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Abstract. Protein structure alignment is a classic problem of com-
putational biology, and is widely used to identify structural and func-
tional similarity and to infer homology among proteins. Previously a
statistical model for protein structural evolution has been introduced
and shown to significantly improve phylogenetic inferences compared to
approaches that utilize only amino acid sequence information. Here we
extend this model to account for correlated evolutionary drift among
neighboring amino acid positions, resulting in a spatio-temporal model
of protein structure evolution. The result is a multivariate diffusion pro-
cess convolved with a spatial birth-death process, which comes with lit-
tle additional computational cost or analytical complexity compared to
the site-independent model (SIM). We demonstrate that this extended,
site-dependent model (SDM) yields a significant reduction of bias in esti-
mated evolutionary distances and helps further improve phylogenetic tree
reconstruction.

Keywords: Protein structure · Evolution · Dynamic programming
Phylogeny · Diffusion process

1 Introduction

Protein alignment is an integral part of bioinformatic analyses and is a classic,
widely studied problem in computational biology. Existing methods for align-
ing two or more proteins compare amino acid sequences and/or structures of the
proteins, and encompass a variety of algorithms with different strengths and pur-
poses. Such algorithms are a fundamental part of phylogenetic research in par-
ticular, where the degree and nature of evolutionary divergence between species
is a quantity of interest. Alignment procedures that are widely used in studies of
protein evolution are based only on the amino acid sequence and do not incor-
porate the tertiary (three-dimensional) structure of the proteins. Methods that
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do incorporate tertiary structure, such as those mentioned in [1], do not account
for the evolution over time of those structures. Recently Challis and Schmidler
[2] introduced a stochastic evolutionary model of protein sequence and structure
for this purpose; however, their approach, like the vast majority of alignment
algorithms, assumes that “sites” (individual amino acid characters, or backbone
atom coordinate triples) evolve independently of one other. This assumption is
well-known to be violated since amino acid identities and spatial locations are
highly dependent due to a combination of physico-chemical constraints and inter-
actions, including bond lengths and excluded volume, hydrophobic and electro-
static attraction and repulsion, hydrogen bonding, and other cooperative effects
in forming stable local and global protein structure. Nevertheless, alignment algo-
rithms based on both sequence and structural information typically ignore the
correlations induced by these interactions. Ignoring dependence is often justified
by the computational intractability of site-dependent models [2,3]. In this paper
we demonstrate that in structure-based alignment, as in sequence-based, ignor-
ing site dependence systematically biases evolutionary inference. We present an
expanded version of the Challis and Schmidler model which incorporates neigh-
bor dependence without sacrificing computational tractability.

1.1 Motivation

Von Haeseler and Schöniger [4] examined the effect of site dependence on esti-
mates of evolutionary distance between pairs of biological sequences. Using a
model of whale mitochondrial DNA evolution whereby the sequence evolves as a
collection of independent subsequences, each exhibiting Markovian dependence
among its amino acids, the authors demonstrated the tendency to underesti-
mate the true evolutionary distance between two sequences when using a site-
independent model. Figure 1a replicates this effect using binary sequences from
a nearest-neighbor site-dependent sequence model which does not assume inde-
pendent subsequences, described in the Appendix A.2. When estimating the
divergence time for these sequences under a site-independent version of the same
model (b = 1 for model in Appendix A.2), the posterior distribution (Fig. 1a)
shows significant underestimation of the true value.

Despite a variety of efforts, no site-dependent sequence model has emerged as
a widely applicable replacement for commonly used site-independent sequence
models [5]. The primary hurdle to doing so is computational - adding realistic
dependence generally prohibits the use of efficient alignment algorithms which
rely on dynamic programming.

On the other hand, we demonstrate in Sect. 2 that the site-independent struc-
tural model (SIM) of [2] can be extended to a site-dependent structural model
(SDM), incorporating site dependence while maintaining the same interpretabil-
ity and mathematical and computational tractability as the SIM. Thus we can
incorporate dependence into the evolutionary structural part of the model in a
relatively straightforward way. Using data simulated from the SDM, we find a
systematic underestimation effect for structural data due to the independent-
site assumption, similar to that observed in sequences (Fig. 1e). The new SDM
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Fig. 1. (a) Posterior distribution of evolutionary distance for sequences simulated under
site-dependent model with b = 2, t = 0.6 (see Sect. A.2), when inference is performed
under an assumption of site independence. Significant underestimation is seen rela-
tive to truth (vertical line). (b, c, d) This underestimation adversely affects phylo-
genetic reconstruction, as seen by comparing the true (b) and estimated trees under
independent- (d) and dependent-site (c) models. (e) A similar effect is seen for 3D
structures, with data simulated under the site-dependent model of Sect. 2.4.

can then be paired with a sequence evolution model to provide a site-dependent
expansion of the joint sequence-structure model of Challis and Schmidler [2].

