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Abstract δ-Hyperbolicity is a graph parameter that shows how close to a tree a
graph is metrically. In this work, we propose a method that reduces the size of the
graph to only a subset that is responsible for maximizing its δ-hyperbolicity using
the local dominance relationship between vertices. Furthermore, we empirically
show that the hyperbolicity of a graph can be found in a set of vertices that are
in close proximity and that concentrate in the core of the graph. We adopt two
core definitions each of which represents a different notion of vertex coreness.
The minimum-cover-set core, which is a transport-based core, and the k-core,
which is a density-based core. Our observations have crucial implications on
computing the δ-hyperbolicity of large graphs. (Parts of this work were published
in Alrasheed (On the δ-hyperbolicity of complex networks. In: Proceedings of the
IEEE/ACM international conference on advances in social networks analysis and
mining (ASONAM), 2016).)

1 Introduction

Due to their importance, topological properties of complex networks attract a lot
of research efforts. The goal is to exploit any hidden properties to increase the
efficiency of existing algorithms, as well as to propose new algorithms that are more
natural to the structure that a graph exhibits. Topological properties are either global
such as the graph’s diameter or local such as the structure of the neighborhood
of a vertex. A property that has been investigated recently is the δ-hyperbolicity
(negative curvature) of a graph since it has a major impact on its underlying
topology [21]. The δ-hyperbolicity (or simply hyperbolicity) measures how close
the metric structure of the graph is to the metric structure of the tree [17]. Generally,
the smaller the hyperbolicity the closer the graph is to a tree and, as a result, the

H. Alrasheed (�)
Algorithmic Research Laboratory, Department of Computer Science, Kent State University,
Kent, OH, USA
e-mail: halrashe@kent.edu

© Springer International Publishing AG, part of Springer Nature 2018
T. Özyer, R. Alhajj (eds.), Machine Learning Techniques for Online Social Networks,
Lecture Notes in Social Networks, https://doi.org/10.1007/978-3-319-89932-9_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89932-9_2&domain=pdf
mailto:halrashe@kent.edu
https://doi.org/10.1007/978-3-319-89932-9_2


24 H. Alrasheed

hyperbolicity property is more evident. Many real-world networks show a tree-like
structure with respect to their hyperbolicity [1, 3, 5, 7, 20, 21]. Trees and cliques
are 0-hyperbolic, and accordingly are considered hyperbolic graphs. On the other
hand, a cycle with n vertices is approximately n/4-hyperbolic and an n × n-grid is
(n − 1)-hyperbolic.

In hyperbolic graphs, it was observed that the traffic heavily concentrates on
a small set of vertices (the core of a graph) [21]. The core is defined using
multiple measures such as the betweenness centrality, the eccentricity centrality,
the closeness centrality, or any combination of these measures.

Global and local properties of a graph can be very different. For example, many
networks that do not show a tree-like structure globally (i.e., using global analysis
tools such as the δ-hyperbolicity) turned out to exhibit a tree-like structure when
they are analyzed locally. This phenomenon was explained by the presence of a
core-periphery structure [3, 21].

Let G = (V ,E) be a connected graph with distance function d defined as the
number of edges on a shortest path between a pair of vertices. Formally, the δ-
hyperbolicity can be defined using the four-point condition definition [17].

Definition 1 Given a graph G = (V ,E) and four vertices x, y, u, and v ∈ V with
d(x, y) + d(u, v) ≥ d(x, u) + d(y, v) ≥ d(x, v) + d(y, u), the hyperbolicity of the
quadruple x, y, u, v denoted as hb(x, y, u, v) is defined as

hb(x, y, u, v) = d(x, y) + d(u, v) − (d(x, u) + d(y, v))

2
.

and the δ-hyperbolicity of the graph is

hb(G) = max
x,y,u,v∈V

hb(x, y, u, v).

Finding the value of the δ-hyperbolicity is computationally very expensive even
when distributed computing techniques are employed [2]. From the four-point
definition, it is clear that the obvious algorithm requires O(n4) time, where n is
the number of vertices. The limitation of this algorithm is twofold. First, for large
networks, this algorithm is impractical and almost unachievable. Second, calculating
the hyperbolicity in dynamic networks, in which vertices constantly join and leave,
is costly even for small to medium size networks.

The hyperbolicity of a graph is highly affected by its topology. Any modification
of the graph may dramatically change its topology and accordingly its hyperbolicity.
For example, consider the removal of one edge in a cycle graph G (with hb(G) =
n/4). Upon this modification, the new hyperbolicity becomes hb(G) = 0. The
best known exact algorithm for calculating the hyperbolicity requires O(n3.69)

time using the (max,min) matrix multiplication [16]. Multiple algorithms were
proposed to reduce the size of the input graph. In [14], the authors propose exact
and approximation algorithms that restrict the number of considered quadruples to
those ones that may maximize the δ-hyperbolicity value. Moreover, they show that
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the hyperbolicity of a graph equals the maximum hyperbolicity over its bi-connected
components.

In [6], we propose a method that reduces the size of the input graph to only
a subset that is responsible for maximizing its hyperbolicity by analyzing the
local dominance relationship between vertices. Furthermore, we show that the
hyperbolicity of a graph can be found in a set of quadruples that are in close
proximity. In this work, we empirically show that this set concentrates in the core of
the graph. We adopt two core definitions each of which represents a different notion
of vertex coreness [18]. The minimum-cover-set core, which can be identified as a
transport-based core-periphery structure, and the k-core, which can be identified as a
density-based core-periphery structure. Our observations have crucial implications
on computing the δ-hyperbolicity of large graphs. We apply our ideas to a set of
real-world and artificial networks, and we show their suitability to compute the δ-
hyperbolicity value with only a fraction of the original calculations.

