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1 Introduction

With air travel steadily on the rise and the increased fuel burn associated to it, it
is ever more important that aircraft fly efficient routes. Planning such routes is a
fundamental process of flying: commonly, a route is planned a few hours before the
flight, focussing on key factors such as overfly costs and fuel burn. According to the
Air Transport Action Group [1], around 1.5 billion barrels of fuel are burnt every
year, corresponding to 93.75 billion USD [6]. A decrease of just 0.25% would add
up to 234.375 million USD. There is also a visible impact for airlines: Lufthansa’s
total fuel consumption in 2016 amounted to 9 055 550 tons [7]. Decreasing this by
0.25% leads to 22 639 tons less fuel being burnt, or savings of almost 11.67 million
USD per year. In terms of CO2, this is equivalent to a reduction of more than 70 tons
per year [7].

The need for efficient routes gives rise to the Flight Planning Problem (fpp),
which is the problem of finding a minimum cost trajectory between two airports on
the Airway Network, a directed graph. In general, the objective function consists of
several summands, such as fuel costs, overfly costs and crew costs. In this paper,
however, we shall concentrate on minimising the fuel costs. We further assume that
aircraft fly levelly on a given altitude and neither climb nor descend. In this setting,
fuel consumption is equivalent to flight time, which reduces fpp to the Horizontal
Flight Planning Problem (hfpp). Since winds have a strong impact on flight time
and because of the time-dependency of the weather, we can model hfpp as a Time-
Dependent Shortest Path Problem (tdspp).

tdspp has been extensively studied in the literature, with particular emphasis
on road networks. Dijkstra’s algorithm yields an optimal solution in polynomial
time; however, for large networks, several speedup techniques have been developed,
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allowing to curb runtimes by several orders of magnitude with respect to Dijkstra’s
algorithm [2]. Most of them rely on a preprocessing phase, in which either some
shortest paths or other auxiliary data is precomputed and stored to speed up the
query. For a comprehensive survey, see [2].

Throughout this paper, aweighted graphwill always refer to a pair (G, T ), consist-
ing of the actual (directed) graph G and a possibly time-dependent weight function
T : A × [0,∞) → [0,∞), mapping an arc a ∈ A and a time τ ∈ [0,∞) to the travel
time T (a, τ ) on a.

The ground distance dG(a) of an arc a ∈ A on the Earth’s surface is constant, and
we assume that aircraft fly with constant air speed1 vA. In contrast, the ground speed
vG(a, τ ) of an aircraft is dependent on the prevailing wind conditions on the arc and
given by the formula

vG(a, τ ) =
√
v2A − wC(a, τ )2 + wT (a, τ ) ∀a ∈ A, τ ∈ [t0, tr ], (1)

where wC(a, ·) and wT (a, ·) are the crosswind and trackwind components of the
wind vector, i.e., the components perpendicular and parallel to the current flight
direction. Ground speed and ground distance are linked via the relation

T (a, τ ) = dG(a)

vG(a, τ )
. (2)

2 Super-Optimal Wind

Weare looking to solve the tdsppmodel of hfpp to optimality by using an appropriate
shortest path algorithm. A natural choice would be Dijkstra’s algorithm; in practice,
however, the time to plan a flight is limited and for the most part, this process takes
place shortly before the aircraft departs. In particular, this means that query times
should be as short as possible. In this paper, we restrict ourselves to the discussion
of the A* algorithm, introduced in [5]. For an overview of other algorithms and their
applicability to hfpp, see [3].

The intricacy with A* is to find a suitable potential function πt : V → [0,∞),
which for every v ∈ V underestimates the cost of a shortest v-t-path in (G, T ). We
define the reduced cost of an arc (u, v) ∈ A at time τ as

T ′((u, v), τ ) = T ((u, v), τ ) − πt (u) + πt (v), (3)

and call πt feasible on (G, T ) if for every arc (u, v) ∈ A and for every τ ≥ 0, we
have T ′((u, v), τ ) ≥ 0. Ifπt is feasible, runningA* is equivalent to runningDijkstra’s
algorithm on G using the reduced costs.

1Speed relative to the surrounding air mass.
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To obtain a feasible potential function, we have to find a lower bound for the
travel time on the arcs. To this end, we introduce the concept of Super-Optimal Wind
to underestimate the travel time. While it is possible to minimise the travel time
function directly, this takes too long for practical purposes. Furthermore, it requires
knowledge of the airspeed in advance, as opposed to constructing the Super-Optimal
Wind vector.

We assume that weather is given for a finite set of times {t0, t1, . . . , tr }, and
between the ti , the weather data is interpolated to obtain the wind vectorw(a, τ ). Let
t0 = τ0 < τ1 < · · · < τn = tr be a discretisation of [t0, tr ] such that τi − τi−1 = �
for some � > 0 and for all i = 1, . . . , n. To ensure that for every i ∈ {0, . . . , n − 1}
we always find a j ∈ {0, . . . , r − 1} such that [τi , τi+1] ⊂ [t j , t j+1], we require that
r | n. We then define for i = 1, . . . , n

w
(i)
C (a) = min

τ∈[τi−1,τi ]
|wC(a, τ )| and w

(i)
T (a) = max

τ∈[τi−1,τi ]
wT (a, τ ),

which are the minimum crosswind and maximum trackwind on each discretisation
step. The vector defined through its cross- and trackwind components

w
(i)
s-opt(a) = (w

(i)
C (a), w(i)

T (a))

is called Super-Optimal Wind vector, and is used to overestimate the ground speed
(note that by (2), this is equivalent to underestimating the travel time). We define

v
(i)
G (a) =

√
v2A − w

(i)
C (a)2 + w

(i)
T (a),

and let vG(a) := maxi∈{1,...,n} v(i)G (a). It is easy to prove the following lemma:

Lemma 1 The inequality vG(a, τ ) ≤ vG(a) holds for all τ ∈ [t0, tr ].
Note that in particular, if v∗

G(a) = maxτ∈[t0,tr ] vG(a, τ ) denotes themaximum ground
speed in [t0, tr ], we also have

vG(a) ≥ v∗
G(a). (4)

Define r∗
a := maxτ∈[t0,tr ]

√
wC(a, τ )2 + wT (a, τ )2, themaximumoverall wind speed

on a ∈ A. Under the condition that vA ≥ 2r∗
a , which in practice is always the case,

we obtain

Theorem 1 Suppose vA ≥ 2r∗
a . Then there exists a constant C > 0 such that

0 ≤ vG(a) − v∗
G(a) ≤ C�.

The first inequality follows directly from (4), and the proof for the second inequality
can be found in [3]. Analogous to the ground speed, we define
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T (a) = min
i∈{1,...,n} T

(i)(a) := min
i∈{1,...,n}

dG(a)

v
(i)
G

.

Letting T ∗
a = minτ∈[t0,tr ] T (a, τ ) and following (2), one readily obtains

Corollary 1 Suppose vA ≥ 2r∗
a . Then there exists a constant C ′ > 0 such that for

any arc a ∈ A, we have
0 ≤ T ∗

a − T (a) ≤ C ′�.

In particular, T (a) underestimates the travel time needed to traverse an arc, and the
error is bounded linearly in the discretisation step.

2.1 The Super-Optimal Wind Potential Function

For theA* algorithm,we seek to find a good and feasible potential function. For hfpp,
we can exploit the fact that in our application, there is a small number of possible
target nodes (corresponding to airports). Since our objective in hfpp is to minimise
travel time, we construct the weighted graph (G, T ), where T : A → [0,∞)maps an
arc a ∈ A to the underestimated travel time T (a) obtained through the Super-Optimal
Wind computation, i.e., T (a) ≤ T (a, τ ) for all τ ∈ [t0, tr ] and all arcs a ∈ A. Note
that (G, T ) is a weighted graph with static arc weights, and we can without effort
compute an all-to-one shortest path tree for each target node t . We then define a
potential function for hfpp as

πt (v) = min
{∑

a∈P T (a) : P is a (v, t) − path
}
.

Note that this is equivalent to running the ALT-Algorithm [4] with the target node as
the only landmark.

Theorem 2 The following two statements hold:

(i) πt (·) is feasible in (G, T ).
(ii) πt (·) is feasible in (G, T ).

For details on the proof, see [8]. In particular, Theorem2yields that running theA*
algorithm on (G, T ) is equivalent to running Dijkstra’s algorithm on the reduced cost
graph (G, T ′) obtained from (3), and A* visits at most as many nodes as Dijkstra’s
algorithm.

2.2 Validation of Super-Optimal Wind

Theorem 1 and Corollary 1 state that the absolute error of the overestimated ground
speed with respect to the optimum ground speed is bounded linearly in the dis-
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Table 1 Errors and runtimes of Super-Optimal Wind computation

Altitude
(ft)

Segments
(#)

Av. error
(%)

Max. error
(%)

Computation time
(s)

37000 344936 0.041 5.263 2.50

34000 344920 0.045 5.882 1.59

31000 338567 0.045 8.333 2.52

cretisation step. To assess the quality of the travel time underestimation with Super-
Optimal Wind computationally, we ran it on several real-world instances (cf. [3]),
each instance using 28 threads.

Asourweather prognoses are given at times ti all spaced three hours apart, a natural
choice for the discretisation step is ti+1 − ti = τi+1 − τi = � = 3h. We found this
choice to already yield excellent results, as shown in Table1, which contains the
average andmaximumvalues of the relative error ρ(a) = T (a)−T ∗

a
T ∗
a

∀a ∈ A. The results
show that the Super-Optimal Wind is an excellent underestimator in practice, and
can be computed fast.

3 A Case Study

In the following,we investigate the effect ofwindon a route. In particular,we consider
a flight between Taipei-Taoyuan (tpe) and New York-John F. Kennedy (jfk). We use
weather data from the 25th April 2017, starting the route on the same day at 0300
UTC. We assume an aircraft flying at 37 000ft (≈11 277m).

Often, routes lie close to the geodesic, but if aircraft can take advantage of strong
tailwinds, they commonly divert to areas with more favourable winds. In Fig. 1, we
observe that the search space for A* is doughnut-shaped, which is due to the fact
that on that day, there was an unusually strong jetstream on the Northern Pacific,
rendering the Pacific route shown in green more efficient than the polar route (red),
which would seem a more natural choice. When one compares the ground distances
of the northerly route to the Pacific route, one finds the red route to be almost 1880km
shorter than the green route – but considering wind, the green route is 131s faster
than the red route, or roughly 0.26% of the total travel time. As this translates directly
to fuel burn, it makes sense to favour the seemingly longer Pacific route over the polar
route.

In Fig. 1, we also observe that A* visits significantly fewer arcs than Dijkstra’s
algorithm. This also impacts the runtime: between tpe and jfk, A* yields a speedup
factor of 11 over Dijkstra’s algorithm. For a more detailed discussion on the speedup
of A* over many instances, we refer the reader to [8].
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Fig. 1 Search spaces for Dijkstra’s algorithm (white) and A* (yellow) between tpe and jfk. The
route closest to the geodesic is marked red, the shortest route shown in green (Map data: Google,
Landsat/Copernicus/IBCAO)
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