
Context-Specific Nested Effects Models

Yuriy Sverchkov1(B) , Yi-Hsuan Ho2 , Audrey Gasch2 ,
and Mark Craven1

1 Department of Biostatistics and Medical Informatics,
University of Wisconsin–Madison, Madison, WI, USA

yuriy.sverchkov@wisc.edu
2 Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA

Abstract. Advances in systems biology have made clear the importance
of network models for capturing knowledge about complex relationships
in gene regulation, metabolism, and cellular signaling. A common app-
roach to uncovering biological networks involves performing perturba-
tions on elements of the network, such as gene knockdown experiments,
and measuring how the perturbation affects some reporter of the process
under study. In this paper, we develop context-specific nested effects
models (CSNEMs), an approach to inferring such networks that gener-
alizes nested effect models (NEMs). The main contribution of this work
is that CSNEMs explicitly model the participation of a gene in multiple
contexts, meaning that a gene can appear in multiple places in the net-
work. Biologically, the representation of regulators in multiple contexts
may indicate that these regulators have distinct roles in different cellu-
lar compartments or cell cycle phases. We present an evaluation of the
method on simulated data as well as on data from a study of the sodium
chloride stress response in Saccharomyces cerevisiae.

1 Introduction

Cellular processes such as gene regulation, metabolism, and signaling form com-
plex interplay of molecular interactions. A primary means of uncovering the
details of these processes is through the analysis of measured responses of cells
to perturbation experiments. We present Context-Specific Nested Effect Models
(CSNEMs), which are graphical models for analyzing screens of high-dimensional
phenotypes from gene perturbations. In this setting, the perturbation consists of
knocking out, knocking down, or otherwise disabling the activity of a gene, via
the use of deletion mutants, RNA interference, CRISPR/Cas9, or other tech-
niques. The high-dimensional phenotype may be a transcriptomic, proteomic,
metabolomic or similar multidimensional profile of measurements. Such profiles
provide indirect information about the pathways that connect the gene that is
perturbed in an experiment to the effects observed in a phenotype. This poses a
challenge for determining functional relationships, since the precise mechanisms
by which the perturbation relates to the phenotype must be inferred using com-
putational and statistical methods, expert knowledge, or a combination of both.
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Related work on inferring networks from gene expression data includes meth-
ods based on statistical dependencies between expression measurements [4,7],
which are used to construct networks of probable interactions between the genes
measured in the expression profile. Other work on using phenotypic data uses
clustering of phenotypic profiles, or the similarity between profiles, to construct
networks among the perturbation genes [17,19]. The rationale behind these
approaches is that genes that produce similar phenotypes when perturbed are
likely to be functionally related [13].

The CSNEM approach is a generalization of the Nested Effect Model (NEM)
[11]. In the NEM approach, a network structure among the perturbed elements
of the cell is inferred from the nested structure of phenotypic profiles. The gen-
eral idea is that perturbation of a gene that is further upstream in a signaling
pathway would affect more elements than perturbation of a gene further down-
stream. For example, Fig. 1(a) shows an NEM in which Hog1 is upstream of
Cka2. The table underneath the graph represents the differential expressions of
the high-dimensional phenotypes observed in the screen, with rows correspond-
ing to single-gene knockouts and each column corresponding to an effect : one
dimension of a phenotype, such as a particular transcript in a transcriptomic
phenotype. In the table of effect measurements in the figure, a ‘1’ indicates that
a perturbation changed the response of the effect, and a ‘0’ indicates that it
did not. The deletion of Hog1 would affect e1, e2, e3 and e4 because they are all
downstream of it. The deletion of Cka2, on the other hand, would only affect e3
and e4. Therefore, the nesting of the effects of the deletion of Cka2 within the
effects of the deletion of Hog1 places the former downstream of the latter.

Hog1

Cka2

e1 e2 e3 e4

Hog1 1 1 1 1

Cka2 0 0 1 1

(a) Hog1

Cka2

Cka2

e1 e2 e3 e4 e5 e6

Hog1 1 1 1 1 0 0

Cka2 0 0 1 1 1 1

(b)

Fig. 1. (a) An example of effect nesting in an NEM, and (b) a partial intersection
of effects as captured by a CSNEM. The table underneath each graph represents the
differential expressions of the high-dimensional phenotypes observed in the screen, with
rows corresponding to single-gene knockouts and each column corresponding to an
effect, one dimension of a phenotype, where a ‘1’ indicates that a perturbation changed
the response of the effect, and a ‘0’ indicates that it did not.

