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Abstract. Measuring nucleosome positioning in cells is crucial for the
analysis of epigenetic gene regulation. Reconstruction of nucleosome pro-
files of individual cells or subpopulations of cells remains challenging
because most genome-wide assays measure nucleosome positioning and
DNA accessibility for thousands of cells using bulk sequencing. Here we
use characteristics of the NOMe-sequencing assay to derive a new app-
roach, called ChromaClique, for deconvolution of different nucleosome
profiles (chromatypes) from cell subpopulations of one NOMe-seq mea-
surement. ChromaClique uses a maximal clique enumeration algorithm
on a newly defined NOMe read graph that is able to group reads accord-
ing to their nucleosome profiles. We show that the edge probabilities of
that graph can be efficiently computed using Hidden Markov Models.
We demonstrate using simulated data that ChromaClique is more accu-
rate than a related method and scales favorably, allowing genome-wide
analyses of chromatypes in cell subpopulations. Software is available at
https://github.com/shounak1990/ChromaClique under MIT license.

Keywords: NOMe-seq · Max clique enumeration · Epigenetics
HMMs

1 Introduction

The eukaryotic genome is organized in nucleosomes which consist of approxi-
mately 147 base pairs of DNA wrapped around a histone octamer. Nucleosomes
serve as the basic unit of chromatin packaging and are connected via free DNA
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linkers of variable length. Nucleosome positioning plays a pivotal role for tran-
scriptional regulation by controlling DNA accessibility for binding proteins (e.g.
transcription factors). Thus, learning more about nucleosome positioning and
how it differs between different cell types, as well as subpopulations of cells, is
an important task to understand gene expression regulation.

Different protocols for the genome-wide characterization of nucleosome posi-
tioning have been developed. The most common are DNaseI-seq [1], ATAC-seq [2]
and NOMe-seq [3]. NOMe-seq (nucleosome occupancy and methylation) utilizes
the enzyme M.CviPI which specifically methylates cytosine dyads in a GpC
sequence context. Because NOMe-seq uses bisulfite sequencing, it also delivers
the endogenous CpG methylation levels, enabling the simultaneous analysis of
chromatin accessibility and DNA methylation. Due to this unique feature, a
number of recent studies have applied NOMe-seq to study epigenetic regula-
tion [3–7]. It is also the first assay that can measure nucleosome positioning and
DNA methylation simultaneously in single cells [8].

However, single cell datasets using NOMe-seq or other related assays are rare,
whereas bulk sequencing experiments do not reveal nucleosome and chromatin
profiles of subpopulations of cells. Although NOMe-seq is normally obtained
from bulk sequencing of cells, the nucleosome readout of one paired-end read
comes from a single cell. As several GpC dinucleotides may appear on a paired-
end read obtained from NOMe-seq, this information can be used to group reads
that originate from the same nucleosome profile. We call these distinct nucleo-
some profiles chromatypes, to emphasize that their chromatin arrangement differs
between cells. Here, we are concerned with the development of novel computa-
tional methods that can reconstruct chromatypes from NOMe-seq data.

The only comparable method is epiG, which clusters reads according to epi-
genetic haplotypes using a Bayesian approach that considers DNA methylation
and GpC methylation in NOMe-seq data [9]. However, the Bayesian approach
in epiG is slow and can thus only be used to study local genomic regions and
does not allow genome-wide application.

We exploit recent advances for methods that reconstruct viral haplotypes
from DNA-seq data. The high mutation rates of viruses such as HIV give rise to
considerable intra-patient variability of virus genomes [10]. Reconstructing the
full set of virus haplotypes ciruclating in a patient’s blood and quantifying their
relative abundances are important tasks with the prospect of informing therapy
stratification [11]. This computational task is challenging, however, because usu-
ally no a priori knowledge on the number of haplotypes and the distribution of
their abundances is available. Therefore, distinguishing sequencing errors from
low-abundance haplotypes requires non-trivial techniques. In the meantime, a
wealth of methods has been developed [12], including Haploclique that enumer-
ates maximal cliques on a DNA-seq read graph [13].

We introduce a novel method, called ChromaClique, which combines the
maximal-clique enumeration procedure of HaploClique with a novel probabilistic
edge criterion tailored to NOMe-seq data. The edge criterion incorporates base
quality scores in a probabilistic manner. ChromaClique uses Hidden Markov
Models for the efficient computation of the edge probabilities in the novel read
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graph. We show that ChromaClique is the first algorithm that can be used
genome-wide and that it has better accuracy on simulated data compared to the
only comparable method epiG.

