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Abstract. Although reduced microbiome diversity has been linked to
various diseases, estimating the diversity of bacterial communities (the
number and the total length of distinct genomes within a metagenome)
remains an open problem in microbial ecology. We describe the first
analysis of microbial diversity using long reads without any assump-
tion on the frequencies of genomes within a metagenome (parametric
methods) and without requiring a large database that covers the total
diversity (non-parametric methods). The long read technologies provide
new insights into the diversity of metagenomes by interrogating rare
species that remained below the radar of previous approaches based on
short reads. We present a novel approach for estimating the diversity of
metagenomes based on joint analysis of short and long reads and bench-
mark it on various datasets. We estimate that genomes comprising a
human gut metagenome have total length varying from 1.3 to 3.5 billion
nucleotides, with genomes responsible for 50% of total abundance having
total length varying from only 40 to 60 million nucleotides. In contrast,
genomes comprising an aquifer sediment metagenome have more than
two-orders of magnitude larger total length (≈840 billion nucleotides).
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1 Introduction

Locey and Lennon [29] recently estimated that Earth is home to as many
as 1 trillion microbial species. In contrast, Schloss [42] demonstrated that,
despite rapidly increasing sequencing efforts, the retrieval of 16S rRNA genes
is approaching saturation. They argued that one-third of the bacterial diver-
sity has already been discovered, implying that Earth is home to only millions
of, rather than a trillion, bacterial species. This discrepancy and the emerged
controversy [1,25,26,35,44,55] illustrate that the challenge of evaluating the
bacterial diversity remains unsolved both at the global scale and at a single
sample (local) level [51]. However, estimating the number of microbial species
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in a given sample is a more tractable yet difficult problem in microbial ecol-
ogy [19,28,38,43]. Regrettably, many such estimates are inaccurate since most
species in any metagenome belong to the rare biosphere [20,31,48]. Indeed, 16S
rRNA libraries often capture only a small fraction of the sample diversity, result-
ing in large variations of the diversity estimates even for samples from similar
environments. For example, the estimates of the number of microbial species in
soil samples vary from hundreds [22], to tens of thousands [6,8] to a million [10].

Since the terms “diversity” and “complexity” have multiple interpretations
in microbial ecology, we use the terms metagenome richness (the total number
of species in a metagenome) and metagenome capacity (the total genome length
of all species in a metagenome). Metagenome capacity can also be defined as
metagenome richness multiplied by the estimated average length of genomes in
the sample.

Since estimating the richness and capacity of metagenomes is a fundamen-
tal problem in microbial ecology, new approaches for solving this problem are
needed. This challenge is further amplified by recent discoveries that linked the
reduced diversity to various diseases. For example, reduced bacterial diversity
results in an increased frequency of death in the allogeneic stem cell trans-
plantation [50] and represents a biomarker for psoriatic arthritis [41]. On the
other hand, increased bacterial diversity is associated with human papillomavirus
infections [13] and White Plague Disease in corals [49].

The previous studies of bacterial diversity were primarily based on either
parametric or non-parametric approaches [5,12,15,18,22,37]. Various parametric
distributions were chosen to approximate the frequency distribution of captured
species, and to project them to estimate how many more species must be present
in the metagenome. This approach has been challenged since it is unclear which
parametric distributions adequately model a given sample [17,54]. Furthermore,
16S rRNA data represents frequencies of specific PCR products that may differ
in abundance relative to the corresponding bacterial species in a metagenome. In
addition, they suffer from biases arising from various levels of primer matching in
different species, inability to amplify taxa whose 16S rRNA differs from known
ones, the variable number of 16S rRNA operons, and presence of highly diverged
genomes with nearly identical 16S rRNAs [11,21,39].

As Hong et al. [17] discussed, applications of various probability distribu-
tions for evaluating the complexity of the metagenome have often been statis-
tically incorrect. Moreover, even if some metagenomes follow a certain (e.g.,
exponential) distribution of frequencies, others may significantly deviate from
this arbitrarily chosen model. For example, there is no reason to believe that the
frequences of species for a soil metagenome and a human microbiome follow the
same type of parametric probability distribution.

The alternative non-parametric estimators of microbial diversity [22] require
a large database that covers all species in a sample, the condition that is typi-
cally violated. As a result, such estimates greatly underestimate the richness of
metagenomes. As Lladser et al. [28] noted, most microbial communities have not
been sufficiently deeply sampled yet to test the suitability of both parametric
and non-parametric models.
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With proliferation of metagenomics datasets covering entire genomes, it is
important to have an independent way of estimating the richness of metagenomes
that is not limited to sampling of 16S rRNA. Also, all previous studies attempted
to estimate the metagenome richness/capacity using short reads that have lim-
itations with respect to analyzing rare species. Since rare species within a
metagenome typically have low coverage, they are hardly ever assembled into
long contigs, making it difficult to estimate the richness, capacity, and the dis-
tribution of frequencies of various species within a metagenome. For example,
bacterial species with coverage below 15X typically result in low-quality assem-
blies, making it difficult to estimate the number of such species or their total
genome length. Since such rare species account for the lion’s share of genomes
in many metagenomes [20], they remain below the radar of modern sequencing
technologies.

