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Abstract. The regulation of organelle abundance sustains critical bio-
logical processes, such as metabolism and energy production. Biochem-
ical models mathematically express these temporal changes in terms of
reactions, and their rates. The rate parameters are critical components
of the models, and must be experimentally inferred. However, the exist-
ing methods for rate inference are limited, and not directly applicable to
organelle dynamics.

This manuscript introduces a novel approach that integrates mod-
eling, inference and experimentation, and incorporates biological repli-
cates, to accurately infer the rates. The approach relies on a biochemical
model in form of a stochastic differential equation, and on a parallel
implementation of inference with particle filter. It also relies on a novel
microscopy workflow that monitors organelles over long periods of time in
cell culture. Evaluations on simulated datasets demonstrated the advan-
tages of this approach in terms of increased accuracy and shortened com-
putation time. An application to imaging of peroxisomes determined that
fission, rather than de novo generation, is predominant in maintaining
the organelle level under basal conditions. This biological insight serves
as a starting point for a system view of organelle regulation in cells.

Keywords: Bayesian inference · Stochastic differential equation
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1 Introduction

Eukaryotic cells are organized into subcellular membrane-bound structures, such
as the mitochondria, peroxisomes, and endosomes, known as organelles (Fig. 1).
Dynamic control of organelle abundance is fundamental for cellular homeostasis,
allowing cells to adapt to their environmental, metabolic, and energetic needs
[1–4]. Genetic mutations that affect organelle dynamics are known to cause severe
diseases in humans [5].
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The understanding of organelle dynamics has been central in basic cell biol-
ogy research. The processes inducing changes in organelle abundance are well-
known. These include organelle production by fission and/or de novo biogenesis,
as well as organelle destruction by fusion and/or degradation [6–8].

However, the integration of these individual processes into the overall con-
trol of organelle abundance remains unclear. Although genetic mutations and
pharmacological interventions have provided insight into individual mechanisms,
the uncovered pathways shared components, thus complicating the integration
[1,3,4]. Development of a biochemical model of organelle dynamics is therefore
a valuable approach for gaining biological insight into organelle regulation.

Biochemical models express temporal changes in organelle abundance in
terms of basic mechanistic processes called reactions. Since organelle abundances
are typically low (tens to hundreds), a stochastic biochemical model [9] is best
suited to model their temporal evolution [10].

Stochastic biochemical models characterize reactions with rate parameters,
which relate the speed of occurrence of the reaction to organelle counts. In
complex biological systems, the rate parameters cannot be determined from first
principles, and have to be inferred from experimental measurements collected
over time. Here, we propose an integrated microscopy and computational method
to infer the rates that regulate organelle abundance from time course organelle
counts in cell culture, as we demonstrate for peroxisomes.

Peroxisomes are critical organelles required for cell detoxification and lipid
metabolism [3]. Fluorescence microscopy allows us to simultaneously count per-
oxisomes from multiple cells in the course of time in a minimally invasive manner.
However, technological limitations restrict the experiments to less than 100 time
points per cell, which for inference purposes is considered sparse. The counts are
furthermore contaminated by biological and technological variation [11].

Here we argue that, similarly to any other area of data-driven research, rate
inference in sparse settings is improved by conducting experiments with mul-
tiple cell replicates. Although extending the biochemical models of organelle
regulation to replicated experiments is straightforward in theory, it is challeng-
ing in practice. First, the replicates complicate modeling and inference of rate
parameters, as expressing cellular heterogeneity dramatically increases the com-
putational cost. Second, long-term imaging of organelles (for over 8 h) is required
to observe consistent changes in counts across cells. This is difficult to do for a
single cell, and even more so for multiple cells. To our knowledge, there are no
reports of peroxisome imaging for this length of time. As a result, previous stud-
ies are limited, focused on simulated data [12] or on transcription [13]. They are
not applicable to studies of organelle dynamics.

To overcome the limitations above, we describe an algorithm for inferring
rate parameters in biochemical models from replicated experiments, and an
imaging method that supports the inference by long-term monitoring of per-
oxisome counts in multiple live cells. This algorithm takes as input peroxisome
counts, acquired from fluorescent microscopy images by a commercial software.
We demonstrate that this approach provides new biological insight into the mech-
anisms of peroxisome regulation.
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Fig. 1. Illustration of organelles in
a eukaryotic cell.

Fig. 2. The biochemical model that governs
peroxisome count in a cell. Peroxisomes are cre-
ated de novo at rate kd or via fission at a rate
kf , and degraded at rate γ.

2 Background

2.1 Organelle Dynamics via Fluorescence Microscopy

Organelle dynamics is defined as the process that regulates organelle shape and
numbers. Studies of organelle dynamics commonly use fluorescent probes and
microscopy (abbreviated to fluorescence microscopy). The technology induces
cells to produce a fluorescent protein fusion that is targeted to the organelle.
Using fluorescent probes as markers, organelle structures are identified [2] and
used to count organelle numbers [14].

Peroxisomes are particularly well suited for studies of dynamics, as their
round punctate structure (Fig. 1) facilitates counting from microscopy images
[3]. In addition, peroxisomes do not undergo fusion. The biochemical model that
governs peroxisome counts in a cell is simplified to only three stochastic pro-
cesses, each with its own rate parameter, as in Fig. 2. For example, an increase
in peroxisome counts implies that the joint rate of processes that control bio-
genesis (i.e., de novo generation and fission) exceeded the rate of degradation.
This sheds light into their involvement in cellular events that require changes in
peroxisome numbers, such as during cell growth in human cells or in response
to different nutrient conditions in yeast [10,14].

