in the robust design problem. In the
subsequent steps of the research activity a robust design will be performed whose
setup will be determined through the results of this preliminary analysis.
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For the sake of completeness the baseline description and the design problem
definition, available in the database of the UMRIDA project, are first of all reported.

2 Design Problem Description

The reference configuration is the optimized wing–body shape produced by CIRA
within the SUPERTRAC (Supersonic transition control) European Union (EU) [2]
project. This shape, optimized for natural laminar flow, was originated by another
configuration produced byDassault Aviationwithin the framework of the Supersonic
Business Jet project, and made available within SUPERTRAC project. The inboard
wing has a 65° leading-edge sweep angle, and the outboard-wing sweep is 56°. The
wing semispan is 9.35m and the aspect ratio is 3.5. The cruise flight Mach number
is 1.6.

Within SUPERTRACproject,wing section airfoils and twist anglewere optimized
in order to maximize the laminar flow region while monitoring and controlling the
pressure (vortex and wave) drag. Compared to SUPERTRAC baseline the optimized
wing showed an improved extent of laminar flow.

A redesign of the wing using robust or reliability based optimization tools is
proposed, as the NLF configuration is the baseline configuration for the robust design
problem defined in the UMRIDA project.

2.1 Geometry and Design Problem Definition

Figure1 reports the UMRIDA baseline in isometric and orthographic projection,
while wing-body geometric features are summarized in Table1.

The flow conditions for the optimization problem are those related to the main
cruise design point and are reported in Table2.

2.2 Optimization Problem

The detailed description of the original optimization problem is reported in [2]. A
synoptic view of design condition, constraints and objective as set up in the present
investigation is summarized in Table3. The objective function here proposed

G(CL ,CD,CM , ler, tea,Δxlam)

has been changed to account for the new characterization of Mach and lift coefficient
as uncertain parameters, and it is defined as:
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Fig. 1 UMRIDA baseline view

Table 1 Wing body geometric features

Parameters Values

Inboard sweep 65◦

Outboard sweep 56◦

Semi-span length 9.35 m

Aspect ratio 3.5

Wing area 50 m2

Table 2 Design flow conditions

Parameters Values

Mach 1.6

Reynolds 51.8 × 106

L ref 6.27 m

AOA 3.65◦

CL 0.182

G = K
CD + CD,M + CD,L

CL

∼
CL
∼
CD

+ (1 − K )
Δxlam
∼

Δx lam
+ �P

(
1 − ler

∼
ler

)
+ t P

(
1 − tea

∼
tea

)

with the terms below aimed at accounting the contribution to drag due to trim:
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Table 3 Problem definition

Design variables

Wing twist −3◦; +3◦

Wing section shape User choice

Design point

Mach number 1.6

Reynolds number 51 millions

Reference chord 6.27 [m]

Altitude 44000 [ft]

Lift coefficient 0.182

Design constraints

Lift coefficient CL ≥ 0.180

Pitching moment CM ≥ −0.05

Trailing edge angle tea ≥ ∼
tea = 0.050 [rad]

Leading edge radius lea ≥ ∼
lea = 0.0020 [m]

Laminar extent—suction side X tr/c = 0.35

Laminar extent—pressure side X tr/c = 0.45

Laminar separation Xsep/c = 0.60

Objective

G(CL ,CD,CM , ler, tea,Δxlam) To be minimized

CD,M = max[0, 0.05( ∼
CM −CM)]

CD,L = max[0, 1.0( ∼
CL −CL)]

and where
∼
CL and

∼
Δx lam are, respectively, the lift coefficient and the laminar exten-

sion indicator related to the baseline, and K , �, and t are constant values that define the
relative importance of the corresponding aerodynamic/geometric performance com-
ponent. Suggested values for these constants are: K = 0.25, � = 100, and t = 100.
The quadratic penalty function is activated onlywhen its argument is positive. Hence,
P has the following expression:

P(x) =
{
x2 if x > 0
0 if x ≤ 0

The functionΔxlam is introduced to estimate the transition and laminar separation
position on the whole wing, and it is defined as

Δxlam =
n∑

i=1

(Δxlu + Δxll + Δxsu + Δxsl)
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where
Δxlu = max

(
0, Xi

tr − X
i
tr

)
upper

Δxll = max
(
0, Xi

tr − X
i
tr

)
lower

Δxsu = max
(
0, Xi

sep − X
i
sep

)
upper

Δxsl = max
(
0, Xi

sep − X
i
sep

)
lower

Here, X
i
tr and X

i
sep are the computed values of transition and separation point at

span section i, Xi
tr and Xi

sep are the desired values of transition and separation point at
span section i , and n is the number of streamwise stations defined along thewingspan.
Separation point is the chordwise abscissa at which the laminar boundary-layer cal-
culation stops for each section: this can occur either because of a laminar separation
(e.g., caused by a separation bubble) or because the boundary-layer solution does not
converge at that point for some reason. Separation is taken into account in the Δxlam
objective function because, when it occurs upstream of the transition location, tran-
sition is automatically switched, even if the N factor has not yet reached the critical
value. This approach is used in order to delay the laminar separation point as much
as possible. The constraint value on inviscid drag and the set of desired transition
locations have been assigned following preliminary studies and past experiences in
laminar wing design. In particular, the drag penalty is activated with a huge weight
when the inviscid drag exceeds the baseline value (195 drag counts). On the other
hand, the transition specifications that have been imposed in the design problem
represent a sort of utopia point, i.e., the actual threshold above which laminar flow
would become really beneficial on aircraft performances and emissions.

3 Computational Model

The physical and computational model adopted for objective function computation
is thoroughly described in [2]. A scheme of the computational setup is reported in
Fig. 2 for the sake of completeness.

4 Definition of Uncertainties

The definition of uncertain parameters must take into account the design problem
at hand. The aim of the designer is to obtain a configuration that has a satisfactory
level of laminar flow even in the presence of parameters and working conditions not
completely deterministic and controllable. A further difficulty is due to the epistemic
uncertainty inherently included in the computational model for transition. This can
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Fig. 2 Computational setup for the objective function computation

significantly affect the performance calculation of the new configurations. Conse-
quently, a good design should be quite robust even with respect to this latter type of
uncertainty sources.

4.1 Geometrical Uncertainties

Natural laminar flow is mostly sensitive to the shape of the leading edge region. This
is due to its effect on pressure coefficient gradient which, in turn, is one of the factors
that have more influence on the transition. The designer has complete freedom in
defining the deterministic parameterization of the shape of the wing, but the statis-
tical parameters that define the uncertainty of the shape of the wing are univocally
defined. They are the radius of the leading edge and the airfoil section thickness at
ten percent of the chord, and should be considered along the whole wing. It is the
task of the designer to ensure that the variations of the radius of the leading edge
and of the thickness of the wing section are well harmonized in the context of the
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parameterization chosen to describe the wing. The minimum requirement to be ful-
filled is that these variations do not introduce discontinuities in the description of the
wing section up to the second derivative, and that do not introduce inflections and
oscillations in the geometry. The nominal range of variation for these parameters is
15% of the radius of the leading edge of the initial configuration and 10% of the
initial thickness in the assigned position. A uniform probability distribution should
be considered for both parameters. However, an inverse approach may be consid-
ered where these uncertain parameters are regarded as unknowns to be determined
within the design process. As a consequence, the robustness of the obtained results
may be made dependent upon the kind and ranges of probability distributions and,
hence, the designer should determinewhich probability distribution provides the best
compromise results in terms of robustness. In other terms, the designer can describe
the robustness of the results indicating the probability distributions for which those
results remains acceptable. In this case, the previously defined variation intervals
for the random parameters have to be considered as a design target. This inverse
approach may be very useful to quantify the machining and production tolerances
that must be required for the production of a NLF wing.

4.2 Operational Uncertainties

Operational uncertainties are related to Mach number and lift coefficient (CL ). Mach
andCL aremodeled as four parameter beta distributions. For the sake of completeness
we recall that the probability density function f for a ≤ x ≤ b and shape factors α, β

is given by

f (x;α, β, a, b) = (y − a)α−1(b − y)β−1)

(b − a)α+β−1B(α, β)

and by f = 0 otherwise, with B(α, β) = ∫ 1
0 uα−1(1 − u)β−1du. The table below

summarizes the parameters that define the Mach and CL random variables (Table 4):

4.3 Model Uncertainties (epistemic)

One of the challenges that have to be facedwhen approaching the numerical design of
natural laminar flowwings is the reliable estimation of the pointwhere transition from

Table 4 Uncertain operational parameters

Parameter α β a b

Mach 4 4 1.55 1.65

CL 2.5 2.5 0.180 0.184
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laminar to turbulent flow occurs. A significant uncertainty in the determination of
transition location is inherent to the methods for numerical transition prediction and
in particular to the eN method. A robust design approach should take into account
this epistemic uncertainty source. If the eN method is chosen, then the uncertain
parameter to be considered is the Ncritical factor. Its nominal value is fixed at 18 for
deterministic runs, while it will be modeled by a uniform distribution in the interval
[16, 20] when considered as uncertain parameter.

5 Preliminary Parametric Analysis

A preliminary parametric analysis was performed to identify, using ANOVA, the
main dependencies and interactions of the parameters that describe the uncertainty
in the problem.

For the sake of simplicity, the effect of uncertain parameters was not studied on
the original objective function, but only on one component of it, namely the extension
of laminar flow on the lower surface of the wing (LEXT_LO). Similarly, the external
flow field was analyzed using rather coarse grids.

R [5] and DAKOTA (Design Analysis Kit for Optimization and Terascale Appli-
cations) [1] codes have been used to analyze results.

5.1 Effect of Uncertainty of Ncritical Factor

The first analysis step was devoted to the evaluation of the computational model
parameter Ncritical on the location of laminar to turbulent flow transition on the lower
surface of the wing. Therefore, in this analysis run, only the parameter Ncritical was
sampled according to its uniform distribution in [16, 20]. The population sample is
composed of 400 members and includes the baseline.

The results, summarized in Table5 and illustrated in Figs. 3 and 4, show that, at
least for the limited region of parameter space in proximity to the baseline, the overall
effect of Ncritical is almost perfectly linear.

Table 5 Analysis of variance for the Ncritical linear model fit

Response: LEXT_LO

Df Sum Sq Mean Sq F value Pr (>F)

Ncritical 1 0.48266 0.48266 126694 <2.2 ×10−16

Residuals 398 0.00152 0.00000
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Fig. 3 Influence of Ncritical
(NC) on lower surface
laminar flow extension

Fig. 4 Residual after the
linear model fit of Ncritical

5.2 CL and Mach Contrast Effects on Ncritical

Nevertheless, whenwe try tomodel the effects introduced by changingCL andMach,
we realize that a linear model is no longer adequate. ANOVA, performed for models
of increasing complexity, shows us that it is necessary to consider at least the terms
of the second degree in CL and Mach along with the first order interactions (CL∗
Mach).

AMontecarlo sample of 1600 population elements has been performed to evaluate
the simultaneous effects of CL , Mach and Ncritical. The ANOVA results, reported in
Table6, show that the effect of Ncritical is still dominant, but we need to model the
contrast produced by CL and Mach using quadratic and interaction terms. The result
of ANOVA between the different fitting models is reported in Table7, while Fig. 5
reports a plot of the residual related to Model 3.
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Table 6 Analysis of variance for the Ncritical (NC ), CL and Mach (M) model fit

Response: LEXT_LO

Model: LEXT_LO ∼ M + CL + NC + M ∗ CL ∗ NC + M2 + C2
L

Df Sum Sq Mean Sq F value Pr (>F)

M 1 0.00006 0.00006 1.4247e+01 0.0001662

CL 1 0.00372 0.00372 8.7408e+02 <2.2e−16

NC 1 1.97212 1.97212 4.6362e+05 <2.2e−16

M2 1 0.00005 0.00005 1.1522e+01 0.0007048

C2
L 1 0.00045 0.00045 1.0694e+02 <2.2e−16

M : CL 1 0.00004 0.00004 8.5157e+00 0.0035704

M : NC 1 0.00054 0.00054 1.2726e+02 <2.2e−16

CL : NC 1 0.00048 0.00048 1.1236e+02 <2.2e−16

M : CL : NC 1 0.00001 0.00001 2.6849e+00 0.1015029

Residuals 1590 0.00676 0.00000

Table 7 Comparison of different fitting models for Ncritical (NC ), CL and Mach (M)

Response: LEXT_LO

Model 1: LEXT_LO ∼ M + CL + NC

Model 2: LEXT_LO ∼ M + CL + NC + M ∗ CL ∗ NC

Model 3: LEXT_LO ∼ M + CL + NC + M ∗ CL ∗ NC + M2 + C2
L

Res. Df RSS Df Sum of Sq F Pr (>F)

1 1596 0.0083343

2 1592 0.0071956 4 0.00113870 66.924 <2.2e−16

3 1590 0.0067634 2 0.00043216 50.798 <2.2e−16

Fig. 5 Residual obtained using Model 3 for fitting Ncritical, CL and M
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5.3 NURBS Parameterization to Model Uncertainties in
Leading Edge Shape

The criticality of a parameterization that effectively models the uncertainty in the
shape of the leading edge of a wing lies mainly in the fact that these parameters
must simultaneously act on a small portion of the wing. At the same time, they
should not produce discontinuities such to prevent the use of the fluid dynamic
solver or interphere with the parameterization of the deterministic variables that
control the shape of the whole wing. The method here chosen is based on Non
Uniform Rational Basis-Splines (NURBS). It uses a grid of 21 × 7 NURBS control
points (CPs) defined on the whole wing surface and a subset of it (21 CPs) is used
to control the wing leading edge shape. In particular, 7 CPs modify the wing leading
edge shape in streamwise direction using a 3rd order basis functions, and 3 CPs, with
2nd order basis functions, operate spanwise. The Design variables are the vertical
displacements of the CPs (Figs. 6 and 7).

To evaluate the sensitivity to input variables a Latin Hypercube sampling (1000
samples) has been performed considering:

• 21 geometrical variables, uncertain with uniform distribution;
• 2 aerodynamic variables (MACH and CL), uncertain with beta distribution.

The responses, as in previous tests, is the laminar extent on the pressure side. The
correlation analysis has considered the following response to inputs:

• Simple correlation: xi versus f , e.g. considering the effects of varying individual
response.

• Partial correlation: xi versus f by removing the effect of the remaining x j input
variables.

Fig. 6 NURBS Control Points to control the whole wing shape (21 × 7)
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Fig. 7 Active NURBS Control Points to control local leading edge shape modifications (7 × 3)

• Rank correlation: “ranked” values are correlated instead of variable values. This
kind of rank correlates the values of the variables, but highest correlation rank
is where monotony is more respected, regardless of how you correlate the value
pairs.

Figure 8 reports the scatter plot matrix related to the effect of variables x1, x8
and x15 (most correlated ones) on the response function. The diagonal shows the
frequency histograms for variables x1, x8 and x15 and the response function. Effect
of Mach and lift distribution on response function are, instead, reported in the scatter
plot of Fig. 9. The diagonal shows the frequency histograms for CL , and M and the
response function. The observation of both figures evidences how the distributions
are well described in input, and how the response function is negatively correlated
with main geometric and aerodynamic parameters. Anyway, the response function
mildly tends to increase with leading edge de-cambering or thickening, and slight
increments can be observed also with decreasingMach and lift coefficient. The green
lines are the simple regression lines for each variable. It can be noted as the effect of
M and CL is comparable.

6 Sensitivity Analysis

The combined effects of geometry and operating condition uncertainties are here
considered using sensitivity analysis. This task is aimed to discover the global sen-
sitivities of the objective function related to the baseline configuration with respect
to the above reported uncertainty sources.
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Fig. 8 Scatter plot related to the effect of variables x1, x8 and x15 on response function

Fig. 9 Scatter plot related to the effect of variables CL and M on response function
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The sensitivities are computed in the hypothesis that uncertain variables are char-
acterized by an uniform distribution on their whole range. The expected goal of this
screening activity is the identification of the most important uncertain variables, rel-
atively to their effect on the complete objective function, to allow a down-selection
for the subsequent robust optimization step.

6.1 Variance-Based Decomposition and Sobol Indices

The parametric studywas performed computing the Sobol indices via variance-based
decomposition, a form of global sensitivity analysis that decomposes the variance of
the model output into fractions which can be attributed to single input variables and
into other parts related to sets of interacting input variables. This kind of analysis
is able to deal with nonlinear responses and to evaluate the effect of interactions
in non-additive systems. A basic assumption is that inputs are independently and
uniformly distributed within the unit hypercube.

The total variance of the sampled response function is decomposed as:

Var(Y ) =
d∑

i=1

Vi +
d∑

i< j

Vi j + . . . + V12...d (1)

where Vi is the Variance due to the pure variation of factor Xi :

Vi = VarXi

(
EX∼i (Y |Xi )

)
(2)

and Vi j is the variance due to the pure variation of both factors Xi , X j :

Vi j = VarXi j

(
EX∼i j

(
Y |Xi j

))
(3)

with ∼i notation indicating the effect of all variables except Xi .
The Sobol index Si is defined as

Si = Vi

Var(Y )
(4)

and it measures the main (first order) effect, e.g. the effect of varying Xi alone, but
averaged over variations in the other input parameters. The following relations hold:

d∑
i=1

Si ≤ 1,
d∑

i< j

Si +
d∑

i< j

Si j + . . . + S12...d = 1 (5)

The index ST i measures instead the total effect, e.g. the contribution of all terms
in the variance decomposition which do include Xi . Thus the first order effect plus
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the interactions are accounted by:

ST i = EX∼i

(
VarXi (Y |X∼i )

)
Var(Y )

= 1 − VarX∼i

(
EXi (Y |X∼i )

)
Var(Y )

(6)

The interaction effect between e.g. Xi and X j is counted in both ST i and ST j ,
hence we have

d∑
i=1

ST i ≥ 1 (7)

6.2 Design Space Sampling

Thegoal of this sensitivity analysis is to understand the contribution of the uncertainty
sources on the whole design problem and, hence, the full objective function value is
considered, which may be rewritten as a weighted mixture of aerodynamic efficiency
and of a measure of laminar portions on the wing surfaces:

G = −w1

[
CL ,0

CD,0

(
CD + ΔCD,m + ΔCD,l

CL

)]
− w2Slam,up − w3Slam,low (8)

withΔCD,m=max[0.05(CM,0 − CM), 0.0] andΔCD,l=max[1.0(CL ,0 − CL), 0.0].
An Orthogonal Array Latin Hypercube sampling strategy [8] was chosen as it

has both orthogonality and stratification features and is therefore a good choice for
computing Sobol indices. The Sobol indiceswere computed using a corrected version
of Saltelli’s formula [6, 7] which is implemented within DAKOTA package. Two
sample sizes were chosen to fill the hypercube, namely a small sampling that required
13,225 CFD evaluations and a big one that required 21,025 evaluations.

6.3 Failure Handling

The geometrymodification process has been set up by empirically fixing the variation
ranges of the uncertain geometry variables in order to obtain a global uncertainty
in the description of the leading edge shape that was within the order of 5% of
the wing section local thickness. This has made unavoidable some amount of mesh
generator/CFD solver failures for particular combinations of design variables. The
observed probability of failure was 0.006% for the big sampling case, and 0.009%
for the small sampling. These percentages, although quite limited in numbers, may
have the capacity to impair the computation of variance contributions and, hence,
they have to be handled appropriately to not reduce the reliability of the computed
sensitivity indices.

In this work, an exploratory approach has been adopted to the problem of handling
failed samples, by varying the value that is assigned to the objective function in case of
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failures in the calculation chain. Three different failure responses were experimented
here:

1. Assign a large response penalization to failed samples.
2. Assign response values near the database mean.
3. Assign a value slightly larger than the database maximum.

In the subsequent sections the results obtained with each of these approaches
will be reported and discussed. Thanks to DAKOTA restart capabilities, assigning
new response values to peculiar samples is very easy and does not require the re-
computation of the objective function database.

6.4 Sensitivity Analysis Results

The Si (main effect) and ST i (total effect) indices related to the big sampling are
reported in Figures10 and 11 respectively. It can be observed from Fig. 10 that the
main effect is predominantly concentrated on variables 8, 12, 13 and 15 that control
the pressure side shape on the mid-outboard wing. These variables have the highest
influence on the objective function, but the main effect of Mach and CL (variables
21 and 22) is also significant. These results are in good agreement with preliminary,
coarse CFDgrid analyses not reported here. It appears also evident that adding a large
penalty to failed computations might lead to mask the true influence of the design
parameters on the objective function. To avoid this problem different strategies to
assign a score to failed computations were considered. In particular, it was found
that assigning to the failed computations an objective value equal to the average
or the maximum value from successful computations does not seem to affect the
results quality in terms of relative sensitivities. Figure11 is related to the variable
total effect, e.g. including the interactions with the other variables, and it tells a
different story. Here the mean value and the maximum value curves evidence that
all the parameter shape values show significant interactions. Inboard wing variables
(0–6) and Mach/CL variables have statistically less importance with respect to mid-
outboard ones. The large penalty curve shows how the interaction between variables
9, 11, 16 and 18 (controlling the leading edge radius and shape on the mid-outboard
wing) play a major role in generating failed samples. The sum of main and total
indices values are reported below to allow a comparison of the importance order of
these effect when the objective function values related to failed configurations are
changed:

d∑
i=1

Si =
⎧⎨
⎩
0.006 (large penalty)
0.39 (mean value)
0.24 (max value)

(9)

d∑
i=1

ST i =
⎧⎨
⎩
3.32 (large penalty)
6.68 (mean value)
5.34 (max value)

(10)
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Fig. 10 Big sampling, main
effect
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Fig. 11 Big sampling, total
effect
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Finally, Figs. 12 and 13 report the main and total effect for the small sampling set.
In Fig. 12, the main effect, when computed using the mean value for failed samples,
is roughly comparable with the one obtained using the big sample. Instead, the large
penalty curve evidence a main effect in variables 9 and 18 that the big sample set
was not able to spot. Finally, the mean value curve of Fig. 13 is roughly comparable
with the results of Fig. 11. The large penalty curve evidences, instead, the role of
interactions of variables 8, 9, 11, 15, 16 and 18 in generating geometries that will
lead to failed computations. The sum of main and total indices values for the small
sample set are reported below for the sake of completeness:
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Fig. 12 Small sampling,
main effect
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Fig. 13 Small sampling,
total effect
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d∑
i=1

Si =
⎧⎨
⎩
0.44 (large penalty)
0.73 (mean value)
na (max value)

(11)

d∑
i=1

ST i =
⎧⎨
⎩
3.53 (large penalty)
6.20 (mean value)
na (max value)

(12)
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7 Conclusions and Future Prospects

The analysis of the basic configuration has shown very clearly that the computational
model used to calculate the aerodynamic performance in the presence of transition
from laminar to turbulent flow presents critical points that the subsequent process of
design and optimization will have to take into account. First of all, the computational
model used to calculate the aerodynamic performance in the presence of transition
consists of three heterogeneous software modules, namely an Euler/Navier-Stokes
equation solver, a 3D boundary layer and an algorithm for linear stability, whose
interactions are complex and not easy to track. However, at least for the baseline
under the design conditions, the most important parameter, namely Ncritical, showed
an almost linear influence on the objective function. Accordingly, at least this part
of the epistemic dependence of computational model can be easily considered in the
optimization process. Vice versa, the dependence on operating parameters, Mach
and CL , has proven more complex and had to consider a regression model with a
quadratic and interaction terms included to be able to model acceptably well the
effects. Nevertheless, even in this case it is not too difficult to model these dependen-
cies and insert them in the robust optimization loop. On the contrary, the effect of
uncertainty on the wing leading edge has proved much more complicated to model
and to take into account. What immediately jumps to the eye is the non-linearity of
the effects and the interdependence of the parameters that define the uncertainty on
the geometry. To analyze these effects wemade use of an approach based on variance
decomposition and Sobol indices. There have been two series of tests, the first with a
coarser, but still significant, sample. The sensitivity analysis was then repeated with
an increased the number of samples. The comparison of the two sensitivity analyses
showed that, although not overlapping, the results are consistent. From the point
of view of optimization, at least with the chosen parameterization, it is not easy to
decrease the number of variables or simplify the model. However, it was possible to
show that the correct management of failures in the calculations has a crucial role
in the setup of the optimization problem. Finally, although not easy to achieve in
practice, it would be desirable to reduce the variation range of the above parameters.
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Robust Airfoil Design in the Context
of Multi-objective Optimization

Lisa Kusch and Nicolas R. Gauger

Abstract We apply the concept of robustness to multi-objective optimization for
finding robust Pareto optimal solutions. Themulti-objective optimization and robust-
ness problem is solved by using the ε-constraint method combined with the non-
intrusive polynomial chaos approach for uncertainty quantification. The resulting
single-objective optimization problems are solved with a deterministic method using
algorithmic differentiation for the needed derivatives. The proposed method is
applied to an aerodynamic shape optimization problem for minimizing drag and
maximizing lift in a steady Euler flow. We consider aleatory uncertainties in flight
conditions and in the geometry separately to find robust solutions. In the case of
geometrical uncertainties we apply a Karhunen-Loeve expansion to approximate the
random field and make use of a dimension-adaptive quadrature based on sparse grid
methods for the numerical integration in random space.

1 Introduction

Realistic engineering design involves the optimization of different competing objec-
tives. Here, the aim is to find a set of solutions that fulfil the concept of Pareto
optimality. A feasible design x is Pareto optimal if there does not exist any feasible
design x such that fi (x) ≤ fi (x) for every objective function fi with i ∈ {1, ..., k}
and f j (x) < f j (x) for at least one j ∈ {1, ..., k}. A further significant step to real-
istic multi-objective designs is to take into account uncertainties for finding robust
optimal solutions. Robust optimal solutions are solutions, that are optimal and robust
with respect to perturbations.

In aerodynamic shape optimization one has to consider aleatory uncertainties in
the flight conditions, that may arise due to turbulences, or in the geometry itself,
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caused by manufacturing tolerances or temporary factors like for example icing
[15]. Taking into account aleatory uncertainties during the optimization process may
therefore help to improve the design process.

The challenge for algorithms that explore the Pareto optimal front is to find an
evenly distributed set of objective vectors for approximating the front. Among these
methods one can distinguish between scalarization methods that reduce the multi-
objective optimization problem to several single-objective optimization problems,
and direct Pareto approaches that find a set of representative solutions on the Pareto
optimal front in one optimization procedure. Exemplary for direct approaches are
multi-objective evolutionary algorithms.Aswe have the opportunity to obtain deriva-
tives for deterministic optimization methods in an efficient way by making use of
algorithmic differentiation [5] (AD), we apply a scalarization approach, namely the
ε-constraint, method [10] together with a gradient-based optimization strategy for
the resulting single-objective optimization problems. Another reason for the use of
a constraint method is that it will be easier to use efficient one-shot techniques [2]
for the single-objective optimization in future projects. One-shot methods have the
potential to reduce the computational effort by one order of magnitude.

In the context of multi-objective optimization there can be seen growing interest
in finding robust Pareto-optimal solutions when considering parameter or design
uncertainties in the model. Multi-objective robust optimization problems are mainly
treated in an evolutionary context: Deb and Gupta [3] introduce different types of
multi-objective robust solution using a mean effective objective function. Instead
of finding a mean effective objective function by means of sampling the approach
can be extended to the use of statistical quantities like the expected value and the
variance [12]. Other concepts to measure robustness include for example the use of
sensitivity regions based on a local sensitivity analysis [6] or the use of a probabilistic
domination operator to compare different designs under modelling errors [16]. We
apply the ε-constraint method to solve for robust Pareto-optimal solutions using
statistical measures like expected value and variance to quantify robustness.

To obtain statistical quantities, the uncertainties have to be propagated through
the model. As the costs of a multi-objective optimization are already very high, it
is important to use efficient approaches. In Schillings et al. [14], a non-intrusive
polynomial chaos approach is used for single-objective aerodynamic robust design.
In this approach the stochastic objective function is expanded in terms of polynomials
that are orthogonal with respect to the density function of the input random variables.
The non-intrusive approach results in a multiple set-point problem when used in the
context of a semi-infinite robust design problem. The computational effort can be
reduced by using sparse grids for the quadrature points. In Schillings et al. [14] the
method is combined with one-shot optimization. A dimension-adaptive quadrature
method is applied in the context of geometrical uncertainties. It is shown that the
used approach is efficient for expensive aerodynamic design problems.

The main goal of our paper is to make use of a non-intrusive polynomial
chaos approach for uncertainty quantification and to extend the ideas of Schillings
et al. to multi-objective optimization using the ε-constraint method. We apply our
suggested methodology for robust multi-objective design to robust airfoil design.
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The underlying partial differential equations are the 2D Euler equations for steady
flow. The considered performances are the lift and the drag coefficient.

In Sect. 2 we present all components needed for the robust multi-objective opti-
mization. We introduce the notion of robust Pareto-optimal solutions, the non-
intrusive polynomial chaos approach and the optimization method. The application
to aerodynamic shape optimization is shown in Sect. 3. In Sect. 3.1 we consider
uncertainties in the flight conditions and in Sect. 3.2 uncertainties in the geometry
itself.

2 Robust Multi-objective Optimization

In single-objective optimization problems we consider a solution to be robust if it
is not very sensitive to uncertainties ω. In multi-objective optimization problems
the main difference to single-objective robust design is that one has to measure a
combined effect of sensitivities for all objective functions represented by a point in
the objective space. Additionally, one has to find a set of robust solutions instead of
only a single robust solution. From this problem arises the question of how to define
robust Pareto optimal designs.

2.1 Robust Pareto-Optimal Solutions

There exist different types of robustnessmeasures that are used to describe robustness
in a multi-objective context. We define a robust Pareto optimal design according to
the first type of robustness measure in Deb and Gupta [3] using the expected value
as a statistical quantity and call a solution robust Pareto optimal, if it is a solution to
the problem

min
y,u

Exp(F(y, u, x(ω)))

s.t. c(y, u, x(ω)) = 0, (1)

h(y, u, x(ω)) ≥ 0,

where F is the objective vector. We will model the uncertainty by means of random
variables with know probability density functions. The variables y and u are the
state and design variables that fulfil the state equation c(y, u) = 0 and additional
inequality constraints for a realization x(ω) with ω ∈ Ω . The minimization as well
as the expectation operator have to be understood component-wise.

Instead of only looking at the expected value as a performance measure, one can
incorporate the variance of the objective functions to take into account perturbations.
This can for example be done by introducing an additional constraint resulting in the
optimization problem
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min
y,u

Exp(F(y, u, x(ω)))

s.t. ||Var(F(y, u, x(ω)))|| ≤ ν, (2)

s.t. c(y, u, x(ω)) = 0,

h(y, u, x(ω)) ≥ 0.

Note, that the existence of a solution to this problem depends on the choice of the
threshold ν. As a result, one defines robustness as the Pareto optimal solution to
a multi-objective optimization problem with additional constraints measuring the
sensitivity. Another idea would be to incorporate the expected value and the variance
as new objective functions instead of adding them in the form of constraints. This
might becomeuseful if the user is not able to specify the thresholds for the constraints.
In the following we will use the robust formulation based on the expected value. For
measuring the sensitivities we make use of probabilistic concepts for uncertainty
quantification.

2.2 Uncertainty Quantification

There exist different methods to propagate uncertaintiesω in themodel.Wemake use
of a non-intrusive polynomial chaos approach, which is also referred to as pseudo-
spectral approach. In this approach the stochastic objective function is expanded in
terms of polynomials Φi that are orthogonal with respect to the probability density
function of the input random variables x(ω), such that

f (y, u, x(ω)) =
∞∑

i=1

fi (y, u)Φi (x(ω)), (3)

with fi (y, u) = γ −1
i Exp( f (y, u, x(ω))Φi (x(ω)) and Exp(ΦiΦ j ) = γiδi j .

When applied to find statistical quantities the infinite expansion is truncated.
The Fourier coefficients are approximated by first using stochastic collocation with
quadrature points and then employing a quadrature rule that is suitable for the used
polynomials.

2.2.1 Karhunen-Loève Expansion

In the case of geometrical uncertainties for the points ξ on the airfoilΓ it is necessary
to approximate a randomfieldψ(ξ, ω) as the uncertainties depend on the shape itself.
The random field is described by its mean ψ0(ξ) and its covariance function. As the
random field results in an infinite-dimensional probability space we make use of
the Karhunen-Loève (KL, [7, 9]) Expansion. The random field is decomposed into
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a linear combination of the eigenfunctions vi of the covariance matrix such that it
can be expressed as

ψ(ξ, ω) = ψ0(ξ) +
∞∑

i=1

√
λivi (ξ)Xi (ω), (4)

whereλi are the corresponding eigenvalues sorted in decreasing order and the random
variable Xi is described by

Xi (ω) = 1√
λi

∫

Γ

ψ(ξ, ω)vi (ξ)dξ.

The KL expansion is truncated to get an approximation of the random field in the
form of a finite-dimensional random space such that non-intrusive polynomial chaos
can be applied to obtain the needed statistical quantities.

2.2.2 Dimension-Adaptive Quadrature

Especially when using geometrical uncertainties tensorized quadrature rules become
computationally to expensive. The computational effort can be reduced by using
sparse grids instead of fully tensorized grids for the quadrature points. Furthermore,
generalized sparse grids can be produced with a dimension-adaptive strategy [4], in
which the important dimensions are identified with the help of error estimators to
refine the grid in these dimensions. The process is done adaptively starting with the
coarsest sparse grid. Indices are added if the index set is admissible and the estimated
error is reduced. The method can be understood as a sparse grid approach for a
function f in a d-dimensional domain of integration with a generalized admissible
index set I , such that the quadrature formula reads

Q̃(d)

I f =
∑

k∈I
(Δk1 ⊗ · · · ⊗ Δkd ) f (5)

with the difference formula Δki = (Qki − Qki−1−1) f and Q0 f = 0 for a quadrature
rule Q. The generalized formula includes the formula for the full tensor grid as
well as for the original sparse grid. The error indicator of an index k ∈ I is com-
puted from (Δk1 ⊗ · · · ⊗ Δkd ) f and the algorithm adds the index with the maximum
error indicator. In the case of more than one objective function we make use of the
maximum l2-norm of the error indicators.

A clear advantage of the dimension-adaptive strategy is that it enables the use
of problem dependent quadrature formulas like the Gauss-Hermite formula. In
Schillings et al. [14] the dimension-adaptive strategy is applied for the calculation
of the expected value of the drag coefficient under the consideration of geometrical
uncertainties.
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2.3 Multi-objective Optimization Method

The formulation of robust Pareto optimal solutions results in a multi-objective opti-
mization problem. We solve it by using the ε-constraint method. The concept of this
method is to optimize one objective function fs while imposing inequality constraints
on the remaining competing objective functions. For the robust multi-objective opti-
mization the objective function is a statistical quantity. The constraints as well as the
objective function to be optimized are varied in each step of the algorithm to find
different Pareto optimal solutions that are evenly distributed. The resultingminimiza-
tion problem for the j-th step of the algorithm applied to a general multi-objective
PDE-constrained optimization problem is

min
y,u

fs j (y, u)

s.t. c(y, u) = 0, (6)

fi (y, u) ≤ f ( j)
i ∀ i ∈ {1, ..., k} : i 	= s j .

The inequality constraints for the different steps are distributed equidistantly. The
outlines of the front can be found by minimizing the objective functions individually
without imposing additional constraints. The procedure is depicted in Fig. 1 for a
problem with two objective functions. Here, the dashed lines indicate the constraint
values f ( j)

i .
It can be shown that all unique solutions to the resulting single-objective opti-

mization problem (6) are globally Pareto optimal for any upper bound f ( j)
i [11].

The choice of the algorithm for solving the single-objective optimization problems
(6) that result from the ε-constraint method is very important. In Kusch et al. [8] a
hybrid algorithm is applied for the single-objective optimization problems to enhance
the chance of finding a global optimum.

Fig. 1 Scanning the Pareto
optimal front with the
ε-constraint method
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3 Application and Results

We apply the proposed method to an aerodynamic shape optimization problem for
a NACA 0012 airfoil. The performances to be optimized are the drag coefficient cd
and the lift coefficient cl . The flow is transonic and inviscid with a Mach number of
0.8 and an angle of attack of 1.25. Additional inequality constraints for the thickness
of the airfoil and the resulting moment are used in the optimization process to restrict
the number of feasible designs. In the robust optimization approach under consider-
ation of uncertainties in the flight conditions these additional constraints are treated
as always feasible. The airfoil is parametrized with the help of 38 Hicks-Henne
functions.