Such nesting of effects, however, does not always occur. The protein product
of a gene may interact with those of other genes in a multitude of ways, and
one might imagine a situation where two genes are interacting with each other
upstream of a subset of the effects, but additionally have other roles indepen-
dently of each other. This is the case in Fig. 1(b), where, upstream of effects
e1, e2, e3 and e4 Cka2 and Hog1 interact as before, but Cka2 additionally affects
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e5 and e6 independently of Hog1. In such a case, we see that the phenotype
induced by the perturbations of each gene includes effects downstream of the
common pathway, but each perturbation also shows unique effects, and rather
than being nested, the effects show a partial intersection. The example in Fig. 1
is based on a pattern we identified in our application of CSNEM learning to
experiments studying sodium chloride (NaCl) stress response in Saccharomyces
cerevisiae.

In the CSNEM approach, we address this issue by explicitly considering the
possibility that one gene may have multiple contexts of interaction. The model
can be equivalently viewed either as a single graph model where multiple nodes
may represent multiple roles of the same gene, or as a mixture of multiple NEMs,
where each NEM describes a different subset of the effects. Notably, mixtures
of NEMs have been used for analyzing single-cell expression data [22]. In that
work, the mixture is used to account for variation of gene activation states across
different cells. In contrast, in a CSNEM, the mixture represents different pat-
terns of interaction among the same sets of genes across different subsets of the
measured effects. The effect pattern in Fig. 1(b) can alternatively be accounted
for by the introduction of a hidden node downstream of both Hog1 and Cka2,
an approach explored by Sadeh et al. [21], where they introduce a statistical test
to infer a partially resolved nested effect model. In fact, Sadeh et al. show that
the presence of a hidden node downstream of a pair of genes is consistent with
every possible configuration of effect responses. Their method aims to character-
ize all possible NEM models that are consistent with the data, and as a result it
never rejects the possibility of a hidden node existing downstream of any pair of
genes. In contrast, in our approach we aim to find a single parsimonious network
model that optimally fits the data. We show how to cast the problem of learning
a CSNEM as a modified version of NEM learning, evaluate the ability of this
approach to recover a ground-truth network on simulated data, and present an
application to the salt stress pathway in yeast.

2 Background: Nested Effects Models

Tresch and Markowetz [25] formulate nested effects models (NEMs) as a special
case of effects models. In an effects model, there is a set of actions A, and a
set of effects E , and we wish to model which effects change in response to each
action. In earlier work on nested effects models [11], the actions and effects are
respectively referred to as S-genes (S for signaling) and E-genes (E for effects).
The actions correspond to perturbation experiments, while the effects correspond
to the high-dimensional phenotype measured in the experiment. A general effects
model can be represented by a binary matrix F where Fae = 1 if action a leads
to a response (or change) in effect e, and 0 otherwise.

Let nA and nE represent the number of actions and effects, respectively. An
NEM is made up of a directed graph G the nodes of which are the actions A,
and an nA × nE binary matrix Θ of attachments, in which Θae = 1 if effect e is
attached to action a, and 0 otherwise. A modeling constraint is that each effect
is attached to at most one action.
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The NEM is interpreted as follows: action a causes a response in effect e if
and only if either e is attached directly to a, or there is a directed path in G from
a to the action to which e is attached. Mathematically, this can be formulated in
terms of matrix multiplication. Since what matters is which actions are reachable
from other actions in G, we can work with Γ , the nA × nA accessibility matrix
of G. Γab is 1 if there is a directed path from a to b in G, and 0 otherwise. As
a matter of convention and for mathematical convenience, the diagonal entries,
Γaa are all 1s. Using Γ , we can express the effects matrix F of an NEM as
F = ΓΘ.

2.1 Likelihood Computation

The problem of inferring an NEM from a data set D can be viewed as that of
maximizing a likelihood. In this section we review how the likelihood of an NEM
is framed to illustrate how the likelihood of a CSNEM relates to it.

