®

Check for
updates

Automatic Generation of Precise
and Useful Commutativity Conditions

Kshitij Bansal!®™) | Eric Koskinen?, and Omer Tripp!

! Google, Inc., New York, USA
kbk@google.com, trippo@google.com
2 Stevens Institute of Technology, Hoboken, USA
eric.koskinen@stevens.edu

Abstract. Reasoning about commutativity between data-structure
operations is an important problem with applications including par-
allelizing compilers, optimistic parallelization and, more recently,
Ethereum smart contracts. There have been research results on auto-
matic generation of commutativity conditions, yet we are unaware of any
fully automated technique to generate conditions that are both sound
and effective.

We have designed such a technique, driven by an algorithm that iter-
atively refines a conservative approximation of the commutativity (and
non-commutativity) condition for a pair of methods into an increasingly
precise version. The algorithm terminates if/when the entire state space
has been considered, and can be aborted at any time to obtain a par-
tial yet sound commutativity condition. We have generalized our work
to left- /right-movers [27] and proved relative completeness. We describe
aspects of our technique that lead to useful commutativity conditions,
including how predicates are selected during refinement and heuristics
that impact the output shape of the condition.

We have implemented our technique in a prototype open-source tool
SERvOIS. Our algorithm produces quantifier-free queries that are dis-
patched to a back-end SMT solver. We evaluate SERVOIS through two
case studies: (i) We synthesize commutativity conditions for a range of
data structures including Set, HashTable, Accumulator, Counter, and
Stack. (ii) We consider an Ethereum smart contract called BlockKing, and
show that SERVOIS can detect serious concurrency-related vulnerabilities
and guide developers to construct robust and efficient implementations.

1 Introduction

Reasoning about the conditions under which data-structure operations commute
is an important problem. The ability to derive sound yet effective commutativity

K. Bansal—This work was partially supported by NSF award #1228768. Author
was at New York University when part of the work was completed.

E. Koskinen—Support in part by NSF CCF Award #1421126, and CCF Award
#1618542. Some of the research was done while author was at IBM Research.

O. Tripp—Some of the research was done while author was at IBM Research.

© The Author(s) 2018
D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10805, pp. 115-132, 2018.
https://doi.org/10.1007/978-3-319-89960-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89960-2_7&domain=pdf

116 K. Bansal et al.

conditions unlocks the potential of multicore architectures, including paralleliz-
ing compilers [30,34], speculative execution (e.g. transactional memory [19]),
peephole partial-order reduction [37], futures, etc. Another important applica-
tion domain that has emerged recently is Ethereum [1] smart contracts: efficient
execution of such contracts hinges on exploiting their commutativity [14] and
block-wise concurrency can lead to vulnerabilities [31]. Intuitively, commutativ-
ity is an important property because linearizable data-structure operations that
commute can be executed concurrently: their effects do not interfere with each
other in an observable way. When using a linearizable HashTable, for example,
knowledge that put (x, ‘a’) commutes with get (y) provided that x # y enables
significant parallelization opportunities. Indeed, it’s important for the commu-
tativity condition to be sufficiently granular so that parallelism can be exploited
effectively [12]. At the same time, to make safe use of a commutativity condition,
it must be sound [23,24]. Achieving both of these goals using manual reasoning
is burdensome and error prone.

In light of that, researchers have investigated ways of verifying user-provided
commutativity conditions [22] as well as synthesizing such conditions automat-
ically, e.g. based on random interpretation [6], profiling [33] or sampling [18].
None of these approaches, however, meet the goal of computing a commutativ-
ity condition that is both sound and granular in a fully automated manner.

In this paper, we present a refinement-based technique for synthesizing com-
mutativity conditions. Our technique builds on well-known descriptions and rep-
resentations of abstract data types (ADTs) in terms of logical (Prey,, Post,,)
specifications [10,16,17,20,26,28] for each method m. Our algorithm iteratively
relaxes under-approximations of the commutativity and non-commutativity con-
ditions of methods m and n, starting from false, into increasingly precise ver-
sions. At each step, we conjunctively subdivide the symbolic state space into
regions, searching for areas where m and n commute and where they don’t.
Counterexamples to both the positive side and the negative side are used in the
next symbolic subdivision. Throughout this recursive process, we accumulate the
commutativity condition as a growing disjunction of these regions. The output
of our procedure is a logical formula ¢}!, which specifies when method m com-
mutes with method n. We have proven that the algorithm is sound, and can also
be aborted at any time to obtain a partial, yet useful [19,33], commutativity
condition. We show that, under certain conditions, termination is guaranteed
(relative completeness).

We address several challenges that arise in using an iterative refinement app-
roach to generating precise and useful commutativity conditions. First, we show
how to pose the commutativity question in a way that does not introduce addi-
tional quantifiers. We also show how to generate the predicate vocabulary for
expressing the condition ¢}, as well as how to choose the predicates through-
out the refinement loop. A further question that we address is how predicate
selection impacts the conciseness and readability of the generated commutativity
conditions. Finally, we have generalized our algorithm to left- /right-movers [27],
a more precise version of commutativity.

Automatic Generation of Precise and Useful Commutativity Conditions 117

We have implemented our approach as the SERVOIS tool, whose code and doc-
umentation are available online [2]. SERVOIS is built on top of the CVC4 SMT
solver [11]. We evaluate SERvOIS through two case studies. First, we generate
commutativity conditions for a collection of popular data structures, including
Set, HashTable, Accumulator, Counter, and Stack. The conditions typically com-
bine multiple theories, such as sets, integers, arrays, etc. We show the conditions
to be comparable in granularity to manually specified conditions [22]. Second,
we consider BlockKing [31], an Ethereum smart contract, with its known vulner-
ability. We demonstrate how a developer can be guided by SERVOIS to create a
more robust implementation.

Contributions. In summary, this paper makes the following contributions:

— The first sound and precise technique to automatically generate commutativ-
ity conditions (Sect.5).

— Proof of soundness and relative completeness (Sect. 5).

