
A Hypergraph Network Simplex
Algorithm

Isabel Beckenbach

1 Directed and Graph-Based Hypergraphs

A directed hypergraph is usually defined as a pair (V,A) where V is a finite set
of vertices and A is a set of pairs a = (T (a), H(a)) where T (a), H(a) are disjoint
subsets of V . The set T (a) is called the tail and H(a) the head of hyperarc a. A good
survey on directed hypergraphs can be found in [1]. Inspired by an application to
railway rotation planning Borndörfer et al. [2] defined directed hypergraphs slightly
differently. Namely, they start with an ordinary directed graph and define a hyperarc
to be a set of pairwise disjoint arcs.

Definition 1 Let D = (V, A) be a directed graph. A directed hypergraph based on
D is a pair H = (V,A) where V is the vertex set of D and A is a set of non-
empty subsets E ⊆ A consisting of vertex-disjoint arcs. In this setting we call H a
graph-based hypergraph.

Agraph-based hypergraph can be seen as a special kind of directed hypergraph by set-
ting T (E) = {v ∈ V : ∃w ∈ V, (v,w) ∈ E} and H(E) = {v ∈ V : ∃w ∈ V, (w, v)

∈ E} for E ∈ A. For v ∈ V we set δin(v) := {E ∈ A : v ∈ H(E)} and δout (v) :=
{E ∈ A : v ∈ T (E)}. Using linear programming terminology theminimumcost flow
problem can be stated as follows.

Definition 2 Given a graph-based hypergraph H = (V,A), and functions b : V →
R, c : A → R≥0, u : A → R ∪ {∞} the minimum cost hyperflow problem is the
following linear optimization problem
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min
∑

E∈A
c(E) f (E)

∑

E∈δin(v)

f (E) −
∑

E∈δout (v)

f (E) = b(v) ∀v ∈ V (1)

0 ≤ f (E) ≤ u(E) ∀E ∈ A. (2)

For integral input data b, c, u there always exists an integral min-cost flow in directed
graphs. For the special case that every hyperarc has at most one vertex in its head
and b is nonnegative, the integrality of b implies the existence of an integral min-
cost hyperflow which can be found by a combinatorial primal-dual algorithm, see
[3]. However, this is not true for the min-cost hyperflow problem in general. In
particular, it is N P-hard to find an integral min-cost hyperflow (e.g. by reduction
to 3D-Matching); even if all hyperarcs consist of at most two arcs (see [4] where
the NP-hardness of the hyperassignment problem which can be formulated as an
integral min-cost hyperflow problem is proven).

In the remainder we only consider the uncapacitated minimum cost flow problem
(u ≡ ∞) to make the presentation less technical and focus more on the underlying
algorithmic ideas. However, the network simplex type algorithm described in the
next section can also be adjusted to the capacitated case (details are deferred to a full
version of the paper).

2 Min-Cost Hyperflow on Graph-Based Hypergraphs

In this section we characterize the basis matrices in the min-cost hyperflow problem
on graph-based hypergraphs and show how most of the simplex operations can be
done combinatorially. We do not specify any particular simplex rule, and leave any
issues on the number of pivot iterations open for future research. Convergence can
be guaranteed by usual methods.

In the remainder of this section let H = (V,A) be a hypergraph based on the
directed graph D = (V, A) and let M ∈ {0, 1,−1}V×A be its incidence matrix, i.e.,

Mv,E =
⎧
⎨

⎩

1 v ∈ H(E)
−1 v ∈ T (E)
0 v /∈ H(E) ∪ T (E)

. (3)

With this definition, all inequalities of type (1) can be written asM f = b. We assume
without loss of generality that D is connected and {a} ∈ A for all a ∈ A. The column
M.E corresponding to hyperarc E = {a1, . . . , ak} equals the sumof the columnsM.ak .
This implies that the rank of M is the same as the rank of the vertex-arc incidence
matrix of D which is |V | − 1 as D is connected.