The paper is organized as follows. We briefly review the site-independent
structural diffusion model of [2], before describing the general form of a depen-
dent structural diffusion model. Section 2 describes the details of incorporating
dependence into the model, with computational tractability being the key con-
straint on the model’s form. Section 3 describes a reparameterization of the SDM
necessary for analyzing the SDM’s effect on phylogenetic inference. Section 4
revisits the motivating example above and compares inferences and phylogenies
from the expanded model on a number of real protein examples.

2 A Site-Dependent Structural Diffusion Model

Challis and Schmidler [2] introduced a stochastic model for protein structure
evolution, extending a previously developed probabilistic framework for struc-
tural alignment of proteins [6,7] into a model suitable for the study of molecular
evolution. This work demonstrated the ability to significantly improve phylo-
genetic inference when structural information about the proteins is available
[2,3]. We briefly review the original Challis-Schmidler model before introducing
our extended model incorporating site dependence. Throughout the paper, these
structural models will be referred to as the SIM and SDM respectively.

2.1 Challis-Schmidler Model

Challis and Schmidler [2] model the diffusion of individual Cα backbone positions
in space, over time, via an Ornstein-Uhlenbeck (OU) process. Independence is
assumed between each site along the backbone as well as between the (x, y, z)
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coordinates at each site, leading to the joint structure diffusion being modeled
as a product of 3n independent univariate OU processes:

dC
(t)
ij = θ(ζj − C

(t)
ij )dt + σdB (1)

where C
(t)
ij denotes coordinate j ∈ {x, y, z} of α-carbon i at time t. This setup

admits tractable stationary and conditional distributions but, as noted by Challis
and Schmidler, fails to account for known biophysical interactions which lead to
strong observed dependence between sites, such as bond length constraints and
the effect of excluded volume in the protein. Although a protein structure’s
coordinate frame is arbitrarily determined by the experiment, we assume the
two structures in our pairwise analyses share a coordinate frame; thus for a
pair of structures CX , CY , we assume the coordinate frame of CX and do not
distinguish between CY and any rigid body rotation R and translation η thereof.
We refer the reader to [2] for a detailed treatment of this issue, and for various
other model details omitted here.

2.2 Dependence in a Multivariate Ornstein-Uhlenbeck Process

The independent site model (1) can be written as a multivariate diffusion in the
form

dC = −Θ(C − ζ)dt + LdBt (2)

where Θ and Σ = LL′ are both assumed to be identity matrices. Here the
3n × 1 vector C = (Cx, Cy, Cz) contains the backbone α-carbon coordinates, ζ is
the 3n× 1 long-term mean vector, and Bt represents 3n independent univariate
standard Brownian motion terms. Writing the model in this form makes clear
that the assumption of site- (and coordinate-) independence can be relaxed by
introduction of general Θ and Σ, enabling a more expressive model. For conve-
nience we factor Θ = Σd ⊗ Θp and Σ = Σd ⊗ Σp as Kronecker products,
allowing coordinate dependence (subscript d) and backbone site dependence
(subscript p) to be modeled separately.

For purposes of the current paper we set Σd = I3 allowing the x, y, z dimen-
sions within an individual site to diffuse independently of each other. Observed
data suggest that dependence between diffusion in the (x, y, z) dimensions is not
strong: Table 1 shows average sample correlations between spatial dimensions
for 549 structures comprised of a group of globins and a large group from the
manually curated MALIDUP database [8], as well as sample lag-1 autocorre-
lations (i.e. correlations between consecutive backbone α-carbons) within each
spatial dimension. Although some proteins show weak to moderate correlation
between spatial dimensions, the averages indicate the correlation is relatively
weak compared to the strong autocorrelation along the backbone within a given
spatial dimension. Consequently, we focus on incorporating dependence along
the backbone rather than among spatial dimensions x, y, z.