— An implementation that takes an abstract code specification and automati-
cally generates commutativity conditions using an SMT solver (Sect.6).

— A novel technique for selecting refinement predicates that improves scalability
and the simplicity of the generated formulae (Sect.6).

— Demonstrated efficacy for several key data structures as well as the BlockKing
Ethereum smart contract [31] (Sect. 7).

An extended version of this paper can be found in [8].

Related Work. The closest to our contribution in this paper is a technique
by Gehr et al. [18] for learning, or inference, of commutativity conditions based
on black-box sampling. They draw concrete arguments, extract relevant predi-
cates from the sampled set of examples, and then search for a formula over the
predicates. There are no soundness or completeness guarantees.

Both Aleen and Clark [6] and Tripp et al. [33] identify sequences of actions
that commute (via random interpretation and dynamic analysis, respectively).
However, neither technique yields an explicit commutativity condition. Kulkarni
et al. [25] point out that varying degrees of commutativity specification precision
are useful. Kim and Rinard [22] use Jahob to verify manually specified commu-
tativity conditions of several different linked data structures. Commutativity
specifications are also found in dynamic analysis techniques [15]. More distantly
related is work on synthesis of programs [32] and of synchronization [35,36].

2 Example

Specifying commutativity conditions is generally nontrivial and it is easy to miss
subtle corner cases. Additionally, it has to be done pairwise for all methods. For
ease of illustration, we will focus on the relatively simple Set ADT, whose state
consists of a single set S that stores an unordered collection of unique elements.
Let us consider one pair of operations: (i) contains(z)/bool, a side-effect-free
check whether the element z is in S; and (ii) add(y)/bool adds y to S if it is

118 K. Bansal et al.

not already there and returns true, or otherwise returns false. add and contains
clearly commute if they refer to different elements in the set. There is another
case that is less obvious: add and contains commute if they refer to the same
element e, as long as in the pre-state e € S. In this case, under both orders of
execution, add and contains leave the set unmodified and return false and true,
respectively. The algorithm we describe in this paper completes within a few
seconds, producing a precise logical formula ¢ that captures this commutativity
condition, i.e. the disjunction of the two cases above: p = x # yV(z = yAx € S).
The algorithm also generates the conditions under which the methods do not
commute: ¢ =z =y Ax ¢ S. These are precise, since ¢ is the negation of @.

A more complicated commutativity condition is generated by our tool SERVOIS
for Ethereum smart contract BlockKing. Method enter(valy, sendry, bk;...) (Fig. 3,
Sect. 7) does not commute with itself enter(valy, sendry, bks...) iff:

val; > 50 A valy > 50 A sendry # sendrs
\/ ¢ val; > 50 Avaly > 50 A sendr; = sendra A valy # valg
valy > 50 A valy > 50 A sendr; = sendry A val; = valy A bky # bky

This disjunction enumerates the non-commutativity cases and, as discussed in
Sect. 7, directly identifies a vulnerability.

Capturing precise conditions such as these by hand, and doing so for many
pairs of operations, is tedious and error prone. This paper instead presents a
way to automate this. Our algorithm recursively subdivides the state space via
predicates until, at the base case, regions are found that are either entirely com-
mutative or else entirely non-commutative. Returning to our Set example, the
conditions we incrementally generate are denoted ¢ and @, respectively. The
following diagram illustrates how our algorithm proceeds to generate the com-
mutativity conditions for add and contains (abbreviated as m and n).

fom e 1=y Hy = x=y A xeS
valid(Hy=> m X n)> @ =false V (X #y)
Ko = x=0,y=0,5=T} || v Gy 75

Ko = 00020820} |)y ={x=0,=0,5={0}}|_p|H') =x=y A xeS 7 =false v

0y 15-(0}} s valid(H'y=> m¥ n) (= A x&5)

H'| =x#y
valid(H’l: m X n)

I

In this diagram, each subsequent panel depicts a partitioning of the state space
into regions of commutativity () or non-commutativity (). The counterexam-
ples Xc, Xnc give values for the arguments x, y and the current state S.

We denote by H the logical formula that describes the current state space
at a given recursive call. We begin with Hy = true, ¢ = false, and ¢ = false.
There are three cases for a given H: (i) H describes a precondition for m and n
in which they always commute; (ii) H describes a precondition for m and n in
which they never commute; or (4ii) neither of the above. The latter case drives
the algorithm to subdivide the region by choosing a new predicate.

Znc

Automatic Generation of Precise and Useful Commutativity Conditions 119

We now detail the run of this refinement loop on our earlier Set example.
We elaborate on the other challenges that arise in later sections. At each step of
the algorithm, we determine which case we are in via carefully designed valid-
ity queries to an SMT solver (Sect.4). For Hy, it returns the commutativity
counterexample: x. = {z = 0,y = 0,5 = 0} as well as the non-commutativity
counterexample xn. = {# = 0,y = 1,5 = {0}}. Since, therefore, Hy = true
is neither a commutativity nor a non-commutativity condition, we must refine
H, into regions (or stronger conditions). In particular, we would like to perform
a useful subdivision: Divide Hy into an H; that allows y. but disallows xpc,
and an H; that allows . but not y.. So we must choose a predicate p (from
a suitable set of predicates P, discussed later), such that Hy A p = x. while
Hy A —p = xne (or vice versa). The predicate x = y satisfies this property. The
algorithm then makes the next two recursive calls, adding p as a conjunct to H, as
shown in the second column of the diagram above: one with Hy = trueAx =y
and one with H{ = true A x # y. Taking the H] case, our algorithm makes
another SMT query and finds that # y implies that add always commutes
with contains. At this point, it can update the commutativity condition ¢, let-
ting ¢ := ¢V Hj, adding this H{ region to the growing disjunction. On the other
hand, H; is neither a sufficient commutativity nor a sufficient non-commutativity
condition, and so our algorithm, again, produces the respective counterexamples:
Xe ={x =0,y =0,5 =0} and xpn. = {z = 0,y = 0,5 = {0}}. In this case,
our algorithm selects the predicate x € .S, and makes two further recursive calls:
one with Hy = 2 = y Ax € S and another with H) =2 = y Az ¢ S. In this
case, it finds that Hs is a sufficiently strong precondition for commutativity,
while H) is a strong enough precondition for non-commutativity. Consequently,
H, is added as a new conjunct to ¢, yielding ¢ = 2 #yV (z = yAx € 5).
Similarly, ¢ is updated to be: ¢ = (x = y Az ¢ S). No further recursive calls
are made so the algorithm terminates and we have obtained a precise (complete)
commutativity /non-commutativity specification: ¢ V ¢ is valid (Lemma2).