Below we describe the first analysis of microbial diversity using long reads
without any assumption about the distribution of frequencies of genomes within
a metagenome (parametric methods) and without requiring a database that
covers the total diversity (non-parametric methods).

Our approach to estimating the capacity of a metagenome uses joint analysis
of short reads (such as Illumina reads) with long reads (such as TruSeq Synthetic
Long Reads, Pacific Biosciences reads, or Oxford Nanopores reads) and rests on
a new insight based on geometric probability arguments rather than on merely
applying the previously proposed approaches to SLRs. We view each long read
as a “subgenome” and map all short reads to each subgenome to estimate its
abundances. Afterwards, we apply geometric probability arguments to estimate
the capacity of the entire metagenome from the abundances of all its subgenomes.
We emphasize that our new approach requires both long and short reads (i.e.,
it does not work for short reads only or for long reads only) and demonstrate
that it estimates the metagenome capacity and accounts for rare species even
if their coverage by reads is below 0.01X, i.e., the species that are not “seen”
by the state-of-the-art metagenome assemblers aimed at short reads. We apply
our approach to estimate the complexity of the human gut metagenome (in a
healthy individual and in multiple samples from a Crohn’s disease patient at
various stages of the disease) and in an aquifer sediment metagenome.

Although long reads are still rarely used for analyzing metagenomes, they
have a potential to be widely used in future metagenomics projects when
their cost reduces or when the read until technology [30] developed by Oxford
Nanopores becomes widely available. We illustrate our approach using the
TruSeq Synthetic Long Reads (SLR) technology that represents the first long
read technology successfully applied to metagenomic studies [46]. The SLR
technology generates accurate long virtual reads [27,32,52] that provided new
insights into diversity of low abundance species in various metagenomes and
revealed complex sub-partitioning of metagenomes into dozens of strains of the
same species [23,46,53]. In addition, SLRs extend 16S rRNA studies, aimed at
analyzing taxonomic diversity, by insights into functional diversity of rare species
that often provide ecological impact through highly expressed transcriptomes
and proteomes [20].
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Although this paper focuses on SLRs, our method for estimating the capacity
of a metagenome is applicable to long error-prone Single Molecule Sequencing
(SMS) reads as well (see Appendix “Estimating metagenome capacity using long
error prone SMS reads”).

2 Results

Defining the Capacity of a Metagenome. Figure 1 (left) shows the his-
togram of frequencies of genomes comprising the artificial MOCK metagenome
(with richness 20 and capacity 67 Mb) formed by mixing DNA from 20 isolate
genomes [23]. However, the standard measures of richness and capacity depend
on the taxonomic definition of a species and do not account for fragments shared
by different species within a metagenome and for the fact that some species
are represented by multiple similar strains. For example, if a metagenome con-
tains two strains that share 99% of their genomes, should we count them as
two genomes (and sum up their lengths) or as a single genome? Similarly, if a
genome has a plasmid with multiplicity 100, should we count this plasmid 100
times towards the genome length or just one time?

Fig. 1. Real (left) and estimated (right) real frequences of genomes and the abundance
plot (left) and estimated frequency (height) and abundance plot (right) for the MOCK

dataset formed by 20 bacterial species. (Left) frequences (in the logarithmic scale) of
genomes in the MOCK dataset vary from ≈0.02% to ≈28%. The green and red points
on the abundance plot correspond to M50 ≈ 7 Mb and M90 ≈ 17.5 Mb, respectively.
The numbers next to the species names represent abundances (note that ranking based
on frequencies differs from ranking based on abundances). The genome abundance is
approximated as the fraction of short reads originating from this genome. The genome
frequency is computed as the genome abundance normalized by the genome length.
(Right) Blue and black curves show the estimated frequency (height) histogram and the
abundance plot as predicted by our methods in comparison with red curves constructed
using the known set of references. (Color figure online)

To address these issues, we introduce the concept of the de Bruijn capacity of
a metagenome; this is motivated by a popular approach to genome assembly. We
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construct the de Bruijn graph [7] of all genomes in the metagenome (including
plasmids, viruses, unicellular eukaryotes, etc.), transform it into the assembly
graph using SPAdes [2] (collapsing small variations in repeats), and define the
de Bruijn capacity of a metagenome as the total length of edges (contigs) in
the assembly graph. The de Bruijn capacity of the MOCK metagenome (58 Mb)
is smaller than its total length (67 Mb) since this dataset contains a number of
similar genomes and long intragenomic repeats.

Construction of the assembly graph is defined by a parameter bubble length
that controls the percent identity level used for collapsing regions from various
strains into a single contig in the assembly graph. For example, the default bub-
ble length value in the SPAdes assembler [2] roughly corresponds to 98%–99%
percent identity with respect to the taxomic definition of a strain (increasing
the bubble length parameter will decrease the de Bruijn capacity). Thus, In the
default setting, multiple strains that share 98%–99% of the genome (or multicopy
plasmids) do not inflate the de Bruijn capacity. To reflect the stringency of taxo-
nomic units in our estimator, one can vary the maximum number of mismatches
and indels during alignment of short reads to SLRs.