Supposing that we have some data consisting of measurements of the observ-
able effects subject to each action included in the model, and assuming data
independence, for a general effects model, the log-likelihood of the model is

log L(F ) = logP(D|F ) =
∑

(a,e)∈A×E
logP(Dae|Fae). (1)

Where P(Dae|Fae) is the probability of the data we observed in regard to effect
e subject to action a given that Fae indicates whether we expect a response in
e subject to a. When the observed phenotype is, for example, gene expression
data, a typical indicator of a response in effect e is differential expression of
effect e between the experimental condition a and a control, such as a wild-type
phenotype.

Let R ∈ R
nE×nA be a matrix of log-likelihood ratios such that Rea =

P(Dae|Fae=1)
P(Dae|Fae=0) , and let N represent the null model predicting no effect response to
any action, Tresch and Markowetz [25] show that the log-likelihood of an effects
model F is then

log L(F ) = tr(FR) + log L(N)︸ ︷︷ ︸
constant w.r.t. data

(2)

where tr(·) is the trace of a matrix. The above holds for any effects model in
general. Since in an NEM, F = ΓΘ, to maximize the likelihood of an NEM one
would maximize tr(ΓΘR).

Computationally, maximizing this expression is difficult because it is a search
over a discrete but exponentially large space of all possible Γ and Θ matrices.
Early work on NEMs reduces some of the complexity of this search by observing
that since Θ can only have one 1 for each effect across all actions by construction,
and since tr(ΓΘR) = tr(RΓΘ), one can marginalize over all possible values of
Θ, assuming that they are equally likely a-priori, yielding a marginal likelihood
proportional to

∏
e∈E

∑
a∈A exp((RΓ )ea). This reduces the task to the search

for a Γ that maximizes this marginal likelihood, an exhaustive search for which
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is feasible for nA ≤ 5 [11]. For larger graphs, however, the problem is still
computationally restrictive, and multiple algorithms for learning nested effects
model structure efficiently have been presented in the literature [6,12], most
of which have been implemented in the nem R package [5]. Other approaches
to computing the likelihood have also been explored, such as the factor graph
optimization approach by [26].

In this work, we show how learning a CSNEM can be cast as a more com-
plex NEM learning problem. To solve the NEM learning problem, we use MC-
EMiNEM, a method that does not attempt to optimize a marginal likelihood,
as many of the above approaches do, but maximizes the log posterior

logP(Γ,Θ|D) = log L(ΓΘ) +
∑

(a,b)∈A×A
logP(Γa,b) + logP(Θ). (3)

Where logP(Γi,i) is an edge-wise prior on the structure of the actions graph and
P(Θ) is a prior on the attachment matrix. MC-EMiNEM uses Monte Carlo (MC)
sampling and Expectation Maximization (EM) within MC steps to search for
the Γ and Θ that are optimal with respect to this posterior [16]. MC-EMiNEM
is available as a part of the nem R package.

3 Methods: Context-Specific Nested Effects Models

As briefly mentioned in the introduction, the motivation for developing CSNEMs
is that there are cases in which phenotype effects are not nested, as in the example
in Fig. 1. In CSNEMs, we account for situations like the partial overlap in Fig. 1
by allowing an action in the graph to be represented by more than one node,
and we call these different nodes that correspond to the same action different
contexts of the action. Mathematically, this enables the model to represent rela-
tionships that are not representable by an NEM. Biologically, different contexts
in a CSNEM may correspond to participation in different pathways, either due
to physical separation such as localization of molecules, or temporal separation,
such as participation in different stages of the cell cycle.

The CSNEM in Fig. 1(b) is presented as a single NEM-like graph with multi-
ple contexts for the Cka2 node. Note that the same diagram can also be viewed
as a pair of NEMs: one containing Hog1 and Cka2, which applies to effects
e1, e2, e3, e4, and another containing only Cka2, which applies to the effects e5
and e6. This view of a CSNEM as a mixture of NEMs is most useful in under-
standing our approach to learning a CSNEM from data.

3.1 The Likelihood of a k-CSNEM

We define a k-CSNEM as a mixture of k NEM’s, where the response of each effect
e is governed by one of k NEMs, each of which can have a different graph G
relating the actions A. A k-CSNEM is therefore parameterized by k accessibility
matrices Γ 1, . . . , Γ k, each of which is nA ×nA and by a vector θ, each coordinate
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of which takes one of knA + 1 values, specifying attachment to one of the nA
actions in one of the k NEMs, or the absence of attachment.

