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Abstract. Neoepitope peptides are newly formed antigens presented
by major histocompatibility complex class I (MHC-I) on cell surfaces.
The cells presenting neoepitope peptides are recognized and subsequently
killed by cytotoxic T-cells. Immunopeptidomic approaches aim to charac-
terize the peptide repertoire (including neoepitope) associated with the
MHC-I molecules on the surface of tumor cells using proteomic technolo-
gies, providing critical information for designing effective immunother-
apy strategies. We developed a novel constrained de novo sequencing
algorithm to identify neo-epitope peptides from tandem mass spectra
acquired in immunopeptidomic analyses. Our method incorporates prior
probabilities to putative peptides according to position specific scor-
ing matrices (PSSMs) representing the sequence preferences recognized
by MHC-I molecules. We implemented a dynamic programming algo-
rithm to determine the peptide sequences with an optimal posterior
matching score for each given MS/MS spectrum. Similar to the de novo
peptide sequencing, the dynamic programming algorithm allows an effi-
cient searching in the entire peptide sequence space. On an LC-MS/MS
dataset, we demonstrated the performance of our algorithm in detecting
the neoepitope peptides bound by the HLA-C*0501 molecules that were
superior to database search approaches and existing general purpose de
novo peptide sequencing algorithms.
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1 Introduction

The peptide epitopes presented by major histocompatibility complex class I
(MHC-I) molecules on cell surfaces display a representative image of the col-
lection of (endogenously synthesized or exogenous) proteins in the cell, allow-
ing immune cells (e.g., the CD8+ cytotoxic T-cells) to monitor the biological
activities occurring inside the cell, a process known as the immune surveillance
[2,7,28]. A typical process of the peptide processing and presentation involves
three steps: (1) the cytosolic proteins are first degraded into peptides by the
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proteasome; (2) the resulting peptides are loaded onto MHC-I molecules; and
(3) the MHC-I/peptide complex is transported into the plasma membrane of the
cell via endoplasmic reticulum (ER), while the extracellular domain of MHC-I,
where the epitope peptide binds, is exported outside the membrane. In nor-
mal cells, the peptides presented by MHC-I will not induce immune responses.
However, when abnormal processes (e.g., viral infection or tumorigenesis) occur
inside cells, a fraction of MHC-I molecules may present peptides from foreign
or novel proteins (e.g., due to somatic mutations in tumor cells), often referred
to as the neoepitope peptides or neoantigens. Consequently, the cells presenting
such peptides will likely to be recognized and subsequently killed by cytotoxic
T-cells.

It is now well known that, during tumor development, maintenance and pro-
gression, tumor cells accumulate thousands of somatic mutations, many of these
occurring in protein-coding regions of tumor genes [6,22,29]. Among them, mis-
sense or frameshift mutations have the potential to generate neoepitope peptides,
which can be used as biomarkers for characterizing the states and subtypes of
cancer, or can be selected as potential therapeutic cancer vaccines to induce
robust and tumor-specific responses [7,30]. Furthermore, neoepitope peptides
were recently demonstrated as potential targets in cancer immunotherapies such
as adoptive T-cell therapy [39].

In the past decade, clinical evidence has been accumulated on tumor-specific
immune activities, leading to the implementation of successful strategies of can-
cer immunotherapy [9]. Because of the strong implications of neoepitope peptides
in the design of effective cancer immunotherapy, different genomic and proteomic
methods have been developed to identify neoepitope peptides presented by tumor
cells from cancer patients. The genomic approaches start from exon and tran-
scriptome sequencing of normal and tumor tissues in attempt to identify proteins
over- or under-expressed tumor issues, as well as missense or frameshift muta-
tions in tumor proteins [20,25], and then use computational methods [1,13,40] to
predict neoepitope candidate from these tumor proteins based on the immuno-
genicity of peptides, i.e., the likelihood of peptides being presented by MHC-I
molecules in tumor cells and furthermore likely to provoke an immune response.
Notably, the genomic approaches may not report accurate neoepitope peptides
due to various limitations of the methods. First, some very low abundant pro-
teins that may not be identified using transcriptome sequencing are often pre-
sented by the MHC-I molecules, and can provoke robust immune responses. Sec-
ond, current immunogenicity prediction algorithms cannot yet accurately model
the process of antigenic peptide processing and presentation by MHC-I, and
thus may report many false positives and false negatives of neoepitope peptides.
Most importantly, as multiple MHC-I molecules are encoded by the highly poly-
morphic human leukocyte antigen (HLA) genes (including three major types of
HLA-I, HLA-II and HLA-III) in an individual patient, the peptide immunogenic-
ity is indeed a private measure specific to this cancer patient, and thus cannot
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be modeled without sufficient neoepitope peptides already identified from the
patient’s own sample [10].

