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Preface

This book contains a selection of refereed short papers presented at the Annual
International Conference of the German Operations Research Society (OR2017),
which took place at the Freie Universität Berlin, Germany, September 6–September 8,
2017. Over 900 participants attended the conference—practitioners and academics
from mathematics, computer science, business administration and economics, and
related fields. The scientific program included about 600 presentations. The confer-
ence theme, Decision Analytics for the Digital Economy, placed emphasis on the
process of researching complex decision problems and devising effective solution
methods toward better decisions. This includes mathematical optimization, statistics,
and simulation techniques. Yet, such approaches are complemented by methods from
computer science for the processing of data and the design of information systems.
Recent advances in information technology enable the treatment of big data volumes
and real-time predictive and prescriptive business analytics to drive decision and
actions. Problems are modeled and treated under consideration of uncertainty,
behavioral issues, and strategic decision situations.

Altogether, 100 submissions have been accepted for this volume (acceptance
rate 63%), including papers from the GOR doctoral dissertation and master’s thesis
prize winners. The submissions have been evaluated by the stream chairs for their
suitability for publication with the help of selected referees. Final decisions have
been made by the editors of this volume.

We would like to thank the many people who made the conference a tremendous
success, in particular the members of the organizing and the program committees,
the stream chairs, the 14 invited plenary and semi-plenary speakers, our exhibitors
and sponsors, our host Freie Universität Berlin, the many people organizing the
conference behind the scenes, and, last but not least, the participants from about 46
countries. We hope that you enjoyed the conference as much as we did.

Berlin, Germany Natalia Kliewer
Magdeburg, Germany Jan Fabian Ehmke
Berlin, Germany Ralf Borndörfer
January 2018
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Solving the Time-Dependent Shortest
Path Problem Using Super-Optimal
Wind

Adam Schienle

1 Introduction

With air travel steadily on the rise and the increased fuel burn associated to it, it
is ever more important that aircraft fly efficient routes. Planning such routes is a
fundamental process of flying: commonly, a route is planned a few hours before the
flight, focussing on key factors such as overfly costs and fuel burn. According to the
Air Transport Action Group [1], around 1.5 billion barrels of fuel are burnt every
year, corresponding to 93.75 billion USD [6]. A decrease of just 0.25% would add
up to 234.375 million USD. There is also a visible impact for airlines: Lufthansa’s
total fuel consumption in 2016 amounted to 9 055 550 tons [7]. Decreasing this by
0.25% leads to 22 639 tons less fuel being burnt, or savings of almost 11.67 million
USD per year. In terms of CO2, this is equivalent to a reduction of more than 70 tons
per year [7].

The need for efficient routes gives rise to the Flight Planning Problem (fpp),
which is the problem of finding a minimum cost trajectory between two airports on
the Airway Network, a directed graph. In general, the objective function consists of
several summands, such as fuel costs, overfly costs and crew costs. In this paper,
however, we shall concentrate on minimising the fuel costs. We further assume that
aircraft fly levelly on a given altitude and neither climb nor descend. In this setting,
fuel consumption is equivalent to flight time, which reduces fpp to the Horizontal
Flight Planning Problem (hfpp). Since winds have a strong impact on flight time
and because of the time-dependency of the weather, we can model hfpp as a Time-
Dependent Shortest Path Problem (tdspp).

tdspp has been extensively studied in the literature, with particular emphasis
on road networks. Dijkstra’s algorithm yields an optimal solution in polynomial
time; however, for large networks, several speedup techniques have been developed,
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allowing to curb runtimes by several orders of magnitude with respect to Dijkstra’s
algorithm [2]. Most of them rely on a preprocessing phase, in which either some
shortest paths or other auxiliary data is precomputed and stored to speed up the
query. For a comprehensive survey, see [2].

Throughout this paper, aweighted graphwill always refer to a pair (G, T ), consist-
ing of the actual (directed) graph G and a possibly time-dependent weight function
T : A × [0,∞) → [0,∞), mapping an arc a ∈ A and a time τ ∈ [0,∞) to the travel
time T (a, τ ) on a.

The ground distance dG(a) of an arc a ∈ A on the Earth’s surface is constant, and
we assume that aircraft fly with constant air speed1 vA. In contrast, the ground speed
vG(a, τ ) of an aircraft is dependent on the prevailing wind conditions on the arc and
given by the formula

vG(a, τ ) =
√
v2A − wC(a, τ )2 + wT (a, τ ) ∀a ∈ A, τ ∈ [t0, tr ], (1)

where wC(a, ·) and wT (a, ·) are the crosswind and trackwind components of the
wind vector, i.e., the components perpendicular and parallel to the current flight
direction. Ground speed and ground distance are linked via the relation

T (a, τ ) = dG(a)

vG(a, τ )
. (2)

2 Super-Optimal Wind

Weare looking to solve the tdsppmodel of hfpp to optimality by using an appropriate
shortest path algorithm. A natural choice would be Dijkstra’s algorithm; in practice,
however, the time to plan a flight is limited and for the most part, this process takes
place shortly before the aircraft departs. In particular, this means that query times
should be as short as possible. In this paper, we restrict ourselves to the discussion
of the A* algorithm, introduced in [5]. For an overview of other algorithms and their
applicability to hfpp, see [3].

The intricacy with A* is to find a suitable potential function πt : V → [0,∞),
which for every v ∈ V underestimates the cost of a shortest v-t-path in (G, T ). We
define the reduced cost of an arc (u, v) ∈ A at time τ as

T ′((u, v), τ ) = T ((u, v), τ ) − πt (u) + πt (v), (3)

and call πt feasible on (G, T ) if for every arc (u, v) ∈ A and for every τ ≥ 0, we
have T ′((u, v), τ ) ≥ 0. Ifπt is feasible, runningA* is equivalent to runningDijkstra’s
algorithm on G using the reduced costs.

1Speed relative to the surrounding air mass.
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To obtain a feasible potential function, we have to find a lower bound for the
travel time on the arcs. To this end, we introduce the concept of Super-Optimal Wind
to underestimate the travel time. While it is possible to minimise the travel time
function directly, this takes too long for practical purposes. Furthermore, it requires
knowledge of the airspeed in advance, as opposed to constructing the Super-Optimal
Wind vector.

We assume that weather is given for a finite set of times {t0, t1, . . . , tr }, and
between the ti , the weather data is interpolated to obtain the wind vectorw(a, τ ). Let
t0 = τ0 < τ1 < · · · < τn = tr be a discretisation of [t0, tr ] such that τi − τi−1 = �
for some � > 0 and for all i = 1, . . . , n. To ensure that for every i ∈ {0, . . . , n − 1}
we always find a j ∈ {0, . . . , r − 1} such that [τi , τi+1] ⊂ [t j , t j+1], we require that
r | n. We then define for i = 1, . . . , n

w
(i)
C (a) = min

τ∈[τi−1,τi ]
|wC(a, τ )| and w

(i)
T (a) = max

τ∈[τi−1,τi ]
wT (a, τ ),

which are the minimum crosswind and maximum trackwind on each discretisation
step. The vector defined through its cross- and trackwind components

w
(i)
s-opt(a) = (w

(i)
C (a), w(i)

T (a))

is called Super-Optimal Wind vector, and is used to overestimate the ground speed
(note that by (2), this is equivalent to underestimating the travel time). We define

v
(i)
G (a) =

√
v2A − w

(i)
C (a)2 + w

(i)
T (a),

and let vG(a) := maxi∈{1,...,n} v(i)G (a). It is easy to prove the following lemma:

Lemma 1 The inequality vG(a, τ ) ≤ vG(a) holds for all τ ∈ [t0, tr ].
Note that in particular, if v∗

G(a) = maxτ∈[t0,tr ] vG(a, τ ) denotes themaximum ground
speed in [t0, tr ], we also have

vG(a) ≥ v∗
G(a). (4)

Define r∗
a := maxτ∈[t0,tr ]

√
wC(a, τ )2 + wT (a, τ )2, themaximumoverall wind speed

on a ∈ A. Under the condition that vA ≥ 2r∗
a , which in practice is always the case,

we obtain

Theorem 1 Suppose vA ≥ 2r∗
a . Then there exists a constant C > 0 such that

0 ≤ vG(a) − v∗
G(a) ≤ C�.

The first inequality follows directly from (4), and the proof for the second inequality
can be found in [3]. Analogous to the ground speed, we define
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T (a) = min
i∈{1,...,n} T

(i)(a) := min
i∈{1,...,n}

dG(a)

v
(i)
G

.