The parameter θ partitions the space of effects by assigning each effect to
one of the k NEMs (or to none of them). As a matter of convention, we represent
attachment of effect e ∈ E to an action a ∈ A in mixture member i ∈ {1, . . . , k}
by θe = (i − 1)nA + a (we slightly abuse notation, treating actions as natural
numbers 1, . . . , nA here), and let θe = 0 if the effect is not attached to any action
in any NEM. We can then define the partition of E into k sets E1, . . . , Ek as

Ei = {e ∈ E|∃a ∈ A : θe = (i − 1)|A| + a} for i ∈ {1, . . . , k}. (4)

Let us define a mapping of effect indices, which will be useful later: ζ :
{1, . . . , k} × {1, . . . , |Ei|} → E . Thus, ζ(i, j) = e when effect e is the jth member
of partition Ei. Given this partition, the likelihood of a CSNEM is defined as the
product of the NEM likelihoods per partition:

L(Γ 1,...,k, θ) =
k∏

i=1

L(Γ i, Θi) (5)

where Θi is a matrix in {0, 1}|A|×|Ei| and Θi
aj = 1 iff θζ(i,j) = (i − 1) + a, and 0

otherwise.
In relation to the CSNEM, let us combine the mixture of NEMs into one

structure by defining the block diagonal matrix Γ made of blocks Γ i, define
Θ ∈ 0, 1|A|k×|E| by Θae = 1 iff θe = a, and let be a block matrix made up of k
appended |A| × |A| identity matrices:

Γ =

⎡

⎢⎢⎢⎢⎣

Γ 1 0 · · · 0

0 Γ 2
...

...
. . . 0

0 · · · 0 Γ k

⎤

⎥⎥⎥⎥⎦
, Ψ =

[
I|A| I|A| · · · I|A|

]
︸ ︷︷ ︸

k copies

. (6)

Let Ri be a matrix in R
|Ei|×|A| where Ri

ja = Rζ(i,j),a (i.e., Ri is a selection
of effects from R based on the partition Ei). Given these definitions the log-
likelihood of the CSNEM can be written as1

log
k∏

i=1

L(Γ i, Θi) = tr(ΓΘ(RΨ)) + log L(N). (7)

Thus, the likelihood of a k-CSNEM is equal to the likelihood of an NEM with
k|A| actions for the data matrix RΨ , subject to the constraint that Γ is block
diagonal as in (6). We can consequently use any NEM learner to learn a k-
CSNEM mixture, as long as it supports constraining Γ to be block-diagonal.
1 For a detailed derivation see https://github.com/sverchkov/mc-em-cs-nem/blob/

master/recomb-2018-supplement/recomb-2018-supplement.pdf, commit 98b01f1
9357e3d58eae81764d42a6903624e3433 at the time of submission.

https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
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Analogously to (3), we can obtain a posterior probability for the CSNEM by
introducing priors for Γ and Θ, and applying MC-EMiNEM to maximize that
posterior. The block-diagonal constraint can be enforced using the edge-wise
prior on the structure of Γ , by setting the priors on edges that would violate
block-diagonality to zero.

3.2 Compact Visualization and Identifiability of a k-CSNEM

Having obtained k NEMs and the corresponding partitioning of the effect set, a
single graph can be composed by merging all action nodes across the graphs that
have the same ancestors (are reachable from the same set of actions). Figure 2
provides an example: Fig. 2(a) shows three graphs that describe the structures of
three NEMs that compose a mixture, and Fig. 2(b) shows the result of merging
them. Note that Hog1 is reachable from no nodes but itself in all three NEMs.
Consequently, in the compact CSNEM, there is only one version of Hog1. In
contrast, Cka2 is reachable from Hog1 in one of the NEMs, and is only reachable
from itself in the others, which is why it has two contexts in the CSNEM. Sim-
ilarly, Ckb14 is reachable from both Hog1 and Cka2 in one of the three NEMs,
but not the others, and has two contexts as well. To keep track of the various
contexts, we append the list of genes from which a context is reachable when
displaying the graph, e.g. the context of Cka2 that is reachable from Hog1 is
labeled ‘Cka2 [Hog1],’ while the context that is not reachable from other nodes
is labeled simply ‘Cka2.’ This is particularly helpful when viewing graphs with
many nodes and many contexts.