Challenges and Outline. While the algorithm outlined so far is a relatively
standard refinement, the above generated conditions were not immediate. We
now discuss challenges involved in generating sound and useful conditions.

(Section4) A first question is how to pose the underlying commutativity
queries for each subsequent H in a way that avoids the introduction of addi-
tional quantifiers, so that we can remain in fragments for which the solver has
complete decision procedures. Thus, if the data structure can be encoded using
theories that are decidable, then the queries we pose to the SMT solver are
guaranteed to be decidable as well. Pre,,/Post,, specifications that are partial
would introduce quantifier alternation, but we show how this can be avoided by,
instead, transforming them into total specifications.

(Section 5) We have proved that our algorithm is sound even if aborted or if
the ADT description involves undecidable theories. We further show that termi-
nation implies completeness, and specify broad conditions that imply termina-
tion.

120 K. Bansal et al.

(Section 6) Another challenge is to prioritize predicates during the refinement
loop. This choice impacts not only the algorithm’s performance, but also the
quality /conciseness of the resulting conditions. Our choice of next predicate p
is governed by two requirements. First, for progress, p/—p must eliminate the
counterexamples to commutativity /non-commutativity due to the last iteration.
This may still leave multiple choices, and we propose two heuristics — called
simple and poke—with different trade-offs to break ties.

(Section 7) We conclude with an evaluation on a range of popular data struc-
tures and a case study on boosting the security of an Ethereum smart contract.

3 Preliminaries

States, Actions, Methods. We will work with a state space X', with decidable
equality and a set of actions A. For each oo € A, we have a transition function
(a) : ¥ — X. We denote a single transition as o —» ¢’. We assume that
each such action arc completes in finite time. Let T = (X, A, (o |)). We say
that two actions a1 and as commute [15], denoted oy <1 ag, provided that
(ai]) o (az) = (az) o (o). Note that < is with respect to T = (X, A, (). Our
formalism, implementation, and evaluation all extend to a more fine-grained
notion of commutativity: an asymmetric version called left-movers and right-
movers [27], where a method commutes in one direction and not the other.
Details can be found in [8]. Also, in our evaluation (Sect.7) we show left- /right-
mover conditions that were generated by our implementation.

An action a € A is of the form m(z)/7, where m, T and 7 are called a
method, arguments and return values respectively. As a convention, for actions
corresponding to a method n, we use § for arguments and § for return values.
The set of methods will be finite, inducing a finite partitioning of A. We refer to
an action, say m(a)/v, as corresponding to method m (where @ and @ are vectors
of values). The set of actions corresponding to a method m, denoted A,,, might
be infinite as arguments and return values may be from an infinite domain.

Definition 1. Methods m and n commute, denoted m > n provided that
vz g 75 m(Z)/F=xn(g)/s.

The quantification VZ7 above means Ym(z)/7 € A, i.e., all vectors of arguments
and return values that constitute an action in A,,.

Abstract Specifications. We symbolically describe the actions of a method
m as pre-condition Pre,, and post-condition Post,,. Pre-conditions are logical
formulae over method arguments and the initial state: [Pre,,] : — X — B.
Post-conditions are over method arguments, and return values, initial state and
final state: [Posty,] : @ — 7 — X — X — B. Given (Pre,,, Post,,) for every

method m, we define a transition system ¥ = (X, A, (o)) such that ¢ @, o
iff [Pres] @ o and [Post,,] a © o o'.

Since our approach works on deterministic transition systems, we have imple-
mented an SMT-based check (Sect. 7) that ensures the input transition system is

Automatic Generation of Precise and Useful Commutativity Conditions 121

deterministic. Deterministic specifications were sufficient in our examples. This is
unsurprising given the inherent difficulty of creating efficient concurrent imple-
mentations of nondeterministic operations, whose effects are hard to charac-
terize. Reducing nondeterministic data-structure methods to deterministic ones
through symbolic partial determinization [5,13] is left as future work.

Logical Commutativity Formulae. We will generate a commutativity con-
dition for methods m and n as logical formulae over initial states and the argu-
ments/return values of the methods. We denote a logical commutativity formula
as ¢ and assume a decidable interpretation of formulae: [¢] : (o, Z, 7,7, 3) — B.
(We tuple the arguments for brevity.) The first argument is the initial state.
Commutativity post- and mid-conditions can also be written [22] but here, for
simplicity, we focus on commutativity pre-conditions. We may write [¢] as ¢
when it is clear from context that ¢ is meant to be interpreted.

We say that ¢}, is a sound commutativity condition, and ¢}, a sound non-
commutativity condition resp., for m and n provided that

n

Vozyrs. [eh] o & § 7 5= m(Z)/F =< n(y)/s, and
VYozyrs. [¢n] o & § 7 5= —(m(Z)/F > n(y)/5), resp.

4 Commutativity Without Quantifier Alternation

Definition 1 requires showing equivalence between different compositions of poten-
tially partial functions. That is, (o) o (az2)) = (az)) o (a1 if and only if:

Yoo o1 012. (IOQI)O’O =01 N\ (|a2D0'1 =012 = dos. (‘O[QDO'O =03 N\ (IOL1|)O’3 =012
(and a symmetric case for the other direction)

Even when the transition relation can be expressed in a decidable theory, because
of V3 quantifier alternation in the above encoding (which is undecidable in gen-
eral), any procedure requiring such a check would be incomplete. SMT solvers
are particularly poor at handling such constraints.