We characterize each genome G in a metagenome M as a pair of numbers
(length(G), num(G)), where length(G) and num(G) refer to the length and
the copy number of this genome in the metagenome. We define frequency and
abundance of a genome G as

frequency(G) =
num(G)

∑
G∈M num(G)

abundance(G) =
length(G) · num(G)

∑
G∈M length(G) · num(G)

We note that the number of reads originating from a given genome within
a metagenome is roughly proportional to its abundance rather than frequency
(under the assumption of the uniform coverage).

The frequency histogram of a metagenome consisting of t genomes is defined
by t bars with heights specified by the frequencies of the genomes and vary-
ing widths specified by the lengths of the genomes (Fig. 1 left). We define the
abundance plot of a metagenome (Fig. 1 left) by considering t most frequent
genomes within a metagenome and specifying a point (lengtht, abundancet),
where lengtht stands for the total length of these genomes and abundancet

stands for the total abundance of these genomes (for each value of t). For each
percentage x from 0% to 100%, we define the value t(x) as the minimum t such
that abundancet exceeds x%. In analogy to the Nx statistics for genome assem-
bly [14], we define the Mx statistics for a metagenome as lengtht(x). For example,
M50 ≈ 7 Mb and M90 ≈ 17.5 Mb for the MOCK dataset described below (Fig. 1,
left).

Computing the abundance plots for complex microbial communities remains
an open problem. Below we show how to construct such plots using the synergy
between short and long reads.

The Total Rectangle Length Problem. We will first state an abstract prob-
abilistic problem and later explain how it relates to the problem of estimating the
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capacity of a metagenome. Consider a set M of rectangles, each rectangle R in
this set characterized by its length length(R) and height height(R). We assume
that the total area of rectangles is 1, i.e.,

∑
R∈M length(R) · height(R) = 1.

For a point ξ from one of the rectangles, we define height(ξ) as the
height of the rectangle that the point ξ falls into. We uniformly and inde-
pendently sample N points from the total area of all rectangles and denote
the rectangle the j-th point falls into as Rj , which is characterized by its
length and height (lengthj , heightj) (Fig. 2). We further assume that the vec-
tor (height1, . . . , heightN ) is known but the vector (length1, . . . , lengthN ) is
unknown.

Let ξ be a random variable corresponding to the uniform sampling of a
point from the total area of all rectangles. The described probabilistic pro-
cess results in N samples of the random variable height(ξ). Given a vector
(height1, . . . , heightN ), our (somewhat ambitious) goal is to estimate the total
length of all rectangles: Length(M) =

∑
R∈M length(R).

Fig. 2. The Total Rectangle Length Problem. N green points are sampled uniformly
and independently from the probabilistic space defined by an (unknown) set of rectan-
gles. Assuming that the heights of rectangles (height1, . . . , heightN ) these points fall
into are known, the goal is to estimate the total length of all rectangles. (Color figure
online)

The Total Rectangle Length Problem is intractable since the set of rectan-
gles may contain a myriad of rectangles with extremely small heights and huge
lengths whose total area is very small, e.g., significantly below 1/N . Since these
rectangles are unlikely to be sampled by any of N sampled points, our estimate
cannot take into account their total length. We thus assume that all rectangles
in the dataset have sufficiently large areas (e.g., larger than 1/N) so that the
probability of sampling each rectangle by at least one point is high.

Estimating the Total Length of Rectangles. Since the points are sampled
uniformly, the probability of a point falling into a rectangle R equals the area
of R: area(R) = Pr(ξ ∈ R). Thus, the length of the rectangle R is length(R) =
area(R)/height(R) = Pr(ξ ∈ R)/height(R) and the total length of all rectangles
can be estimated as:

Length(M) =
∑

R∈M

Pr(ξ ∈ R)
height(R)

=
∑

R∈M

∫

x∈R

dx

height(x)
= E

(
1

height(ξ)

)

, (1)
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where E stands for the expectation of a random variable. Thus, by the law of
large numbers:

Length(M) ≈ 1
N

N∑

j=1

1
heightj

. (2)

Moreover, according to the central limit theorem, the formula above is accu-
rate, i.e., for large N , the variance of the estimate above is approximated as the
variance of the random variable 1

height(ξ) divided by N . We will use this feature
to estimate the metagenome capacity without any assumption on the parametric
distribution of frequencies of genomes within a metagenome. See the Methods
section for computing the abundance plot using a similar approach.

Representing a Metagenome as a Set of Rectangles. As before, we
characterize each genome G in a metagenome M as a pair of numbers
(length(G), num(G)) and define the total length of all genomes over all cells
in a metagenomic sample as

sum =
∑

G∈M

length(G) · num(G)

The height of a genome G is defined as height(G) = num(G)/sum. Note that
genome height is proportional to genome frequency. Thus each genome G is
characterized by a rectangle (length(G), height(G)) and the total area of all
rectangles is 1.