The underlying steady Euler equations are solved with the Stanford University
Unstructured (SU2) code [13] using a Jameson-Schmidt-Turkel scheme. SU2 is an
open source software suite specialised on computational fluid dynamics, that can be
used for performing PDE constrained optimization. A framework for algorithmic
differentiation in SU2 was already developed by Albring et al. [1] and can be used
to calculate derivatives for the gradient-based optimization.

All constrained single-objective optimization problems are solved with the deter-
ministic, gradient-based interior point optimizer Ipopt [17]. IPOPT solves con-
strained nonlinear optimization problemswith the help of an interior pointmethod for
the inequality constraints and a filter method for the resulting optimization problem
with equality constraints.

In the following we investigate on robustness with respect to uncertainties in the
flight conditions and geometrical uncertainties separately.

3.1 Uncertainties in the Flight Conditions

The scalar-valued uncertainties in the flight conditions aremodelled by using random
variables with an assumed probability density function. We start with an uncertain
MachNumber and assume a normal distributionMa ∼ N (0.8, 0.01). The associated
orthogonal polynomials for the normal distribution fx and the randomMach number
x are the Hermite polynomials Hk with (Hk, Hj ) fx = k!δk j .

The expected value of cd , for example, is then given by

Exp(cd(y, u, x(ω))) ≈ Exp(
m∑

k=0

cd,k(y, u)Hk(x(ω)))

= 0!cd,0(y, u) =
∞∫

−∞
cd(y, u, x)H0(x) fx (x)dx

≈
n∑

i=1

cd(y, u, xi )wi .
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Note, that we have made use of the orthogonality of the polynomials and that we
approximate the resulting integral with a quadrature formula with weights wi and
points xi . For the normally distributed random variables we apply a Gauss-Hermite
quadrature with four quadrature points.

The robust multi-objective optimization problem based on the expected value is
given by

min
y,u

(Exp(cd),Exp(−cl))

s.t. c(y, u, x(ω)) = 0 ∀ω ∈ Ω, (7)

h(y, u, x(ω)) ≥ 0 ∀ω ∈ Ω.

When applying the above expression for the expected values and the ε-constraint
method we obtain a multiple set-point problem

min
y,u

n∑
i=1

cd(y, u, xi )wi

s.t. c(y, u, xi ) = 0 ∀i = 1, ..., n, (8)

h(y, u, xi ) ≥ 0 ∀i = 1, ..., n,

−
n∑

i=1
cl(y, u, xi )wi ≤ cl, j ,

for each iteration step j for the constraint cl, j on the lift coefficient. The same applies
to the constraints on the drag coefficient. The additional inequality constraints and
the PDE constraint shall be feasible for all quadrature points xi .

For minimizing drag and maximizing lift, the deterministic multi-objective opti-
mization problem without any uncertainties included and the robust multi-objective
optimization problems are solved for finding eight Pareto-optimal points.

In Fig. 2 the found points on the deterministic Pareto optimal front are marked
with crosses and points on the expected Pareto optimal front that we will refer
to as robust Pareto optimal solutions are marked with full diamonds. The empty
diamonds show the expected points of the deterministic optimization and the small
points are admissible points found during the deterministic optimization that shall
give an idea of the admissible objective space. The points indicate a convex Pareto
optimal front for each problem. One can clearly see the improvement gained by the
robust optimization. On the right of the figure are the designs that correspond to the
found points from top to bottom. The dashed shapes belong to the optimal designs
and the solid shapes belong to the robust optimal designs.

The robustness is shown exemplary for one robust optimal design, that is given
in Fig. 3. The expected value of the optimal design are Exp(cd) = 0.00274 and
Exp(cl) = 0.306 and the expected values of the robust optimal design are Exp(cd) =
0.00172 and Exp(cl) = 0.309.

Figure4 shows the behaviour of the drag coefficient around the mean Mach num-
ber. While the drag coefficient of the optimal design (dashed line) is sensitive around
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Fig. 2 Deterministic (crosses) and robust Pareto optimal points (full diamonds) and expected
points of the deterministic optimization (empty diamonds) for the aerodynamic shape optimization
problem and corresponding designs (right)

Fig. 3 Exemplary robust optimal airfoil design (solid line) and optimal airfoil design (dashed line)

the Mach number of 0.8, it is not very sensitive for the robust optimal design. The
strong increase of the drag coefficient is also shifted to a higherMach number. Similar
results can be obtained for the lift coefficient.

The angle of attack α can be considered as an additional uncertainty that is nor-
mally distributed with a mean of 1.25 and a standard deviation of 0.01. For the
computation of the two-dimensional random integral we make use of a full tensor
grid with 16 Gauss-Hermite quadrature points. The resulting robust Pareto optimal
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Fig. 4 Behaviour of the drag coefficient for the deterministic and the robust optimal design

Fig. 5 Robust Pareto
optimal points for
uncertainties in the Mach
number and in the angle of
attack (triangles) in
comparison to robust Pareto
optimal points for
uncertainties in the Mach
number (diamonds)

points marked by triangles in Fig. 5 are very similar to the points found when only
considering an uncertainty in the Mach number (diamonds), which is also reflected
in the designs.

3.2 Geometrical Uncertainties

As a next step we assume geometrical uncertainties of the airfoil. We restrict uncer-
tainties to 80 percent of the airfoil Γ defined by Γ̃ = {ξ ∈ Γ : ξx ≤ 0.8}, which
neglects the trailing edge. The coordinates of the perturbed airfoil are given by

ξ̃ = ξ + ψ(ξ, ω) · n(ξ) ∀x ∈ Γ̃ , ω ∈ Ω (9)
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Fig. 6 Eigenvalues (left) and first three eigenvectors (right) of the covariance matrix of the original
design

with the normal vector n. The expected value of the random process is Exp(ψ) = 0
and the covariance function is given by

Cov(ξi , ξ j ) = 0.0012 exp

(
−||ξi − ξ j ||2

0.12

)
∀ξi , ξ j ∈ Γ̃ , (10)

leading to a covariance matrix of size (142 × 142) for the discretized airfoil. Figure6
shows the decaying eigenvalues on the left side and the first three eigenvectors on
the right side for the NACA airfoil. In each optimization step a basis of the first three
eigenvectors is chosen as an approximation of the random process.

The integral in the three-dimensional random space is approximated with the
help of dimension-adaptive sparse grids based on Gauss-Hermite quadrature. The
maximum order of quadrature points is 7. A full tensor grid quadrature would result
in 343 quadrature points. The dimension-adaptive sparse grid for the original shape is
shown on the left in Fig. 7.With a prescribed tolerance of 10−5 for the estimated error
the dimension-adaptive strategy leads to 20 grid points. The dimension belonging to
the third eigenvector does not seem to be important. The grid on the right consists
of 27 grid points and is an example for a design in which the third eigenvector is of
higher importance.

For the multi-objective optimization we prescribe the same constraints for the
objective functions as for the deterministic optimization. The geometric constraint
shall hold for the unperturbed design. Figure8 shows the resulting Pareto optimal
points represented by the full diamonds. The empty diamonds are the expected out-
comes of the designs found by the deterministic optimization.

The found robust Pareto optimal points are very close to the original deterministic
front, although the robust designs differ from the deterministic designs which can be
seen in the right part of the figure. The solid shapes represent the robust designs and
the dashed shapes are the designs resulting from the optimizationwithout considering
any uncertainties.
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Fig. 7 Dimension-adaptive sparse grid for original designwith 20 grid points (left) and for different
design with 27 grid points (right)

Fig. 8 Deterministic (crosses) and robust Pareto optimal points (full diamonds) and expected
points of the deterministic optimization (empty diamonds) for the aerodynamic shape optimization
problem and corresponding designs (right)

4 Summary and Outlook

We make use of the ε-constraint method combined with a non-intrusive polynomial
chaos approach for uncertainty quantification to find robust Pareto optimal solutions.
We apply the strategy to aerodynamic shape optimization to optimize for the drag and
the lift coefficient.When assuming geometrical uncertaintieswe employ aKarhunen-
Loeve expansion to approximate the randomprocess andwemakeuse of a dimension-
adaptive strategy for numerical integration in random space.
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In the future we plan to apply the proposed procedure to multidisciplinary opti-
mization with SU2. Additional aims involve the application of a one-shot approach
for solving the single-objective optimization problems and the investigation of further
measures of robustness.
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An Alternative Formulation for Design
Under Uncertainty

F. Fusi, P. M. Congedo, G. Geraci and G. Iaccarino

Abstract A novel formulation for design under uncertainty is presented, which is
based on the computation of the mean value and the minimum of the function. The
aim of the method is to exert a stronger control on the system output variability in the
optimization loop at a moderate cost. This would reduce post-processing analysis
of the PDF of the resulting optimal designs, by converging rapidly to the interesting
individuals. In other words, in the set of designs resulting from the optimization, the
new approach should be capable of discarding poor-performance design. Also, no a
priori assumption of optimal PDF is made. The preliminary results presented in the
paper proves the benefit of the new formulation.

1 Motivation and Objectives

Optimization problems seek the design that improves a quantity of interest the most,
according to a set of objectives and constraints. In an uncertainty-based framework,
the variables or the model of the system under consideration are affected by a certain
level of uncertainty, which will eventually affect the performance of the system as
well. Thus, the quantity of interest depends not only on the design variables, but also
on the uncertain variables of the system. The objectives of the optimization problem
are formulated in order to take into account the statistical behavior of the performance
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due to the input uncertainty. For instance, Taguchi-like robust design [1] looks for a
design that is minimally sensitive with respect to changes in the uncertain variables,
by maximizing the mean value of the performance while minimizing its variance.
Thus, a problem of uncertainty-based optimization can be formulated in several ways
depending on the application and final goal. “Classical” formulations typically relies
on the computation of the mean value, the variance, or a function of the two. These
quantities however may not be capable of describing in a comprehensive way the
Probability Density Function (PDF) of the output, which represents the behavior
of the system. In recent years efforts have been made to find formulations which
exert a control on the PDF of the performance inside the optimization loop [2, 3].
Nevertheless, the computation of the PDF inside the optimization loop may increase
the computational cost, and defining an attainable target PDF may often be difficult,
because the PDF is a feature of the problem and it is not known a priori in most cases.

Another example is theworkpresented inRef. [4],which considers the influenceof
high-order statistics during the optimization process. The aim here is to provide some
useful indications for obtaining agood trade-off between the high-quality information
given by high-order statistics and the feasibility of the whole optimization loop.
In particular, a multi-objective optimization method taking into account high-order
statistic moments, such as the third and fourth-order statistic moments, i.e. skewness
and kurtosis, respectively, is considered. From this work it appears that the skewness
may not be very useful in the definition of the optimization objectives to control of
the PDF, because it is difficult to handle in the optimization loop and it does not limit
the tails of the PDF.

In this work, an alternative formulation for design under uncertainty is developed,
which is basedon the computationof themeanvalue and theminimumof the function.
The aim of themethod is to exert a stronger control on the system output variability in
the optimization loop at a moderate cost. This would reduce post-processing analysis
of the PDF of the resulting optimal designs, by converging rapidly to the interesting
individuals. In other words, in the set of designs resulting from the optimization, the
new approach should be capable of discarding poor-performance design. Also, no a
priori assumption on the optimal PDF is made.

2 Optimization Problem

In an uncertainty-based optimization, the objectives are formulated to drive the vari-
ability of the performance f with respect to changes in the uncertain variables ξ

to a desirable behavior, by acting on the design variables x [5]. In a probabilistic
framework, the uncertain variables are treated as continous random variables in the
stochastic space Ξ and they are assigned a probability density function pξ . The
objectives of the optimization are measures of the response of the system under
consideration to changes in the random variables. For instance, for classical robust
design, the mean μ f and the variance σ 2

f are employed, and the problem then reads



An Alternative Formulation for Design Under Uncertainty 407

optimize:
x∈Σ

{
μ f (x) = ∫

Ξ
f (x, ξ) pξ (ξ)dξ

σ 2
f (x) = ∫

Ξ

(
f (x, ξ) − μ f (x)

)2
pξ (ξ)dξ,

(1)

where the design variables x vary in the design space Σ . The performance f is
typically a function of the solution of the equations describing the system under
consideration which can be defined as follows

L (x, ξ ;ϕ(x, ξ )) , (2)

where L is the mathematical operator of the equations and ϕ is the solution vector
and f = f (ϕ).

An uncertainty-based optimization requires the coupling of an outer optimization
loop and an inner uncertainty propagation technique. The former provides the design
to be tested at each iteration; the latter computes the statistics of the performance for
that particular design, starting from the uncertainty affecting the system variables.
The statistics of the performance represent the objectives, which are passed on to the
optimization loop to generate a new design.

Choosing the objectives in an uncertainty-based optimization basically means
choosing the statistics of the performance that one wishes to optimize. In this work,
a different formulation is presented with the goal of inserting comprehensive infor-
mation about the PDF of the performance in the optimization loop at a moderate cost,
and without conditioning the result with constraints or targets. The novel strategy
is also explored to assess if a particular choice of the objectives could influence the
global cost of the optimization problem, for instance by reducing the number of the
final optimal designs. In the new approach, the mean value of the performance is ac-
companied by theminimum of the performance. Bymaximizing both themean value
and the minimum, the optimization addresses the problem of finding a design that
guarantees a desirable minimum performance while maintaining high mean perfor-
mances. In addition, this approach could be suited to tackle reliability-based design
problems, where the goal of the optimization is to reduce the occurrence of undesired
system response (e.g. failures). Although the current work only explores problems
related to enhancement of the performances, reliability-based design is deemed a
possible application of the novel formulation and it will be explored in future work.

In the next section, the computation of the minimum in the uncertainty quantifi-
cation method is discussed.

3 Computation of the Minimum

The computation of the minimum is performed in three different ways. The first,
straightforward approach is the computation of the minimum value among the sam-
ples obtained for each point of a given quadrature formula (in this case, a Gaussian
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quadrature). This solution is referred to as Quadrature Point (QP) minimum compu-
tation and it is expressed as follows

min
ξ i∈N QP

v
(
ξ i

)
, (3)

where v is the output of the system, i.e. the quantity of interest, given a particular
design and ξ i are the samples drawn in the nξ -dimensional stochastic space belonging
to the set NQP of nQP quadrature points.

The other two methods compute the minimum by leveraging the analytical ap-
proximations provided by two uncertainty quantificationmethods: (i) the Polynomial
Chaos expansion, and (ii) the Simplex Stochastic Collocation. The former provides
a meta-model of function v over the entire stochastic space, starting from a set of
samples v [6]. Specifically, the meta-model is obtained by considering a spectral
projection of function v(ξ) onto a stochastic space spanned by a complete set of
orthogonal polynomials Ψ that are functions of the random variables ξ

v(ξ) =
∞∑
k=0

αkΨk (ξ) . (4)

where Ψk are the PC orthogonal polynomials and αk the coefficients of the expan-
sion [6]. In practice, the series has to be truncated to a finite number of terms, which
is determined from the number of uncertain variables and the order of the univari-
ate polynomial expansion φi (ξi ) from which the multivariate polynomials Ψk(ξ) are
obtained via tensorization, i.e.

Ψk (ξ) =
nξ∏
i

φi (ξi ).

The polynomial basis φi (ξi ) is chosen according to the Wiener-Askey scheme to
select orthogonal polynomials with respect to the probability density function pξ . In
this work, because a uniform distribution is considered, Legendre polynomials are
employed. The orthogonality property can be advantageously used to compute the PC
coefficients of the expansion αk in a non-intrusive PC framework, i.e. the so-called
Non-Intrusive Spectral Projection [7]. The projection requires an integration of the
polynomials, which is obtained by means of a quadrature formula; the quadrature
points are the same nQP points previously mentioned for the QP method.

On the other hand, SSC is a multi-element method which relies on the adaptive
refinement of the sampling in the stochastic space [8, 9]. The domain of the uncertain
variables is divided into nE elements, and each vertex in element Ξ j represents a
sample for which the exact function v is evaluated. Based on the set of samples v
obtained for all vertexes, the approximation w(ξ) of function v(ξ) is built. In partic-
ular, a polynomial approximation is performed either on the whole domain (when
the global extremum diminishing condition is satisfied [8]) or on each element Ξ j
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in which the grid is divided into. In the latter case, a piecewise polynomial represen-
tation is obtained. At each iteration of the method, the grid is refined according to
the current error between the approximation w and function v in the new samples
of the grid. A piecewise polynomial is obtained for each of the nE elements in which
the stochastic domain is divided into.

From the analytical approximation w (either the truncated PC expansion or the
piecewise polynomial in the SSC), the gradient of the response for each design
is computed and it is employed in a descent method based on Newton-Raphson
iterations. From the location ξ k at the k-th iteration, the new minimum location ξ k+1
is obtained using the descent step size γ and the descent direction dk computed from
the gradient ∇w(ξ k) and the Hessian H(ξ k) of the analytical function in the current
point:

ξ k+1 = ξ k + γdk
H(ξ k)dk = ∇w(ξ k). (5)

If the Hessian is singular, the descent direction is taken proportional to the gradient.
In the case of the PC expansion, the loop is started with the sample with lower value
of function v, i.e. the minimum of the QP approach.With the SSCmethod, if a global
interpolation is employed, the strategy used with PC still holds. Instead, when a local
interpolation is employed, the descent method described in Eq. (5) is applied to each
element Ξ j in the stochastic grid and then the lower value of the local minima found
on each element is computed.

It is worth noting that the underlying idea on building ameta-model of the function
v is that the cost of sampling Eq. (2) is very high from a computational point of view.
For instance, in the case of aerodynamic design, a Computational Fluid Dynamics
(CFD) code is used to implement the equations of state, and a single CFD run can
easily be 1000 times slower than the operations of a single optimization iteration. It
follows that the cost of drawing a new sample is far higher than the cost of solving
the iterative method in Eq. (5) to compute the minimum, because this procedure does
not involve further sampling of Eq. (2).

4 Results

The new optimization strategy is based on the mean and minimum values. While
the mean value is a typical quantity in uncertainty quantification, an assessment
of the computation of the minimum is required as this is a key feature of the new
approach. Thus, the first section presents the result concerning the computation of
the minimum. In the second part, the impact of the minimum on the optimization
loop is assessed. Thus, the results include first the assessment of the techniques
presented in the preceding section to compute the minimum. Secondly, the impact
of the minimum on the optimization loop is discussed.
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With regard to the optimization method, the optimization is performed by means
of the Non-dominated Sorting Genetic Algorithm (NSGA) in the formulation by
Deb [10].Main tuning parameters of the algorithmare the population size, the number
of generations, the crossover and mutation probabilities pc, pm and the so-called
sharing parameter r used to take into account the relative isolation of an individual
along a dominance front. Typical values for pc, pm are, respectively, 0.9 and 0.1;
values of r are defined following a formula given in Ref. [10] that takes into account
the population size and the number of objectives. Finally, the population size and the
number of generations for the convergence of the genetic algorithm should be chosen
according to the number of parameters and objectives of the particular optimization
problem. In this case, the population consists of 40 individuals and the number of
generations is set to 60. Although genetic algorithms are very expensive from a
computational point of view, they permit a wide exploration of the design space and
the treatment of multi-objective optimization, which results in a rich, exhaustive set
of optimal designs.

4.1 Computation of the Minimum

With regard to the first issue, the computation of the minimum is applied to the sine
function

f (ξ) = sin(2πξ), (6)

where ξ is a uniformly distributed variable in the interval [0, 1]. The variance and
the minimum of the function are computed by means of QP, PC and SSC methods
and the percentual errors of these estimates with respect to the analytical values
are presented in Fig. 1. The QP estimate of the minimum presents some oscillations
and the error remains higher with respect to the estimates obtained with the PC and
SSC methods. In these cases, the convergence of the minimum is comparable to that
obtained for the variance, although some oscillations are present, which are likely
to be caused by a lack of accuracy in the representation of the function. As a matter
of fact, since the minimum is a point value, it is generally more difficult to be well
captured with respect to an integral value. However, the results prove that computing
the minimum has a comparable cost with respect to computing the variance and that
it is better to resort on functional approximation instead of using quadrature points.

The computation of the minimum is also applied to the Michalewicz function,
a very challenging testcase for optimization algorithms, which presents one global
minimum, many local minima and wide, flat regions [11]. The function f (ξ1, ξ2) is
considered here in the two-dimensional stochastic space, and it reads

f (ξ1, ξ2) = −
2∑

i=1

sin(ξi ) sin20
(
i ξ 2

i

π

)
(7)
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Fig. 1 Errors of the variance (left) andminimum(right) for one-dimensional sine function computed
with PC (light grey circles), QP (black squares) and SSC (grey plus markers)
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Fig. 2 Errors of the variance (left) andminimum (right) for two-dimensionalMichalewicz function
computed with PC (grey circles) and QP (black squares)

where each uncertain variable has uniform distribution in the interval [0, π ]. This
testcase is tackled bymeans of QP and PC approaches and the results of the errors for
the variance and the minimum are presented in Fig. 2. In this case, the oscillations in
the convergence of the minimum estimate are much larger, owing to the complexity
of the function. Inspite of the oscillations, it is possible to note that the overall trend
of convergence of the minimum is comparable to that of the variance. In summary,
it is always better to compute the minimum of the functional approximation instead
of using quadrature points.
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4.2 Optimization with Minimum

To assess the impact of the computation of the minimum a modification of the
Michalewicz function [11] is considered. The function depends on two uniformly
distributed uncertain variables in the interval [0, π ], and on two design variables:
x ∈ Σ = [0.1, 1]2. The modified function reads

f (x, ξ ) = M(x, ξ) + G(x, ξ) + P(x, ξ )

M(x, ξ) = −
2∑

i=1

sin(ξi + x1) sin20
(
i (ξi + x1)2

π

)

G(x, ξ ) = 1

2πx2
exp− (ξ1−π/2)2

2x2
− (ξ2−3π/4)2

2x2

P(x, ξ ) = 0.2 (ξ1 − π/2) (ξ2 − π/2) (8)

Term M is a modification of the Michalewicz function with a phase angle equal
to the first design variable, termG represents a bell function employed to uncorrelate
themean and theminimum, and the function P is added to avoid the flat regions of the
original function that would yield a high peak of the PDF at zero. The optimization
problem seeks the set of design that maximize both the mean value and the minimum

max
x∈Σ

(μ( f ),min( f )) . (9)

Figure3 presents the Pareto fronts obtained using the minimum computation based
on a Polynomial Chaos representation of 50-th order, the corresponding Quadrature
Points, and a random sampling on the analytic function with 500000 samples which
is taken as a reference. The SSC is not considered here for this explorative case. The
solution found by the PC-based approach compares well with the reference result,
while the approach based on the QP ends up on a different front. On the other hand,
the approach based on the QP ends up on a different front and a different set of
optimal designs, as presented in Fig. 4. Because the computation of the minimum
based on the PC expansion proves robust and effective, it will be themethod of choice
in the following analysis.

The results of optimization (9) are now compared to the results obtained for the
same problem and with the formulation of robust design that maximizes the mean
value and minimizes the variance σ 2:

max
x∈Σ

μ( f ) ∧ min
x∈Σ

σ 2( f ). (10)

The Pareto fronts obtained with the two different formulations are presented in the
μ,min-plane in Fig. 5 and in the μ, σ 2-plane in Fig. 6. It appears that both strategies
are capable of finding the sets of design with higher mean values, where both fronts
completely overlap. However, the minimum-based optimization discards the branch
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Fig. 3 Pareto fronts
obtained with PC (light grey
squares), QP (grey circles)
and sampling on analytical
function (black plus markers)
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Fig. 4 Contour of the
minimum with Pareto front
designs and optimal Pareto
designs obtained with PC
(light grey squares), QP
(grey circles) and sampling
on analytical function (black
plus markers)
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Fig. 5 Reference design
(black diamond) and Pareto
fronts in μ,min-plane:
minimum-based optimal
solutions (light grey squares)
and variance-based optimal
solutions (black crosses)
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(black diamond) and Pareto
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solutions (black crosses)

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

μ (maximize)

σ
2  (m

in
im

iz
e)

A BC



An Alternative Formulation for Design Under Uncertainty 415

composed of the designs with minimum variance, because they are dominated in the
μ,min-plane. On the other hand, the front obtained by maximizing the mean and
minimum values includes a branch with higher minimum values, which, in turn, the
robust optimization cannot find. It is thus evident that the optimization based on the
mean value and the minimum results in the subset with higher mean performance of
the front obtained with the classical robust approach, but it also contains a branch
with improved minimum values. Please note that in many applications, the solutions
with very low variance comes at the expense of very poor performance values, to
the extent that these solutions may be rejected in the decision making stage. In these
cases, it is clear the benefit of a method that detects solutions with high mean value
in the μ, σ 2-front.

Three optimal solutions from the non-overlapping branches are compared: from
the optimization based on the mean value and variance, the design with optimal
variance (A) is selected and, from the optimization based on the minimum, the
designs with optimal variance (B) and optimal minimum value (C) are chosen. For
these designs the PDF of function f is plotted in Fig. 7. The functions share a similar
shape, although the PDF of design B has higher mean value. It is interesting to note
that for this particular case, despite a lower mean value of the performance, the
design with greatest minimum may be an interesting solution for design purposes,
because it possesses not only zero probability of low performances, but also the
highest maximum value of the performance. This solution would never show up in
the classical optimization based on the mean value and the variance. The optimal
designs have been obtained without any assumptions on the final shape of the PDF,
proving that the method is well suited for exploration of the optimization problem.

As a final remark, the size of the optimal set of designs obtained with the new for-
mulation is comparable to that obtained with the classical approach. In fact, because
the function of the testcase in Eq. (8) is designed in order to uncorrelate the mean
value, the result is a wide Pareto front. However, in the engineering case tackled in
Ref. [4] the Pareto front obtained with the novel approach is much smaller with re-
spect to the other; the difference in the size of the optimal set speeds up convergence
of the genetic algorithm to the final results, reducing the computational effort of the
novel formulation (Table1).

Table 1 Performance of the selected optimal designs

μ( f ) σ 2( f ) min( f )

A −0.1469 0.1341 −1.763

B −0.1342 0.1368 −1.753

C −0.1589 0.1491 −1.562
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Fig. 7 PDF of selected
optimal designs: design A
(light grey solid line), design
B (grey dashed line) and
design C (black solid line)
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5 Conclusions

In this work a novel formulation for design under uncertainty have been developed
and assessed, which is aimed at maximizing both themean value and theminimum of
the performance. Three methods for computing the minimum are presented, which
are based on the Polynomial Chaos expansion and the Simplex Stochastic Colloca-
tion. The method based on the quadrature points of the PC expansion appears less
efficient with respect to the other strategies which directly exploit the continous an-
alytical approximations provided by these methods. The computation based on the
PC expansion is effective and because it is the most straightforward and widely-
employed method for uncertainty quantification, it may be the method of choice for
this new formulation.With regard to the impact on the optimization loop, the method
has proven effective in selecting only the designswith highermean performance from
the front obtained with the classical robust approach, and in finding new interesting
designs with improved minimum values. As a matter of fact, this explorative study
represents one of the first result in which a set of optimal designs is found which is
discarderd with a classical approach.

Future activities will be devoted to consolidate the computation of the minimum.
In particular, the implementation of a refinement strategy based on the minimum in
the SSC algorithm will be developed and assessed for different test cases with the
aim of further reducing the computational cost of the new formulation. In addition,
testcases of engineering interest will be solvedwith the newoptimization formulation
and compared to existing strategies. In this case, because reliability-based analysis
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seems to be a natural application of this formulation, test cases of this problem will
be considered.
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Polynomial Representation of Model
Uncertainty in Dynamical Systems

Massimiliano Vasile

Abstract This chapter introduces an approach to capture unmodelled components
in dynamical systems through a hierarchical polynomial expansion in the state space.
This approach is reminiscent of the empirical acceleration approach commonly used
in precise orbit determination to account for unmodelled components in the force
model.

1 Introduction

In orbit determination, and more generally in the propagation of uncertainty in
dynamical systems, one problem is to capture uncertainties in the dynamical model
itself. Although dynamical models are normally dependent on a number of parame-
ters that can be calibrated using observations, the functional form of the dynamical
model can be incomplete.

A commonly used approach, in precise orbit determination, is to introduce empir-
ical accelerations as additional components of the dynamics. The value of these
empirical accelerations can be defined in a number of different ways exploiting the
available measurements.

It is customary to use time series expansions in polynomial or trigonometric form
whose coefficients need to be found bymatching the prediction of the model with the
observations [1]. Another approach is to treat empirical accelerations as stochastic
processes that can be reconstructed by a form of sequential filtering [2, 3]. Other
more recent approaches treat the unmodelled components as a stochastic process that
is represented with a Gaussian mixture [4].

All these techniques generally work satisfactorily and allow one to use a reduced
dynamics without the need for extremely high fidelitymodels. On the other hand they
do not immediately furnish a functional representation of the missing components.
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Even the use of time series expansions, which are valid within the interval in which
themeasurements are available, to extrapolate the behaviour of the dynamical system
does not always lead to the desired results. Furthermore, time series do not provide
information on the dependency of the empirical accelerations on any of the state
variables.

For this reason, in this chapter, it is proposed the use of polynomial expansions,
with unknown coefficients, of the unmodelled components in the state variables. If
the state variables and the observations are treated as stochastic variables, then so are
the coefficients of the polynomial expansion. It will be shown that this formulation
can effectively capture missing components in simple dynamical systems, including
hypersensitive ones, both in the case of a reduced number of observations and in the
case of observations affected by uncertainty.

The chapter first introduces the general formulation of the problem and the poly-
nomial expansion of the uncertain components. It then presents an optimisation pro-
cess, that is required to calculate the coefficients of the expansion, and the concept
of uncertainty distance as a metric in the space of the unknown coefficients. Some
examples follow, that illustrate the results that can be obtained with this approach.

2 Polynomial Expansion of Unmodelled Components

Consider the two functions f : S × P × [t0 : t0 + T ] −→ R
n and υ : S × B × [t0 :

t0 + T ] −→ R
n with S ⊆ R

n and the initial value problem:

{
ṡ = f (s, p, t) + υ(s, b, t)
s(t0) = s0

(1)

where s is the state vector. The function υ(s, b, t) represents some unknown function
of the states that is capturing all unmodelled components, p ∈ P ⊆ R

mp a set of
uncertain model parameters, b ∈ B ⊆ R

mb some unknown parameter vector of the
unmodelled components, and t the time coordinate. In this paper, we will study only
the case in which the unmodelled components are not a function of time (the case
with time dependence is easily obtained from the time independent formulation)
and the missing component is added to the known component. Furthermore, let us
consider the special case in which the function υ(s, b) can be expressed as follows:

υ(s, b) =
{
0
Q = ∇rUr (s, b) + ∇vUv(s, b)

(2)

where Q : S × B × [t0 : t0 + T ] −→ R
q , with q < n, and Ur and Uv are two con-

tinuous and differentiable scalar uncertainty functions that can be expanded in the
following hierarchical form:
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Ur (s, b) �
2N∑
i
a(b)ri ξi (si ) +

2N∑
i

2N∑
j
a(b)ri jξi j (si , s j )+

2N∑
i

2N∑
j

2N∑
k
a(b)ri jkξi jk(si , s j , sk) + · · ·

Uv(s, b) �
2N∑
i
a(b)vi ξi (si ) +

2N∑
i

2N∑
j
a(b)vi jξi j (si , s j )+

2N∑
i

2N∑
j

2N∑
k
a(b)vi jkξi jk(si , s j , sk) + · · ·

(3)

with n = 2N the dimension of the state space. If Eq. (1) describes the time evolu-
tion of a dynamical system, then Q can be seen as a generalised force whose hth
component, with h = 1, ..., q, is:

Qh(s, b) = ∂Ur
∂rh

+ ∂Uv
∂vh

� c0 +
2N∑
i
c(b)iζi (si ) +

2N∑
i

2N∑
j
c(b)i jζi j (si , s j )+

2N∑
i

2N∑
j

2N∑
k
c(b)i jkζi jk(si , s j , sk) + · · ·

(4)

If ζ are monomial bases then the generalised forces read:

Qh(s, b) � c0 +
2N∑
i �=k

c(b)iΔsi +
2N∑
i

2N∑
j
c(b)i jΔsiΔs j+

2N∑
i

2N∑
j

2N∑
k
c(b)i jkΔsiΔs jΔsk + · · ·

(5)

Thevector c has dimension l.Note that the vector functionQ canbedirectly expanded
in polynomial series without going through a scalar function U . In fact, in the most
general case in which the force field has no potential, it is easier to directly expand
Q. However, in the case in which a U function can be found, the uncertainty, from
which the missing component is derived, can be expressed in a more compact form.
Hence, although in the following we will use only Q, in this section we presented
also the idea of deriving Q from a scalar function U .

2.1 Problem Statement

Given Q and a set of observations, one can obtain an approximated representation of
the unmodelled components by finding the value of c that best fits the measurements.
Then, the value of the coefficients of expansion (4) can be obtained as the solution
of an optimisation problem. The nature of the optimisation problem slightly differs
depending on the integration schemeused to solveEq. (1). If No = l exact and distinct
measurements are available then one needs to solve the following set of constraints:



422 M. Vasile

s(ti , c) − so(ti ) = 0; ı = 1, ..., No (6)

where s(ti , c) is the propagated state at time ti and so(ti ) is the observed state at time
ti . If the number of observations No is equal to the number of coefficients in the
expansion (4), one could argue that the solution of problem (6) provides the exact
values of all the coefficients c. If the number of exact measurements is lower than the
number of coefficients c, a suitable smoothing function is required and the following
problem needs to be solved:

min
c

J (s, c)

s.t.
s(ti , c) − so(ti ) = 0; ı = 1, ..., No

(7)

where J : S × C −→ R is a function of states s and coefficients c. Note that, in
general, problem (7) can have more than one solution for c even when No = l. In
fact, consider the simple second order differential linear equation:

ẍ = −kx + d (8)

where k > 0 and d > 0. The general solution has the form:

x = A cos(ωt + φ) + B (9)

Given that Eq. (8) has two unknowns, one could think that a single observation
of both velocity and position would suffice. However, given the initial conditions
x(t = 0) = 0 and ẋ(t = 0) = 0, for the observation x = 0 and ẋ = 0 at time t = 2π ,
a different solution exists for every ω = j ∈ N

+.

2.2 Treatment of Stochastic Observations

In the case of observations affected by an error, one cannot obtain a prediction of
the exact value of the parameters c. In this case it is reasonable to assume that the
initial conditions are also uncertain as they come from previous observations. If
the expected values of the state vector, coming from observations, are enforced as
hard constraints the result might not capture the actual missing components as the
trajectory is forced to satisfy constraints that do not come from the natural dynamics
but are dependent on the errors in the observations. One option is to consider the
most probable value for each observation and a cost function that maximises the
likelihood of correct identification. The other option is to quantify the uncertainty in
the observations and initial conditions as confidence intervals on the observed states.
More formally, consider the uncertainty space (Γ,L ,M ), with Γ a non empty set,
L a σ -algebra over Γ , and M an uncertain measure. Then the observed state so is
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an uncertain variable so : (Γ,L ,M ) −→ R
n . If the distribution of so is available

one can draw Np samples and solve problem (7) Np times to derive a distribution
of the coefficients c. Alternatively, if no distribution is available for so but Σ is the
collection of all the confidence intervals for all the observations, including the initial
conditions, such that:

Pr(so ∈ Σ) > ε (10)

then one can formulate the following optimisation problem:

min
c∈C

J (s, c)

s.t.
s(ti ) ∈ Σ i = 0, ..., No

(11)

where ε is an arbitrary value. The main advantage of this formulation is that no
statistical moments are required and no exact distribution needs to be known a priori.
Note that the initial conditions s(t0) are treated as an observed state.

2.3 Uncertainty Distance

The coefficients of the polynomial expansion define the motion of a physical sys-
tem. Therefore, one assumption is that the dynamics will follow a minimum action
principle. This is not necessarily always true as the missing components might cor-
respond to a transient state. At the same time one can assume that the function Q is a
stochastic function that define the probability of the system to be in a particular state.
As a consequence the function J in (7) can be expressed in different forms. The one
that is proposed in this paper assumes that the system is at a minimum energy state
which means that the function Q introduces the minimum level of noise compatible
with the observations.