Hog1

Cka2

Ckb12

Hog1

Cka2

Ckb12

Hog1

Cka2

Ckb12

(a) Hog1 Cka2

Cka2 [Hog1] Ckb12

Ckb12 [Hog1 Cka2]

(b)

Fig. 2. Building a CSNEM from a mixture of NEMs. (a) Three NEMs that compose a
mixture. (b) A single graph obtained by an edge-preserving merge of the three NEMs.

The merged graph in Fig. 2(b) preserves the edges that were present in the
mixture of NEMs, but it is not necessarily a unique maximizer of the likeli-
hood, rather, it is a member of an equivalence class of equally likely CSNEMs.
What characterizes the equivalence class is the set of inclusive ancestries of the
nodes in the CSNEM. The inclusive ancestry of a node is a set of actions; this
sat contains the action at the node and all actions from which it is reachable:
e.g. the inclusive ancestry of the Cka2 node in the leftmost NEM in Fig. 2(a) is
{Hog1,Cka2}, while the inclusive ancestry of the Cka2 node in the middle NEM
is simply {Cka2}. The set of inclusive ancestries for the example in Fig. 2 is
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therefore {{Hog1}, {Cka2}, {Ckb12}, {Hog1,Cka2}, {Hog1,Cka2,Ckb12}}. Any
two CSNEMs with identical sets of inclusive ancestries necessarily have the same
set of unique accessibility matrix columns Γ i

·a : i ∈ {1, . . . , k}, a ∈ A, and conse-
quently, have the same likelihood for likelihood-maximizing attachments Θ. The
characterization of equivalence classes in terms of inclusive ancestry sets relates
to previous results about NEM identifiability: for transitively closed Γ , cycles
form fully connected components that can be merged into single nodes [12].
All nodes in such connected components have identical ancestry sets, yielding a
one-to-one mapping from the NEM’s nodes to the ancestry sets, where the edges
in the transitive closure of the NEM correspond to the set inclusion relations
between ancestry sets. This can also be extended to the case of non-transitive
Γ and the result on identifiability of non-transitive NEMs up to cycle reversals
[25], the full discussion of which we omit here for brevity. Note that while set of
ancestries characterizes the likelihood equivalence class, the posterior maximized
by MC-EMiNEM would be, for example, higher for CSNEMs with fewer edges
in Γ under a sparsifying edge prior.

4 Results

We have introduced the CSNEM model and showed how the CSNEM likelihood
can be viewed as the likelihood of an NEM with knA actions learned from a
modified differential expression log-likelihood ratio matrix RΦ. Below, we use
this transformation in conjunction with an existing NEM learning approach,
MC-EMiNEM to learn CSNEMs and evaluate the ability of this approach to
recover a CSNEM from data that is generated by a known multiple-context
model in simulation. Finally, we present the results of learning a CSNEM from
the results of knockout experiments on S. cerevisiae cells under NaCl stress, and
discuss the biological significance of some patterns of context-specificity that are
identified in the CSNEM.

4.1 Evaluation on Simulated Data

We performed simulations to evaluate our ability to infer CSNEMs from data.
We generated data from mixtures of NEMs of varying size: we varied the size of
the NEMs in the mixture to contain nA = 3, 5, 10, or 20 actions, and we varied
the number of NEMs in the generating model from j = 1 to j = 5, inclusive, with
j = 1 being equivalent to a simple NEM model. The number of effects nE was
fixed at 1000. We generated 30 mixtures corresponding to each configuration of j
and nA, resulting in a total of 600 generated models. To generate each mixture,
first we generated j random directed graphs G1, . . . , Gj of nA nodes, by drawing
each of the possible n2