Fig. 1. An example of posi-
tional specific scoring matrix
(PSSM) (shown as a frequency
heatmap) derived from neoepi-
tope peptides of 9 amino
acid residues bound to HLA-
C*0501. The third position is
dominated by Asp while at the
ninth position, Leu and Val are
preferred.

In contrast, the immunopeptidomic approaches
aim to directly analyze the peptide repertoire
bound by the MHC-I molecules on the surface
of tumor cells using proteomic technologies, and
thus can overcome the limitations of genomic
approaches. Because of its high throughput and
sensitivity, liquid chromatography coupled tan-
dem mass spectrometry (LC-MS/MS) has been
routinely used in proteomics in an attempt to
identify and quantify proteins in complex pro-
tein mixtures, and also becomes the technol-
ogy of choice for the identification of neoepitope
peptides eluted from MHC molecules [5]. From
the MS/MS spectra acquired in an immunopep-
tidomic experiment, potential neoepitope pep-
tides are identified often using a database search
engines designed for peptide identification in pro-
teomics (e.g. Sequest [12], Mascot [8] or MSGF+
[19]). However, the neoepitope peptides have
some distinct features comparing to the peptides
from general proteomic analysis. On one hand,
neoepitope peptides bound to different classes of
MHC-I molecules have relatively fixed length; for
example, human HLA class I (HLA-I) recognizes
peptides 8 to 12 amino acid residues in length [4].
On the other hand, unlike the peptides in proteomic experiments typically from
tryptic digestion at specific basic amino acid residues, neoepitope peptides can
be cleaved by proteasome at any arbitrary position in the target proteins. As
a result, when MS/MS spectra from an immunopeptidomic study is searched
against a target protein database (e.g, consisting of all human proteins), all non-
tryptic peptides of the lengths within a range (8–12 residues) are considered; in
the human protein database, there are ≈ 107 − 108 such peptides, much greater
than the number of tryptic peptides (≈ 106). Furthermore, a recent study demon-
strated that a surprisingly large fraction (about a third) of neoepitope peptides
are generated by proteasome-catalyzed peptide splicing (PCPS) that cuts and
pastes peptide sequences from different proteins [24]. If all concatenate peptides
(with two subpeptides from the same or different proteins) are considered in the
database search, the number of target peptides increases to ≈ 1015, close to the
total number of peptides 8–12 residues in length. Which poses great challenges
to database search not only on the running time but also on potential false pos-
itives in peptide identification. Finally, strong sequence patterns are present in
neoepitope peptides, largely because of the preferences in the binding affinity
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and specific structures of MHC-I molecules. The sequence pattern in neoepitope
peptides recognized by a specific class of MHC-I molecule can be represented
by a positional specific scoring matrices (PSSMs; see Fig. 1 as an example for
HLA-C) [17], or more complex machine learning models for predicting peptide
immunogenicity [1]. However, these sequence information are not used by current
approaches for neoepitope peptide identification in proteomic experiments.

De novo peptide sequencing algorithms (such as Peaks [27], pepNovo [14],
pepHMM [37] and most recently, uniNovo [16], Novor [26] and DeepNovo [32,33])
represent a different approach to peptide identification in proteomics, that
attempt to reconstruct the peptide sequence directly from an MS/MS spec-
trum. Comparing to database search algorithms, de novo sequencing algorithms
explore the entire space of peptides, but are often more efficient because of the
employment of a dynamic programming algorithm. From a Bayesian perspec-
tive, the database search approach can be viewed as a special case of de novo
peptide sequencing, which assumes that only the proteins in the database can
be present in the sample, and thus the peptides from these proteins have the
prior probabilities of 1 while the other peptides have the prior probabilities of
0 [23]. Previous studies have showed that although the top peptide reported
by the de novo sequencing algorithm for an MS/MS spectrum was sometimes
incorrect, the correct one was usually the peptide in the database that received
the highest score in de novo sequencing [14,27], indicating that the incorpora-
tion of the protein database as prior knowledge significantly improves peptide
identification.