For accurate rate inference, important data considerations include the avail-
ability of accurate counts, multiple replicates, and time lapse acquisition. How-
ever, live peroxisome imaging is commonly performed over small periods of time
(a few minutes) [15], and high-throughput peroxisome imaging has been limited
to the use of fixed cells [16]. Moreover, high magnification objectives (60X or
higher) used to resolve peroxisomes (0.5 − 1μ m in size) [14] limit imaging to
individual cells. This manuscript addresses these challenges by developing a ded-
icated experimental approach that allows imaging of 100 time points per cell
and up to 20 replicate cells per experiment over a time period of over 8 h. This
in turn enables the accurate inference of the rates.
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2.2 Modeling and Inference of Organelle Dynamics

Modeling. Mukherji and O’Shea have proposed a stochastic model of organelle
dynamics in yeast [10], which we review in this section in the case of peroxisomes.
We denote by x (t) ∈ N the count of peroxisomes in a cell at time t ∈ R

+. Given
the joint effect of the three stochastic processes, the probability p (x, t) that the
count equals x at time t is governed by
dp (x, t)

dt
= [kd + kf (x − 1)] p (x − 1, t)+[γ (x + 1)] p (x + 1, t)−[kd + (kf + γ) x] p (x, t)

(1)
where p (x0, 0) = 1, and p (x �= x0, 0) = 0. The equation describes the Markov
jump process [17], and is used in many areas of research, e.g. to describe a birth-
death immigration process [17] in ecological systems [18]. The rate parameter
kd is in units of time−1, while kf and γ are in units of peroxisome−1time−1. In
Eq. (1) kd, kf and γ are unknown and must be inferred from the data.

The data D =
⋃T

t=1 (tt, yt) are time points t1 < t2 < · · · < tT and organelle
counts y1, . . . , yT observed in a same cell. In presence of measurement error,
the observed counts differ from the true (hidden) counts xt governed by Eq. (1).
The Normally distributed measurement error is frequently assumed p (yt |xt ) =
N (

xt, σ
2
)

[12,19].

Inference. To infer the rate parameters in Eq. (1), traditional inference meth-
ods, such as those based on a particle filter [20], simulate many different trajec-
tories from the equation via an exact simulation method, e.g. the Gillespie algo-
rithm [21]. Unfortunately, these methods are computationally expensive. In this
manuscript we propose to reformulate Eq. (1) in terms of an equivalent stochas-
tic differential equation, which leads to Bayesian formulation and to inference
with parallelization. It reduces the computational by a large fraction (∼30), thus
enabling rapid feedback for follow-up biological investigations.

2.3 Bayesian Rate Inference in Unreplicated Systems

Inference of stochastic biochemical systems is challenging because the likelihood
p (D |θ ) is usually unavailable in closed form. Although frequentist modeling and
inference has been proposed [22–24], it is less suited to experiments with sparse
time-course measurements where the inferred rates are subject to relatively high
uncertainty. Frequentist inference is therefore rarely used.

To our knowledge, the Bayesian formulation of Eq. (1) has never been consid-
ered. However, similar equations modeling other stochastic biochemical systems
have received a great deal of attention in, e.g. [19,25]. We briefly overview the
approaches developed in these other contexts, as they form the basis of the
proposed method for systems with multiple replicates.

Modeling. The Bayesian formulation of Eq. (1) requires the specification of a
joint prior distribution of θ = (kd, kf , γ, σ), and the posterior

p (θ |D ) ∝ p (D |θ ) p (θ) (2)
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Assuming a memoryless process where the increments xt+1 − xt are statistically
independent, and an error model where the measured count only depends on the
hidden count, Eq. (2) becomes [19]

p (θ |D ) ∝
∫ T∏

t=1

p (yt |xt, θ ) p (xt |xt−1, θ ) p (θ) dxt (3)

The integration is over all the possible hidden states at each time point.

Inference. Since the likelihood is unavailable in closed form, Bayesian infer-
ence is performed by numerically sampling from the posterior distribution. Most
approaches are based on a Metropolis Hastings (MH) algorithm, but vary in
methods that approximate the likelihood and update the parameters. For exam-
ple, the exact stochastic process approximates the likelihood and an update
scheme in [26]. A similar approach with the moment closure approximation is in
[27]. However, these methods are inapplicable in presence of measurement error.

In presence of measurement error, the posterior distribution is most often
sampled using a particle filter [20], which combines a Markov chain Monte Carlo
(MCMC) sampler with a sequential Monte Carlo. It relies on the sequential
propagation and reweighing of N computational particles p1≤i≤N . Each particle
has a weight pi (w) and a value pi (x) along the time points. The particle filter
method propagates and reweighs the particles along the time course, such that
the likelihood at time t in Eq. (3) is the product of particle weight sums over all
time points.

Several variants of particle filter aim to improve its computational efficiency.
For example, the Particle Marginal Metropolis Hastings (PMMH) [28,29] simul-
taneously targets both the parameters and the hidden counts, i.e. p (x, θ |D ).
This manuscript takes an approach similar to PMMH. However, since we are
not interested in inference for the hidden counts, we target p (θ |D ).

