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Abstract. Aligning sequencing reads on graph representations of
genomes is an important ingredient of pan-genomics. Such approaches
typically find a set of local anchors that indicate plausible matches
between substrings of a read to subpaths of the graph. These anchor
matches are then combined to form a (semi-local) alignment of the com-
plete read on a subpath. Co-linear chaining is an algorithmically rigorous
approach to combine the anchors. It is a well-known approach for the case
of two sequences as inputs. Here we extend the approach so that one of
the inputs can be a directed acyclic graph (DAGs), e.g. a splicing graph
in transcriptomics or a variant graph in pan-genomics.

This extension to DAGs turns out to have a tight connection to the
minimum path cover problem, asking us to find a minimum-cardinality
set of paths that cover all the nodes of a DAG. We study the case when
the size k of a minimum path cover is small, which is often the case in
practice. First, we propose an algorithm for finding a minimum path
cover of a DAG (V,E) in O(k|E| log |V |) time, improving all known
time-bounds when k is small and the DAG is not too dense. Second,
we introduce a general technique for extending dynamic programming
(DP) algorithms from sequences to DAGs. This is enabled by our mini-
mum path cover algorithm, and works by mimicking the DP algorithm
for sequences on each path of the minimum path cover. This technique
generally produces algorithms that are slower than their counterparts on
sequences only by a factor k. Our technique can be applied, for exam-
ple, to the classical longest increasing subsequence and longest common
subsequence problems, extended to labeled DAGs. Finally, we apply this
technique to the co-linear chaining problem, which is a generalization
of both of these two problems. We also implemented the new co-linear
chaining approach. Experiments on splicing graphs show that the new
method is efficient also in practice.
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1 Introduction

A path cover of a DAG G = (V,E) is a set of paths such that every node
of G belongs to some path. A minimum path cover (MPC) is one having the
minimum number of paths. The size of a MPC is also called the width of G.
Many DAGs commonly used in genome research, such as graphs encoding human
mutations [8] and graphs modeling gene transcripts [15], can consist, in the
former case, of millions of nodes and, in the latter case, of thousands of nodes.
However, they generally have a small width on average; for example, splicing
graphs for most genes in human chromosome 2 have width at most 10 [35,
Fig. 7]. To the best of our knowledge, among the many MPC algorithms [6,7,12,
16,27,31], there are only three whose complexities depends on the width of the
DAG. Say the width of G is k. The first algorithm runs in time O(|V ||E|+k|V |2)
and can be obtained by slightly modifying an algorithm for finding a minimum
chain cover in partial orders from [11]. The other two algorithms are due to Chen
and Chen: the first one works in time O(|V |2 + k

√
k|V |) [6], and the second one

works in time O(max(
√

|V ||E|, k
√

k|V |)) [7].
In this paper we present an MPC algorithm running in time O(k|E| log |V |).

For example, for k = o(
√

|V |/ log |V |) and |E| = O(|V |3/2), this is better than all
previous algorithms. Our algorithm is based on the following standard reduction
of a minimum flow problem to a maximum flow problem (see e.g. [2]): (i) find a
feasible flow/path cover satisfying all demands, and (ii) solve a maximum flow
problem in a graph encoding how much flow can be removed from every edge.
Our main insight is to solve step (i) by finding an approximate solution that is
greater than the optimal one only by a O(log |V |) factor. Then, if we solve step
(ii) with the Ford-Fulkerson algorithm, the number of iterations can be bounded
by O(k log |V |).

We then proceed to show that some problems (like pattern matching) that
admit efficient sparse dynamic programming solutions on sequences [10] can be
extended to DAGs, so that their complexity increases only by the minimum
path cover size k. Extending pattern matching to DAGs has been studied before
[3,24,28]. For those edit distance -based formulations our approach does not yield
an improvement, but on formulations involving a sparse set of matching anchors
[10] we can boost the naive solutions of their DAG extensions by exploiting a path
cover. Namely, our improvement applies to many cases where a data structure
over previously computed solutions is maintained and queried for computing the
next value. Our new MPC algorithm enables this, as its complexity is generally
of the same form as that of solving the extended problems. Given a path cover,
our technique then computes so-called forward propagation links indicating how
the partial solutions in each path in the cover must be synchronized.

To best illustrate the versatility of the technique itself, in the full version of
this paper [19] we show how to compute a longest increasing subsequence (LIS)
in a labeled DAG, in time O(k|E| log |V |). This matches the optimal solution
to the classical problem on a single sequence when, e.g., this is modeled as a
path (where k = 1). In Sect. 4, We also illustrate our technique with the longest
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common subsequence (LCS) problem between a labeled DAG G = (V,E) and a
sequence S.