Letting T ∗
a = minτ∈[t0,tr ] T (a, τ ) and following (2), one readily obtains

Corollary 1 Suppose vA ≥ 2r∗
a . Then there exists a constant C ′ > 0 such that for

any arc a ∈ A, we have
0 ≤ T ∗

a − T (a) ≤ C ′�.

In particular, T (a) underestimates the travel time needed to traverse an arc, and the
error is bounded linearly in the discretisation step.

2.1 The Super-Optimal Wind Potential Function

For theA* algorithm,we seek to find a good and feasible potential function. For hfpp,
we can exploit the fact that in our application, there is a small number of possible
target nodes (corresponding to airports). Since our objective in hfpp is to minimise
travel time, we construct the weighted graph (G, T ), where T : A → [0,∞)maps an
arc a ∈ A to the underestimated travel time T (a) obtained through the Super-Optimal
Wind computation, i.e., T (a) ≤ T (a, τ ) for all τ ∈ [t0, tr ] and all arcs a ∈ A. Note
that (G, T ) is a weighted graph with static arc weights, and we can without effort
compute an all-to-one shortest path tree for each target node t . We then define a
potential function for hfpp as

πt (v) = min
{∑

a∈P T (a) : P is a (v, t) − path
}
.

Note that this is equivalent to running the ALT-Algorithm [4] with the target node as
the only landmark.

Theorem 2 The following two statements hold:

(i) πt (·) is feasible in (G, T ).
(ii) πt (·) is feasible in (G, T ).

For details on the proof, see [8]. In particular, Theorem2yields that running theA*
algorithm on (G, T ) is equivalent to running Dijkstra’s algorithm on the reduced cost
graph (G, T ′) obtained from (3), and A* visits at most as many nodes as Dijkstra’s
algorithm.

2.2 Validation of Super-Optimal Wind

Theorem 1 and Corollary 1 state that the absolute error of the overestimated ground
speed with respect to the optimum ground speed is bounded linearly in the dis-
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Table 1 Errors and runtimes of Super-Optimal Wind computation

Altitude
(ft)

Segments
(#)

Av. error
(%)

Max. error
(%)

Computation time
(s)

37000 344936 0.041 5.263 2.50

34000 344920 0.045 5.882 1.59

31000 338567 0.045 8.333 2.52

cretisation step. To assess the quality of the travel time underestimation with Super-
Optimal Wind computationally, we ran it on several real-world instances (cf. [3]),
each instance using 28 threads.

Asourweather prognoses are given at times ti all spaced three hours apart, a natural
choice for the discretisation step is ti+1 − ti = τi+1 − τi = � = 3h. We found this
choice to already yield excellent results, as shown in Table1, which contains the
average andmaximumvalues of the relative error ρ(a) = T (a)−T ∗

a
T ∗
a

∀a ∈ A. The results
show that the Super-Optimal Wind is an excellent underestimator in practice, and
can be computed fast.

3 A Case Study

In the following,we investigate the effect ofwindon a route. In particular,we consider
a flight between Taipei-Taoyuan (tpe) and New York-John F. Kennedy (jfk). We use
weather data from the 25th April 2017, starting the route on the same day at 0300
UTC. We assume an aircraft flying at 37 000ft (≈11 277m).

Often, routes lie close to the geodesic, but if aircraft can take advantage of strong
tailwinds, they commonly divert to areas with more favourable winds. In Fig. 1, we
observe that the search space for A* is doughnut-shaped, which is due to the fact
that on that day, there was an unusually strong jetstream on the Northern Pacific,
rendering the Pacific route shown in green more efficient than the polar route (red),
which would seem a more natural choice. When one compares the ground distances
of the northerly route to the Pacific route, one finds the red route to be almost 1880km
shorter than the green route – but considering wind, the green route is 131s faster
than the red route, or roughly 0.26% of the total travel time. As this translates directly
to fuel burn, it makes sense to favour the seemingly longer Pacific route over the polar
route.

In Fig. 1, we also observe that A* visits significantly fewer arcs than Dijkstra’s
algorithm. This also impacts the runtime: between tpe and jfk, A* yields a speedup
factor of 11 over Dijkstra’s algorithm. For a more detailed discussion on the speedup
of A* over many instances, we refer the reader to [8].
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Fig. 1 Search spaces for Dijkstra’s algorithm (white) and A* (yellow) between tpe and jfk. The
route closest to the geodesic is marked red, the shortest route shown in green (Map data: Google,
Landsat/Copernicus/IBCAO)
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Anticipation in Dynamic Vehicle Routing

Marlin W. Ulmer

1 Motivation

Decision making in real-world routing applications is often conducted under incom-
plete information. Vehicle dispatchers deal with uncertainty in travel times, service
times, customer demands, and customer requests. This information is only revealed
successively during the execution of the route. Technological advances allow dis-
patchers to adapt their decisions to new information [13]. These developments pave
“the way for models of a dynamic nature” [1]. Nevertheless, current decisions influ-
ence later outcomes. Anticipation, that is, “incorporating information about the
uncertainty of future events” [8] is necessary to avoid myopic decision making.
These advances and challenges lead to the field of stochastic and dynamic vehicle
routing problems (SDVRPs), a field gaining growing attention in the research com-
munity. This attention is reflected in the increasing amount of research on SDVRPs
[5]. As [7] state, addressing these new developments and therefore SDVRPs “may
necessitate new views, paradigms, and models for decision support.” In essence, the
field of SDVRPs poses many challenges for the research community in both models
and algorithms and has not been studied comprehensively yet.

The canonicalmodel for SDVRPs is aMarkov decision process (MDP, [6]).MDPs
model subsequent decision states connected by decisions and stochastic realizations
of information. Solving the MDP for SDVRPs is challenging due to the “Curses
of Dimensionality” [4]. Generally, state space, decision space, and transition space
are vast. Methods of approximate dynamic programming (ADP) address these chal-
lenges. Still, these methods are not yet established in the field of SDVRP due to the
high complexity of the routing problems [10]. In the following, we recall the func-
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tionality and notation of the MDP. We then define and tailor methods of ADP to the
specific needs of SDVRPs. We show how ADP enables substantial improvements
compared to state-of-the-art benchmark policies.

2 Markov Decision Process

Within the (finite) MDP, a number of decision points K = {0, . . . , K − 1} occurs
subsequently. Here, K can be a random variable. For each decision point k ∈ K, a
set of statesSk is given, combined in the finite set of statesS. State S0 ∈ S denotes the
initial state and state SK ∈ S denotes the termination state. For each decision point
k ∈ K and for each state Sk ∈ S, a subset of decisions X (Sk) ⊆ X of the overall
decision space X is given. The combination of a state Sk and a decision x ∈ X (Sk)
leads to a (deterministic) post-decision state (PDS) Sx

k ∈ P with P the overall set of
post-decision states. It further leads to an immediate reward (or costs) R(Sk, x) with
R : S × X → R. Given PDS Sx

k , a stochastic transition ωk ∈ Ω leads to the next
state (Sx

k ,ωk) = Sk+1 ∈ S.
A solution for theMDP is adecision policyπ ∈ �. Decision policies determine the

decision to be selected given a specific state. A decision policy π ∈ � is a sequence
of decision rules (Xπ

0 , Xπ
1 , . . . , Xπ

K−1) for every decision point k ∈ K. Each decision
rule Xπ

k (Sk) specifies the decision to be selected in state Sk . Optimal decision poli-
cies π∗ ∈ � select decisions leading to the highest expected rewards and therefore
maximize the sum of expected rewards. In a specific state Sk , the optimal decision
Xπ∗
k (Sk) can be derived by maximizing the sum of immediate and expected future

rewards as shown in the Bellman Equation (1):

Xπ∗
k (Sk) = argmax

x∈X (Sk )

⎧
⎨

⎩
R(Sk, x) + E

⎡

⎣
K∑

j=k+1

R(Xπ∗
j (Sj ))|Sk

⎤

⎦

⎫
⎬

⎭
. (1)

The expected future rewards are also known as the value V (Sx
k ) of PDS Sx

k .

3 Approximate Dynamic Programming

For small MDPs, the values can be calculated recursively to eventually obtain an
optimal policy. Still, for SDVRPs, this is usually hardly possible due to the “Curses
of Dimensionality” [4]. The state, decision, and transition spaces are generally vast.
Thus, solutionmethods aimon approximating the values bymeans of simulations and
approximate dynamic programming (ADP). In the following, we present two ADP-
methods, the dynamic lookup table (DLT) and the offline–online rollout algorithm,
capturing the complexity of SDVRPs.
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3.1 The Dynamic Lookup Table

One way of approximating the values is value function approximation (VFA).1 The
VFA procedure starts with initial values V̂ 0. These values define an initial policy
π0 with respect to the Bellman Equation (1). The VFA then frequently simulates
MDP-realizations. In every simulation run i , the VFA uses the current policy πi−1

for decision making within the simulation. After the simulation run, the values V̂ i−1

are updated with respect to the observed values. The new values V̂ i then define a
new policy πi . This procedure is continued until a stopping criterion is reached.
Subsequently, the VFA approximates the real values and the optimal policy.

