
GTED: Graph Traversal Edit Distance

Ali Ebrahimpour Boroojeny1, Akash Shrestha1, Ali Sharifi-Zarchi1,2,3,
Suzanne Renick Gallagher1, S. Cenk Sahinalp4, and Hamidreza Chitsaz1(B)

1 Colorado State University, Fort Collins, CO, USA
chitsaz@chitsazlab.org

2 Royan Institute, Tehran, Iran
3 Sharif University of Technology, Tehran, Iran
4 Indiana University, Bloomington, IN, USA

http://chitsazlab.org

Abstract. Many problems in applied machine learning deal with graphs
(also called networks), including social networks, security, web data min-
ing, protein function prediction, and genome informatics. The kernel
paradigm beautifully decouples the learning algorithm from the under-
lying geometric space, which renders graph kernels important for the
aforementioned applications.

In this paper, we give a new graph kernel which we call graph traversal
edit distance (GTED). We introduce the GTED problem and give the
first polynomial time algorithm for it. Informally, the graph traversal edit
distance is the minimum edit distance between two strings formed by
the edge labels of respective Eulerian traversals of the two graphs. Also,
GTED is motivated by and provides the first mathematical formalism for
sequence co-assembly and de novo variation detection in bioinformatics.

We demonstrate that GTED admits a polynomial time algorithm
using a linear program in the graph product space that is guaranteed
to yield an integer solution. To the best of our knowledge, this is the
first approach to this problem. We also give a linear programming relax-
ation algorithm for a lower bound on GTED. We use GTED as a graph
kernel and evaluate it by computing the accuracy of an SVM classifier
on a few datasets in the literature. Our results suggest that our kernel
outperforms many of the common graph kernels in the tested datasets.
As a second set of experiments, we successfully cluster viral genomes
using GTED on their assembly graphs obtained from de novo assembly
of next generation sequencing reads. Our GTED implementation can be
downloaded from http://chitsazlab.org/software/gted/.

1 Introduction

Networks, or graphs as they are called in mathematics, have become a common
tool in modern biology. Biological information from DNA sequences to protein
interaction to metabolic data to the shapes of important biological chemicals are
often encoded in networks.

One goal in studying these networks is to compare them. We might want
to know whether two DNA assembly graphs produce the same final sequences
c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-319-89929-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9_3&domain=pdf
http://chitsazlab.org/software/gted/

38 A. E. Boroojeny et al.

or how close the protein interaction networks of two related species are. Such
comparisons are difficult owing to the fact that determining whether two graphs
have an identical structure with different labels or vertex ordering is an NP-
complete problem. Therefore, any comparisons will need to focus on specific
aspects of the graph.

Here, we present the notion of graph traversal edit distance (GTED), a new
method of comparing two networks. Informally, GTED gives a measure of simi-
larity between two directed Eulerian graphs with labeled edges by looking at the
smallest edit distance that can be obtained between strings from each graph via
an Eulerian traversal. GTED was inspired by the problem of differential genome
assembly, determining if two DNA assembly graphs will assemble to the same
string. In the differential genome assembly problem, we have the de Bruijn graph
representations of two (highly) related genome sequence data sets, where each
edge e represents a substring of size k from reads extracted from these genome
sequences (e.g. one from a cancer tissue and the other from the normal tissue
of the same individual), and its multiplicity represents the number of times its
associated substring is observed in the reads of the respective genome sequence.
In this formulation, each vertex represents the k − 1 length prefix of the label
of its outgoing edges and the k − 1 length suffix of the label of its incoming
edges. Thus, the labels of all incoming edges of a vertex (respectively all outgo-
ing edges) are identical with the exception of their first (last) symbol. Differential
genome assembly has been introduced to bioinformatics in two flavors: (i) ref-
erence genome free version [1–5], and (ii) reference genome dependent version,
which, in its most general form, is NP-hard [6]. Both versions of the problem are
attracting significant attention in biomedical applications (e.g. [7,8]) due to the
reduced cost of genome sequencing (now approaching $1000 per genome sample)
and the increasing needs of cancer genomics where tumor genome sequences may
significantly differ from the normal genome sequence from the same individual
through single symbol edits (insertions, deletions and substitutions) as well as
block edits (duplications, deletions, translocations and reversals).

In addition to comparing assembly graphs, GTED can also be used to com-
pare other types of networks. GTED yields a (pseudo-)metric for general graphs
because it is based on the edit distance metric. Hence, it can be used as a graph
kernel for a number of classification problems. GTED is the first mathematical
formalism in which global traversals play a direct role in the graph metric. In
this paper, we give a polynomial time algorithm using linear programming that
is guaranteed to yield an integer solution. We use that as a graph kernel, and
evaluate the performance of our new kernel in SVM classification over a few
datasets. We also use GTED for clustering of viral genomes obtained from de
novo assembly of next generation sequencing reads. Note that GTED is a global
alignment scheme that is not immediately scalable to full-size large genomes,
like all other global alignment schemes such as Needleman-Wunsch. However,
GTED can form the mathematical basis for scalable heuristic comparison of
full-size large genomes in the future.

GTED: Graph Traversal Edit Distance 39

Related Work

Many problems in applied machine learning deal with graphs, ranging from web
data mining [9] to protein function prediction [10]. Some important application
domains are biological networks such as regulatory networks, sequence assem-
bly and variation detection, and structural biology and chemoinformatics where
graphs capture structural information of macromolecules. For instance, machine
learning algorithms are often used to screen candidate drug compounds for safety
and efficacy against specific diseases and also for repurposing of existing drugs
[11]. Kernel methods elegantly decouple data representation from the learning
part; hence, graph learning problems have been studied in the kernel paradigm
[12]. Following [12], other graph kernels have been proposed in the literature [13].