We observe that when the transition system is specified as Pre,, and Post,,
conditions, and the Post,, condition is consistent with Pre,,, then it is possible
to avoid quantifier alternation. By consistent we mean that whenever Pre,,
holds, there is always some state and return value for which Post,, holds (i.e.
for which the procedure does not abort).

Va o. Prey(a,o) =true = 3o’ 7. Posty(a,7,0,0").

That is, the procedure terminates for every Pre,,, which holds in particular
for all of the specifications in the examples we considered (see Sect.7). This
allows us to perform a simple transformation on transition systems to a lifted
domain, and enforce a definition of commutativity in the lifted domain m < n
that is equivalent to Definition 1. This new definition requires only universal
quantification, and as such, is better suited to SMT-backed algorithms (Sect. 5).

122 K. Bansal et al.

Definition 2 (Lifted transition function). For ¥ = (X, A, (e), we lzft 53
to X =(2,A,(e]) where ¥ = X U {err}, err¢ X, and (af) : ¥ — %,

err if 6 =err
(Jadé =< (a)s if 6 € dom((«))
err otherwise

Intuitively, (o) wraps (« so that err loops back to err, and the (potentially
partial) («| is made to be total by mapping elements to err when they are
undefined in (J«f). It is not necessary to lift the actions (or, indeed, the methods),
but only the states and transition function. Once lifted, for a given state &y,
the question of some successor state becomes equivalent to all successor states
because there is exactly one successor state.

Abstraction. Pre-/post-conditions (Pre,,, Post,,) are suitable for specifications
of potentially partial transition systems. One can translate these into a new
pair (Pre,, Post,,) that induces a corresponding lifted transition system that
is total and remains deterministic. These lifted_specifications have types over
lifted state spaces: [[Prem]] T — Y — Band [[Postm]] T—7—Y—Y>B.
Our implementation performs this lifting via a translation denoted LIFT from
(Pres,, Posty,) to

ﬁﬁam(i‘, G) = true
G=err NG =err
Posty, (%,7,6,6") = \/{ & #err A Pre,,(Z,6) A&’ # err A\ Post,(Z,7,5,0")
G # err A= Pre,,(T,6) N6 =err

(We abuse notation, giving 6 as an argument to Pre,,, etc.) It is easy to see
that the lifted transition system induced by this translation (5, (e |)) is of the
form given in Definition2. In [8], we show how our tool transforms a counter
specification into an equivalent lifted version that is total.

We use the notation 1 to mean 1 but over lifted transition system %. Since
B is over total, determinsitic transition functions, o < s is equivalent to:

V6o. 60 #err = (Jaz]) (ou]) 60 = (ea]) (az]) 60 (1)

The equivalence above is in terms of state equality. Importantly, this is a univer-
sally quantified formula that translates to a ground satisfiability check in an SM'T
solver (modulo the theories used to model the data structure). In our refinement
algorithm (Sect.5), we will use this format to check whether candidate logical
formulae describe commutative subregions.

Lemma 1. m > n if and only if m s n. (All proofs in [8].)
5 Iterative Refinement

We now present an iterative refinement strategy that, when given a lifted abstract
transition system, generates the commutativity and the non-commutativity

Automatic Generation of Precise and Useful Commutativity Conditions 123

conditions. We then discuss soundness and relative completeness and, in Sects. 6
and 7, challenges in generating precise and useful commutativity conditions.

The refinement algorithm symbolically searches the state space for regions
where the operations commute (or do not commute) in a conjunctive manner,
adding on one predicate at a time. We add each subregion H (described conjunc-
tively) in which commutativity always holds to a growing disjunctive description
of the commutativity condition ¢, and each subregion H in which commutativ-
ity never holds to a growing disjunctive description of the non-commutativity
condition ¢.

The algorithm in Fig.1
begins by setting ¢ = false 1 RE_FINE%LR(vap) { R
and @ = false. REFINE begins | ° if valid(H = m 1 n) then
a symbolic binary search | 7 pi=¢VH, .
through the state space H, | * eIsNe if Vil'd(H = m ki n) then
starting from the entire state: ° ¢ =9V H;
H = true. It also may R A A
use a collection of pred- 7 let (Xc, Xnc) = counterexs. to |><1.and B
icates P (discussed later). | ° let p = CHSOSE(H=P’X0X"C) mn
At each iteration, REFINE g REFINE%(H Ap. P\{p});
checks whether the current H | '’ REFINER(H A =p, P\ {p});
represents a region of space | '’ } . ~
for which m and n always | 2% main { ¢ := false; @ = false;
commute: H = m 9 n |7 try { REFINE;! (true, P); }
(described below). If so, H | 4 catch (IntérruptedExn e) { skip; }
can be disjunctively added to | ° return(y, 9); }

. It may, instead be the case

that H represents a region Fig. 1. Algorithm for generating commutativity ¢
of space for which m and » and non-commutativity @.

never commute: H = m Xin.

If so, H can be disjunctively added to ¢. If neither of these cases hold, we have
two counterexamples. x. is the counterexample to commutativity, returned if the
validity check on Line 2 fails. y, is the counterexample to non-commutativity,
returned if the validity check on Line 4 fails.

We now need to subdivide H into two regions. This is accomplished by select-
ing a new predicate p via the CHOOSE method. For now, let the method CHOOSE
and the choice of predicate vocabulary P be parametric. REFINE is sound regard-
less of the behavior of CHOOSE. Below we give the conditions on CHOOSE that
ensure relative completeness, and in Sect.7 we discuss our particular strategy.
Regardless of what p is returned by CHOOSE, two recursive calls are made to
REFINE, one with argument H A p, and the other with argument H A —p. The
algorithm is exponential in the number of predicates. In Sect. 6 we discuss pri-
oritizing predicates.

The refinement algorithm generates commutativity conditions in disjunctive
normal form. Hence, any finite logical formula can be represented. This logical
language is more expressive than previous commutativity logics that, because

124 K. Bansal et al.

they were designed for run-time purposes, were restricted to conjunctions of
inequalities [25] and boolean combinations of predicates over finite domains [15].