A edges of the graph with a probability of 0.2 for graphs
of size nA < 20 and a probability of 0.04 for graphs of size nA = 20 (with the
higher edge density of 0.2 for 20 nodes, all nodes become reachable from all other
nodes, yielding degenerate effect patterns where each effect is either affected by
all actions, or by none). Next, for each effect, with probability 0.3 we attach it
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nowhere, otherwise, we uniformly randomly attach it to one of the nA × j nodes
in all of these graphs. Given these graphs and effect attachments, we infer which
effects are reachable from each node, and compute the nA × nE binary effect
matrix FT , where FT

as = 1 if and only if effect s is reachable from action a in
any one of the j graphs. Next, we generate a log-odds matrix that represents a
noisy measurement of this effect matrix by drawing from log Beta(β,1)

Beta(1,β) for each

‘true’ cell and from log Beta(1,β)
Beta(β,1) for each ‘false’ cell, with β = 10. This process

generates the log-odds matrix R that we use as input to our learning method.
Additionally, to examine the effect of noise in the measurement of effects on
model inference, we generated log-odds matrices using β = 1, 2, 5 from the first
10 generating mixtures with nA = 20, j = 1, 3, 5.

Since in real-world applications we usually do not know how many contexts
are truly needed to describe a process under study, we sweep through values of
k ranging from 1 to 8, and learn a k-CSNEM for each value of k from each gen-
erated log-odds matrix. CSNEMs were learned using the MC-EMiNEM imple-
mentation in the nem R package, with the learned network taken from the end
of a 20000 sample chain, the empirical Bayes step performed every 5000 steps,
an acceptance sparsity prior of 0.5, and knA edges changed in every MCMC
step (see Niederberger et al. [16] for details on how these settings are used in
MC-EMiNEM). The edge-wise prior for permissible edges was set to 0.2.

We evaluate each k-CSNEM learned from each log-odds matrix both in terms
of the ability of the CSNEM to accurately model which effects are differentially
expressed in response to each action and in terms of the relationships inferred
among actions. In the former case, we use the F-measure to quantify how well the
effect matrix F of the learned CSNEM matches that of the generating CSNEM,
with the interpretation that if an effect responds to an action in both the learned
and the generating model, it is a true positive, if it doesn’t respond in the learned
model but does in the generating model it is a false negative, if it doesn’t respond
in either model it is a true negative, and if it responds in the learned model but
not the generating model it is a false positive. Figure 3(a) shows the F-measures
for learning the effect matrix across our simulations for the almost-noiseless case
of β = 10. Figure 3(c) shows the F-measures for learning the effect matrix of a
20-action network from log-odds matrices generated with varying settings of β.

To compare the learned graph structures to the generating graph structures,
we must first determine which contexts in the learned model correspond to which
contexts in the generating model. For each action a in each model, we obtain a
list of contexts that are distinguishable in terms of which actions are ancestors
of the action a. We then match each of these contexts in each model to their
best match in the other model. Each ancestor that the two contexts in the best
match have in common counts as a true positive, each ancestor that appears in
the context from the learned model but not in the context from the generating
model counts as a false positive, and each ancestor that appears in the context
from the generating model but not in the context from the true model counts
as a false negative. We use these counts to summarize agreement between the
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Fig. 3. Box plots of simulation F-measures. Each plot represents an aggregate of results
from 30 random simulation replicates. Grid rows correspond to the number of contexts
in the generating model, the x-axis in each of the grid cells indicates the number of
contexts in the learned model, and the y-axis represents: (a) the F-measure of recovering
the generating model’s effect matrix from the learned model across different sizes of
action sets (grid columns) from log-odds matrices generated with β = 10, (b) the
F-measure of recovering ancestry relationships, (c) the F-measure of learning the effect
matrix of a 20-action network from log-odds matrices generated with varying settings
of β (grid columns), and (d) the F-measure of learning the effect matrix from 10-action
networks of varying density (grid columns) with log-odds generated using β = 10.

structures of two CSNEMs in terms of an F-measure which we call the pairwise
ancestry F-measure. Figure 3(b) shows the pairwise ancestry F-measures across
our simulations.

When the learned model is a plain NEM (k = 1), we see that as the gener-
ating model has more contexts, the recovery of both the effect and the ancestry
pattern worsens (with the exception of the 10 actions case, examined below).
This confirms that a CSNEM is necessary when multiple contexts are indeed in
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play in the generating system. When the learned model has multiple contexts,
even when the number of contexts in the learned model exceeds the number of
contexts in the generating model, the approach does not seem to be suscepti-
ble to overfitting. This pattern hold as we increase noise (decrease β) in data
generation.