In this paper, we present a novel constrained de novo sequencing algorithm
for neoepitope peptide identification. The method can be viewed as a hybrid
approach of the de novo sequencing and the database searching algorithms: it
explores the entire space of peptide sequences 9–12 residues in length, but assigns
a different prior probability to each putative peptide according to MHC-I specific
PSSMs, such that the peptide with a motif with high immunogenicity incorpo-
rates a high prior probability into the posterior probability score of the peptide-
spectrum matches (PSMs). Utilizing the sequential property of the PSSMs, we
extended the dynamic programming (DP) algorithm for de novo peptide sequenc-
ing to determine the peptide sequences with the optimal posterior matching
scores for each given MS/MS spectrum. Notably, similar to de novo peptide
sequencing algorithms, the dynamic programming algorithm allows an efficient
searching in the entire peptide sequence space, which, as shown above, is com-
parable to the size of the database consisting of all putative neoepitope peptides
(including the concatenate peptides) derived from human proteins. We tested
our algorithm in a LC-MS/MS dataset for detecting the neoepitope peptides
bound by the HLA-C*0501 molecules [18]. Our method could detect about 19,017
neoepitope peptides of lengths between 9 to 12 residues with estimated false dis-
covery rate below 1%. In contrast, the database search approach (using MSGF+
against the human protein database) identified about 4,415 PSMs (1,804 unique
peptides), in which 2,104 PSMs (764 unique peptides) have the length between
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9 to 12 residues as putative neoepitope peptides. Out of the 2,104 PSMs, 1,269
were also identified by our method. A majority (791 out of 1,269) of the PSMs
were exact matches, while most (360 out of 478) remaining PSMs contain only
a swap of consecutive residues in peptide sequences. Finally, we tested a con-
ventional de novo sequencing algorithm uniNovo [16] on the same dataset. It
reported sequence tags on 1,863 MS/MS spectra, but with low sequence cover-
age (on average three amino acid residues per peptide), and thus cannot be used
in neoepitope peptide sequencing. These results imply that the constrained de
novo sequencing algorithm benefit from the prior probabilities (provided by the
PSSMs) to distinguish the most likely neoepitope peptides from other peptides
sharing similar sequences.

2 Method

Constrained de novo Peptide Sequencing. Given an MS/MS spectrum
M , the constrained de novo peptide sequencing problem is to find the peptide
sequence T within a range of length (lmin ≤ |T | ≤ lmax) that maximizes a
posterior matching score S:

Score(M,T ) = P (T ) · P (M |T ) (1)

where P (T ) represents the prior probability of the peptide T , and P (M |T ) rep-
resents the matching probability, i.e., the probability of observing the MS/MS
spectra from the peptide T . For peptides with a fixed length l, their prior
probabilities are defined by a PSSM pij (

∑
i pij = 1) for residue i at the

position j (j = 1, 2, ..., l) in the peptide; thus, for the peptide T = t1t2...tl,
P (T ) =

∏l
j=1 ptjj . The matching probability P (M |T ) is modeled by the inde-

pendent fragmentation at each peptide bond: P (M |T ) =
∏l

j = 1P (fM,j), where
P (fM,j) stands for the probability of observing fM,j , the occurrence pattern of
the set of fragment ions, including the b-ion, y-ion and the neutral loss ions,
derived from the fragmentation between the precursor (t1t2...tj) and the suffix
(tj+1tj+2...tl) peptide in M . Notably, fM,j is dependent only on mj , the j-th
prefix mass of the prefix peptide t1t2...tj , but is not dependent on the peptide
sequences. Therefore,

Score(M,T ) =
l∏

j=1

[ptjjP (F (mj))] (2)

where P (F (mj)) represents probability of observing the set of fragment ion
F (mj) associated with the prefix mass mj in M . These probabilities can be
learned from a training set of identified MS/MS spectra [14], in which the peaks
are assigned. Alternatively, as adopted here, P (F (mj)) is assigned empirically
based on the logarithm transformed ion intensities of the matched b- or y-ions
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(within a mass tolerance). Let S(j,m) be the maximum posterior matching score
between an MS/MS spectrum and any peptide of length j with a total mass of
m, which can be computed by using a dynamic programming algorithm,

S(j,m) = maxk∈A[S(j − 1,m − k) · [pj,k · P (F (m))]] (3)

where k is an amino acid in the alphabet A. Note that the multiplication of
probabilities in Eq. 3 can be transformed into the summation of the logarithms
of probabilities. Finally, the optimal potential matching score of a peptide with
a fixed length l, implicated as the number of columns in the PSSM, matching
a given spectrum M , is S(M ; l,mpr), in which mpr is the precursor mass of
M . The algorithm can be applied to each putative peptide length between lmin

and lmax with a corresponding PSSM, and the peptides will be reported in the
order of their posterior matching scores. The dynamic programming algorithm is
executed in O(l ·mpr) time using O(l ·mpr) space (where the fragment ion masses
are binned according to the mass resolution), but can be further accelerated
by heuristics as described below. Note that the prefix mass scoring has been
previously proposed as a useful tool for de novo peptide sequencing [14], database
searching [19] and spectrum alignment to identify mutations and post-translation
modifications (PTMs) [31]. The dynamic programming algorithm presented here
can be view as matching a predefined PSSM against a vector of prefix mass
scores (probabilities) in order to find the optimal matches between a peptide
and a subset of prefix masses.