In the following we will denote the submatrix of M restricted to the columns in
some set B ⊆ A by MB . For a set B ⊆ A we denote by B1 = {E ∈ B : |E | = 1}
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the set of all standard arcs and by B2 := B \ B1 the set of all “proper” hyperarcs.
An easy observation shows that if B is a basis, then D[{a ∈ A : {a} ∈ B1}] is a
forest having |B2| + 1 connected components, see for example [5]. If B2 �= ∅ this
condition is not sufficient. In this case, we choose a root r ∈ V for each tree of the
forest D[{a ∈ A : {a} ∈ B1}], denote this tree by Tr , and let R be the set of roots.
We define a matrix MR ∈ Z

R×B2 by

MR (r, E) = |V (Tr ) ∩ H(E)| − |V (Tr ) ∩ T (E)|.

MR is independent of the concrete choice of the roots for the trees Tr . Furthermore,
the columns of MR have the following useful property.

Theorem 1 Let B be a basis with B1, B2, R, {Tr }r∈R and MR as defined above.Given
E ∈ B2 there exists a unique function f : B → R such that f (E) = 1, f (E ′) = 0
for all E ′ ∈ B2 \ {E} and f (δin(v)) = f (δout (v)) for all v ∈ V \ R. Furthermore,
the demand f (δin(r)) − f (δout (r)) at a root vertex r ∈ R is given by MR (r, E).

Proof We first show that a function f with f (E) = 1, f (E ′) = 0 for all E ′ ∈ B2 \
{E} and f (δin(v)) = f (δout (v)) for all v ∈ V \ R exists. Therefore we set b(v) = 1
for all v ∈ T (E), b(v) = −1 for all v ∈ H(e) and b(r) := |V (Tr ) \ {r} ∩ H(E)| −
|V (Tr ) \ {r} ∩ T (E)|. With this definition we have

∑
v∈V (Tr )

b(v) = 0 for all trees Tr
in particular

∑
v∈V b(v) = 0. This implies that there exists f ′ : {a : {a} ∈ B1} → R

such that f ′(δin(v)) − f ′(δout (v)) = b(v) for every v ∈ V . The uniqueness follows
from the fact that f ′ is uniquely determined on every tree Tr . Setting f ({a}) :=
f ′({a}) for all {a} ∈ B1, f (E) = 1, and f (E ′) = 0 for all E ′ ∈ B2 \ {E} gives a
unique function satisfying the requirements of Theorem 1.

Now, we look at the demand induced by f on the roots. If r /∈ T (E) ∪ H(E),
then f (δin(r)) − f (δout (r)) = b(r) = MR (r, E). If r is a head vertex of E ,
then f (δin(r)) − f (δout (r)) = b(r) + 1 = |V (Tr ) \ {r} ∩ H(E)| − |V (Tr ) \ {r} ∩
T (E)| + 1 = MR (r, E) − 1 + 1 = MR (r, E) . The case r ∈ T (E) is similar. �

Theorem 1 shows that MR has the same properties as the matrix Cambini et al. [6]
defined. In contrast to us, they used matrix operations and assumed that M has full
rank which is not the case in our setting. The matrix MR enables us to characterize
the basis matrices for the min-cost hyperflow problem.

Theorem 2 Let B ⊆ A be a subset of size |V | − 1. MB is a basis matrix for the
linear program defined by (1)–(2) if and only if

(a) D[a ∈ A : {a} ∈ B] is a forest with |B2| + 1 connected components.
(b) MR has rank |B2|.
Proof Let MB be a basis matrix. (a) is easy to show. If (b) does not hold, then there
exists a non-zero vector y ∈ R

B2 with MR · y = 0. For every E ∈ B2, let f E ∈ R
B

be a vector with the properties described in Theorem 1, and set f = ∑
E∈B2

y(E) f E .
For every v ∈ V \ R we have
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f (δin(v)) − f (δout (v)) =
∑

E∈B2

y(E) · ( f E (δin(v)) − f E (δout (v))
)

=
∑

E∈B2

y(E) · 0 = 0,

and for r ∈ R we get

f (δin(r)) − f (δout (r)) =
∑

E∈B2

y(E) · ( f E (δin(r)) − f E (δout (r))
)

=
∑

E∈B2

y(E) · MR(r, E) = 0.

