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1 Multi-objective Cooperative Games in the Literature

We start this paper with an overview on contributions to the literature that deal with
multi-objective cooperative games and distinguish between concepts for transferable
and non-transferable utilities for multiple objectives. However, what we can state
for both is that there are only very few contributions that consider multi-objective
allocations fromagame-theoretical perspective and they all are strictly focused solely
on a one type of the utility. For transferable utilities Fernandez et al. in [3] introduced
set-valued TU games on an example of a multi-criteria minimum cost spanning tree
problem. Fernandez et al. in [4] present for set-valued TU games two different core
solution concepts, explore the differences among them and also consider multi-
objective linear production game as another application of set-valued TU games.
Nishizaki and Sakawa in [8] also study a multi-objective representation of linear
production games with only common objectives, defined in terms of transferable
utilities.

In terms of non-transferable utilities Christinsen et al. in [2] study a class of NTU
games resulting from multi-objective linear programs with one objective per player.
They consider an extension of the nucleolus as a solution concept and provide an
algorithm for its computation. Andersen and Lind in [1] solve the allocation problem
for this class of games with the Shapley NTU value and present a simplex-based
computational algorithm for a two players case.

The bi-allocation game has been introduced by Kimms, Kozeletskyi and Meca
in [6] for a general multi-objective optimization problem with one objective per
player and a common objective function for all players. This game was illustrated
using a multi-objective extension of linear production games and for allocation prob-
lem a new solution concept, inspired by the Shapley value for NTU games (see
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[9]), has been proposed. In this paper this solutions concept is described using the
multi-objective cooperative TSP. Kimms and Kozeletskyi in [5] define a core-based
allocation for the bi-allocation game and propose a computational algorithm for it.

2 A Multi-objective Cooperative Traveling Salesman
Problem

In this section a cooperative planning situation in terms of the traveling salesman
problemwhere players besides the traveling costs consider their individual objectives
is formulated. Individual objectives are associated with utilities that players can gain
from the fulfillment of available orders. Let uki be a utility for player k from order
i , if this order is fulfilled by k, meaning that player k visits node i . We assume that
this utility can not be negative. This utility can be seen as a measure of importance
of order i to player k. For instance, the higher the value of uki the higher are chances
that player k will get a new order from the same customer that placed order i in the
future. Therefore in our perception every player k seeks to minimize his traveling
costs as well as maximize the total utility from the assigned orders. In the case of
a given coalition this representation leads to a multi-objective problem with one
cost function and utility functions for every player. The cost function represents a
common objective for all players.

For the formal definition of the problem additional notation is required. Let
N = {1, . . . , n} be a set of salesmen (also here referred to as players) with depots
{01, . . . , 0n}, where 0k corresponds to the depot of salesman k. For every non-
empty coalition S ⊆ N we take V (S) as the set of orders, D(S) := ∪k∈S0k as
the set of depots and denote s := |S|. Orders set are taken as disjoint, i.e. ∀k, l ∈
N , k �= l : V ({k}) ∩ V ({l}) = ∅. And for two coalitions S, T ⊆ N we take that
V (S ∪ T ) = V (S) ∪ V (T ). The problem can be represented as a directed graph
G(S) = (V (S) ∪ D(S), A(S),C(S), T (S)) with the set of arcs A(S), representing
connections between the nodes, matrix of traveling costs C(S) = (ci j ) and matrix
of traveling times T (S) = (ti j ). Furthermore tmax defines the maximal length of a
tour. Regarding the decision variables we use the binary variable xi jk , that indicates
whether the arc (i, j) is used by salesman k (xi jk = 1), or not, and the real-valued
decision variable δi for the arrival time in node i .This variable is also in combination
with a large number M a part of subtour elimination constraints.

Using the introduced notation the objective functions described above can be
stated for a non-trivial coalition S ⊆ N as follows:

f S0 =
∑

k∈S

∑

i∈V (S)∪{0k }

∑

j∈V (S)∪{0k }
ci j xi jk (1)

f Sk =
∑

j∈V (S)

ukj
∑

i∈V (S)∪{0k }
xi jl k ∈ S (2)
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where f S0 defines the cost function and { f Sk | k ∈ S} are the utility functions. Finally
the optimization problem looks as follows:

optimize { f S0 , f Si1 , f Si2 , . . . , f Sis } (3)

s.t.
∑

k∈S

∑

j∈V (S)∪{0k }, j �=i

xi jk = 1 i ∈ V (S), (4)