A graph kernel k(G1, G2) is a (pseudo-)metric in the space of graphs. A ker-
nel captures a notion of similarity between G1 and G2. For instance for social
networks, k may capture similarity between their clustering structures, degree
distribution, etc. For molecules, similarity between their sequential/functional
domains and their relative arrangements is important. A kernel is usually com-
puted from the adjacency matrices of the two graphs, but it must be invariant
to the ordering (permutation) of the vertices. That property has been central in
the graph kernels literature.

Existing graph kernels that are vertex permutation invariant use either local
invariants, such as counting the number of triangles, squares, etc. that appear in
G as subgraphs, or spectral invariants captures as functions of the eigenvalues of
the adjacency matrix or the graph Laplacian. Essentially, different graph kernels
ranging from random walks [12] to shortest paths [14,15] to Fourier transforms on
the symmetric group [16] to multiscale Laplacian [17] compute local, spectral,
or multiscale distances. While most subgraph counting kernels are local [18],
most random walk kernels are spectral [13]. Multiscale Laplacian [17], Weisfeiler
Lehman kernel [19], and propagation kernel [20] are among the multiscale kernels.

In this paper, we introduce a graph kernel based on comparison of global
Eulerian traversals of the two graphs. To the best of our knowledge, our formal-
ism is the first to capture global architectures of the two graphs as well as their
local structures. Our kernel is based on the graph traversal edit distance intro-
duced in this paper. We show that a lower bound for GTED can be computed
in polynomial time using the linear programming relaxation of the problem. In
practice, the linear program often yields an integer solution, in which case the
computed lower bound is actually equal to GTED.

2 Problem Definition

Due to diversity of applications, input graphs can be obtained as molecular
structure graphs, social network graphs, systems biology networks, or sequence
assembly graphs such as de Bruijn graphs [21], A-Bruijn graphs [22], positional
de Bruijn graphs [23], string graphs [24], or implicit string graphs [25] among
numerous alternatives. Our graph traversal edit distance is inspired by those

40 A. E. Boroojeny et al.

applications and can potentially be adapted to any of those frameworks. How-
ever, we choose below a general, convenient representative definition for the
problem. For the sake of brevity, we assume throughout this paper that the
input graph has one strongly connected component.

Fig. 1. Edge-labeled Eulerian graph. An edge-labeled Eulerian graph A =
(V,E,M,L, {A, C, G, T}) obtained from the k = 4 de Bruijn graph G = (V,E) for the
circular sequence ACAGACAT [26]. Vertices, V , correspond to (k − 1)-mers and edges
correspond to k-mers. In this case, all the edges have multiplicity one, i.e. M ≡ 1.
Edge labels, L, show the kth nucleotide in the associated k-mers.

Definition 1 (Edge-labeled Eulerian Graph). Let Σ be a finite alphabet.
We call a tuple A = (V,E,M,L,Σ) an edge-labeled Eulerian graph, in which

– G = (V,E) is a strongly connected directed graph,
– M : E → N specifies the edge multiplicities,
– L : E → Σ specifies the edge labels,

iff G with the corresponding edge multiplicities, M , is Eulerian. That is, G con-
tains a cycle (or path from a specified source to a sink) that traverses every
edge e ∈ E exactly M(e) times. Throughout this paper, we mean M -compliant
Eulerian by an Eulerian cycle (path) in A.

Figure 1 demonstrates an example edge-labeled Eulerian graph for the circu-
lar sequence ACAGACAT in the alphabet Σ = {A, C, G, T}. The sequence of edge
labels over the Eulerian cycle formed by c1 followed by c2 yields the original
sequence. The following definition makes a connection between Eulerian cycles
and different sequences they spell.

Definition 2 (Eulerian Language). Let A = (V,E,M,L,Σ) be an edge-
labeled Eulerian graph. Define the word ω associated with an Eulerian cycle
(path) c = (e0, . . . , en) in A to be the word

ω(c) = L(e0) . . . L(en) ∈ Σ∗. (1)

The language of A is then defined to be

L(A) = {ω(c) | c is an Eulerian cycle (path) in A} ⊂ Σ∗. (2)

We now define graph traversal edit distance (GTED).

GTED: Graph Traversal Edit Distance 41

Problem 1 (Graph Traversal Edit Distance). Let A1 and A2 be two edge-labeled
Eulerian graphs. We define the edit distance between A1 and A2 by

d(A1, A2) = min
ω1∈L(A1)
ω2∈L(A2)

d(ω1, ω2), (3)

in which d(ω1, ω2) is the Levenshtein edit distance between two strings ω1 and
ω2. Throughout this paper, edit operations are single alphabet symbol insertion,
deletion, and substitution, and the Levenshtein edit distance is the minimum
number of such operations to transform ω1 to ω2 [27].

Note that d(A1, A2) is the minimum of such edit distances over the words of
possible Eulerian cycles (paths) in A1 and A2. Note that GTED is almost a
metric but not a metric since there are A1, A2 such that d(A1, A2) = 0 even
though A1 �= A2. For instance, let A1 be an arbitrary Eulerian graph and A2 be
a cycle graph whose edge labels are the same as an arbitrary Eulerian cycle in
A1. As a result, the graph traversal edit distance is different from the graph edit
distance because the latter is a metric whereas the former is not.