Checking a Candidate H,. Our algorithm involves checking whether (H =
m X n) or (H = m X n). As shown in Sect.4, we can check whether H)
specifies conditions under which m < n via an SMT query that does not
introduce quantifier alternation. For brevity, we define:

valid(H. = msan) = vand(w’o Tyrs Hy(oo,2.5.m8) =)
m(z)/T n(y)/s 60 =n(y)/s m(z)/T &0
Above we assume as a black box an SMT solver providing valid. Here we have
lifted the universal quantification within < outside the implication.
We can similarly check whether H} is a condition under which m and n do
not commute. First, we define negative analogs of commutativity:

a1 &G Qo EVCATO 5’0 #err = (I]Oég”) (”Oéll]) (}0 7é (ﬂalﬂ) (”042”) (}0
mn =V yrs m(@)/rkn(y)/s

We thus define a check for when ¢7 is a non-commutativity condition with:

m

m(z)/7 n(y)/s 60 #n(g)/s m(T)/F &9

Theorem 1 (Soundness). For each REFINE, iteration: ¢ = m X1 n, and
@ =min.

valid(H? = m kan) = valid(vg@ T yrs. HY(60,%,9,7,5) = 6o err :>)

All proofs available in [8]. Soundness holds regardless of what CHOOSE returns
and even when the theories used to model the underlying data-structure are
incomplete. Next we show termination implies completeness:

Lemma 2. If REFINE]" terminates, then ¢ V @.

Theorem 2 (Conditions for Termination). REFINE!" terminates if 1.
(expressiveness) the state space X is partitionable into a finite set of regions
X, .., XN, each described by a finite conjunction of predicates 1;, such that
either v; = m X< n or ¢, = m &K n; and 2. (fairness) for every p € P,
CHOOSE eventually picks p (note that this does not imply that P is finite).

Note that while these conditions ensure termination, the bound on the number
of iterations depends on the predicate language and behavior of CHOOSE.

6 The SERrRvVOIS Tool and Practical Considerations

Input. We use an input specification language building on YAML (which
has parser and printer support for all common programming languages) with
SMTLIB as the logical language. This can be automatically generated relatively
easily, thus enabling the integration with other tools [10,16,17,20,26,28]. In [§],

Automatic Generation of Precise and Useful Commutativity Conditions 125

we show the Counter ADT specification, which was derived from the Pre and
Post conditions used in earlier work [22]. The states of a transition system
describing an ADT are encoded as list of variables (each as a name/type pair),
and each method specification requires a list of argument types, return type, and
Pre /Post conditions. Again, the Counter example can be seen in [8].

Implementation. We have developed the open-source SERVOIS tool [3], which
implements REFINE, LIFT, predicate generation, and a method for selecting pred-
icates (CHOOSE) discussed below. SERVOIS uses CVC4 [11] as a backend SMT
solver. SERVOIS begins by performing some pre-processing on the input tran-
sition system. It checks that the transition system is deterministic. Next, in
case the transition system is partial, SERVOIS performs the LIFT transformation
(Sect.4). An example of LIFT applied to Counter is in [8].

Next, SERvOIS automatically generates the predicate language (PGEN) in
addition to user-provided hints. If the predicate vocabulary is not sufficiently
expressive, then the algorithm would not be able to converge on precise com-
mutativity and non-commutativity conditions (Sect.5). We generate predicates
by using terms and operators that appear in the specification, and generating
well-typed atoms not trivially true or false. As we demonstrate in Sect. 7, this
strategy works well in practice. Intuitively, Pre and Post formulas suffice to
express the footprint of an operation. So, the atoms comprising them are an
effective vocabulary to express when operations do or do not interfere.

Predicate Selection (CHOOSE). Even though the number of computed pred-
icates is relatively small, since our algorithm is exponential in number of predi-
cates it is essential to be able to identify relevant predicates for the algorithm.
To this end, in addition to filtering trivial predicates, we prioritize predicates
based on the two counterexamples generated by the validity checks in REFINE.
Predicates that distinguish between the given counter examples are tried first
(call these distinguishing predicates). CHOOSE must return a predicate such that
Xec = H Apand xnc = H A —p. This guarantees progress on both recursive
calls. When combined with a heuristic to favor less complex atoms, this ensured
timely termination on our examples. We refer to this as the simple heuristic.

Though this produced precise conditions, they were not always very concise,
which is desirable for human understanding, and inspection purposes. We thus
introduced a new heuristic which significantly improves the qualitative aspect
of our algorithm. We found that doing a lookahead (recurse on each predicate
one level deep, or poke) and computing the number of distinguishing predicates
for the two branches as a good indicator of importance of the predicate. More
precisely, we pick the predicate with lowest sum of remaining number of distin-
guishing predicates by the two calls. As an aside, those familiar with decision tree
learning, might see a connection with the notion of entropy gain. This requires
more calls to the SMT solver at each call, but it cuts down the total number
of branches to be explored. Also, all individual queries were relatively simple
for CVC4. The heuristic converges much faster to the relevant predicates, and
produces smaller, concise conditions.

126 K. Bansal et al.

7 Case Studies

Common Data-Structures. We applied SERvVOIS to Set, HashTable, Accu-
mulator, Counter, and Stack. The generated commutativity conditions for these
data structures typically combine multiple theories, such as sets, integers and
arrays. We used the quantifier-free integer theory in SMTLIB to encode the
abstract state and contracts for the Counter and Accumulator ADTs. For Set,
the theory of finite sets [9] for tracking elements along with integers to track size;
for HashTable, finite sets to track keys, and arrays for the HashMap itself. For
Stack, we observed that for the purpose of pairwise commutativity it is sufficient
to track the behavior of boundedly many top elements. Since two operations can
at most either pop the top two elements or push two elements, tracking four
elements is sufficient. All evaluation data is available on our website [2].

