®

Check for
updates

VeriAbs: Verification by Abstraction

and Test Generation
(Competition Contribution)

Priyanka Darke®) Sumanth Prabhu, Bharti Chimdyalwar, Avriti Chauhan,
Shrawan Kumar, Animesh Basakchowdhury, R. Venkatesh, Advaita Datar,
and Raveendra Kumar Medicherla

Tata Research Development and Design Centre, Pune, India
{priyanka .darke,sumanth.prabhu,bharti.c,avriti.chauhan,shrawan.kumar,
a.basakchowdhury,r.venky,advaita.datar,raveendra.kumar}@tcs.com

Abstract. VeriAbs is a portfolio software verifier for ANSI-C programs.
To prove properties with better efficiency and scalability, this version
implements output abstraction with k-induction in the presence of resets.
VeriAbs now generates post conditions over the abstraction to find invari-
ants by applying Z3’s tactics of quantifier elimination. These invariants
are then used to generate validation witnesses. To find errors in the
absence of known program bounds, VeriAbs searches for property vio-
lating inputs by applying random test generation with fuzz testing for a
better scalability as compared to bounded model checking.

1 Verification Approach

Background. VeriAbs has implemented abstract acceleration [5] and k-
induction techniques to scale Bounded Model Checking (BMC) for programs
with loops of large or unknown bounds. VeriAbs abstracts such loops to loops of
known small bounds, which can be proved by BMC. This abstraction is achieved
by accelerating selected variables processed inside loops. Further, VeriAbs applies
incremental k-induction to improve precision. Loops processing arrays of large
and unknown sizes are substituted by abstract loops that execute a small non-
deterministically chosen sequence of original loop iterations. The idea is based
on the concept of loop shrinkability [10].

1.1 Tool Enhancements

For SV-COMP 2018, VeriAbs has been supplemented with an efficient imple-
mentation of output abstraction to prove properties, random test generation
with fuzzing to find errors, and witness generation.

Output Abstraction. The SV-COMP 2017 version of VeriAbs cannot precisely
validate programs with loops in which all variables are modified with non-linear

P. Darke—Jury member.

© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 457-462, 2018.
https://doi.org/10.1007/978-3-319-89963-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_32&domain=pdf

458 P. Darke et al.

arithmetic expressions or resets. For such programs, the current version applies
an improved output abstraction [13] that simply replaces the corresponding loop
with non-deterministic assignments to all the modified variables.

Search for Property Violating Inputs. In order to alleviate the lack of
abstraction refinement, VeriAbs adopts an approach to search for a property
violating input. To this end, it uses fuzz testing to search for the input that
reaches the error location. Fuzz testing is a testing technique that aims to uncover
run-time errors by executing the target program with a large number of inputs
generated automatically and systematically. Grey-box fuzzing [3] is a fuzz testing
technique that uses a light weight instrumentation to observe the target program
behavior on a test run. It uses this information to generate new test inputs that
might exhibit new program behaviors. VeriAbs uses American Fuzzy Lop (AFL-
fuzz) [12] as the fuzz testing tool.

Witness Generation. The previous version of VeriAbs used CPAchecker [2]
to generate validation witnesses from abstract programs. The SV-COMP 2018
version has implemented techniques for generation of both correctness and error
witnesses. If VeriAbs concludes safety of the input program, it generates the cor-
rectness witness with loop invariants. These invariants are generated by comput-
ing the strongest postcondition equation using methods presented in [8], except
for loops where the loop acceleration information is used instead. These invari-
ants can have quantifiers and non-program variables. However, SV-COMP 2017
witness validators recognize only those invariants that are expressed as C expres-
sions in program variables. VeriAbs uses Z3 [6] to eliminate quantifiers and non-
program variables from the invariants. These invariants are added to the control
flow automaton generated by CPAchecker to generate the validation witness.

The error witness generation technique is decided based on the strategy that
was used to falsify the input program. When VeriAbs decides that the input
program is unsafe by fuzz testing (i.e., using AFL-fuzz [12]), it generates a vio-
lation witness with a valuation of variables at the program points that assign
non-deterministic values to program variables. This is achieved by replaying
the execution that caused the property violation on an instrumented input pro-
gram. This instrumented program prints the aforementioned valuation. In order
to avoid file latency this instrumented program is only used to replay error exe-
cution. The values of variables thus obtained are used to generate error witness.
On the other hand, if input program was decided to be unsafe by using BMC,
then corresponding error witness is used.

Array Loop Abstraction. We abstract loops that process arrays of large or
unknown sizes having quantified property, using the method based on the idea
of loop shrinkability [10]. We call an array processing loop as k-shrinkable when
the original program is guaranteed to be correct if execution of every sequence
of k iterations of the original loop results in property, which is projected to
the chosen sequence, being satisfied. A k-shrinkable loop, is replaced with an
abstract loop that executes the non-deterministically chosen sequence of k iter-
ations of the original loop and the property is also translated to be checked

VeriAbs: Verification by Abstraction and Test Generation 459

over array elements corresponding to the chosen sequence of iterations only. The
k-shrinkability criterion ensures that if the program is incorrect then the trans-
lated property will get violated for some sequence of k iterations, in the abstract
program.