3 Methods

3.1 Brute Force Computation of Graph Traversal Edit Distance

It is clear that there are algorithms, albeit with exponential running time, that
enumerate all Eulerian cycles in a graph. Through brute force Needleman-
Wunsch alignment of the words of every pair of Eulerian cycles in A1 and
A2, we can compute the edit distance right from the definition. De Bruijn,
van Aardenne-Ehrenfest, Smith, and Tutte proved the de Bruijn-van Aardenne-
Ehrenfest-Smith-Tutte (BEST) theorem [28,29], which counts the number of
different Eulerian cycles in A as

ec(A) = tw(A)
∏

v∈V

(deg(v) − 1)!, (4)

in which tw(A) is the number of arborescences directed towards the root at
a fixed vertex w, and deg is the indegree (or equally outdegree) considering
multiplicities. The number of Eulerian cycles ec(A) is exponentially large in
general. Therefore, the näıve brute force algorithm is intractable.

3.2 Graph Traversal Edit Distance as a Constrained Shortest Path
Problem

The conventional string alignment problem can be transformed into a shortest
path problem in an alignment graph which is obtained by adding appropriate
edges to the Cartesian product of the two string graphs. Figure 2 illustrates an
example; further details can be found in a bioinformatics textbook such as [26].
Analogously, the graph traversal edit distance d(A1, A2) can be written as the

42 A. E. Boroojeny et al.

Fig. 2. Left: conventional alignment graph. The alignment graph for AC versus
AGC. Those edges that correspond to matches are in dashed lines (cost of a match is
often 0). Solid lines show substitutions and indels which usually have a positive cost.
The edit distance is the shortest distance from s to t in this graph (shown in blue).
Right: example of an alignment graph. The lower graph is an alignment graph for
the two above graphs. Edges can have different costs, based on the edit operations for
each pair of alphabets in the language. (blue edges correspond to math or mismatch
and black edges correspond to insertion or deletions. (Color figure online)

length of the shortest cycle (or path from a designated source to a designated
sink) in the alignment graph defined below, whose projection onto A1 and A2 is
Eulerian. To state that fact in Lemma1, we need

Definition 3 (Alignment Graph). Let A1 = (V1, E1,M1, L1, Σ1) and A2 =
(V2, E2,M2, L2, Σ2) be two edge-labeled Eulerian graphs. Define the alignment
graph between A1 and A2 to be AG(A1, A2) = (V1 × V2, E), in which E is a
collection of horizontal, vertical, and diagonal edges as follows:

– Vertical: ∀ e1 = (u1, v1) ∈ E1 and u2 ∈ V2 : e1 ×u2 = [(u1, u2), (v1, u2)] ∈ E,
– Horizontal: ∀ u1 ∈ V1 and e2 = (u2, v2) ∈ E2 : u1 × e2 = [(u1, u2), (u1, v2)] ∈

E,
– Diagonal: ∀ e1 = (u1, v1) ∈ E1 and e2 = (u2, v2) ∈ E2 : [(u1, u2), (v1, v2)] ∈

E.

There is a cost δ : E → R associated with each edge of AG based on edit oper-
ation costs. Horizontal and vertical edges correspond to insertion or deletion and
diagonal edges correspond to match or mismatch (substitution). A diagonal edge
[(u1, u2), (v1, v2)] is a match iff L(u1, v1) = L(u2, v2) and a mismatch otherwise.
We call Ai the ith component graph. See Fig. 2 for an example.

The following Lemma states the fact that GTED is equivalent to a con-
strained shortest path problem in the alignment graph.

GTED: Graph Traversal Edit Distance 43

Lemma 1. For any two edge-labeled Eulerian graphs A1 = (V1, E1,M1, L1, Σ1)
and A2 = (V2, E2,M2, L2, Σ2),

d(A1, A2) = minimize
c

δ(c)

subject to c is a cycle (path) in AG(A1, A2),
πi(c) is an Eulerian cycle (path) in Ai for i = 1, 2,

(5)
in which δ(c) is the total edge-cost (edit cost) of c, and πi is the projection onto
the ith component graph.

Proof. For every pair (c1, c2), in which ci is an Eulerian cycle (path) in Ai,
there are possibly multiple c’s with πi(c) = ci, whose minimum total edge-
cost is d(ω(c1), ω(c2)). Therefore, the result of the minimization in (5) is not
more than d(A1, A2), i.e. the right hand side is less than or equal to d(A1, A2).
Conversely, every c that satisfies the constraints in (5) gives rise to an Eulerian
pair (c1, c2) = (π1(c), π2(c)) and δ(c) ≥ d(ω(c1), ω(c2)) ≥ d(A1, A2), i.e. the
right hand side is greater than or equal to d(A1, A2).

3.3 Lower Bound via Linear Programming Relaxation

Lemma 1 easily transforms our problem into an integer linear program (ILP)
as the projection operator πi is linear and imposing path connectivity/cycle is
also linear. More precisely, consider two edge-labeled Eulerian graphs A1 and A2

with the alignment graph AG(A1, A2) = (V1 ×V2, E), and let ∂ be the boundary
operator, ∂(e) = v − u for an edge e = (u, v), which is defined in detail below.
Our algorithm consists in solving the linear programming (LP) relaxation of that
ILP,

minimize
x∈R|E|

∑

e∈E

xeδ(e)

subject to
∑

e∈E

xe∂(e) = 0 (or sink − source),

∀ e ∈ E, xe ≥ 0,

for i = 1, 2,∀ f ∈ Ei,
∑

e∈E

xeIi(e, f) = Mi(f),

(6)

in which indicator function I1(e, f) = 1 iff e = f × v2 or e = [(u1, u2), (v1, v2)]
with f = (u1, v1); otherwise, I1(e, f) = 0. Similarly, I2(e, f) = 1 iff e = v1 × f
or e = [(u1, u2), (v1, v2)] with f = (u2, v2); otherwise, I2(e, f) = 0. The linear
program above is not guaranteed to give an integer solution; however, we have
observed integer solutions in many scenarios. Nevertheless, the solution of (6)
is a lower bound for GTED. Theoretically, both the lower bound and the exact
GTED take polynomial time. However, the lower bound has a simpler linear
program and is easier to implement, debug, back trace, and work with.