2 Methods

2.1 ChromaClique Overview

ChromaClique starts from bulk NOMe-seq reads aligned to a reference genome
in BAM format. Each cell, or group of cells, is expected to have different nucle-
osome positioning patterns (chromatypes) which are encoded in the reads. This
is depicted in Fig. 1 with the different colors, where each color represents a chro-
matype. The aligned reads are converted into a read graph, G := (V,E), with
nodes V and edges E. Each node represents a read. Two reads share an edge
only if they are likely to originate from the same chromatype. Both single and
paired-end reads are considered for the edge criterion. Two paired-end reads
share an edge only when both reads from both pairs agree to the edge criterion.
The maximal cliques in the graph are enumerated using the algorithm previously
employed in HaploClique [13]. The reads in a maximal clique are merged. The
condensed graph is checked again for cliques which have an edge between each
other and the maximal clique finding algorithm is run iteratively. This contin-
ues until no more edges are found in the graph. The nodes in the final graph
represent the individual reconstructed chromatypes and are also called super
reads.

2.2 Encoding the Reads

In NOMe-seq data only GCH trinucleotides, i.e. GCT, GCA or GCC, in
the genome provide information about open and closed nucleosome positions,

Fig. 1. Illustration of a cell population with different nucleosome states, indicated
by different colors. The NOMe signature of different chromatin states is shown on
the bottom left. The ChromaClique workflow is shown on the right: ChromaClique
applies its edge criterion to NOMe bulk sequencing data (black lines connecting reads),
enumerates all maximal cliques (indicated in red), merges reads in a clique, and iterates
the process until convergence. (Color figure online)
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Fig. 2. GCH and GTH positions in a read are compared with the reference. If there
is a position with GCH in the read and a GCH in the reference, it is marked as “O”
and otherwise if it is a GTH in the read it is marked as “C”. All other positions other
than the GCH or GTH positions are summarized by numbers reflecting their length.
If there is a GTH in the read and a GTH in the reference it is not treated as a GCH
position.

because GCG positions are ambiguous due to the possibility that CpG DNA
methylation took place. Each individual read is represented as follows: each
GCH position is encoded as open (O) and each GTH position is encoded as
closed (C). This is because a GCH is not converted by bisulfite treatment, when
it is accessible and was methylated by the enzyme. The NOMe enzyme M.cviPI
works on accessible GCs on both DNA strands in 5’ to 3’ direction. This reverse
complementarity is taken into account during read encoding and edge construc-
tion by the algorithm. Figure 2 shows the process of encoding a read based on
its GCH and GTH occurrences. The last GTH position is not a closed position
since the reference does not have a GCH position there.

Sequencing errors in the reads that would prevent the detection of GCH can
be corrected by comparing the positions in the reference sequence to which the
read is aligned. For example if there is a GCH position in the reference and due
to an error the read contains HCH instead this will be corrected for later use in
the algorithm.

2.3 Definition of Edge Probabilities

In order to build the graph for finding maximum cliques, each pair of reads with
sufficient overlap is scored against each other to see if they are likely to originate
from cells with the same chromatype. The reads are scored on the basis of their
base quality scores (Phred scores) as reported by the sequencer, and also based
on the similarity of nucleotides observed at their shared GCH positions.

ChromaClique does not make an assumption on the number and relative
abundances of open-chromatin patterns. In order to evaluate the likelihood of
an edge between two considered reads, we compute the edge probability as the
probability that the overlapping portion of both reads has been generated by
any one of the possible chromatypes. Before we can properly define the edge
probability we make a number of definitions.

ChromaClique first encodes reads at only GCH positions (in the following
called C/O positions) and records the distance between consecutive occurrences
(see Fig. 2). In the read each GC is denoted as open (O) and each GT as closed
(C). For simplicity, we denote Ci(R) as the open-chromatin status (O or C)
at the ith C/O position in read R, e.g., C2(R) = O in Fig. 2. The phred base
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quality of the Cytosine or Thymine at the ith C/O position in read R is denoted
phred(i, R). Let Qi(R) be the scaled base quality score at position i, that is
Qi(R) = 10− phred(i,R)

10 . The distance between the ith and jth C/O position in the
read is given by di,j(R), e.g., d1,2(R) = 4 in Fig. 2.

