
Exploring the Numerics of
Branch-and-Cut for Mixed Integer
Linear Optimization

Matthias Miltenberger, Ted Ralphs and Daniel E. Steffy

1 Introduction

The branch-and-cut algorithm for mixed integer linear optimization problems
(MILPs) combines aspects of the branch-and-bound algorithmwith the cutting plane
algorithm to strengthen the initial LP relaxation (see [4] for a complete description
of these operations and the definitions of these terms). While branching increases
the number of subproblems to be solved and should thus be avoided in principle, the
addition of too many cutting planes often results in an LP relaxation with undesir-
able numerical properties. Recent research into the viability of solving MILPs using
a pure cutting plane approach has provided some insight into how and why this hap-
pens and has explored techniques to generate a sequence of valid inequalities whose
addition to the LP relaxation is less likely to cause difficulties [5, 9].

In general, branching and cutting must be used carefully in concert with each
other to maintain numerical stability. The effect of these operations on numerics
is not well understood, however, and is difficult to control directly. There exists a
number of approaches to effectively combine the branching and cutting operations.
In some solvers, cutting is only done at the root node, while in others, cuts are
added throughout the tree. As with any numerical process, implementations of these
solution algorithms use floating-point arithmetic and are subject to accumulation
of roundoff errors within the computations. Without appropriate handling of these

M. Miltenberger (B)
Zuse Institute Berlin, 14195 Berlin, Germany
e-mail: miltenberger@zib.de

T. Ralphs
Department of Industrial and System Engineering, Lehigh University,
Bethlehem, PA 18015, USA
e-mail: ted@lehigh.edu

D. E. Steffy
Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
e-mail: steffy@oakland.edu

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_21

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_21&domain=pdf


152 M. Miltenberger et al.

errors, the algorithms may return unreliable results, failing to behave or terminate as
expected.

Modern MILP solvers use a wide range of techniques to mitigate the difficulties
associated with numerical errors. For example, it is standard practice to discard or
modify cuts whose coefficients differ significantly in magnitude, since these inequal-
ities are likely to degrade the conditioning of the LP relaxation. This and other tech-
niques help to ensure that the LP relaxation will have better numerical properties and
increases the computational stability of the algorithm.

It is well understood that the addition of cutting planes has the potential to neg-
atively impact the numerical properties of the LP relaxation, even after steps have
been taken to improve their reliability. On the other hand, branching may counteract
this effect to some extent, leading to a more stable algorithm overall. In this paper
we seek to carefully investigate the impact of both branching and cutting on the
numerical properties of the LP subproblems solved in the branch-and-cut algorithm.
The purpose of this work is both to confirm existing folklore, namely that branching
improves condition and cutting degrades it, as well as to explore the potential for
directly controlling numerical properties through judicious algorithmic choices.

In Sect. 2 we discuss the choice and computation of the basis matrix condition
numbers as a measure of numerical stability. In Sect. 3 we describe computational
results regarding how branching and cutting affect the condition numbers. Section4
discusses some implications of our findings and ongoing work.

2 Condition Numbers

The condition number of a numerical problem is a bound on the relative change
(in terms of a given norm) in the solution to a problem that can occur as a result
of a change in the input (see [3] for formal definitions). For example, the condition
number of a matrix A is κ(A) = ‖A‖2‖A−1‖2 and yields a bound on how much the
solution to the linear system of equations Ax = b might change, relative to a change
in the right hand side vector b. For LPs, a handful of different condition numbers have
also been defined; a comprehensive treatment of condition numbers for LPs, along
with much more general discussion regarding the concept of problem condition, is
given in [3].

When LPs are solved by the simplex method, a sequence of basis matrices are
encountered (see [4]), each corresponding to a square system of linear equations.
Although condition numbers can be defined for LPs themselves, it is the condition
number of the basis matrices encountered during a simplex solve (particularly the
optimal basis) that is the most relevant measure of numerical stability of the branch-
and-cut algorithm. A primary reason for this is that the solution to the LP relaxation
is obtained by solving a system of equations involving the basis matrix so that the
condition number of this matrix determines the multiplicative effect of numerical
errors in the computed cuts.



Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization 153

After applying cutting planes or branching at a node, the resulting modified LP is
re-solved. In general, we expect that the newly added cuts or branching inequalities
will be binding at the new basic solution, which means that these additional con-
straints are a factor in determining the conditioning of the basis. Thus, measuring
the condition number of these linear systems and how they change as a result of
the added cuts or branching inequalities should give some insight into the numerical
behavior of the simplex algorithm and ultimately the branch-and-cut algorithm. In
this paper, we are looking for overall trends (how much does the addition of cuts
generally degrade the conditioning), so we consider these numbers in the aggregate
and provide some suggestions for visualizing this data.

Since we are interested in an accurate picture, we use the 2-norm power iteration
method to determine condition numbers. This method provides an accurate answer,
though it is unlikely to be efficient enough for practical use. An excellent discussion
on algorithms for condition number estimation is given in [6, Chap. 15].

3 Experiments

To study the effect of cuts on conditioning, we solved a subset of instances from
MIPLIB 3 [2], MIPLIB 2003 [1], and MIPLIB 2010 [7] test sets, collecting detailed
statistics. The solver used was SCIP 4.0 with the LP solver SoPlex 3.0 [8] (with slight
modifications to allow access to the condition number information). We used a time
limit of one hour and a node limit of 10,000.

To get a clearer picture, we deactivated many advanced features, such as primal
heuristics, domain propagation, and conflict analysis. Furthermore, we only gener-
ated Gomory cuts and disabled all other cutting plane generators. While SCIP only
applies cutting planes at the root by default, we enabled cut generation at all nodes
in order to study how this affects conditioning. Note that although cuts are generated
throughout the tree, SCIP still uses a scoring strategy to determine which inequalities
should actually be added.

In what follows, we first study how the condition number of the basis matrix
evolves at the root node, where the initial LP relaxation is solved and initial rounds
of cuts are added, and then study how the condition number of the basis matrices are
affected by branching and cutting as the algorithm progresses.

3.1 Root Node Analysis

In general, we expect the condition number of the basis matrix to degrade as a
result of operations performed in the root node and our initial computations are
aimed at confirming this. Figure1 shows the condition number of each basis matrix
encountered during each iteration of the solution of the initial LP relaxation and
during each iteration of the re-solve occurring after adding each round of cuts for



154 M. Miltenberger et al.

Fig. 1 Condition number development (vertical axis, in log scale) for every simplex iteration in
the root node (horizontal axis) including re-optimizations after adding cutting planes in multiple
rounds (vertical lines). A plot of objective values at each iteration is overlaid as a dashed gray line
with the scales given to the right of each plot

Fig. 2 Root node:
Comparison of condition
numbers of the original LP
and including cutting planes

selected instances from our test set. One can observe that during the early iterations—
especially of the initial relaxation in the root node—the condition numbers of the
basismatrices grow quickly. This is expected, asmore structural variables are pivoted
into the basis, while slack variables are pivoted out. Since the initial basis is always
the identity matrix, which has condition number 1, the conditioning can only degrade
at first. After the initial optimization, the MILP solver tries to generate Gomory cuts.
This computation involves the basis matrix itself, so an ill-conditioned basis matrix
can prevent precise calculation of the coefficients of the new constraint. Moreover,
adding these new rows to the LP often deteriorates its condition number even further
as can be seen in Fig. 1. This sample of instances clearly shows the expected behavior.

Figure2 is a visualization of the difference between the condition number of the
optimal basis of the original LP and two other numbers: (1) the average over all
bases encountered during the cutting procedure and (2) the condition number of the
final optimal basis. While for some instances there is a slight improvement after



Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization 155

Fig. 3 Effects of branching
and cutting

adding cuts, in most cases addition of cuts leads to an increased condition number,
as expected.