44 A. E. Boroojeny et al.

3.4 Algorithm for Graph Traversal Edit Distance

The following theorem is the main result of this paper which bridges the gap
between GTED and another linear programming formulation which we will show
is guaranteed to have an exact integer solution. Hence, GTED has a polynomial
time algorithm explained as a linear program; Corollary 1 states that fact below.

Theorem 1 (GTED). Consider two edge-labeled Eulerian graphs Ai = (Vi,
Ei,Mi, Li, Σi) with Gi = (Vi, Ei) for i = 1, 2. Let T be the collection of two-
simplices in the triangulated G1×G2 with one-faces in AG(A1, A2). In that case,

d(A1, A2) = minimize
x∈R|E|,y∈R|T |

∑

e∈E

xeδ(e)

subject to x = xinit + [∂] y,

∀ e ∈ E, xe ≥ 0,

(7)

in which [∂]|E|×|T | is the matrix of the two-dimensional boundary operator in the
corresponding homology and

xinit
e =

⎧
⎨

⎩

M1(f) if e = f × s2
M2(f) if e = s1 × f
0 otherwise

(8)

for arbitrary fixed si ∈ Vi (source/sink in the case of path).

Proof. It is sufficient to show two things:

1. GTED is equal to the solution of the integer linear program (ILP) version of
the linear program in (7),

2. the linear program in (7) always yields an integer solution.

Using Lemma 1, we need to show that (5) and (7) are equivalent for the first one.
By construction, xinit corresponds to an Eulerian cycle (path) in A1 followed by
one in A2, which specifies a cycle (path) in AG(A1, A2) whose projection onto Ai

is Eulerian. It is sufficient to note that every cycle (path) whose projection onto
Ai is Eulerian is homologous to xinit. To see that, let c be a cycle (path) whose
projection onto Ai is Eulerian. First note that diagonal edges in c are homologous
to the horizontal edge followed by the vertical edge in the corresponding cell.
Hence, diagonal edges can be replaced by the horizontal followed by the vertical
edge using the boundary operator [∂]. Hence without loss of generality, we assume
c contains only horizontal and vertical edges.

If edges in c are h1, h2, . . . , hm, k1, k2, . . . , kn such that hi = ei × s2 and ki =
s1×fi for ei ∈ E1 and fi ∈ E2, then we are done. We know that such c has exactly
the same representation as xinit. If edges in c are h1, h2, . . . , hm, k1, k2, . . . , kn

such that hi = ei × v2 and ki = v1 × fi for ei ∈ E1 and fi ∈ E2 and possibly
v1 �= s1 or v2 �= s2, then we can rotate the cycle through adding and subtracting
a perpendicular translation edge and apply the boundary replacement operation
to obtain a homologous cycle (path) of the form h1, h2, . . . , hm, k1, k2, . . . , kn

GTED: Graph Traversal Edit Distance 45

such that hi = ei × s2 and ki = s1 × fi for ei ∈ E1 and fi ∈ E2. Starting with
an arbitrary c, we show how to obtain a homologous cycle (path) in the form of
h1, h2, . . . , hm, k1, k2, . . . , kn such that hi = ei × v2 and ki = v1 × fi for ei ∈ E1

and fi ∈ E2 through basic boundary replacement operations. Essentially, we
show that we can swap vertical and horizontal edges along c until we end up
with all horizontal edges grouped right up front followed by all vertical edges
grouped at the end. Suppose c contains k, h as a subpath for h = e × v2 and
k = u1 × f and e = (u1, v1) ∈ E1 and f = (u2, v2) ∈ E2. The subpath k, h is
homologous to h′, k′ in which h′ = e × u2 and k′ = v1 × f since the four edges
k, h,−k′,−h′ form the boundary of a square. Hence, we can replace k, h with
h′, k′ in c to obtain a homologous cycle (path) c′. Performing a number of such
vertical-horizontal swaps will yield the result. The second is going to be shown
in the following sections.

Corollary 1 (GTED complexity). The graph traversal edit distance is
in P and can be solved in polynomial time from the linear program in (7) that
is guaranteed to give the integer solution.

3.5 Total Unimodularity

Using a recent result of Dey et al. [30], we show that (7) is guaranteed to yield
an integer solution. The main reason is that the boundary operator matrix [∂] is
totally unimodular, i.e. all its square submatrices have a determinant in {0,±1}.
Therefore, all vertices of the constraint polytope in (7) have integer coordinates;
hence, the solution is integer.

Why is [∂] totally unimodular? According to [30, Theorem 5.13], [∂] is totally
unimodular iff the simplicial complex G1 × G2 has no Möbius subcomplex of
dimension 2. For the sake of completeness, we include the definition of a Möbius
complex below.

Definition 4 ([30, Definition 5.9]). A two-dimensional cycle complex is a
sequence σ0 · · · σk−1 of two-simplices such that σi and σj have a common face
iff j = (i + 1) mod k and that the common face is a one-simplex. It is called
a two-dimensional cylinder complex if orientable and a two-dimensional Möbius
complex if nonorientable.

Lemma 2. A triangulated graph product space G1 × G2 does not contain a
Möbius subcomplex, for directed graphs Gi with unidirectional edges.