In this sense, the objective function in (7) can be interpreted as a distance in the
metric vector space C of the parameters c. In this space, the origin represents the
solution with no model uncertainty and any point at distance

√
cT c from the origin

has uncertainty vector Q and uncertainty distance:

du =
∫

QT Q dt (12)

Note that by analogy, one can formulate problem (7) as the constrained optimal
control problem:
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min
u

J (u) = 1
2

∫
u2dt

s.t.
ṡ = f (s, p, t) + u
and
s(ti ) ∈ Σ i = 0, ..., No

(13)

where u = Q. It is important to note that other definitions of J are possible, although
the results in this paper seems to suggest that the J function derived from (12) and
defined as:

J = cT c (14)

provides good results, at least for the cases here analysed.

2.4 Solution Through Optimisation

Problem (11) can be solved using a simple multistart approach. Starting from a Latin
Hypercube grid of randomly selected starting points we use the Matlab function
fmincon to find a constrained local minimum from each of the points in the grid.
The dynamicswas integratedwith theMatlab functionode45, with both the absolute
and the relative tolerances set to 1e-9. In all the examples in this paper, this simple
procedure was sufficient to find acceptable solutions. Given the global nature of
the problem, more complex dynamical systems might require more sophisticated
procedures. It should be noted that the convergence of fmincon was dependent on
the scaling of the coefficients c. A wild choice for the first guess of c or setting too
broad boundaries for the C space can result in an integration failure of ode45.

3 Examples

This section contains a number of simple examples and the results that the proposed
method can provide.

3.1 Linear Elastic Dynamics with Friction

The first example considers the following simple dynamical system with an elastic
component and friction:

v̇ = −x − 0.5v
ẋ = v

(15)



Polynomial Representation of Model … 425

Fig. 1 Reconstructed
coefficients for the linear
elastic dynamics with
friction. The dotted red curve
is the exact value of the
coefficients. The x-axis is the
index of the coefficients and
the y-axis their values
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We assume that both elastic and friction components are unmodelled and we use the
representation:

v̇ = c1 + c2x + c3v + c4v2

ẋ = v
(16)

By introducing two measurements at t = π and t = π/2, assuming a uniform dis-
tribution of the measurements over an interval that is ±10% of the exact value of
the states, and solving problem (7) with cost function J = cT c we get the result in
Fig. 1. The figure shows in blue the mean and confidence interval of the value of the
components of the c vector. The same figure shows in red the exact value that the
coefficient should have to reproduce the exact dynamics. As one can see the exact
value is contained in the confidence interval and the estimated mean value is quite
close to the exact one. In particular the first three coefficients are a good match. The
fourth one has a much higher variance suggesting that more than one dynamics is
compatible with the measurements. This is reasonable in this case as a small drag
component, c4v2, would produce an effect similar to a larger friction component,
c3v, over the time span considered in this example.

3.2 Orbital Motion with Unmodelled Drag

The second example is an orbital motion with unknown drag component. The gravity
component of the model is fully known but the observations show an additional
component that is not modelled. The real dynamics is assumed to be governed by
the following system of differential equations in polar coordinates:
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v̇r = − μ

r2 + v2t
r − 1

2ρCdvvr
v̇t = − vt vr

r − 1
2ρCdvvt

ṙ = vr
θ̇ = vt

r

(17)

We assume a unitary area to mass ratio, and a constant density ρ such that the
product of the density times the drag coefficient Cd is 1/2ρCd = 10−6 kg/m3. Fur-
thermore, we assume that the expected trajectory, given the known dynamic com-
ponents, is a circular orbit with vr (t = 0) = vr0 = 0 and vt (t = 0) = vt0 . The orbital
period, without drag, is T = 2π

√
r3/μ. If one expands the modulus of the velocity

v in Taylor series up to the first order, the differential equations with the drag term
can be approximated as:

v̇r = − μ

r2 + v2t
r − 1

2ρCdvtvr
v̇t = − vt vr

r − 1
2ρCdv2t

ṙ = vr
θ̇ = vt

r

(18)

In order to capture the unmodelled component of the dynamics, we assume the
following expansion with terms up to order 2 in velocity and position:

v̇r = − μ

r2 + v2t
r + c1 + c3r + c5r2+

c7rθ + c9vr + c11v2r + c13vr vt
v̇t = − vt vr

r + c2 + c4θ + c6θ2+
c8rθ + c10vt + c12v2t + c14vr vt

ṙ = vr
θ̇ = vt

r

(19)

If the linear effects in Eq. (18) are dominant over a given time span Δt , then the
prediction given by Eq. (19) should be of the form:

v̇r = − μ

r2 + v2t
r + c13vr vt

v̇t = − vt vr
r + c12v2t

ṙ = vr
θ̇ = vt

r

(20)

We can now introduce observations at time t = T and t = T/2, for a total of 8
constraint equations and 14 parameters, and solve problem (7) with cost function
J = cT c.

The estimated coefficients in the case of exact measurements are represented
in Fig. 2 (blue line) and compared to the expected values assuming a linear model
(denoted by red circles). The resulting prediction of the trajectory over two orbits
is shown in Figs. 3 and 4. Note that the values of all the coefficients in the figures
were scaled up by 10−6 to make them comparable to the value of general orbit



Polynomial Representation of Model … 427

Fig. 2 Example of
reconstructed gravity-drag
dynamics for exact
measurements
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Fig. 3 Prediction over
2T—radius and true
anomaly

0 2000 4000 6000 8000 10000 12000
5500

6000

6500

7000

Time [s]

r [
km

]

True radius
Reconstructed radius

0 2000 4000 6000 8000 10000 12000
0

5

10

15

Time [s]

θ 
[r

ad
]

Ture anomaly
Reconstructed anomaly

Fig. 4 Prediction over
2T—velocity components
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Fig. 5 Example of
reconstructed gravity-drag
dynamics with confidence
intervals
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perturbations. The C space in this case has boundaries [−10−5, 10−5] for all the
coefficients. As one can see, even if a linear model is assumed, the prediction of the
trajectory is very good over a horizon that is two times the interval over which the
measurements are available.

If now one introduces the assumption that measurements are affected by an error,
problem (11) needs to be solved under some assumptions on the initial conditions.
The assumption in this paper is that the initial conditions are distributed uniformity
over a given interval. The size of the confidence interval for themeasurements is 10−4

of the measured value; accordingly the confidence interval on the initial conditions
is set to the same value.

The estimated c parameters are represented in Fig. 5 together with their associated
confidence intervals. As one can see, the expected value is close to the true solution.
One thing that has to be taken into consideration is that the dynamics that are sim-
ulated and measured are the true dynamics, not the linearised equations. Therefore,
some components that are not in the linear model might be different from zero.

The other interesting result is that some components are nearly zero for every
initial condition while other components, c4 for example, have a wide variability.
This result suggests that some components are irrelevant as they do not contradict
the observations no matter which initial conditions are taken, while others substan-
tially affect the evolution of the trajectory. Starting from this first iteration, one can
then update the confidence intervals on the parameters c and eventually converge
to the correct missing components. Indeed since the uncertain function is based on
a truncated series some components of the expansion might absorb the truncation
error.
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3.3 Chaotic and Hypersensitive Systems

As an example of chaotic dynamics and potentially hypersensitive optimal control
problems, we analyse Duffing’s equation:

v̇ = −ax − dv − bx3 + g cos(ωt)
ẋ = v

(21)

with the following parameters: a = 1, d = 0.1, b = 0.1, g = 1, ω = 1. In this case
the estimation is over Δt = π/4 with the following expansion:

v̇ = c1 + c2x + c3x2 + c4v + c5v2 + c6x3 + g cos(ωt)
ẋ = v

(22)

In other words, the forcing term is known and is an input to the system, with the
system itself a black box that needs to be identified. We first consider the case in
which there are enough deterministic observations to compute all the c parameters. In
this case we directly solve problem (6) with 6 equispaced measurements. The result
is represented in Fig. 6. The dynamics is correctly reconstructed and the optimisation
converges to a unique solution.

Considering the case in which there are only 4 deterministic measurements, we
solve problem (7) with uncertainty distance metric J = cT c. The result is shown in
Fig. 7 for a number of different and independent runs of the optimisation process.
As one can see, multiple solutions exist that solve the constraints and minimise the
cost function. The lowest cost function is reached when the estimated c parameters
approach the correct solution (shown as red circles).

Finally, we consider once again the case in which the measurements are equal to
the number of coefficients but are stochastic. In this case the results are represented

Fig. 6 Example of
reconstructed Duffing’s
dynamics with exact
observations and No = 2N
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Fig. 7 Example of
reconstructed Duffing’s
dynamics with exact
observations and No < 2N
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Fig. 8 Example of
reconstructed Duffing’s
dynamics with confidence
intervals
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in Fig. 8. Even in this case the confidence intervals contain the correct solution,
but due to the hypersensitivity of the system an exact reconstruction of the missing
components appears to be more difficult as a small variation in the initial conditions
can correspond to a significantly different set of parameters. The ε value for this case
is 10−3 of the exact value of the states at the time of the measurement.

4 Reachability Under Model Uncertainty

Once the intervals for each of the parameters c is available, one can solve a reach-
ability problem under uncertainty. One can consider Q to be a stochastic process
comparable to a disturbance and the coefficients c to be stochastic variables with
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probability space (Ω, Γ,P). In this section the problem is limited to reaching the
target set given by a sphere centred in r(s(t f )) = 0 where r(s) is the Euclidean
distance. The reachability problem can be formulated as follows:

min
u

max
c

r(t f )

s.t.
ṡ = f (s) + Q(s, c) + u
s0 ∈ Σ0

u ∈ U
c ∈ Ω ⊆ C

(23)

whereU is the control space,Ω is a subspace ofC defined by the confidence intervals
for all the parameters c and Σ0 is the set of initial conditions. As an example we
can consider problem (15) where the confidence intervals for the parameters c are
available from the previous identification process and one wants the optimal control
u that satisfies:

min
u

max
c

x2(t f )

s.t.
ẍ = c0 + c1x + c2x2 + c3v2 + u
x0 ∈ Σ0

u ∈ [−0.1, 0.1]
c ∈ Ω ⊆ C

(24)

The control is represented with cubic splines collocated at ten regular points in
time in the interval [0, t f ]. Additionally, the control is bounded to be in the interval
[−0.1, 0.1]. Problem (24) can be solved with the algorithm presented in [5] for the
solution of minmax problems. The optimisation converges in a couple of iterations
with the result in Fig. 9. Figure9 show themin-max solution compared to the solution
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Fig. 9 a Phase space representation of the min-max solution; b Control profile for the min-max
solution
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with no control and worst case disturbance and the solution with no disturbance and
the control action derived from the solution of problem (24).

5 Final Remarks

The chapter presented an approach to reconstruct unmodelled components in dynam-
ical systems by using hierarchical polynomial expansions. It was shown that the
expansion proposed in this paper can be derived from a scalar uncertainty function
with the form of a pseudo-potential. Other choices are possible to include effects that
can not be reduced to a scalar potential function.

In all the cases analysed in this chapter, the approach provided a good estimation
of the missing components in the dynamical model. The next step is to iterate over
longer arcs and to update the estimation when new measurements are available. The
chapter proposed also the solution of a reachability problem where the unmodelled
component are a stochastic disturbance that needs to be controlled by an optimal
control action. The problem translates into a min-max optimisation that provides an
optimal, yet robust, solution.
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Improved Archiving and Search
Strategies for Multi Agent Collaborative
Search

Lorenzo A. Ricciardi and Massimiliano Vasile

Abstract This paper presents a new archiving strategy and some modified search
heuristics for the Multi Agent Collaborative Search algorithm (MACS). MACS is a
memetic scheme formulti-objective optimisation that combines the local exploration
of the neighbourhood of some virtual agents with social actions to advance towards
the Pareto front. The new archiving strategy is based on the physical concept of
minimising the potential energy of a cloud of points each of which repels the others.
Social actions have been modified to better exploit the information in the archive and
local actions dynamically adapt the maximum number of coordinates explored in the
pattern search heuristic. The impact of these modifications is tested on a standard
benchmark and the results are compared against MOEA/D and a previous version of
MACS. Finally, a real space related problem is tackled.

1 Introduction

Multi Agent Collaborative Search is a memetic algorithm to solve multi-objective
optimisation problems that was proposed some time ago to solve robust optimisation
problems in space mission design [1, 2]. In MACS, a population of virtual agents
is deployed at random locations in the search space. Each agent locally explores
its neighbourhood performing a set of local search actions, also named individual
actions. Then the population as a whole performs a set of social actions, to concur-
rently advance towards the front. An external archive is used to store the current
best representation of the Pareto set. In a recent version of MACS, called MACS2, a
combination of Pareto dominance and Tchebycheff scalarisation was introduced to
select potential improvements towards the Pareto front. Previous studies by Vasile
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and Zuiani [3–6] showed the effectiveness of this approach on different benchmark
and challenging real problems, testing numerous strategies both for the individual
and the social actions. Since then MACS2 was successfully used for the design of
space missions for the removal of space debris by means of low-thrust, many revo-
lutions orbits, and for the design of the initial, low-thrust rising phase for the tech-
nology demonstrator mission DESTINY. Both are real engineering multi-objective
optimisation problems for which no previous solution was known, and involved the
concurrent minimisation of fuel consumption, mission time, and, for the DESTINY
mission, radiation exposition time.

A thorough analysis of the behaviour of the algorithm, however, has revealed that
the archiving procedure was suboptimal as it was not retaining some good isolated
non-dominated solutions while keeping solutions in densely populated regions of the
Pareto front. The final archive was therefore giving a rather uneven representation
of the Pareto front, with poorly distributed solutions. This poor distribution had also
an indirect impact on the effectiveness of the search itself, since social actions were
exploiting the information in the archive.

In order to address this issue, a new archiving strategy is proposed in this paper.
The new strategy, which from now on will be called Energy Based Archiving (EBA),
is physically based on the simple idea of minimising the energy of a cloud of points
which exert repulsion on each other. Given an initial set with r + q elements, the
new archiving procedure selects the subset with r elements with the lowest possi-
ble energy. The energy is simply defined as the inverse of the sum of the normalised
squared distances of the points in criteria space. Thus, the lowest energy state is asso-
ciated to the most evenly spread distribution of the points. Note that, the archiving
strategy is not specific to MACS, but can be applied to any multi-objective optimisa-
tion algorithm, and, as will be shown, can also improve the results obtained by other
algorithms.

The paper presents also a set of modified search heuristics that takes advantage of
the higher quality of the front stored by the new archiver. One modification improves
the exploitation of the information in the archive for the generation of social actions.
The other is a dynamic adjustment of the maximum number of coordinates that are
explored when local actions are implemented.

The paper is structured as follows: after a preliminary description of multi-
objective optimisation in general, the discussionwill focus on implementation details
and the algorithms will be presented in pseudo-code. Tests will be carried out on the
standard benchmark of UF functions from the CEC 2009 competition [7], which are
known to have complex Pareto sets.MACSwith the new archiving and search heuris-
tics (which for clarity will be calledMACS2.1) will be compared withMOEA/D [8],
the winner of the CEC 2009 competition, and withMACS2 [5]. It will also be proved
that the new archiving algorithm improves the IGD and averaged Hausdorff distance
of the solutions given by MOEA/D. The impact of the modified search heuristics
will also be investigated, and MACS2.1 and MACS2 will finally be compared on a
real challenging space related problem.



Improved Archiving and Search Strategies … 437

2 Problem Formulation

This paper is focused on finding the feasible set of solutions that solves the following
problem:

min
x∈D f(x) (1)

where D is a hyperrectangle defined as D = {x j |x j ∈ [blj buj ] ⊆ �, j = 1, . . . , n}
and f is the vector function:

f : D → �m, f(x) = [ f1(x), f2(x), . . . , fm(x)]T (2)

The optimality of a particular solution is defined through the concept of domi-
nance: with reference to problem (1), a vector y ∈ D is dominated by a vector x ∈ D
if fl(x) ≤ fl(y) for all l = 1, . . . ,m and there exists k so that fk(x) �= fk(y). The
relation x ≺ y states that x dominates y. A decision vector in D that is not dominated
by any other vector in D is said to be Pareto optimal. All non-dominated decision
vectors in D form the Pareto set DP and the corresponding image in criteria space
is the Pareto front.

Starting from the concept of dominance, it is possible to associate, to each solution
in a finite set of solutions, the scalar dominance index:

Id(xi ) = |{i∗ | i, i∗ ∈ Np ∧ xi∗ ≺ xi }| (3)

where the symbol |.| is used to denote the cardinality of a set and Np is the set of the
indices of all the solutions. All non-dominated and feasible solutions xi ∈ D with
i ∈ Np form the set:

X = {xi ∈ D | Id(xi ) = 0} (4)

The set X is a subset of DP , therefore, the solution of problem (1) translates into
finding the elements of X . If DP is made of a collection of compact sets of finite
measure in �n , then once an element of X is identified it makes sense to explore its
neighbourhood to look for other elements of X . On the other hand, the set of non
dominated solutions can be disconnected and its elements can form islands in D.
Hence, multiple parallel exploration can increase the collection of elements of X .

2.1 Tchebycheff Scalarisation

In Tchebycheff approach to the solution of problem (1), a number of scalar optimiza-
tion problems is solved in the form:

min
x∈D g(f(x), λ, z) = max

l=1,...,m
{λl | fl(x) − zl |} (5)
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where z = [z1, . . . , zm]T is the reference objective vector whose components are
zl = minx∈D fl(x), for l = 1, . . . ,m, and λl is the l-th component of a weight vector
λ. By solving a number of problems (5), with different weight vectors, one can obtain
different Pareto optimal solutions. Although the final goal is always to find the set Xg ,
using the solution of problem (5) or index (3) has substantially different consequences
in the way samples are generated and selected. In the following, the solution to
problem (5) will be used as selection criterion in combination with index (3).

3 Implementation

This section briefly summarises the main features of MACS2, the new archiving
procedure and the modified heuristics.

With reference to Algorithm 1, MACS2 starts by initialising a population of
npop agents at random locations within the search domain D with a Latin Hypercube
Sampling. Non-dominated agents are copied in the archive A to form the first approx-
imation of the Pareto set. The archive A has specified maximum size maxarch . A set
of nλ m-dimensional unit vectors λk (defining m directions in criteria space) is then
generated, sampled uniformly from a quarter of circle or eighth of a sphere for bi and
tri-objective problems or through Latin Hypercube Sampling for higher dimensional
problems. The first m λk vectors form a base in �m , so that the solution vectors that
best optimise each individual objective function are always in the final approximation
of the Pareto set. Line 8 of Algorithm 1 initialises a utility function (see Zhang et al.
[8]) that is used to monitor the progress of each agent. A user-defined fraction psocial
of agents is specified, and each social agent is then randomly associated to a partic-
ular scalarised sub-problem and to the corresponding weight vector λk (see Line 9).
After initialising the velocity Vi of each agent (Line 10) the main loop starts (Line
12). Until a maximum number of function evaluations is reached, the agents perform
first local search actions, described in the next section, to move towards the Pareto
set. A local action is considered successful when it generates a dominating solution
or a solution that satisfies the Tchebycheff scalarisation criterion corresponding to a
particular sub-problem. After all local actions have been completed, the archive A
is updated with all non-dominated solutions. A total of nsocial agents then perform
the social actions described in Sect. 2 and Algorithm 3.

In the new implementation of MACS2 proposed in this paper, when a finite size
archive is assumed, the new archiving strategy, described in Sect. 3, is employed to
choose which candidates are added to A. Furthermore, as the archive fills up, the
number of coordinates scanned by the pattern search local action (see Algorithm 2)
is gradually reduced until only one direction at a time is considered. At this point
the archive is completely full. This heuristic is motivated by the fact that a well
populated and distributed archive contains a lot of information that can be used to
generate new samples at a lower cost than a full pattern search. Every nλ iterations,
the utility function will be updated and sub-problems with the lowest utility function
will be changed (see Line 18–20 of Algorithm 1).
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3.1 Individualistic Actions

In the following we describe the individualistic search actions. Each agent has a
repertoire of three different actions, namely: inertia, pattern search and differential
evolution. Each agent performs each action sequentially until an improvement is
registered (i.e. the algorithm generates either a dominant solution or a solution that
satisfies Tchebycheff criterion, if the agent is associated to a λk). The pseudo-code
is given in Algorithm 2.

Inertia
If the previous moves defined a search directionVi in parameter space, inertia gener-
ates a new sample in the same direction (lines 3–8). The trial position for the i − th
agent, xtr ial is, defined as:

xtr ial = xi + αVi (6)

where α is a random number between 0 and 1. If xtr ial is outside the admissible
domain D, α is contracted with a simple backtracking procedure so that xtr ial falls
on the boundary of D. In the case a number of components of xi lower than n is
already equal to either their lower or upper limit and xi + αVi is outside D, then the
corresponding components of Vi are set to zero before the backtracking procedure
is applied. This heuristic is introduced to improve the exploration of the boundary
of the search space.

Pattern Search
If inertia gives no improvement or is not performed (Vi = 0), a simple pattern search
strategy is implemented. This heuristic changes only one randomly chosen compo-
nent j of xi at a time (lines 14-20). The trial position xtr ial is thus equal to xi , except
for the j − th component, which is:

xtrial, j = xi j + αΔ jρi (7)

where this time α is a random number between −1 and 1, Δ j is the difference
between the upper and lower boundaries for variable j and ρi defines the size of
a hyperrectangle centred in xi . If direction αΔ jρi is not successful, the opposite
direction −sign(α)βΔ jρi is attempted with β a random number between 0 and 1.
If also this move fails, a new random direction (different from the previous ones) is
chosen.

This strategy is repeated until either an improvement is found (i.e. a dominant
solution is generated or Tchebycheff criterion is satisfied), or a specified maximum
number of directions has been explored. In this version of MACS, the maximum
number of directions is dynamically adjusted as

max_dirs = round

(
n − (n − 1)

curr_arch_si ze

max_arch_si ze

)
(8)
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where max_dirs is the maximum number of dimensions to scan, n is the number of
coordinates, curr_arch_si ze is the current size of the archive and max_arch_si ze
is the specifiedmaximum size of the archive (lines 11–21). If a good sample is found,
it is used to compute vector Vi .

Differential Evolution
If pattern search did not lead to an improvement, a differential evolution step is taken,
by combining vector xi with 3 randomly chosen agents xi1 , xi2 and xi3 (lines 24-28).
The displacement vector is then given by:

dxi = αe
((
xi − xi1

) + F
(
xi2 − xi3

))
(9)

where α is a random number between 0 and 1, F is a user specified constant and e
is a mask vector whose elements are either 0 or 1 as follows:

e j =
{
1, if α2 < CR

0, otherwise
(10)

where α2 is a random number between 0 and 1, and CR is another user specified
constant. The trial position for the differential evolution move finally reads:

xtr ial = xi + dxi (11)

The feasibility check for this new position is performed exactly as for the inertia
case: reducing α or suppressing some components of dxi .

Local Neighbourhood Size Management
If all local actions have failed, the local neighbourhood size ρi is reduced by a
user defined factor ρcontr . After a user defined maximum number of contractions
ρmax,contr , ρi is reset to ρini . Conversely, if one action is successful, ρi is increased
by a factor ρcontr , up to the maximum value ρini (lines 30–37).

3.2 Social Actions

Social actions are implemented following the same principle as in Zuiani and Vasile
[5]: a fraction psocial of the total population of the agents implements a DE type of
heuristic by picking agents either from the population or from the archive (lines 4
or 6). The probability of picking agents from the archive or from the population is
determined by:

parch_vs_pop = 1 − e− current_si ze_archive
num_agents (12)

In MACS2 each social agent was immediately moved to the trial position if the
trial position was satisfying Tchebycheff criterion. The modified heuristic proposed
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in this paper, instead, updates the archive with all trial vectors that are non-dominated
by any other element of the archive. After the archive is updated, each agent per-
forming social actions is then moved to the location of the element of the archive that
best improves the corresponding Tchebycheff sub-problem, unless that location is
already occupied by another agent (lines 15–22). This new heuristic better exploits
the information in the archive and at the same time does not exclude non-dominated
trial vectors that do not satisfy the Tchebycheff condition before checking the content
of the archive. The pseudo-code for social actions is given in Algorithm 3.

3.3 The New Archiving Strategy

All non-dominated solutions found by the agents are stored in an external archive A.
The archiving process is a fundamental part of the optimisation process. Not only
does the archive store an approximation of the Pareto set, but it also represents a
source of information for the implementation of social actions. Thus, not only is a
well distributed archive desirable but it is also a necessity to improve exploration. The
algorithm described in this paper attempts to generate the most evenly distributed
Pareto front possible with the available set of solution vectors. The heuristic is based
on the physical concept of minimisation of an energy. It draws inspiration from the
fact that a set of equally charged particles in a sphere will move towards its surface
and spread uniformly. In this case, however, the particles are not free to move, but
can only occupy specified positions.

Suppose that at iteration k the archive is full and is composed of r elements. Let
yi and y j be the position of element i and j in objective space, then one can define
the generalised energy of the archive as:

E =
r∑

i=1

r∑
j=i+1

1(
yi − y j

)T (
yi − y j

) (13)

This energy is simply the inverse of the sum of the squared distances of the points
of the archive in the criteria space. Suppose now that there are q non-dominated
candidate solutions which also do not dominate any of the elements in the archive.
The problem of choosing which candidate substitutes which element of the archive
is reformulated as finding the subset of r elements from the set of r + q elements
that minimises the energy E .

Note that a direct update of the archive using E is not feasible if r and q are big,
because the total number of possible combinations is

(r+q
r

)
. As an alternative, the

following procedure is proposed.
Let the archive A be not full. If there is enough space in A to add all the candidates,

the archive is simply updated adding those elements (lines 1-2). A symmetric matrix
M , containing the reciprocals of the squared distances of all the elements in the
archive, is updated (line 4). From M , the total energy of the archive E and a helper
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vector E2, are computed (lines 6–7). E2 is needed to simplify and speed up some
computations, as will be explained later. If the archive is full, instead, the following
procedure is applied.

Given the elements in the archive A and a set of candidate elements C , for each
element in A the energy E is recalculated assuming that that element was replaced
by an element inC (line 23). If the lowest variation of E is negative, the element ofC
that gives that variation and the element in the archive are swapped. If there has been
at least one replacement, the whole process is repeated until no more improvements
can be detected or a maximum specified number of iterations is exceeded (lines 19-
29). In this study, we specified a maximum of 100 iterations. In case the archive is
not full but there is not enough space to add all the candidates, the above mentioned
algorithm adds, sequentially, the candidates which give the least increase of the total
energy of the archive (lines 8–12). No swapping between candidates and agents in
the archive is performed in this case, only addition of candidates until the archive is
full, and the corresponding update of M and E2 (lines 13–14). The pseudo-code for
the archiving procedure is given in Algorithm 4.

The actual Matlab implementation stores in a symmetric matrix the inverse of all
pairwise squared distances between the elements currently in the archive. Deletion,
addition and substitution of elements are performed as block matrix operations to
save time. In the i-th entry of the E2 vector is stored the energy the archive would
have if element i were removed. This way, the computation of the energy with
a substitution of one element is linear in the number of candidates, because the
baseline value (i.e. the energy of the archive without replacement) is already stored,
and only the contribution of the new candidate needs to be computed. Finally, in
order to avoid scaling problems when objectives have very different length scales,
a normalisation of the elements in both the candidate set and the archive in criteria
space is performed and repeated whenever one of the elements in the archive that
optimise each individual objective function is replaced. The overall algorithm is
called Energy Based Archiving (EBA).

As an example of the results provided by this archiving strategy, we considered
a hypothetical Pareto front with 100 elements and tried to extract the q elements
with the EBA algorithm, with the archiving algorithm employed in MACS2 and
the one implemented in NSGA-II [9]. Figure1 shows the results provided by the
three archiving strategies for q = 10 and q = 25. The EBA strategy gives a good
spreading of the extracted elements, slightly better than the one obtained with the
strategy in MACS2 and much better than that obtained by the strategy implemented
in NSGA-II. The hypothetical Pareto front is composed of a set of random samples
taken from the ZDT4 Pareto front. All the algorithms extract the same number of
elements from this set. The IGD produced by each algorithm is shown in Table1.

The EBA strategy requires two sets of operations corresponding to two steps: the
fill-in of the archive and computation of the energy E , and its minimisation. The two
steps never occur at the same time when the archive is updated. The computation of
each reciprocal of squared distance, in (13), for an m dimensional space, requires
3m operations: m differences of homologous coordinates, m squares of differences,
m − 1 sums of squares and 1 reciprocal of sums. If the reciprocal of pairwise squared



Improved Archiving and Search Strategies … 443

Table 1 IGD of the different archiving strategies

MACS 2.1 MACS2 NSGA-II

Archiver Archiver Archiver

10 points 3.68e−2 3.90e−2 9.44e−2

25 points 1.52e−2 1.55e−2 2.44e−2

distances of the r elements of the archive is stored in an r by r symmetric matrix
M with zero diagonal elements, the number of reciprocal of squared distances to be
computed is r(r−1)

2 , for a total of 3mr(r−1)
2 operations. With this matrix, the compu-

tation of the total energy E of the archive requires the sum of the elements of the
upper (or lower) triangular part of the matrix, for a total of r(r−1)

2 sums. Starting
from the energy E and matrix M the already mentioned r components vector E2 is
computed. E2 contains in its i-th entry the energy the archive would have if element
i were excluded from the archive. The computation of the elements of this vector
is conveniently performed by subtracting the sum of all elements of the i-th row of
M from the energy E . Thus, a total of r2 operations is required: 1 subtraction and
r − 1 sums for each component of E2. This completes the fill-in step of the archive,
for a total of 3mr(r−1)

2 + r(r−1)
2 + r2 ∼ O(mr2) operations. Note that during a run of

MACS2.1 the archive grows gradually, so the construction of the matrix M , energy
E and vector E2 is performed incrementally, rather than all at once.

The energyminimisation step requires the computation of the reciprocal of square
distances fromeach element of A to each candidate inC , for a total of rq combinations
or 3mrq operations. At this point, the energy the archive would have if element i
were substituted with the candidate j is computed: this is conveniently performed
by summing E2(i) to the reciprocal of the square distances from the j-th candidate
to each other element in the archive, for a total of r2 operations: r sums for each of
element of the archive. Now, the minimum energy over all possible combinations of
candidates Enew is compared against the energy of the archive E . Suppose all the
tentative energies are stored in an r by q matrix and its lower value entry Enew is
located in the position (i∗, j∗). If Enew is lower than E , then a newminimum is found,
and the candidate in position j∗ substitutes the element in position i∗. At this point, it
is required to update all elements of the i-th row (or column) of thematrixM with the
new reciprocal squared distances. This requires again 3m(r − 1) operations, but can
be avoided with proper bookkeeping (i.e. if the matrix containing the reciprocal of
square distances fromeach candidate to each element of the archive is stored). Finally,
the update of the vectorE2 is performed exactly as before. If the energyminimisation
step is performed nit times, the total number of operations is 3mrq + nit

(
r2 + r2

)
.

Thus, the total cost of the EBA archiving algorithm is O
(
3mr2/2

)
for the fill-in

step, andO(nitr2) for the minimisation step (assuming q ≤ r ). In order to verify the
computational complexity of the EBA strategy, we performed a statistical analysis
on the dependence of nit on q by sampling the Pareto front of the ZDT4 benchmark
function with 100 points plus an increasing number of additional candidates. 200
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Fig. 1 Outcomes of different archiving strategies from the same initial archive. The fronts have
been shifted to enhance the comparison

independent runs weremade for each number of additional candidates, and anO(q
1
2 )

relation was discovered. Thus, the average cost of the minimisation step was found
to beO(r2q

1
2 ). It is also important to note that the computational complexity is linear

in the number of dimensions of the Pareto front, making EBA a promising method
for many-objective optimisation problems.

Algorithm 1MACS2

1: Set n f eval,max , maxarch , n pop , psocial , F ,
CR, ρini , ρcontr , ρmax,contr

2: Set nsocial = n pop psocial
3: Set iteration counter h = 0
4: Initialise population Ph , n f eval = 0
5: Initialise neighbourhood size ρi = ρini ∀i ∈

{1, .., n pop}
6: Insert the non-dominated elements of P0 in the

archive A
7: Initialise nλ vectors λk for k ∈ {1, .., nλ} such

that ||λk || = 1
8: Initialise utility function Uk = 1 ∀k ∈

{1, .., nλ}
9: Select nsocial active sub-problems to follow
10: Initialise the vector of agents’ velocities Vi =

0 ∀i ∈ {1, .., n pop}

11: while n f eval < n f eval,max do
12: h=h+1
13: update number of directions to scan in pat-

tern search
14: Perform local actions through Algorithm 2
15: Update archive A with non dominated ele-

ments through Algorithm 4
16: Perform social actions through Algorithm 3

17: Update archive A with non dominated ele-
ments through Algorithm 4

18: if mod(h, nsocial ) == 0 then
19: Update utility functionUk and the nsocial

active sub-problems
20: end if
21: end while
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Algorithm 2 Individualistic actions

1: for i = 1 : n pop do
2: Set improved=FALSE
3: if ||Vi || �= 0 then
4: Perform Inertia move
5: Evaluate move
6: if successful then
7: set improved=TRUE
8: end if
9: end if
10: if not improved then
11: counter=0
12: while counter≤ max_pat_search_dirs

& not improved do
13: counter=counter+1
14: Pick random direction
15: Perform Pattern Search
16: Evaluate move
17: if successful then
18: set improved=TRUE
19: set Vi = xi,old − xi
20: end if

21: end while
22: end if
23: if not improved then
24: Perform Differential Evolution
25: Evaluate move
26: if successful then
27: set improved=TRUE
28: end if
29: end if
30: if not improved then
31: Contract ρi
32: if ρi has contracted more than ρmax,contr

times then
33: ρi = ρini
34: end if
35: else
36: De-contract ρi unless this would cause ρi

to be greater than ρini
37: end if
38: end for

Algorithm 3 Social actions

1: choose random number r between 0 and 1
2: compute p = 1 − e− curr_arch_si ze

num_agents

3: if r ≤ p then
4: performDEbetween social agents and ran-

dom points from archive
5: else
6: performDEbetween social agents and ran-

dom points from current population
7: end if
8: add candidate solutions in archive through

Algorithm 4
9: if there are at least as many agents in the

archive as objective functions then
10: if there’s exactly as many agents in the

archive as objective functions then
11: nmove = num objective functions
12: else

13: nmove = min(num agents in archive,
num agents performing social actions)

14: end if
15: create pool of nmove agents to be moved.

Agents following exclusively one of the
objectives are always chosen

16: for all agents in pool do
17: find the agent in archive better solving

current agent’s sub-problem
18: if archive position is better than current

position then
19: move current agent to that position
20: hide that position in archive for cur-

rent run of social actions, to prevent
multiple agents moving in the same
position

21: end if
22: end for
23: end if
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Algorithm 4 Energy Based Archiving

1: if there’s room for all candidates in archive
then

2: Add them to the archive
3: for all candidates do
4: Update the symmetric matrix M con-

taining the reciprocal of the squared dis-
tance of each pair of elements

5: end for
6: Update the total energy E of the archive
7: Update the vector E2
8: else
9: if only some candidates can be added then
10: while archive is not full do
11: Choose the candidatewhich gives the

least possible addition of energy to the
archive and add it

12: Update M , E and E2
13: end while
14: else if the archive is full then
15: Set improved=TRUE
16: iterations=0

17: while improved and i terations <

maxit do
18: improved=FALSE
19: iterations=iterations+1
20: Create amatrix containing the energy

that the archivewould have if each ele-
ment of the archive were substituted
with each candidate

21: Locate the minimum entry Enew of
this matrix

22: if Enew < E then
23: Enew is at position (i∗, j∗)
24: Swap candidate j∗ with element i∗

25: Set improved=TRUE
26: Update E , M and E2
27: end if
28: end while
29: end if
30: end if

4 Test Cases

The test set used in this paper is a mix of the first seven UF functions proposed in the
CEC2009 competition on multi-objective optimisation, the function ZDT4 proposed
by Zitzler et al. [10] and a real case of space mission design.