3.2 Tree Analysis

One way in which the addition of cuts can cause basis matrices to become poorly
conditioned is if the associated hyperplanes are nearly parallel; addition ofmany such
cuts may lead to a tailing off of the cutting plane algorithm as many similar cuts are
generated and the process stalls. Although branching also involves imposing a special
kind of “cut” to the resulting subproblems, these branching constraints have a simple
form (the coefficient vector is a unit vector), which makes them quite attractive from
a numerical point of view. In particular, they are mutually orthogonal and unlikely
to degrade the conditioning much in general. As such, we may be tempted to hope
that the addition of this special kind of inequality may even improve conditioning.

Despite the apparent plausibility of this hypothesis, our experiments do not fully
support it, though they do show a significant difference between the effect of branch-
ing versus cutting, as expected. In Fig. 3, we show how branching and cutting impact
the numerical stability. The left plot shows the average relative change in the con-
dition number as a result of the addition of the branching constraints. Similarly, the
right plot shows the average relative change in conditioning resulting from the addi-
tion of cuts. In each case, we took the difference between the condition numbers
of the optimal basis matrices before and after either branching or cutting. Each dot
then represents the average across all nodes for a given instance. The bar represents
the mean over all instances. While branching does not seem to have a significant



156 M. Miltenberger et al.

Fig. 4 Condition number development in the tree. Left: Distribution of linear regression slopes of
all instances in the test set. Right: Single instance example

effect on average, adding cutting planes clearly leads to an increase in the condition
number. Thus, despite the observation that branching does not appear to degrade the
condition number in the same way as cut generation, it does not appear to help it
either.

In Fig. 4 we visualize how condition numbers degrade generally as a function of
the depth of a given node. The idea is to determine whether conditioning generally
degrades consistently as the tree gets deeper. The right figure plots the average con-
dition number across all nodes at a given depth, along with a regression line showing
the average degradation in the log of the condition number per level in the tree for
a single instance. The left figure shows the distribution of slopes of this same linear
regression across all instances both with cuts and with a pure branch-and-bound.

It appears that in general, the condition number often has a strong positive correla-
tionwith the tree depth if cuts are added throughout the solving process.When cutting
is disabled this effect is much less strong. One has to be aware that the behavior of
a single instance might be much different from what the trend predicts.

4 Outlook

In this paper, we presented a preliminary exploration of the numerical behavior of
SCIP, a state-of-the-artMILP solver. In the future, we hope to do similar explorations
with other solvers to determine what the overall behavior is and where additional
control of the numerical stability might have an impact. The eventual goal is to
determine whether it is possible to more directly estimate the impact of certain
algorithmic choices on numerical behavior and whether this could lead to improved
control mechanisms.



Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization 157

Acknowledgements The work for this article has been partly conducted within the Research
Campus Modal funded by the German Federal Ministry of Education and Research (fund number
05M14ZAM). The support of Lehigh University is also gratefully acknowledged.

References

1. Achterberg, T., Koch, T., & Martin, A. (2006). MIPLIB 2003. Operations Research Letters,
34(4), 1–12.

2. Bixby, R. E., et al. (1998). An updatedmixed integer programming library:MIPLIB 3.0.Optima,
58, 12–15.

3. Bürgisser, P., & Cucker, F. (2013). Condition—The geometry of numerical algorithms (Vol.
349)., Grundlehren der math. Wissenschaften Heidelberg: Springer.

4. Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer programming. Berlin: Springer.
5. Fischetti, M., & Salvagnin, D. (2011). A relax-and-cut framework for Gomory mixed-integer

cuts.Mathematical Programming Computation, 3(2), 79–102.
6. Higham, N. J. (2002). Accuracy and stability of numerical algorithms. Philadelphia: Society for

Industrial and Applied Mathematics.
7. Koch, T., et al. (2011).MIPLIB 2010.Mathematical Programming Computation, 3(2), 103–163.
8. Maher, S. J. et al. (2017). The SCIP optimization suite 4.0. Technical report 17-12. ZIB.
9. Zanette, A., Fischetti, M., & Balas, E. (2011). Lexicography and degeneracy: can a pure cutting

plane algorithm work? Mathematical Programming, 130(1), 153–176.


	Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization
	1 Introduction
	2 Condition Numbers
	3 Experiments
	3.1 Root Node Analysis
	3.2 Tree Analysis

	4 Outlook
	References