This paper is organized as follows. First, some basic notations that are used
in this work and the basic concept of δ-hyperbolicity are introduced. Section 1.3
describes the network datasets used in this paper and presents a summary of
their parameters. In Sect. 2, we present two methods that can reduce the number
of vertices and quadruples needed to compute the δ-hyperbolicity of graphs: the
dominance relationship and the p-δ-hyperbolicity. Then in Sect. 3, we show that the
δ-hyperbolicity of a graph concentrates in its core. The conclusions and future work
are discussed in Sect. 5.

1.1 Preliminaries

All graphs in this work are connected, finite, unweighted, and undirected. For a
graph G = (V ,E), the distance function d between every pair of vertices x and
y ∈ V , denoted as d(x, y), is defined as the number of edges in a shortest (x, y)-
path between them. The interval I (x, y) between a pair of vertices x and y includes
all vertices on the shortest paths between x and y, that is, I (x, y) = {u ∈ V :
d(x, u) + d(u, y) = d(x, y)}.

The eccentricity ecc(x) of a vertex x is the distance between x and a farthest
vertex y. The minimum and the maximum values of the eccentricity represent the
graph’s radius rad(G) and diameter diam(G), respectively. The center C(G) of a
graph G is formed by the set of vertices with minimum eccentricity, that is, C(G) =
{x ∈ V : ecc(x) = rad(G)}. The neighborhood of a vertex x is defined as N(x) =
{y ∈ V : xy ∈ E}, and the degree of a vertex x is degree(x) = |N(x)|.

A subgraph GX = (X,EX), where X ⊆ V and EX = {xy ∈ E : x, y ∈ X}, is
called the subgraph of G induced by X. An induced subgraph GX of a graph G is
isometric if the distance between any pair of vertices in GX is the same as that in G.



26 H. Alrasheed

1.2 δ-Hyperbolicity

Gromov [17] introduced the notion of hyperbolicity of metric spaces through several
definitions (the definitions were shown to be equal up to a constant factor [13]).
In this work, we use the four-point condition definition (Definition 1). A simple
unweighted graph G = (V ,E) naturally defines a metric space (V , d) on its vertex
set V . In graphs, δ-hyperbolicity measures how close metrically the structure of a
graph is to the structure of a tree.

The small δ-hyperbolicity property has been found in many real-world networks
[5, 7, 20, 21]. It has been shown that the diameter of a graph represents an upper
bound for its δ-hyperbolicity value.

Lemma 1 ([15, 22]) For any graph G with diameter diam(G) and hyperbolicity
hb(G), hb(G) ≤ diam(G)/2.

In many real-world networks, it was observed that a small number of quadru-
ples achieve the maximum hyperbolicity; therefore, the value of the average
δ-hyperbolicity is also important [5, 7, 20]. The average δ-hyperbolicity, denoted
as hbavg(G), is defined as

hbavg(G) =
∑

x,y,u,v∈V

hb(x, y, u, v)/

(|V |
4

)
.

1.3 Network Datasets

Throughout this work, we analyze a set of real-world networks belonging to various
domains. Because computing the hyperbolicity is computationally expensive, we
include a set of relatively small-sized networks. We also analyze several synthetic
networks with some known structures of roughly same sizes as the real-world
networks. All networks are unweighted and we ignore the directions of the edges.
We analyze the largest connected component of each network. See Table 1 for a
summary.

Social Networks We have examined the following four social networks: The Email
network (http://deim.urv.cat/~alexandre.arenas/data/welcome.htm) that represents
the e-mail interchanges between members of the university of Rovira i Virgili,
Tarragona. The DUTCH-ELITE network [8] which is a network data on the admin-
istrative elite in the Netherland. In the DUTCH-ELITE network, vertices represent
persons and organizations that are most important to the Dutch government (2-
mode network). An edge connects two vertices if the person vertex belongs to
the organization vertex. The Facebook network (https://snap.stanford.edu/data/)
represents the ego networks (the network of friendship between a user’s friends)
of 10 people. Two vertices (users) are connected if they are Facebook friends. The
EVA network [8] presents corporate ownership information as a social network. Two
vertices are connected with an edge if one is the owner of the other.

http://deim.urv.cat/~alexandre.arenas/data/welcome.htm
https://snap.stanford.edu/data/
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ős
-R

én
yi

(1
.6

)
E

rd
ős
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Internet Networks Each of those graphs represents the Autonomous Sys-
tems (AS) topology of the Internet. In each graph, a vertex represents an
autonomous system, and two vertices are connected if the two autonomous
systems share at least one physical connection. In this work, we examine
three AS graphs: AS-Graph-97, AS-Graph-99-April, and AS-Graph-99-July
(http://web.archive.org/web/20060506132945/; http://www.cosin.org) for which the
data was collected during November 1997, April 1999, and July 1999, respectively.

Erdős Rényi Random Graphs In an Erdős Rényi graph with n vertices, denoted
by Erdős-Rényi(p), every two vertices are independently connected with a fixed
probability p. Smaller values for p (1/n < p < log(n)/n ) result in very sparse
graphs. In contrast, larger p values yield dense graphs with very small diameters.
Sparser Erdős Rényi graphs exhibit a clear core-periphery structure compared to
dense Erdős Rényi graphs [3].