4.1 CEC 2009 UF Functions

The UF functions have a complex Pareto set and are a good benchmark to test the
archiving procedure. The version of MACS2 with the new archiving procedure and
the modified heuristics, called MACS2.1 from now on, was tested and compared
against the version of MOEA/D that won the CEC2009 competition [8] and against
MACS2.

On the UF test set, each algorithm was run 200 times for each of the functions
UF1-7 on a Linux workstation with 8 GB of RAM and an Intel i7-4790 cpu. The
settings for MACS2.1 are reported in Table2 while for MOEA/D the parameters
suggested by its authors in [8] were used. The algorithms are compared against the
Inverse Generational Distance (IGD) metric, which was used to rank the solutions
in the CEC2009 competition, and against the Averaged Hausdorff distance. Both
metrics are described and extensively analysed in [11]. As pointed out by Schutze
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Table 2 Settings for MACS, CEC problems

n f eval,max n pop ρini F CR psocial ρcontr ρmax,contr

300000 150 1 0.9 0.9 0.2 0.5 5

Table 3 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MACS2.1
and MOEA/D, CEC2009 problems. Also reported the unsigned Wilcoxon test results

Problem MACS2.1 MOEA/D Wilcoxon MACS2.1 MOEA/D Wilcoxon

IGD IGD Test IGD Hausdorff Hausdorff Test
hausdorff

UF1 4.09e−3
(9.58e−9)

4.41e−3
(1.69e−8)

3.70e−59 1.65e−2
(5.53e−5)

1.12e−1
(6.16e−2)

3.14e−11

UF2 4.43e−3
(1.23e−7)

6.24e−3
(1.57e−6)

3.70e−59 2.09e−2
(4.41e−5)

7.48e−2
(9.46e−3)

4.52e−53

UF3 1.84e−2
(1.09e−5)

7.16e−3
(2.47e−5)

3.70e−59 1.46e−1
(2.61e−2)

6.38e−2
(1.83e−2)

5.08e−34

UF4 2.93e−2
(7.50e−7)

6.14e−2
(2.50e−5)

3.70e−59 4.99e−2
(2.74e−5)

1.11e−1
(3.17e−4)

4.83e−67

UF5 5.80e−2
(5.58e−5)

2.98e−1
(7.45e−3)

3.70e−59 1.32e−1
(9.56e−4)

7.96e−1
(2.20e−1)

4.83e−67

UF6 2.74e−2
(6.10e−5)

2.68e−1
(4.34e−2)

3.70e−59 8.86e−2
(2.06e−3)

6.27e−1
(1.14e−1)

7.03e−67

UF7 4.15e−3
(5.61e−8)

4.77e−3
(3.17e−6)

1.46e−34 2.96e−2
(9.40e−4)

1.67e−1
(6.83e−2)

1.26e−08

et al. [11], the IGD metric is sensistive to the number of elements in the reference
Pareto front and in the computed one. Hence the inclusion of the Averaged Hausdorff
distance in this comparison. Mean and variance of the IGD and Averaged Hausdorff
distance for each problem and algorithm are reported in Table3, together with result
of the Wilcoxon hypothesis test. In 6 of the 7 cases analysed in this paper, the results
obtained byMACS2.1 have lowermean IGDandmeanAveragedHausdorff distance,
and the variances of those metrics are 1 to 3 orders of magnitude lower forMACS2.1,
meaning that the results or MACS2.1 are much more repeatable. The low values of
the Wilcoxon test confirm that the underlying distributions of the metrics are indeed
different.

To better appreciate the effect of the archiver, MACS2.1 was then run with the
same settings but with the archiving strategy employed by MACS2 (as described
in [5]), while the final results of MOEA/D where filtered with the EBA algorithm
instead of using the filter employed by MOEA/D. Tables4 and 5 summarise the
results of this test. The EBA strategy improved the quality of the Pareto front found
by MOEA/D in 4 cases without worsening the others, and improved the results of
MACS2.1 in 3 cases with no significant variation in the other cases. The amount
of the improvement depends on the quality and size of the the archive: a closer
examination of the UF5 and UF6 cases showed that none of the 200 archives had
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Table 4 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MOEA/D
with EBA archiving and standard MOEA/D, CEC2009 problems. Also reported the Wilcoxon test
result

Problem MOEA/D+EBA MOEA/D Wilcoxon MOEA/D+EBA MOEA/D Wilcoxon

IGD IGD Test IGD Hausdorff Hausdorff Test
hausdorff

UF1 4.11e−3
(1.71e−8)

4.41e−3
(1.69e−8)

8.16e−54 1.11e−1
(6.16e−2)

1.12e−1
(6.16e−2)

3.67e−1

UF2 6.00e−3
(1.58e−6)

6.24e−3
(1.57e−6)

2.53e−04 7.48e−2
(9.46e−3)

7.48e−2
(9.46e−3)

9.94e−1

UF3 6.88e−3
(2.54e−5)

7.16e−3
(2.47e−5)

2.54e−07 6.30e−2
(1.83e−2)

6.38e−2
(1.83e−2)

1.19e−1

UF4 6.13e−2
(2.49e−5)

6.14e−2
(2.50e−5)

7.92e−01 1.11e−1
(3.12e−4)

1.11-e1
(3.17e−4)

8.45e−1

UF5 2.98e−1
(7.45e−3)

2.98e−1
(7.45e−3)

9.97e−01 7.96e−1
(2.20e−1)

7.96e−1
(2.20e−1)

9.98e−1

UF6 2.68e−1
(4.34e−2)

2.68e−1
(4.34e−2)

9.95e−01 6.27e−1
(1.14e−1)

6.27e−1
(1.14e−1)

9.96e−1

UF7 4.48e−3
(3.19e−6)

4.77e−3
(3.17e−6)

1.24e−32 1.67e−1(6.83e−2) 1.67e−1
(6.83e−2)

9.08e−1

Table 5 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MACS2.1
with EBA archiving versus MACS2.1 without EBA archiving on the CEC2009 problems. Also
reported the Wilcoxon test result

Problem MACS2.1 MACS2.1
NO EBA

Wilcoxon MACS2.1 MACS2.1
NO EBA

Wilcoxon

IGD IGD Test IGD Hausdorff Hausdorff Test
hausdorff

UF1 4.09e−3
(9.58e−9)

4.32e−3
(1.04e−8)

1.88e−54 1.65e−2
(5.53e−5)

1.61e−2
(1.49e−5)

9.88e−1

UF2 4.43e−3
(1.23e−7)

4.70e−3
(6.56e−8)

3.84e−25 2.09e−2
(4.41e−5)

2.09e−2
(4.13e−5)

8.49e−1

UF3 1.84e−2
(1.09e−5)

1.85e−2
(9.72e−6)

6.56e−01 1.46e−1
(2.61e−2)

1.41e−1
(2.25e−2)

6.45e−1

UF4 2.93e−2
(7.50e−7)

2.92e−2
(1.03e−6)

5.29e−01 4.99e−2
(2.74e−5)

5.04e−2
(3.13e−5)

2.46e−1

UF5 5.80e−2
(5.58e−5)

5.84e−2
(5.63e−5)

7.84e−01 1.32e−1
(9.56e−4)

1.35e−1
(9.28e−4)

2.19e−1

UF6 2.74e−2
(6.10e−5)

2.66e−2
(3.71e−5)

2.58e−01 8.86e−2
(2.06e−3)

9.61e−2
(2.64e−3)

8.12e−2

UF7 4.15e−3
(5.61e−8)

4.49e−3
(6.01e−8)

1.40e−35 2.96e−2
(9.40e−4)

2.79e−2
(5.80e−5)

1.52e−1
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Table 6 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MACS2.1
versus MACS2 on the CEC2009 problems. Also reported the Wilcoxon test result

Problem MACS2.1 MACS2 Wilcoxon MACS2.1 MACS2 Wilcoxon

IGD IGD Test IGD Hausdorff Hausdorff Test
hausdorff

UF1 4.09e-3
(9.58e−9)

4.39e−3
(2.48e−8)

1.50e−59 1.65e−2
(5.53e−5)

2.80e−2
(3.14e−4)

9.26e−35

UF2 4.43e−3
(1.23e−7)

4.49e−3
(1.32e−8)

6.33e−09 2.09e−2
(4.41e−5)

1.57e−2
(7.61e−6)

5.08e−24

UF3 1.84e−2
(1.09e−5)

2.41e−2
(4.98e−6)

8.25e−50 1.46e−1
(2.61e−2)

6.75e−2
(3.60e−4)

1.07e−29

UF4 2.93e−2
(7.50e−7)

2.63e−2
(2.96e−7)

2.15e−66 4.99e−2
(2.74e−5)

4.43e−2
(2.01e−5)

1.21e−26

UF5 5.80e−2
(5.58e−5)

5.29e−2
(4.81e−5)

2.81e−11 1.32e−1
(9.56e−4)

1.22e−1
(1.09e−3)

2.09e−05

UF6 2.74e−2
(6.10e−5)

3.41e−2
(1.06e−4)

7.30e−17 8.86e−2
(2.06e−3)

1.02e−1
(2.60e−3)

2.03e−04

UF7 4.15e−3
(5.61e−8)

6.54e−3
(4.96e−6)

3.84e−66 2.96e−2
(9.40e−4)

4.93e−2
(4.37e−4)

5.68e−39

100 non-dominated elements, hence EBA simply gave the same result as the strategy
implemented in MACS2.

For UF4 the high IGDs are caused by a relatively high distance between the
computed front and the true one, more than by a poor distribution of the points, while
for UF3 there is a relative lack of points in the upper left region of the Pareto front.
For this comparison, the Averaged Hausdorff distance does not show any relevant
improvement. This is due to the fact the Averaged Hausdorff distance penalizes the
outliers (as clearly stated in [11]), and as such is a worst case measure. The EBA
algorithmwas conceived tomaximise the spreading of the overall solution, but cannot
guarantee the worst case distance from each point of the reference front to each point
on the computed one, so the observed metrics are not surprising.

We then compared MACS2.1 versus MACS2 [5]. As it can be seen from Table6,
MACS2.1 improves overMACS2 in 5 out of 7 cases for the IGD, although it produces
worse results on UF4 and UF5. The Averaged Hausdorff distance for this case favour
MACS 2.1 only in 3 over 7 cases.

To better understand which heuristic is contributing to give the different results of
MACS2.1 with respect to MACS2, we compared the results obtained by MACS2.1
with dynamic adjustment of themaximum number of directions in the pattern search,
against MACS2.1 with a fixed maximum number of direction equal to 2n. This
because in MACS2 the number of directions scanned by pattern search is fixed and
equal to 2n. Results in Table7 show that in all cases except for UF4 and UF5, the
dynamic adjustment of themaximum number of directions scanned by pattern search
has a positive effect on the IGD. The comparison of the Averaged Hausdorff distance
shows a substantial parity between the two approaches, meaning that the dynamic
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Table 7 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MACS2.1
with EBA archiving and dynamic setting of maximum number of coordinates for pattern search
versus MACS2.1 with EBA archiving and static setting of maximum number of coordinates for
pattern search on the CEC 2009 problems. Also reported the Wilcoxon test result

Problem MACS2.1 MACS2.1
static

Wilcoxon MACS2.1 MACS2.1
static

Wilcoxon

IGD IGD Test IGD Hausdorff Hausdorff Test
hausdorff

UF1 4.09e−3
(9.58e−9)

4.40e−3
(1.98e−8)

5.46e−61 1.65e−2
(5.53e−5)

2.54e−2
(1.29e−4)

4.74e−39

UF2 4.43e−3
(1.23e−7)

4.47e−3
(2.14e−8)

2.48e−06 2.09e−2
(4.41e−5)

1.60e−2
(1.24e−5)

2.64e−21

UF3 1.84e−2
(1.09e−5)

2.51e−2
(1.09e−5)

4.05e−09 1.46e−1
(2.61e−2)

1.36e−1
(1.43e−2)

4.67e−01

UF4 2.93e−2
(7.50e−7)

2.66e−2
(3.42e−7)

2.20e−65 4.99e−2
(2.74e−5)

4.54e−2
(2.26e−5)

2.70e−20

UF5 5.80e−2
(5.58e−5)

5.47e−2
(4.98e−5)

9.51e−06 1.32e−1
(9.56e−4)

1.24e−1
(7.51e−4)

1.21e−03

UF6 2.74e−2
(6.10e−5)

3.04e−2
(7.43e−5)

1.27e−05 8.86e−2
(2.06e−3)

9.78e−2
(2.13e−3)

3.48e−03

UF7 4.15e−3
(5.61e−8)

5.08e−3
(1.59e−6)

9.58e−66 2.96e−2
(9.40e−4)

4.76e−2
(2.33e−4)

9.84e−48

strategy does not improve the position of the outliers. It can be also be appreciated
that in the static case, both the IGD and the Averaged Hausdorff distance associated
to the UF1 to UF5 cases are close to the values obtained by MACS2. This is not
surprising since in MACS2.1 DE is performed after pattern search, so if pattern
search scans all possible coordinates it will most probably find an improvement and
thus DE will not be performed. This also means that in the UF6 and UF7 cases some
other heuristic of MACS2.1 is instead contributing.

With the same rationale as the previous analysis, we comparedMACS2.1 with the
new implementation of social moves against MACS2.1 with the old implementation
of the social moves. Table8 shows that the IGD of the new version is better than the
old version in 4 over 7 cases, statistically the same in 1 case and worse in 2 cases,
while the Averaged Hausdorff distance of the new social moves is better in 3 cases,
statistically the same in 1 case and worse in 3 cases. Thus, this modification does not
seem to give a clear contribution. However, further studies are required to assess the
interaction of all the combinations of the proposedmodifications, especially between
the update of the sub-problems through the utility function and the social actions.

As a final rigorous performance test for the CEC cases, we compared the success
rate of each algorithm on each of the UF functions. The success rate is defined as the
number of runs in which the IGD falls below a given threshold over the total number
of runs. Thresholds were chosen to differentiate the results as much as possible but
using rather simple values. Table9 summarises the results. As it is evident, MACS2.1
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Table 8 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MACS2.1
versus MACS2.1 with old social moves on the CEC2009 problems. Also reported the Wilcoxon
test result

Problem MACS2.1 MACS2.1
old social

Wilcoxon MACS2.1 MACS2.1
old social

Wilcoxon

IGD IGD Test IGD Hausdorff Hausdorff Test
Hausdorff

UF1 4.09e−3
(9.58e−9)

4.14e−3
(2.63-e8)

1.96e−04 1.65e−2
(5.53e−5)

2.53e−2
(1.54e−3)

2.71e−06

UF2 4.43e−3
(1.23e−7)

4.11e−3
(1.83e−8)

8.44e−36 2.09e−2
(4.41e−5)

1.54e−2
(9.18e−6)

2.36e−27

UF3 1.84e−2
(1.09e−5)

1.95e−2
(4.03e−6)

2.95e−04 1.46e−1
(2.61e−2)

8.41e−2
(1.24e−2)

5.16e−31

UF4 2.93e−2
(7.50e−7)

2.76e−2
(7.04e−7)

5.87e−48 4.99e−2
(2.74e−5)

4.64e−2
(2.39e−5)

2.22e−15

UF5 5.80e−2
(5.58e−5)

5.75e−2
(5.01e−5)

5.33e−01 1.32e−1
(9.56e−4)

1.30e−1
(8.26e−4)

4.49e−01

UF6 2.74e−2
(6.10e−5)

3.05e−2
(6.63e−5)

2.47e−05 8.86e−2
(2.06e−3)

1.01e−1
(2.67e−3)

5.35e−05

UF7 4.15e−3
(5.61e−7)

4.60e−3 4.13e−39 2.96e−2
(9.40e−4)

3.31e−2
(7.54e−5)

3.39e−13

Table 9 Success rates for the IGD of the CEC2009 functions for all the tested algorithms and their
variants

%IGD < MACS2.1 MACS2.1 MOEA/D MOEA/D MACS2.1 MACS2.1 MACS2

τ NO EBA + EBA Static pat Old social

UF1 (τ =
4.5e−3)

100 94.5 85.0 98.0 76.0 99.0 79.5

UF2 (τ =
5.0e−3)

93.5 88.5 0.5 13.0 99.5 100 100

UF3 (τ =
2.0e−2)

68.5 67.5 95.0 95.0 9.0 61.0 3.5

UF4 (τ =
3.0e−2)

78.5 78.5 0 0 100 100 100

UF5 (τ =
5.0e−2)

16.0 12.0 0 0 25.0 15.0 36.5

UF6 (τ =
3.0e−2)

70.0 74.5 0 0 56.0 53.5 36.5

UF7 (τ =
4.5e−3)

92.0 60.0 64.5 92.0 1.5 40.5 1.5
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has overall good performance, outperforming MOEA/D in all cases except for UF3.
The introduction of EBA in MOEA/D can improve its results by 10–30% on some
problems.MACS2.1 is also generally better thanMACS2: although forUF2,UF4 and
UF5 the latter has a success rate 20% higher than the former, MACS2.1 is more than
20% better in the other problems, up to 90% better for UF7. In MACS2.1, an overall
5 to 30% improvement is given by the EBA archiving strategy, while the dynamic
setting of the maximum number of coordinates can improve results up to 90% or
worsen them up to 15%. Similarly, the new implementation of the social moves can
improve results up to 50% or worsen them up to 20%. Overall, the proposed version
of MACS2.1 seems to have more consistent results on the entire set of problems,
never falling behind by more than 25% over any other algorithm on any problem.

4.2 ZDT4 and 3 Impulse Problem

To further test the capabilities of MACS2.1 we run it 200 times on the ZDT4 test
function and on a real space trajectory optimisation problem. In the space trajectory
design problem the goal is to optimise three impulsive manoeuvres to transfer a
spacecraft from a circular Low Earth Orbit, with a radius of 7000km, to a circular
Geostationary orbit, with a radius of 42000km (for further details on the problem the
interested reader can refer to [3]). The motivation behind the choice of the ZDT4 and
the 3 impusle test case is that both of them are characterised by many local Pareto
fronts. The settings forMACS2.1 are reported in Table10, 200 solutions per runwere
maintained in the archive. The performance of MACS2.1 was compared against the
perfomance of MACS2, whose settings were specified as in [5].

Note that, for the 3 impulse case the true Pareto front is unknown, thus for self
consistence a global Pareto front was extracted from all the 400 runs and used as a
reference Pareto front for the calculation of all the metrics.

Tables11 and 12 report the metrics computed for both the ZDT4 and 3 impulse
problem and the corresponding success rates. On the ZDT4 case MACS2.1 outper-
forms MACS2.

The 3 impulse case gives less clear results instead. Although many interesting
areas of the global Pareto front are due to MACS2.1, the mean IGD associated to its
solutions is higher than the mean IGD of the solutions computed by MACS2. This
is due to the fact (see Fig. 2) that MACS2 is contributing to the global Pareto front
with twice as many points than MACS2.1, and all those points are concentrated in a
central area, while the contribution from MACS2.1 is as expected more widespread
and surprisingly a bit scarce in the central area. Thus, the typical run of MACS2 will
generate many points close to the over represented region, while the typical run of
MACS2.1 will generate less points in that area but more widely spread points, and
this results in the averaged IGD of MACS2.1 to be higher than that of MACS2. The
Averaged Hausdorff distance instead does not suffer from this kind of bias, thus the
lower value of this metric is associated to the fronts computed by MACS2.1.
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Table 10 Settings of MACS2.1 on the 3 impulse and ZDT4 problems (in brackets)

n f eval,max n pop ρini F CR psocial ρcontr ρmax,contr

30000 10 1 0.9 0.9 1 0.5 5

(15000) (10) (1) (0.9) (0.9) (1) (0.5) 5

Table 11 Mean (variance in brackets) for the IGD and averaged Hausdorff distances for MACS2.1
versus MACS2 on zdt4 and triple impulse problems. Also reported the Wilcoxon test result

Problem MACS2.1 MACS2 Wilcoxon MACS2.1 MACS2 Wilcoxon

IGD IGD Test Hausdorff Hausdorff Test

zdt4 7.6e4-3
(1.05e−4)

8.01e−1
(2.48e−1)

3.00e−64 2.52e−2
(7.59e−4)

2.62e+0
(3.60e+0)

1.20e−62

3 imp 2.78e−1
(2.81e−2)

1.17e−2
(1.07e−3)

1.32e−43 2.89e+2
(7.11e+3)

3.45e+2
(6.05e+3)

7.41e−31

Table 12 ZDT4 and triple impulse success rates forMACS2 andMACS2.1 and the various metrics

% IGD < MACS2 MACS2.1 % Hausdorff
<

MACS2 MACS2.1

τ τ

zdt4 (τ =
1e−2)

1.5 83.5 zdt4 (τ =
5e−2)

3.0 97.5

3imp
(τ =1e−1)

29.5 3.0 3imp (τ =
3e+2)

5.0 82.5
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Fig. 2 Contribution of the different algorithms to the global Pareto front
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5 Conclusions

In this paper we presented a new archiving strategy and somemodified search heuris-
tics for MACS2. The results computed by the new algorithm, called MACS2.1, are
overall better than those computed by MOEA/D on the UF test set. MACS2.1 out-
performed alsoMACS2 in 5 over 7 of the UF functions and on the ZDT4 test case. In
the 3 impulse case, MACS2.1 contributes with a wide spread of points to the Pareto
front not concentrated in the central area densely covered by MACS2. The better
IGD scored by MACS2 in this case can be explained by an uneven distribution of
points on the global Pareto front. This is confirmed by the fact that MACS2.1 shows
a better Averaged Hausdorff distance, a metric which does not resent from this kind
of bias.

The effectiveness of the archiving strategy at extracting well spread Pareto fronts
was shown both by comparing the results obtained by MACS2.1 with and without
EBA, and by comparing the results obtained by MOEA/D with and without EBA.

The effect of themodified strategies employed in the current version ofMACSwas
also investigated. From the results of our tests, we can conclude that the strategy to
dynamically change the number of directions scanned by the pattern search algorithm
can have a deep positive impact on some problems and a slightly negative impact on
others. The new implementation of the social actions gives less clear results instead:
further studies are required to assess how it is influenced by the choice of the sub
problems, and how do these new strategies interact in general. Interesting future
research options involve the use of more sophisticated local search heuristics in
combination with a Monotonic Basin Hopping strategy already successfully tested
in [6].
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Comparison of Multi-objective
Approaches to the Real-World
Production Scheduling

Gregor Papa and Peter Korošec

Abstract The multi-objective optimization approach has a large influence in the
industrial production scheduling. The goal of such optimization is to find a produc-
tion schedule that satisfies different, usually contradictory, production and business
constraints. In the paper, memetic versions of three multi-objective algorithms with
different approaches to problem solving are implemented. The customized reproduc-
tion operators and local search procedures are also used. These memetic algorithms
are applied to real order-lists from a production company. It is shown that the multi-
objective approaches are able to find high-quality solutions, also when quick respond
is required to adapt to dynamic business conditions. According to the results it is
concluded that for the two tested real-world problems the IBEA confirmed its supe-
riority over the NSGA-II and SPEA2.

1 Introduction

In the past we have already successfully approached a production-scheduling prob-
lem with a single-objective optimization [13]. The optimization goal was to find
a production schedule that satisfies the production time constraints and minimizes
the production costs. This involved many specific constraints that had to be con-
sidered. Later, the problem evolved, which brought some new constraints and new
deciding criteria. Since the single-objective approach proved to be inefficient, we
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had to consider a multi-objective approach [9].
There was some initial investigation performed on the usage of multi-objective

approaches. In the previous work [9] we used the Indicator-Based Evolutionary
Algorithm (IBEA) [16], since it nicely upgrades on our initial work when solving
the single-objective scheduling problem [13]. In current work we further improve the
findings presented previously [9] with the comparison of the Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) [5], Strength Pareto Evolutionary Algorithm 2
(SPEA2) [17], and IBEA. Following the IBEA’s proven performance for more than
three objectives [14], and the findings that for four contradictory objectives many
classicmulti-objective approaches are inappropriate [7], we decided to check the per-
formance of those three multi-objective algorithms with the real-world production
problem.

2 Related Work

The growing complexity of the real-world scheduling problems forced significant
work to be devoted to the automation of scheduling and planning processes. Here,
we often have to deal with very large search spaces, real-time performance demands,
and dynamic environments [11]. Effective production scheduling solutions can result
in reduction of personnel and production costs by minimizing machine idle time and
increasing the number of on-time job deliveries [2].

Themulti-objective optimization [4] is very commonwithin theworld of engineer-
ing problems. As this approach deals with multiple objectives it is also recognized
in solving of planning and scheduling problems.

TheMemetic Algorithms (MAs) were developed to obtain even better results than
the Genetic Algorithm (GA) for various scheduling applications, and with the use of
local search techniques the results were further improved. This hybrid approach not
only improves the quality of the solutions, but it also reduces the overall computa-
tional time [8].

In our initial work [13] a guided local search algorithm was tested on real-world
test cases of a production-scheduling problem. Such a problem is a member of the
family of job shop scheduling problems, which are known to be NP-hard. Due to the
problem’s complexity (many constraints) we developed and used specialized local
searches. They were guided with the genetic algorithm, parameter-less evolutionary
search [12], and random selection. It was shown that the use of stochastic approaches
greatly improved the quality of the production schedules with respect to the expert’s
manual solution. Furthermore, the evolutionary approach proved to be notably supe-
rior to the random search approach. On the other hand, the random-guided, local
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search approach was able to come impressively close to the results of the evolution-
ary approaches. It was obvious that its success was due to the quality of the local
searches. Namely, to get good results in a relatively short time, a very powerful set
of local searches had to be implemented. This led to good performances for all the
guided approaches; the genetic algorithm being the most stable while producing the
best results.

In the previous work [9] we have shown that the use of the memetic, multi-
objective approach, based on the IBEA, does not reduce the quality of any objective
with regard to the lexicographic evaluation of a single-objective approach, when used
on the same production-scheduling problem. The only major downside of such an
approach is in the increased time that is needed for a good Pareto front of solutions to
be constructed. While in [13] we proved the suitability of the evolutionary approach
to finding an optimum solution within a broad range of possible solutions, in [9]
we presented some additional local search procedures, as well as we introduced the
multi-objective approach, where the IBEA algorithm was used.

3 Implemented Multi-objective Algorithms

Based on the evolved production-schedule requirements we implemented and tested
three memetic implementations based on different multi-objective algorithms: the
NSGA-II, SPEA2, and IBEA. We adapted the basic implementation of these algo-
rithms with our implementations of crossover and mutation operators in order to
fully adapt to the specific problem of production scheduling.

3.1 Non-dominated Sorting Genetic Algorithm-II

The NSGA-II [5] is the second version of the Non-dominated Sorting Genetic Algo-
rithm for solving non-convex and non-smooth single and multi-objective optimiza-
tion problems. Its main features are: A non-dominated sorting procedure where all
individuals are sorted according to the level of non-domination; It implements elitism
which stores all non-dominated solutions, and enhances convergence properties; It
adapts a suitable automatic mechanics based on the crowding distance in order to
guarantee diversity and spread of solutions; Constraints are implemented using a
modified definition of dominance without the use of penalty functions.

The NSGA-II orders the population into a hierarchy of non-dominated Pareto
fronts. It calculates the crowding distance betweenmembers of each front on the front
itself. The crossover and mutation are performed as classical operators of the GA.
The members of the population are discriminated according to the rank of the front
and distance within the front.
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3.2 Strength Pareto Evolutionary Algorithm 2

The SPEA2 [17] is one of themulti-objective evolutionary algorithms that use elitism
approach. Each individual is assigned a raw fitness calculated on the basis of the
strength value of solutions who dominate it. To discriminate between individuals
having identical raw fitness values additional density information is calculated.

The SPEA2 calculates the raw fitness as the sum of the strength values of the
solutions that dominate a given candidate, where strength is the number of solutions
that a given solution dominates. The density of an area of the Pareto front is esti-
mated upon the Euclidean distance of the objective values between a given solution
and the nearest neighbors of the solution. It iteratively fills the archive population
with the candidate solutions in order of their fitness. The most similar solutions are
truncated from the archive population. For selection of parents some classical GA
selection method, such as binary tournament selection or random selection, is used.
The crossover and mutation are performed as classical operators of the GA.

3.3 Indicator-Based Evolutionary Algorithm

The IBEA [16] is a multi-objective version of the GA, where the selection process is
based on quality indicators. An indicator function assigns each pareto-set approxima-
tion a real value that reflects its quality, and the optimization goal is the identification
of a pareto-set that minimizes an indicator function. Using the indicator concept
no additional diversity-preservation mechanisms are required. It was demonstrated
[16] that an indicator-based search can yield results that are superior to some other
widely-used algorithms such as the improved SPEA2 and NSGA-II.

In a basic version of the IBEA, binary tournaments are used for the selection of
individuals to undergo recombination. Next, it iteratively removes the worst individ-
ual from the population and updates the fitness values of the remaining individuals.

4 Production Scheduling Problem

The production scheduling problem was introduced in the company Eta Cerkno
d.o.o., which produces components for domestic appliances [9, 13]. The most
demanding production stage is the production of cooking hot plates. The fabrication
process for various components used in different types of plates is similar, however
due to clients’ different demands the models differ in size (i.e., height, diameter),
connector type, and power characteristics (i.e., wattage). For their logistic reasons
the clients group different models of plates within the same order, implying the same
due-dates for different products. Therefore, the production of these order groupsmust
be scheduled very carefully to fulfil all the demands (i.e., quantities and due-dates),
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to maintain the specified amounts of different models in stock, to optimally occupy
their workers, and to make efficient use of all the production lines. Although the
assignment of due-dates is usually performed separately, and before the production
scheduling, there are strong interactions between the two tasks. Each order placed by
the customer somehow defines a batch of jobs, and their completion times should be
as close as possible in order to reduce the waiting time and cost [15]. Furthermore,
not all the production lines are equal, since each of them can produce only a few
different models. A detailed formulation of the production-scheduling problem is
presented in our initial work [13].

4.1 Production Schedule Encoding

The production schedule is encoded into a chromosome with tuples of values. Each
tuple (gene) consists of the index of the enumerated order and the assigned production
line. A chromosome with production schedule of n orders, is presented in Eq.1.

C = g1og1l g2og2l · · · gkogkl · · · gnognl, (1)

where n is the number of product orders, gko is an index of order ok ∈ O and gkl is
the production line used to produce the order ok , for every k ∈ {1, 2, . . . , n}.

4.2 Population Initialization

All input orders that have to be processed are firstly sorted within the initial order
list, according to their due-dates. Next, different chromosomes are constructed as
variations of the initial list, where each variation of the indexes of orders is encoded
as a separate chromosome. In each chromosome the orders are randomly distributed,
and the assigned production line is chosen randomly from among the possible lines
for each order. The created initial population P consists of N chromosomes.

As the numbers that are encoded in the chromosome represent the indexes of
orders, their values cannot be duplicated and also all indexes must be included. Also
the assigned values for the production line depend on the possible production lines
for particular order. These conditions have to be considered during the initialization
as well as during all the subsequent phases.

4.3 Reproduction Operators

An order-based crossover operator interchanges positions that store the ordered num-
berswithin some range. It takes the randompart of two parents, andwith a probability



462 G. Papa and P. Korošec

pc swaps the genes of the parents in this part and orders the remaining genes in the
first parent in accordance with its order in the second parent. In our implementation
four types of order-based crossover operators are used: order (OX) [10], cycle (CX)
[10], partially-mapped (PMX) [10] and PTL [3] crossover. They are switched every
10 generations of the optimization process.

During the mutation process each value of the chromosome mutates with a muta-
tion probability pm. Five different types of mutation, which are described with more
details in [9], are applied: Changing of the production line; Switching of two genes
in the chromosome; Shifting of a gene into some new position; Replacing similar
products; Merging of similar products. The first mutation type influences the sec-
ond part of the gene (i.e., gkl); the second mutation type influences the whole gene
(gkogkl); the remaining three mutation types influence only the first part of the gene
(i.e., gko).

To limit a possible disruptive effect of mutation during the later stages of the
optimization and to speed up the convergence to the optimum solution in the final
optimization stages, the crossover and mutation probabilities are decreased during
the algorithm execution.

4.4 Fitness Evaluation

The solutions p ∈ P of each generation are evaluated after the reproduction operators
and local search procedures modify them. Each solution p defines its set of objective
values nobj, where objective values are defined as: the number of delayed orders
(norders); the sumof delayed days of all the delayed orders (ndays); the required number
of workers (nworkers); and the sum of the change-over downtime in minutes (tchange).
The objective values are calculated by the objective functions fk , k ∈ {1, ..., nobj}.

4.5 Ending Condition

In general the algorithm is run until the user stops the optimization process. Tomimic
overnight running, as it is used in real setting to form new production schedules, we
decided to limit the number of evaluations to 300 million.

5 Memetic Algorithms

There are several approaches for implementing local search procedures. In our case
we merged the presented NSGA-II, SPEA2 and IBEA algorithms to guide the local
search procedures. The basic algorithms are implemented with the use of appropriate
Java classes of the jMetal framework [6]. Since we are dealing with a combinatorial
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problem, we implemented our problem-specific versions of the crossover and muta-
tion operators. Next, we added the local search procedures to enhance the efficiency
of the algorithm.

Algorithm 1 Generic multi-objective memetic algorithm
1: SetInitialPopulation(P)
2: Evaluate(P)
3: while not EndingCondition() do
4: P ′ = Selection(P)
5: Crossover(P ′, pc)
6: Mutation(P ′, pm)
7: Evaluate(P ′)
8: LocalSearch(P ′)
9: P = PopulationManagement(P ∪ P ′)
10: end while

As presented in Algorithm 1 the pseudocode of a generic multi-objective memetic
algorithmwith different base algorithms is very similar. The main difference is in the
Evaluate() function, which implements various fitness calculations (like raw fitness,
density information, quality indicator...), and in PopulationManagement() function,
which implements various algorithm-specific procedures (like sorting, crowding dis-
tance, and truncation procedure).

6 Performance Evaluation

6.1 Experimental Environment

The experiments were performed on the computer platform that is based on an AMD
Opteron ™ 2.2-GHz processor, with 16 GB of RAM, and the Microsoft® Windows®
8.1 operating system. The algorithms are implemented in Sun Java 1.7.

6.2 Test Cases

For the fair comparison with the results from [9] the algorithms were tested on the
same two real order lists from the production company. Task 1 consisted of n = 470
orders for 189 different products and Task 2 consisted of n = 393 orders for 175
different products. The number of orders n represents the problem dimension. The
number of available production lines is m = 5.

As a comparison also a single objective result is presented. It was obtained as
described in [9], where we used a lexicographic evaluation—the number of delayed
orders (norders) was set as the most important objective, followed by the required



464 G. Papa and P. Korošec

number of workers (nworkers), the sum of delayed days for all the delayed orders
(ndays), and the sum of the change-over downtime in minutes (tchange).

6.3 Control Parameter Settings

The control parameters were based on the previous setting as used in [9], to achieve
as equal as possible conditions for all compared algorithms:

• the population size N = 500;
• the crossover probability pc = 0.5;
• the mutation probabilities pmchange = 0.01, pmswitch = 0.01, pmshift = 0.01,

pmrandomize = 0.05 and pmmerge = 0.5;
• the number of evaluations was 300 million.

The implementation of the crossover and mutation was the same for all algo-
rithms. The algorithms differ in their specific implementations of fitness calculation,
selection procedures and in progress of the solutions into the next generations (i.e.,
how the offspring/archive population is managed).

6.4 Results

Results of comparison of all three algorithms for both tasks are presented in Figs. 1,
2, 3 and 4 as well as in Tables1 and 2. In all the figures the X axis represents the
norders objective, the Y axis represents the nworkers objective, the Z axis represents the
tchange objective and the color scheme represents the ndays objective.

Similarly, as presented in [9], Figs. 1 and 2 show the pareto front for Task 1 in 4D
space from different perspectives for all three compared algorithms.

In Fig. 1 we can see that for the Task 1 the “nicest” pareto front in regard to the
XY plane is returned by the IBEA algorithm, while both the SPEA2 and NSGA-II
produce more wide spreaded pareto front. Also the minimum acquired values are
much lower at the IBEA algorithm, followed by the NSGA-II and lastly the SPEA2
algorithm.