Finally, we consider the main problem of this paper—co-linear chaining
(CLC)—first introduced in [23]. It has been proposed as a model of the sequence
alignment problem that scales to massive inputs, and has been a subject of recent
interest (see e.g. [22,29,32,36,38–40]). In the CLC problem, the input is directly
assumed to be a set of N pairs of intervals in the two sequences that match
(either exactly or approximately). The CLC alignment solution asks for a subset
of these plausible pairs that maximizes the coverage in one of the sequences,
and whose elements appear in increasing order in both sequences. The fastest
algorithm for this problem runs in the optimal O(N log N) time [1].

We define a generalization of the CLC problem between a sequence and a
labeled DAG. As motivation, we mention the problem of aligning a long sequence,
or even an entire chromosome, inside a DAG storing all known mutations of a
population with respect to a reference genome (such as the above-mentioned [8],
or more specificly a linearized version of it [14]). Here, the N input pairs match
intervals in the sequence with paths (also called anchors) in the DAG. This
problem is not straightforward, as the topological order of the DAG might not
follow the reachability order between the anchors. Existing tools for aligning
DNA sequences to DAGs (BGREAT [20], vg [25]) rely on anchors but do not
explicitly consider solving CLC optimally on the DAG.

The algorithm we propose uses the general framework mentioned above. Since
it is more involved, we will develop it in stages. We first give a simple approach
to solve a relaxed co-linear chaining problem using O((|V |+ |E|)N) time. Then,
we introduce the MPC approach that requires O(k|E| log |V | + kN log N) time.
As above, if the DAG is a labeled path representing a sequence, the running time
of our algorithm is reduced to the best current solution for the co-linear chaining
problem on sequences, O(N log N) [1]. In the full version of this paper [19], we
use a Burrows-Wheeler technique to efficiently handle a special case that we
omitted in this relaxed variant. We remark that one can reduce the LIS and
LCS problems to the CLC problem to obtain the same running time bounds as
mentioned earlier; these are given for the sake of comprehensiveness.

In the last section we discuss the anchor-finding preprocessing step. We imple-
mented the new MPC-based co-linear chaining algorithm and conducted exper-
iments on splicing graphs to show that the approach is practical, once anchors
are given. Some future directions on how to incorporate practical anchors, and
how to apply the techniques to transcript prediction, are discussed.

Notation. To simplify notation, for any DAG G = (V,E) we will assume that
V is always {1, . . . , |V |} and that 1, . . . , |V | is a topological order on V (so that
for every edge (u, v) we have u < v). We will also assume that |E| ≥ |V | − 1. A
labeled DAG is a tuple (V,E, �,Σ) where (V,E) is a DAG and � : V �→ Σ assign
to the nodes labels from Σ, Σ being an ordered alphabet.

For a node v ∈ V , we denote by N−(v) the set of in-neighbors of v and by
N+(v) the set of out-neighbors of v. If there is a (possibly empty) path from
node u to node v we say that u reaches v. We denote by R−(v) the set of nodes
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that reach v. We denote a set of consecutive integers with interval notation [i..j],
meaning {i, i + 1, . . . , j}. For a pair of intervals m = ([x..y], [c..d]), we use m.x,
m.y, m.c, and m.d to denote the four respective endpoints. We also consider
pairs of the form m = (P, [c..d]) where P is a path, and use m.P to access P .
The first node of P will be called its startpoint, and its last node will be called
its endpoint. For a set M we may fix an order, to access an element as M [i].

2 The MPC Algorithm

In this section we assume basic familiarity with network flow concepts; see [2]
for further details. In the minimum flow problem, we are given a directed graph
G = (V,E) with a single source and a single sink, with a demand d : E → Z for
every edge. The task is to find a flow of minimum value (the value is the sum of
the flow on the edges exiting the source) that satisfies all demands (to be called
feasible). The standard reduction from the minimum path cover problem to a
minimum flow one (see, e.g. [26]) creates a new DAG G∗ by replacing each node
v with two nodes v−, v+, adds the edge (v−, v+) and adds all in-neighbors of v
as in-neighbors of v−, and all out-neighbors of v as out-neighbors of v+. Finally,
the reduction adds a global source with an out-going edge to every node, and a
global sink with an in-coming edge from every node. Edges of type (v−, v+) get
demand 1, and all other edges get demand 0. The value of the minimum flow
equals k, the width of G, and any decomposition of it into source-to-sink paths
induces a minimum path cover in G.

Our MPC algorithm is based on the following simple reduction of a minimum
flow problem to a maximum flow one (see e.g. [2]): (i) find a feasible flow f : E →
Z; (ii) transform this into a minimum feasible flow, by finding a maximum flow
f ′ in G in which every e ∈ E now has capacity f(e) − d(e). The final minimum
flow solution is obtained as f(e)− f ′(e), for every e ∈ E. Observe that this path
cover induces a flow of value O(k log |V |). Thus, in step (ii) we need to shrink this
flow into a flow of value k. If we run the Ford-Fulkerson algorithm, this means
that there are O(k log |V |) successive augmenting paths, each of which can be
found in time O(E). This gives a time bound for step (ii) of O(k|E| log |V |).