Since we are looking for graphs with large diameters to clearly see the potential
of our method in calculating the hyperbolicity of a graph, we choose very small
values for p. In our datasets, we include three Erdős Rényi graphs with equal
number of vertices (n = 2500) and with p of 1.6/n, 2/n, and 8/n, respectively.

Power-Law Random Graphs In a power-law graph, the degrees of the vertices
follow (or approximate) a power-law distribution. In this work, we use a set of
power-law graphs generated based on a variation of the Aiello-Chung-Lu model
[4, 10]. This model produces a power-law random graph whose degree sequence
is determined by a power-law with exponent β, where β is the power parameter.
Smaller β values (β < 2) generate power-law graphs with cores that are denser and
have smaller diameters compared to power-law graphs with higher β values [19].

Each power-law graph in the network datasets Power-Law(β) has 2500 vertices
and a value β ∈ {1.8, 1.9, 2, 2.7}.

Finally, we analyze multiple graphs that are expected to have different hyperbolic
properties: the US-Airways transportation network [8] and the Power-Grid net-
work (http://www-personal.umich.edu/~mejn/netdata/), which represents the west-
ern United States power grid. Also we analyze two planar grid graphs: Planar-
Grid(50 × 50) and Planar-Grid(1250 × 2).

In Table 2, we show the δ-hyperbolicity and the average δ-hyperbolicity of
each network in the datasets. Table 2 shows that most real-world and artificial
networks have small δ-hyperbolicity values. Note that the absolute value of the δ-
hyperbolicity becomes meaningful when it is compared with other parameters of
the graph such as its diameter [7]. Recall that half the diameter represents an upper
bound for the δ-hyperbolicity.

2 δ-Hyperbolicity in Graphs

According to the definition of the δ-hyperbolicity of a quadruple, its value is not
dependent on the distances among the vertex pairs; rather, it is affected by the
topology present among the vertices. Even though the set of quadruples responsible
for maximizing the value of the hyperbolicity has not been characterized, in this

http://web.archive.org/web/20060506132945/
http://www.cosin.org)
http://www-personal.umich.edu/~mejn/netdata/
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Table 2 Hyperbolicity of
each network in the network
datasets: hb(G):
hyperbolicity; hbavg(G):
average hyperbolicity

Network hb(G) hbavg(G)

US-Airways 1 0.14

Power-Grid 10 1.9

Email 2 0.27

Dutch-Elite 5 0.53

Facebook 1.5 0.1

EVA 3.5 0.21

AS-Graph-97 2 0.14

AS-Graph-99-April 3 0.14

AS-Graph-99-July 2 0.15

Erdős-Rényi(1.6) 8 1.06

Erdős-Rényi(2) 6.5 0.81

Erdős-Rényi(8) 3 0.33

Power-Law(2.7) 4.5 0.49

Power-Law(2) 4 0.47

Power-Law(1.9) 3 0.29

Power-Law(1.8) 2.5 0.27

Planar-Grid(50×50) 49 3.7

Planar-Grid(1250×2) 1 0.25

section, we present methods that can be used to eliminate vertices (and accordingly
quadruples) that do not actively participate in increasing the δ-hyperbolicity of a
graph [6].

2.1 δ-Hyperbolicity and Dominated Vertices

There are a few existing methods that aim at reducing the size of the graph without
affecting its hyperbolicity. Some of those methods are suggested by the following
lemmas:

Lemma 2 ([15]) Given a graph G = (V ,E) and a vertex x ∈ V with degree(x) =
1, hb(G) = hb(G − {x}).
Lemma 3 Let G = (V ,E) be a graph, x, y,w be a triangle in G, and let x be a
vertex with degree(x) = 2. Then hb(G) = hb(G − {x}).
Proof The proof is formally analogous to the proof of Lemma 8 in [14]. ��

These cases can be generalized using the dominance relationship among vertices.

Definition 2 Given a graph G = (V ,E) and a vertex x ∈ V , x is said to be
dominated by a neighboring vertex y if N(x) ⊆ N(y).

Note that a vertex with degree 1 is also dominated by its only neighbor.
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Lemma 4 ([12]) Let x ∈ V be a dominated vertex in a graph G = (V ,E). The
subgraph GV −x is isometric.

Proof Let G = (V ,E) be a graph and let x ∈ V be a vertex that is dominated by
a neighboring vertex y. Consider a shortest path ρ(u, v) between a pair of vertices
u and v such that x ∈ ρ(u, v). That is, d(u, v) = d(u, x) + d(x, v). Let x′ ∈
N(x) be the vertex closest to u, then d(u, x) = d(u, x′) + 1. Since N(x) ⊆ N(y),
then d(u, y) = d(u, x′) + 1 = d(u, x). Similarly, d(y, v) = d(x, v). Therefore,
d(u, v) = d(u, y) + d(y, v) for any pair u and v. This shows that the distance
d(u, v) is not affected by the removal of x. That is, d(u, v) in G equals that in
GV −x . ��

Next we analyze the effect of removing dominated vertices on the upper bound
of the hyperbolicity (the diameter of the graph) and the value of the hyperbolicity.