In Fig. 2 we can see that for the Task 1 the pareto front in regard to the XZ an
YZ planes is pronouncedly divided into two parts by the IBEA algorithm, while
both the SPEA2 and NSGA-II produce more even pareto front with some dislocated
solutions. The main reason for this is that the IBEA was able to generate “nicer”
pareto front on XY plane, with solution with lower Y values required much higher
X, Z, and colored values. This indicates that the nworkers objective invertly influences
other objectives. For X values we see that IBEA was able to find lower solutions,
while for all other objectives the quality of solution is much closer.

In Table1 we can see the performance of all three multi-objective algorithms for
Task 1, and also the solution obtained by the single objective approach is presented
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Fig. 1 Pareto front for Task 1 in the 4D space and XY plane: a NSGA-II 4D, b NSGA-II XY, c
SPEA2 4D, d SPEA2 XY, e IBEA 4D, and f IBEA XY
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Fig. 2 Pareto front for Task 1 in the XZ and YZ plane: a NSGA-II XZ, b NSGA-II YZ, c SPEA2
XZ, d SPEA2 YZ, e IBEA XZ, and f IBEA YZ
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Table 1 Results of optimization for task 1

Algorithm Statistics norders nworkers tchange ndays

NSGA-II pareto min 21 640 348 141

Pareto max 87 967 708 790

Pareto median 40 778 370 281

SPEA2 Pareto min 24 663 351 191

Pareto max 87 941 786 836

Pareto median 38 769 370 279

IBEA Pareto min 18 631 353 127

Pareto max 88 823 867 681

Pareto median 32 704 414 206

Single-
objective

18 767 714 156

Table 2 Results of optimization for Task 2

Algorithm Statistics norders nworkers tchange ndays

NSGA-II Pareto min 17 567 336 63

Pareto max 56 902 655 621

Pareto median 27 681 369 186

SPEA2 Pareto min 31 695 368 178

Pareto max 82 999 451 1095

Pareto median 39 779 385 284

IBEA pareto min 16 538 355 59

Pareto max 50 778 433 330

Pareto median 26 601 371 101

Single-
objective

15 702 443 155

as a comparison. The Table presents algorithms’ pareto min, max, and median values
for all objectives. The median value shows where the focus of search is. Since we
are dealing with minimisation problem on all objectives, these are the values most
interesting and indicating for us.When comparing the objective norders we can see that
the range of values is more or less the same for all three algorithms, while the median
value is the lowest at the IBEA. For the objective nworkers the IBEA has the smallest
range and the lowest median value. For the objective tchange the IBEA has the largest
range and a little bit higher median value than the other two algorithms. For the
objective ndays the range of values is a little larger for the NSGA-II and SPEA2,
while the median value of the IBEA is again the lowest one.

In Fig. 3 we can see that for the Task 2 the pareto fronts in regard to the XY plane
are quite similar for the IBEA andNSGA-II , while SPEA2 producedmuch “weaker”
pareto front (containing less solutions). Similarly to Task 1 the minimum acquired
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Fig. 3 Pareto front for Task 2 in the 4D space and XY plane: a NSGA-II 4D, b NSGA-II XY, c
SPEA2 4D, d SPEA2 XY, e IBEA 4D, and f IBEA XY
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Fig. 4 Pareto front for Task 2 in the XZ and YZ plane: a NSGA-II XZ, b NSGA-II YZ, c SPEA2
XZ, d SPEA2 YZ, e IBEA XZ, and f IBEA YZ
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values are much lower at the IBEA algorithm, followed by the NSGA-II and lastly
the SPEA2 algorithm.

In Fig. 4 we can see that for the Task 2 the pareto front in regard to the XZ an YZ
planes is not pronouncedly divided in two parts as noticed with Task 1. This indicates
that the nworkers objective does not always “negatively” influences other objectives.

In Table2 we can see the performance of all algorithms in Task 2, where their
pareto min, max, and median values for all objectives are shown. When comparing
the objective norders we can see that the range of values is more or less the same for
the IBEA and NSGA-II, while the range is a bit larger for SPEA2; also the median
values are lower for the IBEA and NSGA-II. For the objective nworkers the IBEA has
a little bit smaller and lower range than the NSGA-II and SPEA2, and also the IBEA
has the lowest median value. For the objective tchange the IBEA and SPEA2 have
smaller range of values, but a little bit higher median value than the NSGA-II. For
the objective ndays the range of values is the smallest and lowest for the IBEA, and
also the median value of the IBEA is the lowest one. Similarly as with Task 1, the
IBEA was able to find the lowest solution values for objectives except tchange, where
theNSGA-II was able to find the lowest value. Themedian value, which showswhere
the focus of search is, follows the same pattern.

Considering all the information provided by the figures and tables one can con-
clude that the two tested tasks of presented real-world problemconfirm the superiority
of the IBEA over the NSGA-II and SPEA2, as shown by using benchmark functions
in [16]. So, in this case test benchmark functions proved as a good indication, which
is the most suitable algorithm for the job.

7 Conclusion

The multi-objective optimization approach has become important part in the indus-
trial production scheduling, where its goal is to find a production schedule that
satisfies different, usually contradictory, production and business constraints. We
implemented memetic versions of the NSGA-II, SPEA2 and IBEA multi-objective
algorithms, with different approaches to problem solving. These memetic algorithms
were applied to real order-lists from a production company. We have shown that for
the tested real-world problem the IBEA confirmed its superiority over the NSGA-II
and SPEA2, as already indicated by the synthetic test benchmark functions.
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Elucidation of Influence of Fuels
on Hybrid Rocket Using Visualization
of Design-Space Structure

Kazuhisa Chiba, Shin’ya Watanabe, Masahiro Kanazaki,
Koki Kitagawa and Toru Shimada

Abstract The stratum-type association analysis as a new data mining technique has
been applied to the conceptual design of a single-stage launch vehicle with hybrid
rocket engine. The conceptual design was performed by using design informatics,
which has three points of view, i.e., problem definition, optimization, and data min-
ing. The primary objective of the present design is that the down range and the
duration time in the lower thermosphere are sufficiently secured for the aurora scien-
tific observation, whereas the initial gross weight is held down to the extent possible.
The multidisciplinary design optimization was performed by using a hybrid evolu-
tionary computation. Data mining was also implemented by using the stratum-type
association analysis. Consequently, the design information regarding the tradeoffs
has been revealed. The hierarchical dendrogram generated by using the stratum-type
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association analysis indicates the structure of the design space in order to improve
the objective functions. Furthermore, the assignments of the stratum-type association
analysis have been obtained.

1 Introduction

Design informatics is essential for practical design problems. Although solving
design optimization problems is important under the consideration of many dis-
ciplines of engineering [1], the most significant part of the process is the extraction
of useful knowledge of the design space from results of optimization runs. The results
produced by multiobjective optimization (MOO) are not an individual optimal solu-
tion but rather an entire set of optimal solutions due to tradeoffs. That is, the result
of an MOO is not sufficient from the practical point of view as designers need a
conclusive shape and not the entire selection of possible optimal shapes. On the
other hand, this set of optimal solutions produced by an evolutionary MOO algo-
rithm can be considered a hypothetical design database for design space. Then, data
mining techniques can be applied to this hypothetical database in order to acquire
not only useful design knowledge but also the structurization and visualization of
design space for the conception support of basic design. This approach was sug-
gested as design informatics [6]. The goal of this approach is the conception support
for designers in order to materialize innovation. This methodology is constructed
by the three essences as (1) problem definition, (2) efficient optimization, and (3)
structurization and visualization of design space by data mining. A design problem
including objective function, design variable, and constraint, is strictly defined in
view of the background physics for several months (problem definition is the most
important process for all designers because it directly gives effect on the quality of
design space. Since the garrulous objective-function/design-variable space includ-
ing physics and design information which is not inherently necessary to consider
should be performed unnecessary evolutionary exploration and mining, it is con-
ceived to be low-quality design space), then optimization is implemented in order to
acquire nondominated solutions (quasi-Pareto solutions) as hypothetical database.
Data mining is performed for this database in order to obtain design information.
Mining has the role of a postprocess for optimization. Mining result is the significant
observations for next design phase and also becomes the material to redefine a design
problem.

In the present study, a single-stage launch vehicle with hybrid rocket engine
using solid fuel and liquid oxidizer for the scientific observation of aurora will be
conceptually designed by using design informatics approach. The objective of this
study is to apply the stratum-type association analysis as a new data-mining approach
to the optimization results [5] so that the design knowledge is accumulated for the
development of actual vehicle.
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2 Design Informatics

2.1 Optimization Method

Design informatics after the definition of detailed problem is constructed by two
phases as optimization and data mining. Evolutionary computation is used for opti-
mization. Although a surrogate model [14] like as the Kriging model [12], which
is a response surface model developed in the field of spatial statistics and geostatis-
tics, can be employed as optimization method, it will not be selected because it
is difficult to deal with a large number of design variables. In addition, since the
designers require to present many exact optimum solutions for the decision of a
compromise one, an evolutionary-based Pareto approach as an efficient multi-thread
algorithm, which the plural individuals are parallel conducted, is employed instead
of gradient-based methods. The optimizer used in the present study is the hybrid
evolutionary method between the differential evolution (DE) and the genetic algo-
rithm (GA) [4].Moreover, global design information is primarily essential in order to
determine a compromise solution. The view of hybridization is inspired by the evolu-
tionary developmental biology [2].When there is the evolution which the Darwinism
cannot explain in the identical species, each individual might have a different evolu-
tionary methodology. When the practical evolution is imitated for the evolutionary
computation, the different evolutionary algorithms might ultimately be applied to
each individual in population. The making performance of next generation for each
methodology depends on not only their algorithms but also the quality of candidate
of parent in the archive of nondominated solutions. The present hybridization is
intended to improve the quality of candidate of parent by sharing the nondominated
solutions in the archive among each methodology. In the present study, the evolu-
tionary hybrid optimization methodology between DE and GA is employed. It was
confirmed that this methodology had the high performance regarding the conver-
gence and diversity, as well as the strength for noise [4]. Note that noise imitates the
error on computational analyses and experiments and is described as the perturbation
on objective functions. It is an important factor when the optimization for practical
engineering problem is considered.

First, multiple individuals are generated randomly as an initial population. Then,
objective functions are evaluated for each individual. The population size is equally
divided into sub-populations between DE and GA (although sub-population size
can be changed at every generations on the optimizer, the determined initial sub-
populations are fixed at all generations in the present study). New individuals gener-
ated by each operation are combined in next generation. The nondominated solutions
in the combined population are archived in common. It is notable that only the archive
data is in common between DE and GA. The respective optimization methods are
independently performed in the present hybrid methodology.

The present optimization methodology is a real-coded optimizer [16]. Although
GA is based on the real-coded NSGA-II (the elitist nondominated sorting genetic
algorithm) [8], it is made several improvements in order to be progressed with the
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diversity of solutions. Fonseca’s Pareto ranking [9] and the crowding distance [8] are
used for the fitness value of each individual. The stochastic universal sampling [3] is
employed for parents selection. The crossover rate is 100%. The principal component
analysis blended crossover-α (PCABLX) [20] and the confidence interval based
crossover using L2 norm (CIX) [11] are used because of the high performance for the
convergence and the diversity as well as the strength for noise [4]. The subpopulation
size served by GA is equally divided for these two crossovers. The mutation rate is
set to be constant as the reciprocal of the number of design variables. For alternation
of generations, the Best-N selection [8] is used. DE is used as the revised scheme
[17] for multiobjective optimization from DE/rand/1/bin scheme. The scaling factor
F is set to be 0.5. The present optimizer has the function of range adaptation [18],
which changes the search region according to the statistics of better solutions, for all
design variables. In the present study, the range adaptation is implemented at every
20th generations.

2.2 Data-Mining Technique

The new data mining technique named as the stratum-type association analysis
[21] has been applied to analyzing nondominated solutions. The previous study
[7] employed the rough set theory in order to obtain the concrete rule regarding the
design principles of design variables. Since the rough set theory gives individual rules
based on the machine learning, it does not reveal the correlation knowledge among
them. The present methodology systematizes individual rules and structurize design
space using a hierarchical dendrogram so that methodology obtains a bird’s-eye view
of it in order to have useful knowledge. The feature of the present methodology is a
recursive clustering using association rules and a multi-granular analysis. The results
of the recursive clustering can be visualized as a hierarchical dendrogram in which
each node is a sub cluster of nondominated solutions. The present system is expected
to extract design information from microscopic to macroscopic view points due to
the structurization of design space.

First, the present system discretizes continuous data for logical analysis. Second,
association rules are derived from discretized data through logical analysis. Since
designer would like to primarily acquire the design knowledge regarding objective
function because it corresponds to design requirement. The association rules regard-
ing objective function will be extracted at antecedent and consequent processes.
The association rules are gradually integrated into subsets regarding the degree of
coincidence at antecedent and consequent processes. Finally, the present method-
ology constructs a structured hierarchical dendrogram by clustering subsets based
on synthetic correlations. It is essential that the methodology generates the subsets
of nondominated solutions using not the similarity among them but the inherent
characteristics in each nondominated solution.

A hierarchical dendrogram can be simply generated through clustering the asso-
ciation rules with similarity and a multi-granular analysis. Therefore, the present
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methodology can be optionally selected regarding clustering manner. The methodol-
ogy integrates the generated rules into subsets using not similarity but the accordance
with the coincidence of the rules generated by the antecedent and consequent oper-
ations. A generated hierarchical dendrogram is simply constructed by the inclusive
correlation among the subsets. Indeed, all elements which contain all extracted asso-
ciation rules are selected. All combinations of these elements are generated with-
out overlap. Then, the subsets are generated in order to concentrate the elements.
Thereupon, all of the subsets have common characteristics. That is, all nodes of a
hierarchical dendrogram have one common characteristic at least. The characteristic
in a node is useful knowledge for designers.

3 Problem Definition

Single-stage rockets have been researched and developed for the scientific obser-
vations and the experiments of high-altitude zero-gravity condition, whereas multi-
stage rockets have been also studied for the orbit injection of payload. The launch
vehicle with hybrid rocket engine using solid fuel and liquid oxidizer has been
researched and developed as an innovative technology in mainly Europe and United
States [13, 19]. The present study will investigate the conceptual design in order to
develop a next-generation single-stage launch vehicle with hybrid rocket engine. A
hybrid rocket offers the several advantages as higher safety, lower cost, and pollution
free flight. Themulti-time ignition is the especial ascendancy of hybrid rocket engine.
On the other hand, the disadvantage of a hybrid rocket engine is in its combustion.
As a hybrid rocket engine has low regression rate due to turbulent boundary layer
combustion, the thrust of hybrid rocket engine is less than that of pure solid and pure
liquid engines which can obtain premixed combustion. In addition, as the mixture
ratio between solid fuel and liquid oxidizer is temporally fluctuated, thrust changes
with time.

The conceptual design for a single-stage hybrid rocket [15], simply composed
of a payload chamber, an oxidizer tank, a combustion chamber, and a nozzle, is
considered in the present study shown in Fig. 1. A single-stage hybrid rocket for

Fig. 1 Conceptual illustrations of hybrid rocket and its design variables regarding the geometry.
Aperture ratio of nozzle ε is described by using the radius at nozzle exit rex and the radius at nozzle
throat rth
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aurora scientific observation will be focused because the rocket for more efficient
scientific observation is desired for successfully obtaining new scientific knowledge
on the aurora observation by the Institute of Space andAstronautical Science (ISAS),
Japan Aerospace Exploration Agency (JAXA) in 2009. In addition, a single-stage
hybrid rocket problem fits for the resolution of the fundamental physics regarding
hybrid rocket engine.

3.1 Objective Functions

Three objective functions are defined in the present study. First objective is the max-
imization of the down range in the lower thermosphere (altitude of 90–150 km) Rd

(km) (obj1). Second is the maximization of the duration time in the lower thermo-
sphere Td (s) (obj2). It recently turns out that atmosphere has furious and intricate
motion in the lower thermosphere due to the energy injection, which leads aurora,
from high altitude. The view of these objective functions are to secure the horizontal
distance and time for the competent observation of atmospheric temperature and
the wind for the elucidation of atmospheric dynamics and the balance of thermal
energy. Third objective is the minimization of the initial gross weight of launch
vehicle Mtot(0) (kg) (obj3), which is generally the primary proposition for space
transportation system.

3.2 Design Variables

Seven design variables are used as initial mass flow of oxidizer ṁoxi(0) (kg/s) (dv1),
fuel length L fuel (m) (dv2), initial radius of port rport(0) (m) (dv3), combustion time
tburn (s) (dv4), initial pressure in combustion chamber Pcc(0) (MPa) (dv5), aperture
ratio of nozzle ε [-] (dv6), and elevation at launch time φ (deg) (dv7). Note that
there is no constraint except the limitations of upper/lower values of each design
variable summarized in Table 1. These upper/lower values are exhaustively covering
the region of design space which is physically admitted. When there is a sweet spot
(the region that all objective functions proceed optimum directions) in the objective-
function space, the exploration space would intentionally become narrow due to the
operation of range adaptation on the evolutionary computation.

3.3 Evaluation Method

First of all, the mixture ratio between liquid oxidizer and solid fuel O/F(t) is com-
puted by the ratio between the mass flow of oxidizer ṁoxi(t) and that of fuel ṁfuel(t).
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Table 1 Limitation of upper/lower values of each design variable

Serial number Design variable Design space

dv1 Initial mass flow
of oxidizer

1.0≤ ṁoxi(0) (kg/s) ≤30.0

dv2 Fuel length 1.0≤ L fuel (m) ≤10.0

dv3 Initial radius of
port

0.01≤ rport(0) (m) ≤0.30

dv4 Combustion time 10.0≤ tburn (s) ≤ 40.0

dv5 Initial pressure in
combustion
chamber

3.0≤ Pcc(0) (MPa) ≤6.0

dv6 Aperture ratio of
nozzle

5.0≤ ε [-] ≤8.0

dv7 Elevation at
launch time

50.0≤ φ(0)(◦) ≤90.0

O/F(t) = ṁoxi(t)

ṁfuel(t)
.

ṁfuel(t) = 2πrport(t)L fuelρfuelṙport(t),

rport(t) = rport(0) +
∫

ṙport(t)dt.

(1)

ṁoxi(t) and ṁfuel(t) are the mass flow of oxidizer (kg/s) and the mass flow of fuel
(kg/s) at time t , respectively. rport(t) is the radius of port (m) at t , L fuel describes fuel
length, and ρfuel is the density of fuel (kg/m3). ṙport(t) describes the regression rate.
After that, an analysis of chemical equilibrium is performed by using NASA-CEA
(chemical equilibrium with applications) [10], then trajectory, thrust, aerodynamic,
and structural analyses are respectively implemented. The present rocket is assumed
as a point mass.

A combustion chamber is filled with solid fuel with a single port at the center
to supply oxidizer. As the regression rate to the radial direction of the fuel ṙport(t)
(m/s) generally governs the thrust power of hybrid rocket engine, it is a significant
parameter. The following experimental model [22] is used in the present study.

ṙport(t) = afuel × Gnfuel
oxi (t)

= afuel ×
(

ṁoxi(t)

πr2port(t)

)nfuel

,
(2)

where,Goxi(t) is oxidizer mass flux (kg/m2/s). afuel (m/s) and nfuel [-] are the constant
values experimentally determined by fuels. In the present study, liquid oxygen as liq-
uid oxidizer and five solid fuels are used as thermoplastic resin polypropylene (PP),
two WAX-type fuels (FT0070 and PW120), and two compounds between glycidyl
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Table 2 Characteristic values of the fuels

Fuels afuel (mm/s) nfuel [-] Density (kg/m3)

Polypropylene 0.0826 0.5500 910.0

WAX FT0070 0.1561 0.3905 926.6

WAX PW120 0.1677 0.4352 896.8

GAP50PEG50 0.3218 0.2937 1180.0

GAP60PEG40 0.4641 0.2864 1196.0

Fig. 2 Comparison of the
regression rate ṙport(t) for the
oxidizer mass flux Goxi(t)
per unit volume among the
fuels

azide polymer and polyethylene glycol (GAP50PEG50 andGAP60PEG40, the num-
ber means the blend proportion) for solid fuel in order to compare the implications
of fuels in the performance of hybrid rocket. Polypropylene has swirling flow for the
supply mode of oxidizer and the other fuels have non-swirling flow. The characteris-
tic values of the fuels are summarized in Table 2. The variation of the regression rate
ṙport(t) for the oxidizer mass flux Goxi(t) represented by Eq. (2) is shown in Fig. 2.
The regression rate ṙport(t) of GAP60PEG40 is highest at low Goxi(t), and ṙport(t) of
WAX FT0070 and GAP50PEG50 is low on the whole.

4 Optimization Results

The present population size is set to be 18 and evolutionary computation is performed
until 3,000 generations. The plots of acquired nondominated solutions are shown in
Fig. 3. Figure 3a is the nondominated solutions in the three-dimensional objective-
function space and Fig. 3b–d are projected onto two-dimensional surfaces in order
to intuitively observe the tradeoffs. Figure 3 also reveals that there is no meaningful
difference among the fuels for the tendency regarding the correlation among the
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(a)

(b)

(c)

(d)

Fig. 3 Plots of nondominated solutions on the objective function space, a plots in three-dimensional
objective function space, b two-dimensional plots between Rd (obj1) and Td (obj2), c two-
dimensional plots between Td (obj2) and Mtot(0) (obj3), and d two-dimensional plots between
Rd (obj1) and Mtot(0) (obj3). The column means the results for polypropylene, WAX FT0070,
WAX PW120, GAP50PEG50, GAP60PEG40 from the left

objective functions. The considerations regarding the tradeoffs among the objective
functions was performed [5]. Thereupon, the tradeoffs regarding polypropylene will
be observed as a representation.

Figure 3a reveals that the connecting and convex nondominated surface except
several isolated individuals is generated. There is no tradeoff between Rd and Td in
the lower thermosphere shown in Fig. 3b. This figure also shows that there are upper
limitations of roughly 250 km for Rd and 220 s for Td . Therefore, the projection plots
onto two dimensions between Rd and Td do not converge in one point. In this study,
ṁoxi(0) (dv1) has the limitation of upper/lower values. Since the regression rate to
ṙport(t) as an experimental model uses ṁoxi(t), ṙport(t) has constraint. As a result, the
limitations are generated for Rd and Td .

There is an incomplete tradeoff between Td and Mtot(0) shown in Fig. 3c. The
convex nondominated surface to optimumdirectionwith incompleteness is generated
due to the limitation of Td . As the inclination dMtot(0)/dTd is small on the convex
curve, Td can be substantially improved when trifling Mtot(0) would be sacrificed.
In addition, Fig. 3c shows that the minimum initial gross weight to reach the limi-
tation of the duration time (roughly 220 s) is approximately 700 kg. And also, the
smallest initial gross weight to attain to the lower thermosphere (altitude of 90 km)
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is approximately 350 kg. As these values are better than those of the solid rockets
which are operated at present for scientific observation, it suggests that hybrid rocket
has an advantage even when hybrid rocket does not have a sequence of multi-time
ignition.

There is a severe tradeoff between Rd and Mtot(0) shown in Fig. 3d (although the
down range strictly has the upper limitation, it seems that the clean convex curve is
generated because the limitation is on the edge of the nondominated surface). This
figure shows that the maximum down range is roughly 130 km when the minimum
initial gross weight to reach the limitation of Td (approximately 700 kg) is adopted.
Mtot(0) should be absolutely increased in order to have more Rd (greater than 130
km) despite no increase of Td (remaining roughly 220 s). This fact suggests that the
design strategies for the maximizations of Rd and Td are different.

5 Data-Mining Results

A discretization is necessary for rule generation. The hybrid discretization manner
between an equivalent distance and an equivalent frequency methods [21] is utilized.
The number of discretization is set to be 10 for the objective functions and the design
variables. The discretized regions are in common among the results for the five fuels.

The present algorithm has two significant parameters which should be artificially
regulated. Those are the minimum confidence and the minimum support. The mini-
mum confidence should be high value in order to retain the confidence of generated
rules. It is set to be 90% in this study. On the other hand, value of minimum support
dominates the number of nodes (which denotes the box in Figs. 4, 5, 6, 7 and 8).
Present minimum support is artificially regulated from 7 to 10% in order to reduce
the appropriate number of elements (which denotes each association rule) because
many nodes with the small influence are generated.

The hierarchical dendrograms which the first stratum has the association rule
regarding the objective functions are constructed for the minimization of all of the
three objective functions. Note that there are severe tradeoffs between the initial
gross weight and the other two objective functions, which were already revealed
in the optimization results shown in Fig. 3. Moreover, the initial gross weight is
the minimization function while the other two objective functions are maximization
functions. Thereupon, all dendrograms for five fuels are shown regarding the mini-
mization of the initial gross weight. The decoding manner of each node in the present
hierarchical dendrograms is explained in the caption of Fig. 4.

Result for polypropylene: The first stratum has 456 nondominated solutions
(because the total number of 999 is obtained for nondominated solutions by the
optimization process, the proportion of application is roughly 45.6%) which have
the attribute with the minimum-value node of Mtot(0). This result indicates that
roughly half number of the nondominated solutions has the small value of Mtot(0).

The second stratum has five nodes with two attributes. Since one attribute is
“2 = 0”, i.e., the minimum-value node of Mtot(0), the node indicates the tradeoff
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Fig. 4 Hierarchical dendrogram for polypropylene generated by the stratum-type association anal-
ysis for the minimization of the initial gross weight Mtot(0). The present dendrogram is constructed
by 23 nodes. The two-line explanations show the rule (which is described as ‘the variables’ = ‘its
discretized region’) from the top line using “R:” and the correspondent number of all nondominated
solutions with the rule at the bottom using “#:”. The variable numbers of 0–9 respectively denote
obj1, obj2, obj3, dv1, dv2, . . ., and dv7. Since all variables are discretized into 10 in the present
study, the discretized region is described by using the number of 0–9. The top node is in the first
stratum and the bottom nodes are in the fourth stratum

Fig. 5 Herarchical dendrogram for WAX FT0070
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Fig. 6 Hierarchical dendrogram for WAX PW120

Fig. 7 Hierarchical dendrogram for GAP50PEG50

informationwhen theother attribute is the rule regarding theother objective functions.
In contrast, the node indicates the information regarding the effective design variable
tominimizeMtot(0)when the other attribute is the rule regarding the design variables.
The third node from the left has the rule for Rd with the lowest values (the number
of nondominated solutions is 220). This node reveals the severe tradeoff because Rd

for the 48% of the nondominated solutions is in the discretized region for minimum
value when Mtot(0) is minimized. The second node from the left has the rule for
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Fig. 8 Hierarchical dendrogram for GAP60PEG40

Td with low values (the number of nondominated solutions is 236). This node also
reveals the severe tradeoff because Td for 52% of the nondominated solutions is in
the discretized region for minimum value when Mtot(0) is minimized. Furthermore,
the first node from the left has the rule for ṁoxi(0) (dv1) with low values (the number
of nondominated solutions is 218). The fourth node from the left is the rule for L fuel

(dv2) with low values (the number of nondominated solutions is 171). These nodes
reveal that dv1 and dv2 are essential to restrain Mtot(0). In addition, dv1 and dv2
are the significant design variables in order to also reduce the other two objective
functions. The first node from the right is the rule for rport(0) (dv3) with low values
(the number of nondominated solutions is 11 as a small number). rport(0) (dv3)
indirectly gives an effect because small rport(0) (dv3) gives an effect on restraining
the mass flow of oxidizer ṁoxi(t) although rport(0) (dv3) does not have a direct effect.

The third stratum has 11 nodes with three attributes. Seven nodes of those con-
sist of two rules regarding the objective function and one rule regarding the design
variable. Since the knowledge of the second stratum shows the effective design vari-
able for the objective functions, the observation of these seven nodes can be omitted
due to the comprehension into the design knowledge from the second stratum. The
crucial point in the third stratum is that merely one node exists which has one rule
regarding the objective function and two rules regarding the design variables. This
result reveals that the correlation between the objective functions is strong and one
design variable to depend on each objective function can be narrowed.

The fourth stratum has six nodes with four attributes. Since the knowledge of
the third stratum reveals that the present problem has severe tradeoffs, four nodes
have three rules regarding the objective function and one rule regarding the design
variable. The fourth node of the left merely has two rules regarding the objective
functions and two rules regarding the design variables. However, since the indicated
design variables are ṁoxi(0) (dv1) and rport(0) (dv3), the knowledge from the second
stratum can be similarly interpreted.
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Although the stratum-type association analysis cannot instruct the optimum and
pessimum directions, the severeness of tradeoff can be quantitatively shown by using
the number of application. In addition, the magnitude of the influence of the design
variables on the objective functions can be quantitatively elucidated.Moreover, since
the nondominated solutions to apply to a node are generated, the stratum-type asso-
ciation analysis is also useful for the selection of specific nondominated solutions
in order to perform the data mining for the significant local region in the objective-
function space.

Result forWAXFT0070: Since the rules regarding the objective functions shown
in Fig. 5 are similar to those in Fig. 4, the difference of the rules regarding the design
variables will be observed hereafter.

Figure 5 shows that the design variables with influence are increased compared
with the result of polypropylene. Although the difference of the minimum support
value is one of the reasons, it is considerable that there is a physical reason. Since
WAX FT0070 entirely has low regression rate, only dv1, dv2, and dv3 which are
indicated in Fig. 4 are insufficient in order to ensure the necessary thrust.

The newly indicated design variables are dv4, dv6, and dv7. The region of the rule
for dv4 as combustion time has “7” shown in the fourth node from the right on the
second stratum. SinceWAXFT0070 entirely has low regression rate, the combustion
time becomes large even when the fuel volume is small. That is, the rule regarding
dv4 is caused by the low regression rate ofWAXFT0070. As thrust of launch vehicle
should be increased in order to reach the altitude of 90 km (which is the lower limit
of the target altitude in the lower thermosphere) under the condition of small fuel
volume, the aperture ratio of nozzle will be large. Therefore, the rule for dv6 as the
aperture ratio of the nozzle is generated. When dv7 as the elevation at launch time
comes closer to the angle of 90◦, the flight pass will be shortened. Therefore, as fuel
volume will become small, the initial gross weight can below.

In addition, the difference of the design region for dv2 anddv3betweenpolypropy-
lene and WAX FT0070 will be considered. The hierarchical dendrograms for
polypropylene and WAX FT0070 indicate that dv1, dv2, and dv3 are essential to
reduce the initial gross weight. The design region of dv2 for polypropylene is “1”
and that for WAX FT0070 is “3”. On the other hand, the design region of dv3 for
polypropylene is “3” and that forWAXFT0070 is “1”. As dv2 (fuel length) is shorter,
the fuel volume becomes small. And also, as dv3 (initial radius of port) is larger, the
fuel volume becomes small. Therefore, Fig. 5 indicates that polypropylene designs
dv2 and dv3 to make the initial gross weight smaller compared with WAX FT0070.
This difference can be accomplished because the regression rate of polypropylene is
greater than that of WAX FT0070.

Result for WAX PW120: Figure 6 shows that dv1, dv2, and dv3 are essential in
order to reduce the initial grossweight.Design regions of each design variable depend
on the regression rate of each fuel. Figure 6 also indicates that dv7 as the elevation
at launch time is important. The physical mechanism that dv7 gives an effect on
decreasing the initial gross weight is already mentioned in the previous subsection.
Since the regression rate of WAX PW120 is close to that of polypropylene, it is
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considerable that the generation of this rule merely depends on the difference of the
regulation for the minimum support.

Result for GAP50PEG50: Figure 7 shows that only dv1 and dv2 are essential in
order to reduce the initial grossweight.Although the regression rate ofGAP50PEG50
is small, dv2 as fuel length can be shortened compared withWAX FT0070 which has
low regression rate and the rule for dv3 as initial radius of port is not generated. This
difference may depend on the density of fuels. However, the knowledge regarding
the density of fuels is insufficient. The influence regarding the density of fuels is a
future assignment.

Result for GAP60PEG40: Figure 8 shows that the result of generated rules is
similar to that for WAX FT0070 because dv1, dv2, dv3, and dv4 is essential in order
to reduce the initial gross weight. However, the tendency of the behavior of those
design variables is different between WAX FT0070 and GAP60PEG40. Despite
GAP60PEG40 has high regression rate, dv2 (fuel length) is higher and dv3 (initial
radius of port) is smaller. That is, the fuel volume becomes high. It is considerable
that the appropriate fuel volume should be ensured because GAP60PEG40 has high
regression rate. Actually, the rule that dv4 (combustion time) is low is generated in
Fig. 8. This result indicates that the initial gross weight becomes high so that the
large fuel volume suitable for high regression rate should be ensured.

6 Conclusions

The stratum-type association analysis has been applied to a single-stage launch vehi-
cle with hybrid rocket engine constructed by solid fuel and liquid oxidizer in order
to obtain design knowledge from the visualization of design-space structure. As a
result, the design information has been revealed regarding the tradeoffs among the
objective functions. Furthermore, the hierarchical dendrogram indicates the structure
of the design space in order to improve the objective functions. The structurization
implemented by the stratum-type association analysis indicates the concrete design
strategy regarding the significant design variables for the objective functions. The
results also reveal the difference of design strategy among the five fuels. In addi-
tion, the present application indicates the assignment how to effectively visualize the
result of stratum-type association analysis.
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Creating Optimised Employee
Travel Plans

Neil Urquhart and Emma Hart

Abstract The routing of employees who provide services such as home health or
social care is a complex problem.When sending an employee between two addresses,
there may exist more than one travel option, e.g. public transport or car. In this paper
we examine the optimisation of travel plans, supporting the provision of health and
social services,with respect to objectives of travel times and estimatedCO2 produced.
We include modal choice, either car or public transport as a decision variable. Car
travel is normally quicker, but has a higher CO2 cost, whereas public transport may
have longer journey times, but produces less CO2. We examine a set of problems
involving real city and transport network data based in the UK cities of Edinburgh
and London. We show that a multi-objective Evolutionary Algorithm can produces
Pareto sets of solutions that allow a trade off between CO2 and travel time through
the use of the decision variable.

1 Introduction and Motivation

Many organisations are currently facedwith an increasing requirement to reduce their
environmental footprint, either due to statutory requirements or to meet aspirational
goals set by their employees or customers. For organisations with amobile workforce
this requirement can possibly be met, in part through the increased use of public
transport links by the mobile workforce. Public transport, which can encompasses
travelmodes such as bus, tramand rail andmayalso include short amounts ofwalking,
has the advantages of low cost and low environmental footprint when compared to
car based travel. However it suffers from the disadvantage of potentially being slower
for many journeys. Even within developed cities, public transport will have limited
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coverage with some addresses being too far from the nearest access point or too
many individual journey legs being required. In addition, a typical journey by public
transport comprises a walking element to the nearest access point, one or more
legs by public transport, then an additional walk to the final destination. There may
also be short walks involved between individual legs of the journey (e.g. from bus
to tram) with the result that some journeys may be considered infeasible by public
transport. This paper builds upon the brief introductionmade by the authors in [1] and
investigates whether an Evolutionary Algorithm can incorporate a mixture of travel
modes in order to increase the range of solutions created. Our aim is to explore how
public transport links can be introduced within such amobile workforce scenario and
to assess the impact on the objectives of minimising the employee time required to
make the visits and the environmental impact of the solution. For the employer, there
are two major considerations when examining modal choice: environmental impact
(CO2 emissions) and travel times. Within the context of this paper we will examine
the effect of making modal choice a decision variable within a mobile workforce
problem to provide schedules that meet time window constraints but offer multiple
solutions that trade-off time against carbon emissions.

The remainder of this paper is organised as follows, Sect. 2 presents a review of
previous relevant work, Sect. 3 describes the problem instances being investigated,
the methodology used (an Evolutionary Algorithm) is described in Sect. 4, results
are given in Sect. 5 with conclusions in Sect. 6.

2 Previous Work

This paper brings together two strands of work—that of multi-modal Workforce
Routing and Scheduling Problems (WRSP) and vehicle routing to optimise emis-
sions. It extends previous work in bringing together the two issues, and treating the
problem as multi-objective in terms of meeting constraints, minimising time, and
minimising emissions. In addition, it addresses some issues prevalent in the liter-
ature with respect to exploiting realistic data by utilising a government sponsored
journey planning service in conjunction with an emissions model.