We solve step (i) in time O(k|E| log |V |) by finding a path cover in G∗ whose
size is larger than k only by a multiplicative factor O(log |V |). This is based on
the classical greedy set cover algorithm, see e.g. [37, Chapter 2]: at each step,
select a path covering most of the remaining uncovered nodes.

Such approximation approach has also been applied to other covering prob-
lems on graphs, such as a 2-hop cover [9]. More importantly, the approximation-
and-refinement approach is similar to the one from [11] for finding the minimum
number k of chains to cover a partial order of size n. A chain is a set of pairwise
comparable elements. The algorithm from [11] runs in time O(kn2), and it has
the same feature as ours: it first finds a set of O(k log n) chains in the same way
as us (longest chains covering most uncovered elements), and then in a second
step reduces these to k. However, if we were to apply this algorithm to DAGs,
it would run in time O(|V ||E| + k|V |2), which is slower than our algorithm for
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small k. This is because it uses the classical reduction given by Fulkerson [12]
to a bipartite graph, where each edge of the graph encodes a pair of elements in
the relation. Since DAGs are not transitive in general, to use this reduction one
needs first to compute the transitive closure of the DAG, in time O(|V ||E|).

We now show how to solve step (i) within the claimed running time, by
dynamic programming.

Lemma 1. Let G = (V,E) be a DAG, and let k be the width of G. In time
O(k|E| log |V |), we can compute a path cover P1, . . . , PK of G, such that K =
O(k log |V |).

Proof. The algorithm works by choosing, at each step, a path that covers the
most uncovered nodes. For every node v ∈ V , we store m[v] = 1, if v is not
covered by any path, and m[v] = 0 otherwise. We also store u[v] as the largest
number of uncovered nodes on a path starting at v. The values u[·] are computed
by dynamic programming, by traversing the nodes in inverse topological order
and setting u[v] = m[v] + maxw∈N+(v) u[v]. Initially we have m[v] = 1 for all v.
We then compute u[v] for all v, in time O(|E|). By taking the node v with the
maximum u[v], and tracing back along the optimal path starting at v, we obtain
our first path in time O(|E|). We then update m[v] = 0 for all nodes on this
path, and iterate this process until all nodes are covered. This takes overall time
O(K|E|), where K is the number of paths found.

This algorithm analysis is identical to the one of the classical greedy set
cover algorithm [37, Chapter 2], because the universe to be covered is V and each
possible path in G is a possible covering set, which implies that K = O(k log |V |).

��

Combining Lemma 1 with the above-mentioned application of the Ford-
Fulkerson algorithm, we obtain our first result:

Theorem 1. Given a DAG G = (V,E) of width k, the MPC problem on G can
be solved in time O(k|E| log |V |).

3 The Dynamic Programming Framework

In this section we give an overview of the main ideas of our approach.
Suppose we have a problem involving DAGs that is solvable, for example

by dynamic programming, by traversing the nodes in topological order. Thus,
assume also that a partial solution at each node v is obtainable from all (and
only) nodes of the DAG that can reach v, plus some other independent objects,
such as another sequence. Furthermore, suppose that at each node v we need to
query (and maintain) a data structure T that depends on R−(v) and such that
the answer Query(R−(v)) at v is decomposable as:

Query(R−(v)) =
⊕

i

Query(R−
i (v)). (1)
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Fig. 1. A path cover P1, P2, P3 of a DAG. The forward links entering v from
last2reach[v, i] are shown with dotted black lines, for i ∈ {1, 2, 3}. We mark in gray
the set R−(v) of nodes that reach v.

In the above, the sets R−
i (v) are such that R−(v) =

⋃
i R−

i (v), they are not
necessarily disjoint, and

⊕
is some operation on the queries, such as min or max,

that does not assume disjointness. It is understood that after the computation
at v, we need to update T . It is also understood that once we have updated T at
v, we cannot query T for a node before v in topological order, because it would
give an incorrect answer.

The first idea is to decompose the graph into a path cover P1, . . . , PK . As
such, we decompose the computation only along these paths, in light of (1). We
replace a single data structure T with K data structures T1, . . . , TK , and perform
the operation from (1) on the results of the queries to these K data structures.

Our second idea concerns the order in which the nodes on these K paths
are processed. Because the answer at v depends on R−(v), we cannot process
the nodes on the K paths (and update the corresponding Ti’s) in an arbitrary
order. As such, for every path i and every node v, we distinguish the last node
on path i that reaches v (if it exists). We will call this node last2reach[v, i].
See Fig. 1 for an example. We note that this insight is the same as in [17], which
symmetrically identified the first node on a chain i that can be reached from
v (a chain is a subsequence of a path). The following observation is the first
ingredient for using the decomposition (1).