Particle filter is computationally expensive, particularly when used for com-
plex equations such as Eq. (1). As such, they are often parallelized and run
on distributed memory systems [30] (although, to the best of our knowledge,
never for stochastic biochemical models). Most implementations split the com-
putational particles between multiple processes, and iteratively propagate and
reweigh the particles locally within each process [31]. Particles (or other informa-
tion) is exchanged between the processes to avoid infrequent or local weight nor-
malization. Different such schemes have been proposed, e.g. distributed resam-
pling with non-proportional allocation (DRNA) [32] or local selection (LS) [33].

2.4 Bayesian Rate Inference in Replicated Systems

To the best of our knowledge, replicated experiments have not been previously
used to infer rate parameters of organelle dynamics. Here we briefly discuss
related methods proposed in the context of other stochastic biochemical systems.
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Modeling. In experiments with replicate time courses, the data are a collection
of time points and organelle counts across k = 1, . . . , K cells. In the notation
of this manuscript, D =

⋃K
k=1 Dk, where Dk =

⋃Tk

t=1

(
tkt , yk

t

)
. The time steps

tkt+1 − tkt can vary between the cells.
Zechner et al. model transcriptional and post-transcriptional processes in het-

erogeneous cell populations, where rates vary between cells [13,34,35]. Assuming
that the replicate cells are governed by the same rates (homogeneous rates) and
are statistically independent, the posterior in Eq. (3) becomes [13]:

p (θ |D ) ∝
K∏

k=1

∫ Tk∏

t=1

p
(
yk

t

∣
∣xk

t , θ
)
p

(
xk

t

∣
∣xk

t−1, θ
)
p (θ) dxk

t (4)

Since no information about rate values is known a priori, p (θ) is a weakly infor-
mative prior (e.g. a Lognormal distribution). Unfortunately, the method cannot
handle situations where numbers of data points or measurement time steps dif-
fer between the cells. Therefore, this approach is unsuitable for inference of rate
parameters of peroxisome dynamics from microscopy data. The likelihood of
Eq. (4) can also be extended [13,36] to a situations where the rates vary between
cells (i.e., are heterogeneous) and statistically independent. In such case, the vari-
ation of rates between cells (i.e. the intrinsic biological variation) is described in
terms of distribution p (θ|α) with hyperparameters α. Expressing the posterior
of Eq. (4) in terms of α, we obtain:

p (α |D ) ∝
∫ K∏

k=1

∫ Tk∏

t=1

p
(
yk

t

∣
∣xk

t , θ
)
p

(
xk

t

∣
∣xk

t−1, θ
)
p (θ|α) p (α) dxk

t dθ (5)

The rates are often assumed to follow a gamma distribution [36] which ensures
their positivity and can well approximate the Normal distribution.

Inference. Zechner et al. [13] aimed to reconstruct promoter activation and
transcription. Therefore, they were interested in the distribution over hidden
counts

(
x1
1, · · · , x1

T · · · , xK
1 , · · · , xK

T

)
. They jointly inferred the hidden counts

and the rate parameters by sampling from p (x, θ |D ). Since targeting this distri-
bution via Metropolis Hastings was intractable, the authors introduced a recur-
sive Bayesian procedure where (ignoring cell to cell variations for the rates) the
posterior distribution at time tt was computed from the posterior distribution
at time tt−1

p
(
x1
1:t, · · · , xK

1:t, θ
∣
∣y1

1:t, · · · , yK
1:t

) ∝[∏K
k=1 p

(
yk

t

∣
∣xk

t , θ
)
p

(
xk

t

∣
∣xk

t−1, θ
)]

p
(
x1
1:t−1, · · · , xK

1:t−1, θ
∣
∣y1

1:t−1, · · · , yK
1:t−1

)

until all the T time points of the K cell replicates have been used.
In contrast, studies of peroxisome dynamics are not interested in the hidden

counts, and only need to sample p (θ |D ) or p (α |D ). This reduced dimension-
ality allows us to directly sample from Eqs. (4) or (5), without resorting to the
complications of Eq. (6).
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3 Methods

3.1 Expressing the Biochemical Model of Peroxisome Dynamics as
a Stochastic Differential Equation

We propose to reformulate the model in Eq. (1) in terms of an equivalent stochas-
tic differential equation (SDE) [37]

dx (t) = [kd + (kf − γ) x (t)] dt + [kd + (kf + γ) x (t)] dW (t) with x (0) = x0

(6)
were W (t) is Brownian motion, and x (t) ∈ R is the continuous approximation
of the discrete peroxisome count x (t) ∈ N. Obtained by the diffusion approxi-
mation, this equation has the same solution as Eq. (1) [38], but is less expensive
to solve.

We solve this equation with the Euler-Maruyama method [39]. The solution
advances with time step Δt = tt+1 − tt following:

xt+1 = [kd + (kf − γ) xt] Δt + [kd + (kf + γ) xt]
√

ΔtZ with Z ∼ N (0, 1) (7)

to obtain xt+1 from xt. In the following, the numerical solution of the SDE from
tt to tt+1 is abbreviated xt+1 ∼ ptt→tt+1 (xt+1 |xt, θ ). Since the solution is not
deterministic, solving the equation between two time step amounts to sampling
from the transition density between the steps.

Our experience indicates limited rate variation between the cells. We there-
fore first assume that all replicate cells in an experiment are homogeneous, i.e.
have the same peroxisome regulation rates. We further assume no prior informa-
tion about the rates, and specify a flat, uninformative prior p (θ) = 1. In a second
time, we relax the homogeneous rate assumption by considering heterogenous
rates, this time assuming a flat prior for the hyperparameters p (α) = 1.