Accelerating the Dynamic Programming Algorithm. For an input
MS/MS spectrum of the precursor mass mpr and a PSSM with a specific neoepi-
tope peptide length l, the above algorithm explores all potential prefix masses
between 0 and mpr for each prefix peptide of the length from 0 to l. However,
there are only a limited number of prefix masses corresponding to prefix peptides
of a fixed length, indicating that the matrix of S(j,m) computed in Eq. 3 has
many zeroes, especially when for small j. To compute only the non-zero elements
in S(j,m), we exploited a branch-and-bound approach to explore the peptide
space, while retaining only the best scored sub-peptide among those with the
same prefix mass.

The sequencing algorithm maintains a pool of putative prefix peptides, each
associated with a posterior matching score. The pool starts with N (N = |A| =
20 representing the number of amino acid masses) prefix peptides of length 1
(Fig. 2) with posterior matching scores of S(1,m(k)) = p1k ·P (F (m(k))) (where
m(k) is the mass of the amino acid k). At each following iteration j, for j =
2, ..., l, every prefix peptide in the pool generates N new prefix peptides, one for
every amino acid, by appending a new amino acid to the end of each existing
peptide (of length j − 1) in the pool.
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Fig. 2. A schematic illustration of the exploration of the pep-
tide sequence space in the constrained de novo algorithm (see
text for details).

After appending an
amino acid k to an
existing prefix pep-
tide with mass m′, the
mass of the resulting
prefix peptide (i.e.,
the prefix mass m)
is used to compute
P (F (m)), and then
the posterior match-
ing score of the new
prefix peptide is com-
puted by S(j,m) =
S(j − 1,m′) · pjk ·
P (F (m)), where S(j−
1,m′) is the posterior
matching score asso-
ciated with the exist-
ing prefix peptide of
length j − 1. At each step, the precursor mass m should match at least one
of b- and y-ions; otherwise, the precursor peptide is labeled with one miscle-
avage, which is tracked on each iteration of an algorithm: if a prefix peptide
contains too many miscleavages, it is eliminated from further extension. Once
the posterior matching score of a prefix peptide is obtained, it will be compared
with other peptides in the pool with the same prefix mass, and the k (default = 5)
best scoring peptides are retained. After each step, at most N ×mpr prefix pep-
tides are retained in the pool. The algorithm is illustrated in Fig. 2. We note
that, although the worst-case running time of the de novo sequencing algorithm
is still O(l · mpr) for each spectrum, in practice, it runs much faster as many
un-realistic prefix masses were not evaluated, especially for small l.

In the final step (with prefix peptides of the expected length l), all peptides
with masses matching the precursor mass are re-assessed by using a global scor-
ing scheme (see below), and are reported in the order of their global scores. Note
that for each input MS/MS spectrum, the constrained de novo algorithm was
conducted four times, with an input PSSM for peptides of length 9, 10, 11 and
12, respectively.

Pre-processing of MS/MS Spectra. Prior to constrained de novo sequencing
algorithm, several pre-processing steps were conducted on the MS/MS spectra,
including: (1) peaks with an intensity of 0 were removed; (2) the precursor peak
was removed; (3) any converted mass greater than precursor mass was removed;
(4) Isotopic masses of precursor masses were removed; (5) the intensities of all
peaks were logarithm-transformed.

Construction of PSSMs. Peptides of length 9–12 were extracted from the
IEDB [35] database http://www.iedb.org/, and separated by length. A total of
892 peptides of length 9, 191 peptides of length 10, 110 peptides of length 11,

http://www.iedb.org/
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and two peptides of length 12 were considered. Four PSSMs were created, one for
each peptide length, in which the amino acid frequency in every position in the
PSSM was computed based on these peptide sequences and the pseudo-count of
1 was incorporated to ensure there were no frequencies of 0.