Under the SDM then, the joint evolution of the 3n scalar coordinates spec-
ifying all n backbone positions follows a multivariate OU process governed by
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Table 1. Mean sample correlations between dimensions and mean lag-1 autocorrela-
tions along dimensions for 71 globin and 478 MALIDUP protein structures.

lag-1 autocorrelation correlation

x y z (x,y) (x,z) (y,z)

globins 0.95 0.95 0.95 −0.01 0.00 0.01

MALIDUP 0.93 0.93 0.93 0.01 0.02 −0.02

3n × 3n matrix-valued parameters Θ and Σ. This model introduces site depen-
dence while preserving the analytical tractability of the conditional and limit-
ing distributions of the process, important properties for phylogenetic inference.
Under the diffusion process defined by the stochastic differential equation in (2),
the joint distribution of C(t) (the full coordinate set at time t) conditional on
C(s) is multivariate normal:

P (C(t)|C(s)) ∼ N
(
e−ΘτC(s) + (I − e−Θτ )ζ, Στ

)
(3)

with τ denoting the time difference (t − s) and with conditional covariance Στ

given by

vec(Στ ) = (Θ ⊕ Θ)−1
(
I − e−(Θ⊕Θ )τ

)
vec(Σ) (4)

where vec() is the linear operator converting a matrix into a column vector.
Letting τ → ∞ in the conditional mean and covariance gives the stationary
distribution

P (C) ∼ N (ζ, Σ∞) (5)

where the stationary covariance Σ∞ is expressed as

vec(Σ∞) = (Θ ⊕ Θ)−1vec(Σ). (6)

Although these closed-form solutions exist for general Σp,Θp, they are in
general not computationally tractable when convolved with the indel process
of the evolutionary model from [2] (i.e. the Links model of [9]) because the
conditional independence required for dynamic programming is not preserved.
To maintain computational tractability in phylogenetic applications, we require
forms of Θp and Σp for which both the conditional and stationary distributions
of the multivariate OU exhibit certain conditional independencies, as described
in the next section.

2.3 Computational Tractability in Phylogenetic Models

Common uses of evolutionary models, in phylogenetic or homology detection
contexts, require the ability to optimize or average over the set of possible align-
ments. In a Bayesian or maximum likelihood context, the alignment must be
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inferred simultaneously with the other parameters. Because of the (exponen-
tially large) size of the alignment space, algorithmic efficiency considerations
in these calculations play a key role. In particular, calculating the joint likeli-
hood p(X,Y ) of two structures X and Y marginalized over all possible align-
ments M is possible in site-independent models by use of dynamic programming
(the so-called forward algorithm for pair hidden Markov models (HMMs); see
[10]). These algorithms depend on conditional independence properties of the
(marginal) likelihood of the backbone coordinates at a single backbone site given
all previous backbone sites:

P (CX
ij , CY

ij | CX
1j , C

X
2j , . . . , C

X
(i−1)j , C

Y
1j , C

Y
2j , . . . , C

Y
(i−1)j) = P (CX

ij , CY
ij ) (7)

with X and Y denoting ancestor and descendant structures respectively. Mod-
els with long-range dependence among sites, including the dependent diffusion
model (2) with general Θ,Σ = LL′, do not exhibit these conditional indepen-
dence relationships and therefore prohibit the recursive decomposition which
forms the basis of efficient dynamic programming calculations. Since an evolu-
tionary model without efficient alignment algorithms is far too expensive to use
in the context of phylogenetic tree inference, we desire a model that incorpo-
rates site dependence while still preserving sufficient conditional independence
structure to permit use of a forward-type algorithm.

2.4 Constructing a Dependent Structural Diffusion Model

A natural approach to introducing limited neighbor dependence into the diffu-
sion model is to consider the backbone sites’ coordinates as a series of nodes
with forces acting upon each pair of neighboring sites, for example as in a
ball and spring model. Figure 2 shows a general ball and spring model with
spring constants kij . This model corresponds to a probability distribution for the
equilibrium positions of the backbones coordinates which has precision matrix
Σ−1 = (bij) where bij = bji, bii = ki−1,i + ki,i+1 and bij = 0 for |i − j| > 1.

k01
C1

k12
C2

k23

...
kn−1,n

Cn
kn,n+1

Fig. 2. General ball and spring model for n backbone positions.

The corresponding Gaussian model with neighbor dependence is a spatial
first-order auto-regressive process, denoted AR(1). However, setting the spring
matrix equal to an AR(1) precision matrix gives a set of equations for the spring
constants kij with no solution. We therefore instead approach the problem of
incorporating dependence by starting with a general Θ and Σ and determining
what specific forms will correspond to an AR(1) process along the backbone.