Proof. It is enough to observe that in G1 ×G2, the orientation in one coordinate
cannot flip. For brevity of presentation, we ignore triangulation for a moment
and consider the rectangular cells. To the contrary, assume G1 × G2 contains
a Möbius subcomplex σ0 · · · σk−1 in which every σi is a rectangle ei × fi, for
ei ∈ E1 and fi ∈ E2. Since every σi and σi+1 have a common edge and G1, G2

are directed graphs with unidirectional edges, either ei+1 = ei or fi+1 = fi

but not both. In particular, e0 = ek−1 or f0 = fk−1. That is a contradiction
because σ0 · · · σk−1 is then a cylinder subcomplex (orientable) and not a Möbius
subcomplex.

46 A. E. Boroojeny et al.

Lemma 2 together with [30, Theorem 5.13] assert that [∂] is totally unimod-
ular. Therefore, (7) always has an integer solution, hence the main result in
Theorem 1.

Lack of Möbius subcomplexes in the product space of graphs, which are
Möbius-free spaces, can also be seen from the fact that the homology groups
of graph product spaces are torsion-free. The following section summarizes that
characterization.

3.6 Homology Theory of Alignment Graph

An alignment graph AG(A1, A2) is essentially a topological product space with
additional triangulating diagonal edges corresponding to matches and mis-
matches. In other words, AG(A1, A2) can be regarded as a triangulation of the
two-dimensional CW complex G1 × G2 (by horizontal, vertical, and diagonal
edges). Note that G1×G2 has zero-dimensional vertices (v1, v2), one-dimensional
edges e1 × v2 and v1 × e2, and two-dimensional squares e1 × e2 for vi ∈ Vi

and ei ∈ Ei. We characterize below the homology groups of G1 × G2 using
the Künneth’s theorem. Note that Gi are obtained from edge-labeled graphs
Ai = (Vi, Ei,Mi, Li, Σi).

Theorem 2 (Künneth [31]). For graphs Gi = (Vi, Ei), i = 1, 2,

Hm(G1 × G2,Z) ∼=
⊕

p+q=m

Hp(G1,Z) ⊗ Hq(G2,Z)

⊕

r+s=m−1

Tor(Hr(G1,Z),Hs(G2,Z)),
(9)

in which Hm is the mth homology group and Tor is the torsion functor [31].
Since G1 × G2 is a two-dimensional CW complex, Hm(G1 × G2,Z) ∼= 0 for

m > 2. Clearly, H0(G1 × G2,Z) ∼= Z since G1 × G2 is connected. According to
the Künneth’s theorem above and the fact that Tor(Z,Z) ∼= 0 and Z

k ⊗ Z ∼=
Z ⊗ Z

k ∼= Z
k [32],

H1(G1 × G2) ∼= [H1(G1) ⊗ H0(G2)] ⊕ [H0(G1) ⊗ H1(G2)] ⊕ Tor(H0(G1), H0(G2))

∼= [Zn1 ⊗ Z] ⊕ [Z ⊗ Z
n2] ⊕ Tor(Z,Z) ∼= Z

n1 ⊕ Z
n2 ∼= Z

n1+n2 ,

(10)
in which ni = 1 + |Ei| − |Vi|. Note that H1(G1, G2) is torsion-free.

Using the Künneth’s theorem above and the fact that the tensor product
of groups ⊗ distributes over the direct sum ⊕, H2(Gi) ∼= 0, Tor of torsion-free
groups is trivial, and Z ⊗ Z ∼= Z, we obtain

H2(G1 × G2) ∼= [H1(G1) ⊗ H1(G2)] ⊕
Tor(H1(G1),H0(G2)) ⊕ Tor(H0(G1),H1(G2))

∼= [Zn1 ⊗ Z
n2] ⊕ Tor(Zn1 ,Z) ⊕ Tor(Z,Zn2)

∼=
n1⊕

i=1

n2⊕

j=1

Z ⊗ Z ∼= Z
n1n2 .

(11)

Note that H2(G1, G2) is torsion-free.

GTED: Graph Traversal Edit Distance 47

4 Experiments

4.1 Using GTED to Make a Kernel

As mentioned earlier, since GTED is a measure of distance or dissimilarity
between two graphs, we can use it to make a kernel of distance of pair of graphs
in a dataset, and this can be used for classification problems. We implemented a
C++ program that generates the linear program for the problem. First, it builds
the alignment graph AG for two given graphs A1 = (V1, E1) and A2 = (V2, E2)
where Vi and Ei are vertices and edges of the ith graph. It begins with |V1|×|V2|
vertices that are labeled as (v1, v2) for each v1 ∈ V1 and v2 ∈ V2. For each edge
(u1, v1) ∈ E1 and vertex u2 ∈ V2 we add the vertical edge [(u1, u2), (v1, u2)] with
a gap penalty δ1 to our grid, AG. We also add a horizontal edge [(u1, u2), (u1, v2)]
for each vertex u1 ∈ V1 and edge (u2, v2) ∈ E2 with the same cost δ1. Then,
for each pair of edges (u1, v1) ∈ E1 and (u2, v2) ∈ E2 we add a diagonal edge
[(u1, u2), (v1, v2)], with a mismatch penalty δ2 if (u1, v1) has a different label
from (u2, v2), or a match bonus δ3 if the labels are the same. The cost values are
taken as arguments, with default values of δ1 = δ2 = 1 and δ3 = 0. This can be
further extended to different penalties for insertion and deletion (i.e. different
cost for horizontal and vertical edges).

The C++ program also creates a projection set for each edge in either of
the input graphs. Each vertical edge [(u1, u2), (v1, u2)] is added to the projection
set of the edge (u1, v1) ∈ E1, each horizontal edge [(u1, u2), (u1, v2)] to the set
of (u2, v2) ∈ E2, and each diagonal edge [(u1, u2), (v1, v2)] to projection sets of
both (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

Our program then extracts a linear programming problem from the align-
ment graph by assigning a variable xi to the ith edge of AG. The objective
function minimizes weighted sum

∑
e∈E,δ(e)>0 xeδ(e). Then, the constraints will

be generated. There are two different groups of constraints. The first group forces
the vertices of the grid to have the same number of incoming edges and outgo-
ing edges, forcing the output to be a cycle in the alignment graph. The second
group forces the size of the projection set for each edge of the input graphs to
be equal to its weight in that input graph, forcing the projection of the output
to be Eulerian in both input graphs.