Re-Assessment of Peptide-Spectrum Matches (PSMs) by Global Scor-
ing. The global score of a PSM is a probability measure, based on a combination
of the prior probability based on the input PSSM, and how well it’s theoreti-
cal fragmentation of the peptide matches to the experimental spectrum. It is
calculated using Eq. (1), where P (T ) is the probability of the peptide given the
PSSM, normalized to the length of the peptide, and P (M |T ) is the probability of
observing MS/MS M from peptide T based off of the theoretical fragmentation
of T . P (M |T ) is calculated by

Score(A,E,W ) = 1 −
k∑

i=1

ai · ei
W

(4)

where ei is a normalized intensity of the experimental spectrum E, ai is the mass
accuracy (in ppm) between experimental mass i and theoretical fragmentation
mass i (or W if there is no matching mass between the two), from the mass
accuracy vector A, W is the lowest allowable mass accuracy between an experi-
mental and theoretical mass, and k is the number of peaks in the experimental
spectrum M .

Fig. 3. Score distributions of PSMs reported by the constrained de novo sequencing
algorithm and the decoy PSMs from the reverse peptides.

False Discovery Rate Estimation. After the global scores were computed for
all PSMs, it was necessary to determine a score threshold to validate whether
a peptide match was reliably identified from an MS/MS spectrum by our con-
strained de novo sequencing algorithm. Note that it is possible for multiple simi-
lar peptide sequences to score high enough to indicate that any of them could be
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the correctly identified neoepitope peptide producing the corresponding MS/MS
spectrum. In this case, the de novo sequencing algorithm reports all of them.
As shown in the results section, in practice, usually only a few peptides(2̃) are
reported for each spectrum.

To obtain an appropriate score threshold, we adopted similar strategy to the
target-decoy search in database searching [11] to estimate the false discovery rate
(FDR) of PSMs. We generated a decoy peptide database consisting of about 40
million randomly selected and reversed peptides with lengths of 9–12 residue
from the proteins in the Uniprot database. Additionally, a second database was
created for the reversed peptides found by the constrained de novo sequencing
algorithm. For each spectrum in our analysis, up to 10 peptides matching the
spectrum precursor mass within the mass resolution (35 ppm) were selected from
both databases as decoys. The top scoring peptides among these decoy peptides
were used to form the decoy PSMs, whose global scores were computed. The score
distributions are depicted in Fig. 3, containing the scores from both decoy PSMs
and the PSMs reported by the constrained de novo sequencing algorithm. We
then used the following formula to estimate the FDR at a certain score threshold
t: FDRt = Ndecoy/Ncons, where Ndecoy and Ncons represent the numbers of
decoy and positive (from the sequencing algorithm) PSMs with global scores
above t, respectively. We then estimated that PSMs with higher than 0.0058
have FDR lower than 1%.

Datasets. The dataset was obtained from ProteomeXChange [36] (accession
number: PXD006455). The experiments were conducted on two common HLA-C:
HLA-C*05:01 and HLA-C*07:02. These HLA class I molecules were isolated from
the cell surface of C*05 and C*07 transfected 721.221 cells, and sequenced bound
peptides by mass spectrometry. As observed in the original article [18], HLA-
C*05:01 has higher expression level and more diversified binding peptides. In our
testing, we chose the binding peptides of HLA-C*05:01 (with length between 9
to 12 residues) to demonstrate the performance of our method. In total, there
are 339,513 spectra acquired in a total 25 fractions of LC-MS/MS analysis using
the Q Exactive HF-X MS (Thermo Fisher Scientific) [36].

Database Searching. We used MSGF+ [19] here as the database search-
ing engine. The parameters for the MSGF+ are set as following to match the
experimental conditions of the LC-MS/MS analyses: (1) instrument type: high-
resolution LTQ; (2) the enzyme type: unspecific cleavage; (3) precursor mass
tolerance: 35 ppm; (4) isotope error range: −1, 2; (5) modifications: oxidation
as variable and carboamidomethyl as fixed; (6) maximum charge is 7 and mini-
mum charge is 1. The FDR is estimated by using a target-decoy search approach
(TDA) [11].

3 Results

Constrained de novo Sequencing. We implemented the constrained de novo
sequencing algorithm in C. It spends a total of 8,910 min on a Linux computer
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(Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz) as single thread to process
339,513 input MS/MS spectra in the HLC-C peptidomic dataset, i.e., about
1.6 s per MS/MS spectrum. Among the entire set of spectra, the sequencing
algorithm reported one or more peptide sequences for 136,249 (40.14%) spectra,
resulting a total of 2,775,977 peptide-spectrum matches (PSMs), i.e., 20 PSMs
(peptides) per spectra. Among them, 81,888 PSMs over 28,759 spectra (i.e., 2.85
PSMs per spectra) received a global matching score above 0.0058 (corresponding
to about 1% FDR; see Methods), corresponding to 57,449 unique peptides, are
retained for further analysis.