We used symbolic algebra software to assist in solving for general matrices
Θp and symmetric, positive definite Σp such that the constraints Λτ (i, j) =
Λ∞(i, j) = 0 ∀i, j : |i − j| > 1 are satisfied for conditional and stationary



128 G. Larson et al.

precision matrices Λτ , Λ∞. Solutions to low-dimensional problems allowed us to
identify the general form for a single pair of suitable Θp,Σp. For five backbone
positions this nearest-neighbor SDM takes the form:

Θp = θ

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
ρ 1 − ρ2 0 0 0
ρ2 −ρ3 1 0 0
ρ3 −ρ4 0 1 0
ρ4 −ρ5 0 0 1

⎞
⎟⎟⎟⎟⎠

Σp = σ2

⎛
⎜⎜⎜⎜⎝

1 aρ aρ2 aρ3 aρ4

aρ 1 ρ ρ2 ρ3

aρ2 ρ 1 ρ ρ2

aρ3 ρ2 ρ 1 ρ
aρ4 ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠

(8)

where a = (3 − ρ2)/2. The conditional and stationary distributions given by
(3) and (5) have tri-diagonal precision matrices. Thus dynamic programming is
preserved, albeit with some modification to the standard pair HMM recursion
formulas required as described in Sect. 2.5.

Similar computer algebra experiments were used to demonstrate that no such
solutions exist for any diffusion of the form (2) where Σp = I. With Θ = I3 ⊗Θp

and Σ = I3⊗Σp, (3-6) give the marginal or conditional distributions for matched
positions.

2.5 Dynamic Programming

The recursive equations used for the pair hidden Markov model underlying the
SIM [10] require several modifications in order to be used with the SDM. These
modifications are specific to the form of Θ and Σ = LL′ chosen for the structural
diffusion parameters. The primary reason for the changes is that the backbone
coordinate emission probabilities in the SIM are independent of neighboring sites,
whereas in the SDM the emission probabilities depend on neighboring sites. The
details of the changes required to the dynamic programming algorithm are given
in Appendix A.1.

2.6 Bayesian Inference for the Site-Dependent Model

Under the new site-dependent model specified by (2, 8), the joint distribution
p(X,Y |M) of backbone coordinates for ancestor X and descendant Y given any
alignment M can be expressed

p(X, Y |M) =
∏

m∈M

p(X[m], Y[m]|m,Nm)
∏

d∈D

p(X[d], Y[d]|d,Nd)
∏

i∈I

p(X[i], Y[i]|i,Ni)

(9)

where M,D, and I respectively are the sets of matched, deleted, and inserted
sites in M. X[m] denotes the backbone coordinates of the positions of X aligned
in m ∈ M , and Ni is the set of backbone positions neighboring position i. In
other words p(X,Y |M) can be expressed in a decomposed form, each factor
of which is either the joint density for a contiguous block of matches given its
neighbors or the density of an insertion or deletion distribution for a particular
site given its neighbors.
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Bayesian inference based on this joint distribution (and that including indels)
uses priors and sampling techniques detailed in [2] with trivial additions to
accommodate priors and sampling for the model’s dependence parameter ρ.

3 Joint Sequence-Structure Model for Phylogenetic
Inference

Phylogenetic inference involves constructing a phylogenetic tree using estimates
of the evolutionary distance between proteins, or equivalently models of the time-
dependent evolution. Traditionally this is done using site-independent sequence
evolution models parameterized by a matrix Q of relative substitution rates,
defining a likelihood over the time τ over which evolution occurs. The joint
sequence-structure evolution model introduced by [2] multiplies this likelihood
by one derived similarly from the time-dependent structure diffusion process
(SIM) given by (1), allowing both structural and sequence differences to inform
the estimation of divergence time τ .

3.1 Amino Acid Sequence Model

The sequence portion of our joint sequence and structure model is identical to
that used in [2], where the joint likelihood for the two sequences SX , SY and an
alignment M between them is given by

p(SX , SY ,M|λ, μ, τ,Q) = P (SX , SY |M, τ,Q)P (M|λ, μ, τ) (10)

= P (SY
M |SX

M , τ,Q)P (SY
M̄ |π) × P (SX |π)P (M|λ, μ, τ)

where SX
M , SY

M denote the matched (aligned) positions of the amino acid
sequences SX and SY , SY

M̄
the unmatched positions of SY , Q the substitu-

tion rate matrix, and π the equilibrium distribution of amino acid labels. The
probabilities P (SY

M |SX
M , τ,Q) are given by a product of independent substitution

probabilities at each site via the transition probability matrix eQτ . P (SY
M̄

|π) and
P (SX |π) are given by the equilibrium distribution π, and we refer the reader to
[2] for a discussion of the Links indel model which specifies P (M|λ, μ, τ).