Furthermore, f E (E) = 1 and f E
′
(E) = 0 for all E ′ ∈ B2 \ {E} imply that f (E) =

y(E) for all E ∈ B2. Thus, f is a non-zero vector with MB · f = 0 which is impos-
sible as the columns of MB are linearly independent.

Now, suppose (a) and (b) hold. The rows of MB sum to zero, thus its rank is at
most |B|. By this fact and basic linear algebra, the rank of MB equals |B| if and
only if for every b ∈ R

V with
∑

v∈V b(v) = 0 the system MB · f = b has a unique
solution. By (a) we can find a flow f ′ on B such that f ′(E) = 0 for all E ∈ B2

and f ′(δin(v)) − f ′(δout (v)) = b(v) for all v ∈ V \ R. Next, we set δ(r) := b(r) −
( f ′(δin(r)) − f ′(δout (r))) for all r ∈ R and solve MR · y = δ. Again, let f E be the
unique flow with the properties of Theorem 1. We set f = ∑

E∈B2
y(E) f E + f ′.

For v ∈ V \ R we have

f (δin(v)) − f (δout (v))

=
∑

E∈B2

y(E) · ( f E (δin(v)) − f E (δout(v))
) + f ′(δin(v)) − f ′(δout (v))

= 0 + b(v),

and for r ∈ R

f (δin(r)) − f (δout (r))

=
∑

E∈B2

y(E) · (
f E (δin(r)) − f E (δout (r))

) + f ′(δin(r)) − f ′(δout (r))

=
∑

E∈B2

y(E) · MR(r, E) + b(r) − δ(r) = b(r).

This shows that MB · f = b holds. The uniqueness follows from the fact that the
function values at B2 are uniquely determined by (b), and given the values on B2 the
function f on B1 is uniquely determined by property (a). �

Algorithm1 describes a network simplex type algorithm for the min-cost hyper-
flow problem on graph-based hypergraphs. By our assumption, there exists a
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Algorithm 1
Input: Digraph D = (V, A), Hypergraph H = (V,A)based on D,b : V → Rwith

∑
v∈V b(v) =

0, and c : A → R≥0, a feasible flow x on D, corresponding basis B, initial spanning tree T =
D[B].

Output: A min-cost hyperflow x : A → R≥0.
1: Choose a root r arbitrarily, set Tr = T , R = {r}.
2: Solve πT MB = cTB (Dual).
3: Compute reduced cost cπ(E) = c(E) − ∑

v∈H(E) π(v) + ∑
v∈T (E) π(v) for all non-basic

hyperarcs E ∈ A \ B.
4: if cπ ≥ 0 then
5: Output x (x is optimal).
6: else
7: Choose a hyperarc Ein ∈ A \ B with cπ(Ein) < 0.
8: Solve the system MB f = −MEin (Primal).
9: Choose a hyperarc Eout = argmin{x(E)/ − f (E) : f (E) < 0, E ∈ B}.
10: Set B ← B \ {Eout } ∪ {Ein} update x , R, trees {Tr }r∈R , and matrix MR .
11: Goto 1.
12: end if

feasiblemin-cost hyperflow if and only if there exists a feasible flowon the underlying
digraph. Our algorithm receives such a feasible flow together with the corresponding
Basis B as an input.