We assume that each genome within a metagenome results in a number of
reads that is roughly proportional to its abundance. We also assume that each
read is characterized by its starting position in one of the genomes and that these
starting positions sample the genome uniformly and independently. Although the
depth of coverage may deviate from the mean coverage in some genomic regions
(e.g., in GC-rich regions or in the regions close to the origin of replication in
the case of actively replicating genomes), such deviations are usually small. For
the sake of simplicity, we assume that all genomes are circular, e.g., a read can
start at any position of the genome so that there are no borderline artifacts (in
the case of linear genomes, there are no reads that start within the last i − 1
positions of the genome, where i is the read length). Thus, starting positions
model the random variable corresponding to the uniform sampling of a point
from the total area of all rectangles.

We assume that Nlong long reads and Nshort short reads were sampled from
the metagenome and that Nshort is much larger than Nlong. For example, vari-
ous samples we analyzed contained ≈30–100 million short paired-end reads and
≈100–800 thousand long SLRs.

Each long defines a random point within the set of rectangles and our goal is
to estimate the height of the rectangle this point falls into. We use short Illumina
reads mapping to a given long read to estimate this height.

For simplicity, we assume that all short reads have the same length referred to
as |shortRead| (this condition holds for most sequencing projects). Since SLRs
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are accurate, we assume that each short read aligned to an SLR longRead also
maps to the corresponding genomic segment and vice versa. To avoid borderline
effects, we assume that we can detect all short reads that align to longRead,
even reads that start at the last position of longRead. To satisfy this condition,
we shorten each SLR by |shortRead| (or by the insert length) but map short
reads using the enture span of each SLR. We define the number of short reads
mapping to an SLR longRead as number(longRead).

The fraction of short reads that map to longRead is expected to be approx-
imately equal to the area in the rectangle space “above” longRead, i.e, to
|longRead| ·height(longRead), where height(longRead) is defined as the height
of the rectangle (genome) that contains longRead. Thus, the expected number
of short reads that map to longRead (that we refer to as E(number(longRead)))
can be estimated as

E(number(longRead)) = |longRead| · height(longRead) · Nshort (3)

Thus,

height(longRead) ≈ number(longRead)
Nshort · |longRead| . (4)

We just reduced the problem of estimating the capacity of a metagenome to
the Total Rectangle Length Problem. We are given a set of Nlong points (SLRs)
that represent a uniform and independent sampling of an unknown set of rectan-
gles (the metagenome). Each SLR is characterized by its length |longReadj | and
the number of short reads numberj mapping to this SLR (for 1 ≤ j ≤ Nlong). We
estimate the height hj of the j-th SLR read using formula 4. Thus, the capacity
of the metagenome is estimated as

Capacity(Metagenome) ≈ 1

Nlong

Nlong∑

j=1

1

heightj
≈ Nshort

Nlong

Nlong∑

j=1

|longReadj |
numberj

. (5)

In the Methods section we describe similar formulas for constructing the
frequency histogram and the abundance plots. Formula 5 has limitations in ana-
lyzing extremely rare species, e.g., species that did not result in any SLRs or
species that resulted in SLRs with extremely small coverage by short reads. Note
that this formula was derived in two steps: estimation of the expectation of the
inverse height (formula 2) and estimation of the SLR height through its coverage
by short reads (formula 4). We discuss how to address the limitations of these
steps in the Methods section.

Datasets. We analyzed the following metagenomics datasets based on
SPAdes [2] and truSPAdes [3] assemblies of SLRs (see Appendix “TruSPAdes
assemblies of MOCK, GUT, and SEDI datasets”):

The SYNTH synthetic community dataset is formed by a set of short Illumina
reads from the genomic DNA mixture of 64 diverse bacterial and archaeal species
(Shakya et al. [45]; SRA acc. no. SRX200676) that was used for benchmarking
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the Omega assembler [16]. It contains ≈109 million Illumina HiSeq 100 bp paired-
end reads with mean insert size of 206 bp. Since the reference genomes for all
64 species forming the SYNTH dataset are known, we used them to evaluate the
accuracy of our estimator. The total length of the reference genomes for this
dataset is ≈200 Mb and its de Bruijn complexity is ≈190 Mb.

The SYNTH dataset contains short Illumina reads but does not contain SLRs.
We thus simulated 6306 virtual SLRs (providing the average coverage of 0.25
for the metagenome) for the SYNTH dataset by randomly selecting a short read,
mapping it to one of the reference genomes, and extending the region covered
by this read by N nucleotides in both directions (N was uniformly distributed
between 1500 to 5500). This simulation protocol ensures that simulated SLRs are
sampled from metagenome with the same probability distribution as the short
reads.