In fluorescence microscopy a variety of experimental factors, e.g. the luminos-
ity of the fluorescent tag or the topology of each cell, impact the measurement
error. We express this with a Normal measurement error, i.e.:

pε

(
yk

t

∣
∣xk

t , θ
)

=
1√

2πσk
e

− 1
2(σk)2

(yk
t − xk

t )
2

(8)

where the standard deviation σk depends on the cell replicate k, but is constant
in time.

Considering both the SDE model and the measurement error, and marginal-
izing the hidden states, the posterior analogous to Eq. (4) becomes:

p (θ |D ) ∝
K∏

k=1

∫ Tk∏

t=1

[
pε

(
yk

t

∣
∣xk

t , θ
)
ptk

t →tk
t+1

(
xk

t

∣
∣xk

t−1, θ
)]

dxk
t (9)

while in the case of heterogeneous rates, the posterior analogous to Eq. (5) is:

p (α |D ) ∝
∫ K∏

k=1

∫ Tk∏

t=1

p (θ|α)
[
pε

(
yk

t

∣
∣xk

t , θ
)
ptk

t →tk
t+1

(
xk

t

∣
∣xk

t−1, θ
)]

dxk
t dθ

(10)
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Algorithm 1. Metropolis Hastings Sampler
Inputs: data D
Params: # of MCMC samples S

# of burn in samples Sb

initial values θ0

random walk parameter σMH

Functions: Algorithm 2
Output: samples

{
θSb , · · · , θS−1

}

1: procedure MCMCs(D)
2: for s in 0 : S − 1 do
3: Process Proc0 does:
4: � Generate proposal parameter
5: θ∗ ∼ Lognormal

(
log θs, σ2

MH

)

6: All processes of Pk collectively do:
7: θ∗,k ← θ∗

8: � Calculate replicate log-likelihood
9: LogLikk

(
θ∗,k

) ← PPF
(
θ∗,k, Dk, Pk

)

10: Process Proc0 does:
11: � Sum all replicate log-likelihoods
12: LogLik (θ∗) ← ∑K

k=1 LogLikk

(
θ∗,k

)

13: � Calculate MH acceptance ratio
14: LogA ← LogLik (θ∗) − LogLik (θs)

15: LogA ← LogA + log
∏

l θ∗
l∏

l θs
l

16: � Accept/reject proposal
17: r ← min(0, LogA)
18: u ∼ U (0, 1)
19: if log u < r then
20: θs+1 ← θ∗

21: else
22: θs+1 ← θs

3.2 Parallel Inference for Replicated Experiments
with Homogeneous Rates

MCMC Sampling. The reformulation of the model in Eq. (1) in terms
of a SDE in Eq. (6) reduces the computational cost of parameter estima-
tion. Specifically, we propose to sample the posterior distribution p (θ |D ) =
p

(
kd, kf , γ, σ1, · · · , σK |D )

in Eq. (9) with the Metropolis Hastings algorithm.
The algorithm requires us to calculate the log likelihood LogLikk =

log [p (θ |Dk )] = log [p (Dk |θ )] for each cell replicate k, and the overall log like-
lihood LogLik =

∑K
k=1 LogLikk. The advantage of the algorithm is its abil-

ity to carry out the inference in a distributed memory multicore environment,
and in a parallel manner. While traditional implementations of particle filter
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approximate each LogLikk in a single core, here we propose to simultaneously
calculate LogLikk using multiple computing cores or CPUs (called processes
in what follows). The parallelization along each replicate is fairly natural and
straightforward for the calculation of the overall log likelihood. The parallel cal-
culation of each replicate log likelihood with a particle filter is, however, more
involved due to the need to exchange particle between processes. This will reduce
the computation time of each MCMC step, and in turn drastically reduce the
overall computation time.

The proposed sampling is a modification of a standard Metropolis Hastings
algorithm, as detailed in Algorithm 1. Global operations involving all cell repli-
cates, such as the generation/acceptance of MH samples (lines 5 and 15), or
the sum of LogLikk (line 12) are standard, and performed by the master process
Proc0. A Lognormal proposal distribution (lines 5 and 15) enforces the positivity
condition for θ. The magnitude of each rate step (line 5) is proportional to the
value of the rate.

Parallel Particle Filter. The calculation of LogLikk with parallel particle
filter (Algorithm 2) is the core of the proposed algorithm. It is an instance of
distributed resampling with non-proportional allocation (DRNA), with global
reweighing at each step [32,40,41]. Unlike the existing algorithms, we distribute
the particles of a LogLikk between multiple processes, and allow each process
to resample its own particles. To facilitate mixing, a fraction of particles are
exchanged between a process and its neighbors. We describe this in more detail
below.

The algorithm partitions all the available processes (except the master Proc0)
into K groups. Every group Pk =

{
Prock

0 ,Prock
1 , · · · ,Prock

Nproc,k

}
is dedicated

to calculating LogLikk. Prock
0 is the master process used for global group oper-

ations, while the rest Nproc,k processes are slave processes.
Each slave process Prock

j stores N particles of the filter related to cell repli-
cate k, denoted by pj,k

i , 1 ≤ i ≤ N . Each particle has a weight, which character-
izes the plausibility of its representation of the hidden state. The particle values
pj,k

i (x) are initialized from a Poisson distribution centered around the observed
organelle counts at t1, and the particle weights pj,k

i (w) from a Uniform distri-
bution (lines 5–6). At each observed time point t the particles are propagated
to t + 1 according to the Euler scheme (line 11 and Eq. (7)). This is the most
computationally expensive part, due to the large number of particles considered.