The advantage of VFAs is that the simulations are conducted only once offline
before the actual implementation of the policy. Thus, these methods allow immediate
responses to new information, for example, customer requests. Still, to apply VFA,
the value for every PDS needs to be stored. For SDVRPs, the number of PDSs is vast
and an aggregation is necessary. Thus, PDSs are reduced to a vector of state features
(like point of time). This vector space is then partitioned to a lookup table (LT).
Conventional LT-partitionings are static. The partitioning is defined a-priori. This
leads to disadvantages in the approximation process because “important” LT-areas
are represented in insufficient detail while other areas are not sufficiently observed.
To alleviate these shortcomings, we propose a dynamic lookup table. This table starts
with an initial partitioning and subsequently refines the partitioning in “important”
areas. Areas are important if a sufficient number of observations allows and a high
variance in the observed values demands a refinement. Thus, the DLT is able to adapt
to the approximation process. For a detailed definition and algorithmic procedure of
the DLT, we refer to [14].

3.2 Offline–Online Rollout Algorithm

One shortcoming of VFA in general is that not all but only a few state features can
be considered in the evaluation. For SDVRPs, VFAs are usually not able to capture
spatial information such as customer and vehicle locations [14]. To integrate these
details in the evaluation of a PDS, the simulation needs to be conducted online in the
actual decision state. One prominent online simulation method is the post-decision
rollout algorithm (RA).Originating from a particular PDS, anRA simulates a number
of trajectories into the future. To determine decisions within the simulations, a base
policy is used. The PDS is evaluated with respect to the observed rewards in the
simulation. This evaluation is then used in the Bellman Equation to determine the
actual decision.

Because the simulations are conducted online, RAs have the disadvantage that
the time for simulations is highly limited. Usually, the base policy is a runtime-

1Notably, in the following, we present non-parametricVFA because parametric VFAs are often not
able to capture the complex value function structure of SDVRPs [11].
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efficient rule of thumb. This inferior decision making within the simulations leads to
a discrepancy between simulated and realized outcome. Thus, the evaluation of the
PDS may be distorted. To alleviate this disadvantage, we integrate the DLT-policy
as base policy in the RA. This leads to an offline–online RA. Within the simulation,
decision making is conducted by the offline DLT. The simulation’s outcome is then
used to determine the actual decision. Thus, the simulation is reinforced and provides
better approximation and/or less simulation runs. We further improve the RA’s per-
formance by integrating the well-known Fully Sequential Procedure for Indifference
Zone Selection (IZS) by [3]. For a detailed definition of IZS and the offline–online
RA, we refer to [15].

4 Case Study

In the following, we applyDLT and offline–online RA to the dynamic vehicle routing
problem with stochastic requests (VRPSR) by [9].

4.1 Problem Definition and Markov Decision Process

In the VRPSR, a vehicle serves customers in a service area within a shift. The vehicle
starts and ends its tour at a depot. The customers request service during the shift and
are unknown beforehand. Decisions are made about the acceptance or rejection of
the new requests and the according routing update. The objective is to maximize the
expected number of accepted requests. In the according MDP, a state occurs when
the vehicle served a customer. A state Sk consists of the point of time tk , the currently
planned tour θk , and the set of new requests Cr

k . Tour θk starts at the vehicle’s current
location, traverses the customers still to serve, and ends at the depot. A decision x
determines the subset of requests to accept Ca

k and the according routing update θxk .
The reward is the number of accepted requests: R(Sk, x) = |Ca

k |. The PDS contains
the point of time tk , and the new routing θxk . The stochastic transition ωk updates the
origin of θxk and provides a set of new requests.

4.2 Computational Experiments

In the following, we describe how we tune DLT and offline–online RA to the needs
of the VRPSR. We present the benchmark policies and the results. For the DLT, we
select the features point of time tk and free time budget bxk . The free time budget
reflects the amount of time available to serve additional requests. It is defined as the
difference between remaining time in the shift and the tour duration of θxk . The DLT
is therefore two-dimensional. We run 1 million approximation runs and update the
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Fig. 1 Average improvement of the policies compared to AI

values with a running average. The partitioning starts with equidistant intervals of
16min and refines entries of theDLT by splitting them equally into 2 × 2 new entries.
The smallest entry-size is 1min. For the offline–online RA, we run 16 simulations
runs in every state. As benchmark policies, we draw on the current state-of-the-
art policy, anticipatory insertion (AI) by [2]. We also compare our methods with
the online RA by [12]. The online RA draws on a myopic base policy within the
simulations.We compare ourmethods for a variety of instance settings differing in the
number of dynamic requests and the spatial distribution of the requests. The average
improvement of the three policies DLT, offline–online RA, and online RA compared
to AI are depicted in Fig. 1. We observe that all three ADP-methods outperform the
benchmark policy by more than 5%. Notably, the offline DLT is able to achieve
similar results as the online RA while not requiring any online runtime. The offline–
online RA combines the advantages of the DLT’s extensive offline simulations with
the online RA’s detailed state consideration and achieves improvements of about 9%.

5 Conclusion

Stochastic dynamic vehicle routing problems gain significant interest in the research
community. To solve the according MDPs, we have proposed two novel methods
of ADP. For the dynamic vehicle routing problem with stochastic requests, we have
shown how these methods significantly outperform conventional policies. Future
research in stochastic dynamic vehicle routing should focus on applications and
methodology. Promising research areas with high dynamism are the growing fields
of same-day delivery and shared mobility. The proposed ADP-methodology can be
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generalized. Instead of a LT-structure, the state spacemay be dynamically partitioned
bymeansof clustering algorithms. Further, the combinationof online andofflineADP
may be determined based on a state’s value variance and number of observations.
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Shapley Value Based Allocation
for Multi-objective Cooperative Problems

Igor Kozeletskyi

1 Multi-objective Cooperative Games in the Literature

We start this paper with an overview on contributions to the literature that deal with
multi-objective cooperative games and distinguish between concepts for transferable
and non-transferable utilities for multiple objectives. However, what we can state
for both is that there are only very few contributions that consider multi-objective
allocations fromagame-theoretical perspective and they all are strictly focused solely
on a one type of the utility. For transferable utilities Fernandez et al. in [3] introduced
set-valued TU games on an example of a multi-criteria minimum cost spanning tree
problem. Fernandez et al. in [4] present for set-valued TU games two different core
solution concepts, explore the differences among them and also consider multi-
objective linear production game as another application of set-valued TU games.
Nishizaki and Sakawa in [8] also study a multi-objective representation of linear
production games with only common objectives, defined in terms of transferable
utilities.

In terms of non-transferable utilities Christinsen et al. in [2] study a class of NTU
games resulting from multi-objective linear programs with one objective per player.
They consider an extension of the nucleolus as a solution concept and provide an
algorithm for its computation. Andersen and Lind in [1] solve the allocation problem
for this class of games with the Shapley NTU value and present a simplex-based
computational algorithm for a two players case.

The bi-allocation game has been introduced by Kimms, Kozeletskyi and Meca
in [6] for a general multi-objective optimization problem with one objective per
player and a common objective function for all players. This game was illustrated
using a multi-objective extension of linear production games and for allocation prob-
lem a new solution concept, inspired by the Shapley value for NTU games (see
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[9]), has been proposed. In this paper this solutions concept is described using the
multi-objective cooperative TSP. Kimms and Kozeletskyi in [5] define a core-based
allocation for the bi-allocation game and propose a computational algorithm for it.

2 A Multi-objective Cooperative Traveling Salesman
Problem

In this section a cooperative planning situation in terms of the traveling salesman
problemwhere players besides the traveling costs consider their individual objectives
is formulated. Individual objectives are associated with utilities that players can gain
from the fulfillment of available orders. Let uki be a utility for player k from order
i , if this order is fulfilled by k, meaning that player k visits node i . We assume that
this utility can not be negative. This utility can be seen as a measure of importance
of order i to player k. For instance, the higher the value of uki the higher are chances
that player k will get a new order from the same customer that placed order i in the
future. Therefore in our perception every player k seeks to minimize his traveling
costs as well as maximize the total utility from the assigned orders. In the case of
a given coalition this representation leads to a multi-objective problem with one
cost function and utility functions for every player. The cost function represents a
common objective for all players.