Depending on the pair of methods, the number of predicates generated by
PGEN were (count after filtering in parentheses): Counter: 25-25 (12-12), Accu-
mulator: 1-20 (0-20), Set: 17-55 (17-34), HashTable: 18-36 (6-36), Stack: 41-61
(41-42). We did not provide any hints to the algorithm for this case study. On
all our examples, the simple heuristic terminated with precise commutativity
conditions. In Fig.2, we give the number of solver queries and total time (in
paren.) consumed by this heuristic. The experiments were run on a 2.53 GHz
Intel Core 2 Duo machine with 8 GB RAM. The conditions in Fig. 2 are those
generated by the poke heuristic, and interested reader may compare them with
the simple heuristic in [7]. On the theoretical side, our CHOOSE implementation
is fair (satisfies condition 2 of Theorem 2, as Lines 9-10 of the algorithm remove
from P the predicate being tried). From our experiments we conclude that our
choice of predicates satisfies condition 1 of Theorem 2.

Although our algorithm is sound, we manually validated the implementation
of SERVOIS by examining its output and comparing the generated commutativity
conditions with those reported by prior studies. In the case of Accumulator and
Counter, our commutativity conditions were identical to those given in [22]. For
the Set data structure, the work of [22] used a less precise Set abstraction, so we
instead validated against the conditions of [25]. As for HashTable, we validated
that our conditions match those by Dimitrov et al. [15].

The BlockKing Ethereum Smart Contract. We further validated our app-
roach by examining a real-world situation in which non-commutativity opens
the door for attacks that exploit interleavings. We examined “smart contracts”,
which are programs written in the Solidity programming language [4] and exe-
cuted on the Ethereum blockchain [1]. Eliding many details, smart contracts are
like objects, and blockchain participants can invoke methods on these objects.
Although the initial intuition is that smart contracts are executed sequentially,
practitioners and academics [31] are increasingly realizing that the blockchain
is a concurrent environment due to the fact the execution of one actor’s smart
contract can be split across multiple blocks, with other actors’ smart contracts
interleaved. Therefore, the execution model of the blockchain has been compared

Automatic Generation of Precise and Useful Commutativity Conditions

127

[m@ | [n(y [Simple] Poke | on (Using Poke) ‘
Qs (time) Qs (time)
decrement < decrement| 3 (0.1) 3 (0.1)[true
increment > decrement| 10 (0.3)| 34 (0.9)|~(0 =¢)
decrement > increment| 3 (0.1) 3 (0.1)|true
. |decrement > reset 2 (0.1) 2 (0.1) |false
8ldecrement < zero 6 (0.1)] 26 (0.6)|=(1=c)
S|increment > increment| 3 (0.1) 3 (0.1)|true
8 increment < reset 2 (0.0) 2 (0.1) |false
increment < zero 10 (0.3)| 34 (0.8)|=(0=¢)
reset D reset 3(0.1) 3 (0.1)|true
reset < zero 9 (0.2)| 30 (0.6)[0=c
zero X zero 3(0.1) 3 (0.1)|true
g| increase bdincrease | 3 (0.1) 3 (0.1)[true
3| increase bdread 13 (0.3)| 28 (0.6)|c+x1 =¢
< read X read 3 (0.0) 3 (0.0)|true
add 1 add 10 (04) 140 (44) (y1 =z1 ANy € S) \Y% —‘(’yl = 2171)
add p< contains |10 (0.4)| 122 (3.6)|z1 € SV (—(z1 € S) A =(y1 = x1))
add X getsize 6 (0.2)] 31(0.9)|z1 €8
add X remove 6 (0.2)] 66 (2.2)|~(y1 = z1)
%| contains bd contains | 3 (0.1) 3 (0.1)|true
0| contains I getsize 3(0.1) 3 (0.1)|true
contains X remove 17 (0.5)| 160 (4.8)|S\ {z1} ={y1} V(.. Ayr € {z1}) V...
getsize I getsize 3(0.1) 3 (0.1) [true
getsize < remove 13 (0.3)| 37 (1.0)|=(y1 € S)
remove x| remove 21 (0.7)| 192 (6.4)|S\{v1} ={z1} V(.. Ay1 € {z1}) V...
get < get 3(0.1)] 3 (0.1)|true
get < haskey 3(0.1) 3 (0.1) [true
put > get 13 (0.4)| 74 (2.3)|(H[z1 < 2] = H Ay1 € keys)
V(=~(H[zy « 32] = H) A=(y1 = 21))
get > put 10 (0.3)| 48 (1.5)|[H[y1] = ya] V [=(H[y1] = y2) A ~(y2 = @1)]
remove > get 3(0.1) 3 (0.1)|true
9 get > remove 13 (0.4)| 40 (1.2)|=(y1 = =1)
2 get > size 3(0.1) 3 (0.1)|true
E haskey < haskey 3(0.1) 3 (0.1)|true
%l haskey X put 10 (0.3)| 52 (1.6)|[y1 € keys] V [=(y1 € keys) A =(y1 = x1)]
T| haskey < remove 17 (0.5)| 44 (1.3)|[z1 € keys A =(y1 = z1)] V [~(z1 € keys)]
haskey < size 3(0.1) 3 (0.1)|true
put < put 24 (0.9)|357 (13.5)|... V (=(H[y1] = y2) A =(y1 = 1))
put < remove 6 (0.3)] 33 (1.2)|~(y1 = x1)
put > size 6 (0.2)| 23 (0.8)|z1 € keys
remove X remove 21 (0.8)| 192 (6.9)|[keys \ {z1} = {y1}] V [...]
remove X size 13 (0.4)| 37 (1.1)|—~(x1 € keys)
size M size 3(0.1) 3 (0.1)|true
clear < clear 3(0.1) 3 (0.1)[true
clear i pop 2 (0.1) 2 (0.1) |false
A clear i push 2 (0.1) 2 (0.1) |false
g pop B pop 6 (0.2)| 20 (0.6)|nextToTop = top
n push > pop 72 (2.1)| 115 (3.5)|~(0 = size) A top = x1
pop > push 34 (0.9)| 76 (2.2)|y1 = top
push X push 13 (0.5)] 20 (0.7)|y1 = =1

Fig. 2. Automatically generated commutativity conditions (¢y'). Right-moverness ()
conditions identical for a pair of methods denoted by <. Qs denotes number of SMT

queries. Running time in seconds. Longer conditions have been truncated, see [7].