Fig. 4. The length distributions of the top-ranked peptides reported by the constrained
de novo sequencing algorithm (A); and the sequence logos representing the position
specific frequency pattern among the top-ranked peptides with different lengths (B).

The top-ranked peptides of the 28,759 spectra corresponds to 19,017 unique
peptides. The length distribution of these peptides is illustrated in Fig. 4. A
majority (13,648, 71.76%) of them are 9 residues in length, which is consis-
tent with previous observations [18] and the IEDB database [35], in which 892
out of 1,195 (74.64%) HLA-C*0501 bounded peptides are 9 residues in length.
Figure 4B shows the sequence logo [34] generated by using the identified peptides
by the de novo sequencing method. Specifically, 13,648 peptides have 9 residues,
2,904 have 10 residues, 1,647 have 11 residues, and 818 have 12 residues. Those
sequences were used to generate the sequence logos in Fig. 4. For peptides of
length 9, the sequence logo showed that the positions of P2, P3 and P9 have
strong amino acid preferences: P2 is enriched by Ala, P9 is enriched by Leu/Ile,
and P3 is dominated by Asp. For peptides of other lengths, Asp is predomi-
nant at multiple positions, especially in the peptides N-termini, while Leu/Ile
are predominant in peptides C-termini.

If all the sequences are retained as long as the global matching score is above
the threshold, our method reported 57,449 unique peptide sequences. To be
noted, we kept the all the de novo sequences here, because in many cases multi-
ple peptide sequences containing swapped consecutive amino acids are reported,
possibly due to missing fragment peaks to distinguish them in the MS/MS spec-
tra. For those cases, the constrained de novo peptide sequencing algorithm will
report very similar peptides with nearly identical global matching scores.
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Fig. 5. (A) The comparison of PSMs and identified unique peptides (in parentheses)
reported by database searching and constrained de novo sequencing. (B) Number of
amino acids difference in overlapped IDs from database search and constrained de novo.
(C) The prior probability and matching scores of the PSMs reported by the constrained
de novo sequencing and database search approach. The PSMs are depicted in different
colors: orange for those detected by both approaches, red for those detected by database
searching only, and black for those detected by de novo sequencing only while blue for
those reported by de novo sequencing and also have at least 50% sequence similarity
to human proteins (Color figure online)

Comparison with Database Searching Results. MSGF+ is employed to
identify peptides by searching against the human proteome database. The com-
putation takes 1,102 min on a Linux computer (Intel(R) Xeon(R) CPU E5-2670 0
@ 2.60 GHz). It reported 4,415 PSMs given 5% false discovery rate1. Among these
PSMs, 2,104 are identified as peptides of lengths between 9 to 12 residues (cor-
responding to 764 unique peptide sequences), which are putative HLA-C*0501
bounded neoepitope peptides. We compared the peptides identified by our con-
strained de novo sequencing algorithm with those identified by the database
searching method in a Venn diagram shown in Fig. 5A. A total of 1,269 spec-
tra are identified by both the database searching and the de novo sequencing
method, among which 791 spectra were identified as identical peptides2 by both
methods: for 360 spectra, the peptides identified by the de novo sequencing
method differ only in no more than two amino acid residues from the peptides
identified by the database searching (where most of cases are two consecutive
residues swaps); and for the remaining 118 spectra, the two identified peptides by
these two methods differ in more than two residues, but share over 50% sequence
similarity.

1 We used a FDR threshold of 5% to be consistent with the original article [18]. When a
more common FDR threshold 0.01 is used, much fewer (1,280) MS/MS spectra were
identified, among which only 97 were identified as peptides with lengths between 9
and 12.

2 Note that, here only the top-ranked peptides reported by the de novo sequencing
algorithm were considered, and ILE and LEU are considered as identical amino acids
in this comparison.
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The PSMs reported by both the database searching and the de novo sequenc-
ing algorithm, and those reported by only one of these methods were investi-
gated in the context of their prior probabilities and matching scores (Fig. 5C).
The PSMs reported by both methods receive generally higher matching scores
and comparable prior probabilities. 825 out of 835 PSMs reported only by the
database searching method received a global matching score below the thresh-
old 0.0058 used for selecting de novo sequencing results. The remaining ten
PSMs received prior probabilities less than 0.1 (on average, prior probability is
0.05), indicating they are less likely neoepitope peptides. On the other hand,
among the top-ranked 27,476 PSMs reported only by the de novo sequencing
algorithm, 23,857 have the prior probabilities above 0.1. We further analyzed
the 18,905 unique peptides from these 27,476 top-ranked PSMs. When searching
against the human protein database containing 21,006 sequences from Uniprot
[3] using Rapsearch2 [41], 14,658 (77.53%) peptides have 50% or higher sequence
similarity with some peptides from human proteins, while 7,737 (40.93%) pep-
tides differ at most two amino acids (i.e, a swap of two consecutive residues),
including 1,910 (10.10%) identical peptides. Notably, although these identified
peptides are more likely the true neoepitope peptides, some of the rest peptides
may also be neoepitope peptides, e.g., those generated by novel gene splicing
and fusion events, or PCPS [24].