Lemma 5 Let G = (V ,E) be a graph, and let x ∈ V be a vertex dominated by
a neighbor vertex y. Then either diam(GV −x) = diam(G) or diam(GV −x) =
diam(G) − 1

Proof Let G = (V ,E) be a graph and let x ∈ V be a vertex that is dominated by a
neighboring vertex y. If x is not a part of any diametral pair, then diam(GV −x) =
diam(G). Now assume that the pair (x, x′) is a diametral pair in G, that is,
d(x, x′) = diam(G). Let ρ(x, x′) = x1, x2, . . . , xk where x1 = x, xk = x′, and
k = d(x, x′) + 1. x2 ∈ N(x) and d(x2, x

′) = d(x, x′) − 1 = diam(G) − 1. ��
Lemma 6 Let G = (V ,E) be a graph, and let x ∈ V be a vertex dominated by a
neighbor vertex y. Then hb(G) ≤ max{1, hb(GV −x) + 1

2 }.
Proof Let x and y be two vertices defined as above and let GX be the subgraph
induced by the set X = {x} ∪ N(x). Consider a vertex z ∈ GX, and three vertices
u, v,w /∈ GX. We show that hb(G) ≤ max{1, hb(GV −x) + 1

2 } holds for any
quadruple that involves vertex x. We consider the cases when all the other three
vertices in a quadruple belong to GX, when all the other three vertices do not belong
to GX, when a quadruple consists of x, y, and any two vertices /∈ GX, and when a
quadruple consists of x, y, a vertex in GX, and a vertex /∈ GX.

First, hb(GX) ≤ 1 since diam(GX) ≤ 2 (Lemma 1).
Second, hb(x, u, v,w) ≤ hb(y, u, v,w) + 1

2 for any three vertices u, v,w /∈
GX. Assume 2hb(y, u, v,w) = d(y, u) + d(v,w) − d(y, v) − d(u,w). Let A =
d(x, u) + d(v,w), B = d(x, v) + d(u,w), and C = d(x,w) + d(u, v). When
A ≥ B ≥ C, we have 2hb(x, u, v,w) = d(x, u) + d(v,w) − d(x, v) − d(u,w).
Since d(y, u) ≤ d(x, u) ≤ d(y, u) + 1 and d(y, v) ≤ d(x, v) ≤ d(y, v) + 1, then
hb(x, u, v,w) ≤ (d(y, u)+1+d(v,w)−d(y, v)−d(u,w))/2 ≤ hb(y, u, v,w)+ 1

2 .
When B ≥ A ≥ C, 2hb(x, u, v,w) = d(x, v) + d(u,w) − d(x, u) − d(v,w).
Also d(y, u) ≤ d(x, u) ≤ d(y, u) + 1 and d(y, v) ≤ d(x, v) ≤ d(y, v) + 1,
and by triangle inequality, d(u,w) ≤ d(y, u) + d(y,w) and d(v,w) ≤ d(y, v) +
d(y,w). Then 2hb(x, u, v,w) = d(y, v) + 1 + d(y, u) + d(y,w) − d(y, u) −
d(y, v) − d(y,w), and we get hb(x, u, v,w) ≤ 1

2 . Finally, when C ≥ A ≥ B,
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Fig. 1 A graph with
dominated vertices. Vertex v

is dominated by vertex u

v u

x

y r

z

w t

2hb(x, u, v,w) = d(x,w) + d(u, v) − d(x, u) − d(v,w). By triangle inequality,
we get hb(x, u, v,w) ≥ (1 + d(v,w) − d(v,w))/2 = 1

2 .
Third, hb(x, y, u, v) ≤ 1

2 for any two vertices u, v /∈ GX. Consider the
following three distance sums for the quadruple (x, y, u, v): A = d(x, y)+d(u, v),
B = d(x, u) + d(y, v), and C = d(x, v) + d(y, u). When A ≥ B ≥ C, we have
2hb(x, y, u, v) = d(x, y) + d(u, v) − d(x, u) − d(y, v) ≤ 1 + d(y, u) + d(y, v) −
d(y, u) − d(y, v) since d(u, v) ≤ d(y, u) + d(y, v). Therefore, hb(x, y, u, v) ≤ 1

2 .
When B ≥ A ≥ C, we have 2hb(x, y, u, v) = d(x, u) + d(y, v) − d(x, y) −
d(u, v) ≤ 1 + d(y, u) + d(y, v) − 1 − d(u, v) = 0. Finally, when C ≥ A ≥ B,
we have 2hb(x, y, u, v) = d(x, v) + d(y, u) − d(x, y) − d(u, v) ≤ 1 + d(y, v) +
d(y, u) − 1 − d(u, v) = 0.

Fourth, we obtain similarly that hb(x, y, z, u) ≤ 1
2 for any vertex z ∈ GX and

any vertex u /∈ GX. ��
To be able to obtain all quadruples responsible for maximizing the hyperbolicity,

we do not consider cases in which vertices become dominated after other vertices
have been removed. For example, in Fig. 1, vertex v is dominated by vertex u, which
is not dominated by any other vertex. The hyperbolicity of the original graph G is
one, and the hyperbolicity of the graph GV −v is also one. However, after removing
vertex v, vertices u, x, and y become dominated by vertex w and the hyperbolicity
of GV −{u,x,y} is zero.

For each graph in the datasets, we report the percent of the dominated vertices.
We also differentiate between dominated vertices of degree 1, degree 2, and degree
>2. The results are listed in Table 3. In almost all networks, the dominated
vertices have degrees at most two. This suggests that finding those vertices is
computationally easier than what is implied by Definition 2. Also, in all networks,
the hyperbolicity was preserved after removing all dominated vertices. This result
is even better than what is suggested in Lemma 3.