Computing the edge probability involves two steps. The first estimates the
probability for a given chromatype y given the base qualities obtained from the
sequencer, denoted P (R|y). Let T be the total number of C/O positions in an
encoded read, then:

P (R|y) =
T∏

i=1

fqual(R, y, i), (1)

where fqual is defined as:

fqual(R, y, i) =
{

1 − Qi(R), if Ci(R) = Ci(y)
Qi(R), if Ci(R) �= Ci(y) . (2)

The second step consists in computing the probability of an individual chro-
matype y, denoted as P (y). A nucleosome occupies around 147 bps and therefore
not all possible chromatypes are equally likely. For example 1 C 2C 2C 2C is
more likely than 1 C 2O 2C 2O. We capture this by defining transition events at
adjacent C/O positions.

For a read R a transition for position i is defined as Ci(R) �= Ci+1(R), namely
the open-chromatin state at position i has changed compared to its adjacent
position i+1. Here we do not distinguish the direction of the transition, i.e. a
transition from an O to a C is equivalent to a transition of a C to an O. Similarly,
position i is called a non-transition if Ci(R) = Ci+1(R). As mentioned above,
the distance d between two positions i and j should influence the likelihood of a
transition event. Therefore we obtain the empirical transition probability tr(d),
as the relative frequency of transition events for a certain distance d:

tr(d) =
Transition(d)

Transition(d) + NonTransition(d)
, (3)

where Transition(d) and NonTransition(d) are the number of transition and
non-transition events at distance d observed in all reads, respectively. Then the
non-transition probability is simply given by:

1 − tr(d). (4)

Transition or non-transition probabilities are used in the computation of
observing a certain C/O pattern in a read. In addition, these probabilities may
help to recognize errors in the reads, for instance errors due to the incorrect
methylation of the M.CviPI enzyme, or due to incorrect bisulfite conversion. For
example if the transition probability for a specific distance, say 10, is 0.05, it
means that the number of non-transitions seen for this distance is much higher
than the number of transitions. However, if a transition was observed at this
distance, the probability that it is an error due to either a failed NOMe or
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bisulfite conversion, would be high. This information is later used as a prior
when two reads are compared to see if they originate from cells with similar
chromatypes.

Finally, we can use the transition probabilities (Eq. 3) to quantify the prob-
ability of observing a particular chromatype y. We define:

P (y) =
T−1∏

i=1

ftransition(y, i), (5)

ftransition(y, i) =

⎧
⎨

⎩

1 − tr(di−1,i(y)), if Ci(y) = Ci−1(y) and i > 1
tr(di−1,i(y)) if Ci(y) �= Ci−1(y) and i > 1
0.5 i = 1

. (6)

Intuitively, P (y) will be low if the chromatin state configuration in y is
unlikely given the transition probabilities. If two reads R1 and R2 are inde-
pendent of each other, the probability that they originate from a particular
chromatype y can now be calculated as follows:

P (R1, R2|y) = P (R1|y) P (R2|y). (7)

From the law of total probability, the probability that two reads originate from
the same chromatype can be computed as:

P (R1, R2) =
∑

y∈Y

P (R1, R2|y) P (y), (8)

where Y is the set of all possible 2T chromatypes. Equation (8) is the central edge
probability of ChromaClique that is used for building its read graph. Two reads
are said to be from the same chromatype if the probability P (R1, R2) is above
a threshold δ. We call δ the edge threshold and only edges with P (R1, R2) > δ
are considered in the read graph. δ needs to be set manually by the user, but we
will determine a practical value for δ using simulations.

Minimum Overlap. The edge probability depends on another parameter which
also needs to be set manually. It is the number of C/O positions, D, in the
overlapping portion of the two reads in question. If D is too small then this
may lead to false edges between reads originating from different chromatypes.
However if the number is too large then it leads to many read overlaps not being
considered. By default we set the minimum number of overlapping C/O positions
to 2.

Thus this parameter determines the purity of the cliques and also the length
of the final super reads. It was set manually after analysing the behaviour of
simulated data.

2.4 Efficient Calculation of Edge Probabilities in ChromaClique

The probability that two reads originate from the same chromatype is given
by Eq. (8). In order to obtain the above probability R1 and R2 have to be
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checked against all the possible chromatypes, i.e the entire set Y . The size of
Y is 2T , where T is the number of C/O positions in the overlapping portion
of the reads. Thus, it becomes computationally expensive to enumerate all the
different chromatypes and then calculate the probability.