The MOCK synthetic community dataset is formed by short Illumina reads and
SLRs from the genomic DNA mixture of 20 bacterial species [23]. It contains
≈31 million Illumina paired-end short reads with mean insert size of 247 bp and
≈221 thousand SLR reads longer than 6 kb constructed from three sets of 384
barcoded read pools each. Since the reference genomes for all species forming the
MOCK dataset are known, we used them to assess the accuracy of our estimator.
The total length of the reference genomes for this dataset is ≈67 Mb and its de
Bruijn complexity is ≈58 Mb.

The GUT dataset is formed from short Illumina reads and SLRs sampled from
the gut microbiome of a healthy human male that was analyzed in Kuleshov
et al. [23]. It contains ≈80 million paired-end short reads with mean insert size
of 208 bp and seven sets of barcoded read pools (384 pools in each set) that
resulted in ≈501 thousand SLR contigs longer than 6 kb. Using this dataset we
provide a new estimate of the capacity of the human gut metagenome.

The SEDI dataset is formed from short Illumina reads and SLRs sampled
from an aquifer sediment that was analyzed in Sharon et al. [46]. It contains
≈27 million paired-end short reads with mean insert size of 351 bp and three
sets of barcoded read pools (384 pools in each set) that resulted in ≈215 thousand
SLRs longer than 6 kb. Sharon et al. [46] revealed a high diversity of strains in
the genomes of this dataset. We confirm findings of Sharon et al. [46] and turn
their initial observation into an estimate of the SEDI metagenome capacity.

In difference from the SYNTH and MOCK datasets, the metagenome capacity
of GUT and SEDI datasets remains unknown. In addition to these datasets, we
analyzed a larger synthetic dataset and four human microbiome datasets from
a patient suffering from the Crohn’s disease (see Appendix).

Benchmarking. For each dataset, we estimated the capacity of the correspond-
ing metagenome (using formula 2) and constructed the frequency histogram and
the abundance plot (Fig. 1 (right) for MOCK dataset and Fig. 3 for the other
three datasets) using formula 7. We analyzed 1000 SLRs with the highest cov-
erage in each dataset (contributing to a small “bump” in the beginning of the
frequency histograms) and confirmed that most of them arise from plasmids and
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16S rRNAs. This finding suggests that highly-covered SLRs can be used for de
novo assembly of new plasmids and characterization of previously unknown 16S
rRNAs directly from metagenomics datasets. Recent attempts to address these
problems using short reads with tools like RECYCLER [40] and PhylOTU [47]
faced computational challenges since it remains unclear how to extract plasmids
and 16 rRNAs from the complex de Bruijn graphs of metagenomes. In order
to evaluate how our estimator deteriorates with reduction in coverage by short
reads and/or long reads, we downsampled the entire datasets of short reads and
SLRs (Table 1).

Fig. 3. Estimated frequency histograms (blue curve) and abundance plots (black curve)
for SYNTH, GUT, and SEDI datasets. The distribution of heights (frequencies) of individ-
ual genomes within a metagenome was obtained based on alignments of short reads to
SLRs. For the SYNTH dataset, we compared the constructed frequency histogram and
abundance plot with the red plot representing the reference genomes with known abun-
dancies. The y-axis of frequency histograms show the histogram of heights SLRs (in the
decreasing order of heights) multiplied by 106, i.e., the probability that a random read
falls into a 1 Mb long segment of the metagenome specified by the x coordinate. For
the GUT dataset, M50 = 40 Mb and M90 = 230 Mb. For the SEDI dataset, M50 = 39 Gb
and M90 = 432 Gb. (Color figure online)

SYNTH. As Table 1 illustrates, our estimator is accurate even with a small number
of SLRs and short reads; e.g., even for short reads downsampled at 5%, deviation
from the total metagenome size does not exceed 15%.

Note that the coverage of some genomes in the SYNTH dataset is as low as
6X [16]. Our capacity estimate remains accurate even at 0.1% downsampling,
corresponding to the coverage by short reads for some genomes as low as 0.006.
Note that the estimated capacity is accurate when almost all SLRs are covered
by at least one short read.

MOCK. Table 1 illustrates that our formula accurately estimates the metagenome
capacity when at least 7% of short reads are used. Note that while the MOCK
dataset is subject to various biases that affect sampling of SLR and short reads
(e.g., the GC bias), our formula is still accurate. Table 1 also shows that our
formula generates stable capacity estimates even with a highly variable number
of downsampled SLRs and suggests that there is a number of rare species in this
metagenome.
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Table 1. The metagenome complexity estimation (in Mb) for SYNTH and MOCK datasets.
Columns correspond to downsampling of SLR reads, while rows correspond to down-
sampling of short reads. The last column shows the percentage of SLRs that were not
covered by any reads from the downsampled set of short reads. Estimated metagenome
capacity (in Mb) for SYNTH and MOCK datasets is 200 Mb and 67 Mb, respectively. Esti-
mated de Bruijn capacity (in Mb) for for SYNTH and MOCK datasets is 190 Mb and 58 Mb,
respectively.