2.2 δ-Hyperbolicity and Restricted Path Lengths

Hyperbolicity in some sense is related to the uniqueness of shortest paths. In trees,
which are 0-hyperbolic, there is a single shortest path among every vertex pair.
While this property is mostly absent in general graphs, the core-periphery property,
which has been recognized in many networks, suggests that when two vertices are
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Table 3 Statistics of dominated vertices

% dec in no.

Network |S| to |V | (%) Sdeg=1 Sdeg=2 hb(G) hb(G − S) of quad

US-Airways ≈78.3 16.6 11.4 1 1 99.8

Power-Grid 30.1 24.8 3.7 10 10 ≈76

Email 20.5 13.3 3.3 2 2 60.1

Dutch-Elite 63.4 63.4 0 5 5 98.2

Facebook 97.4 1.9 2.4 1.5 1.5 99.9

EVA 87.8 86.8 0.9 3.5 3.5 99.9

AS-Graph-97 63.3 47.8 12.7 2 2 98.2

AS-Graph-99-April 58.4 38 16.5 3 3 97.3

AS-Graph-99-July 57.4 36.5 16.9 2 2 97

Erdős-Rényi(1.6) 33.9 33.9 0 8 8 ≈81

Erdős-Rényi(2) ≈27 26.9 0.05 6.5 6.5 71.6

Erdős-Rényi(8) 0.3 0.3 0 3 3 1.28

Power-Law-h(2.7) 52.5 52.5 0 4.5 4.5 ≈95

Power-Law-h(2) 50.8 50.5 0.2 4 4 94.1

Power-Law(1.9) 53.3 52.9 0.4 3 3 99.9

Power-Law(1.8) 51.3 50.6 0.6 2.5 2.5 99.9

Planar-Grid(50×50) 0 0 0 49 49 0

Planar-Grid(1250×2) 0 0 0 1 1 0

S: set of dominated vertices; Sdeg=1 and Sdeg=2: % of dominated vertices with degrees one and
two, respectively

relatively far from one another (with respect to their distance), all shortest paths
that connect them pass the core of the graph. Let x and y be two vertices that are
sufficiently far from one another. To some extent, a shortest path between them can
be considered unique even though multiple shortest paths may exist between any
pair of intermediate vertices u, v ∈ I (x, y). Applying this idea on sufficiently far
vertices in a quadruple, we observe the following (see Fig. 2).

Lemma 7 Let G = (V ,E) be a graph and x, y, u, v ∈ V be four distinct vertices.
Consider four vertices x′, y′, u′, v′ such that x ∈ I (x′, y) ∩ I (x′, u) ∩ I (x′, v),
y ∈ I (y′, x) ∩ I (y′, u) ∩ I (y′, v), u ∈ I (u′, x) ∩ I (u′, y) ∩ I (u′, v), and v ∈
I (v′, x) ∩ I (v′, y) ∩ I (v′, u). Then we have hb(x′, y′, u′, v′) = hb(x, y, u, v).

Proof Assume that 2hb(x, y, u, v) = d(x, y) + d(u, v) − (d(x, u) + d(y, v)).
Accordingly, 2hb(x′, y′, u′, v′) = d(x′, y′) + d(u′, v′) − (d(x′, u′) + d(y′, v′)). By
the assumption above, we obtain 2hb(x′, y′, u′, v′) = d(x, y)+d(x, x′)+d(y, y′)+
d(u, v)+ d(u, u′)+ d(v, v′)− d(x, u)− d(x, x′)− d(u, u′)− d(y, v)− d(y, y′)−
d(v, v′) = 2hb(x, y, u, v). ��
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Fig. 2 Illustration of
Lemma 7

x' y'

x y

vu

u' v'

Remark 1 Using Lemma 7, we conclude that hb(x′, y, u, v) = hb(x, y, u, v),
hb(x, y′, u, v) = hb(x, y, u, v), hb(x, y, u′, v) = hb(x, y, u, v), and
hb(x, y, u, v′) = hb(x, y, u, v).

From the lemma and the remark above, it follows that the δ-hyperbolicity of
a quadruple may be increased only because some intermediate quadruple has a
higher δ-hyperbolicity (this was also observed experimentally in [3]). Accordingly,
the δ-hyperbolicity of some graphs (especially the ones with clear core-periphery
dichotomy) may be found in quadruples that are in close proximity, and it is
sufficient to consider those quadruples when computing the graph’s hyperbolicity.
Thus, we consider a variation of the definition of the δ-hyperbolicity that restricts
the set of considered quadruples to those that are in close proximity.

Definition 3 Let G = (V ,E) be an undirected and unweighted graph, diam(G)

be its diameter, and x, y, u, v be vertices in V with d(x, y) ≤ p, d(x, u) ≤ p, and
d(x, v) ≤ p, where 0 ≤ p ≤ diam(G). Also let d(x, y) + d(u, v) ≥ d(x, u) +
d(y, v) ≥ d(x, v)+d(y, u) be the three distance sums defined over the four vertices
x, y, u, v in a nonincreasing order. The p-δ-hyperbolicity of the quadruple x, y, u, v

denoted as hbp(x, y, u, v) is defined as

hbp(x, y, u, v) = (d(x, y) + d(u, v) − (d(x, u) + d(y, v)))/2.

and the p-δ-hyperbolicity of the graph is

hbp(G) = max
x,y,u,v∈V

hbp(x, y, u, v).