At nA = 10 the NEM appears to recover the effects patterns well even when
there are multiple contexts in the generating models, and we hypothesize that
this is because of high connectivity in those ground truth networks: the average
in-degree and out-degree of node is the product of one less than the number
of actions times the edge density. We generated 20 mixtures for varying node
densities (0.04, 0.1, 0.2, 0.5) with j = 1, 3, 5 contexts and nA = 10 nodes,
and examined the effect-matrix F-measures across densities (Fig. 3(d)). Denser
networks are perfectly recovered by single-context NEMs; this is likely because
denser networks are more likely to lead to fully-connected transitive reductions,
reducing the number of unique response patterns of effects, yielding data that
is easier to capture in a simple NEM model. When the generating models are
not too dense, CSNEMs are better than NEMs at recovering the effect patterns
generated from multiple-contexts.

4.2 Application to NaCl Stress Response in S. cerevisiae

We apply our method to the exploration of NaCl stress response pathways in
S. cerevisiae. We consider data obtained from a wild-type (WT) strain and 28
knockout strains. Transcript abundances were measured by microarray for each
strain prior to NaCl treatment and 30 min after 0.7 M NaCl treatment. The data
collection was described in detail in previous work [1,8].

We are interested in how the gene knockouts change the cells’ response to
stress. Therefore, the actions A in our model correspond to the knockouts. Since
we use microarray data, the observations E correspond to transcripts. The change
in response is quantified as a change in log-fold-change. For each strain, we have
the log-fold-change of transcript abundances in the sample 30 min after NaCl
treatment as compared to the abundances in the sample prior to treatment. We
then consider the difference between the log-fold-change in each knockout strain
and that in the wild-type strain. To obtain the log-odds matrix R we use an
empirical Bayes method to obtain log-posterior-odds of differential expression
[10,24] which is implemented in the limma R package [23]. Figure 4 shows the
3-CSNEM that was learned from the data.2 The MC-EMiNEM settings used
for learning both of these models are the same as those used for learning in the
simulation experiments.

The inferred network captures many known and several new features of the
yeast stress responsive signaling network. The Hog1 kinase is a master regulator
of the osmotic stress response [15]. The CSNEM network correctly places Hog1
at the top of the hierarchy in paths with known co-regulators. For example, the

2 An NEM learned from the data is at https://github.com/sverchkov/mc-em-cs-nem/
blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf.

https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
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network captures paths containing Hog1 and CK2 complex subunits Cka2 and
Ckb1/2—Hog1 is known to interact physically with Cka2, and the two kinases
regulate an overlapping set of genes [3]. The network also correctly predicts
that the transcription factor Msn2 is regulated by Hog1, Pde2, and Snf1—all
known regulators of Msn2 [9,14,18,20]; yet a separate branch represents only
Pde2 and Msn2, consistent with Pde2 playing a more significant role in regu-
lating this transcription factor during salt stress [3]. Another example is seen in
YGR122W, a poorly characterized protein required for processing the transcrip-
tional repressor Rim101—the CSNEM correctly puts YGR122W and Rim101 in
the same paths, with at least one regulatory branch shared with Hog1 control.

The CSNEM naturally produces groups of effects where each group comprises
those effects (i.e. transcripts) that are reachable from contexts of actions in
the graph. We examined the groups of effects in terms of Gene Ontology (GO)
enrichments. Figure 5 shows a comparison of these enrichments to those obtained
from grouping effects by the attachments from a learned NEM. The figure also
shows a coarser split of the effects into groups based on CSNEM contexts: if
an action was merged from two or more contexts in the single-network CSNEM
representation, all the effects attached to it are considered reachable from both
(or all three) contexts from which the action was merged. Each column in the
figure corresponds to a GO term and each row corresponds to a combination
of contexts or an action. A point in the figure indicates that the set of effects
reachable from the context(s) or action was found to be significantly enriched
for the GO term. Significance was defined according to a hypergeometric test
with the Benjamini-Hochberg method used to control the false discovery rate at
0.05; only groups of five or more effects were considered for enrichment analysis.