However, if the overlapping portion of the reads is modeled as a Hidden
Markov Model (HMM), the forward algorithm can be used to efficiently calculate
the entire probability without having to enumerate all the possible chromatypes.

Fig. 3. Hidden Markov Model for calculating the probability that two reads originate
from the same chromatype. The circles (1C , 1O, 2C ...) represent the hidden states
which are the actual open or closed state of the chromatin in the DNA sequence
(based on GCH or GTH positions). Each of these states emits two values (one for each
of the sequences being compared). The emission probabilities for these are given by the
tables near these states. The transition probabilities from one hidden state to another
is given by the arrows between the hidden states. The start state S and end state E
are customary states denoting the start and end of the process.

Hidden Markov Model (HMM) for Chromatyping. Figure 3 illustrates
the HMM for calculating the probability that two reads originate from the same
chromatype. It consists of a set of hidden states, which represent the actual
nucleotide state (open or closed). Each hidden state emits a pair of nucleotides,
one nucleotide for each read at a C/O position. The emission parameters consider
the phred base qualities.

More formally, let T be the total number of C/O positions in the overlapping
region of the two reads (R1 and R2) being compared. Let t ∈ {1, . . . , T} be
the index for the C/O positions, where R1(t) ∈ {C,O} and R2(t) ∈ {C,O}
denote the chromatin status given by R1 and R2 at position t, respectively. Let
{S, 1C , 1O, 2C , 2O, ...., TC , TO, E} represent the set of hidden states, where S and
E denote the silent start and end state, respectively. In the following we will
refer to a state from the set as tb with t ∈ {1, . . . , T} and b ∈ {C,O}.
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State tb has emission probability etb(b1, b2) for a pair (b1, b2), with bi ∈
{C,O}, defined as:

etb(b1, b2) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − q1(t)) · (1 − q2(t)) b = b1 and b = b2,
q1(t) · (1 − q2(t)) b �= b1 and b = b2,
(1 − q1(t)) · q2(t) b = b1 and b �= b2,
q1(t) · q2(t) b �= b1 and b �= b2,

(9)

where q1(t) is defined as:

q1(t) = 10− phred(t,R1)
10 (10)

and q2(t) is defined analogously for R2.
The initial probabilities from the start state S to 1C and 1O are set to

π(C) = 0.5 and π(O) = 0.5, respectively. The transition probabilities between
consecutive states (t − 1)b and tc, with b, c ∈ {C,O}, are defined using the
transition probability tr(d) for distance d between C/O positions t − 1 and t:

a(t−1)b,tc =
{

1 − tr(dt−1,t) b = c,
tr(dt−1,t) b �= c.

(11)

We can now compute the sought probability P (R1, R2), Eq. (8), using the
standard forward algorithm for HMMs [14]. The complexity of calculating the
probability of two reads originating from one chromatype using the forward
algorithm is O(T ), where T is the number of C/O positions in the overlapping
portion of the reads.

3 Data Simulation and Evaluation

To assess performance with respect to ground truth chromatypes, which are
usually not available for real data, we simulated NOMe sequencing experiments
in silico. Simulated data also serve to tune parameters as needed, in particular
δ, the threshold for the probability that two reads originate from cells with the
same chromatypes, and D, the minimum number of C/O positions we require
in the overlapping region of two reads.

3.1 Simulating Chromatypes

The reference sequence of human chromosome 1 was randomly annotated with
regions of open chromatin and closed chromatin. Regions of 177 bps were anno-
tated with a nucleosome (closed chromatin for 147 bps) followed by a linker DNA
(open chromatin for 30 bps) with a 60% probability. The whole region (177 bps)
was annotated as being open chromatin with a 40% probability. This process
of annotation was done along the complete chromosome 1. The process was
repeated four times in order to simulate four different chromatypes.

Virtual NOMe and bisulfite treatment was simulated as follows: GCHs in
nucleosome occupied regions were converted to GTHs. In regions not occupied
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by nucleosomes and in linker DNA regions, GCHs were retained. We randomly
methylated HCGs, i.e., sites of DNA methylation. In this way each chromatype
had distinct open chromatin (GCHs) and DNA methylation (HCGs) profiles,
where DNA methylation values are currently only used by epiG.