Comparison with Current de novo Sequencing Methods. We attempted
to compare our method with the most recently developed de novo sequenc-
ing method uniNovo [16] on the HLA-C peptidomic dataset. The parameters
of uniNovo are chosen in consistence with the experimental settings: (1) the
ion tolerance: 0.3 Da; (2) precursor ion tolerance: 100 ppm (3) fragmentation
method: HCD; (4) no enzyme specificity is selected; (5) five peptide sequences
per spectrum are reported; (6) minimum length of peptides: 9; and (7) mini-
mum accuracy: 0.8. A total of 1,863 spectra are identified by uniNovo under
these parameters. Most of the sequencing results are non-conclusive: only 3–
6 (on average 3.1) amino acid residues were reported in these peptides, and
the gaps between the residues were reported as mass intervals (e.g., a typical
output of uniNovo is [406.2043]D[204.10266]QI). Because of the non-conclusive
peptide sequences in uniNovo report, we did not further compare it with the
results from our constrained de novo sequencing algorithms. We also compared
our method with another up-to-date and user-friendly de novo sequencing soft-
ware, Novor [26]. We used the default parameters of the software for comparison.
In total, Novor reported 337,717 peptide-spectrum matches (PSMs), with only
one top peptide for each spectrum. We note that, as Novor inherently considers
only trypsin-digested peptides in the de novo sequencing algorithm, and most
neo-epitope peptides do not have K/R at their C-termini, we limited our com-
parison on those top-scored tryptic-like peptides (with K/R at their C-termini)
reported by our constrained de novo sequencing algorithm under 1% FDR. Only
2,259 spectra were identified as tryptic-like peptides by our method, the peptide
sequences reported by both methods on these spectra are, however, quite differ-
ent, with an average hamming distance of 5.9. When compared to the MS-GF+
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results, the peptides reported by Novor have average 4.54 hamming distance,
while our de novo results have average 3.84 hamming distance. This comparison
suggests that the prior information (i.e., the PSSM) employed in the constrained
sequencing algorithm helps to identify the peptide sequences that are more likely
neoepitope peptide than a generic de novo sequencing algorithm without using
this prior information.

4 Discussion

The constrained de novo sequencing method was designed specifically for
characterizing neoepitope sequences from their MS/MS spectra acquired in
immunopeptidomic experiments. The algorithm does not rely on a database of
potential neoepitope peptides, and thus can identify peptides that are not con-
tiguous subsequences of proteins in a database, including those resulting from
novel insertion, deletion, splicing or gene fusion events, or those containing muta-
tions (e.g., in tumor cells) or those generated by proteasome-catalyzed peptide
splicing (PCPS) [24]. The dynamic programming algorithm adopted here allows
for efficient searching in the entire space of peptide sequences within a range of
desirable lengths (e.g., 9–12 residues). The results showed that, when peptides
can be obtained by both methods, the peptide sequence reported by the de novo
sequencing method often match with that from database searching, with at most
one swap between two consecutive amino acid residues. Notably, unlike existing
de novo sequencing algorithms (e.g., uniNovo) often reporting many putative
sequence tags each with relatively low sequence coverage of target peptide, the
constrained de novo sequencing method report one or a few complete peptide
sequence with desirable length. As a result, it is straightforward to search for the
occurrence of peptide sequences in a protein database, even for those generated
by PCPS (e.g., concatenated from two subpeptides in different proteins).

The results on the testing dataset showed that many MS/MS spectra that
were not identified by the database searching approach were identified as puta-
tive neoepitope peptides by the constrained de novo sequencing algorithm. This
is probably due to the fact that the constrained de novo sequencing method
benefits from the incorporation of PSSMs as prior probabilities, which prefers
the peptides with high immunogenicities (i.e., likely to be presented by MHC-I).
This is consistent with the typical experimental setting in immunopeptidomics,
where peptides bound to a target MHC-I protein (e.g., HLA-C for the dataset
used here) are enriched before the LC-MS/MS analyses. Hence, we anticipate
a majority of MS/MS spectra result from the those peptides and thus can be
identified using the constrained de novo sequencing method. On the other hand,
other peptides (not bound to the target MHC-I molecule) are not of interests
in immunopeptidomics, and thus it is not a concern if the de novo sequencing
method cannot identify them.