For the formal definition of the problem additional notation is required. Let
N = {1, . . . , n} be a set of salesmen (also here referred to as players) with depots
{01, . . . , 0n}, where 0k corresponds to the depot of salesman k. For every non-
empty coalition S ⊆ N we take V (S) as the set of orders, D(S) := ∪k∈S0k as
the set of depots and denote s := |S|. Orders set are taken as disjoint, i.e. ∀k, l ∈
N , k �= l : V ({k}) ∩ V ({l}) = ∅. And for two coalitions S, T ⊆ N we take that
V (S ∪ T ) = V (S) ∪ V (T ). The problem can be represented as a directed graph
G(S) = (V (S) ∪ D(S), A(S),C(S), T (S)) with the set of arcs A(S), representing
connections between the nodes, matrix of traveling costs C(S) = (ci j ) and matrix
of traveling times T (S) = (ti j ). Furthermore tmax defines the maximal length of a
tour. Regarding the decision variables we use the binary variable xi jk , that indicates
whether the arc (i, j) is used by salesman k (xi jk = 1), or not, and the real-valued
decision variable δi for the arrival time in node i .This variable is also in combination
with a large number M a part of subtour elimination constraints.

Using the introduced notation the objective functions described above can be
stated for a non-trivial coalition S ⊆ N as follows:

f S0 =
∑

k∈S

∑

i∈V (S)∪{0k }

∑

j∈V (S)∪{0k }
ci j xi jk (1)

f Sk =
∑

j∈V (S)

ukj
∑

i∈V (S)∪{0k }
xi jl k ∈ S (2)
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where f S0 defines the cost function and { f Sk | k ∈ S} are the utility functions. Finally
the optimization problem looks as follows:

optimize { f S0 , f Si1 , f Si2 , . . . , f Sis } (3)

s.t.
∑

k∈S

∑

j∈V (S)∪{0k }, j �=i

xi jk = 1 i ∈ V (S), (4)

∑

k∈S

∑

i∈V (S)∪{0k },i �= j

xi jk = 1 j ∈ V (S), (5)

∑

j∈V (S)∪{0k }
xi jk +

∑

j∈V (S)∪{0l }
x jil ≤ 1 i ∈ V (S), k, l ∈ S, k �= l, (6)

δkj + M ≥ δki + ti j + Mxi jk k ∈ S, i ∈ V (S),

j ∈ V (S) ∪ {0k}, j �= i, (7)

δk0k ≤ tmax k ∈ S, (8)

δki ≥ di i ∈ V (S), k ∈ S, (9)
∑

j∈V (S)

xi jk = 1 k ∈ S, i ∈ T k, (10)

xi jk ∈ {0, 1} k ∈ S, i, j ∈ V (S) ∪ {0k}, (11)

δki ≥ 0 i ∈ V (S) ∪ {0k}, k ∈ S. (12)

For a given coalition S and l ∈ [1, . . . , |S|], il denotes a player on the position l
in the coalition S. More precisely this notation should be ik(S), but as it is clear from
the formulation which coalition S is considered, we skip S for notational brevity.
The problem (3)–(12) is a multi-objective optimization problem and its solutions are
considered under the notion of Pareto optimality. In the remainder of this paper for
S ⊆ N we refer to the set of feasible solutions, defined through (4)–(12) as X (S) and
to the set of Pareto optimal solutions as P(S). The optimization problem (3)–(12)
will be referred to as the multi-objective cooperative TSP.

3 A Game-Theoretic Represantation of the Problem

The above described cooperative scenario includes, besides the cost function, addi-
tional objectives that express a metric interpretation of individual preferences of
players towards customer’s orders. As these preferences vary for different players,
values of individual objective functions have non-identical meaning to the players
and therefore will be treated as a non-transferable utility in the allocation problem.
For this reason the proposed cooperative scenario of a multi-objective cooperaive
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TSP represents a combination of transferable and non-transferable utilities, which
cannot be treated by a common cooperative TU game. To handle allocation prob-
lems from a game-theoretical perspective in such cooperative scenarios a new class
of cooperative games, called bi-allocation games, is applied. Kimms, Kozeletskyi
and Meca in [6] introduced the bi-allocation game resulting from multi-objective
optimization problems with all objectives to be maximized. In this section the def-
inition of the bi-allocation game will be adapted to the case of the multi-objective
cooperative TSP, with the cost function as a common objective.

For the multi-objective cooperative TSP the tuple

< N , { f S0 , ( f Sk )k∈S, X (S)}S⊆N
S �=∅

>

denotes all feasible outcomes for all possible subcoalitions of N . Based on feasible
outcomes the corresponding bi-allocation game for the multi-objective cooperative
TSP can be defined as a pair (N ,V), with the characteristic set V(S) for S ⊆ N ,
S �= ∅:

V(S) = {χ ∈ R
2s | ∃ x ∈ X (S), (∃ π ∈ R

s :
∑

k∈S
πi(k) = f S0 (x)), and

(χ1, . . . ,χs,χs+1, . . . ,χ2s) ≤ ( f Si1 (x), . . . , f Sis (x),−π1, . . . ,−πs)} (13)

and V(∅) = ∅. Every element χ ∈ V(S) represents a feasible payoff attainable for
coalition S that consists of individual utilitiesχk (that have a non-transferable nature)
and an allocation of total traveling costs −χn+k . As it can be seen, this definition is
related to the one of an non-transferable ultity (NTU) game, and the characteristic
set V(S) is also a set-valued mapping. However in the bi-allocation game, every
characteristic set V(S) is a subset of a 2s-dimensional space, as two allocations per
player are considered. This formally distinguishes bi-allocation games from NTU
games.

Besides the definition of the characteristic set the notion of its boundary is impor-
tant for the computation of allocation and formal definitions of allocation concepts.
The boundary consists of non-dominated allocations from a set V(S). Using the
notion of Pareto optimality and the introduced notation for P(S) we can define the
boundary as:

∂V(S) = {χ ∈ R
2s | ∃ x ∈ P(S), (∃ π ∈ R

s :
∑

k∈S
πi(k) = f S0 (x)) and

(χ1, . . . ,χs,χs+1, . . . ,χ2s) = ( f Si1 (x), . . . , f Sis (x),−π1, . . . ,−πs)}. (14)

For further discussion on bi-allocation games and especially on their properties the
reader is referred to [6, 7]. In the next section an allocation concept called the Bi-
allocation Shapley value we’ll be presented.
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4 The Bi-allocation Shapley Value

For the definition of the Bi-allocation Shapley value a transferable correspondence
to the bi-allocation game (N ,V) is required. This correspondence represents a scalar
value associated with every coalition S ⊆ N and hence with every characteristic
set V(S) of the bi-allocation game. The transferable correspondence will be defined
through weighting of allocation vectors components. We consider the set of weights

Λ = {λ ∈ (0, 1)2n |
∑

i∈2N
λi = 1 ∧ ∀k ∈ N : λn+i = λ0, λ0 ∈ (0, 1)}. (15)

A weighting vector λ ∈ Λ defines weights associated with allocations from the char-
acteristic setV(N ). In every allocationvectorχ ∈ V(N ) components (χn+1, . . . ,χ2n)

correspond to an allocation of the transferable utility f N0 and are measured on the
same scale. Therefore it is reasonable to consider same weights for the transferable
part of the allocation and we take λ, such that λn+k = λ0 for all k ∈ N and for
some scalar λ0 ∈ (0, 1). Let for every weighting vector λ ∈ (0, 1)2n λS be a sub-
vector of components of λ corresponding to allocations associated with coalition S,
i.e. λS = (λi1 , . . . ,λis ,λ0, . . . ,λ0︸ ︷︷ ︸

s

).

Then for every S ⊆ N and λ ∈ Λ the transferable correspondence for the char-
acteristic function V(S) is

νλ(S) = max
χ∈V(S)

λS · χ (16)

with νλ(∅) = 0. From the definition of the characteristic set (13) and its boundary
(14) it follows that the maximum in (16) is always reached in the boundary ∂V(S)

and νλ(S) = λSχ, for some χ ∈ ∂V(S). This means that νλ(S) corresponds to a
Pareto optimal solution of the underlying optimization problem, which in our case
is the multi-objective cooperative TSP. Furthermore, as all elements of ∂V(S) are
finite-valued, we have that νλ(S) < ∞ for all S ⊆ N and all λ ∈ Λ.