The WRSP has been investigated by a number of researchers, for a full survey
of work in this area the reader is referred to [2]. Typically the problem is formu-
lated around mobile health workers, the aim being to find the optimum allocation
of workers to jobs each which have a location and a time window associated with
them. The resulting schedule has to respect constraints such as time windows, work-
ing hours and qualifications. Approaches include Linear programming, constraint
programming and meta-heuristics [3], Markov chains [4] and clustering [5].

An investigation into the WRSP incorporating modal choice for transport was
carried out in [6]. A two stage approach is used, the first stage uses constraint pro-
gramming to produce an initial solution. The second stage attempts to improve the
solutions by iteratively apply four meta heuristics—neighbourhood search, memetic
algorithm, scatter search and simulated annealing. The modal choices are between
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cars and public transportation, it is not clear how the public transport data is gathered.
The problem is formulated as a single objective problem, with no focus on carbon
emissions.

The issues of taking into account environmental factors within vehicle routing is
examined by the authors of [7] who examine the routing of light delivery vehicles
within an urban setting. The authors consider a mixed fleet of EFV (Environmen-
tally friendly vehicle) and EUF (Environmentally Unfriendly Vehicles). The novel
approach taken utilises a neural network to calculate the likely environmental ben-
efits (in terms of air and noise pollution) for each street section and subsequently
the Clarke Wright savings algorithm [8] is utilised to find a set of routes that most
effectively deploys the EFVs within the fleet to gain the maximum environmental
benefits.

The problem under consideration in this paper, may be considered to be a mul-
tiplex network [9] in that there is an interaction between the related street network
representing car journeys and the public transport network. Within such a multiplex
network one network may influence the other, which in turn affects processes util-
ising the network. As the public transport network can include tram and rail links
it is not simply a subgraph of the street graph. The author of [10] presents a useful
study looking at the relation between the street graphs in greater London area and
New York, to the graphs represented by their respective underground rail networks.
They investigate the affect of the underground networks on commuting abilities and
travel connectivity across the cities, noting that the underground networks mostly
influence journeys to and from the city centres and within the suburbs. Within the
problem under discussion, the public transport and car networks are both related, a
switch in journey mode for an individual within the WRSP is in practice switching
them between travel networks.

3 Problem Instances

The problem instances within this study are based on real-world road and public
transport networks and associated emissions factors. The datasets have to encompass
actual journey times for the given transport mode, and emissions produced (which
requires additional data suc h as speed and distance). This has lead the author to
utilse a number of data sources and models which must be combined to produce the
datasets required. In particular each of the two cities has differing public transport
providers, which leads to differing data sources being used for public transport data.

Eight problem instances are presented, based on two UK cities, Edinburgh and
London. The problems are generic instances of routing problems with time windows
(often referred to in literature as the Vehicle Routing Problemwith TimeWindows—
VRPTW). Each problem instance comprises a number of client visits which, requiire
a member of staff to attend, each visit lasting 30min and commences within a spec-
ified time window which will always start and end between 09:00 and 17:00.
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Table 1 Description of the problem instances used

Set Visits Window length No windows

Edinburgh 1 96 8 1

Edinburgh 2 96 4 2

Edinburgh 3 96 2 4

Edinburgh 4 96 1 8

London 1 61 8 1

London 2 61 4 2

London 3 61 2 4

London 4 61 1 8

Four instances, with differing time window arrangements, were created for each
city (see Table1). Note that the Edinburgh1 and London1 instances, effectively have
no time-window as visits can be placed anywhere in the 8 h day, whilst in set 4 all
visits are allocated a 1 h time window within which the visit must commence.

As the aim of this paper is to investigate the incorporation ofmultiple travel modes
into travel plans these generic instances allow any member of staff to make any visit,
also the number of staff available is not limited, but in many real-life problems the
use of agency staff allows extra staff be deployed at short notice.

3.1 The Edinburgh Datasets

The Edinburgh problem instances investigated are based upon a set of 96 random
addresses within the City of Edinburgh, UK and surrounding district, y, each instance
uses the same addresses, but with differing time windows. Public transport provision
within the area covered by the problem ismostly provided by buses, but with a limited
tramand rail service. The journeydata for public transport is suppliedby theTransport
Direct bulk journey planning software [11]. Which was downloaded and stored in a
local database the data and problem instances may be downloaded [12]. Values for
emissions for journeys by public transport are supplied by Transport Direct as part
of their journey planning data. Car journeys were modelled using street network data
obtained from Open StreetMap [13], and the GraphHopper [14] library to compute
journey durations. Estimated emissions were obtained by applying emissions factors
obtained from the National Atmospheric Emissions Inventory (NAEI) [15] for a
medium sized petrol engined motor car.

3.2 The London Datasets

The London datasets are based upon 61 randomly selected addresses in central Lon-
don. As with the Edinburgh datasets car journey data is derived from GraphHopper
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and Open StreetMap with car emissions factors derrived using NAEI. Time windows
are allocated in the same manner as the Edinburgh datasets. Transport for London
(TfL) is the statutory corporation responsible for transportation within the greater
London area, TfL coordinate bus services as well as operating the Underground
and Overgound rail networks. Data is obtained via an API [16] provided by TfL,
emissions values are taken from statistics provided by TfL [17].

4 Methodology

4.1 The Evolutionary Algorithm

The Evolutionary Algorithm used is the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) algorithm [18, 19], with the twin objectives of reducing the predicted
emissions generated by the solution and reducing the time required to make the
visits. NSGA-II produces a set of non-dominated solutions to the problem under
consideration allowing the final choice of solution to be left to the end user, who may
examine solutions and choose the one which best fits their current requirements. Two
objectives are defined as follows:

• Minimise total time T =
n∑

i=1
ti , where n is the number of employees, ti is the total

journey time for employee i , calculated as the time between leaving and returning
to the office, and including travel time, time spent on visits and any waiting time
incurred due to arriving at a visit prior to the time window.

• Minimise total carbon emissions E =
n∑

i=1
ei , where ei is the emissions associated

with the journeys made by employee i and calculated according to the emissions
values stored in the database as described in Sect. 3.

Each problem assumes an unlimited number of employees are available for allo-
cating work too, therefore all solutions are valid in that they guarantee that all work
items are scheduled.

The genotype representation used within the EA is that of a grand tour [20],
comprising a permutation of visits, these permuatations are fed toa decoder (see
Sect. 4.2), that builds a travel plan which can then be evaluated. Each visit comprises
the visit identifier (which is linked to the location and time window data) and a travel
mode identifier. The travel mode identifier assigns a travel mode for that visit, a value
of 1 for public transport, a value of 0 for car transport. Hence, the EA must evolve
must optimise the ordering of vsits fed to the decoder, and the mode of travel that
should be assigned for that visit.

With the EA a fixed sized population of 300 solutions is used, the size being
determined by empirical experimentation. Each new population is the same size as
the previous population, the parents being selected by binary tournament from the
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previous population. Children are created using a permutation crossover operator
that copies a complete route, selected at random, from one parent, remaining routes,
less any duplicate genes, are copied from the other parent in the order they appear
and are appended to the child. Each child has one of twomutation operators, selected
at random, applied to it. The first operator selects an entry from the grand tour at
random and moves it to a new randomly selected position within the grand tour. The
second mutation operator selects a visit at random from the grand tour and ‘flips’ the
travel mode.

4.2 Building Travel Plans

Asolution comprises a travel plan,which consists of a number of individual employee
tours which collectively cover all of the visits. A solution is constrcuted from the
grand tour gentotype using a decoder which considers each travelmode in turn, firstly
public transport and secondly car based visits in the order that they appear within the
grand tour. Visits are initially added to the first employee, as each visit is added the
arrival time is calculated based upon the journey times (see Sect. 3) for that mode of
transport. If an arrival time is earlier than the commencement of the time window
then the employee waits until the start of the time window in order to make the visit.
If the arrival time is after the end of the time window then a new employee tour is
added to the solution and the visit allocated to the new tour. This decoding process
continues until of the visits for the current travel mode have been added. The decoder
then passes through the grand tour considering visits with next travel mode. In this
way each pass through the grand tour creates a set of employee routes for that travel
mode. Note that when considering public transport, not all journeys are feasible, if
a visit has been allocated to public transport, but travel from the previous visit is
not possible, then the travel mode is changed to car and the decoder continues. This
repair mechanism ensures that a feasible solution is always constructed, by using
car transport as the default choice. A pseudo code implementation of the decoder is
presented in Algorithm 1. After applying the decoder, the carbon emissions ei and
time ti associated with each individual tour can be evaluated and therefore the values
of the two objectives.

4.3 Experiments

For each dataset described in Table1 two initial experiments were performed:

• Using only car based transport—labelled in the results as car
• Using a combination of car and public transport—labelled in the results as pTrans

The EAwas limited to 1,000,000 evaluations on each run as empirical experimen-
tation demonstrated that beyond that value improvements in the quality of solution
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Algorithm 1 The decoder used to transform the grand tour genotype into the phe-
notype.
1: procedure Decode(chromosome)
2: solution = new Phenotype � The chromosome willl be expanded into a set of routes
3: for travel-mode= 0 toMAX-MODE do � Cycle through each travel mode
4: current-route = new Route(travel-mode) � Add a new route to the solution
5: solution.add(current-route)
6: previousLoc = OFFICE-BASE
7: for each gene in chromosome do
8: if gene.getMode() == travel-mode then
9: if (feasibleTrip(previuousLoc,gene,current-mode) then � True if the travel mode

feasible
10: if (feasibleVisit(gene) then � True if the visit can be made within the time

window
11: current-route.add(gene)
12: previousLoc = gene
13: else � Add a new route to the solution
14: current-route = new Route
15: current-route.setMode(gene.travel-mode)
16: current-route.add(gene)
17: previousLoc = gene
18: end if
19: else
20: gene.setMode(CAR) � If trip not feasible by current mode, default to car
21: end if
22: end if
23: end for
24: end for
25: return solution
26: end procedure

were seldom noted. Each run of the solver was repeated 10 times in order to obtain
a set of results. The Pareto-fronts obtained from the 10 runs were combined and
plotted as described in the next section.

5 Results

Figure2 shows the non-dominated fronts obtained when combining the output of 10
runs, using only car transport (in black) and using a combination of car and public
transport. A summary of all results may be found in Table2. Considering the car-
only solutions as we would expect the output forms a curve ranging from high CO2

solutions taking less time than the lower CO2 solutions at the other end of the curve.
Shown alongside this is the curve generated by combining the output from 10 runs
where both public transport and car travel is used. As the pt runs control the decision
variable we would expect them to be able to create car-only runs which would cover
the same solution space as the car runs resulting in a pareto front that overlaps that
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Table 2 Key: Time—minutes, emissions—CO2 g. A summary of the best solutions found with
and without using public transport links. The figures in brackets within the time columns represent
the number of employees required within the solution

Instance Criterion
for best

Car only Public Transport Modified

Time Emissions Time Emissions Time Emissions

Edin 1
window

Time 3369 119995.34 3474.00 118917.03 3358 119620.88

Emissions 3432 94471.37 4778.01 73986.22 4725 79761.21

Edin 2
windows

Time 3576 138192.45 3835 114682.47 3585 130331.66

Emissions 4091 104052.55 5627 74084.64 5347 76455.2

Edin 4
windows

Time 3779 123826.16 4154 161021.05 3768 140161.99

Emissions 4532 108137.63 5936.01 85692.63 6752.01 92530.02

Edin 8
windows

Time 3932 181014.68 4277.01 195616.28 3998.01 179210.1

Emissions 6618.01 114441.52 6719.01 82449.23 7062.01 94264.53

London 1
window

Time 2176 43456 2258 34931.14 2194 38685

Emissions 2286 36252 3429 9292.98 3523 9104.5

London 2
windows

Time 2321 45322 2550 35318.07 2381 48022

Emissions 3537 40226 4185 9621.33 4638 10071.96

London 4
windows

Time 2411 51454 2813 41631.31 2423 56755

Emissions 3080 42195 4886 11296.9 4576 11966.33

London 8
windows

Time 2544 66842 2796 58451.19 2542 72612

Emissions 3503 50985 4868 14019.83 5266 14148.74

produced from the car runs. Viewing Fig. 2 shows that this is not the case, none of the
graphs show the expected overlap. We note that in no case were the public transport
based solutions able to find a solution with the same as or less time than the car-only
solution, although in some cases (graphs a, c and d) high CO2 solutions were found,
but none of them exhibited low time values. Comparing between the two cities we
note that for the London based problems (graphs e–h) the solver rarely finds high
CO2 solutions unlike the Edinburgh based datasets (Fig. 1).

When considering the results to be returned to the user, it is important that the non-
dominated set encompasses extreme solutions, for instance the all car high C I2 low
time solution and the all public transport low CO2 high time value solution, clearly
the results presented in Fig. 2 do not encompass those solutions. We may surmise
that the fitness landscape is not conducive to NSGA-II exploring car-only solutions.
We investigate two possible approaches to resolving this issue the results of which
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Fig. 1 An example of a solution constructed from the london data set. The start point is represented
by the office building in the middle of the map, visits made by car are noted by the car icon and
visits by public transport by the bus icon. Map data © OpenStreetMap contributors using the Open
Database License. https://www.openstreetmap.org/copyright

are shown in Fig. 3. The initial approach taken was to combine the outputs of the car
and pt runs to produce a combined set of non-dominated solutions, these are labelled
comb. Within Fig. 3 we can see that combining the outputs produces a Pareto set that
encompasses the desired range of solutions. In some cases (noticeably the Edinburgh
datasets) we can clearly see a gap in the Pareto front which would appear to delineate
the car and pt solution spaces. Whilst combining outputs produces a useful set of
solutions, it does has the disadvantage that it requires the algorithm to be executed
twice, thus potentially increasing the runtime by a factor of 2. A second approach
towards finding low time, highCO2 solutions utilises a secondmutation operator. The
new mutation operator sets all of the travel mode identifiers to 0 (car travel). Whilst
this may seem extreme, experiments with only setting part of the chromosome to car
did not produce any solutions within the desired area. The rate for this chromosome
had to be set to 0.60 (i.e. applied to 60% of all child solutions) in order to produce
solutions in the desired space. Figure3 show the mutation operator achieving a rang
of solutions comparable to those achieved by combining the separate results. Figure3
graphs a-d show that when applied to the Edinburgh dataset the mutation operator
results in the production of low time, highCO2 solutions, but has a detrimental effect
on the production of low CO2 solutions.

https://www.openstreetmap.org/copyright
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(a) Edin 1 time window (8hrs long) (b) Lon 1 time window (8hrs long)

(c) Edin 2 time windows (4 hrs long) (d) Lon 2 time windows (4 hrs long)

Fig. 2 Total solutions produced for each problem instance using only car transport and combining
car (shown as car) and public transport (shown as PT )

6 Conclusions

The paper set out to investigate the trade-offs that could be obtained in terms of time
and emissions when scheduling a mobile workforce to complete a set of customer
visits. Using data from a real public transport and road network, a multi-objective
EA was used to evolve solutions under three scenarios: using a car only, using mixed
modes of transport and using mixed modes with an added constraint that excluded
some potential routes based on public transport due to excessive walking or change-
overs. Experiments investigated the trade-offs between the two objectives in four
different scenarios in which the time-window for a visit was varied between 1 and
8 h.

Based on the evidence presented in Sect. 5 the NSGA-II based solver is capable of
producing solutions that make use of public transport links in order to reduce CO2.
The aim of using NSGA-II is to give the user a choice of non-dominated solutions
to choose from, in this case to allow the user the option of trading off CO2 against
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(e) Edin 4 time windows (2 hrs long) (f) Lon 4 time windows (2 hrs long)

(g) Edin 8 time windows (1 hr long) (h) Lon 8 time windows (1 hr long)

Fig. 2 (continued)

travel time by allowing public transport to be includedwithin the solution. As initially
presented (Fig. 2) the NSGA-II solver has difficulty in evolving a set of solutions that
encompass low time values, despite the car only based solutions proving that low
time solutions are feasible. This problem is overcome by the simplistic expedient of
combining the Pareto fronts produced using car only solutions and public transport
with car solutions, but this has a penalty in the form of increased run times.

Finally, we note that a number of commercial geographical information systems
offer public transport data, but currently the costs involved in acquiring data for a
problem such as this make them uneconomic. Storing the data in a local database as
described not only reduces the requirement for repeated access to on line databases
but also decreases the running time of the evolutionary algorithm. However, it is
recognised that a future extension of the system would include frequent updating of
the database in order to take account of changing travel conditions.
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(a) Edin 1 time window (8hrs long) (b) Lon 1 time window (8hrs long)

(c) Edin 2 time windows (4 hrs long) (d) Lon 2 time windows (4 hrs long)

Fig. 3 Total solutions produced for each problem instance by combing the outputs from Fig.2
noted as comb and the modified mutation noted as mut

7 Future Work

In the immediate future further investigation of the issues involved in generating a
reasonable spread of solutions are to be investigated, both of the solutions proposed
in this paper have disadvantages (increased runtime and inconsistent performance).
The nature of the non-dominated fronts is such that theymay be combined, easily into
a front that combines the non-dominated elements of its constituants. This property
may be combined with algoritm portfolios to allow multiple algorithms to contribute
solutions to a single non-dominated front.

The problem instances may be further developed in a number of ways, the binary
model of transport modes (car or public transport) may be considered to be overlay
simplistic, in that other variations and modes exist such It is hoped to undertake
further studies based on real-world mobile work force problems, and to increase
the constraints within the problem to match those typically found in such problems,
such as some visits requiring specific workers or workers with a specific attribute or
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(e) Edin 4 time windows (2 hrs long) (f) Lon 4 time windows (2 hrs long)

(g) Edin 8 time windows (1 hr long) (h) Lon 8 time windows (1 hr long)

Fig. 3 (continued)

multiple workers. It is also planned to expand the problem formulation to include
more transport modes, such as car share, cycling and taxis, such a formulation could
include transport costs as one of its optimisation criterion. Future work will also
include scaling journey times a specific times in order to reflect rush hour conges-
tion, such scaling would affect road based transport to a far greater degree than rail
transport. The scenario investigated here is simplistic, futureworkwill examine prob-
lems where there are fixed numbers of staff and constraints on travel modes (e.g. not
all staff can drive).We recognise that the problem of finding and optimising transport
routes through a city is not restricted to workers, but also occurs in domestic and
social situations as well, in the longer term an investigation into optimising travel
activities in these areas would be appropriate.
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A New Rich Vehicle Routing Problem
Model and Benchmark Resource

Kevin Sim, Emma Hart, Neil Urquhart and Tim Pigden

Abstract We describe a new rich VRP model that captures many real-world con-
straints, following a recently proposed taxonomy that addresses both scenario and
problem physical characteristics. The model is used to generate 4800 new instances
of rich VRPs which is made freely available. To the best of our knowledge this
represents the most comprehensive resource of rich VRP problems available, and
provides a platform for researchers to conduct rigorous comparisons of new meth-
ods and solvers, moving academic research much closer to real practice in the future.

1 Introduction

More than half of century since Dantzig and Ramser [1] first introduced the Vehicle
Routing Problem (VRP) in 1959, academics and practitioners continue to actively
explore variants of this problem and introduce new methods to provide solutions.
A survey in 2009 by Laporte [2] summarised the state-of-the-art in research into
the classical VRP charting the developments in exact methods and heuristics, not-
ing that heuristics now enable realistically sized instances of VRP to be solved
adequately. However, the author points out the gap between classical VRP models
and the stochastic and dynamic features of problems that are apparent in many real
world problems. Caceres-Cruz et al. [3] go further in recognising that in addition to
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stochastic and dynamic features, real VRP problems deal with multi-objective opti-
misation functions and a wide variety of constraints that cover factors such as hetero-
geneous fleet, time factors relating to congestion, the need to combine routing with
driver scheduling and the increasing need to provide compliance with environmental
regulations. In response to this, the term rich VRP has been coined to describe VRP
instances that account for some or all of these factors.

Much research has been published under this heading: two recent surveys [3, 4]
provide a detailed summary of the state-of-the art including problem combinations,
constraints defined, and approaches found, demonstrating the rich variety of problems
now being tackled. However, we note that unlike in the classical VRP literature, it is
difficult to find datasets containing sufficient benchmark instances to fairly evaluate
new approaches; many of the published works refer to real-world problems where
only a few instances are described and often datasets are not published. To address this
issue, we describe a newmodel of a richVRP that encapsulatesmany real constraints,
informed by input from practitioners.1 The model is instantiated in an extensible
software-framework that is straightforward to extend with additional constraints.
Using the framework, we generate a significant resource of 4800 problems that are
made freely available. Instances cover a wide range of sizes and are generated on a
map of the UK; driving distances and times are generated from mapping software
utilising actual road-networks and thus potentially includes asymmetric distances
between points. The instances provide a foundation for rigorous comparisons of
algorithms and methods, that it is hoped will drive forward academic research within
this area in the future.

In the next section we provide some background to the RVRP, grounding our
model in a recently proposed taxonomy for RVRP. The software framework and
problem instances are then described. All instances are downloadable from [5].

2 Background

Motivated by the need to address the gap that is clearly apparent between the complex
characteristics of real-life VRPs and much academic research, increasingly more
complex variants of the classical VRP problem are tackled, often referred to as Rich
VRP problems. However, Lahyani et al. recently observed that across the wide-range
of research published under this heading, there was no precise definiton of what
criteria led to a problem being classified as rich, and proposed a generic taxonomy for
RVRP. The taxonomy differentiates between Scenario Characteristics and Problem
Characteristics; within each class, subclasses describe characteristics at the strategic,
tactical andoperational levelswithin a hierarchical structure. The taxonomy is shown
in Table1 (note that no characteristics at the operational level are described for
Scenarios).

1Optrak Vehicle Routing Software http://www.optrak.com

http://www.optrak.com
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Table 1 Rich VRP Taxonomy from [4]: characteristics reflected in the proposed model are shown
in italics

Scenario characteristics

Strategic Tactical

Input data Static

Dynamic

Deterministic

Stochastic

Decision management options Routing

Inventory and routing

Location and routing

Routing and driver scheduling

Production/distribution planning

Number of depots Single

Multiple

Operation Type Pickup or delivery

Pickup and delivery

Backhauls

Dial-a-ride

Load splitting constraints Splitting Allowed

Splitting not allowed

Planning period Single period

Multi-period

Multiple use of vehicles Single trip

Multi-trip

Physical characteristics

Strategic Tactical Operational

Vehicles Type Homogeneous
Heterogeneous

Number Fixed
Unlimited

Structure Compartmentalised
Not compartmentalised

Loading Policy chronological
no order

Capacity constraints

Time constraints Restriction on customer

Restriction on road access

(continued)
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Table 1 (continued)

Scenario characteristics

Strategic Tactical

Restriction on depot

Service time

Waiting time

Driver regulations

Time window structure Single time window
Multiple time windows

Incompatibility constraints Equipment
Compartment restrictions

Specific Constraints

Objective Function Single Objective
Multi-objective

Based on this taxonomy and an extensive analysis of literature, Lahaynai et al.
propose a precise definition of a VRP, given below:

Definition 1 RVRP extends the academic variants of the VRP in the different deci-
sion levels by considering at least four strategic and tactical aspects in the distribution
system and including at least six different daily restrictions related to the physical
characteristics. When a VRP is mainly defined through strategic and tactical aspects,
at least five of them are present in a RVRP. When a VRP is mainly defined through
physical characteristics, at least nine of them are present in a RVRP.

The authors note that under this definition, many papers previously considered
as ‘rich’ may not comply. Caceres-Crux et al. note that in fact, the RVRP defini-
tion evolves continuously and conclude that “the RVRP reflects, as a model, most of
the relevant attributes of a real-life vehicle-routing distribution system”, and there-
fore should be seem as an accurate representation of a real-life distribution system,
and hence methods for solving instances characterised as RVRP should be directly
applicable to a real-life scenario.

In order for research in developing new methods that deal with the complex set of
constraints associated with RVRP to progress, it is beneficial for the community to
have access to a resource of relevant benchmark problems on which approaches can
be rigorously compared. However, unlike in classical VRP in which many datasets
are well known [6], an equivalent resource of RVRP problems is not readily avail-
able. For example, Lahyani et al. [4] survey 16 recent papers relating to pure vehicle
routing that describe rich problems. Of these 15 of them focus on real world prob-
lems, each with very specific constraints, and hence do not provide a wide rang-
ing suite of benchmarks that enable algorithms to be easily and fairly compared.
On the other hand, the non-rich VRP literature abounds with benchmarks datasets.
We briefly examine these before proposing a new rich VRP model that is easily
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extensible, and a freely available problem generator that can be used to generate
multiple instances

2.1 Benchmark Data for VRP

A number of web-based resources provided aggregated collections of VRP datasets.
The VRP-REP project [6] aims to provide the VRP community with a collabo-
rative open data platform, enabling users to share instance files, check solutions
and track solutions. It currently provides 34 datasets, the largest of which con-
tains 180 instances. The majority of these datasets do not meet the definition of
RVRP, although the newer additions move towards this (for example Mendoza
et al. [7] provide a dataset that models stochastic demands and duration constraints).
The Networking and Emerging Optimization group [8] provide datasets for capaci-
tated VRP, including those with time-windows and pickups and deliveries, as well as
multi-depot and periodic problems. More recently, Goeke and Schneider [9] provide
instances for a variant of VRP that includes electric vehicles, time-windows and
recharging constraints.

Althoughmany distinct data-sets are available, the relatively small size of each set
limits the extent to which rigorous algorithms comparisons can be made, particularly
in research using approximation methods that can deal with large instances and find
solutions in relatively short amounts of time. A specific case of this is recent research
in hyper-heuristics which deals with methods that find cheap but acceptable solu-
tions that generalise over very large problem sets and are often tested with problem
databases containing 1000s of instances.

Recognising the dual need for new benchmarks that capture rich vehicle routing
problems that reflect real-world constraints and diverse collections of benchmarks
to encourage comparative research, we propose a new RVRP model. The model is
translated to anobject-oriented software framework that is easily extensible, therefore
new scenario and problem physical constraints can be added in future. We provide
4800 problem instances of varying size and complexity for future research. The
model is described in detail in the next section.

3 Model

The proposed model aligns with the taxonomy proposed by Lahyani [4] and shown
in Table1. In this table, features of the new model are shown in italics within the
taxonomy. Note that the model contains one new characteristic at the strategic level,
in the use of real road-network data to calculate distances and times.
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3.1 Scenario Characteristics

We describe a static problem p given by the tuple p = {J, V, d, M, s, E} where J
is a set of jobs to be delivered, V is a set of vehicles, d defines a single depot location
and M is a set of 2 matrices giving the asymmetrical distances and times between all
locations. Only Routing is considered, i.e. it is assumed that a driver will be available
for a particular vehicle at all times. Planning is over a single continuous time period
given by s.Multi-trips by the same vehicle are allowed in a day. The remaining term
E defines the time constraints imposed on the driver and are described in Sect. 3.2.2.

We consider delivery problems only. Each job ji ∈ J is described by ji = {li ,
Ui ,Ci }. li gives the location of the customer the job is to be delivered to,Ui is the set
of pallets of a product to be delivered. Ci = {wi , ti , qi , αi , βi , γi , δi } describe the set
of constraints associated with the physical characteristics of a job and are described
in Sects. 3.2.2 and 3.2.3. Splitting is allowed—the pallets associated with a job ji
can be delivered by multiple vehicles.

3.2 Scenario Characteristics

3.2.1 Vehicles

A fixed and heterogeneous vehicle fleet V is defined for each problem.
Each compartmentalised vehicle v j ∈ V is described by v j = {Tj , e j , q j } where

Tj describes the set of temperature controlled compartments on the vehicle, e j defines
the vehicle’s engine type and q j indicates the availability of any additional equip-
ment (tailgate) for the vehicle. Each compartment tk ∈ Tj is describedby tk = {rk, nk}
where rk defines the compartment type and nk indicates the capacity of the compart-
ment. The values of rk, nk, e j , q j considered are listed below:

• rk ∈ {FROZEN , REFRIGERAT ED, AMBI ENT }
• nk ∈ {6, 12, 24}
• e j ∈ {DI ESEL , HY BRI D,GAS}
• q j ∈ {T AI LGAT E, NONE}

Vehicles do not have a loading policy, that is, compartments can loaded and
unloaded in any order.

3.2.2 Time Constraints and Time-Windows

Each problem has employee constraints E = {x, b}which define the maximum driv-
ing time allowed x before a compulsory break of length b is imposed. The set of
physical constraints associated with a job ji , given byCi = {wi , ti , qi , αi , βi , γi , δi },
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are described in this and the following section. A single time-window for deliv-
ery wi is assumed for each job (customer restrictions) during which the job should
arrive at the customer location. In addition, each job has 4 terms defining service
times (αi , βi , γi , δi ). αi and βi give the fixed loading time per job and loading time
per pallet respectively at the depot. These terms are not applied for the first route
assigned to a vehicle as this is generally completed prior to the service period. Sim-
ilarly γi and δi define the fixed unloading time per job and unloading time per
pallet at the customer’s location. All durations are defined in minutes.

It is assumed that all vehicles are available for the duration of the planning period
during which all routes must start and finish at the depot. When a vehicle (and its
driver) return the depot, it immediately becomes available for reuse (the driver’s
cumulative driving time is reset).

3.2.3 Incompatibility Constraints

All pallets from a job have the same type ti ∈ {FROZEN , REFRIGERAT ED,

AMBI ENT } andmust be placed in a compartment of the corresponding type. Some
customers require that the vehicle that a load is delivered on must have particular
equipment given by qi ∈ {T AI LGAT E, NONE}.

3.2.4 Driving Times/Distances

The manner in which driving times are computed is not included in the RVRP
taxonomy. We consider routing performed on a real road-network. Distances and
times between any two locations are obtained from the open-source mapping prod-
uct GraphHopper [10]. This returns asymmetric distances (and times) between any
two points (e.g. accounting for one-way streets). Travel times are stored in the matrix
mt and distances in md . In the model supplied, the time between any two points is
fixed and therefore does not account for rush-hour driving. The model could be
extended to account for this using stepwise linear functions that then have to be
combined in order to calculate (and minimise) travel times across the day.

3.2.5 Customer Locations

The depot and the customers are located at geographical locations derived from actual
postcodes within the UK. In the model supplied, customer locations are selected at
random from all locations listed in the UK postcode database that can be serviced
within a maximum time-scale from the depot. This process ensures a realistic distri-
bution of customer locations based on the actual distribution of residential and retail
dwellings in the geographic area surrounding the depot.
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3.2.6 Cost Model

Vehicles incur different costs depending on their size and engine type. Three costs
are considered; fixed, running and environmental costs. The problemmodel does not
contain actual costs but contains 3 multipliers for each vehicle v ∈ V which show
the relative costs compared to a standard vehicle which we define as a large vehicle
fitted with a diesel engine having one large ambient container of capacity 24 product
units. Tables2 and 3 show the values used to calculate the cost multipliers based
on the vehicle’s engine type and total capacity respectively. The 3 cost multipliers
supplied with each vehicle are calculated by multiplying the values obtained from
each of the two tables corresponding to the vehicles size and engine type.

The actual costs associated with any vehicle can be calculated by scaling the costs
incurred by a standard vehicle. Suggested costs for the standard vehicle type, based
on current market prices, are given in Table4. The actual costs associated with any
vehicle are described and calculated as follows.

• Fixed Costs f c j is the fixed cost associated with vehicle j and is calculated by
multiplying the fixed cost multiplier of that vehicle by the standard vehicle cost
per day. The standard vehicle fixed cost per day typically includes driver costs /
depreciation, servicing, taxes and other costs that are independent of the distance
covered by the vehicle.

• RunningCostsdcr is the running cost associatedwith route r whichvaries depend-
ing on the distance covered and the vehicle used. This is calculated as the standard
vehicle running cost per km * distance covered by route * vehicle running cost
multiplier. The standard vehicle cost per KM typically includes fuel, tyre wear and
other distance dependent costs.

• Environmental Costs ecr is the environmental cost associated with route r which
varies depending on the distance covered and the vehicle used. This is calculated

Table 2 Cost multipliers corresponding to engine type

Cost Multiplier

Engine Type Fixed Running CO2

Diesel 1.00 1.00 1.00

Hybrid 1.07 0.80 0.80

Gas 1.04 0.70 0.95

Table 3 Cost multipliers corresponding to vehicle size

Vehicle size (capacity) Cost multiplier

Small (6) 0.35

Medium (12) 0.60

Large (24) 1.00
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Table 4 Costs associated with the standard vehicle type

Cost 0.015 Value

Fixed cost 242/day [11]

Running cost 0.36/km [11]

Environmental cost 0.015/km [12]

as the standard vehicle environmental cost per km * distance covered by route *
vehicle environmental cost multiplier.

3.2.7 Objectives

Any single objective function can be defined as a sum over the costs described;
alternatively, the problem can be treated as a multi-objective problem. An example
single objective function that takes into consideration all the costs described as well
as penalties incurred for breaking soft constraints is given by:

f =
n∑

j=1
f c j + ∑

r∈R
dcr + ∑

r∈R
ecr + Zl + Zo

The fixed cost f c j is applied once for each vehicle used (any unused vehicle
does not incur a cost). The total running cost

∑
r∈R dcr and environmental costs∑

r∈R ecr are summed over all routes R conducted by all vehicles. Zl + Zo are
financial penalties imposed as described below.

• Time Penalties Zl is the late/early penalty which is incurred for all pallets arriving
at a customer’s location outside of the specified time window. Each pallet arriving
outside the time window incurs a fixed penalty of (£1 × t ime)2 where t ime is the
the number of minutes that the delivery is either early or late. Research on real
world problems [] has shown that using a quadratic function to penalise broken time
windows minimises the number of potential solutions that incur equal penalties.

• Outsourcing Penalty Zo is the outsourced pallet penalty per pallet per KM. This
is calculated using argmax {£5/pallet/KM, £50/pallet} where the distance is
measured from the depot to the associated customers location. The second term
defines a minimum cost for outsourcing a pallet.

Solutions can be evaluated using the suggested metric or may be evaluated using
any user specified objective function. The model allows for relaxation of both hard
and soft constraints as required. For example the end user could ignore suggested
penalties for breaking soft constraints and disregard all costs focussing only on total
distance, effectively turning the RVRP model into a conventional VRP. Hard con-
straints could also be ignored. For example jobs marked as having to be transported
on an ambient container could be allowed to be delivered on any container type.
This abstraction of the objective function allows the RVRP model implemented to
be easily transformed using different scenarios.
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4 Problem Generation

The section describes the process of generating the 4800 problem instances that
are made available in XML format. For each problem p = {J, V, d, M, s, E}, the
service period s during which all customers should be serviced is fixed to between
9am and 5pmon the 1st January 2015. The driver constraints E = {x, b} representing
the maximum continuous working time and break length are fixed for all problems at
270minbeforewhich a 45minbreak is enforced such that the driver neverworksmore
than 270min continuously. The break is applied either before (where unloading takes
the cumulative working time over the threshold) or after a job is unloaded (where
the next period of driving breaks the maximum working time). A driver returning
to the depot has their cumulative working time reset. All instances generated have
valid solutions that meet all hard and soft constraints without requiring any pallets
to be outsourced. The fixed and variable loading and unloading times for jobs and
pallets, given by the terms αi , βi , γi , δi }, may vary and are defined in each problem
instance. Note that loading times are not applied for jobs that are delivered on the
first route by each vehicle.

Each problem instance is generated using a specific vehicle fleet and a specific
customer data set. The procedure is described in the following sections.

4.1 Vehicle Fleet

Two parameters control the fleet of vehicles used—the size of the fleet v fs and the
vehicle class. The vehicle class describes a set of vehicles defined by the parameters
(containers, engine − t ype, equipment). Four classes of vehicle are considered:

• Vehicle class 1: Medium sized vehicle fitted with a diesel engine, no tailgate and
a single ambient container. (1 possible vehicle type)

• Vehicle class 2. Medium or large vehicle with a single ambient container, no
tailgate and any engine type. (6 possible combinations)

• Vehicle class 3: Medium or large vehicles of any engine type, with or without a
tailgate andwith either 1 ambient container or 1 refrigerated and 1 frozen container.
(24 possible combinations)

• Vehicle class 4: All possible vehicle sizes, container combinations, engine types
and equipment types (90 different combinations).