After the update, each particle is re-weighted following the Normal error
model (line 13 and Eq. (8)). Finally, the algorithm sums all the particle weights
into the quantity SW (line 14), and increments the LogLikk of cell k (line 18).
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Algorithm 2. Parallel Particle Filter
Inputs: parameters θ

data Dk and processes Pk for cell k
Params: # of particles per process N
Output: LogLikk of cell k

1: procedure PPF(θ, Dk, Pk)

2: Each Prock
j 1 ≤ j < Nproc,k does:

3: � Initialize particle values and weights
4: for i in 1 to N do
5: pj,k

i (x) ∼ Poiss
(
yk
1

)

6: pj,k
i (w) ← 1

N×Nproc,k

LogLikk ← 0

7: for t in 0 to T k − 1 do
8: Each Prock

j 1 ≤ j < Nproc,k does:

9: for i in 1 to N do
10: � Propagate particles, Eq. (7)
11: pj,k

i (x) ∼ ptt→tt+1(·|pj,k
i (x) , θ)

12: � Calculate particle weights, Eq. (8)

13: pj,k
i (w) ← pε

(
yk

t+1|pj,k
i (x) , θ

)

14: Send
∑

i p
j,k
i (w) to Prock

0

15: Process Prock
0 does:

16: � Increment LogLikk

17: SW ← ∑Nproc,k−1

j=1

∑
i p

j,k
i (w)

18: LogLikk ← LogLikk + log
(

SW
N

)

19: Each Prock
j 1 ≤ j < Nproc,k does:

20: � Exchange particles between processes

21:
{
pj,k

i

}N

i=N/2+1
↔

{
pRightj,k,k

i

}N/2

i=1

22:
{
pj,k

i

}N/2

i=1
↔

{
pLeftj,k,k

i

}N

i=N/2+1

23: � Normalize weights for each process
24: for i in 1 to N do

25: pj,k
i (w) ← p

j,k
i (w)

∑
i pi(w)

26: � Resample particles by weight
27: Sample pj,k

i ∼ pj,k
i (w) N times

28: return LogLikk
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Fig. 3. Communication between Prock
j and its

neighbors, at one time step, for cell replicate
k. Prock

j sends the sum of particle weights
∑

i p
j,k
i (w) to the master node. Half of the parti-

cles are then exchanged between the neighboring
slave processes.

To prevent the loss of
accuracy, the slave processes
exchange particles in a circular
manner, as illustrated in Fig. 3
(lines 21–22). For each process
j of cell replicate k, N/2 par-
ticles are sent to the process
Prock

j−1 to its left, while the
remaining half are sent to the
process Prock

j+1 to its right. The
first process Prock

1 is viewed
as the neighbor of the last
process Prock

Nproc,k
. This ring

topology minimizes the commu-
nication between the processes,
and maximizes the efficiency of parallelization. Finally, after within-process
weight normalization (line 25), the particles are sampled according to their
weights using stochastic universal sampling [42] (line 27). This ensures that only
highly plausible particles are retained for the next time step.

Since the calculation of each replicate likelihood is independent of the others,
replicates with different number of data points and time discretization are triv-
ially handled. If one cell replicate is acquired in a longer time course than the
rest, it receives more processes to minimize the idle time of the other replicates
waiting for the calculation.

Model-Based Conclusions. The inferred distribution of the rates are obtained
from the output samples (θSb , · · · , θSb) of Algorithm 1. Since the samples are
highly correlated, they are thinned by a factor (determined from their autocor-
relation spectrum) before estimating the posterior distributions.

The units of kf and γ differ from the units of kd, and the values of the rates
are not comparable directly. On the other hand, the ratios kd : kfN : γN (where
N is the average number of peroxisomes per cell) are the relative prevalence of
each reaction in numbers of reaction per unit time. Therefore, to facilitate the
interpretation, we report the results in terms of kd, kfN and γN in what follows.

3.3 Inference of Cell to Cell Rate Variations

The method presented in the previous section can readily be extended to
account for cell to cell variations in the rates. We assume that kd, kf and γ
each follow a Gamma distribution with its own shape and rate parameters:
i.e. kd ∼ Gamma (αkd

, βkd
) , kf ∼ Gamma

(
αkf

, βkf

)
and γ ∼ Gamma (αγ , βγ).

Instead of directly sampling the shape and scale of the Gamma distributions,
we sample their mean μ and standard deviation σ. This approach is equivalent
(since e.g. for kd, αkd

= μ2
kd

/σ2
kd

and βkd
= σ2

kd
/μkd

) but it allows a better inter-
pretation of the inferred parameters, and reduces sampling variation. We propose
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to sample α =
(
μkd

, σkd
, μkf

, σkf
, μγ , σγ , σ1, · · · , σK

)
from the posterior distri-

bution p (α |D ) in Eq. (10) with the Metropolis Hastings algorithm detailed in
the previous section. We approximate the integral over all θ parameters by using
a single importance sample θk ∼ p (θ|α) (which provides an unbiased estimator
of the integral) so that:

p (α |D ) ∝∼
K∏

k=1

∫ ∏Tk

t=1

[
pε

(
yk

t

∣
∣xk

t , θk
)
ptk

t →tk
t+1

(
xk

t

∣
∣xk

t−1, θ
k
)]

dxk
t (11)

We use the exact same particle filer detailed in Algorithm 2 while the difference
in the MCMC sampler resides in that we sample α instead of θ and need to
integrate the likelihood over θ. As such, in Algorithm 1, θ∗, θs, θs+1 are replaced
by α∗, αs, αs+1 respectively while line 7 (the generation of rates from hyperpa-
rameters) becomes θ∗,k ∼ p (θ|α).