Observation 1. Let P1, . . . , PK be a path cover of a DAG G, and let v ∈ V (G).
Let Ri denote the set of nodes of Pi from its beginning until last2reach[v, i]
inclusively (or the empty set, if last2reach[v, i] does not exist). Then R−(v) =⋃K

i=1 Ri.

Proof. It is clear that
⋃K

i=1 Ri ⊆ R−(v). To show the reverse inclusion, consider
a node u ∈ R−(v). Since P1, . . . , PK is a path cover, then u appears on some
Pi. Since u reaches v, then u appears on Pi before last2reach[v, i], or u =
last2reach[v, i]. Therefore u appears on Ri, as desired. ��

This allows us to identify, for every node u, a set of forward propagation links
forward[u], where (v, i) ∈ forward[u] holds for any node v and index i with
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last2reach[v, i] = u. These propagation links are the second ingredient in the
correctness of the decomposition. Once we have computed the correct value at
u, we update the corresponding data structures Ti for all paths i to which u
belongs. We also propagate the query value of Ti in the decomposition (1) for
all nodes v with (v, i) ∈ forward[u]. This means that when we come to process
v, we have already correctly computed all terms in the decomposition (1) and it
suffices to apply the operation

⊕
to these terms.

The next lemma shows how to compute the values last2reach (and, as a
consequence, all forward propagation links), also by dynamic programming.

Lemma 2. Let G = (V,E) be a DAG, and let P1, . . . , PK be a path cover of
G. For every v ∈ V and every i ∈ [1..K], we can compute last2reach[v, i] in
overall time O(K|E|).

Proof. For each Pi and every node v on Pi, let index[v, i] denote the position of
v in Pi (say, starting from 1). Our algorithm actually computes last2reach[v, i]
as the index of this node in Pi. Initially, we set last2reach[v, i] = −1 for all
v and i. At the end of the algorithm, last2reach[v, i] = −1 will hold precisely
for those nodes v that cannot be reached by any node of Pi. We traverse the
nodes in topological order. For every i ∈ [1..K], we do as follows: if v is on Pi,
then we set last2reach[v, i] = index[v, i]. Otherwise, we compute by dynamic
programming last2reach[v, i] as maxu∈N−(v) last2reach[u, i]. ��

An immediate application of Theorem 1 and of the values last2reach[v, i]
is for solving reachability queries. Another simple application is an extension of
the longest increasing subsequence (LIS) problem to labeled DAGs. (Both are
given in the full version of this paper [19]).

The LIS problem, the LCS problem of Sect. 4, as well as co-linear chaining
(CLC) of Sect. 5 make use of the following standard data structure (see e.g. [21,
p.20]).

Lemma 3. The following two operations can be supported with a balanced binary
search tree T in time O(log n), where n is the number of leaves in the tree.

– update(k, val): For the leaf w with key(w) = k, update value(w) = val.
– RMaxQ(l, r): Return maxw : l≤key(w)≤r value(w) (Range Maximum Query).

Moreover, the balanced binary search tree can be built in O(n) time, given the n
pairs (key, value) sorted by component key.

4 The LCS Problem

Consider a labeled DAG G = (V,E, �,Σ) and a sequence S ∈ Σ∗, where Σ is an
ordered alphabet. We say that the longest common subsequence (LCS) between
G and S is a longest subsequence C of any path label in G such that C is also
a subsequence of S.
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We will modify the LIS algorithm (see the full version of this paper [19])
minimally to find a LCS between a DAG G and a sequence S. The description
is self-contained yet, for the interest of page limit, more dense than the LIS
algorithm derivation. The purpose is to give an example of the general MPC-
framework with fewer technical details than required in the main result of this
paper concerning co-linear chaining.

For any c ∈ Σ, let S(c) denote set {j | S[j] = c}. For each node v and
each j ∈ S(�(v)), we aim to store in LLCS[v, j] the length of the longest com-
mon subsequence between S[1..j] and any label of path ending at v, among all
subsequences having �(v) = S[j] as the last symbol.

Assume we have a path cover of size K and forward[u] computed for all u ∈
V . Assume also we have mapped Σ to {0, 1, 2, . . . , |S|+1} in O((|V |+|S|) log |S|)
time (e.g. by sorting the symbols of S, binary searching labels of V , and then
relabeling by ranks, with the exception that, if a node label does not appear in
S, it is replaced by |S| + 1).