From (16) follows that for a given λ ∈ Λ νλ is a mapping νλ : 2N → R, with
νλ(∅) = 0 and therefore it represents a well-defined characteristic function of a coop-
erative TU game. Thus we can define for every λ ∈ Λ a cooperative game (N , νλ),
which can be interpreted as a transferable correspondence of the bi-allocation game
(N ,V) for a given value λ. For the cooperative game (N , νλ) we can compute the
Shapley value and define it as φ(νλ) = (φk(νλ))k∈N , where for every k ∈ N φk(νλ)

represents a payoff allocated to player k.
Then following the idea of Shapley for NTU games (see [9]), the allocation vector

χ ∈ V(N ) is called a Bi-allocation Shapley value of the game (N ,V), if there exists
λ ∈ Λ, such that

λkχk + λ0χn+k = φk(νλ) for all k ∈ N . (17)

From the definition follows that, in contrary to the Shapley value for games with
transferable utilities, the Bi-allocation Shapley value is not unique and there can be
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multiple λ’s and hence χ’s that satisfy condition (17). We denote by �(N ,V) the
set of all Bi-allocation Shapley values of the game (N ,V). As the Shapley value φ
of the game (N , νλ) is efficient we have that

∑

k∈N
(λkχk + λ0χn+k) =

∑

k∈N
φk(νλ) = νλ(N ).

Therefore the Bi-allocation Shapley value χ is an allocation vector that satisfies
the definition of νλ(N ) and hence belongs to the boundary ∂V(N ). So that, the
Bi-allocation Shapley value corresponds to a Pareto optimal solution of the multi-
objective cooperative TSP with an efficient allocation of the cost function f N0 . From
this follows, that the set of Bi-allocation Shapley values �(N ,V) contains only
Pareto optimal allocations.

For further discussion of the Bi-allocation Shapley value including its existence,
we refer to [6] and regarding a computational approach with an application to the
multi-objective cooperative TSP see [7].

5 Conclusions

The introduced cooperative game as well as the Bi-allocation Shapley value repre-
sent a general methodology for cooperative scenarios with a common and individual
objectives of players. The described concept of weights in the definition of the Bi-
allocation Shapley value is in its nature a weighting vector for the objective functions
regarding the multi-objective optimization problem. Therefore this allocation con-
cept addresses the multi-objective problem from an a priori perspective and weights
can be interpreted as preferences of players towards the objective functions.
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Handling Critical Jobs Online: Deadline
Scheduling and Convex-Body Chasing

Kevin Schewior

1 Introduction

In online optimization, the input is only revealed incrementally and parts of the
output already have to be specified during this process, without knowledge of the
future. This addresses a shortcoming of classical optimization techniques, for which
one usually assumes full knowledge of the input before the optimization process
is started. Indeed, the outcome of decisions made in real-world applications often
depends on future events, and certain information about the future is impossible to
obtain.

There are important such applications in which possibly unforeseen tasks arrive
that are critical in the sense that they must be finished either immediately or until a
certain deadline: For instance, in a hospital, patients arrive and require to be treated
within a certain time frame.Another example is an on-board computer of an aeroplane
or car that needs to perform safety-relevant tasks such as checking for obstacles. The
two fundamental mathematical problems considered in this paper, online deadline
scheduling and convex-body chasing, are abstractions of such applications. While
both problems were not understood very well before, we answered different long-
standingopenquestions and thusmakes considerable progress towards understanding
them in the thesis of the same title as this paper [16]. In this paper, we review these
results.
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2 Online Deadline Scheduling with Machine Augmenation

In this problem, an online scheduler receives jobs at their specific release dates and
needs to schedule them preemptively on a machine for a specific processing time
until their specific deadline. The goal is to minimize the resource usage, which is in
this case the number of used identical parallel machines. To evaluate the performance
of online algorithms, we compare with offline solutions: In the following, let m ≥ 2
be the minimum number of machines on which the instance has a feasible schedule.
It is known that no online algorithm can guarantee to produce feasible schedules
on m machines, even if m is known [10]. Henceforth, we call an online algorithm
an m ′-machines algorithm if it is guaranteed to produce feasible schedules on m ′
machines.

We are considering two settings regarding the resumption of preempted jobs: In
the migratory setting, they can be resumed on any machine; in the non-migratory
setting, they must be resumed on the same machine they were running on before.
Indeed, migration may cause a significant overhead in real-world applications. Since
the two settings of the problem were first considered [7, 15], it was an open question
whether there is an m ′-machines algorithm for any constant m ′, even if m = 2 is
fixed. Simple greedy algorithms have been shown to fail [15].

We answer this question in the affirmative for the migratory setting: We present
an O(m logm)-machines algorithm [8]. Towards this, we first observe that we can
assume m is known at the cost of a constant-factor loss in the required number of
machines, which is achieved by a doubling approach. We also prove that jobs whose
processing time is less than a constant factor of their respective lifespan can be
scheduled via a simple greedy policy on O(m) machines.

To handle the other class of jobs, the tight jobs, we consider the laxity of each
job, that is, the time that the job can be delayed after its release date before it must
be started to meet its deadline. We interpret this quantity as the scarce budget for
delaying the job. Since a greedy spending of this budgetmay lead to jobswith too little
leftover budget and thus fail, we develop a more sophisticated balancing scheme:We
divide the budget of each job into O(m logm) sub-budgets, each reserved to be only
used in a specific situation depending on the other jobs that require to be run.

To analyze this algorithm, we assume that the algorithm fails to schedule some
instance feasible onm machines and identify a critical set of jobs responsible for the
failure. By applying a novel lower bound on the optimal number of machines needed
to schedule sets of tight jobs, we derive a contradiction to the fact that the critical
job set was feasible on m machines.

Using similar techniques, we show that our algorithm is anO(m)-machines algo-
rithm for laminar and agreeable instances, two important types of instances that have
a special interval structure: In laminar instances, any two job intervals that intersect
are contained in one another. Somewhat complementarily, in agreeable instances job
intervals can only be contained in one another if they share one endpoint.

For the non-migratory setting of the problem, we show that there exists no f (m)-
machines algorithm for any function f [9]. This is achieved by a recursive construc-
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tion forcing any non-migratory algorithm to spread jobs over machines in such a way
that releasing another job forces the algorithm to open yet another machine. Not only
does this negative result contrast the positive result for the migratory setting, it also
contrasts the fact that migration is only of limited power in the offline setting: Any
feasible migratory schedule onm machines can be transformed into a non-migratory
one on O(m) machines [12]. On the positive side, we design non-migratory f (m)-
machines algorithms for agreeable and laminar instances as well as instances that do
not contain tight jobs.

Although settled up to a logarithmic factor in this work, it remains an important
open question whether O(m)-machines algorithms exist in the migratory setting.

3 Online Deadline Scheduling with Speed Augmenation

Alternatively to increasing the number of machines from m to m ′ in the online
setting, it has also been proposed to increase the speed on each of the machines
from 1 to s [15]. An algorithm is then called a speed-s algorithm if it produces
feasible schedules on speed-s machines, and the goal is to find such an algorithm
with minimal s. It was known that simply prioritizing by smaller deadline or smaller
laxity is a speed-(2 − 1/m) algorithm [15] and that there is no speed-s algorithm
for s < (1 + √

2)/2 ≈ 1.207 [14]. No algorithm with an asymptotical guarantee
smaller than 2 is known.

When using speed augmentation, one can either define laxity with respect to a
unit-speed or a speed-s machine. Independent of this choice, we give the first formal
definition of an algorithm prioritizing by laxity in our continuous-time model. At
each time, our algorithm checks if there are more than m unfinished jobs available.
If not, each of them is run at speed s; otherwise, we consider the jobs in decreasing
order of their laxities. We run all jobs with a strictly smaller laxity as the mth job
in this order at speed s, and all jobs with the same laxity as the mth job share the
remaining machines. We also show that our definition is essentially the unique one
that satisfies certain natural properties.

While it was known that the bound of 2 − 1/m is best-possible when prioritizing
by deadline, we show the same lower bound for prioritizing by laxity. This is indepen-
dent of the speed that the laxity depends on. The bound is achieved by a construction
that consists of many short jobs with early deadlines that delay a long job with a
comparably large laxity, so that at some point the long job is left with almost zero
laxity and thus blocks an entire machine. Nesting such instances eventually blocks
a number of machines sufficient for the algorithm to fail.

We then refute a claim [1] that the algorithm defined in the same work requires a
speed of nomore than e/(e − 1) ≈ 1.58.We propose a new algorithm, a combination
of ideas from the latter algorithm and prioritizing by laxity, and we conjecture that
it is a speed-(e/(e − 1)) algorithm.