3.4 Implementation

We implemented the procedure in C++ for speed, and parallelized it using the
MPI-2.2 (Message Passing Interface) [43] libraries. The source code and docu-
mentation is available at github.com/cyrilgalitzine/Organelle.

3.5 Imaging and Counting Peroxisomes by Confocal Microscopy

First, peroxisomes in human liver cells (HepG2) were labeled by expression of
the fluorescent protein, EGFP, tagged with the peroxisome targeting sequence,
PTS1, as in [44]. Transfection conditions were optimized to avoid enlarged aber-
rant peroxisomes from overexpression, as well as reduce background cytosolic
fluorescence while maintaining peroxisome-specific fluorescent signals. At 24 h
following transfection, live cells were imaged with a 60X objective using a Nikon
Ti-E confocal microscope. Z-stacks were acquired with 0.2µm steps for 22µm
at 50 ms exposure per step to limit laser exposure to <10 s per cell. Image acqui-
sition was automated for sequential imaging of individual cells (Fig. 4). Over-
all, this workflow maintained instrument use to a reasonable timeframe, and
improved cell viability by avoiding continuous laser exposure. It maximized data
collection at time intervals that allow detection of changes in peroxisome counts
without oversampling. Using this instrumentation, we could image 20 cells with
6 min data point intervals for a total of 10 h.

To count peroxisomes, images were processed using the Nikon NIS-Elements
AR v5.0. Image Z-stacks were deconvolved [45,46], and individual peroxisomes
were detected semi-automatically using the 3D Spot Detection feature (Fig. 5).
Organelle abundance was quantified as the number of objects detected per cell
and per time point.

https://github.com/cyrilgalitzine/Organelle/
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Fig. 4. Schematic representation of peroxisome imaging and counting in live human
cells.

Fig. 5. A: peroxisome fluorescence signal from a cell. B: Output of the 3D spot detection
algorithm for the same cell. Each colored sphere indicates a peroxisome. C, D: same as
A, B, for another cell with fewer peroxisomes. (Color figure online)

4 Datasets

4.1 Experimental Datasets

We acquired a total of three experimental datasets, called Day 1, Day 2, and
Day 3. The final datasets consisted of 13 replicate cells for Day 1, 10 replicate
cells for Day 2, and 20 replicate cells for Day 3. The count results for two of
these experiments are shown in Fig. 6. Between-cell and between-day variability
was observed for both the average number of peroxisomes in a cell and the slope
of the trace throughout the experiments. The number of cells per experiment
and time points per cell varied as some cells moved out of focus or died before
completion of the experiment. The cell heterogeneity and incomplete data were
important considerations of the rate parameter inference.

4.2 Simulated Datasets

To evaluate the proposed approach in the case of homogeneous rates we simu-
lated three additional datasets SIM A, SIM B and SIM C. The datasets were
simulated with the Gillespie algorithm, with K = 14 and also with K = 1 cell
replicates. Each cell replicate was initialized with a different count yk

0 (taken
to be identical to the experimental counts of the first 14 cells on Day 3), but
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Fig. 6. Peroxisome counts in the time course experiments. Colors indicate cell repli-
cates. (Color figure online)

simulated with the same duration T k = 33936 s, frequency (336 s−1) and stan-
dard deviation of the measurement error σ. At the inference stage, the standard
deviation of the measurement error σk were inferred separately for each replicate.

The values of the rate parameters were inspired from those the experimental
datasets, and reported in Table 1. In SIM A and SIM B the values of kd were low,
corresponding to a realistic situation where the de novo process is less prevalent
than the fission or degradation, making it hard to detect. In SIM C kd was
relatively high, and the three reactions occurred relatively often. The values of
kf and γ were identical in SIM A, but differed slightly in SIM B and SIM C. The
datasets were used to evaluate the ability of the proposed approach to estimate
these different parameter configurations.

Table 1. Experimental design and parameter estimation in simulated datasets. True
parameter values in each simulation are in bold. Table entries report parameter esti-
mates, standard deviation of the posterior distribution (in parentheses), and the %
error. kd is expressed in second−1, while kf and γ in peroxisome−1second−1.

SIM Dataset kd × 104 kf × 105 γ × 105 σ1

A True 7.75 4 4 6

14 cells 29% 10 (7.65) 8% 4.32 (0.85) 12% 4.47 (0.85) 0.7% 5.95 (0.79)

1 cell 1700% 140 (148) 4% 4.18 (3.05) 80% 7.17 (3.96) −5% 5.68 (0.91)

B True 2.75 3 4 7.5

14 cells 224% 8.92 (5.50) −9% 2.71 (0.93) −1% 4.90 (0.91) 4% 7.8 (0.92)

1 cell 758% 23.60 (26.5) 8% 3.01 (3.00) 13% 5.65 (3.20) 3% 7.70 (0.87)

C True 50 1 5 6

14 cells −5% 47.2 (1.14) 30% 1.29 (0.63) −4% 3.30 (0.58)% −4% 5.77 (0.92)

1 cell 8% 53.80 (51.6) 198% 2.98 (2.27) 73% 5.19 (2.34) −10% 5.44 (0.71)
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5 Results

5.1 Parallel Inference Shortened Computation Time

We inferred the rates in the experimental and the simulated datasets using 4800
particles and σMH = 0.04, resulting in a MH acceptance rate between 0.2 and 0.3.
We set Nproc,k = 2, and thinned the original 500,000 MCMC sampling iterations
to every 500. Each iteration lasted on average 0.17 s (wall clock time) for Day
1 (13 replicates on 40 CPUs), 0.14 s for Day 2 (11 replicates on 34 CPUs) and
0.2 s for Day 3 (20 replicates on 61 CPUs). The overall inference took around 1
day.