We used an academic license of Gurobi optimizer to solve the linear program.
Since the variables are already supposed to be non-negative, it was not necessary
to add inequalities to the LP for this purpose.

Data. We tested our graph kernel on four data sets. The Mutag data set con-
sists of “aromatic and heteroaromatic nitro compounds tested for mutagenicity.”
Nodes in the graphs represent the names of the atoms. The Enzymes dataset is
a protein graph model of 600 enzymes from BRENDA database which contains
100 proteins each from 6 Enzyme Commission top level classes (Oxidoreduc-
tases, Transferases, Hydrolases, Lyases, Isomerases and Ligases). Protein struc-
tures are represented as nodes, and each node is connected to three closest
proteins on the enzyme. The NCI1 dataset is derived from PubChem website

48 A. E. Boroojeny et al.

[pubchem.ncbi.nlm.nih.gov] which is related to screening of human tumor (Non-
Small Cell Lung) cell line growth inhibition. Each chemical compound is repre-
sented by their corresponding molecular graph where nodes are various atoms
(Carbon, Nitrogen, Oxygen etc.) and edges are the bonds between atoms (single,
double etc.). The class labels on this dataset is either active or inactive based on
the cancer assay. The PTC dataset is part of Predictive Toxicology Evaluation
Challenge. This dataset is composed of graphs representing chemical structure
and their outcomes of biological tests for the carcinogenicity in Male Rats (MR),
Female Rats (FR), Male Mice (MM) and Female Mice (FM). The task is to clas-
sify whether a chemical is POS or NEG in MR, FR, MM and FM in terms of
carcinogenicity.

Pre-processing and Post-processing. We use the Chinese Postman algo-
rithm to make the input graphs Eulerian by adding the minimum amount of
weights to the existing edges of the graphs. For directed graphs, we can use them
directly in our algorithm, but for undirected graphs, we consider two edges in
opposite directions for each undirected edge, and treat the two created opposite
edges as separate variables in our linear programming problem.

Because our method requires edge labels, for those datasets such as Enzymes
that have no edge labels, we use the concatenation of the source node label and
the destination node label to make a label for every edge. To make the direction
of the edge irrelevant, when we are comparing the two edge labels to see whether
they match, we check both the equality of label of one to the label of the other
or to the reverse label of the other edge which is obtained by reversing ordering
of the source and destination nodes.

After computing the distance value between each pair of graphs, we have
higher values for more distant (less similar) graphs. To prepare a normalized
kernel to be used in other implemented classifiers like SVM, we have to map
initial values such that for more similar graphs we obtain higher values (1 for
identical pairs). To make this transformation, we have used two simple methods,
and for each dataset we have used both of them and chose the one that gives us
the best results during the cross validation on the training set. Then, this chosen
method is used on the test set to get the final accuracy. The first method is to
use f(x) = 1

x+1 as the map function. The second method is to use the function
f(x) = 1 − x−min

max−min to map the distance values. Here, the max and min show
the maximum and minimum distance values that we have among all possible
pairs of graphs. Since we get 0 for identical graphs, the min is always 0. Hence,
the map function can be simplified to f(x) = 1 − x

max . Both methods will give
us 1 for similar graphs that have GTED values of 0, and numbers between 0 and
1 for more distant graphs. The more distant the pair of graphs are, the less the
corresponding value in the kernel will be. Table 1 presents the overall running
times for computing the kernel for each benchmark dataset.

https://pubchem.ncbi.nlm.nih.gov

GTED: Graph Traversal Edit Distance 49

Table 1. Running time for kernel computations for graph pairs, which were distributed
into a cluster of 80 computers. Graph pairs = n(n−1)

2
, where n is the number of graphs.

Dataset #Graphs #Pairs Chinese postman (sec) Kernel computation (min)

MUTAG 188 17,578 3 3

Enzymes 600 179,700 50 35

NCI1 4110 8,443,995 300 1760

PTC 414 85,491 47 17

Results. To evaluate whether this method works well at capturing the similarity
and classifying the graphs, we used some benchmark datasets that are used to
compare the graph kernels. We compare the kernels by evaluating the accuracy
of an SVM classifer that uses them for classification. We used the same settings
as in [17] so we can compare our results with previously computed results for
other kernels. In this setting, we split the data randomly to two parts, 80% for
training and 20% for testing. Then, we computed results for 20 different splitting
using different random seeds. It can be seen from the table below that for the
Mutag [33] and Enzymes [10] datasets, our kernel outperforms the other kernels.
In the results table, we copied the values in [17] for other kernels.