∑

k∈S

∑

i∈V (S)∪{0k },i �= j

xi jk = 1 j ∈ V (S), (5)

∑

j∈V (S)∪{0k }
xi jk +

∑

j∈V (S)∪{0l }
x jil ≤ 1 i ∈ V (S), k, l ∈ S, k �= l, (6)

δkj + M ≥ δki + ti j + Mxi jk k ∈ S, i ∈ V (S),

j ∈ V (S) ∪ {0k}, j �= i, (7)

δk0k ≤ tmax k ∈ S, (8)

δki ≥ di i ∈ V (S), k ∈ S, (9)
∑

j∈V (S)

xi jk = 1 k ∈ S, i ∈ T k, (10)

xi jk ∈ {0, 1} k ∈ S, i, j ∈ V (S) ∪ {0k}, (11)

δki ≥ 0 i ∈ V (S) ∪ {0k}, k ∈ S. (12)

For a given coalition S and l ∈ [1, . . . , |S|], il denotes a player on the position l
in the coalition S. More precisely this notation should be ik(S), but as it is clear from
the formulation which coalition S is considered, we skip S for notational brevity.
The problem (3)–(12) is a multi-objective optimization problem and its solutions are
considered under the notion of Pareto optimality. In the remainder of this paper for
S ⊆ N we refer to the set of feasible solutions, defined through (4)–(12) as X (S) and
to the set of Pareto optimal solutions as P(S). The optimization problem (3)–(12)
will be referred to as the multi-objective cooperative TSP.

3 A Game-Theoretic Represantation of the Problem

The above described cooperative scenario includes, besides the cost function, addi-
tional objectives that express a metric interpretation of individual preferences of
players towards customer’s orders. As these preferences vary for different players,
values of individual objective functions have non-identical meaning to the players
and therefore will be treated as a non-transferable utility in the allocation problem.
For this reason the proposed cooperative scenario of a multi-objective cooperaive
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TSP represents a combination of transferable and non-transferable utilities, which
cannot be treated by a common cooperative TU game. To handle allocation prob-
lems from a game-theoretical perspective in such cooperative scenarios a new class
of cooperative games, called bi-allocation games, is applied. Kimms, Kozeletskyi
and Meca in [6] introduced the bi-allocation game resulting from multi-objective
optimization problems with all objectives to be maximized. In this section the def-
inition of the bi-allocation game will be adapted to the case of the multi-objective
cooperative TSP, with the cost function as a common objective.

For the multi-objective cooperative TSP the tuple

< N , { f S0 , ( f Sk )k∈S, X (S)}S⊆N
S �=∅

>

denotes all feasible outcomes for all possible subcoalitions of N . Based on feasible
outcomes the corresponding bi-allocation game for the multi-objective cooperative
TSP can be defined as a pair (N ,V), with the characteristic set V(S) for S ⊆ N ,
S �= ∅:

V(S) = {χ ∈ R
2s | ∃ x ∈ X (S), (∃ π ∈ R

s :
∑

k∈S
πi(k) = f S0 (x)), and

(χ1, . . . ,χs,χs+1, . . . ,χ2s) ≤ ( f Si1 (x), . . . , f Sis (x),−π1, . . . ,−πs)} (13)

and V(∅) = ∅. Every element χ ∈ V(S) represents a feasible payoff attainable for
coalition S that consists of individual utilitiesχk (that have a non-transferable nature)
and an allocation of total traveling costs −χn+k . As it can be seen, this definition is
related to the one of an non-transferable ultity (NTU) game, and the characteristic
set V(S) is also a set-valued mapping. However in the bi-allocation game, every
characteristic set V(S) is a subset of a 2s-dimensional space, as two allocations per
player are considered. This formally distinguishes bi-allocation games from NTU
games.

Besides the definition of the characteristic set the notion of its boundary is impor-
tant for the computation of allocation and formal definitions of allocation concepts.
The boundary consists of non-dominated allocations from a set V(S). Using the
notion of Pareto optimality and the introduced notation for P(S) we can define the
boundary as:

∂V(S) = {χ ∈ R
2s | ∃ x ∈ P(S), (∃ π ∈ R

s :
∑

k∈S
πi(k) = f S0 (x)) and

(χ1, . . . ,χs,χs+1, . . . ,χ2s) = ( f Si1 (x), . . . , f Sis (x),−π1, . . . ,−πs)}. (14)