In contrast, the existing modeling and inference procedures required substan-
tially longer computation time. For example, the use of the original stochastic
model in Eq. (1) with Gillespie algorithm increased the time per iteration by
about 30% with identical inference results. In the case of Day 1, this results in
each iteration taking 0.2 seconds.

Similarly, the use of the SDE model in Eq. (6) with serial inference per cell
increased the time per iteration by a factor of K (Nproc,k − 1) (the parallel over-
head is negligible as compared to the particle movement). In the case of Day
1, representative iterations lasted 195 s, estimating the overall inference time of
270 days. Therefore, the biological insights from multiple replicates were out of
reach without the proposed parallel procedure.

5.2 The Approach Accurately Inferred the Rates

Figure 7 shows the posterior distributions, and Table 1 summarizes the properties
of the inferred rates in the simulated datasets. Since the inferred σk were similar
across replicates, the table only reports the value for the first replicate σ1. The
proposed approach accurately inferred the rates in experiments with 14 cell
replicates. SIM A and SIM B with low kd challenged the estimation of this rate,
as evidenced by its skewed and variable posterior distribution. A larger de novo
rate in SIM C led to more accurate estimates. Table 1 shows that the inferred
posterior distributions of Nkf and Nγ had little variance. Their relatively large
breadth in Fig. 7 was due to the multiplication by N . We obtained identical
inference results with the SDE model of Eq. (6) as with the Gillespie algorithm
applied to Eq. (1) as shown in the case of SIM B (1 replicate) in Fig. 7. This,
combined with the fact that simulation results were generated using Eq. (1),
demonstrates that the SDE approximation reduced computational cost without
compromising the accuracy of the results.

5.3 Replicate Cells Improved Inference of the Rates

Figure 7 compares the inferred posterior distributions with one versus 14 cell
replicates in the simulated datasets, and Table 1 summarizes the results. Infer-
ence from unreplicated experiments had high uncertainty in all the experiments,
and led to broader posterior distributions. In particular, rates associated with
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Fig. 7. Posterior distributions of the rates in the simulated datasets. To make the rates
comparable, kf and γ are multiplied by the average peroxisome count N in each dataset.
Vertical lines are the true parameter values. A dotted line denotes rate distributions
obtained with Eq. (1) and the Gillespie algorithm instead of the SDE (solid line)

Table 2. Results for the experimental datasets with the homogeneous rate model.
The reports parameter estimates, standard deviation of the posterior distribution (in
parentheses). kd is expressed in second−1 and kf and γ in peroxisome−1second−1.

Dataset kd × 104 kf × 105 γ × 105

Day 1 2.51 (3.66) 10.0 (1.36) 10.5 (1.38)

Day 2 6.45 (5.60) 5.57 (1.12) 6.02 (1.11)

Day 3 1.05 (1.72) 1.19 (0.37) 1.43 (0.32)

rare events (such as de novo in SIM A and SIM B) could not be accurately
estimated with only one replicate, and had an ∼10-fold error for the mean. The
uncertainty diminished in experiments with 14 cell replicates, and the standard
deviation of the posterior distributions of kf and γ was reduced by a factor of 3
to 4. This result emphasized the importance of incorporating replicate cells into
the rate inference procedure.
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Fig. 8. As in Fig. 7, for the experimental datasets.

5.4 Inference from Replicate Cells Revealed Maintenance of
Peroxisome Counts by Prominent Fission, Compared to Low
de novo generation rates

Figure 8 compares the posterior distribution for the three experimental datasets,
and Table 2 summarizes the results. We consistently observed similar values of
rate parameters of peroxisomes degradation and fission. Moreover, we consis-
tently observed a 5 to 100 times smaller value of the rate of de novo generation.
The results indicate that de novo peroxisome generation in mammalian cells is
a relatively rare event, occurring approximately 8 to 45 times per day.

5.5 Rates Varied Little Between Cells

We obtained in Sect. 5.4 fairly narrow inferred distribution for the rates which
allowed us to make important biological conclusions. We would, however, like to
distinguish how much of the variance of inferred rates is caused by possible rate
heterogeneity between cells and how much is caused by statistical uncertainty
(i.e. a too low number of replicates or data points). This is achieved by using
the heterogeneous rate model which models rate cell to cell variations. Figure 9
shows the posterior hyperparameter distributions obtained with the heteroge-
neous rate model, and Table 3 summarizes the results. On average, for kf and
γ, the intrinsic rate standard deviation was about 5–10%, indicating relatively
small intrinsic biological variations as compared to the rate values. The intrinsic
variance of rates kf and γ, i.e. σkf

and σγ , reported in Table 3 were less than
30% of the variance of the rate mean (in parentheses next to the mean value).
This indicates that most of the variance obtained with the homogeneous rate
model reported in Table 2 arised from statistical uncertainty (i.e. a too low num-
ber of replicate) instead of biological variation. In contrast, for days 1 and 3, σkd

was relatively large (about twice the rate mean standard deviation). This shows
that, for some conditions, the uncertainty associated with cell to cell variation
was more important than the statistical uncertainty in the de novo rate value.
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Fig. 9. As in Fig. 8, with the heterogeneous rate model. The rate standard deviations
for kf and γ (dotted lines) are multiplied by 10 to plot their distributions on the same
plots as the rate means.