The choice of distance p is critical. When p = 0, hbp(G) = 0 since we get
a set of singletons. This value can be very far from the value of the hyperbolicity
of the graph. When p = diam(G), hbp(G) = hb(G) since we include all possible
quadruples. Generally, when 0 < p < diam(G), hbp(G) ≤ hb(G). For some graph
types such as an n × n grid, the value of the hyperbolicity equals the hyperbolicity
of the quadruple with vertices at maximum pair-wise distance. Thus restricting the
distances among vertex pairs to any p < diam(G) results in a hbp(G) < hb(G).
In contrast, in a 2 × n grid, hbp(G) = hb(G) when p = 2. Examples of both cases
are provided in the datasets.
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Table 4 p-δ-Hyperbolicity

p = �rad(G)/2 p = pmax

Network rad(G) diam(G) hb(G) p hbp(G) % dec p hbp(G) % dec

US-Airways 3 6 1 2 1 88.8 2 1 88.8

Power-Grid 23 46 10 12 6 99.1 21 10 67.3

Email 5 8 2 3 1.5 76.9 4 2 20.1

Dutch-Elite 12 22 5 6 3 95.5 10 5 24.4

Facebook 4 8 1.5 2 1 99.1 3 1.5 87.9

EVA 10 18 3.5 5 2.5 ≈95 7 3.5 64.3

AS-Graph-97 5 9 2 3 1.5 ≈80 4 2 33.8

AS-Graph-99-April 6 11 3 3 1.5 ≈75 6 3 30.3

AS-Graph-99-July 5 9 2 3 1.5 76.3 4 2 ≈32

Erdős-Rényi(1.6) 18 35 8 9 4.5 99.5 16 8 55.4

Erdős-Rényi(2) 14 25 6.5 7 3.5 99.1 13 6.5 21.3

Erdős-Rényi(8) 5 7 3 3 1.5 98.9 6 3 ≈0.1

Power-Law(2.7) 12 23 4.5 6 3 95.1 9 4.5 53.1

Power-Law(2) 11 21 4 6 3 87.2 8 4 43.9

Power-Law(1.9) 7 13 3 4 2 78.2 6 3 11.8

Power-Law(1.8) 6 11 2.5 3 1.5 95.6 5 2.5 21.5

Planar-Grid(50×50) 50 98 49 25 12 94.7 98 49 0

Planar-Grid(1250×2) 626 1250 1 313 1 99.9 2 1 99.9

pmax is the maximum distance p that achieved hbp(G) = hb(G). % dec is compared to the total
number used to compute hb(G)

Table 4 and Fig. 3 show the p-δ-hyperbolicity of each graph in the datasets. The
table lists hbp(G) for p = �rad(G)/2 and p = pmax, where pmax is the maximum
distance p that achieved hbp(G) = hb(G). Table 4 also shows the decrease in the
number of quadruples (compared to the total number of quadruples used to compute
hb(G)). In almost all graphs, not only pmax is smaller than the diameter of each
network but also pmax ≤ rad(G). The distance pmax needed in the network Erdős-
Rényi(8) is 6 = rad(G)+1. This is probably due to the lack of a core in this type of
graphs (denser random Erdős Rényi graphs) [3]. It is also interesting to observe that
pmax = 2δ in almost all networks. Figure 3 shows that the hyperbolicity increases
with distance until a certain point (pmax) and then remains the same.

To exploit the p-δ-hyperbolicity, it is sufficient to consider quadruples within the
graph’s core, which may not be unique. In [7], it was observed that the shortest path
(or paths) between distant vertices tends to include vertices in the center of the graph
C(G) (C(G) = u ∈ V : ecc(u) = rad(G)).

Proposition 1 ([7]) Let G be a δ-hyperbolic graph and x, y be arbitrary vertices
of G. If d(x, y) > 4hb(G) + 1, then on any shortest (x, y)-path there is a vertex w

with ecc(w) < max {ecc(x), ecc(y)}.
Even though a distance of 4hb(G) + 1 may exceed the diameter of the graph in

most networks (because of the small-world property), it was shown experimentally
in [7] that even pairs with small distances include a vertex in the center (or close to
the center).
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Fig. 3 p-δ-Hyperbolicity. (a) Real-world networks. (b) Synthetic networks

Here we compute the p-δ-hyperbolicity considering only vertices within the
center for some of our networks and with a distance p that is equal to pmax (see
Table 4). The results are listed in Table 5. The table shows that even though for
some networks the p-δ-hyperbolicity is not equal to the hyperbolicity of the graph
hb(G), it achieves a value that is very close.

3 δ-Hyperbolicity and the Core-Periphery Structure

It was observed in [3] throughout a set of real-world and artificial networks that
a tree-like structure becomes less evident below a certain size scale; specifically,
within the core of the network. That is, quadruples whose vertices belong to the
core part of the network have high hyperbolicity values while quadruples with
vertices that belong to the peripheral part do not actively participate in increasing
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Table 5 p-δ-hyperbolicity
and the center of the graph

% dec in no.
Network hb(G) pmax hbp(G) of quad

US-Airways 1 2 0.5 99.9

Email 2 4 2 19.1

Erdős Rényi(1.6) 8 16 6.5 99.9

Erdős Rényi(2) 6.5 13 5.5 99.9

Erdős Rényi(8) 3 6 2.5 82.5

Power-Law(2.7) 4.5 9 4 99.4

Power-Law(2) 4 8 3.5 99.9

Power-Law(1.9) 3 6 2.5 96.1

Power-Law(1.8) 2.5 5 2.5 97.1

the hyperbolicity value (they affect hbavg(G) but not hb(G)). This confirms that
quadruples like the ones described in Lemma 7 and Remark 1 exist in many
networks due to the core-periphery structure in those networks. In this section,
we exploit this observation for computing the value of the δ-hyperbolicity by
considering only quadruples in the core of a graph.