Kernel/Dataset Mutag [33] Enzymes [10] NCI1 [34] PTC [35]

WL [19] 84.50(±2.16) 53.75(±1.37) 84.76(±0.32) 59.97(±1.60)

WL-Edge [18] 82.94(±2.33) 52.00(±0.72) 84.65(±0.25) 60.18(±2.19)

SP [14] 85.50(±2.50) 42.31(±1.37) 73.61(±0.36) 59.53(±1.71)

Graphlet [18] 82.44(±1.29) 30.95(±0.73) 62.40(±0.27) 55.88(±0.31)

p-RW [12] 80.33(±1.35) 28.17(±0.76) TIMED OUT 59.85(±0.95)

MLG [17] 84.21(±2.61) 57.92(±5.39) 80.83(±1.29) 63.62(±4.69)

GTED 90.12(±4.48) 59.66(±1.84) 65.83(±1.14) 59.08(±2.11)

Analysis. As shown in the table, our kernel achieves a higher accuracy on the
Mutag and Enzymes datasets but gets average result on PTC and relatively
weaker result on NCI1, as compared to other methods. Actually, none of the
existing kernels can get the best results on all different kinds of data because
each kernel captures only some features of the graphs. The Eulerian traversals of
the graphs can be very informative for some specific applications, like Mutag. The
aromatic and heteroaromatic chemical compounds in Mutag mostly consist of
connected rings of atoms. These constituent rings can give us a good measure of
proximity of two compounds. Since the language of Eulerian traversals includes
the traversal of these rings in each compound, finding the minimum distance
between the strings of the languages (which are built by the labels of the nodes
that represent the name of atoms) for two different compounds can provide a

50 A. E. Boroojeny et al.

measure of the similar structures that they contain. That is why we get the best
result for this dataset using our kernel.

Similarly, GTED outperforms the other kernels in the enzymes dataset. The
enzymes in this dataset have certain shapes consisting of various protein struc-
tures (the nodes), and the combination of the individual structures and the
nearby proteins gives us a good sense of the structure of the enzyme. In this
case, Eulerian cycles usually give us a good approximation for the general spa-
tial structure of the enzyme which leads to a good score.

The algorithm performed less well on the NCI1 and PTC data sets. We are
uncertain of why this is, but it seems likely that the critical properties of the
relevant chemicals are not captured by the Eulerian traversal.

4.2 Using GTED on Genomic Data

As mentioned earlier, the original goal of GTED was to find the best alignment
of two genomes using only the assembly graphs, without having to create an
assembled sequence first. The common alignment methods that compute the
Levenshtein edit distance cannot take many factors into account, like having
trans-locations in the genome, or the fact that assembly graphs could have mul-
tiple Eulerian cycles. Our method finds the best alignment among all possible
alignments for all possible pairs of reference genomes that can be derived from
the assembly graphs. As a result, it gives us a good measure to compute the dis-
tance (or similarity) between genomic sequences, and hence a way to cluster a
group of samples. Therefore, to evaluate our method on genomic data, we chose
genomes of Hepatit B viruses in five different vertebrates; the virus in two of
them (Heron and Tinamou) belong to Avihepadnavirus genus, and the ones in
three of them (Horseshoe bat, Tent-making bat, and Woolly monkey) belong to
Orthohepadnavirus genus.

Pre-processing and post-processing. First, for each pair of sequences we
wished to compare, we generated a colored de Bruijn graph, a de Bruijn graph
(assembly graph) that combines multiple samples in a single assembly graph with
k-mers from different samples identified using different colored edges. We then
extracted the graph for each specific color (genome). The linear programming
problem for this experiment is produced almost like before; the difference here
is that instead of using the second set of constraints to enforce that all edges
of the input graphs are used exactly as many times as their multiplicities (an
Eulerian cycle), we add the absolute value of the difference of the number of
times that an edge is used in the alignment graph and its original weight in the
corresponding input graph to the objective function of the LP. This way, we try
to minimize this difference but allow some discrepancies. The extra flexibility
seems necessary in this case, because the input graphs are large and contain
numerous sources of error: sequencing errors, using cutoffs for edges, and crude
estimates of the weights of the edges based on the coverage of sequences in the
colored de Bruijn graph mean that the edge multiplicities are not completely
accurate.

GTED: Graph Traversal Edit Distance 51

Results. The whole pre-processing step and generating the results took 4 h on
30 CPUs for each pair of viruses. Numbers in the table below are the computed
distance of each of these pairs of graphs. As represented in the table, it can
be seen that the intra-genus distances are lower than inter-genus distances. We
believe, based on these numbers, a good estimate of the similarity of the genomes
can be made, both for genomes in the same genus and the ones with various
genus.

Heron Tinamou Horseshoe bat Tent-making bat W. monkey
Heron - 1016 1691 1639 1659

Tinamou 1016 - 1699 1638 1640
Horseshoe bat 1691 1699 - 1347 1296

Tent-making bat 1639 1638 1347 - 1429
Woolly monkey 1659 1640 1296 1429 -

5 Conclusion

In this paper we have introduced GTED, a new method for comparing networks
based on a traversal of their edge labels. We have shown that GTED admits
a polynomial time algorithm using a linear program. This linear program is
guaranteed to have an integer solution due to the fact that the boundary operator
function is totally unimodular, giving us an exact solution for the minimum
possible edit distance.

The GTED problem was originally designed to be a formalization of the dif-
ferential genome assembly problem, comparing DNA assembly graphs by consid-
ering all their possible assembled strings. It performs well at that task, success-
fully differentiating different genera of the Hepatitis B virus. We tested GTED
on viral genomes since GTED is a global alignment scheme that is not immedi-
ately scalable to full-size large genomes, like all other global alignment schemes
such as Needleman-Wunsch. However, GTED can form the mathematical basis
for scalable heuristic comparison of full-size large genomes in the future. GTED
can also be used as a general graph kernel on other types of networks, performing
particularly well on graphs whose Eulerian traversals provide a good insight into
their important structural features.

GTED is a new way of measuring the similarity between networks. It has
many applications in differential genome assembly, but it also performs well in
domains beyond assembly graphs. GTED has the potential to be a valuable tool
in the study of biological networks.