2 Verification Process and Software Architecture

The verification process of VeriAbs is shown in Fig. 1. VeriAbs passes the input
C file to a Tata Consultancy Services (TCS) [1] in-house C front end to generate
the intermediate representation (IR) of the program. It then analyzes this IR
using PRISM, a TCS in-house program analysis framework [9] to perform the
abstractions and instrumentation. It uses C Bounded Model Checker (CBMC) [4]
version 5.8 with MINISAT [7] to validate the abstraction or the original program
of known bounds. VeriAbs generates correctness witnesses by computing loop
invariants using strongest-postcondition. It uses Z3 version 4.5.1 to eliminate
quantifiers as SV-COMP requires invariants to be expressed as C expressions.
These simplified invariants are added to the control flow automaton generated
by CPAchecker version 1.6.1 [2]. VeriAbs uses CBMC version 5.8 for generating
error witnesses. For fuzz testing, VeriAbs uses AFL-fuzz [12] version 2.35b. It
invokes CBMC and AFL-fuzz sequentially, for program falsification.

simplified loop invariants
Validation
[1 ¢ proved 5
Invariant Bounded Model Checker generation
g ion & —>| Verification
c proghram simplification & ex over rest:" with
wit . . witness
. abstract ¢ violated in the
property /]\ refinement rogram . Violation
& Loop and prog original program y
Array . o Fuzz generation
i abstract Reflqemen_t using ot Trace found
program kinduction esting | _4 violated>

Fig. 1. The verification process of VeriAbs - enhancements are highlighted

The SV-COMP 2018 version of VeriAbs first analyzes every loop to check if
it contains some linear modifications to numerical variables so that they can be
precisely validated by Loop Abstraction for BMC (LABMC) [5]. If this check
passes, it applies a range analysis [11] to identify ranges of those variables. On
the other hand, when all variables are non-linearly modified a simpler output
abstraction is applied. If the loop reads or modifies arrays, then it applies array
loop abstraction as explained in Sect. 1, and then applies BMC to validate the
abstraction. To find errors, VeriAbs uses the new program instrumentation for
violation witness generation and grey-box fuzzing with AFL to generate wit-
nesses for such programs.

460 P. Darke et al.

3 Strengths and Weaknesses

The main strength of VeriAbs is that it is sound. All transformations imple-
mented by the tool are over-approximations. In case of CBMC, the tool pro-
vides an option (unwinding-assertions) which ensures sufficient unwinding for
proving the property. Hence if the tool reports that a property holds then it
indeed holds. Another key strength is that it transforms all loops in a program
to abstract loops with a known finite number of iterations, enabling the use of
bounded model checkers for property proving. The main weakness of the tool is
that it does not implement a refinement process that is well suited to find errors.
But it can find errors using fuzz testing and bounded model checking. VeriAbs
is dependent on Z3 for quantifier and non-program variable elimination from
correctness witness invariants, and it is dependent on CPAchecker for generat-
ing program automata. As compared to the results of SV-COMP 2017 version,
VeriAbs performed significantly better in Arrays, Loops, ECA, Sequentialized
and Recursive sub categories this year.

4 Tool Setup and Configuration

The VeriAbs SV-COMP 2018 executable is available for download at the
URL http://www.cmi.ac.in/~madhukar/veriabs/VeriAbs.zip. To install the tool,
download the archive, extract its contents, and then follow the installation
instructions in VeriAbs/INSTALL.txt. To execute VeriAbs, the user needs to
specify the property file of the respective verification category using the
-—property-file option. The witness is generated in the current working direc-
tory as witness.graphml. A sample command is as follows:
VeriAbs/scripts/veriabs --property-file ALL.prp example.c

VeriAbs is participating in the ReachSafety category. The BenchExec wrap-
per script for the tool is veriabs.py and veriabs.xml is the benchmark descrip-
tion file.

5 Software Project and Contributors

VeriAbs is a verification tool maintained by TCS Research [1], and parts of it
have been developed by the authors, Mohammad Afzal and other members of
this organization. We would like to thank Charles Babu M and other interns
who have contributed to the development of VeriAbs.

References

1. TCS Research. http://www.tcs.com/research/Pages/default.aspx

2. Beyer, D., Keremoglu, M.E.: CPACHECKER: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184-190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1.16

http://www.cmi.ac.in/~madhukar/veriabs/VeriAbs.zip
http://www.tcs.com/research/Pages/default.aspx
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16

10.

11.

12.
13.

VeriAbs: Verification by Abstraction and Test Generation 461

Bohme, M., Pham, V.-T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1032-1043. ACM (2016)

Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15
Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: DATE
(2015)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Eén, N., Soérensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B.,
Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 101-121. Springer,
London (2010). https://doi.org/10.1007/978-1-84882-912-1_5

Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded
code base: an experience. In: ISEC, pp. 99-102. ACM (2011)

Kumar, S., Sanyal, A., Venkatesh, R., Shah, P.: Property checking array programs
using loop shrinking. In: Tools and Algorithms for the Construction and Analysis
of Systems (2018)

Chimdyalwar, B., Kumar, S., Shrotri, U.: Precise range analysis on large industry
code. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 675-678. ACM (2013)

Zalewski, M.: American fuzzy lop. http://lcamtuf.coredump.cx/afl/

Darke, P., Khanzode, M., Nair, A., Shrotri, U., Venkatesh, R.: Precise analysis of
large industry code. In: Asia Pacific Software Engineering Conference, pp. 306-309
(2012)

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-1-84882-912-1_5
http://lcamtuf.coredump.cx/afl/

462 P. Darke et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	VeriAbs: Verification by Abstraction and Test Generation
	1 Verification Approach
	1.1 Tool Enhancements

	2 Verification Process and Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