4.2 Customer Databases

Five sets of customers are used to generate problems. Each customer set has an
associated distance and time matrix which are supplied separately to minimise file
sizes. A single depot for all problem instances is used that is located in the city of
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Fig. 1 Geographical distribution of customers that can be serviced within 30 and 480min from the
depot

Glasgow at a location roughly 7 KM from the city centre defined by the geographic
coordinates (latitude 55.853 longitude −4.309).

A class of problems is generated by considering customers that can be serviced
within a service-time r tmax minutes from the depot. We generate five classes of
problems for r tmax ∈ {30, 60, 120, 240, 480}. Within each class, 1000 customers
locations are randomly selected from the subset of postcodes that liewithin r tmax ; this
ensures a realistic distribution of customer locations based on the actual distribution
of residential and retail dwellings in the geographic area surrounding the depot.

Figure1 shows the distribution of customers from 2 of the 5 customer data sets
generated. The depot is highlighted in red.

Distances (km) and travel times (rounded to the nearest minute) between all pairs
of locations are then calculated and stored in matricesmd ,mt respectively. These are
derived using the Graphhopper library as described in Sect. 3.2.4. The library makes
use of Dijkstra’s algorithm to determine the shortest path between two locations,
using a road network modelled as a directed graph. The time taken to travel between
locations is correlated with the road type used with shorter travel times returned
for higher capacity roads. A minimum drivin2min 2min is used where the software
returns a shorter duration. The resulting data sets require cleaning due to inaccuracies
present in the open source software which on occasion returns erroneous distance or
time measurements. The resulting data sets are consequently reduced in size from
1000 to between 524 and 734 customers.

4.3 Generating Problem Instances

For each of the five customer sets, 10 problem instances are generated using all
96 combinations of the following parameters, resulting in 4800 problem instances
in total:
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• Minimum round trip: r tmin ∈ {0, r tmax/2}, where r tmax is the maximum round trip
time used to generate the corresponding customer data set.

• Vehicle Class Four distinct classes (described in Sect. 4.1).
• Vehicle fleet size |V | ∈ {4, 8, 16, 32}
• Time Window ∈ 60, 120, 240min

For each instance, a fleet type is defined, and then v f s vehicle types are randomly
selected from the class.Having defined the customer set and afleet, problem instances
are generated by assigning route(s) to each vehicle using the process described by
Algorithm 1.

Algorithm 1 Problem Generation
1: for all v ∈ V do
2: Time Vehicle Utilised = 0
3: repeat
4: Add a Route for the current Vehicle
5: repeat
6: Select a customer at random that can be serviced within the remaining time (allowing time to return to the

depot and allowing for any required driver breaks)
7: Create a job for the customer with a random number of pallets between the limits (or the available capacity)

of type (temperature) that corresponds to a randomly selected container with available capacity available to
the vehicle

8: Assign the time window that corresponds with the time that the vehicle will arrive at that location
9: until Vehicle Capacity Reached OR Time Vehicle Utilised ≥ 450
10: until Time Vehicle Utilised ≥ 450
11: end for

5 Benchmark Datasets

5.1 XML Description

The problems are released as XML files that reflect the model described in Sect. 3.
The XML files comply to the Class Diagrams depicted in Figs. 2 and 3. In order to
reduce file sizes, each problem instance is supplied without the required matrices
that specify travel times and distances between all pairs of locations. The matrices
associated with each company data set are supplied as CompanyData objects, also
in XML format. Each of the 5 files is formatted as described by Fig. 4 and contain
the time and distance matrices that are required by a problem instance.

All problem instances have a unique integer ID ranging from 1,000,000 to
1,004,799. For each problem instance all jobs, vehicles, containers and pallets have
a unique ID (ranging from 1, . . . , n). Customers can be identified by their unique ID
or their location which remain the same where a customer appears in more than 1
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Fig. 2 The problem model

of the data sets. A customer may require to have more than one job delivered for a
single problem instance and therefore multiple jobs may exist where the associated
customers have the same ID.

Problems are stored on the distribution site in a hierarchical directory structure that
corresponds to the parameters that the problems were generated from. Each set of
10 problem instances that were generated using the same parameter combination
are zipped in their own low level directory. The corresponding matrices can be
identified using the matri x I D given in each problem instance and can be located
in the corresponding high level folder. The directory structure consists of 5 nested
layers listed below from highest to lowest.

• Company Data Set A: A ∈ {1 . . . 5} corresponding to r tmax ∈ {30, 60, 120,
240, 480}.

• MinimumTrip TimeB: B ∈ 0, 1 corresponding to r tmin ∈ {0, r tmax/2}minimum
round trip time

• Vehicle Set Type C: C ∈ {1 . . . 4}
• Fleet Size D: D ∈ {4, 8, 16, 32}
• Time Window E: E ∈ {60, 120, 240}

Within each of the lowest level folders is a single zip file containing the 10 problem
instances generated using the same parameter settings. The associated distance and
time matrices are accessible from the zipped XML document to be found in the
corresponding high level folder.
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Fig. 3 The vehicle model

Fig. 4 The company data model

5.2 Parsing Problems Using the Supplied Java Parser

The distribution web site includes an XML parser, supplied as a jar file, that includes
the problem model and a XMLParser Class containing a single method with the
signature getProblem(String instance, String companyDataSet). The method takes
two strings as parameters representing the file names of a problem instance and the
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corresponding CompanyData object and returns a Problem object with the associated
distance and time matrices added.

5.3 Other Formats or Programming Languages

For users wishing to use platforms other than Java, two XML schema definition files
are supplied that allow the Problem and CompanyData structures to be recreated.
The matrices required for a problem instance can be identified by the matrixId field
of the Problem Class and by the ID field of the CompanyData Class.

6 Conclusion

It is clear that if researchwithin vehicle routing is going to address the concerns of the
industry, then large-scale instances and variants of the VRP that meet the definiton of
rich problems are urgently required. We have proposed a new rich VRP model that
incorporates load-splitting and multi-trip scenarios, combined with physical con-
straints that include heterogeneous fleets, multi-compartments, equipment and com-
partment constraints, time-window and multiple objectives. The model utilises time
and distance data from a model of a real road-network, in which times are modified
according to road capacity. The model is described using an XML format that can be
read by any parser. 4800 instances are supplied, providing the biggest resource of rich
VRP problems available to date. The framework can easily be extended to include
further constraints to capture new characteristics of problems emerging in rapidly
changing industry. From an academic perspective, the resource provides a means of
rigorously evaluating new algorithms to assess performance across a diverse range
of problems. This provides an essential mechanism for highlighting strengths and
weaknesses of algorithms in relation to problem characteristics, rather than assuming
a ‘one-size-fits-all’ approach, that will drive new innovation in the field.
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Abstract The conceptual design of a multi-stage launch vehicle (LV) using a clus-
tered hybrid rocket engine (HRE) is carried out through multi-disciplinary design
optimization. This LV designed in this study can deliver micro-satellites to sunsyn-
chronous orbits (SSO). The optimum size of each component, such as an oxidizer
tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pres-
surizing tank, and a nozzle, should be strictly optimized because of the combustion
mechanism is different from existent liquid/solid rocket engines. In this study, the
semi-empirical based evaluation is applied to the design optimization of the multi-
stage LV. For clustered HRE, paraffin (FT-0070) is used as a propellant for the HRE,
and three cases are compared to examine the commonization effect of the engine
for each stage: In the first case, HREs are optimized for each stage. In the second
case, HREs are optimized together for the first and second stages but separately for
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the third stage. In the third case, HREs are optimized together for each stage. The
optimization results show that the performance of the design case that uses the same
HREs in all stages is 40% reduced compared with the design case that uses optimized
HREs for each stage.

1 Introduction

The hybrid rocket (HR) is a type of rocket that uses a liquid oxidizer and solid fuel.
This rocket has the advantages of being highly safe, inexpensive, and environment-
friendly in comparison with liquid and solid fuel rocket engines. Therefore, the HR is
expected to be a safe and green means of propulsion for future space transportation.

The thrust of the HR is influenced by the mass flow of the vaporized fuel, which
in turn is determined by the oxidizer mass flow, the fuel grain length, and the inner
radius of the fuel grain port. If these parameters are combined optimally, the thrust
can be expected to be sufficient. Since these parameters also constitute the engine
geometry, they also affect the weight and trajectory. As a result, knowledge discovery
techniques are desirable for themulti-disciplinary design of anHRE for a launch vehi-
cle (LV). A previous study [4, 5] developed amulti-disciplinary optimization (MDO)
methodology that includes a technique for an empirical-model-based evaluation of
the performance of a three-stage LV with an HRE. Several solutions have achieved
good performance suitable for space transportation. However, performance in terms
of parameters such as the maximum payload has been limited thus far because only
one HRE is installed for each stage.

In this study, a developed evaluation method was applied to the design of using
clustered HRE as shown in Fig. 1a. A cluster rocket is expected to incur a low

Fig. 1 Schematic illustration of an LV with clustered HREs. a LV with a clustered HRE, b cross-
sectional view of the first stage, and c cross-sectional view of the second stage
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Fig. 2 Geometrical expressions of the radius for the clustered HRE. a First stage with eight com-
bustion chambers and b second stage with two combustion chambers

development cost if the same engine designs can be used for all stages. The LV
considered in this paper can deliver 10.0–100.0 kg micro-satellites, which can be
used for the scientific observation of the Earth, to a sun-synchronous orbit (SSO)
that is 800km altitudes. To maximize the volume efficiency, eight combustion cham-
bers, an oxidizer tank, and a pressurizing tank are installed in the first stage. In the
second stage, two combustion chambers, an oxidizer tank, and a pressurizing tank
are installed. Figures1b, c and 2a, b shows the cross-sectional view of the first and
second stages designed in this study. Paraffin fuel (FT-0070) [3] is employed as a
fuel, liquid oxygen (LOX) is employed as an oxidizer, and the combustion type is a
swirling-oxidizer-type engine.

To investigate this possibility, a multi-objective genetic algorithm (MOGA) is
applied to the three design cases for the combination of optimum engines in each
stage. In the first case, HREs are optimized for each stage. In the second case, HREs
are optimized together for the first and second stages with taking the oxidizer and
the fuel mass ratio and the oxidizer mass flux into the fuel of the first and the second
stages are the same values. HRE for the third stage separately designed. In the third
case, HREs are optimized together for each stage with assuming the oxidizer and the
fuel mass ratio and the oxidizer mass flux into the fuel of each stage are the same
values. Exploration results are visualized by means of Self-Organizing Map (SOM)
to understand the relationship among objective functions and design variables.

2 Design Methods

2.1 Evaluation of Clustered Hybrid Rocket

This study discusses an LV of a three-stage rocket with a chamber, an oxidizer tank,
a pressurizing tank, a nozzle, and a payload (Fig. 1a), that has an HR. Figure3 shows
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Fig. 3 Evaluation procedure of HRE

Fig. 4 HRE as a unit engine

the evaluation procedure for the unit engine shown in Fig. 4, as proposed in a previous
study [4, 5].

Considering a single-port fuel grain, the regression rate ṙport of the fuel is exp-
ressed as follows:

ṙport(t) = a × Gn
oxi(t). (1)

Equation1 is empirically defined and the coefficient Gn
oxi is the mass flux of the

oxidizer which go through the port of the fuel. a and index n are generally determined
through experiments for fuels with a single port. TheHRE considered herein supplies
the swirling oxidizer into the Paraffin fuel (FT-0070) [3]. a and n in Eq. (1) are
determined from an experiment for a non-swirling oxidizer with the FT-0070; then,
Eq.1 can be written as

ṙport(t) = 0.1561 × 10−3 × G0.3905
oxi (t). (2)
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Fig. 5 Flowchart of MOGA

Fig. 6 Schematic illustration of SOM’s learning

In this study, a swirling-oxidizer-type HRE that can achieve a higher regression rate
[7, 8] is assumed. For this purpose, the empirical multiplication with the coefficient
of Eq.2 is carried out.

ṙport(t) = am × G0.3905
oxi (t), (3)

where m is the stage number. This coefficient am = αm × 0.1561 is a part of the
design variables that determine the strength of the oxidizer swirl. The range of αm ,
which is used to determine the design range of am , is between four and ten.

Equation3 is used to determine the pressure of the combustion chamber, the
oxidizer tank, and the pressurizing tank. Consequently, the volume and mass of
these tanks can be estimated. After the size of the engine and LV are estimated, the
flight of the LV can be calculated by solving the equation of motion.
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Fig. 7 Schematic illustration of non-clustered LV for Case 0

2.1.1 Layout of Components

The LV considered in this study has eight clustered combustion chambers with a
nozzle in the first stage and two clustered combustion chambers with a nozzle in the
second stage (Fig. 1b, c). The third stage contains a single combustion chamber with
a nozzle. The first stage contains a pressurizing tank at the center of the combus-
tion chambers, the second stage contains two pressurizing tanks at the side of the
combustion chamber, and the third stage contains a pressurizing tank on the oxidizer
tank. All stages have an oxidizer tank as the common component.

Tomaximize volume efficiency, the combustion chamber, oxidizer tank, and pres-
surizing tank for each stage are placed as shown in Fig. 1. The radius of the first stage
rclu1 (Fig. 2a) can be expressed as

rclu1 =
(

1

sin(π/8)

)
· (rc1 + tc1), (4)

where rc1 is the radius of the combustion chamber and tc1 is the thickness of the
exterior wall. rc1 can be obtained by the combustion time tc1 based on Eq.3, and tc1
is determined by the initial pressure of the combustion chamber Pch_1(0).

The radius of the second stage rclu2 (Fig. 2b) can be expressed as

rclu2 = 2(rc2 + tc2), (5)

where rc2 is the radius of the combustion chamber and tc2 is the thickness of the
exterior wall. rc2 can also be obtained by the combustion time tc2 based on Eq.3,
and tt2 is decided by the initial pressure of the combustion chamber Pch_2(0).

3 Design Optimization

3.1 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

Genetic algorithms (GAs) are popular holistic optimization techniques that use
operators such as selection, crossover, and mutation, as shown in Fig. 5. The non-
dominated sorting genetic algorithm-II (NSGA-II) [1]. NSGA-II is characterized
by non-dominated sorting and crowding distance sorting. The individuals of the
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Table 1 Design variables for Case0 and Case1

Unit Variable

dv1 kg/s 10.0 ≤ ṁoxi_1 ≤ 150.0

dv2 – 2.0 ≤ O/F_1(0) ≤ 3.0

dv3 m 2.5 ≤ a_1 ≤ 7.0

dv4 kg/m2s 150.0 ≤ Goxi_1 ≤ 400.0

dv5 s 30.0 ≤ tc_1 ≤ 60.0

dv6 MPa 0.5 ≤ Pch_1(0) ≤ 3.0

dv7 MPa 15.0 ≤ Ppt_1(0) ≤ 40.0

dv8 – 2.0 ≤ ε_1 ≤ 8.0

dv9 kg/s 3.0 ≤ ṁoxi_2 ≤ 35.0

dv10 – 2.0 ≤ O/F_2(0) ≤ 3.0

dv11 m 4.0 ≤ a_2 ≤ 10.0

dv12 kg/m2s 10.0 ≤ Goxi_2 ≤ 200.0

dv13 s 70.0 ≤ tc_2 ≤ 130.0

dv14 MPa 0.5 ≤ Pch_2(0) ≤ 2.0

dv15 MPa 10.0 ≤ Ppt_2(0) ≤ 30.0

dv16 – 10.0 ≤ ε_2 ≤ 50.0

dv17 kg/s 0.3 ≤ ṁoxi_3 ≤ 5.0

dv18 – 2.0 ≤ O/F_3(0) ≤ 3.0

dv19 m 4.0 ≤ a_3 ≤ 9.0

dv20 kg/m2s 5.0 ≤ Goxi_3 ≤ 120.0

dv21 s 90.0 ≤ tc_3 ≤ 180.0

dv22 MPa 0.5 ≤ Pch_3(0) ≤ 1.0

dv23 MPa 15.0 ≤ Ppt_3(0) ≤ 40.0

dv24 – 10.0 ≤ ε_3 ≤ 70.0

dv25 s 100.0 ≤ tcoast ≤ 180.0

next generation are selected by elitism. The new generation is filled with each front
sequentially until the population size exceeds the current population size. In this
study, the blended crossover-α (BLX-α) [2] is applied as the crossover.

3.2 Self-Organizing Map (SOM)

SOM [6] is a nonlinear projection algorithm from high to two dimensional map
based on self-organization of a low-dimensional array of neurons. This study used
the hexagonal grid because it is more pleasing to the eye.1

1In this study, commercial software modeFrontier®ver. 4. 4. 2 is used.
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Table 2 Design variables for Case2

Unit Variable

dv1 kg/s 10.0 ≤ ṁoxi_1 ≤ 150.0

dv2 – 2.0 ≤ O/F_1(0) ≤ 3.0

dv3 m 2.5 ≤ a_1 ≤ 7.0

dv4 kg/m2s 150.0 ≤ Goxi_1 ≤ 400.0

dv5 s 30.0 ≤ tc_1 ≤ 60.0

dv6 MPa 0.5 ≤ Pch_1(0) ≤ 3.0

dv7 MPa 15.0 ≤ Ppt_1(0) ≤ 40.0

dv8 – 2.0 ≤ ε_1 ≤ 8.0

dv9 kg/s 3.0 ≤ ṁoxi_2 ≤ 35.0

dv10 – = dv2

dv11 m 4.0 ≤ a_2 ≤ 10.0

dv12 kg/m2s = dv4

dv13 s 70.0 ≤ tc_2 ≤ 130.0

dv14 MPa 0.5 ≤ Pch_2(0) ≤ 2.0

dv15 MPa 10.0 ≤ Ppt_2(0) ≤ 30.0

dv16 – 10.0 ≤ ε_2 ≤ 50.0

dv17 kg/s 0.3 ≤ ṁoxi_3 ≤ 5.0

dv18 – 2.0 ≤ O/F_3(0) ≤ 3.0

dv19 m 4.0 ≤ a_3 ≤ 9.0

dv20 kg/m2s 5.0 ≤ Goxi_3 ≤ 120.0

dv21 s 90.0 ≤ tc_3 ≤ 180.0

dv22 MPa 0.5 ≤ Pch_3(0) ≤ 1.0

dv23 MPa 15.0 ≤ Ppt_3(0) ≤ 40.0

dv24 – 10.0 ≤ ε_3 ≤ 70.0

dv25 s 100.0 ≤ tcoast ≤ 180.0

Each neuron k on the map is represented by an n-dimensional prototype vector
mk = (mk1,mk2, . . . ,mkn), where n is the dimension of the design space. To train the
map, input vector X which represents a sampling design is selected and the nearest
neuronmc (the best matching unit, BMU) is found from the prototype vectors on the
map. The prototype vectors of the mc and its neighbors on the grid mk are moved
towards X as follows.

mk = mk + α(t)(X − mk), (6)

where, α(t) is learning rate and it decreases monotonically with time. This process as
shown in Fig. 6 is iterated until α(t) is converged well. During the iterative training,
prototype vectors are also converged. The closer two patterns are in the original
space, the closer is the response of two neighboring neurons in the low-dimensional
map. Thus, SOM reduces the dimension of input data while preserving their features.
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Table 3 Design variables for Case0 and Case1

Unit Variable

dv1 kg/s 10.0 ≤ ṁoxi_1 ≤ 150.0

dv2 – 2.0 ≤ O/F_1(0) ≤ 3.0

dv3 m 2.5 ≤ a_1 ≤ 7.0

dv4 kg/m2s 150.0 ≤ Goxi_1 ≤ 400.0

dv5 s 30.0 ≤ tc_1 ≤ 60.0

dv6 MPa 0.5 ≤ Pch_1(0) ≤ 3.0

dv7 MPa 15.0 ≤ Ppt_1(0) ≤ 40.0

dv8 – 2.0 ≤ ε_1 ≤ 8.0

dv9 kg/s 3.0 ≤ ṁoxi_2 ≤ 35.0

dv10 – = dv2

dv11 m 4.0 ≤ a_2 ≤ 10.0

dv12 kg/m2s = dv4

dv13 s 70.0 ≤ tc_2 ≤ 130.0

dv14 MPa 0.5 ≤ Pch_2(0) ≤ 2.0

dv15 MPa 10.0 ≤ Ppt_2(0) ≤ 30.0

dv16 – 10.0 ≤ ε_2 ≤ 50.0

dv17 kg/s 0.3 ≤ ṁoxi_3 ≤ 5.0

dv18 – = dv2

dv19 m 4.0 ≤ a_3 ≤ 9.0

dv20 kg/m2s = dv4

dv21 s 90.0 ≤ tc_3 ≤ 180.0

dv22 MPa 0.5 ≤ Pch_3(0) ≤ 1.0

dv23 MPa 15.0 ≤ Ppt_3(0) ≤ 40.0

dv24 – 10.0 ≤ ε_3 ≤ 70.0

dv25 s 100.0 ≤ tcoast ≤ 180.0

The trained SOM is systematically converted into visual information, and qualitative
information can be obtained.

4 Formulation

In this study, anLV that can deliver a payload to anEarth orbit at 800km is considered.
The rocket is launched toward the south at an 89◦. launch angle. The second stage
is immediately ignited after the combustion of the first stage is completed. After
the second stage is completed, the third stage coasts along the oval orbit. Once the
coasting is completed, the third stage is ignited. tcoast. Three cases are compared: In
Case 1, the HREs are optimized separately for each stage. In Case 2, the first and
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Fig. 8 Comparison of non-dominated solutions

Fig. 9 Comparison of designs that can deliver 100.0kg payloads from non-dominated solutions: a
Des0, b Des1, c Des2, and d Des3
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Fig. 10 Comparison of time history from Des0 through Des3: a first stage, b second stage, and c
third stage

second stages share an engine design, while the third stage is optimized separately.
In Case 3, all states share the same engine design. The non-dominated solutions for
all three cases are compared with the non-dominated solutions for the design with a
non-clustered HRE (Case 0) as shown in Fig. 7 [4].

The objective functions are to maximize the payload to total weight ratio
Mpey/Mtot and minimize the total weight (Mtot). The design problem for each case
can be expressed as {

Maximize Altmax

Minimize Mtot
(7)

The trajectory constraints assumed are as follows:

• The flight altitude is over 250km after the combustion of the third stage.
• The angular momentum is more than 52413.5 kg km2/s after the combustion of
the third stage in order to ensure that the rocket reaches 800km at the apogee.

• The flight path angle after combustion of the third stage is between −5.0 and
+5.0◦.
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Fig. 11 Component maps by SOM for Case0. a SOM colored by objective functions and b Maps
colored by selected design variables

The constraints for the structure are as follows:

• The aspect ratio of the rocket is less than 20.0.
• The diameter of the nozzle exit is less than that of all stages.
• The area of the grain port is more than twice the nozzle throat area of all stages.

The design variables and their ranges are listed in Tables1, 2 and 3. dv1-dv8, dv9-
dv16, dv17-dv26 correspond to the first, second, third stages, respectively. (dv26 is
tcoast.) ṁoxi_m is the mass flow of the oxidizer, O/F_1(0) is the oxidizer to fuel ratio,
a_m is the coefficient for Eq.3, Goxi_m is the mass flux of the oxidizer through the
fuel port, tc_m is the combustion time, Pch_m(0) and Ppt_m(0) are respectively the
initial pressure of the combustion chamber and the pressurizing tank, ε_m is the
appature ratio of the nozzle in themth stage. In Case2, dv10 and dv12 are equivalent
to dv2 and dv4, respectively. In Case3, dv19 and dv21 are also equal to dv2 and dv4,
respectively.

NSGA-II for each case is carried out with a total generation number of 200 and
population size of 50 for each generation.
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Fig. 12 Component maps by SOM for Case1. a SOM colored by objective functions and b Maps
colored by selected design variables

5 Results

5.1 Design Exploration Results

Figure8 shows a comparison of the non-dominated solutions for each case. The
result for the single-engine rocket is derived from a previous study [4]. Figure8
helps establish the trade-off between the objective functions. Case 1 can reach a
greater value of Mpay/Mtot at a lower Mtot than either Case 2 or 3 because all the
stages have an optimized engine. The solid line in Fig. 8 is the line that can deliver
100.0kg payloads. According to Fig. 8, a design that can deliver 100.0kg payloads
could be found in all three cases.

5.2 Comparison of Designs from Non-dominated Solutions

Rocket designs that can deliver payloads of 100.0kg found from where the design
curves intersect the solid line in Fig. 8 are picked up and named as Des0, Des1, Des2
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Fig. 13 Component maps by SOM for Case2. a SOM colored by objective functions and b Maps
colored by selected design variables

and Des3, respectively. The value of Mpay/Mtot for Des3 is 60% of that for Des1,
because the engines are not optimized for each stage in Case 3.

Figure9 shows a visual comparison of the design results for each case and also
for the single-engine rocket. As can be seen from Fig. 9, the diameters in the first
stage of Des2 and Des3 are larger than that in the first stage of Des1. Because the
first stage is independently designed in Case 1, the resulting engine size is the same
as that in Des0. However, when the engine designs are shared, the width constraint
in the second stage causes the first stage to have an increased diamet.

Figure 10 shows a comparison of the time history of the thrust of each stage from
Des0 throughDes3. In the first and second stages (Fig. 10a, c), Des0 andDes1 showed
a similar trend because the size of the first stage is similar in Fig. 9. In addition, Des3
also shows a trend similar to Des0 and Des1 because Case 2 independently designs
the third stage, which is similar to Cases 0 and 1. The thrusts in the first stage of
Des2 and Des3 are higher than that in the first stage of Des0 and Des1, while that in
the first stage of Des3 is the highest. This suggests that the common use of an engine
for several stages reduces the fuel efficiency while improving the productivity cost.
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Fig. 14 Component maps by SOM for Case3. a SOM colored by objective functions and b Maps
colored by selected design variables

5.3 Visualization of Design Space by SOM

To generate SOM, the objective functions are used as trained data, and the trained
map is colored according to every objective functions and design variables. In this
paper, dv1(ṁoxi_1), dv5(tc1), dv17(ṁoxi_3), dv5(tc3) which decide the engine size for
the first and the third stages are selected for comparison. Figures11, 12, 13 and 14
shows the visualization of the design problem for Cases 0 through 3, respectively.

Figure11a shows the component planes about objective functions for Case0.
According to this figure, low Mtot can be shown around left side of the map, while
highMtot can be shown around right side. This suggests that the trage-off between the
objective functions is severe. Figure11b shows the component planes about selected
design variables. Comparing Fig. 11a, b, higher dv1, dv5 and dv17 achieve the higher
Mpay/Mtot. On the other hand, to minimize Mtot, dv1 should be low because there is
a high correlation between Mtot and dv1. (Low ṁoxi_1 is desirable for the first stage
to achieve a low weight.)

According to Fig. 12a which are the component planes about objective func-
tions for Case1, there is the trage-off between the objective functions. Comparing
Fig. 12a, b, higher dv17 and dv21 achieve the higher Mpay/Mtot. To minimize Mtot,
dv1 should also be lowest value because there is a high correlation between Mtot
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and dv1. However, midium value of dv1 can achieve high Mpay/Mtot. This trend is
distinct from Case0 owing to the employment of the cluster engine in the first stage.

Figure13a shows the component planes about objective functions for Case2.
According to this figure, there is the severe trage-off between the objective func-
tions because there is a high correlation between objective functions. Comparing
Fig. 13a, b, higher dv1, dv5 and dv17 achieve the higher Mpay/Mtot. To minimize
Mtot, not only dv1 but also dv5 and dv17 should also be lowest value because there
is a high correlation between Mtot and dv1. dv5 and dv17.

Figure14a shows the component planes about objective functions for Case3.
According to this figure, there is the severe trage-off but it is not severe compared
with the Case0, 1 and 2. Comparing Fig. 13a, b, dv1 and dv5 which are design vari-
ables for the first stage deveided the Mtot. On the other hand, dv17 and dv21 which
are design variables for the first stage deveided the Mpay/Mtot. The dv5 of Case3 is
lower than that of other cases when Mpay/Mtot is higher, suggesting that the solutions
of Case3 obtained earlier consumption of the fuel to reduce the fuel weight of the
first stage earlier. On the other hand, the dv1 of Case 3 is lower because reduce the
fuel weight of the first stage.

6 Conclusions

In this study, we considered the conceptual design of a multi-stage launch vehicle
with a clustered hybrid rocket engine. Three optimization cases were considered. The
results suggest that an LV that uses the same engines for each stage can only achieve
60% of the payload mass ratio, compared with an LV that has engines optimized
separately for each stage. In addition, an LV that uses same engines for each stage
has a lower aspect ratio than an LV with an optimized engine for each stage. These
findings are significant for LV development and manufacturing.

Acknowledgements We thank members of the hybrid rocket research working group in
ISAS/JAXA for giving their experimental data and their valuable advices.
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Topology Optimization of Flow Channels
with Heat Transfer Using a Genetic
Algorithm Assisted by the Kriging Model

Mitsuo Yoshimura, Takashi Misaka, Koji Shimoyama and Shigeru Obayashi

Abstract A global optimization method for topology optimization using a genetic
algorithm is proposed in this paper. The genetic algorithm used in this paper is
assisted by the Kriging surrogate model to reduce computational cost required for
function evaluation. To validate the global topology optimization method in flow
problems, this research works on two single-objective optimization problems, where
the objective functions are tominimize pressure loss and tomaximize heat transfer of
flow channels, and the multi-objective optimization problem, which combines these
two problems. The shape of flow channels is represented by the level set function, and
the pressure loss and the temperature of the channels are evaluated by the Building-
Cube Method (BCM), which is a Cartesian-mesh CFD approach. The proposed
method resulted in an agreementwith previous study in the single-objective problems
in its topology, and achieved global exploration of non-dominated solutions in the
multi-objective problem.

1 Introduction

Shape optimization has been attracting much attention in flow problems, which
defines the boundary between fluid and solid regions. However, shape optimiza-
tion cannot deal with the change of topology, e.g., making new holes into an object.
Topology optimization is the most flexible optimization method, which can not only
modify the shape of an object but also allow the connectivity of the object to change.

Topology optimization has been applied to a variety of engineering optimization
problems [1] such as structural mechanics problems, heat transfer problems, and
acoustic problems since Bendsøe and Kikuchi first proposed the so-called homoge-
nization method [2]. However, the first application to flow problems was later than
the aforementioned applications. It was performed for the Stokes flow by Borrvall
and Petersson [3].
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The basic concept of topology optimization is the replacement of the optimiza-
tion problem with a material distribution problem in a fixed design domain using
the characteristic function that indicates whether material exists or not. However,
conventional topology optimization tends to suffer from numerical instabilities such
as grayscale material and checkerboard pattern. The level set method [4, 5] is one of
the approaches to avoid such instabilities. The level set method introduces a signed
scalar function and distinguishes solid and fluid regions according to the sign of the
function. Thus, zero-contours indicate the boundaries of the regions.

Conventional topologyoptimization generally explores the optimal solution by the
gradient-basedmethod according to the sensitivity of an objective function.However,
the gradient-basedmethod tends to get stuck to the local optima rather than the global
optimum. On the other hand, Evolutionary Algorithm (EA) is one of the metaheuris-
tic optimization methods, which is more capable to explore the global optimum.
However, EA requires numerous function evaluations to realize population-based
multipoint simultaneous exploration. Thus, EA is not efficient to solve the opti-
mization problems with expensive calculations (e.g. Computational Fluid Dynamics
(CFD)) for function evaluation if EA is employed solely. Moreover, topology opti-
mization involves a large design space due to a high degree of freedom for shape and
topology representation.

Thus, it requires much expensive computational cost (i.e., large population and
many generations) to obtain competitive solutions. In this case, surrogate models
are effective to reduce computational cost required for function evaluation. This
model approximates the response of each objective or constraint function to design
variables in an algebraic expression. This model is derived from several sample
points with real values of the objective or constraint function given by expensive
numerical simulations. Thus, it can promptly give estimates of function values at
arbitrary design variable values.

In order to find a global optimum effectively, a global optimization method for
topology optimization using a genetic algorithm assisted by the Kriging surrogate
model is proposed. To validate the global topology optimization methods applied to
flow problems, this research works on two single-objective optimization problems,
each of which is to minimize pressure loss or to maximize heat transfer, and one
multi-objective optimization problem to minimize pressure loss and to maximize
heat transfer of flow channels.

2 Computational Methods

2.1 Flow Channel Representation

The boundaries between fluid and solid regions are represented by the level set
representation that introduces a signed scalar function (level set function) φ(x) where
x represents the location in the design domain. This research sets the range of φ(x)
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(a) Initial distribution (b) 3D distribution 

Fig. 1 Distribution of level set function

as |φ(x)| ≤ 1, and assumes x is in the fluid region if φ(x) > 0 or in the solid
region if φ(x) < 0. The example of the distribution of the level set function is shown
in Fig. 1. At the outer boundary of the design domain, φ(x) is given as the step
functions corresponding to the width of the inlet and outlet of the channel. Given
φ(x) at several discrete control points inside the design domain (which are treated
as the current design variables and stated later), the Laplace’s equation is solved in
the entire domain to obtain the distribution of φ(x).

The distribution of φ(x) derived from solving the Laplace’s equation is non-linear.
Thus several shapes cannot be represented by any value of φ(x) given at the control
points as the design variables as long as the control points are infinitesimal. For
example, the channels whose boundary is exactly straight cannot be represented.
This issue must be solved to compare the proposed method with previous study. This
problem results from the distance between the adjacent control points where the
value of φ(x) is given. Thus, in this study, the control point is considered as a circle
with a certain radius, and the value of φ(x) is uniformly given in the circle. Then,
the extrema in the distribution of φ(x) get closer, and the boundary can be drawn
as a smoother curve that allows us to represent a straight channel. Such a treatment
is applied to the optimization cases if necessary; the radius of the control point is
fixed to zero (i.e., the control points are infinitesimal) or a certain value in the cases
aiming at the comparison with the previous study, otherwise the radius is allowed to
change as an additional design variable.

Conventional level set method [5] for topology optimization employs the
Hamilton-Jacobi partial differential equation to update the value of φ(x) for a
modified shape. The partial differential equation is solved with design sensitivities
derived from the sensitivity analysis. In this study, on the other hand, the partial
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differential equation is not solved, and the value of φ(x) is updated based on the
genetic algorithm stated in Sect. 2.3.

2.2 Building-Cube Method

In order to evaluate the pressure loss of the channels, CFD simulations are conducted
by the Building-CubeMethod (BCM) [6], which is a Cartesian-mesh CFD approach.
The governing equations of BCMare the 2D incompressibleNavier-Stokes equations
for unsteady state flow, and the 2D energy equation for unsteady state heat transfer.
The convection terms are evaluated by a third-order upwind differencing, and the
viscous terms are evaluated by a second-order central differencing. Time integration
is conducted by the Crank-Nicolson method for the viscous terms and the Adams-
Bashforth scheme for the convective terms, and the coupling of velocity and pressure
is conducted by a fractional step method.

Since BCM is a Cartesian-mesh CFD approach, it is easy to deal with the compli-
cated shapes of flow channels with topological change. However, in the Cartesian-
mesh CFD approach, the object surface is represented by a staircase pattern, instead
of smooth surface. For high accuracy computation, the Immersed Boundary Method
(IBM) [7] using ghost cell and image point is employed at the wall boundary.

2.3 Genetic Algorithm

The genetic algorithm mimics the evolution of organisms, which selects individuals
from the current generation as parents, generates new individuals as children by the
crossover and mutation of the parents, and inherits better individuals to the next
generation. In this study, Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[8] proposed by Deb et al. is employed for exploration because this algorithm is
effective and widespread employed to many optimization problems [9, 10]. Initially,
a parent population Pt=1 with the size of N is created randomly. Here, t indicates
the number of generation. Each feasible solution is assigned a rank (the solution
with lower rank is better) according to its objective function value. On the other
hand, each infeasible solution is assigned a rank which is higher than the minimum
rank for the feasible solutions. Between two infeasible solutions, the solution with a
smaller constraint violation has a better rank. Then, after choosing N solutions with
lower rank in the parent population, recombination and mutation are conducted to
create an offspring population Qt with the size of N . In order to introduce elitism,
first, a combined population Rt � Pt ∪ Qt with the size of 2 N is formed. Then, the
solutions in Rt are sorted according to the ranks based on objective function values
and constraint violation. Now, N solutions are chosen from Rt in the order of their
ranks and make up a new population Pt+1. The procedure as described above is for
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one generation. The non-dominated solutions with the lowest rank are explored by
repeating this procedure for a certain number of generations.