Let Ti be a search tree of Lemma 3 initialized with key-value pairs (0, 0),
(1,−∞), (2,−∞), . . . , (|S|,−∞), for each i ∈ [1..K]. The algorithm proceeds
in fixed topological ordering on G. At a node u, for every (v, i) ∈ forward[u]
we now update an array LLCS[v, j] for all j ∈ S(�(v)) as follows: LLCS[v, j] =
max(LLCS[v, j], Ti.RMaxQ(0, j − 1) + 1). The update step of Ti when the algo-
rithm reaches a node v, for each covering path i containing v, is done as
Ti.update(j′, LLCS[v, j′]) for all j′ with j′ < j and j′ ∈ S(�(v)). Initialization
is handled by the (0, 0) key-value pair so that any (v, j) with �(v) = S[j] can
start a new common subsequence.

The final answer to the problem is maxv∈V,j∈S(�(v)) LLCS[v, j], with the
actual LCS to be found with a standard traceback. The algorithm runs in
O((|V | + |S|) log |S| + K|M | log |S|) time, where M = {(v, j) | v ∈ V, j ∈
[1..|S|], �(v) = S[j]}, and assuming a cover of K paths is given. Notice that |M |
can be Ω(|V ||S|). With Theorem 1 plugged in, the total running time becomes
O(k|E| log |V | + (|V | + |S|) log |S| + k|M | log |S|). Since the queries on the data
structures are semi-open, one can use the more efficient data structure from [13]
to improve the bound to O(k|E| log |V | + (|V | + |S|) log |S| + k|M | log log |S|).
The following theorem summarizes this result.

Theorem 2. Let G = (V,E, �,Σ) be a labeled DAG of width k, and let S ∈ Σ∗,
where Σ is an ordered alphabet. We can find a longest common subsequence
between G and S in time O(k|E| log |V | + (|V | + |S|) log |S| + k|M | log log |S|).

When G is a path, the bound improves to O((|V |+|S|) log |S|+|M | log log |S|),
which nearly matches the fastest sparse dynamic programming algorithm for the
LCS on two sequences [10] (with a difference in log log-factor due to a different
data structure, which does not work for this order of computation).

5 Co-linear Chaining

We start with a formal definition of the co-linear chaining problem (see Fig. 2
for an illustration), following the notions introduced in [21, Sect. 15.4].
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T

R

Fig. 2. In the co-linear chaining problem between two sequences T and R, we need
to find a subset of pairs of intervals (i.e., anchors) so that (i) the selected intervals
in each sequence appear in increasing order; and (ii) the selected intervals cover in R
the maximum amount of positions. The figure shows an input for the problem, and
highlights in gray an optimal subset of anchors. Figure taken from [21].

Problem 1 (Co-linear chaining (CLC)). Let T and R be two sequences over an
alphabet Σ, and let M be a set of N pairs ([x..y], [c..d]). Find an ordered subset
S = s1s2 · · · sp of pairs from M such that

– sj−1.y < sj .y and sj−1.d < sj .d, for all 1 ≤ j ≤ p, and
– S maximizes the ordered coverage of R, defined as

coverage(R,S) = |{i ∈ [1..|R|] | i ∈ [sj .c..sj .d] for some 1 ≤ j ≤ p}|.

The definition of ordered coverage between two sequences is symmetric, as we
can simply exchange the roles of T and R. But when solving the CLC problem
between a DAG and a sequence, we must choose whether we want to maximize
the ordered coverage on the sequence R or on the DAG G. We will consider the
former variant.

First, we define the following precedence relation:

Definition 1. Given two paths P1 and P2 in a DAG G, we say that P1 precedes
P2, and write P1 ≺ P2, if one of the following conditions holds:

– P1 and P2 do not share nodes and there is a path in G from the endpoint of
P1 to the startpoint of P2, or

– P1 and P2 have a suffix-prefix overlap and P2 is not fully contained in P1;
that is, if P1 = (a1, . . . , ai) and P2 = (b1, . . . , bj) then there exists a k ∈
{max(1, 2 + i − j), . . . , i} such that ak = b1, ak+1 = b2, . . . , ai = b1+i−k.

We then extend the formulation of Problem1 to handle a sequence and a DAG.

Problem 2 (CLC between a sequence and a DAG). Let R be a sequence, let G
be a labeled DAG, and let M be a set of N pairs (P, [c..d]), where P is a path
in G and c ≤ d are non-negative integers. Find an ordered subset S = s1s2 · · · sp

of pairs from M such that
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– for all 2 ≤ j ≤ p, it holds that sj−1.P ≺ sj .P and sj−1.d < sj .d, and
– S maximizes the ordered coverage of R, analogously defined as
coverage(R,S) = |{i ∈ [1..|R|] | i ∈ [sj .c..sj .d] for some 1 ≤ j ≤ p}|.