3.2 Site-Dependent Random Effect Model

In a sequence evolution model (10), only the product Qτ is identifiable - one can-
not simultaneously estimate absolute rates and τ itself. As a result, it is standard
to scale the substitution rate matrix Q to a single expected substitution per unit
time [11]. As a result, the time τ is interpreted as the expected number of substi-
tutions per site, which can be estimated from sequences. The structural model
exhibits a similar identifiability issue: in pairwise estimation with a structure-
only model, with neither rate θ nor time τ fixed, only the structural distance θτ
would be identifiable. In the Challis-Schmidler model this was not thought to
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be a concern, since when the joint model is used τ becomes determined by the
sequence information, making θ identifiable as well.

However this means that disagreement between the structural evolution
model and sequence evolution model regarding the divergence time τ will be
resolved by compensation in the estimate of θ. Because we do not currently
have a computationally tractable site-dependent sequence evolution model, we
do not wish the information in the structural SDM to be overridden by the
site-independent sequence model, which we know to be susceptible to underes-
timation. We address this by introducing a distinct sequence time Qτ = τq and
structural time τs related by a stochastic model. This differs from the approach
of [2,3], which assumed a common time shared by both structural and sequence
components of the likelihood.

The importance of distinguishing these two quantities is highlighted by the
plot in Fig. 3, where we estimated divergence time separately using the sequence-
only model of (10) and the independent structure-only model (see e.g. [2]) for
a set of globins. There is a strong, arguably linear relationship between the
structure-only evolutionary distance θτ and the sequence-only evolutionary dis-
tance τ , but the relationship between them is clearly noisy. Forcing the two
models to share a common parameter ignores the different amounts of infor-
mation and uncertainty provided about the evolutionary distance by sequence
and structural data. The sequence-only and structure-only phylogenetic trees
are shown as well, where we see the implications for tree topology.
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Fig. 3. Pairwise sequence-only distance (τq) and structure-only distance (θτs) estimates
from a set of 24 globin proteins under the SIM. The estimates are plotted against each
other in panel (b) with the respective phylogenetic tree estimates (via neighbor-joining)
in panels (a) and (c). In panel (b), we excluded pairs whose sequence distances could
not be reliably estimated due to high sequence divergence.

Instead, we introduce a random effect model defining a stochastic linear rela-
tionship between sequence and structure distances:

(θτs) = βτq + ε where ε ∼ N(0, ω2). (11)
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Here τs, τq are the structural and sequence divergence times respectively. A sim-
ple linear regression gives β̂ = 0.005 and an estimate for ω. Under this formula-
tion, the sequence model is now given by

p(SX , SY ,M|λ, μ, τq, Q) = P (SX , SY |M, τq, Q)P (M|λ, μ, τq) (12)

= P (SY
M |SX

M , τq, Q)P (SY
M̄ |π) × P (SX |π)P (M|λ, μ, τq)

and the PDE governing the structural diffusion is

dC = −Θ(C − ζ)dts + LdBt(s) . (13)

To ensure the structure distance variable τs is on a similar scale to τq, in each
pairwise estimation under this model we fix θ at its posterior mean under the
SIM. Hereafter we refer to this joint sequence and structure model with random
effect as the SDMre.

4 Results

All inferences were performed on the Duke Computer Cluster (DCC), a het-
erogeneous network of shared computing nodes; a typical node CPU is an Intel
Xeon 2.6 GHz. Average runtimes for the SIM range from 20-60 iterations per sec-
ond depending primarily on the length of the proteins, while SDM computations
are roughly an order of magnitude slower than the SIM. All model parameters
were sampled via random-walk Metropolis Hastings, augmented with a library
sampling step for rotation parameter R as described in [2].

4.1 Improved Estimation of Evolutionary Distances

We first revisit the example of underestimation in the SIM, shown in Fig. 1(e).
The left panel of Fig. 4 shows the posteriors from both the site-independent
and site-dependent models. We see again that the SIM underestimates the true
evolutionary distance, while the SDM corrects for this.