It remains a very interesting research goal to obtain a (2 − ε) speed algorithm for
some ε > 0 independent of m.
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4 Convex-Body Chasing

We consider the following online problem in d-dimensional Euclidean space. The
server initially located in the origin receives an online sequence of convex bodies. In
response to each body, the task is to immediately move to a point within that body
so as to minimize the total moved distance. We evaluate the performance of online
algorithms by competitive analysis. This is a special case of the very general online
problem ofmetrical task systems [6], and a constant-competitive algorithm for d = 2
is known [11].

We first develop a simple constant-competitive algorithm for the special case
when d = 2 and all convex bodies are lines [4]. The algorithm relies on the obser-
vation that two different greedy algorithms are not constant-competitive for comple-
mentary instances: The first greedy algorithm always moves to the current line the
cheapest way possible, and the second algorithm always moves to the intersection
point of the current with the previous line (if it exists). Our algorithm is a combination
of these two: In the first step, our algorithm always moves the cheapest way possible
to the current line, say, a distance of d. In the second step, it then moves a distance
of d towards the intersection point of the current and previous line (if it exists), but
never over it. Using a potential-function argument, we show that the algorithm is
constant-competitive.

We are able to extend theO(1)-competitiveness result to the so-called lazy variant
of this problem: In this problem, each line comes with a specific slope in [0,1]. In
contrast to convex-body chasing, the algorithm can decide to move to any point
within the entire space, but it needs to pay its emerging distance to the convex body,
discounted by the associated slope. The O(1)-competitive algorithm is achieved by
interpreting the slope as an (independent) probability for the associated convex body
to appear. Using a reduction from [11], which we present in a more rigorous way, we
can then further extend this result to an O(1)-competitive algorithm for the special
case when d = 3 and all convex bodies are planes.

This approach turns out to even work more generally: We are able to extend this
result even further to a 2O(d)-competitive algorithmwhen d is arbitrary and all convex
bodies are affine subspaces of the full space [4]. This is the first constant-competitive
algorithm in this setting with fixed d > 2. However, a gap to the lower bound of

√
d

remains.
We also consider a more general special case of metrical task systems called

convex-function chasing. Here, the algorithm is presented a sequence of functions
mapping from d-dimensional space to the real numbers. In response, the server
can then move to any position in that space, but pays the function value at that
position in addition to the movement costs. While convex-body chasing is trivial
for d = 1, convex-function chasing is not: We improve the previously known bound
of e/(e − 1) ≈ 1.58 [13] on the achievable competitive ratio to 1.86 [5], thus almost
matching the upper bound of 2 [2, 3, 5].
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Apart from the aforementioned gaps, it is still not known whether O(1)-
competitive algorithms for general convex-body chasing exist in fixed dimension
larger than 2.
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Methodological Advances and New
Formulations for Bilevel Network Design
Problems

Pirmin Fontaine

1 Motivation

Transportation networks are a key element of our society. Many commuters use a
car, bike or the public transportation system to get to work. And due to globalization,
even more goods are shipped through the city. This results in congested and over-
utilized highways. City centers are dealing with traffic jams, especially during rush
hour. Because of the high utilization, deterioration further stresses the already con-
gested cities. But globalization also stresses the highways outside of the city. More
goods are shipped throughout the country and worldwide. Thus, the improvement
and regulation of traffic networks is very important for society.

In 2016, the Federal Ministry of Transport and Digital Infrastructure of Germany
published the 2030 Federal Transport Infrastructure Plan [5]. The major goals of
this plan are to select and prioritize projects for the federal trunk roads, the federal
railway infrastructure and the federal waterway sector to improve the mobility in
passenger traffic and to guarantee freight transportation. In addition to achieving
these goals, the government further aims at reducing emissions, improving safety,
limiting the use of nature, conserving the nature and improving the quality of life in
general. Hereby a main constraint is the very restrictive budget of a total investment
of 264.5 billion Euro. Already about 69% is used for preserving the current network.
Only 31% can be used to build new or upgrade existing infrastructure to avoid and
reduce bottlenecks.

The basis for this infrastructure plan is the forecast of transport interconnectivity
2030 [4]. According to this report, the transport performance of passenger transport
will rise by about 12.2% from 1,184 billion pkm (passenger-kilometer) in 2010 to
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1,329 billion pkm in 2030. Hereby, the traffic volume is only increasing by 1.2% to
103 billion passengers, meaning that the largest driver is the increase in long-distance
traveling.

In freight transportation, the expected growth of demand is even higher. Germany
is expecting an increase of 38% in transportation performance. This means it is
increasing from 607.1 billion tkm (ton-kilometer) to 837.6 billion tkm. Again the
distance is the main driver, however also volume is supposed to increase by 18%
(3,704.7 million tons to 4,358.4 million tons) between 2010 and 2030.

The transport performance within the territory of Germany will rise by 38% (from
607.1 billion tkm (ton-kilometer) to 837.6 billion tkm) and the traffic volume by 18%
(3,704.7 million tons to 4,358.4 million tons) between 2010 and 2030. In particular,
the transport performance of rail transportation is expected to increase by 42.9%.

The Federal Transport Infrastructure Plan consists of more than 2,000 projects.
Since cities are already facing congestion and the traffic is supposed to further
increase the selection of the most improving projects is crucial. But also in the
local networks, the efficient use of budget and the scheduling of maintenance works
is very important. In 2015 and 2016, Munich had more than 600 construction zones
each year in the road network [16, 19].

These construction sites will further reduce the capacity of the network during
maintenance phases, which can lead to even more congestion. This will especially
be true if too many projects are scheduled in one area and a city struggles with
congestion in general.

A special focus in freight traffic is the transportation of hazardous materials (haz-
mat). In Germany, 14% of the in 2013 transported volume were dangerous goods.
47% of those used the road network, 20% were shipped by train and about 16.5%
each were transported on inland waterways and the sea [18]. The consequences of
hazardous accidents are truly fear-evoking. Therefore, the risk of hazardous acci-
dents should be reduced as much as possible. Despite the reduction of risk through
technical advances, also the selection of lower risk paths can reduce the risk. More-
over, besides risk minimization, a fair distribution of risk among the population is
requested more and more. Therefore, a second goal should be a better distribution
such that not one part of the population takes all the risk.

2 Problem Statement

Because of the high increase in traffic and since most authorities have a tight budget
for improving their network, it is even more important to use this budget efficiently
when expanding the network and, further, to regulate the transport of dangerous
goods in order to reduce risks. These problems have a hierarchical decision structure
and are summarized under network design problems in the literature. On the one
side, the users of the network (also called followers) want to minimize either their
own travel time or the transportation costs. On the other side, the government or the
responsible authorities (also called leader) want to regulate the traffic with the goal
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to minimize the overall congestion (e.g., [15]) or to reduce the risk of dangerous
good accidents (e.g., [14]). Since the objective of the leader and the follower are not
the same, the leader has to anticipate the reaction of the follower. These hierarchical
decision problems are then modeled as bilevel problems [17]. In bilevel program-
ming, the leader objective is optimized subject to a nested optimization problem:
the follower optimization problem. But, most optimal solution approaches date back
to the beginning of bilevel programming (e.g., [1, 13]). Most recent publications
focused either on heuristics or metaheuristics.

In the literature of traffic network design problems, the focus is still mainly on the
Discrete Network Design Problem (e.g., [15]), which only considers the extension
of existing networks. The high share of the budget for maintenance in the Federal
Transport Infrastructure Plan [5] shows that maintenance planning is becomingmore
and more important. However, in the literature these models are still scarce.

The problem of hazardous material transportation is known in the literature on
the Hazmat Transport Network Design Problem (e.g., [14]). The focus of these
models is still mainly the minimization of total risk in the network. To achieve this
goal, the leader decides if a road of the network is allowed for the shipment of
dangerous goods or not. Although, several publications motivated the consideration
of risk equilibration (e.g., [6]), only a few researchers considered this problem in
their model (e.g., [2, 3]). The risk is equilibrated fairly among all arcs and only road
networks are considered. This distribution of risk is, however, not fair with respect
to the population.

The dissertation of the author contributes to the literature by addressing these
methodological challenges:

1. How to solve linear bilevel problems with discrete leader variables efficiently to
optimality?

2. How to approximate the non-linear Discrete Network Design Problem to a linear
bilevel problem without additional binary variables?

3. How to model a maintenance problem as a bilevel problem and solve it?
4. How to use the multiple follower structure in the Hazmat Transport Network

Design Problem to solve it efficiently?
5. How to model hazardous material risk for fair distribution?