To illustrate the main technique of this paper, let us for now only seek solu-
tions where paths in consecutive pairs in a solution do not overlap in the DAG.
Suffix-prefix overlaps between paths turn out to be challenging; we prove this
case in the full version of this paper [19].

Problem 3 (Overlap-limited CLC between a sequence and a DAG). Let R be a
sequence, let G be a labeled DAG, and let M be a set of N pairs (P, [c..d]), where
P is a path in G and c ≤ d are non-negative integers (with the interpretation
that �(P ) matches R[c..d]). Find an ordered subset S = s1s2 · · · sp of pairs from
M such that

– for all 2 ≤ j ≤ p, it holds that there is a non-empty path from the last node
of sj−1.P to the first node of sj .P and sj−1.d < sj .d, and

– S maximizes coverage(R,S).

First, let us consider a trivial approach to solve Problem3. Assume we have
ordered in O(|E| + N) time the N input pairs as M [1],M [2], . . . ,M [N ], so that
the endpoints of M [1].P,M [2].P, . . . ,M [N ].P are in topological order, breaking
ties arbitrarily. We denote by C[j] the maximum ordered coverage of R[1..M [j].d]
using the pair M [j] and any subset of pairs from {M [1],M [2], . . . ,M [j − 1]}.

Theorem 3. Overlap-limited co-linear chaining between a sequence and a
labeled DAG G = (V,E, �,Σ) (Problem 3) on N input pairs can be solved in
O((|V | + |E|)N) time.

Proof. First, we reverse the edges of G. Then we mark the nodes that corre-
spond to the path endpoints for every pair. After this preprocessing we can start
computing the maximum ordered coverage for the pairs as follows: for every pair
M [j] in topological order of their path endpoints for j ∈ {1, . . . , N} we do a
depth-first traversal starting at the startpoint of path M [j].P . Note that since
the edges are reversed, the depth-first traversal checks only pairs whose paths
are predecessors of M [j].P .

Whenever we encounter a node that corresponds to the path endpoint of a
pair M [j′], we first examine whether it fulfills the criterion M [j′].d < M [j].c (call
this case (a)). The best ordered coverage using pair M [j] after all such M [j′] is
then

Ca[j] = max
j′ : M [j′].d<M [j].c

{C[j′] + (M [j].d − M [j].c + 1)}, (2)

where C[j]′ is the best ordered coverage when using pairs M [j′] last.
If pair M [j′] does not fulfill the criterion for case (a), we then check whether

M [j].c ≤ M [j′].d ≤ M [j].d (call this case (b)). The best ordered coverage using
pair M [j] after all such M [j′] with M [j′].c < M [j].c is then

Cb[j] = max
j′ : M [j].c≤M [j′].d≤M [j].d

{C[j′] + (M [j].d − M [j′].d)}. (3)
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Inclusions, i.e. M [j].c ≤ M [j′].c, can be left computed incorrectly in Cb[j], since
there is a better or equally good solution computed in Ca[j] or Cb[j] that does
not use them [1].

Finally, we take C[j] = max(Ca[j], Cb[j]). Depth-first traversal takes O(|V |+
|E|) time and is executed N times, for O((|V | + |E|)N) total time. ��

However, we can do significantly better than O((|V | + |E|)N) time. In the
next sections we will describe how to apply the framework from Sect. 3 here.

5.1 Co-linear Chaining on Sequences Revisited

We now describe the dynamic programming algorithm from [1] for the case of
two sequences, as we will then reuse this same algorithm in our MPC approach.

First, sort input pairs in M by the coordinate y into the sequence M [1], M [2],
. . . , M [N ], so that M [i].y ≤ M [j].y holds for all i < j. This will ensure that we
consider the overlapping ranges in sequence T in the correct order. Then, we fill
a table C[1..N ] analogous to that of Theorem3 so that C[j] gives the maximum
ordered coverage of R[1..M [j].d] using the pair M [j] and any subset of pairs from
{M [1],M [2], . . . ,M [j − 1]}. Hence, maxj C[j] gives the total maximum ordered
coverage of R.

Consider Eq. (2) and (3). Now we can use an invariant technique to convert
these recurrence relations so that we can exploit the range maximum queries of
Lemma 3:

Ca[j] = (M [j].d − M [j].c + 1) + max
j′ : M [j′].d<M [j].c

C[j′]

= (M [j].d − M [j].c + 1) + T .RMaxQ(0,M [j].c − 1),
Cb[j] = M [j].d + max

j′ : M [j].c≤M [j′].d≤M [j].d
{C[j′] − M [j′].d}

= M [j].d + I.RMaxQ(M [j].c,M [j].d),
C[j] = max(Ca[j], Cb[j]).