While this is not surprising on data simulated from the SDM, similar results
are observed on real data for which the ‘true’ distance is unknown. The four
plots at right in Fig. 4 compare the SIM and SDM posterior distributions for
structural distance θτ between two pairs of cysteine proteinases from [3] (top
row) and two pairs of globins (human-turtle and human-lamprey, bottom row).
In each pairwise estimation, the SIM is significantly underestimating structural
distance relative to the SDM. This result is consistently observed across the
other pairs of globins and cysteine proteinase pairs from [2,3] (results omitted for
brevity). In each case the SDM posterior is somewhat more diffuse, presumably
due to the lower effective sample size in the structural information induced by
dependence in the structural model. Although the ‘true’ distances for these pairs
cannot be known, these results strongly suggest that including site dependence
in the structural model can significantly reduce systematic bias in the estimated
evolutionary distances.
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Fig. 4. Estimation of evolutionary distance using SIM (light) and SDM (dark), for
(a) simulated data with known true distance, and (b) real data from two cysteine pro-
teinase pairs (b, top row) and two globins (b, bottom row). In all cases the SIM estimate
is significantly lower than the SDM estimate, strongly suggesting systematic underes-
timation under the SIM assumption. Simulation parameters: σ2 = 1, θ = 0.002, t =
0.1, ρ = 0.95.

Non-neighbor dependence: Proteins exhibit significant non-neighbor dependen-
cies due to shared environments and physico-chemical interactions between
amino acids that are distant in sequence but proximal in space. Simulations
were run using general (non-banded) covariance matrices to simulate structural
evolution with long-range correlations, with the SDM then used to estimate
evolutionary distance. The results (omitted for brevity) are very similar to the
left panel of Fig. 4: the SIM noticeably underestimates the true structural dis-
tance while the SDM accurately estimates it. This indicates the robustness of
the nearest-neighbor approximation, required for efficient computation, to more
general dependency patterns.

4.2 Effect on Phylogeny of Ignoring Structural Dependence
in Globin Structures

Errors in estimation of pairwise evolutionary distances have the potential to
undermine phylogenetic inference as well. To explore this, we compare phyloge-
netic trees reconstructed via neighbor-joining for a group of 16 globins using the
SIM versus that obtained under the SDMre of Sect. 3. In each case, the respective
model was used to estimate the pairwise distances for all pairs of proteins, and
the resulting pairwise distance matrix was used to produce a neighbor-joining
tree with the PHYLIP and Drawtree software [12]. Differences observed in these
trees can be expected to also appear in trees if the SDM were used to replace the
SIM component of the fully Bayesian joint sequence-structure tree estimation [3].

The phylogenetic trees estimated using posterior mean evolutionary dis-
tances are shown in Fig. 5. The SIM and SDMre trees are very similar, and
neither matches the accepted NCBI taxonomy exactly. However, the SDMre tree
improves upon the SIM tree in that botfly and fruitfly are now placed together
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in a single clade with no other species, as in the NCBI taxonomy. This example
demonstrates that phylogeny estimation can be adversely affected by ignoring
structural dependence, even for proteins with high structure similarity such as
these globins.

The SIM and SDMre models leading to the trees in Fig. 5 differ in two ways:
incorporation of dependence in the diffusion, and incorporation of the random-
effect relation between the sequence and structure time parameters. For com-
parison, we also ran the SIM with the random-effect incorporated, but without
dependence in the diffusion model. This SIMre does not correctly group bot-
fly and fruitfly, indicating that it is the site dependence which leads to the
improved tree topology. For comparison, the sequence-only tree is also shown
(for a superset of globins) in panel (a) of Fig. 3; it is highly inaccurate due to
many pairs with highly divergent sequences. Without the structural component
of the model included, these divergent sequences yield highly uncertain distance
estimates which significantly destabilize the tree.

Fig. 5. The SDMre tree (left) improves upon the SIM tree (right) by grouping the
botfly and fruitfly in their own clade, matching the accepted NCBI taxonomy.