Using these methodological advances, the following research questions were
addressed and shall support the responsible authorities in their decision:

1. How can a bilevel model for maintenance planning improve the use of the budget
to reduce congestion compared to practical heuristics?

2. Why is it important to consider different modes in the Hazmat Transport Network
Design Problem?

3. What is the trade-off between risk minimization and risk equilibration?
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3 Results

The dissertation of the author introduces aBenders decomposition algorithm for solv-
ing discrete-continuous linear bilevel problems. To apply Benders decomposition,
the lower level problem of the bilevel formulation is replaced by its Karush–Kuhn–
Tucker conditions and a bilinear term is linearized without introducing auxiliary
binary variables. In the resulting mixed-integer linear program, the binary leader
variables are the complicating variables and the problem can be decomposed in
the classical master and slave problem according to Benders decomposition. The
method is tested on four different problems: the Discrete Network Design Problem,
theDynamicDiscreteNetworkDesignProblem, theDecentralizedCapacitatedFacil-
ity Selection Problem and the Hazmat Transport Network Design Problem. For all
problems the numerical results show the efficiency of the method. Problem specific
acceleration techniques are used to further accelerate the Benders decomposition.

In the first problem, the Discrete Network Design Problem, the non-linear time
functions in the objective function are linearly approximated. Compared to existing
approaches, we avoid introducing binary auxiliary variables by using the convexity
of the functions. Besides that, the slave problem is divided into two subproblems for a
fast calculation of the dual variables for the Benders decomposition. The numerical
results show run time improvements of more than 60% compared to the mixed-
integer linear programming formulation solved on a commercial solver. This chapter
is based on [8].

In [11], the Discrete NetworkDesign Problem is extended to amulti-periodmodel
to derive maintenance schedules in traffic networks. The multi-period structure,
allows us to decompose the slave problem within the periods and apply a multi-
cut version of Benders decomposition. Even though Benders decomposition does
not reach convergence, it quickly finds good solutions and outperforms, the mixed-
integer linear program, a genetic algorithm, and simple priority rules, which currently
might be used in practice. Especially under tight budgets, our approach was the only
approach among all tested methods which could find feasible solutions.

In the Decentralized Capacitated Facility Selection Problem [9] and the Hazmat
Transport Network Design Problem [10], the calculation of pareto-optimal cuts sig-
nificantly reduced the number of iterations and therefore improved the convergence.
In the Hazmat Transport Network Design Problem, the multi-follower structure is
again used to apply the multi-cut version of Benders decomposition. Compared to
the mixed-integer linear programming formulation, our approach shows run time
improvements of more than 90% for both problems. Furthermore, we analyze the
benefits of using bilevel formulations. The results underline that, a good classification
of dangerous goods, can reduce the risk.

The last chapter is based on [7] and is joined work with Teodor Gabriel Crainic
(University ofQuebec inMontreal),MichelGendreau (PolytechniqueMontreal), and
Stefan Minner (Technical University of Munich). We introduce a new population-
based risk definition to distribute the risk fairly among the population and extend
the Hazmat Transport Network Design Problem to a multi-mode network design
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problem. The results show that pure risk equilibration leads to a very high total
risk in the network and every population center in the network can end up with a
higher risk. However, because of a convex correlation between these two objectives,
already a small increase in total risk in the network can lead to a significantly better
distribution of risk among the population. Therefore, it is important to consider the
trade-off between risk minimization and risk equilibration and authorities need to
select between the pareto-optimal solutions. Moreover, we show that multiple modes
need to be considered and that the equilibration of risk over arcs, as it is done in the
literature so far, does not distribute the risk among the population fairly.
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Stable Clusterings and the Cones
of Outer Normals

Felix Happach

1 Introduction

Informed decision-making based on large data sets is one of the big challenges in
operations research. We are interested in one of the fundamental tasks in data analyt-
ics: The clustering of a data set into disjoint clusters. Data is often represented as a
finite set X ⊆ R

d in d-dimensional Euclidean space. A clusteringC = (C1, . . . ,Ck)

then is a partition of X such that
k⋃

i=1
Ci = X and Ci ∩ C j = ∅.

There is a huge amount of clustering algorithms, a popular one being the k-means
algorithm. It exhibits an interesting discrepancy between its excellent behaviour in
practice and its known worst-case behaviour. In a theoretical worst-case, it may
take exponentially many iterations, and it is easy to construct artificial examples
for which its results do not capture the structure of the underlying data at all. In
practice, however, it typically terminates after a few iterations and produces human-
interpretable results. We use methods from polyhedral theory to better understand
this difference and gain insights on “good” clusterings.

The polytope we are investigating was first introduced in [1] and it encodes all
possible clusterings of the data point set X . Its vertices encode certain favorable
clusterings [1], one property being that they are minimizers of the least-squares
functional among all clusterings of the same cluster sizes. Most importantly, these
vertices have strong separation properties: They allow for the construction of a power
diagram, a generalized Voronoi diagram in Rd with one polyhedral cell for the data
points for each cluster [3], see Fig. 1.
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Fig. 1 A power diagram
with one cell for the blue,
red, and black cluster. The
data points of each cluster lie
in the interior of their
respective cells. The small
dots indicate the sites

2 Preliminaries

Let n, d, k ∈ N := {1, 2, . . . } be fixed. Let X := {x1, . . . , xn} ⊆ R
d be a set of n

distinct non-zero data points and for m ∈ N define [m] := {1, . . . ,m}.

2.1 Clusterings

A partition C := (C1, . . . ,Ck) of X is called clustering. For i ∈ [k], we call Ci the
ith cluster of C and |Ci | its size. Let s− := (s−

1 , . . . , s
−
k ), s

+ := (s+
1 , . . . , s

+
k ) ∈ N

k

such that 0 ≤ s−
i ≤ s+

i ≤ n for all i ∈ [k] be the lower and upper bounds on the
cluster sizes. We only consider clusterings satisfying s−

i ≤ |Ci | ≤ s+
i for all i ∈ [k].

In order to compare two clusterings C := (C1, . . . ,Ck), C ′ := (C ′
1, . . . ,C

′
k), we

use the clustering difference graph, c.f. [3], which is the labeled directed multi-
graph CDG(C,C ′) := (V, E)with node set V := [k] and edge set E constructed as
follows: For each x j ∈ Ci ∩ C ′

l with i, l ∈ [k] and i �= l, there is an edge (i, l) ∈ E
with label x j . We can derive the clustering C ′ from C by applying operations corre-
sponding to the edges of CDG(C,C ′):

Let (i1, i2) − (i2, i3) − · · · − (it , i1) be a cycle in CDG(C,C ′) with labels
x j1 , . . . , x jt . Applying the cyclical exchange

CE : Ci1

x j1−→ Ci2

x j2−→ · · · x jt−1−→ Cit

x jt−→ Ci1

to C means deriving the clustering C̄ = (C̄1, . . . , C̄k) by setting C̄il := (Cil \
{x jl }) ∪ {x jl−1} for all l ∈ {1, . . . , t} (cyclical indexing) and C̄r := Cr for all r ∈
[k] \ {i1, . . . , it }. Clearly, all cluster sizes remain the same.

For an edge path (i1, i2) − (i2, i3) − · · · − (it , it+1) in CDG(C,C ′) with labels
x j1 , . . . , x jt , we consider the movement
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M : Ci1

x j1−→ Ci2

x j2−→ · · · x jt−→ Cit+1 .

Applying M to C means deriving the clustering C̄ = (C̄1, . . . , C̄k) by setting C̄il :=
(Cil \ {x jl }) ∪ {x jl−1} for all l ∈ {2, . . . , t}, C̄i1 := Ci1 \ {x j1}, C̄it+1 := Cit+1 ∪ {x jt }
and C̄r := Cr for all r ∈ [k] \ {i1, . . . , it+1}.

One can obtain any clustering from any other clustering by greedily decomposing
their clustering difference graph into paths and cycles and applying the corresponding
movements and cyclical exchanges to C .

2.2 Power Diagrams

Let a := (aT
1 , . . . , a

T
k )

T ∈ R
d·k be a site vector with distinct sites a1, . . . , ak ∈ R

d

and let w1, . . . , wk ∈ R be k weights. For i ∈ [k], we call

Pi := {x ∈ R
d | ‖x − ai‖22 − wi ≤ ∥

∥x − a j

∥
∥2
2 − w j for all j ∈ [k] \ {i}}

the ith (power) cell of the power diagram (P1, . . . , Pk). We are interested in power
diagrams inducingC that satisfyCi ⊆ Pi for all i ∈ [k], see Fig. 1.Wewant to stress
the strength of this separation property, which is stronger than just the existence of
separating hyperplanes. The constructed cells also partition the underlying space.