Recently, two core-periphery structure notions have been discussed in the
literature. The transport-based core-periphery structure, which was developed based
on intuition from transportation networks, and the density-based core-periphery
structure, which was developed based on intuition from social networks [18]. A
transport-based core is central to the network (in terms of its betweenness), while a
density-based core is densely connected and connected to a sparse periphery.

In this paper, we use two core definitions: the minimum-cover-set core, which
can be classified as a transport-based core, and the k-core, which can be classified
as a density-based core.

Let core be the set of core vertices in a graph G. The core of G, denoted by
Gcore, is the subgraph of G induced by the set core. We denote the minimum-
cover-set core by Gm

core and the k-core by Gk
core. We compute the hyperbolicity of

the core of each network in the datasets and compare it to the hyperbolicity of the
graph. Note that we exclude the two planar grid networks from the analysis in this
section because of their lack of a meaningful core.

3.1 The Minimum-Cover-Set Core

In [7], the authors show that the traffic tends to concentrate on vertices with small
eccentricity (vertices in and close to the graph’s center). Accordingly, they introduce
a core identification model (named the minimum-cover-set model) based on the
eccentricity and the betweenness of vertices.
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The minimum-cover-set core of a graph G, denoted by Gm
core, is the smallest set

of vertices that is sufficient to circulate the traffic between distant vertices in a graph
[7]. This set includes vertices that have small eccentricities, are close to the graph’s
center, and have high betweenness. The betweenness of a vertex x is the number of
vertex pairs that have x on a shortest path between them.

First, in a priority list T , vertices are ranked according to three parameters: the
eccentricity, the distance to the center of the graph, and the betweenness. Second,
a vertex at the top of T will be added to the core if it is in a shortest path between
some vertex pair x, y. In this case, pair x, y is covered by the core and will not be
considered again.

Table 6 lists basic statistics about the minimum-cover-set core for each network
in the datasets. Table 6 shows that in most real-world networks, the core size
(number of vertices) does not exceed 35% of the number of vertices in the original
graph. The only exception is networks Email and Power-Grid, which is not expected
to present a concise core. In the three Erdős Rényi graphs, the conciseness of
the cores seems to correlate with the sparsity of the network. The network Erdős
Rényi(8), which has the highest density, does not have a well-defined core-periphery
structure.

It is clear from Table 6 that while the diameter of each minimum-cover-set core
is slightly smaller than the diameter of the network, its hyperbolicity (hb(Gm

core))
is equal to the hyperbolicity of the original network (hb(G)). The exception is
networks Erdős Rényi(8) and Power-Law(2). Table 6 also shows the decrease in the
number of considered quadruples (compared to the number of quadruples needed
to compute hb(G)) and the decrease in the running time (compared to the running
time needed to compute hb(G)). For example, in the Facebook network, there is a
99.9 decrease in the number of considered quadruples. The running time needed to
compute the hyperbolicity for the original Facebook network was about 18 h, but it
took only few seconds to compute it for the minimum-cover-set core hb(Gm

core).
1 In

the network Power-Grid, there is a 79.4 decrease in the number of quadruples (the
time needed to compute hb(G) and hb(Gm

core) is about 31 and 15 h, respectively).

3.2 k-Core

The k-core decomposition [23] provides a way to decompose a graph that allows
the identification of interesting structural properties that are not captured by other
simple structural measures. Unlike the δ-hyperbolicity, the k-core decomposition is
not intended to be a tree-like measure, yet in [3], the authors find the k-core of a
graph to be an important part of its hyperbolic structure.

1All experiments in this work were performed on a personal computer with an Intel(R) 2.50 GHz
CPU and 16 GB Ram without the use of multiprocessors.
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ős
R

én
yi

(8
)

24
98

10
,0

26
7

3
19

,0
76

.1
9

24
90

(9
9%

)
10

,0
18

7
3

17
,9

92
.1

3
1.

3
5.

7

Po
w

er
-L

aw
(2

.7
)

11
99

13
04

23
4.

5
99

5.
20

56
9

(4
8%

)
67

2
21

4.
5

65
.3

9
≈9

5
93

.4

Po
w

er
-L

aw
(2

)
17

61
20

42
21

4
46

23
.3

3
85

3
(4

8%
)

11
12

19
4

31
0.

26
94

.5
93

.3

Po
w

er
-L

aw
(1

.9
)

21
22

34
00

13
3

33
,1

60
.9

3
95

9
(4

5%
)

21
94

11
3

48
4

95
.8

98
.5

Po
w

er
-L

aw
(1

.8
)

22
36

41
22

11
2.

5
11

,2
55

.0
2

10
26

(4
6%

)
28

21
9

2.
5

63
4.

80
95

.6
94

.4

T
he

pe
rc

en
ti

n
pa

re
nt

he
se

s
re

pr
es

en
ts

th
e

pe
rc

en
to

f
ve

rt
ic

es
in

th
e

m
in

im
um

-c
ov

er
-s

et
co

re
su

bg
ra

ph
to

th
e

to
ta

ln
um

be
r

of
ve

rt
ic

es
in

th
e

or
ig

in
al

gr
ap

h



δ-Hyperbolicity and the Core-Periphery Structure in Graphs 39

The k-core of a given graph G = (V ,E), denoted by Gk
core, is a maximal

connected subgraph Gcore so that degree(x) is at least k for all x ∈ Gcore. The
core of maximum order (kmax) is the main core. A vertex x has core number k if it
belongs to the k-core, but not the k + 1-core. All vertices with core number k form
the k-shell. Parameter k refers to the depth of the core (higher k values represent
deeper cores). The resulting cores are nested, and each core is not necessarily a
connected subgraph. The k-core decomposition can be implemented in linear time
which makes it applicable to very large graphs [9].