5 Discussion

The site-dependent structural evolution model described here allows a signifi-
cant improvement in model realism while retaining the computational tractabil-
ity necessary for use in phylogenetic inference. As shown, the incorporation of
dependence into the model significantly reduces bias in the estimates of evo-
lutionary distance, and can have a resulting stabilizing effect on phylogenetic
tree reconstruction. These results suggest a need for continued research on com-
putationally efficient site-dependent sequence evolution models, which can be
expected to further improve inference in these problems. This is because our
current combined sequence-structure model pairs the site-dependent structural
model with a site-independent sequence model, which likely still retains some
downward bias on the estimated evolutionary distance due to the independence
assumption in the sequence side of the model.
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A natural next step will be to incorporate the site-dependent structural model
presented here into the fully Bayesian simultaneous alignment and phylogeny
reconstruction model of [3], which currently uses the site-independent structural
model. This extension would be straightforward and may improve inference of
multiple sequence alignments in addition to improving inference of phylogenetic
trees.
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A Appendix

A.1 Modified Dynamic Programming for a Pair HMM
with Dependence

In the SDM, the dynamic programming equations’ coordinate emission proba-
bilities for each site will now involve preceding positions’ coordinates. Because
these probabilities are specified by distributions conditional on an alignment, we
must know the form of the joint distribution p(X,Y |M) given any alignment M.

In our model, as in [2], a pair HMM is used to model the distribution of
pairwise alignments between two proteins. As described in [10], the use of a pair
HMM allows one to calculate the probability of two protein structures marginal-
ized over all possible alignments between the two structures. This is accom-
plished via dynamic programming by using the well-known forward algorithm
to recursively calculate values of fk(i, j) (i.e., the total probability of all partial
alignments through position (i, j) in the ancestor (i) and descendant (j) that
end in state k ∈ {Match,Delete, Insert}). The forward equations typically used
for this purpose are presented in [10] as:

fM (i, j) = pXi,Yj
· (aMMfM (i − 1, j − 1) + aDMfD(i − 1, j − 1) (14)

+ aIMf I(i − 1, j − 1))

fD(i, j) = pXi
· (aMDfM (i − 1, j) + aDDfD(i − 1, j) + aIDf I(i − 1, j)) (15)

f I(i, j) = pYj
· (aMIf

M (i, j − 1) + aDIf
D(i, j − 1) + aIIf

I(i, j − 1)) (16)

where pXi,Yj
, pXi

, pYj
are the three emission probabilities for (respectively): a

matched pair Xi, Yj , a deletion Xi, and an insertion Yj . Terms of the form aJK

give the probability of transition from state J to state K in the pair HMM. The
emission probability terms pXi,Yj

, pXi
and pYj

involve only the sites denoted and
are independent of neighboring sites1. The SDM emission probabilities are not
independent of other sites, so the forward equations must be modified.

1 For a detailed explanation of the standard forward equation terms we refer the reader
to the pair HMM material in [10].
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To illustrate the set of changes needed, we focus only on the Match equa-
tion (14); analogous changes are required for the other two recursive equations.
Equation (14) gives the total probability of all alignments up to position (i, j)
which end with a Match at position (i, j). The three terms on the right hand
side arise because a path through the pair HMM could arrive at a Match at
(i, j) from one of three previous states in the path: either a Match, Delete, or
Insert at (i − 1, j − 1). The term pXi,Yj

is a single factor on the right hand side,
indicating that the Match emission probability at (i, j) is the same regardless of
the previous state in the path. In our case, the Match emission probability at
(i, j) depends on the previous state in the path. Accordingly, the first step in
modifying the equation for our purposes is to define unique emission probabili-
ties that depend on the previous state in the path through the pair HMM. We
write the site-dependent version of (14) as

fM (i, j) = (p̄M
XiYj

) · aMMfM (i − 1, j − 1) (17)

+ (p̄D
XiYj

) · aDMfD(i − 1, j − 1)

+ (p̄I
XiYj

) · aIMf I(i − 1, j − 1)

where the superscripts on p̄ terms indicate the previous state before the Match
at Xi, Yj . The modified equations for fD(i, j) and f I(i, j) are analogous. Any of
the emission distributions p̄ can be derived by first writing down the joint distri-
bution for the appropriate backbone positions given an alignment (see Sect. 2.6)
and then conditioning on that multivariate normal distribution as needed.