Algorithm 2 Flow
1: procedure Flow(B, {Tr }r∈R , dN , f2)
2: d(r) ← 0 for all r ∈ R and d(v) ← dN (v) for all v ∈ V \ R.
3: for all E ∈ B2, v ∈ V do
4: if v ∈ T (E) then d(v) ← d(v) + f2(E).
5: if v ∈ H(E) then d(v) ← d(v) − f2(E).
6: end for
7: for all trees Tr do
8: for j = |V (Tr )| − 1 to 1 do
9: if a j = (v, v j+1) then f1(a j ) ← d(v j+1).
10: if a j = (v j+1, v) then f1(a j ) ← −d(v j+1).
11: d(v) ← d(v) + d(v j+1)

12: end for
13: end for
14: dR(r) ← −d(r) for all r ∈ R.
15: return dR , f1
16: end procedure

In the remainder we show how to solve problems of the type MB f = b (Primal)
and πT MB = cTB (Dual) where MB is a basis matrix. We always assume that the
trees {Tr }r∈R have its vertices and arcs ordered such that v1 is the root, v j is a leaf in
T [{v1, . . . , v j }] and a j−1 is the arc v j is incident to.We start with the primal problem
MB f = b forwhichwe basically use the algorithmdescribed in the proof of Theorem
2. As a subroutine we need Algorithm2 which given the demand dN on the non-root
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vertices N := V \ R, and flow f2 on the non-tree hyperarcs B2 computes the unique
flow f1 on the tree arcs B1 and demand dR on the roots R such that

MB ·
(

f1
f2

)
=

(
dN
dR

)

where the rows and columns of MB are arranged accordingly.
Using the algorithm above we can solve MB f = b as follows:

1. Compute Flow(B, {Tr }r∈R, bN , 0).
2. Solve MR · y = (bR − dR).
3. Compute Flow(B, {Tr }r∈R, bN , y).

In the first step we compute a flow with value zero on all hyperarcs E ∈ B2 which
induces the right demands on the non-root vertices. In the second step we calculate
the flow needed on B2 to correct the demand at the root vertices, and finally in step
3 we adjust the flow on the tree arcs.

For the dual problem πT MB = cTB we need Algorithm3 as a subroutine. Given the
cost c1 of all tree arcs B1, and the potential πR at the root vertices it computes a cost
vector e2 on B2 and potential πN on the non-root vertices such that (πT

N ,π
T
R )MB =

(cT1 , e
T
2 ), i.e., the reduced cost of every basic hyperarc is zero.

Algorithm 3 Potential
1: procedure Potential(B, {Tr }r∈R, c1,πR)
2: π(v) ← πR(v) for all v ∈ R and π(v) = 0 for all v ∈ V \ R.
3: for all tress Tr do
4: for j = 1 to |V (Tr )| − 1 do
5: if a j = (v, v j+1) then π(v j+1) ← π(v) + c1(a j ).
6: if a j = (v j+1, v) then π(v j+1) ← π(v) − c1(a j ).
7: end for
8: end for
9: for all E ∈ B2 do
10: e2(E) ← ∑

v∈H(E) π(v) − ∑
v∈T (E) π(v).

11: end for
12: return e2,π.
13: end procedure

As the rank of MB is |V | − 1 the system πT MB = cTB has no unique solution.
Thus, we can fix the value of one vertex, for example we can choose one of the roots
r1 ∈ R and set π(r1) = 0.

Now, we can solve Dual as follows.

1. Compute Potential(B, {Tr }r∈R, c1, 0).
2. Find a solution to yT MR = (cT2 − eT2 ) with y(r1) = 0.
3. For all r ∈ R set π(r) ← y(r) and π(v) ← π(v) + π(r) for all v ∈ V (Tr )

First, the potential on the roots is set to zero, and we compute a potential on the
non-root vertices such that the reduced cost of every tree arc is zero. In the second
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step the correct potential of the root vertices is calculated, and in step 3 the potential
on the non-roots is adjusted. In contrast to the primal problem, we do not have to
call Algorithm3 a second time. It suffices to add the potential of the root vertex to
the potential of the other vertices in the tree.
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