In Table 7, we list two different core numbers (depths): kmax which is the main
core and kδ which is the maximum k such that the core subgraph Gk

core achieves a
hyperbolicity value that is equal to hb(G). We also compute kmin (not listed in the
table) which is the maximum k such that Gk

core = G. Table 7 also lists the size and
the diameter of the kmax-shell and the size, the diameter, and the hyperbolicity of
the kδ-shell of each network.

Table 7 shows that the G
kδ
core has smaller diameter and equal hyperbolicity

compared to each original network. In all networks, kmin = 1, and kδ is always
greater than kmin which suggests that the quadruples responsible for increasing the
value of the δ-hyperbolicity concentrate in a deeper core in the network. Note that in
some networks, all vertices belong to the same core (kmin ≈ kmax). Some networks
such as the US-Airways and the Email have kδ ≈ kmax which indicates a tree-like
structure that concentrates within the deep core of the network.

4 Case Studies

In this section, we apply the idea of calculating the δ-hyperbolicity of the core
to two larger real-world networks for which calculating the exact value of the δ-
hyperbolicity is computationally expensive on a personal computer and for which
the values of the δ-hyperbolicity are known [1]. The first network is a biological
network. The second network is an Internet graph.

4.1 Biological Network

This biological network represents the protein and genetic interactions in human
genus [24]. It consists of 16,711 vertices (proteins and genes) and 115,406 edges
linking each pair of interacting proteins or genes. We focus on the largest connected
component in the network which includes 16,635 vertices and 115,364 edges. The
network has diameter 10, radius 5, and average path length 2.87. The δ-hyperbolicity
of this network is 2 [1].

The minimum-cover-set core of the network has 6546 vertices (39% of the
number of vertices of the original graph), 84,889 edges, and diameter 8. The size
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of the core subgraph allows us to calculate its δ-hyperbolicity and compare it with
that of the original network. The hyperbolicity of the minimum-cover-set core is 2,
which was calculated with 97.6% less quadruples.

For the k-core of the network, kmin = 1, kmax = 45, and kδ = 14. The k-
core (which corresponds to the kδ-shell) consists of 3053 vertices, which represents
only 18% of the number of vertices in the original graph, and 64,085 edges with a
diameter of 4. The computation of the δ-hyperbolicity for the k-core requires 99.8%
less quadruples compared to the number of quadruples required to calculate the δ-
hyperbolicity for the original network.

4.2 AS-Graph

This network depicts the Internet Autonomous Systems (AS) relationships collected
by the Cooperative Association for the Internet Data Analysis (CAIDA) [11] during
June 2012. The data was derived from BGP table snapshots taken at 8-h intervals
over a period of 5 days.

The network includes 41,203 vertices and 121,309 edges (the average degree is
5.9). The diameter and radius of the network are 10 and 5, respectively. Also, the δ-
hyperbolicity of the network is 2 [1]. Because of the size of the network, we remove
all dominated vertices before calculating the minimum-cover-set core. About 57%
of the vertices in the original network are dominated vertices, and 36% of which has
a degree of one.

After removing all dominated vertices, the new network has 17,760 vertices,
78576 edges, and the diameter is 9. We extract the minimum-cover-set core of this
network which consists of 6576 vertices and 45,092 edges with a diameter of 8.
Compared to the original network, the size of the core is only 16%, yet it has a
δ-hyperbolicity of 2.

We also compute the kmax-core and the kδ-core for this network. The kmax-shell
has 55 vertices and a diameter of 2, which is too small to achieve the hyperbolicity of
the original network. The kδ-shell (with a hyperbolicity equal to the hypberbolicity
of the original network) has 3873 vertices, 56,054 edges, and a diameter of 5.

5 Conclusions and Future Work

This paper describes a method of identifying quadruples that maximize the hyper-
bolicity using the dominance relationship between vertices. Also it demonstrates an
interesting property of the δ-hyperbolicity in networks, which is its realization in
quadruples with vertices that are within relatively close proximity and that are close
to the graph’s core.

Restricting the calculation of the δ-hyperbolicity to some core of the network
enables the computation of its value for large networks. Even though the hyperbol-
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icity of the core may not resemble the exact value of the hyperbolicity of the graph, it
provides a reasonable approximation. A key issue that needs to be considered when
applying the idea of calculating the hyperbolicity within the core is the type of the
network. Restricting hyperbolicity calculation within the core offers a tremendous
gain in calculation time for networks with clear-cut core-periphery structures (more
concise cores) including social and biological networks. This may not be the case
for networks that lack a well-defined core such as some transportation networks and
peer-to-peer networks. Moreover, it would be interesting to compare the values of
the hyperbolicity within other core definitions. For example, the core that results
from including vertices with the highest closeness centrality and/or betweenness
centrality.

An interesting focus of subsequent research is the development of a local
algorithm that calculates the p-δ-hyperbolicity of very large graphs, and the
estimation of a p value that guarantees a p-δ-hyperbolicity that is close (if not equal)
to the hyperbolicity of the original graph.
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