2.4 Kriging Model

Although GA is capable of finding the global optimum, it requires numerous func-
tion evaluations to realize population-basedmultipoint simultaneous exploration. For
efficient global optimization, the Kriging surrogate model [11] is employed together
with GA. The Kriging model is based on Bayesian statistics, and can adapt well
to nonlinear functions. In addition, the Kriging model estimates not only the func-
tion values themselves but also their uncertainties. Based on these uncertainties, the
expected improvement (EI) of an objective function, which may be achieved on the
Krigingmodel by adding a new sample point, is estimated.Maximizing the EI instead
of the original objective function itself, the location of an additional sample point
is determined for updating the Kriging model. Adding new samples to the Kriging
model based on EI iteratively, these samples are expected to reach the global optima
under the uncertainty of the Kriging model. Efficient Global Optimization (EGO)
proposed by Jones et al. exploits these characteristics and is widely employed for
optimization [12].

Since the present optimization is capable of topological change, the flow channels
may often become unconnected depending on design variable values. Since such
unconnected channels make it difficult to evaluate the objective function values,
they should not be considered as an additional sample point for the Kriging model.
In order to deal with this issue, the original EI value of the objective function is
multiplied by the probability that the objective function value may be below a certain
threshold estimated on the Kriging model. Maximizing this value, the location of an
additional sample point is determined for searching the global optima while assuring
the connectivity of flow channels under the uncertainty of the Kriging model.

3 Optimization Problems of Minimizing Pressure Loss

3.1 Nozzle Example (Case1)

3.1.1 Problem Definition

First, the single-objective optimization to minimize pressure loss of a nozzle shown
in Fig. 2a is conducted. In this problem, since the effect of body force such as gravity
is neglected, the flow field is vertically symmetric. Therefore, the nozzle shape is
also considered to be vertically symmetric. The current design variables are the
values of φ(x) given at six red points 1–6 as shown in Fig. 2b. φ(x) values at the
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(a) design domain   (b) Layout of control points

Fig. 2 Geometry of nozzle (Case 1)

remaining points 7–9 are the same as those at the points 1–3 due to the vertical
symmetry. Thus, the number of the design variables is six. At the outer boundary of
the design domain, a fixed value (0.5 or −0.5) is given to represent inlets and outlets
of the channels. The wall boundaries of the channels are then obtained by solving
the Laplace’s equation in the entire design domain. This domain is discretized as
a 240×240 uniform Cartesian grid. The Reynolds number based on the width of
inlet is 10. At the inlets, velocity is set as the Dirichlet boundary condition (parabolic
profile with the reference velocity of 1) and pressure is set as the Neumann condition.
At the outlets, on the other hand, velocity is set as the Dirichlet boundary condition
(parabolic profile with the reference velocity of 3) and pressure is set as the Dirichlet
condition (zero pressure).

The objective function is to minimize pressure loss. The following three con-
straints are considered; (1) the area of flow channels is less than 50% of the sim-
ulation domain, (2) flow channels go from inlets to outlets without dead ends, and
(3) pressure loss is less than a threshold value. The third constraint aims to avoid
aberrant flow channels with excessive pressure loss, which may make the estimation
accuracy of the Kriging model worse. Moreover, in this case, since the boundary of
flow channel is curved as can be seen in the previous work [13], infinitesimal control
points are suitable to represent various topological changes.

3.1.2 Results

For the Kriging surrogate model, 300 initial sample points, satisfying the constraints
(1) and (2) are generated randomly and their objective function (pressure loss) is
evaluated byCFD.Then, a threshold of pressure loss in the constraint (3) is considered
to remove sample points with excessive pressure loss from the initial sample points
of the Kriging model. The Kriging model is constructed with sample points whose
pressure loss is below the threshold. The appropriate threshold is chosen by observing
the estimation accuracy of the Kriging model with different threshold. In this case,
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(a) (b)

Fig. 3 Optimal solutions (Case 1) a Proposed method b Previous work [13]

the threshold of the pressure loss is set to be 100, and the number of the initial sample
points satisfying all constraints is 175. GA identifies the solution, which maximizes
the EI value on the Kriging model, as an additional sample point. The Kriging model
is updated after adding this new sample point. In Case 1, theKrigingmodel is updated
15 times.

Figure 3 shows the optimal flow channel and it is similar to the flow channel
reported by the previous study [13]. Several other studies [3, 14] indicate that the
inlet of the optimal shape gets narrowed. However, such shape has larger pressure
loss than the optimal shape obtained in this study. Moreover, when finer mesh is
employed, the width of inlet becomes larger as shown in Fig. 3b. Thus, it is thought
that the optimal shapes with narrow inlet reported in the previous study [3, 14] come
from the mesh resolution or the grayscale material caused by the relaxation scheme.

3.2 Double Pipe Example (Case 2)

3.2.1 Problem Definition

Next, the design domain with two inlets and two outlets as shown in Fig. 4 is consid-
ered. In this case, two types of the design domain with δ �1 (square domain) and δ

�1.5 (rectangular domain) are considered to compare with previous study [13].
In this case, control points need to be able to represent the straight boundaries. The

number, location and radius of control points are investigated before conducting the
optimization. Consequently, the control points are assigned to the layout as shown in
Fig. 5. Furthermore, for the square domain, each control point is treated as a circle
to represent the boundary as a smooth curve. The radius of the circle is fixed to 5
cells so as not to interfere with the circles at adjacent control points. φ(x) values are
assigned to the control points assuming vertical symmetry for each domain (i.e., first
and sixth rows, second and fifth rows, and third and fourth rows are symmetric in the
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Fig. 4 Geometry of double pipe (Case 2)

(a) Square domain (b) Rectangular domain

Fig. 5 Layout of control points (Case 2)

square domain, first and third rows are symmetric in the rectangular domain). The
number of the design variables is 18 in the square domain and 10 in the rectangular
domain. In both domains, only a positive value of φ(x) is allowed at the blue point to
assure the flow channel connectivity. The flow velocity is given as a parabolic profile
with the reference velocity of 1 for both inlets and outlets in both domains. This
case employs the same Reynolds number, mesh resolution (i.e., 240×240 uniform
Cartesian grid for square domain, 240×360 uniform Cartesian grid for rectangu-
lar domain), and boundary conditions as Case 1. The constraints considered here
are (1) the volume fraction (i.e., the area of flow channels is less than 40% of the
design domain) and other two constraints (2) and (3) which are the same as those
of Case 1.

3.2.2 Results

In order to prepare the initial sample points of surrogate model, 400 sample points
satisfying the constraints (1) and (2) are generated randomly for each domain. Then,
pressure loss is evaluated as the objective function for each sample point, and a
threshold of pressure loss in the constraint (3) is set to be 50 for the square domain
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(a) Square domain (b) Rectangular domain

Fig. 6 Optimal Solutions (Case 2)

and 20 for the rectangular domain. Thus, the number of the initial sample points is
reduced to 225 for the square domain and 244 for the rectangular domain. Figure 6a
shows the optimal flow channel in the square domain obtained after updating the
Krigingmodel 16 times, andFig. 6b shows the optimal flowchannel in the rectangular
domain obtained after updating the Kriging model 20 times.

The square domain yields two single straight channels from the inlets to the
outlets, and the rectangular domain yields two channels joined together in the cen-
ter of the domain. These results agree with the analytical results obtained in the
past [3, 13, 14].

4 Optimization Problems of Maximizing Heat Transfer
(Case 3 and 4)

4.1 Problem Definition

The single-objective optimization to maximize heat transfer is conducted. In this
case, in addition to the 2D incompressible Navier-Stokes equation, the 2D energy
equation is also solved to evaluate the temperature field. The design domain is shown
in Fig. 7. This case employs the same pressure and velocity boundary conditions as
Case 2. The flow velocity is given as a parabolic profile with the reference velocity of
1 for the inlet and the outlet. Fluid temperature is set to be 0 at the inlet, and given by
the Neumann condition at the outlet. Furthermore the temperature at the solid-fluid
interface is expressed by the third type boundary condition as

qw � h (T∞ − Tw)
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Fig. 7 Geometry of single
pipe (Case 3 and 4)

where T∞ is the temperature of the solid set to be 1, Tw is the fluid temperature on
the wall, and h corresponds to the heat transfer coefficient. In this study, h is given
by the Nusselt number: Nu �hl/k. Here, the reference length l is the width of inlet
set to be 1 and thermal conductivity k is also set to be 1. Thus, the heat transfer
coefficient is equal to the Nusselt number. The objective function is to maximize
the bulk mean temperature at the outlet. In this problem, since the possible range
of the objective function value is known thermodynamically (i.e., the maximum is
not greater than the wall temperature: 1 and the minimum is not less than the inlet
temperature: 0), different fromCases 1 and 2, this case does not introduce a threshold
into the objective function value because it can reduce the diversity of the population
in GA.

In order to compare the present method with the previous study [15], this case
employs the samedimensionless numbers as those in the previous study; theReynolds
number, the Nusselt number, and the Prandtl number are set to be 5, 50, and 6.78,
respectively. The control points are assigned the same as Fig. 2b. In this problem,
two cases are considered. In the first case (Case 3), the control points are treated
as infinitesimal points, and the number of the design variables is six. In the second
case (Case 4), the control points are treated as circles whose radius can change in the
range of 0 ≤ r ≤ 5 as an additional design variable, thus the number of the design
variables is seven.

4.2 Results

First, the Case 3 with six design variables is discussed. In this case, 112 initial
sample points satisfying the connectivity from the inlet to the outlet are used to
construct the Kriging model. The Kriging model is updated 15 times. Figure 8 shows
representative flowchannels found in the additional samples. In this case, several flow
channels, each of which has similar objective function values as shown in Table 1
but with different topology, are found as the local optima. The optimum reported in
the previous study [15] has one solid island inside the channel whose topology is
the same as Fig. 8c. This result indicates that the objective function is a multi-modal
function and there are other local optima with similar performance to the global
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(a) 13th sample(optimum) (b) 14th sample 

(c) 15 th sample

Fig. 8 Temperature distributions of the representative local optima in the additional samples
(Case 3)

Table 1 Objective function
value of local optima (Case 3)

Temperature

(a) 13th sample 0.769

(b) 14th sample 0.730

(c) 15th sample 0.751

optimum. Thus, it is required to employ a method of population-based multipoint
simultaneous exploration such as GA. The result also indicates that, as the number of
the solid islands in the channels increases, the size of each island becomes smaller.
This is because the size of island is determined by the interface between the solid
and fluid to achieve an equal amount of heat flux on the interface.

Next, Case 4 with seven design variables is discussed. In this case, 126 initial
sample points are used to construct the Kriging model. The Kriging model was
updated 10 times. Figure 9 shows representative flow channels. Also in this case,
several flow channels with different topology but with similar objective function
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(a) 9th sample (optimum) (b) 10th sample  

Fig. 9 Temperature distributions of the representative local optima in the additional samples (Case
4)

Table 2 Objective function values of local optima (Case 4)

Temperature

(a) 9th sample 0.833

(b) 10th sample 0.790

values, as shown in Table 2, are found. Moreover, different from Case 3, this case
finds the channels with a coupled island. Case 4 that allows a coupled island leads to
the optimum with a better objective function value than Case 3. However, since the
bulkmean temperature reaches its upper limit thermodynamically in this case, several
flow channels with different topology are still found as the local optima. Thus, it can
be concluded that the objective function of this problem is a multi-modal function
and the length of the interface between fluid and solid has a significant effect to
increase the temperature.

Note that the authors conducted another case with different Reynolds and Nusselt
numbers. It is revealed that as the Reynolds number increases, putting large coupled
islands are required to increase temperature. Moreover, several flow channels with
different topology were also found. These results agree with the knowledge obtained
in Cases 3 and 4.

5 Multi-objective Optimization Problems

5.1 Problem Definition

Finally, a multi-objective optimization problem to minimize pressure loss and max-
imize heat transfer of flow channels is considered. The design domain is the same as
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that shown in Fig. 7, the layout of the control points is same as that shown in Fig. 2b.
This case employs the same velocity, pressure, temperature boundary conditions,
dimensionless numbers, and mesh resolution as Case 3. In this problem, the design
variables are treated the same as Case 4 with seven design variables (i.e., φ(x) values
are given at the control points assuming vertical symmetry in the range of |φ(x)| ≤ 1,
and the radius of the control points changes in the range of 0 ≤ r ≤ 5).

5.2 Results

There are a number of non-dominated solutions, which are not worse than any other
solution regarding all objective functions, in a multi-objective optimization problem
while there is only one optimal solution in a single-objective optimization problem.
Thus, it is important to ensure the diversity of the solutions in GA and capture the
trade-off among objective functions. Therefore, it should be careful to introduce a
threshold of the pressure loss while keeping the diversity of the solutions in GA.
However, without a threshold, initial sample points including excessive pressure loss
are used to construct the Kriging model, which may make the estimation accuracy
of the Kriging model worse. Since the width of the flow channels with excessive
pressure loss is very narrow, these flow channels can be regarded as disconnected.
Moreover, the bulk mean temperature of such disconnected or nearly disconnected
flow channels is evaluated to be 0 in Cases 3 and 4. Thus, such solutions are hardly
able to be the non-dominated solutions, and it will not lose the diversity of solutions
even if such solutions are removed from initial sample points.

First, in order to prepare the initial sample points of the Kriging model, 400 sam-
ple points satisfying connectivity from the inlet to the outlet are generated randomly.
In this case, a threshold of the pressure loss is set to be 13. Thus, the number of
the initial samples is reduced to 215. Multi-objective optimization employs several
additional sample points every time the Kriging model is updated in contrast to a
single-objective optimization employs one additional sample point for every update.
This study performs cluster analysis using the k-means method [16] to select repre-
sentative sample points frommany non-dominated solutions obtained bymaximizing
the EI value of each objective function on theKrigingmodel. In this case, 4 additional
sample points are chosen for every update.

Figure 10 indicates the initial sample points, the non-dominated solutions among
them, and the non-dominated solutions obtained after the 19th update of the Kriging
model in the objective space. The front of non-dominated solutions obtained after
the 19th update is more convex to the optimization direction than that of the initial
non-dominated set. The non-dominated solutions in the 19th update can be classified
into 4 groups according to their characteristics.

First, in the yellow group, the flow channels have low pressure loss and low bulk
mean temperature. These flow channels do not include any solid island inside the
channels. This is consistentwith the results of the single-objective problems as shown
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Fig. 10 The solution set in the multi-objective problem

in the previous sections that there are no islands if the pressure loss is low, and there
is at least one island if the bulk mean temperature is high.

Second, the non-dominated front is discontinuous between the red group and
the yellow group. The solutions in the red group get higher bulk mean temperature
while their pressure loss does not increase drastically. All these solutions contain one
island in the channel. In this group, as the island gets larger, the pressure loss and
the temperature go higher. Thus, it is revealed that putting an island into a channel
contributes to better performance of heat transfer.

Next, the solutions in the blue group have two isolated islands. In this group, the
bulk mean temperature increases by inserting another island. However, the pressure
loss also increases.

Finally, the solutions in the purple group have a coupled island. In this group, two
significant results are revealed. First, these solutions keep the bulk mean temperature
almost equal to the optimum found in Case 3 whereas the pressure loss is larger than
any other solution in other three groups. Second, the trade-off between each objective
function becomes weak. This result indicates that the bulk mean temperature reaches
its upper limit thermodynamically in this case while the pressure loss can change
drastically according to a subtle change of island’s shape. Thus, recalling that the
objective function of temperature is a multi-modal function as seen in Cases 3 and
4, this result indicates the possibility that if the shape of islands is closer to the
streamline, it is able to design the flow channel that satisfies both high temperature
and low pressure loss.
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6 Conclusion

Global topology optimization was conducted in flow channel design problems that
minimize pressure loss and/or maximize heat transfer using a Kriging-surrogate-
based genetic algorithm.

In the single-objective optimization to minimize pressure loss, two cases with
different layout were conducted and the results agreed with the previous study.

In the single-objective optimization to maximize the bulk mean temperature, the
GA found not only the optimal shape, but also several shapes that have quite similar
objective function values but with different topologies from each other. Thus, the
objective function of temperature seemed to be a multi-modal function. The results
also indicated that putting a solid island in a fluid region and increasing the interface
between fluid and solid have significant effects to increase the temperature.

Finally, combining above two problems,multi-objective optimization tominimize
pressure loss and tomaximize heat transferwas conducted.As a result, it was revealed
that the size and the shape of a solid island inserted in a flow channel were the
most important factors to increase the temperature and determine the pressure loss.
However, with a certain size of island, the temperature reached its upper limit and
the trade-off between pressure loss and heat transfer became weak. Thus, it was
significant in the multi-objective optimization to capture an entire trade-off between
these objective functions and to find the points where the pressure loss increases
drastically and the heat transfer was saturated. The present result was expected to
help us to be able to design the flow channels that satisfy both high temperature and
low pressure loss with further investigation.

Thus, the proposed method showed its capability to explore global optima for
both single-objective and multi-objective topology optimization in flow problems.
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Topology Optimization Using GPGPU

Stefan Gavranovic, Dirk Hartmann and Utz Wever

Abstract In this paper we present a matrix-free geometric multigrid method for
solving a linear system of equations needed at every iteration of the topology opti-
mization process. The multigrid solver is parallelized on an Nvidia graphics card
using CUDA, therefore reducing simulation time drastically. This enables users to
derive optimal topologies represented with a high number of elements while having
low execution time. Computational domain is discretized with a regular structured
hexahedral mesh. To improve the accuracy of the non-conformal discretizazion, the
Dirichlet boundary conditions are imposed in a weak form using Nitsche method.

1 Introduction

Additive manufacturing is driving a revolution in manufacturing [17]. With this
technique we can produce objects by successively adding thin layers of material.
Nowadays this procedure is used to obtain a wide variety of items such as plastic
prototypes for engineers and designers, customized medical devices such as dental
implants, hip implants, or hearing aids. Significant breakthrough was the use of addi-
tive manufacturing in aerospace industry [7], which meant that less material could
be used compared to conventional production techniques. Therefore, the produc-
tion costs were reduced, and the lighter aircraft components lead to significant fuel
savings.

Since additive manufacturing results in nearly infinite design spaces, the
importance of topology optimization [1] is constantly growing. Topology opti-
mization represents an optimal placement of material within a given design space,
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boundary conditions, and loads in order to satisfy the prescribed objective functions.
During the design process, topology optimization enables engineers to explore dif-
ferent design solutions that meet the design requirements with optimum material
usage while preserving required structural integrity.

In recent years a lot of research was invested in exploring and establishing the
theory of topology optimization. The application field of topology optimization has
expanded beyond structural analysis to include fluid flow, acoustics, heat transfer,
nanophotonic devices, and material designs [4]. However, most of the research was
carried out for 2D models. Due to high computational costs, performing topology
optimization on 3Dmodelsmay require hours, or in some cases even days, which hin-
ders rapid prototyping design process. Ideally, the designer would like to have almost
instantaneous feedback when exploring the design space. Not as much research was
conducted in improving computational efficiency as it was done for establishing the
theory of topology optimization, hence it stays still an open topic for the research [13].
Therefore, in this paper we investigate the use of the multi-core architecture such
as GPU (Graphics Processing Unit) by utilizing parallel programming framework
CUDA (Compute Unified Device Architecture) [11]. Since the optimization pro-
cess comes with a high computational price of performing the finite-element method
(FEM) analysis at each optimization step, the main focus of this work is to develop
an efficient solver for performing FEM analysis. In order to accomplish this, several
steps are taken. The computational domain under consideration is discretized with
the help of hexahedral elements, yielding a system of linear equations. This enables
the use of highly efficient matrix-free geometric multigrid methods [10] for solving
the linear system of equations. Geometric multigrid algorithm is adapted in such a
way that it maps to GPU hardware [5], therefore resulting in execution times far
superior to those when solving the problem on CPU.

2 Previous Work

The goal of this section is to give a short overview of previous research conducted
in the field of topology optimization with a focus on computational efficiency. In
one of the earliest works [2] in this field, parallel computing in combination with
domain decomposition was used. Test geometries were discretized using approxi-
mately 196,000–884,000 elements depending on the test model. System of linear
equations was solved by using the preconditioned conjugate gradient method. Simu-
lations for several test cases were performed on a Cray T3E using 16–24 processors
depending on the test case, with solution times ranging from 4 to 43h. A lot of
improvements in numerical algorithms and in hardware were introduced since then,
reducing simulation times drastically.

One of the first works demonstrating the use of GPU in topology optimization
was presented in [14]. Here, the most time consuming part of the topology optimiza-
tion process, which is solving a system of linear equations, is parallelized on GPU
using CUDA. The author implemented a matrix-free conjugate gradient method with
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modifications to the single precision computation, necessary due to the hardware lim-
itations. The investigated GPU was a GeForce GTX280 with 1 GB device memory
and 240 CUDA cores each running at 1.30 GHz. The GPU execution time was up to
60 times faster in comparison to CPU. For a test case with resolution of nearly
1,000,000 elements and a lower class GPU such as GeForce 9600M GT with 32
CUDA cores, each running at 0.78 GHz, the authors reported simulation time under
2h.

In a more recent work [16], the author used the Jacobi-preconditioned conjugate-
gradient method for solving the system of linear equations on a GPU. The author
was using hexahedral elements which conform the boundary. The used hardware was
the Nvidia GeForce GTX 480 with 480 CUDA cores and 1.5 GB of device memory.
Numerical results for several test cases were presented which we will discuss in the
Results section.

3 Finite Element Formulation

Discretization of the computational domain is performed using hexahedral elements.
CAD (Computer-Aided Design) geometry in STEP (Standard for the Exchange of
Product model data) format is passed as an input and discretized using the Open
CASCADE (Computer Aided Software for Computer Aided Design and Engineer-
ing) [12] library. Using hexahedral elements implies that we do not have to perform
element rotation in space nor any other transformation. Every hexahedral element
has an identical stiffness matrix which can be analytically pre-computed.

3.1 Linear Elasticity Equations

Elastic deformation of a continuum body on the domain Ω with Dirichlet ΓD and
Neumann ΓN boundaries is described by the following equations [3, 18]:

∇ · σ + f = 0 ∀x ∈ Ω (3.1.1)

σ = C : ε ∀x ∈ Ω (3.1.2)

ε = 1

2
· (∇u + (∇u)�) ∀x ∈ Ω (3.1.3)

u = û ∀x ∈ ΓD (3.1.4)

σ · n = t ∀x ∈ ΓN (3.1.5)

where σ and ε represent stress and strain tensor respectively. f represents the force
term, C is the elasticity tensor, û is the prescribed displacement on the Dirichlet
boundary, n is a normal vector to the Neumann boundary, t is a traction vector.
After obtaining the weak form from Eq. (3.1.1) we use tri-linear shape functions to
approximate our solution uh of the problem:
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uh =
i∑

Ni (x) · ui (3.1.6)

where Ni (x) represent the shape functions that span the finite dimensional spaceVh ,
and ui are coefficients associated with shape functions. The element stiffness matrix
Ke obtained from discretization can be written as:

Ke =
∫

Ωe

B�
e CBedΩ (3.1.7)

where Be represents the strain-displacement matrix and C is the elasticity matrix.
The element stiffness matrixKe is computed only once and we use it for all elements
in our computational domain.

3.2 Per Node Equations

Following the work of [5], we do not want to assemble and store the full stiffness
matrix. We rather operate on per node equations. That is, each node is assigned with
3 degrees of freedom, and with 27 3 × 3 matrices which represent the interaction of
the node with its neighbors. These matrices are extracted from the element stiffness
matrix Ke which we precomputed. In order to show the assembling process of the
aforementioned per node equations, let us set up the per element equations in the
following manner:

8∑

j=1

kek
i, j · uek

j = feki i = 1, . . . , 8. (3.2.1)

We sum over all 8 nodes of a hexahedral element ek , where kek
i, j represents 3 × 3

block matrix extracted from k-th element stiffness matrix, and associated with each
node j . uek

j is the corresponding displacement and feki is the force term acting on
the given element. Equation (3.2.1) for a given node i represents the influence of
an element ek on the displacement of the node i . Since this node is shared by the 8
adjacent elements, we add up equations yielding from all k elements as well. Thus,
we obtain the per node equations:

(1,1,1)∑

i=(−1,−1,−1)

Mnod
i unod+i = fnod , (3.2.2)

where nod represents discrete coordinates of the node. By adding vector i to the
discrete coordinates of the node we visit all the neighboring nodes. Here, Mnod is
an array of 27 block matrices corresponding to the observed node and subindex i
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determines the block matrix corresponding to the neighbor of node. unod+i are the
displacements of the corresponding nodes and fnod is the force term. For more details
on the equation assembly process the reader may refer to the works [5, 8].

4 Multigrid Solver

Since the bottleneck of the optimization process is the performance of FEM analysis
on each iteration step, we propose a multigrid method based on the work of [5].
Multigrid methods [10], used to provide fast numerical solvers especially for elliptic
partial differential equations, can greatly improve simulation times if implemented
efficiently. In this workwe implemented a CUDAbasedmatrix-free geometric multi-
grid method. We used a standard multigrid V-cycle with Gauss-Seidel relaxation.

Algorithm 1Multigrid

1: function V- Cycle(Ah ,uh , f h ,nsteps ,level)
2: if level = numLevels then
3: Solve directly Ahuh = f h

4: else
5: Gauss-Seidel relaxation Ahuh = f h

6: Compute residual rh = f h − Ahuh

7: Restrict residual rh+1 = Rh+1
h rh

8: eh+1 ←V- Cycle(Ah+1,0,rh+1,nsteps ,level + 1)
9: Interpolate coarse grid error eh = Ph

h+1e
h+1

10: Apply correction uh = uh + eh

11: Gauss-Seidel relaxation Ahuh = f h

4.1 Per Node Equations Assembly for All Levels

Each level of the multigrid hierarchy is organized in such a way that if there is at
least one active fine grid cell that is covered by the coarse grid cell, we consider the
cell on the coarse level to be active as well. Before we start performing the V-cycle,
we assemble per-node equations for all simulation levels [5, 8]. On the finest level
we assemble equations using precomputed element stiffness matrix, afterwards we
use Galerkin coarse grid operator to assemble equations on the coarser levels.

4.2 Gauss-Seidel Relaxation

To apply the smoothing step to our linear system of equations we use a Gauss-Seidel
smoother. We first divide the set of nodes in 8 groups, such that we could perform
smoothing in parallel, as suggested in [5, 8]. With respect to our per node equations
the smoothing step can be formulated as:
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uk+1
nod = uknod + ω · (Mnod

0,0,0)
−1 ·

⎛

⎝fnod−
(0,0,−1)∑

i=(−1,−1,−1)

Mnod
i uk+1

nod+i −
(1,1,1)∑

i=(0,0,0)

Mnod
i uknod+i

⎞

⎠

(4.2.1)
where uk

nod is the current value, and uk+1
nod is the updated value of displacement at a

given node, and ω is a relaxation coefficient.

5 Topology Optimization Formulation

In our work we decided to use SIMP (Solid Isotropic Microstructure with Penaliza-
tion) approach for performing the topology optimization. This method is proposed
as “artificial density approach” by [1]. The domain is discretized with hexahedral
elements, where to each hexahedra a density variable ρ is assigned. These density
variables are used as design variables in the optimization process for meeting the
desired objective function requirements. The main advantage of the SIMP method
over other methods is an easy implementation and a well established theoretical
foundation. The topology optimization problem formulation is given by:

minimize
ρ

c(ρ) = f�u = u�K(ρ)u

subject to
V (ρ)

V0
= α

K(ρ)u = f

0 < ρmin ≤ ρ ≤ 1.

That is, we wish to minimize the compliance c(ρ) subjected to a volume constraint
of a given volume fraction α, being the ratio between the material volume V (ρ)

and the design domain volume V0. Displacement and force vectors are denoted
respectively u and f . The element stiffness matrix is denoted as K(ρ). For solving
the aforementioned optimization process we use the Optimality Criteria method.
Identical to work of [1, 15], we update our density design variables ρ as follows:

ρnew
e =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(ρmin, ρe − δρ)

if ρe B
η
e ≤ max(ρmin, ρe − δρ)

min(1, ρe + δρ)

if min(1, ρe + δρ) ≤ ρe B
η
e

ρe B
η
e

if max(ρmin, ρe − δρ) < ρe B
η
e < min(1, ρe + δρ)

(5.0.1)

where the element density ρe is our design variable, δρ is a non-negative increment
of design variable, and the exponent η = 1/2 is a numerical damping coefficient.
The update value Be is given by the optimality condition:
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Bη
e = −∂c/∂ρe

λ∂V/∂ρe
(5.0.2)

where λ is a Lagrangian multiplier that we obtain by applying a bi-section algorithm.
From the equation (5.0.2) we compute the sensitivity of the objective function as:

∂c

∂ρe
= −p(ρe)

p−1u�
e K0ue (5.0.3)

∂V

∂ρe
= 1. (5.0.4)

6 Imposing Dirichlet Boundary Conditions

With the use of non-conformal hexahedral elements, as typically used in topology
optimization problems, the challenge of accurately imposing boundary conditions
arises. Different from tetrahedral meshes that conform the boundary, hexahedral
meshes are embedding the boundary. Hence, it is necessary to enforce Dirichlet
boundary conditions in a weak sense. By adding the terms to the weak formulation
of the elasticity equation we impose values on the embedded boundary. Identical
to the work of [3, 18], the strong formulation of the linear elasticity problem is
transformed into the weak form using the principle of minimum of potential energy.
The total potential energy Πtot of the body at rest is the sum of the internal Πint and
the external Πext potential energy:

Πtot = Πint + Πext (6.0.1)

where

Πint = 1

2

∫

Ω

ε(u) : C : ε(u)dΩ (6.0.2)

Πext =
∫

Ω

u · fdΩ +
∫

ΓN

u · tdΓ. (6.0.3)

After finding the first variation of the total potential energy, and setting it to zero, we
obtain the weak formulation:

∫

Ω

ε(v) : C : ε(u)dΩ =
∫

Ω

v · fdΩ +
∫

ΓN

v · tdΓ (6.0.4)

where v are the test functions and u are the shape functions.
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6.1 Nitsche Terms

Following the works of [3, 6, 18] constraint potentials are added to the total energy
potential Πtot . The Nitsche constraint potential is obtained by using a combination
of Langrange Multiplier Method and Penalty Method:

ΠLagrange =
∫

ΓD

λ · (u − û)dΓ (6.1.1)

ΠPenalty = 1

2
· β

∫

ΓD

(u − û)2dΓ (6.1.2)

where λ is defined as in [18]:

λ = −C : ε(u) · n. (6.1.3)

The β from equation (6.1.2) is typically chosen [6] as the ratio of the area of the
embedded surfaceΓe and the volume of the partial hexahedron He, cut by the embed-
ded surface:

β ≥ measure(Γe)

measure(He)
. (6.1.4)

Having added the constraint energy potentials (6.1.1) and (6.1.2) to the total
potential energy, we find the minimum of the potential by setting the first variation
to zero. Hence we obtain the weak formulation with the Nitsche terms:

∫

Ω

ε(u) : C : ε(u)dΩ −
∫

ΓD

(ε(v) : C) · n · udΓ − (ε(u) : C) · n · vdΓ + β

∫

ΓD

v · udΓ

=
∫

Ω

v · fdΩ +
∫

ΓN

v · tdΓ −
∫

ΓD

(ε(v) : C) · n · ûdΓ +
∫

ΓD

v · ûdΓ. (6.1.5)

After discretization [18], we have the following formulation for a hexahedral
element with the embedded interface:

∫

Ωe

B�
e CBedΩ −

∫

Γ e
D

B�
e C · n · NdΓ −

∫

Γ e
D

N� · n� · CBedΓ + β

∫

ΓD

N� · NdΓ

=
∫

Ω

N� · fdΩ +
∫

ΓN

N� · tdΓ −
∫

ΓD

B�
e C · n · ûdΓ +

∫

ΓD

N� · ûdΓ.

(6.1.6)

Additional terms in this equation with respect to the original discretization are used
to enforce Dirichlet boundary conditions by modifying the original system of linear
equations.
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7 Results

In this section we intend to present some of the results computed with the help of
our topology optimization tool. All of the following simulations were carried out on
a machine with Intel Core i7-4710HQ processor running at 2.5 GHz, RAMmemory
of 8GB, and commodity graphics card GeForce GTX 860M with 640 CUDA cores
and 4 GB of GDDR5 memory.

7.1 GE Challenge

General Electric (GE) raised an open challenge [9] where a jet engine bracket was
to be optimized to withstand the working loads while having minimum mass. Ten
selected designs were produced from a titanium alloy using a direct metal laser
melting (DMLM) machine, which uses a laser beam to fuse layers of metal powder
into a final shape [9]. Afterwards, the parts were sent to the destruction testing. We
wish to present our design solution which resembles some of the winning designs.

Initial geometry shown in Fig. 1 is discretized with the help of approximately
950,000 hexahedral elements. Topology optimization on GPU was carried out in
14.4 s for the total of 9 iterations. Performing FEM analysis on average took 0.9 s.
Optimized topology is illustrated in Fig. 2.

7.2 Bridge Design

For a design domain of a rectangular cuboid shape, subjected to the forces acting
perpendicular to the mid-plane of the design domain, we obtain the optimal bridge

Fig. 1 Initial design of jet
engine bracket provided by
the GE challenge [9]
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Fig. 2 Jet engine bracket, part of theGE challenge [9], optimizedwith volume fraction ofα = 0.35.
The initial geometry is shown as a transparent body

Fig. 3 Optimal topology of a bridge



Topology Optimization Using GPGPU 563

Fig. 4 Cantilever optimized
for volume fraction α = 0.35

Fig. 5 Cube embedded
within the hexahedral mesh

topology which is illustrated in Fig. 3a. Optimization domain was discretized using
400,000 hexahedral elements, and simulation was carried out in 10.32 s. For a com-
parison, in the work [16] for a similar test case of mid-plane loaded bridge with
113,000 degrees of freedom, the author reported execution time of 36.2 s when using
GPU. With our solver we achieved better execution time for approximately 4 times
higher mesh resolution.

Another bridge structure is shown in Fig. 3b. It was modelled using 465,000
hexahedral elements. The simulation was carried out in only 6.5 s.
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Fig. 6 Different approaches for enforcing boundary conditions at the interface of the elements cut
by the cube. The vertical axis denotes the displacement along z axis. The horizontal axis denotes z
coordinate of the cube hexahedral mesh

7.3 Cantilever

In this example we consider cantilever discretized using 740,000 hexahedral ele-
ments, and optimized in 13.8 s. The resulting topology is shown in Fig. 4. For a
similar case of a loaded cantilever in work [2], discretized with 245,760 elements,
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authors reported solution time of approximately 3.9h. In another variation of a loaded
cantilever in work [16], the author reported computing time of 4min for 324,000 ele-
ments when using GPU.

7.4 Dirichlet Boundary Conditions

We demonstrate the results with imposed zero Dirichlet boundary conditions by
the Nitsche method on a cube object. For this test case the cube with dimensions
2.5 × 2.5 × 2.5 mm is discretized with 6 hexahedral elements in each direction and
of side length 0.5 mm. Evenly distributed vertical forces are acting on the upper
surface of the cube. As it can be seen in Fig. 5, the cube is embedded within the
hexahedral mesh.

Zero Dirichlet boundary condition is imposed on embedded bottom surface of the
cube. Figure6a shows that zero displacement along z axis is located exactly at the
midpoint of the hexahedral element when using the Nitsche method. On the other
hand, when we use a strong method that assigns the same value to all the nodes of the
boundary elements, displacement is constant across the whole hexahedral element
as shown in Fig. 6b.

Thus, we observe that Nitsche method allows us to prescribe boundary conditions
for boundary non-conforming meshes in a much more precise way compared to the
strong method. As we have seen in the example where our mesh did not conform
to the boundary, with the help of Nitsche method we were able to enforce zero
displacement exactly at the intersection of the hexahedral elements and the Dirichlet
boundary of the cube.
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