SYNTH

Estimated metagenome capacity using Fraction of uncovered SLRs

100 SLRs 500 SLRs 2000 SLRs 10000 SLRs

0.02% 156 144 147 150 51%

0.1% 204 220 209 218 28%

1% 194 241 224 230 0.4%

5% 182 221 203 205 0%

25% 179 212 198 201 0%

100% 179 209 196 199 0%

MOCK

Estimated metagenome capacity using Fraction of uncovered SLRs

100 SLRs 1000 SLRs 10000 SLRs 220748 SLRs

1% 34 31 37 37 3%

7% 53 56 59 58 0.7%

20% 76 73 73 71 0.08%

100% 69 60 68 72 0.005%

GUT. We estimated the capacity of the human gut metagenome at ≈1.3 billion
nucleotides, in line with previous estimates of the human gut microbiome rich-
ness [36]. Also, a rather small fraction of SLRs were not covered by reads (0.8%),
suggesting that our estimate is accurate. Note that assembly of this dataset per-
formed in Kuleshov et al. [23] resulted in contigs with total length of 656 Mb.
Thus, the assembled contigs in the GUT dataset represent a large fraction of this
metagenome.

SEDI. Our formula resulted in ≈840 Gb estimate for the capacity of this
metagenome but ≈47% of SLRs were not covered by any short reads, suggesting
that this metagenome is very diverse and that it contains a very large num-
ber of extremely rare species (with coverage 0.01X and below) which account
for most of the total DNA in this metagenome. Thus, our formula is likely to
underestimate the complexity of this metagenome. Note that the total length
of assembled contigs for the SEDI dataset (204 Mb for contigs longer than 1 kb)
is significantly lower that the estimated capacity of the metagenome. Since the
large SEDI metagenome may include unicellular eukaryotes with large genomes
(that are common in sediments [4]) and is likely to include a large fraction of
relic DNA [26], it is difficult to estimate its richness.
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3 Methods

Estimating the Abundance Plot. Let D be a value range of a random
variable ξ with density p with respect to a measure μ. By considering p(ξ) as a
random variable, we have:

E

(
1

p(ξ)

)

=
∫

D

1
p(x)

p(x) =
∫

D

1 = |D|. (6)

Thus, formula 1 is a special case of a more general formula for the value range
size estimation. This interpretation also allows us to estimate the value of |Dt|,
where Dt = {x ∈ D|p(x) < t}:

|Dt| =
∫

Dt

1 =
∫

Dt

1
p(x)

p(x) =
∫

D

1
p(x)

δp(x)<tp(x) = E

(
1

p(ξ)
· δp(ξ)<t

)

. (7)

The right part of this formula can be estimated similarly to formula 2, resulting
in the estimate of the frequency histogram. The graph of |Dt| as a function of t
gives the abundance plot of a metagenome. In practice estimation of frequency
histogram can be constructed using the following method. Given the heights of
SLRs in the decreasing order (h1, . . . , hNlong

) computed using formula 4, the
frequency histogram consists of Nlong bars with the j-th bar in the histogram
having height hj and width 1

hj
. The abundance plot is merely the integral of the

frequency histogram.

Variance of the Metagenome Capacity Estimator. We used the central
limit theorem (CLT) as the basis of our estimator. The accuracy of the resulting
formula in the CLT is defined by the variance of the random variable in question.
For example, in the case when a significant fraction of a metagenome results
in rectangles with extremely low height (e.g., rectangles with area less than
1/Nlong), the variance of the random variable is very high. We thus make an
assumption that nearly entire metagenome is comprised from the genomes with
sufficiently large frequencies to be captured by SLRs. Since typical SLR projects
result in 105−106 SLRs, this constraint implies that the metagenome that we
are able to analyze mostly consists of species with frequencies exceeding 0.001%.
Under this assumption, we can use the CLT to compute the variance of our
estimator.

Accuracy of the Inverse Height Estimator. Formula 3 leads to an unbiased
estimate of the SLR height height(longRead) (given by formula 4). However, the
value that we actually need to estimate is 1

height(longRead) and this estimation,
given by formula 5, becomes biased. Below we analyze how this bias affects our
estimation of the metagenome capacity.

We first consider a simple case when the metagenome consists of a single
genome Genome and when SLRs sampled from Genome have the same length.
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We also assume that the number of reads mapped to a genome fragment (and
an SLR) follows the Poisson distribution:

number(longRead) ∼ Poisson(λ), (8)

where λ represents the expectation of the number of reads mapped to longRead.
The value λ can be estimated as: λ = |longRead| ·height(longRead) ·Nshort. We
can now compute the value |Genome|∗, the genome length that is (erroneously)
estimated by formula 5 instead of |Genome|:

|Genome|∗ = Nshort · E

( |longRead|
Poisson(λ)

|Poisson(λ) �= 0
)

(9)

Note that since height(Genome) · |Genome| = 1, the function δ, defined as
|Genome|∗
|Genome| , depends only on the value of λ:

δ(λ) =
|Genome|∗
|Genome| = λ · E

(
1

Poisson(λ)
|Poisson(λ) �= 0

)

=
λ

1 − e−λ

∞∑

n=1

[(1/n) · e−λ · λn/n!] =
λ · e−λ

1 − e−λ
(−γ − ln(λ) − Ei(−λ))

where γ ≈ 0.57721566 is the Euler-Mascheroni constant and Ei is the exponential
integral Ei(z) = − ∫ ∞

−z
e−tt−1dt. Thus, the expectation of the relative error in

formula 5 is defined by δ(λ). The higher is the value of λ (which refers to the
average number of short reads mapped to a long read), the closer δ is to 1. For
example, if the expected number of short reads aligned to an SLR exceeds 15, the
relative error of our estimate is at most 10%. Coverage of a typical 10 kb long SLR
by 15 reads corresponds to genome coverage of 15 · |shortRead|/|longRead| =
0.15X for short reads of length 100.

This analysis illustrates why long reads provide a much “deeper” look into
the capacity of a metagenome than short reads. Indeed, it enables analysis of
genomes with the coverage 0.15X and below as compared to the coverage 15X
that is typically needed for assembling a genome within a metagenome from
short reads. For genomes with a value of λ significantly less than 1, it turns
out that most SLRs sampled from them have zero coverage by short reads.
Thus, genomes with very low coverage contribute little to the estimate of the
metagenome capacity.

4 Discussion

The recent bacterial census update [42] highlighted that high-throughput
sequencing is based on short reads, while a high-quality census requires a high-
throughput full-length 16S rRNA sequencing (rather than conventional short
reads sequencing). It also illustrated the need for alternative technologies to
analyze bacterial diversity such as single cell sequencing [21]. However, without
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prior sorting, single cell sequencing mostly reports the abundant species. In con-
trast, a large fraction of individual genomes assembled from metagenomes had
not been sequenced before [34]. However, the number of genomes reliably recov-
ered from a metagenome is usually limited to hundreds at best, a small fraction
of the total diversity of a metagenome. These difficulties highlight the need for a
yet another technology for evaluating bacterial diversity. We showed that a com-
bination of short-read and long-read sequencing technologies solves this problem
even though each of these technologies separatily does not provide accurate esti-
mates of the metagenome capacity. Although our analysis may be hampered
by a potential metagenome sampling bias between short and long reads, our
estimator of a metagenome complexity results in a useful approximation of the
metagenome size.

Analysis of various metagenomics samples revealed that, although there often
exists a small number of abundant species, thousands of low-abundance highly-
diverged species account for most of the observed diversity. While this rare bio-
sphere represents a source of genomic innovation [20], previous metagenomics
studies, plagued by limitations of short reads technologies, were unable to eval-
uate its diversity. This study is the first attempt to estimate the diversity of the
rare biosphere using a combination of short and long reads. Our analysis of the
SEDI dataset illustrates, this rare biosphere may contain hundreds of thousands
species even for a single soil sample. As the existing estimates of richness of
soil and sediment bacterial communities differ by orders of magnitides, it would
be interesting to apply our approach to analyzing other soil/sediment hybrid
datasets when they become available.

Our approach also revealed significant variations in the diversity of the human
gut metagenome in the case of an individual with the Crohn’s disease. We envi-
sion that the metagenomics studies will soon move to generating a nearly com-
plete census of all bacteria within microbiomes across the entire human popula-
tion [33]. Our method will provide an estimate of the still unknown fraction of
metagenomes that will be important for building such a census.
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Appendix

TruSPAdes Assemblies of MOCK, GUT, and SEDI Datasets. The
TruSeq SLR technology generates accurate and long virtual reads derived from
pools of short reads [27,32,52]. It is based on fragmenting genomic DNA into
large segments (≈10 kb long) and forming random pools of the resulting seg-
ments (each pool contains ≈300 segments). Next, these fragments are amplified,
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sheared, and marked with a barcode that is unique to the pool. Afterwards, they
are sequenced using the standard Illumina short reads technology. All short reads
originating from the same barcode are assembled together resulting in a set of
long contigs (this step is called the SLR barcode assembly). Ideally, the result
of such sequencing effort for a single barcode is the collection of approximately
300 fragments (each fragment is ≈10 kb long) from a genome forming 300 long
virtual reads. SLRs have low mismatch rate (about 0.1%), extremely low indel
rate, and few misassemblies [3].

Table 2 presents results of barcode assembly of MOCK, GUT and SEDI datasets
with truSPAdes.

Table 2. Results of truSPAdes assemblies of MOCK, GUT and SEDI datasets. Long SLRs
are defined as SLRs longer than 6 kb.

MOCK GUT SEDI

#SLRs 451036 1226918 210495

#long SLRs 220778 772833 157336

N50 9180 8625 8266

Avg. #long SLRs per barcode 191 287 136

Total length of SLRs (Gb) 2.9 8.4 1.5

Total length of long SLRs (Gb) 2.1 5.8 1.3

Analyzing the CAMI and CROHN Datasets. In addition to datasets
described in the main text, we also analyzed a larger synthetic dataset and four
human microbiome datasets from a patient suffering from the Crohn’s disease.