128 K. Bansal et al.

1 int warrior, warriorGold, warriorBlock, callback_result, king, kingBlock;

2 void enter(int val, int sendr, ,) {
s if (val < 50) { send(sendr,val); return; }
4 warrior = sendr; warriorGold = val; warriorBlock = // write global variables

rpc_call(” random number generator”,__callback,res);

v

6 // ’ Another call to enter() can execute while waiting for RPC ‘

7 function __callback(int res_.RN) {

8 // ’ Most recent writer to warrior now reaps benefit of every callback ‘
9 if (modFun(warriorBlock) == res_RN) {

10 king = warrior; kingBlock = warriorBlock; // winner } } }

Fig. 3. Simplified code for BlockKing in a C-like language.

to that of concurrent objects [31]. Unfortunately, many smart contracts are not
written with this in mind, and attackers can exploit interleavings to their benefit.

As an example, we study the BlockKing smart contract. Figure 3 provides a
simplification of its description, as discussed in [31]. This is a simple game in
which the players—each identified by an address sendr—participate by making
calls to BlockKing.enter(), sending money val to the contract. (The grey variables
are external input that we have lifted to be parameters. bk reflects the caller’s
current block number and rnd is the outcome of a random number generation,
described shortly.) The variables on Line 1 are globals, writable in any call to
enter. On Line 3 there is a trivial case when the caller hasn’t put enough value
into the game, and the money is simply returned. Otherwise, the caller stores
their address and value into the shared state. A random number is then generated
and, since this requires complex algorithms, it is done via a remote procedure
call to a third-party on Line 5, with a callback method provided on Line 7. If the
randomly generated number is equal to a modulus of the current block number,
then the caller is the winner, and warrior’s (caller’s) details are stored to king
and kingBlock on Line 10.

Since random number generation is done via an RPC, players’ invocations
of enter can be interleaved. Moreover, these calls all write sendr and val to
shared variables, so the RPC callback will always roll the dice for whomever
most recently wrote to warriorBlock. An attacker can use this to leverage other
players’ investments to increase his/her own chance to win.

We now explore how SERVOIS can aid a programmer in developing a more
secure implementation. We observe that, as in traditional parallel programming
contexts, if smart contracts are commutative then these interleavings are not
problematic. Otherwise, there is cause for concern. To this end, we translated the
BlockKing game into SERVOIS format (see [8]). SERVOIS took 1.4s (on machine
with 2.4 GHz Intel Core i5 processor and 8 GB RAM) and yielded the following
non-commutativity condition for two calls to enter:

Automatic Generation of Precise and Useful Commutativity Conditions 129

enter(valy, sendry, bky, rndy) & enter(valg, sendra, bka, rnds) &
valy > 50 A valy > 50 A sendr; # sendrs

V < val; > 50 Avaly > 50 A sendr; = sendrg A valy # vals
val; > 50 A vals > 50 A sendr; = sendrs A val; = valy A bky # bkg

This disjunction effectively enumerates cases under which they contract calls do
not commute. Of particular note is the first disjunct. From this first disjunct,
whenever sendr; # sendrs, the calls will not commute. Since in practice sendry
will always be different from sendry (two different callers) and val; > 50 Avaly >
50 is the non-trivial case, the operations will almost never commute. This should
be immediate cause for concern to the developer.

A commutative version of BlockKing would mean that there are no interleav-
ings to be concerned about. Indeed, a simple way to improve commutativity is
for each player to write their respective sendr and val to distinct shared state,
perhaps via a hashtable keyed on sendr. To this end, we created a new ver-
sion enter_fixed (see [8]). SERVOIS generated the following non-commutativity
condition after 3.5s.

enter_fixed(vali,sendri, bki, rndy) & enter_fixed(vals, sendrz, bke, rndz) iff
val; > 50 A vala > 50 A val; = valz A bk # bka A sendr; = sendrs

\/ val; > 50 A valz > 50 A valy # valz A sendr; = sendrg
val; > 50 A valz > 50 A md(bks) = rndz A md(bk;) = rnd; A sendr; # sendrs

In the above non-commutativity condition, md is shorthand for modFun. In the
first two disjuncts above, sendr; = sendry which is, again, a case that will not
occur in practice. All that remains is the third disjunct where md(bks) = rnds and
md(bky) = rnd;. This corresponds to the case where both players have won. In
this case, it is acceptable for the operations to not commute, because whomever
won more recently will store their address/block to the shared king/kingBlock.

In summary, if we assume that sendr; # sendrs, the non-commutativity of
the original version is val; > 50 V valy > 50 (very strong). By contrast, the
non-commutativity of the fixed version is val; > 50 A valy > 50 A md(bky) =
rnds A md(bk;) = rnd;. We have thus demonstrated that the commutativity
(and non-commutativity) conditions generated by SERvOIS can help developers
understand the model of interference between two concurrent calls.

8 Conclusions and Future Work

This paper demonstrates that it is possible to automatically generate sound and
effective commutativity conditions, a task that has so far been done manually
or without soundness. Our commutativity conditions are applicable in a variety
of contexts including transactional boosting [19], open nested transactions [29],
and other non-transactional concurrency paradigms such as race detection [15],
parallelizing compilers [30,34], and, as we show, robustness of Ethereum smart
contracts [31]. It has been shown that understanding the commutativity of data-
structure operations provides a key avenue to improved performance [12] or ease
of verification [23,24].

130 K. Bansal et al.

This work opens several avenues of future research. For instance, leveraging
the internal state of the SMT solver (beyond counterexamples) in order to gener-
ate new predicates [21]; automatically building abstract representation or making
inferences such as one we made for the stack example; and exploring strategies
to compute commutativity conditions directly from the program’s code, without
the need for an intermediate abstract representation [34].