For further discussion on bi-allocation games and especially on their properties the
reader is referred to [6, 7]. In the next section an allocation concept called the Bi-
allocation Shapley value we’ll be presented.
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4 The Bi-allocation Shapley Value

For the definition of the Bi-allocation Shapley value a transferable correspondence
to the bi-allocation game (N ,V) is required. This correspondence represents a scalar
value associated with every coalition S ⊆ N and hence with every characteristic
set V(S) of the bi-allocation game. The transferable correspondence will be defined
through weighting of allocation vectors components. We consider the set of weights

Λ = {λ ∈ (0, 1)2n |
∑

i∈2N
λi = 1 ∧ ∀k ∈ N : λn+i = λ0, λ0 ∈ (0, 1)}. (15)

A weighting vector λ ∈ Λ defines weights associated with allocations from the char-
acteristic setV(N ). In every allocationvectorχ ∈ V(N ) components (χn+1, . . . ,χ2n)

correspond to an allocation of the transferable utility f N0 and are measured on the
same scale. Therefore it is reasonable to consider same weights for the transferable
part of the allocation and we take λ, such that λn+k = λ0 for all k ∈ N and for
some scalar λ0 ∈ (0, 1). Let for every weighting vector λ ∈ (0, 1)2n λS be a sub-
vector of components of λ corresponding to allocations associated with coalition S,
i.e. λS = (λi1 , . . . ,λis ,λ0, . . . ,λ0︸ ︷︷ ︸

s

).

Then for every S ⊆ N and λ ∈ Λ the transferable correspondence for the char-
acteristic function V(S) is

νλ(S) = max
χ∈V(S)

λS · χ (16)

with νλ(∅) = 0. From the definition of the characteristic set (13) and its boundary
(14) it follows that the maximum in (16) is always reached in the boundary ∂V(S)

and νλ(S) = λSχ, for some χ ∈ ∂V(S). This means that νλ(S) corresponds to a
Pareto optimal solution of the underlying optimization problem, which in our case
is the multi-objective cooperative TSP. Furthermore, as all elements of ∂V(S) are
finite-valued, we have that νλ(S) < ∞ for all S ⊆ N and all λ ∈ Λ.

From (16) follows that for a given λ ∈ Λ νλ is a mapping νλ : 2N → R, with
νλ(∅) = 0 and therefore it represents a well-defined characteristic function of a coop-
erative TU game. Thus we can define for every λ ∈ Λ a cooperative game (N , νλ),
which can be interpreted as a transferable correspondence of the bi-allocation game
(N ,V) for a given value λ. For the cooperative game (N , νλ) we can compute the
Shapley value and define it as φ(νλ) = (φk(νλ))k∈N , where for every k ∈ N φk(νλ)

represents a payoff allocated to player k.
Then following the idea of Shapley for NTU games (see [9]), the allocation vector

χ ∈ V(N ) is called a Bi-allocation Shapley value of the game (N ,V), if there exists
λ ∈ Λ, such that

λkχk + λ0χn+k = φk(νλ) for all k ∈ N . (17)

From the definition follows that, in contrary to the Shapley value for games with
transferable utilities, the Bi-allocation Shapley value is not unique and there can be
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multiple λ’s and hence χ’s that satisfy condition (17). We denote by �(N ,V) the
set of all Bi-allocation Shapley values of the game (N ,V). As the Shapley value φ
of the game (N , νλ) is efficient we have that

∑

k∈N
(λkχk + λ0χn+k) =

∑

k∈N
φk(νλ) = νλ(N ).

Therefore the Bi-allocation Shapley value χ is an allocation vector that satisfies
the definition of νλ(N ) and hence belongs to the boundary ∂V(N ). So that, the
Bi-allocation Shapley value corresponds to a Pareto optimal solution of the multi-
objective cooperative TSP with an efficient allocation of the cost function f N0 . From
this follows, that the set of Bi-allocation Shapley values �(N ,V) contains only
Pareto optimal allocations.

For further discussion of the Bi-allocation Shapley value including its existence,
we refer to [6] and regarding a computational approach with an application to the
multi-objective cooperative TSP see [7].

5 Conclusions

The introduced cooperative game as well as the Bi-allocation Shapley value repre-
sent a general methodology for cooperative scenarios with a common and individual
objectives of players. The described concept of weights in the definition of the Bi-
allocation Shapley value is in its nature a weighting vector for the objective functions
regarding the multi-objective optimization problem. Therefore this allocation con-
cept addresses the multi-objective problem from an a priori perspective and weights
can be interpreted as preferences of players towards the objective functions.
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