A key advantage of our approach is that regulators can be represented in
multiple pathways, capturing regulators that may have distinct roles in different
cellular compartments or cell cycle phases. In fact, several of the GO terms for
which the CSNEM effect groups are enriched are associated with subcellular
localization and include transcripts encoding proteins localized to the nucleus,
nucleolus, plasma membrane, endoplasmic reticulum, mitochondria, peroxisome,
and cytoskeleton. The coarser split of effects by contexts also shows that there
are clear divisions of localization across contexts in the CSNEM.

An interesting example of the benefits of the CSNEM approach is seen in
its ability to capture the disparate signaling roles of the phosphatase Cdc14,
a key regulator of mitotic progression in dividing cells [27]. Inactive Cdc14 is
tethered to the nucleolus during much of the cell cycle but released upon mitosis
to other subcellular regions where it dephosphorylates cyclins and other targets
[28]. Separate from its role in the cell cycle, Cdc14 was recently linked to the
stress response in yeast [2,3], although its precise role is not clear.

The CSNEM network places Cdc14 in multiple pathways that capture the
distinct functions of the phosphatase. One path represents an isolated connec-
tion of Cdc14 to a group of genes regulated by the cell cycle network. Many
of these genes are known to be regulated by Cdc14 during normal cell cycle
progression. But consistent with a second role in the stress response, Cdc14 is
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Fig. 4. The 3-CSNEM network learned from S. cerevisiae NaCl stress knockout
microarray data. Action nodes and action-action edges are colored according to the
NEM member in the mixture from which they came, in cyan, magenta, or yellow.
Nodes that were merged because of identical ancestors in multiple mixture members
are colored according to subtractive color mixing (cyan and magenta make blue, cyan
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action-effect edges are dashed. (Color figure online)
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also nested in a path regulated by Snf1, a kinase that responds to both nutri-
ent/energy restriction and osmotic stress resulting from salt treatment [29]. The
Snf1-Cdc14 pathway is connected to 31 effectors that include genes induced by
stress and related to glucose metabolism. Work from the Gasch Lab previously
showed through genetic analysis that Snf1 and Cdc14 function, at least in part,
in the same pathway during the response to salt stress [3]. Yet both Cdc14 and
Snf1 have other functions in the cell, leading to the regulation of only partially
overlapping gene sets. Thus, the CSNEM approach successfully captured this
complex regulatory distinction for Cdc14 and Snf1.

5 Discussion

We have introduced CSNEMs, a generalization of NEMs which can explicitly
model the different interactions that genes may have in different contexts. We
have shown how a CSNEM can be viewed as a mixture of NEMs, and that the
task of learning such a mixture can be cast as a single NEM-learning task with
a modified data matrix and constrained action graph structure in which actions
are replicated k times. Particularly, we took the approach of using a hard mixture
where effects and actions are assigned to different contexts. A natural avenue for
future investigation would be the exploration of soft-mixture approaches, which
may prove more scalable for larger numbers of contexts and actions.

Applying our method to simulated data has shown that learning CSNEMs
leads to good recovery of the effect patterns and ancestry relations that were
present in the generating model. The results also show that a CSNEM is neces-
sary when the generating model truly has multiple contexts, but slight over- or
underestimation of the number of contexts does not seem to lead to overfitting.
In practice, the correct number of contexts that a learned model should have is
not known, and optimal selection of k is still an open problem that we plan to
explore in future work. Existing approaches to model selection, such as a search
for a plateau in likelihood or the use of model complexity measures such as AIC
point to possible solutions to this problem.

Our analysis of a CSNEM network learned from S. cerevisiae NaCl-stress
knockout microarray data revealed that the CSNEM does recover known regu-
latory patterns and moreover, captures known patterns of context-specificity in
the genes under study. Analysis of GO term enrichments of the effects reach-
able from CSNEM nodes shows that many effect groups are associated with
subcellular localization, a pattern even more evident in examining a coarser
division of the effects, based on mixture contexts. We believe that localization
may be one source of context-specificity that is relevant in many applications.
The main motivation for developing CSNEMS was the observation that effect
nesting may not be an appropriate assumption for some settings because of the
context-specific nature of interactions that some genes can have, and perhaps
more explicit modeling of contexts of interaction can lead to more faithful rep-
resentations of the underlying biology.
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