3.2 Simulating NGS Reads

Illumina sequencing reads were simulated (along with sequencing errors), indi-
vidually for each of the simulated chromatypes using the ART software [15] and
subsequently merged using samtools. The merged reads were aligned to the ref-
erence using BISMARK [16]. Four different sets of merged reads, 100 bp reads
at 40× and 80× coverage, as well as 200 bp reads at 40× and 80× coverage,
were created. We chose 100 bp reads since this is a common read length, while
200 bp reads were included to evaluate the impact of read length on performance.
ChromaClique and epiG were run individually on each of these datasets.

3.3 Evaluation Metric for Chromatype Reconstructions

The chromatype reconstructions produced by the algorithms were evaluated
based on the number of switches needed to reconstruct that particular super
read from the four ground truth simulated chromatypes. Each super read
(chromatype-reconstruction) was represented by a binary vector, Sr[x], contain-
ing 1 s and 0s, for open and closed positions, respectively.

For example, let S = 1O 42C 23C 9C be a reconstructed super read. This
super read can be represented as a binary vector Sr containing 1 s and 0 s for
open and closed positions respectively, Sr = [1, 0, 0, 0].

Because the super reads are aligned to the reference, similar vectors can be
constructed for each of the ground truth chromatypes that were used for simu-
lating the data. This produces a chromatype matrix Chr[c, x], where each row
c represents one of the ground truth chromatypes and each column x represents
the nucleosome state (1 or 0) at that position.

For example assume the following chromatype matrix Chr:

Chr[c, x] =

⎛

⎜⎜⎝

chromatype1 1 1 0 1
chromatype2 0 1 0 1
chromatype3 1 0 1 0
chromatype4 1 1 1 0

⎞

⎟⎟⎠. (12)

The number of switches (jumps from one original chromatype to another)
required to recreate a particular super read (read group in case of epiG), is
referred to as the switch error. SEi is the switch error for super read i. The
switch error can be efficiently calculated from the Sr[x] vector and the Chr[c, x]
matrix using dynamic programming.

With SE[c, x] we denote the switch error matrix, where a row c represents
one of the initial chromatypes and an entry in column x denotes the minimum
number of switches and mismatches needed to reconstruct a prefix of length x in
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the super read starting from the initial chromatype c. SE[c, x] can be formally
defined as follows:

SE[c, x] = min

⎧
⎨

⎩

0, if x = 0
SE[c′, x − 1] + mismatch(c, x), with c = c′ and x �= 0
SE[c′, x − 1] + 1 + mismatch(c, x) with c �= c′ and x �= 0,

(13)
where the case x = 0 serves as initialization for the DP computation. The func-
tion mismatch(c, x) returns 0 if the open chromatin value at position x is same
for the Sr vector and the row c in the corresponding chromatype matrix Chr.
mismatch(c, x) is defined as:

mismatch(c, x) =
{

0, if Sr[x] = Chr[c, x]
1, if Sr[x] �= Chr[c, x] . (14)

The minimum element in the last column of the SE[c, x] matrix represents the
minimum number of switches and mismatches required to reconstruct the super
read S from any of the given chromatypes. This is defined as the switch error of
the given super read.

Example Calculation. Recursive application of Eq. (13) on Sr and Chr yields
the following SE matrix:

SE[c, x] =

⎛

⎜⎜⎝

x 0 1 2 3 4
chromatype1 0 0 1 1 2
chromatype2 0 1 1 1 2
chromatype3 0 0 0 1 1
chromatype4 0 0 1 2 2

⎞

⎟⎟⎠. (15)

The minimum number of switches and mismatches needed to reconstruct the
super read S from the initial chromatypes in this example is 1.

Switch errors were calculated for each super read and the total prediction
error is then calculated as an average of the number of switch errors per C/O
position as follows:

PredictionError =
∑N

i SEi∑N
i Ti

, (16)

where N is the total number of super reads and Ti is the total number of C/O
positions in the ith super read.

3.4 Evaluation of the Chromatype Predictions

The super reads produced by ChromaClique were compared against the predic-
tions from epiG and also a BaseLine chromatype containing only closed posi-
tions. This section talks about the evaluation of the predictions of the different
algorithms.
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Evaluation of the Output from ChromaClique. ChromaClique outputs
a BAM file containing both paired-end and single-end super reads, which are
aligned to the reference. Each super read represents local reconstructions of a
chromatype. For a single-end super read, the Chr matrix and Sr vectors can be
directly constructed from the nucleotide positions (open or closed), in the super
read and the initial chromatypes used for simulation. Thus, the switch error can
be calculated directly.