Table 3. Results for the experimental datasets for the heterogeneous rate model.
The reports parameter estimates, standard deviation of the posterior distribution (in
parentheses).

Dataset μkd × 104 σkd × 104 μkf × 105 σkf × 105 μγ × 105 σγ × 105

Day 1 7.6 (4.8) 8.9 (8.9) 8.99 (1.4) 0.39 (0.2) 9.75 (1.4) 0.49 (0.3)

Day 2 11.3 (10.5) 12.2 (10.9) 4.99 (1.03) 0.39 (0.16) 5.61 (1.06) 0.38 (0.18)

Day 3 4.6 (3.2) 3.5 (3.5) 1.21 (0.38) 0.12 (0.07) 1.55 (0.38) 0.096 (0.08)

6 Discussion

In contrast to other organelles, peroxisome are constantly recycled in healthy
cell populations, and degraded to remove old or damaged peroxisomes [47,48].
Defining the predominant process of peroxisome production is a current topic
of debate [49–52]. The stochastic model proposed by Mukherji and O’Shea was
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tested in yeast cells [10]. The authors observed a switch from the predominance
of de novo generation to fission, occurring under conditions that increase perox-
isome numbers. While yeast cells only have 5–20 peroxisomes per cell, humans
and other mammals need larger number of peroxisomes (100–500). It is there-
fore possible that mammals evolved to use fission as a primary mechanism for
peroxisome proliferation [14,47].

Here, we used experimental data to directly infer the rates governing peroxi-
some abundance. While the inferred rates for fission and degradation were simi-
lar, de novo generation was less frequent. The infrequent de novo generation is in
line with previous studies estimating low numbers (30) of new peroxisomes per
day [50]. The inference of peroxisome rates helps us reconcile previous conflict-
ing evidence. It leads to a new model, where peroxisome population undergoes
recycling via two opposing processes, fission and degradation, in addition to a
basal de novo generation rate.

The results indicated that accuracy of rate inference depends on the value of
the rates. In particular, rates associated with rare events, such as the de novo
rate, are difficult to infer. This can be mitigated by imaging more cell replicates,
or by extending the imaging time.

The inferred rates varied between instances of experiments repeated on mul-
tiple days. The variation in the rates across days could be explained as biological
effects of the cell batch analyzed, such as confluency and age, which are known
to affect the mechanisms of peroxisome biogenesis [53].

The cell to cell variation for the rates was limited in the case of the fission
and degradation rates but more pronounced for the de novo rate which further
compounded the uncertainty in its estimation.

The overall rate inference, and the assessment of the uncertainty, may be
improved by analyzing the combined data from all the days. This will require
extending the model to include inter-day variation, and accommodating the extra
computational cost. Since the proposed SDE-based modeling is flexible, and
since the inference algorithm supports parallelization, the proposed approach is
in principle extendable to such situations. However, measurements on more days
will be required to establish a model of inter-day variation.

This proposed inference procedure can also be extended to other organelles.
Imaging tools for other organelles are available and widely used [44]. The mod-
eling and inference procedure can include additional reactions, such as fusion.

Organelle dynamics are subject to alteration and regulation upon extracellu-
lar and intracellular cues. For example, peroxisomes increase in numbers when
cells grow to undergo division. This occurs by either increasing the rate param-
eters of one of the production processes, or by decreasing the rate parameter of
the degradation. The proposed approach can be used to assess this process of cell
adaptation. Therefore, this work serves as a starting point for achieving a sys-
tem view of the biophysical properties, used by the cell to regulate its organelle
content.



Statistical Inference of Peroxisome Dynamics 73

Acknowledgements. This work was supported in part by a Burroughs Wellcome
travel grant (to C.G.), a Dodds Fellowship (to P.M.J.B.), NIH grants GM114141,
HL127640, Mallinckrodt Scholar Award (to I.M.C.), and Sy and Laurie Sternberg award
(to O.V.).

References

1. Huotari, J., Helenius, A.: EMBO J. 30, 3481 (2011)
2. Jean Beltran, P.M., Mathias, R.A., Cristea, I.M.: Cell Syst. 3, 361 (2016)
3. Smith, J.J., Aitchison, J.D.: Nat. Rev. Mol. Cell Biol. 14, 803 (2013)
4. Wai, T., Langer, T.: Trends Endocrinol. Metab. 27, 105 (2016)
5. Steinberg, S.J., et al.: Peroxisome biogenesis disorders. Biochimica et Biophysica

Acta (BBA)-Molecular Cell Research 1763(12), 1733–1748 (2006)
6. Denesvre, C., Malhotra, V.: Curr. Opin. Cell Biol. 8, 519 (1996)
7. Lowe, M., Barr, F.A.: Nat. Rev. Mol. Cell Biol. 8, 429 (2007)
8. Sica, V., et al.: Mol. Cell 59, 522 (2015)
9. Wilkinson, D.J.: Nat. Rev. Genet. 10, 122 (2009)

10. Mukherji, S., O’Shea, E.K.: eLife 3, e02678 (2014)
11. Waters, J.C.: J. Cell Biol. 185, 1135 (2009)
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