For these to work correctly, we need to have properly updated the trees T and
I for all j′ ∈ [1..j − 1]. That is, we need to call T .update(M [j′].d, C[j′]) and
I.update(M [j′].d, C[j′] − M [j′].d) after computing each C[j′]. The running time
is O(N log N).

Figure 2 illustrates the optimal chain on our schematic example. This chain
can be extracted by modifying the algorithm to store traceback pointers.

Theorem 4 ([1,32]). Problem 1 on N input pairs can be solved in the optimal
O(N log N) time.

5.2 Co-linear Chaining on DAGs Using a Minimum Path Cover

Let us now modify the above algorithm to work with DAGs, using the main
technique of this paper.
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Theorem 5. Problem 3 on a labeled DAG G = (V,E, �,Σ) of width k and a set
of N input pairs can be solved in time O(k|E| log |V | + kN log N) time.

Proof. Assume we have a path cover of size K and forward[u] computed for all
u ∈ V . For each path i ∈ [1..K], we create two binary search trees Ti and Ii.
As a reminder, these trees correspond to coverages for pairs that do not, and do
overlap, respectively, on the sequence. Moreover, recall that in Problem3 we do
not consider solutions where consecutive paths in the graph overlap.

As keys, we use M [j].d, for every pair M [j], and additionally the key 0. The
value of every key is initialized to −∞.

After these preprocessing steps, we process the nodes in topological order, as
detailed in Algorithm1. If node v corresponds to the endpoint of some M [j].P ,
we update the trees Ti and Ii for all covering paths i containing node v. Then we
follow all forward propagation links (w, i) ∈ forward[v] and update C[j] for each
path M [j].P starting at w, taking into account all pairs whose path endpoints are
in covering path i. Before the main loop visits w, we have processed all forward
propagation links to w, and the computation of C[j] has taken all previous pairs
into account, as in the naive algorithm, but now indirectly through the K search
trees. Exceptions are the pairs overlapping in the graph, which we omit in this
problem statement. The forward propagation ensures that the search tree query
results are indeed taking only reachable pairs into account. While C[j] is already
computed when visiting w, the startpoint of M [j].P , the added coverage with
the pair is updated to the search trees only when visiting the endpoint.

There are NK forward propagation links, and both search trees are queried
in O(log N) time. All the search trees containing a path endpoint of a pair are
updated. Each endpoint can be contained in at most K paths, so this also gives
the same bound 2NK on the number of updates. With Theorem1 plugged in, we
have K = k and the total running time becomes O(k|E| log |V | + kN log N). ��

6 Discussion and Experiments

For applying our solutions to Problem2 in practice, one first needs to find the
alignment anchors. As explained in the problem formulation, alignment anchors
are such pairs (P, [c..d]) where P is a path in G and �(P ) matches R[c..d].
With sequence inputs, such pairs are usually taken to be maximal exact matches
(MEMs) and can be retrieved in small space in linear time [4,5]. It is largely an
open problem how to retrieve MEMs between a sequence and a DAG efficiently:
The case of length-limited MEMs is studied in [33], based on an extension of
[34] with features such as suffix tree functionality. On the practical side, anchor
finding has already been incorporated into tools for conducting alignment of a
sequence to a DAG [20,25].

For the purpose of demonstrating the efficiency of our MPC-approach applied
to co-linear chaining, we implemented a MEM-finding routine based on simple
dynamic programming. We leave it for future work to incorporate a practi-
cal procedure (e.g. like those in [20,25]). We tested the time improvement of
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Algorithm 1. Co-linear chaining between a sequence and a DAG using a
path cover.
Input: DAG G = (V,E), a path cover P1, P2, . . . , PK of G, and N pairs

M [1],M [2], . . . ,M [N ] of the form (P, [c..d]).
Output: The index j giving maxj C[j].
Use Lemma 2 to find all forward propagation links;
for i ← 1 to K do

Initialize search trees Ti and Ii with keys M [j].d, 1 ≤ j ≤ N , and with key
0, all keys associated with values −∞;
Ti.update(0, 0);
Ii.update(0, 0);

/* Save to start[i] (respectively, end[i]) the indexes of all pairs

whose path starts (respectively, ends) at i. */

for j ← 1 to N do
start[M [j].P.first].push(j);
end[M [j].P.last].push(j);

for v ∈ V in topological order do
for j ∈ end[v] do

/* Update the search trees for every path that covers v,
stored in paths[v]. */

for i ∈ paths[v] do
Ti.update(M [j].d, C[j]);
Ii.update(M [j].d, C[j] − M [j].d);

for (w, i) ∈ forward[v] do
for j ∈ start[w] do

Ca[j] ← (M [j].d − M [j].c + 1) + Ti.RMaxQ(0,M [j].c − 1);
Cb[j] ← M [j].d + Ii.RMaxQ(M [j].c,M [j].d);
C[j] ← max(C[j], Ca[j], Cb[j]);

return argmaxj C[j];

our MPC-approach (Theorem 5) over the trivial algorithm (Theorem3) on the
sequence graphs of annotated human genes. Out of all the 62219 genes in the
HG38 annotation for all human chromosomes, we singled out 8628 genes such
that their sequence graph had at least 5000 nodes. Out of these, we picked 500
genes at random.