The CAMI dataset is a simulated dataset generated by the “Critical Assess-
ment of Metagenome Interpretation” (CAMI) initiative aimed at evaluating var-
ious approaches to analyzing metagenomes (http://www.cami-challenge.org/).
We used a CAMI dataset simulated from 225 genomes and containing 150 million
100bp paired-end reads with mean insert size of 180bp (the errors in simulated
reads are modelled after Illumina HiSeq). We simulated 50 thousand SLRs in the
same way as for the SYNTH dataset. The total length of the reference genomes
for this dataset is ≈820 Mb and its de Bruijn complexity is ≈770 Mb. Figure 4
shows that our estimator works well for the CAMI dataset.

The CROHN datasets are four human gut microbiome datasets from a patient
with Crohn’s disease. These datasets (CROHN1, CROHN2, CROHN3, CROHN4) rep-
resent a metagenomics time series collected at 12-28-2011, 04-29-2013, 11-16-
2014 and 06-29-2015, respectively. Each of these datasets includes one Illumina
paired-end library and one SLR library. Number of short reads in these datasets
ranges from 150 to 230 millions with mean insert size ≈400 bp for all datasets.
The number of SLRs ranges from 17 to 50 thousand. Assembly efforts for these
datasets resulted in contigs of length 242, 172, 225 and 275 Mb for CROHN1,
CROHN2, CROHN3, and CROHN4 datasets respectively.

http://www.cami-challenge.org/
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We estimated metagenome capacity for CROHN1, CROHN2, CROHN3, and CROHN4
datasets as 3.5, 2.0, 2.4, and 3.2 Gb, respectively. Values of M50 were estimated
as 41, 61, 25, and 45 Mb, respectively, while values of M90 were estimated as
230, 490, 240, 250 Mb respectively. These estimates reveal large variations in
metagenome capacity during the course of disease that go well beyond what
can be estimated using short read assemblies. Correlation between metagenome
capacity and antibiotics treatments for this metagenomics time series will be
discussed elsewhere.

Fig. 4. Estimated frequency histograms and abundance plots for CAMI (left) and
CROHN1, CROHN2, CROHN3, CROHN4 datasets (right). The distribution of heights (frequen-
cies) of individual genomes within a metagenome was obtained based on alignments
of short reads to SLRs. For the CAMI dataset, we compared the constructed plots with
the blue plot representing the reference genomes with known abundancies.

Estimating Metagenome Capacity Using Long Error Prone SMS
Reads. Although SMS reads (e.g., reads generated using Pacific Bio-
sciences and Oxford Nanopores technologies) are still rarely used for analyzing
metagenomes [9], they have a potential to be widely used in future metage-
nomics projects when their cost reduces and when the read until technology [30]
developed by Oxford Nanopores becomes widely available. Below we show how
to extend our approach for estimating the metagenome complexity using SMS
reads.

SMS reads present an attractive alternative to TSLRs since their average
length is higher and since they feature a uniform coverage depth that is not
affected by the GC content. However, alignment of short Illumina reads against
error-prone SMS reads is a more challenging task than their alignment against
accurate TSLRs. We addressed this complication using the bowtie2 alignment
tool [24] with specially selected parameters aimed at alignment of short Illumina
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reads against error-prone SMS reads (-D 40 -R 3 -N 0 -L 17 -i S,1,0.50 –rdg 1,3
–rfg 1,3 –score-min L,-0.6,-1 -a). However, even using these custom parameters,
bowtie2 fails to detect alignments of ≈20% of Illumina reads, resulting in an
underestimation of the heights of long reads. To compensate for this effect, we
applied an adjustment factor 100

100−20 = 1.25 to artificially inflate the heights in
our formula for estimating the metagenome capacity.

Currently, there is a shortage of publicly available hybrid metagenomics
datasets (containing both Illumina and SMS reads). Ideally, Illumina and SMS
reads for such datasets should be generated at the same time so that the abun-
dances of individual genomes within a metagenome are the same for Illumina
and SMS reads, implying that the depth of coverage by Illumina reads is pro-
portional to the depth of coverage by SMS reads. In practice, since the SMS
reads for these datasets were often generated as an afterthought, Illumina and
SMS reads for the publicly available hybrid metagenomics datasets are gener-
ated at different time points and prepared for sequencing using different sample
preparation protocols. Thus, since metagenome composition is changing and is
subject to blooms [33], the existing hybrid datasets do not necessarily feature
the proportional depths of coverage by Illumina and SMS reads. Our analysis
revealed that the fractions of Illumina and SMS reads aligned to each of the
reference genomes for publicly available hybrid synthetic metagenomic dataset
may differ by two orders of magnitude. This difference in the genome coverages
by short and long reads in the publicly available hybrid metagenomics datasets
makes our approach inapplicable to the currently available hybrid metagenomics
datasets.
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