The PSSMs adopted in this study were constructed by using known peptide
sequences bound to a target MHC-I protein (HLA-C). The PSSMs for some desir-
able lengths are not informative as there are only very few known peptides of the
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respective length (e.g., only two known sequences have 12 residues in lengths).
The PSSMs for some other classes of MHC-I may be even less characterized in
current literature. We expect more accurate PSSMs can be derived after more
neoepitope peptides become available with the advances of immunopeptidomic
analyses, which can further improve the constrained de novo sequencing as pre-
sented here. Moreover, it is anticipated the preferences of MHC-I can be different
in different patient because of the presence of many alleles of MHC-I encoding
genes in human population. Therefore, specific PSSMs may be needed to be con-
structed for different MHC-I alleles so that appropriate PSSMs can be selected
(based on HLA typing from the patient’s genomic sequencing data [15,38]) for
neoepitope peptide analyses of an individual patient.

The method presented here can also be applied to sequencing of other types
of neoepitope peptides. For example, even though the attention has been most
focused on the peptides presented by MHC-I that stimulates the cytotoxic killer
T-cell responses, the peptides presented by MHC-II that are important for CD4+
helper T-cell responses [21] can also be characterized using a similar approach.
The MHC-II presented peptides are typically longer in length and more variable,
and thus more data are required to derive useful prior PSSM models.

Acknowledgements. This work was supported by the NIH grant 1R01AI108888 and
the Indiana University Precision Health Initiative (IU-PHI).

References

1. Bhattacharya, R., Sivakumar, A., Tokheim, C., Guthrie, V.B., Anagnostou, V.,
Velculescu, V.E., Karchin, R.: Evaluation of machine learning methods to predict
peptide binding to MHC class I proteins. bioRxiv, p. 154757 (2017)

2. Blum, J.S., Wearsch, P.A., Cresswell, P.: Pathways of antigen processing. Annu.
Rev. Immunol. 31, 443–473 (2013)

3. Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., Bairoch, A.:
UniProtKB/Swiss-Prot: the manually annotated section of the UniProt knowl-
edgebase. Plant Bioinf.: Methods Protoc. 406, 89–112 (2007)

4. Bouvier, M., Wiley, D.C.: Importance of peptide amino and carboxyl termini to
the stability of MHC class I molecules. Science 265(5170), 398–402 (1994)

5. Caron, E., Kowalewski, D.J., Koh, C.C., Sturm, T., Schuster, H., Aebersold, R.:
Analysis of major histocompatibility complex (MHC) immunopeptidomes using
mass spectrometry. Mol. Cell. Proteomics 14(12), 3105–3117 (2015)

6. Chalmers, Z.R., Connelly, C.F., Fabrizio, D., Gay, L., Ali, S.M., Ennis, R., Schrock,
A., Campbell, B., Shlien, A., Chmielecki, J., et al.: Analysis of 100,000 human
cancer genomes reveals the landscape of tumor mutational burden. Genome Med.
9(1), 34 (2017)

7. Comber, J.D., Philip, R.: MHC class I antigen presentation and implications for
developing a new generation of therapeutic vaccines. Ther. Adv. Vaccines 2(3),
77–89 (2014)

8. Cottrell, J.S., London, U.: Probability-based protein identification by searching
sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–
3567 (1999)



152 S. Li et al.

9. Dustin, M.L.: Cancer immunotherapy: killers on sterols. Nature 531(7596), 583–
584 (2016)

10. Editorial, N.B.: The problem with neoantigen prediction. Nat. Biotech. 35(2), 97
(2017)

11. Elias, J.E., Gygi, S.P.: Target-decoy search strategy for increased confidence in
large-scale protein identifications by mass spectrometry. Nat. Methods 4(3), 207–
214 (2007)

12. Eng, J.K., McCormack, A.L., Yates, J.R.: An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database. J. Am.
Soc. Mass Spectrom. 5(11), 976–989 (1994)

13. Flower, D.R.: Towards in silico prediction of immunogenic epitopes. TRENDS
Immunol. 24(12), 667–674 (2003)

14. Frank, A., Pevzner, P.: PepNovo: de novo peptide sequencing via probabilistic
network modeling. Anal. Chem. 77(4), 964–973 (2005)
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