52 A. E. Boroojeny et al.

References

1. Li, Y., et al.: Structural variation in two human genomes mapped at single-
nucleotide resolution by whole genome de novo assembly. Nat. Biotechnol. 29,
723–730 (2011)

2. Movahedi, N.S., Forouzmand, E., Chitsaz, H.: De novo co-assembly of bacterial
genomes from multiple single cells. In: IEEE Conference on Bioinformatics and
Biomedicine, pp. 561–565 (2012)

3. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44, 226–232
(2012)

4. Taghavi, Z., Movahedi, N.S., Draghici, S., Chitsaz, H.: Distilled single-cell genome
sequencing and de novo assembly for sparse microbial communities. Bioinformatics
29(19), 2395–2401 (2013)

5. Movahedi, N.S., Embree, M., Nagarajan, H., Zengler, K., Chitsaz, H.: Efficient
synergistic single-cell genome assembly. Front. Bioeng. Biotechnol. 4, 42 (2016)

6. Hormozdiari, F., Hajirasouliha, I., McPherson, A., Eichler, E., Sahinalp, S.C.:
Simultaneous structural variation discovery among multiple paired-end sequenced
genomes. Genome Res. 21, 2203–2212 (2011)

7. Mak, C.: Multigenome analysis of variation (research highlights). Nat. Biotechnol.
29, 330 (2011)

8. Jones, S.: True colors of genome variation (research highlights). Nat. Biotechnol.
30, 158 (2012)

9. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from
graphs: mining graph data. Mach. Learn. 50(3), 321–354 (2003)

10. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J.,
Kriegel, H.-P.: Protein function prediction via graph kernels. Bioinformatics 21(1),
47–56 (2005)

11. Kubinyi, H.: Drug research: myths, hype and reality. Nat. Rev. Drug Discov. 2(8),
665–668 (2003)

12. G”artner, T.: Exponential and geometric kernels for graphs. In: NIPS 2002 Work-
shop on Unreal Data, Principles of Modeling Nonvectorial Data (2002)

13. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)

14. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In Fifth IEEE
International Conference on Data Mining (ICDM 2005), p. 8, November 2005

15. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scal-
able kernels for graphs with continuous attributes. In: Burges, C.J.C., Bottou, L.,
Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 26, pp. 216–224. Curran Associates Inc. (2013)

16. Kondor, R., Borgwardt, K.M.: The skew spectrum of graphs. In: Proceedings of
the 25th International Conference on Machine Learning, ICML 2008, pp. 496–503.
ACM, New York (2008)

17. Kondor, R., Pan, H.: The multiscale laplacian graph kernel. In: Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 29, pp. 2990–2998. Curran Associates Inc.
(2016)

GTED: Graph Traversal Edit Distance 53

18. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt, K.:
Efficient graphlet kernels for large graph comparison. In: van Dyk, D., Welling,
M. (eds.) Proceedings of the Twelth International Conference on Artificial Intelli-
gence and Statistics, Proceedings of Machine Learning Research, Hilton Clearwater
Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009, vol. 5, pp. 488–495
(2009). PMLR

19. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

20. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels:
efficient graph kernels from propagated information. Mach. Learn. 102(2), 209–
245 (2016)

21. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. U.S.A. 98, 9748–9753 (2001)

22. Pevzner, P.A., Tang, H., Tesler, G.: De novo repeat classification and fragment
assembly. Genome Res. 14(9), 1786–1796 (2004)

23. Ronen, R., Boucher, C., Chitsaz, H., Pevzner, P.: SEQuel: improving the accu-
racy of genome assemblies. Bioinformatics 28(12), i188–i196 (2012). Also ISMB
proceedings

24. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
J. Comput. Biol. 2, 275–290 (1995)

25. Simpson, J.T., Durbin, R.: Efficient construction of an assembly string graph using
the FM-index. Bioinformatics 26, 367–373 (2010)

26. Jones, N.C., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT
press, Cambridge (2004)

27. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics-Doklady 10(8), 707–710 (1966). Original. Doklady
Akademii Nauk SSSR 163(4), 845–848 (1965)

28. Tutte, W.T., Smith, C.A.B.: On unicursal paths in a network of degree 4. Am.
Math. Mon. 48(4), 233–237 (1941)

29. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear
graphs. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics, Modern
Birkhäuser Classics, pp. 149–163. Birkhäuser, Boston (1987)

30. Dey, T., Hirani, A., Krishnamoorthy, B.: Optimal homologous cycles, total uni-
modularity, and linear programming. SIAM J. Comput. 40(4), 1026–1044 (2011)

31. Vick, J.W.: Homology Theory: An Introduction to Algebraic Topology, vol. 145.
Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0881-5

32. Massey, W.: A Basic Course in Algebraic Topology, vol. 127. Springer, New York
(1991)

33. Debnath, A.K., de Compadre, R.L.L., Debnath, G., Shusterman, A.J., Hansch, C.:
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. Correlation with molecular orbital energies and hydrophobicity. J.
Med. Chem. 34(2), 786–797 (1991)

34. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (2008)

35. Toivonen, H., Srinivasan, A., King, R.D., Kramer, S., Helma, C.: Statistical eval-
uation of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10),
1183–1193 (2003)

https://doi.org/10.1007/978-1-4612-0881-5

	GTED: Graph Traversal Edit Distance
	1 Introduction
	2 Problem Definition
	3 Methods
	3.1 Brute Force Computation of Graph Traversal Edit Distance
	3.2 Graph Traversal Edit Distance as a Constrained Shortest Path Problem
	3.3 Lower Bound via Linear Programming Relaxation
	3.4 Algorithm for Graph Traversal Edit Distance
	3.5 Total Unimodularity
	3.6 Homology Theory of Alignment Graph

	4 Experiments
	4.1 Using GTED to Make a Kernel
	4.2 Using GTED on Genomic Data

	5 Conclusion
	References