However, for paired-end reads, there is missing information in between the
two read ends and the Chr matrix needs to be constructed for an individual
pair. Essentially, only positions that are overlapped by one of the reads in the
super read pair are part of the corresponding Chr matrix for that super read,
ignoring C/O positions in the reference that are not overlapped by the super
read.

Evaluation of the Output from epiG. The output from epiG is not exactly
the same as that from ChromaClique. While ChromaClique reports recon-
structed local chromatypes obtained by merging reads from the initial aligned
reads, epiG assigns reads to “epigenetic haplotypes” [9]. In order to compare
the outputs of both algorithms, the overlapping reads of epiG were merged using
the same algorithm that is used to merge the reads in ChromaClique. The switch
errors and prediction error for epiG were calculated using these merged reads as
explained above.

BaseLine Chromatype. In order to assess the performance of the algorithms
ChromaClique and epiG, a BaseLine chromatype was constructed, which was
composed of only closed positions. The idea of the BaseLine is to measure the
error for the simplest possible predictor. The switch error and prediction error
were calculated for the BaseLine chromatype in the same way. The percent-
age of coverage was varied for the BaseLine chromatype to simulate insufficient
coverage scenarios.

4 Results

We generated simulated data for the evaluation of the epiG and ChromaClique
algorithms. First, we compared the relationship between transition rates and
distances between our simulated data and real HepG2 NOMe sequencing data
(Fig. 4). As expected, the probability of observing a transition goes up as the
distance increases between two consecutive GCH occurrences and plateaus at
a certain value. This general trend is observed for both the real and simulated
data.

We then compared the performance of ChromaClique on the simulated
datasets to epiG [9], which was run in “NOMe-seq” mode with the minimum
number of GCH positions (min DGCH flag) set to 2. The way epiG outputs chro-
matypes is different from ChromaClique and therefore some post-processing was
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Fig. 4. Plots showing the transition rates at different distances between consecutive
GCH occurrences for forward strand reads mapped to chromosome 1 for HepG2 data
(left) and simulated data (right).

required to compare the two algorithms. epiG assigns each read to an epigenetic
haplotype (comparable to a chromatype). All reads belonging to a particular epi-
genetic haplotype were merged (in overlapping regions), and this was considered
as a reconstruction of a chromatype. Merging the overlapping reads was done
using the same merging algorithm as in ChromaClique. Each merged read group
from epiG was evaluated in the same way as each super read reported by Chro-
maClique. The performance of a BaseLine chromatype containing only closed
positions over the length of the considered region was evaluated as a control for
the performances of ChromaClique and epiG.

The evaluation was done using the prediction error, which denotes the average
number of switch errors obtained for all predicted super reads of a method
(see subsection 3.3). Another criterion for evaluation of the performance of the
different algorithms is the fraction of C/O positions in the original genomic
region that was covered by the reconstructed chromatypes. In this way, we can
assess the trade-off between a low switch error rate and a high fraction of C/O
positions covered. The threshold parameter δ in ChromaClique allows to adjust
this trade-off, whereas there are no such parameters in epiG. The evaluation was
restricted to a region of size 100000 bps, because epiG could not be run on the
whole chromosome 1, see below.

Figure 5 shows the prediction errors of ChromaClique (green triangles) for
thresholds varying from 0.000001 to 0.45, plotted against the fraction of C/O
positions that were covered by the predictions. Decreasing values of δ lead to
a higher fraction of GC regions being covered in the output while the errors
remain constant for a certain range of thresholds. Above a certain threshold, the
errors increase steadily. This behavior is noticed for all four different simulated
datasets. The least prediction errors were reported for the thresholds of 0.05 and
0.07 for 100 bp and 200 bp reads, respectively.
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Fig. 5. Plots comparing the performance of ChromaClique with that of epiG and also
a BaseLine chromatype reconstruction for four simulated data sets with different read
lengths (100 or 200) and coverages (40x and 80x). (Color figure online)

We sampled varying percentages of the original GC positions to be covered by
the BaseLine chromatype. In this way, we mimicked different trade-offs between
error rate and fraction of covered positions, as shown by red circles in Fig. 5. For
all data sets, we noticed a trend towards higher prediction error rates when fewer
GC positions are covered. We observed that the number of switch errors decreases
at a smaller rate than the number of GC positions covered and therefore the
prediction error increases.