References

Ethereum. https://ethereum.org/

Servois homepage. http://cs.nyu.edu/~kshitij/projects/servois

Servois source code. https://github.com/kbansal/servois

Solidity programming language. https://solidity.readthedocs.io/en/develop/

Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.

Sci. 82, 253-284 (1991)

6. Aleen, F., Clark, N.: Commutativity analysis for software parallelization: letting
program transformations see the big picture. In: Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XII), pp. 241-252. ACM (2009)

7. Bansal, K.: Decision procedures for finite sets with cardinality and local theory
extensions. Ph.D. thesis, New York University, January 2016

8. Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and use-
ful commutativity conditions (extended version). CoRR, abs/1802.08748 (2018).
https://arxiv.org/abs/1802.08748

9. Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 82-98. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40229-1_7

10. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49-69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9_3

11. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1_14

12. Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T., Kohler, E.: The
scalable commutativity rule: designing scalable software for multicore processors.
ACM Trans. Comput. Syst. 32(4), 10 (2015)

13. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proceed-
ings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2011, Austin, TX, USA, 26-28 January 2011, pp. 399-410

2011

14.]()ickezson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, pp. 303-312. ACM, New York (2017)

15. Dimitrov, D., Raychev, V., Vechev, M.T., Koskinen, E.: Commutativity race detec-

tion. In: O’Boyle, M.F.P., Pingali, K. (eds.) ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI 2014, Edinburgh, United

Kingdom, 09-11 June 2014, p. 33. ACM (2014)

G o=

https://ethereum.org/
http://cs.nyu.edu/~kshitij/projects/servois
https://github.com/kbansal/servois
https://solidity.readthedocs.io/en/develop/
https://arxiv.org/abs/1802.08748
https://doi.org/10.1007/978-3-319-40229-1_7
https://doi.org/10.1007/978-3-319-40229-1_7
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

Automatic Generation of Precise and Useful Commutativity Conditions 131

Ernst, G.W., Ogden, W.F.: Specification of abstract data types in modula. ACM
Trans. Program. Lang. Syst. 2(4), 522-543 (1980)

Flon, L., Misra, J.: A unified approach to the specification and verification of
abstract data types. In: Proceedings of the Specifications of Reliable Software Con-
ference. IEEE Computer Society (1979)

Gehr, T., Dimitrov, D., Vechev, M.: Learning commutativity specifications. In:
Kroening, D., Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 307-323.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_18

Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly con-
current transactional objects. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP 2008) (2008)
Hoare, C.A.R.: Proof of correctness of data representations. In: Broy, M., Denert,
E. (eds.) Software Pioneers, pp. 385-396. Springer, New York (2002). https://doi.
org/10.1007/978-3-642-59412-0_24

Hu, Y., Barrett, C., Goldberg, B.: Theory and algorithms for the generation and
validation of speculative loop optimizations. In: Proceedings of the 2nd IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFM 2004),
pp- 281-289. IEEE Computer Society, September 2004

Kim, D., Rinard, M.C.: Verification of semantic commutativity conditions and
inverse operations on linked data structures. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, pp. 528-541. ACM (2011)

Koskinen, E., Parkinson, M.J.: The push/pull model of transactions. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2015, Portland, OR, USA, June 2015 (2015)

Koskinen, E., Parkinson, M.J., Herlihy, M.: Coarse-grained transactions. In:
Hermenegildo, M.V., Palsberg, J. (eds.) Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2010, pp.
19-30. ACM (2010)

Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the com-
mutativity lattice. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, pp. 542-555.
ACM (2011)

Leino, K.R.M.: Specifying and verifying programs in Spec#. In: Virbitskaite, .,
Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, p. 20. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70881-0_3

Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717-721 (1975)

Meyer, B.: Applying “design by contract”. IEEE Comput. 25(10), 40-51 (1992)
Ni, Y., Menon, V., Adl-Tabatabai, A., Hosking, A.L., Hudson, R.L., Moss, J.E.B.,
Saha, B., Shpeisman, T.: Open nesting in software transactional memory. In: Pro-
ceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2007, pp. 68-78. ACM (2007)

Rinard, M.C., Diniz, P.C.: Commutativity analysis: a new analysis technique for
parallelizing compilers. ACM Trans. Program. Lang. Syst. (TOPLAS) 19(6), 942—
991 (1997)

Sergey, 1., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner, M.,
Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y.A., Teague, V., Bracciali, A., Sala,
M., Pintore, F., Jakobsson, M. (eds.) FC 2017. LNCS, vol. 10323, pp. 478-493.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_30

https://doi.org/10.1007/978-3-319-21690-4_18
https://doi.org/10.1007/978-3-642-59412-0_24
https://doi.org/10.1007/978-3-642-59412-0_24
https://doi.org/10.1007/978-3-540-70881-0_3
https://doi.org/10.1007/978-3-319-70278-0_30

132

32.

33.

34.

35.

36.

37.

K. Bansal et al.

Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures. In:
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation PLDI 2008, pp. 136-148 (2008)

Tripp, O., Manevich, R., Field, J., Sagiv, M.: JAUNS: exploiting parallelism
via hindsight. In: Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2012, pp. 145-156. ACM,
New York (2012)

Tripp, O., Yorsh, G., Field, J., Sagiv, M.: HAWKEYE: effective discovery of
dataflow impediments to parallelization. In: Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, pp. 207-224 (2011)

Vechev, M.T., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, pp. 125-135 (2008)

Vechev, M.T., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchroniza-
tion. In: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2010, pp. 327-338 (2010)

Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382-396.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3-29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended

use

is not permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_29
http://creativecommons.org/licenses/by/4.0/

	Automatic Generation of Precise and Useful Commutativity Conditions
	1 Introduction
	2 Example
	3 Preliminaries
	4 Commutativity Without Quantifier Alternation
	5 Iterative Refinement
	6 The Servois Tool and Practical Considerations
	7 Case Studies
	8 Conclusions and Future Work
	References