When determining the emission distributions, obvious edge cases must be
dealt with. In addition, note that the emission distribution for a matched pair
given a previous Match (p̄M

XiYj
) depends on where in the alignment the emit-

ted matched pair occurs. In other words, calculation of p̄M
XiYj

should take into
account two possibilities: one, that the state prior to the previous Match was
also a Match, or two, that it was an Insertion or Deletion. This can be verified
by considering the joint distribution for 3 consecutive matched pairs and noting
that the distribution of the 2nd matched pair conditional on previous positions
is different than the distribution of the 3rd matched pair conditional on previous
positions. This characteristic arises due to the specific forms chosen for the OU
process’ Θ and Σ in our site-dependent model. Thus, the term p̄M

XiYj
in (17)

will itself be calculated as a sum over possible states preceding the prior state:

p̄M
XiYj

= p̄
(M)1
Xi,Yj

[fD(i − 2, j − 2) · aDM · p̄D
Xi−1,Yj−1

(18)

+ f I(i − 2, j − 2) · aIM · p̄I
Xi−1,Yj−1

] · aMM

+ p̄
(M)2
Xi,Yj

[fM (i − 2, j − 2) · aMM · p̄M
Xi−1,Yj−1

] · aMM .

The presence of the recursive term p̄M
Xi−1,Yj−1

in the equation above requires
that an additional dynamic programming matrix be tracked. There are no other
emission probabilities which depend on more than one previous hidden state of
the pair HMM.
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Derivation of Emission Probabilities. Suppose Mp is a known partial align-
ment of all matches, aligning n positions Xi through Xi+n−1 to positions Yj

through Yj+n−1 with no indels. The joint distribution of these backbone coordi-
nates p(Xi,i+n−1, Yj,j+n−1|Mp) has a block covariance matrix:

p(Xi,i+n−1, Yj,j+n−1|Mp) ∼ N

(
0,

(
Σn×n RT

R Σn×n

))
(19)

where Σn×n is equal to the stationary OU solution obtained using (8) and R is
n × n, equal to:

R =
σ2e−θτ

2θ

⎛

⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρn−1

ρk 1 ρ · · · ρn−2

ρ2k ρ 1 ρn−3

...
. . .

...
ρn−1k ρn−2 ρn−3 · · · 1

⎞

⎟⎟⎟⎟⎟⎠

with k = 1−(1−ρ2)eθρ2τ

ρ2 . The emission probability for an Insertion Yj or Deletion
Xi at a particular site given its previous neighbor has an AR(1) form:

p(Xi|Xi−1, Yj) ≡ p(Xi|Xi−1) ∼ N(ρXi−1, σ
2(1 − ρ2)) (20)

p(Yj |Xi, Yj−1) ≡ p(Yj |Yj−1) ∼ N(ρYj−1, σ
2(1 − ρ2)). (21)

The joint distribution p(X,Y |M) can be specified by combining these insertion
and deletion distributions with the distribution for contiguous matches in (19).
Then, the nine dynamic programming emission distributions can be verified using
standard techniques for conditioning multivariate normal distributions.

A.2 Dependent Binary Sequence Model

Let σ represent a length n binary sequence. The space of all 2n possible sequences
is Ω = {σ1, σ2, . . . , σ2n}. A given sequence σi consists of n−1 pairs of neighboring
labels. To characterize members of Ω, let ki denote the number of neighbor pairs
in σi with identical labels (k for “keeps” the same label from one position to the
next), and let ci denote the number of neighbor pairs in σi with different labels
(c for “changes”). Now define λσi

:= ki − ci. We can refer to λσ as a degree of
dependence: for sequences with λσ > 0, more than half the neighboring label
pairs will have the same label and overall the sequence labels will appear non-
randomly distributed along the sequence. If λσi

< 0, the sequence will look more
like a uniform distribution of labels.

To construct a simple model for site-dependent binary sequence evolution,
we construct a Markov chain on the state space of binary sequences such that
the transitions are site-dependent. We first specify a set of (identical) transition
rates {ai} and a corresponding probability jump matrix P having entries Pij .
The generator Q for the corresponding Markov chain has entries Qij = aiPij .
In defining P , we follow the convention that multiple substitutions cannot occur
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simultaneously, so that the (i, j) entry of Q and P will be 0 if the configurations
σi, σj differ at more than one position. To induce dependence into such a model,
we set Qij = bλσj

−λσi /Zi with b ≥ 1 an adjustable parameter controlling the
strength of neighbor dependence (b = 1 represents neighbor independence) and
Zi a normalizing constant for the row such that the off-diagonal row elements
sum to 1. Suppose the Markov chain is currently in state i. After an exponential
waiting time elapses (given by rate ai), the Markov chain is more likely to transi-
tion to states j having larger λσj

−λσi
than to states j having smaller λσj

−λσi
.

In other words, in this model a binary sequence is more likely to evolve into a
sequence with a more contiguous blocks of identical labels than into a sequence
where the sequence labels are uniformly distributed along the sequence length.
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