Figure 5 also shows the performance of epiG. Since epiG provides no param-
eter with which it can be tuned to get varying performances, only one error
value could be obtained for each simulated dataset (blue square). For the 100 bp
reads, the fraction of C/O positions covered by epiG is high at the cost of rela-
tively high error rates, which are hardly better than the BaseLine chromatype.
It seems to profit in terms of the prediction error with an increase in the length
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Fig. 6. Runtime of ChromaClique and epiG as a function of the length of the processed
region for 100 bp reads and 40x coverage.

of the reads to 200 bps, and yields error rates which are similar to those of Chro-
maClique. However, an unexpected drop in C/O position coverage is noticed for
the dataset with 200 bp reads and 80× coverage.

Figure 6 shows the runtimes of ChromaClique and epiG plotted against the
size of the genomic region from which the initial aligned reads were sequenced.
While ChromaClique’s runtime grows slowly (and appears almost constant at the
scale shown in Fig. 6), the runtime of epiG increases steadily with growing region
sizes. While ChromaClique can be run on a chromosome-wide scale (≈101 min
for the entire human chromosome 1 on 100 bp and 40X coverage data), the
runtime for epiG becomes prohibitively large for regions more than 1 million
base pairs.

5 Discussion and Conclusion

In this paper, we introduced ChromaClique, a novel algorithm to reconstruct
nucleosome profiles from NOMe-seq data. ChromaClique is the first tool that
scales to whole genomes. Furthermore, it outperforms epiG, the only competitor,
in terms of prediction error rates and prediction completeness.

ChromaClique comes with the advantage that it only considers read pairs
that have a sufficient C/O position overlap and then predicts whether the over-
lapping reads originate from the same chromatype. In contrast, epiG takes all
provided reads and decides which chromatype a read is to be assigned to based
on a likelihood score. That is, epiG assigns every read to a chromatype, but does
not output information on where the chromatype reconstructions are reliable.

We note that NOMe-seq provides information about open and closed nucle-
osome positions based on the GCH regions. It hence comes with the intrinsic
limitation of not being able to provide any information in GCH deserts. Thus, the
reconstruction of nucleosome profiles is not possible in regions of low GC density
using this protocol and we consider extending ChromaClique to accommodate
other data types a fruitful direction for future research.
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The runtime of ChromaClique depends on the number of cliques in the NOMe
read graph, where an edge between two reads is defined by read overlaps. The
number of cliques can potentially increase exponentially with an increase in the
coverage. For constant coverage, however, ChromaClique scales linearly with the
length of the considered region (in practice). epiG takes a different approach in its
optimization algorithm. Starting from all reads as singletons initially, it optimizes
for chains of reads that are overlapping each other using a likelihood formulation
that uses priors on preferred lengths of read chains to search through the large
space of possible combinatorial configurations. Thus, the optimization algorithm
in epiG depends on the initial size of the region selected, as non-overlapping reads
are considered to be part of the same haplotype chain throughout the algorithm.
Our experiments suggest that for moderate to high coverage values, the speed
of ChromaClique is sufficient and scales much better than the approach taken
in epiG.

ChromaClique has shown a consistent performance across the different sim-
ulated datasets in terms of prediction error and the length of C/O positions
covered. It consistently achieves lower error rates than epiG with the 100 bp
reads. For the 200 bp reads, epiG shows similar error values to ChromaClique
but lower coverage of C/O positions for the 80x case. One of the advantages
of ChromaClique over epiG is its ability to tune the performance using the
threshold parameter. This allows users to employ different thresholds for differ-
ent datasets. For our experiments with simulated data, the thresholds that were
most effective were between 0.05 to 0.07.

ChromaClique is a new method which allows for the reconstruction and sub-
sequent analysis of nucleosome profiles on a chromosome-wide scale. In future
work, it would be interesting to improve the simple simulation strategy by design-
ing a more realistic simulation scenario, by combining real NOMe-seq data sets
of different conditions. It would also be interesting to extend the model to con-
sider DNA methylation at CpG residues as well. A promising application domain
of ChromaClique is single cell NOMe-seq data, which we plan to explore in the
future.
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