The size of the graphs for these 500 genes varied between |V | = 5023 and
|V | = 30959 vertices. Their width, i.e., the number of paths in the MPC, varied
between k = 1 and k = 15. (The number of graphs for each value of k is listed
in the column #graphs of the top table of Fig. 3.) The number of anchors, N ,
for patterns of length 1000 varied between 101 and 105. As shown in Fig. 3, with
small values of N , our MPC-based co-linear chaining algorithm was twice as fast
as the trivial algorithm. When values of N were increased from 101 to 105, the
difference increased to two orders of magnitude.



118 A. Kuosmanen et al.

k #graphs mean |V | MPC method Naive method
1 75 7275 18 ± 27ms 5638 ± 12378ms
2 117 8109 23 ± 36ms 6355 ± 17641ms
3 93 8306 27 ± 41ms 6499 ± 17940ms
4 99 8933 32 ± 49ms 6864 ± 17868ms
5 48 9779 40 ± 59ms 8053 ± 18742ms
6 32 10265 45 ± 65ms 7934 ± 16659ms
7 16 9928 41 ± 59ms 6973 ± 15345ms
8 10 11052 57 ± 83ms 8731 ± 17497ms
9 4 9538 52 ± 77ms 6252 ± 13906ms

10 3 10833 61 ± 102ms 7055 ± 16221ms
11 2 11186 50 ± 70ms 5932 ± 10548ms
15 1 16848 154 ± 194ms 25253 ± 43873ms

N mean |V | MPC method Naive method
(100..101] 8681 8 ± 5ms 15 ± 8ms
(101..102] 8808 8 ± 5ms 79 ± 68ms
(102..103] 9732 10 ± 7ms 524 ± 392ms
(103..104] 6824 70 ± 22ms 15153 ± 5875ms
(104..105] 12235 153 ± 66ms 49482 ± 31900ms

Fig. 3. The average running times, and their standard deviation, (in milliseconds) of
the two approaches for co-linear chaining between a sequence and a DAG (Problem 2),
for all inputs of a certain width k (top), and with N belonging to a certain interval
(below). Both approaches are given the same anchors; the time for finding them is not
included.

The improved efficiency when compared to the naive approach gives rea-
son to believe a practical sequence-to-DAG aligner can be engineered along the
algorithmic foundations given here. Future work includes the incorporation of
a practical anchor-finding method, and testing whether the complete scheme
improves transcript prediction through improved finding of exon chains [18,30].

On the theoretical side, it remains open whether the MPC algorithm could
benefit from a better initial approximation and/or one that is faster to compute.
More generally, it remains open whether the overall bound O(k|E| log |V |) for
the MPC problem can be improved.
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resentations of the bidirectional Burrows-wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40450-4 12

6. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries.
In: 2008 IEEE 24th International Conference on Data Engineering, pp. 893–902,
April 2008

7. Chen, Y., Chen, Y.: On the graph decomposition. In: 2014 IEEE Fourth Interna-
tional Conference on Big Data and Cloud Computing, pp. 777–784, Dec 2014

8. Church, D.M., Schneider, V.A., Steinberg, K.M., Schatz, M.C., Quinlan, A.R.,
Chin, C.-S., Kitts, P.A., Aken, B., Marth, G.T., Hoffman, M.M., et al.: Extending
reference assembly models. Genome Biol. 16(1), 13 (2015)

9. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

10. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
I: linear cost functions. J. ACM 39(3), 519–545 (1992)

11. Felsner, S., Raghavan, V., Spinrad, J.: Recognition algorithms for orders of small
width and graphs of small Dilworth number. Order 20(4), 351–364 (2003)

12. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered
sets. Proc. Am. Math. Soc. 7(4), 701–702 (1956)

13. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geome-
try problems. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory
of Computing, STOC 1984, pp. 135–143. ACM, New York (1984)

14. Haussler, D., Smuga-Otto, M., Paten, B., Novak, A.M., Nikitin, S., Zueva, M.,
Miagkov, D.: A flow procedure for the linearization of genome sequence graphs.
In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 34–49. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56970-3 3

15. Heber, S., Alekseyev, M., Sze, S.-H., Tang, H., Pevzner, P.A.: Splicing graphs and
EST assembly problem. Bioinformatics 18(Suppl. 1), S181–S188 (2002)

16. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in Bipar-
tite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

17. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM
Trans. Database Syst. 15(4), 558–598 (1990)
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