2.3 Bounded-Shape Partition Polytope

Let NP(v) := {a ∈ R
d | aT v ≥ aT x ∀ x ∈ P} be the normal cone or cone of outer

normals of a polytope P at v ∈ P . Figure 2 illustrates 2D and 3D examples. For
a clustering C = (C1, . . . ,Ck) and i ∈ [k], let σi := ∑

x∈Ci

x ∈ R
d . The clustering

vector of C isw(C) := (σT
1 , . . . ,σ

T
k )

T ∈ R
d·k andP := conv({w(C) | s−

i ≤ |Ci | ≤
s+
i , ∀ i ∈ [k]}) is called the bounded-shape partition polytope.
In [1], Barnes et al. gave a complete characterization of the vertices of P . The

authors proved that a clustering vector w(C) is a vertex of P if and only if there
exists a site vector a ∈ R

d·k and k scalars fulfilling some extraordinary separation
properties for C [1]. One can show that these conditions imply the existence of a
power diagram with site vector a and weights only depending on a that induces C
[4]. Moreover, any a ∈ NP(w(C)) can be chosen as a site vector to construct these
power diagrams. Further, we define the vector of a cyclical exchange w(CE) and
movement w(M) to be the difference vector of the respective clusterings vectors.
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v

Fig. 2 A 2-dimensional polytope with vertex v in black and normal cone at v in blue (left) and a
3-dimensional polytope (right)

3 Main Results

3.1 Edge Structure and Construction of the Normal Cones

First, we extend the results of Barnes et al. to obtain a characterization of the edges
of P . This generalizes results of [3, 5] on some special cases.

Theorem 1 Let C := (C1, . . . ,Ck), C ′ := (C ′
1, . . . ,C

′
k) be two clusterings such

that w(C) and w(C ′) are adjacent vertices of P . Further, let no three points in
X lie on a single line. Then C and C ′ either differ by a single cyclical exchange,
a single movement or by two movements and there are distinct i, j ∈ [k] such that
both are of the form Ci → C j .

Theorem 1 enables us to construct the cone of outer normals of a vertex w(C)

explicitly. For a cone K ⊆ R
d·k , its polar cone is defined as K ◦ := {y ∈ R

d·k | yT x ≤
0, ∀ x ∈ K }. If F ⊆ K is a l-dimensional face of K , then its polar face [F]◦ :=
F⊥ ∩ K ◦ is a (d · k − l)-dimensional face of K ◦.

Consider a vertexw(C) ∈ P whose incident edges all correspondw.l.o.g. to cycli-
cal exchanges CE1, . . . ,CEt (Theorem 1). Otherwise, just add the corresponding
movements M and consider their vectors as well. It is well-known from linear opti-
mization that the normal cone then can be written as a polar cone:

NP(w(C)) =
⎧
⎨

⎩

t∑

j=1

λ jw(CE j ) | λ j ≥ 0 for all j ∈ [t]
⎫
⎬

⎭

◦

.

So the facets of NP(w(C)) are polar faces to the edges of P: Fj = [w(CE j )]◦ for
all j ∈ [t], yielding an explicit representation of the normal cone via its facets.
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3.2 The Volume of the Cones of Outer Normals

An important observation through polyhedral theory is that any positive multiple
λa ∈ R

d·k (λ > 0) of a site vector a ∈ NP(w(C)) is contained in the normal cone and
defines the same power diagram (all sites are scaled by the same factor). Therefore,
we can identify every site vector by its unit norm vector.

We are interested in measuring the volume of the normal cones of P in order to
characterize “good” clusterings.We follow the notation of Bonifas et al. [2] who used
the volume of normal cones in a different context. Let Sd·k := {x ∈ R

d·k | ‖x‖2 = 1}
be the Euclidean unit sphere. For a cone K ⊆ R

d·k , let B(K ) := K ∩ S
d·k be its

base. The volume of K is defined as the (d · k − 1)-dimensional area of B(K ) and
is denoted by vol(K ).

In simple terms, popular clustering algorithms such as the k-means iteratively
compute sites of power diagrams and return the induced clustering. This can be
interpreted as repeated linear optimization overP . Informally we can say: The larger
the area of the base B(NP(w(C))) the higher the probability of a site vector a ∈ R

d·k
being in NP(w(C)). Therefore, the ratio

vol(NP(w(C)))

vol(Rd·k)
= vol(NP(w(C)))

area(Sd·k)
(1)

encodes the probability with which a randomly chosen site vector a ∈ R
d·k induces

C . Hence, there is a direct relation between large cones and “good” clusterings
explaining why many clustering algorithms work so well in practice.

3.3 Stable Clusterings and Cones of Different Shapes

In the previous section, we argued that large cones are likely to be found. They also
encode “stable clusterings”: clusteringswhich are robust w.r.t. perturbation of the site
vector of the inducing power diagram, i.e. which do not change for small changes of
the site vector. Geometrically, a “stable” site vector for a clustering can be described
by informally dropping a p-norm unit ball into the normal cone NP(w(C)) with a
gravity center at 0 ∈ R

d·k and computing where it “gets stuck” due to being blocked
by the facets of the cone. The center of this unit ball then is a vector that lies “most
centrally” within the normal cone. This gives the following optimization problem
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Fig. 3 Unit balls (red)
blocked by facets of the
normal cone (blue) (color
figure online)

0

z(2)

0

z(∞)

min ‖z‖2
s.t. z ∈ NP(w(C)),

dist (z, Fj )p ≥ 1 ∀ j ∈ [t],

z ∈ R
d·k .

(2)

Here, dist (z, Fj )p denotes the distance w.r.t. the p-norm of z and the facet Fj , i.e.
dist (z, Fj )p = inf{∥∥z − f j

∥
∥
p | f j ∈ Fj }. Figure 3 illustrates two 2D examples of

this approach with different p-norms.
For an optimal solution z(p) of (2), any vector in {z ∈ R

d·k | ∥
∥z − z(p)

∥
∥
p ≤ 1}

is still contained in the normal cone, i.e. its corresponding power diagram induces
C as well. Projecting this p-norm ball around z(p) ∈ R

d·k onto the components of
the k sites corresponds to smaller d-dimensional p-norm balls within which we can
perturb the sites z(p)1 , . . . , z(p)k ∈ R

d without changing the clustering.
We can generalize (2) by not just considering p-norm unit balls, but their image

under an invertible linearmap A : Rd·k �→ R
d·k with |det(A)| = 1. Thismap (matrix)

A contorts the p-norm unit ball without changing its volume and, by this, we can
model any possible shape of the cones. Informally, this contortion corresponds to
weighting some directions more than others, so – depending on the underlying struc-
ture –wemight be able to perturb some sitesmore than others or in different directions
with different amount. However, considering the generalization of (2), one can show
that cones of equal volume, no matter which shape they have, encode equally stable
(“good”) clusterings.

4 Follow-Up Work

In the paper Good Clusterings Have Large Volume with Steffen Borgwardt, we
improve and extend these results by studying the structure of the normal cones
extensively. Besides improving notation, we formalize the notions of the quality of
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clusterings and the stability of site vectors as well-definedmeasures and provide an
optimization problem for computing a “best” site vector, as well as an approximation
algorithm. We perform some proof-of-concept computations and exhibit how to use
their results for informed decisions.

Acknowledgements I am grateful to mymaster’s thesis advisor Steffen Borgwardt for introducing
me to this exciting topic and for the continuous support.
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The Two Dimensional Bin Packing
Problem with Side Constraints

Markus Seizinger

1 Introduction

In the two dimensional bin packing problem with side constraints (2DBP-SC) we
are given a set of rectangular items i ∈ I , each defined by its height hi , width wi and
type ti . A bin consists of S sides with dimensions H and W , respectively. The goal
of 2DBP-SC is to assign every item a concrete position such that all items are packed
without overlapping and using as few bins as possible. Furthermore, items are packed
orthogonally and the newly introduced side constraint has to be satisfied, meaning
that no two items of different type may be placed face-to-face on the same bin but on
different sides. We assume items may not be rotated. This problem is an extension
of the well-studied two dimensional bin packing problem (2DBP), where only one
bin side exists (S � 1). 2DBP-SC is strongly NP-hard, since 2DBP is known to be
such [5, 6].

The example depicted in Fig. 1 gives an idea of the restrictions implied by the side
constraint. This small instance contains bins with two sides and two item types. The
side constraint reduces the available space on different sides of the bin. In contrast
to the traditional 2DBP, where items simply occupy bin capacity for their respective
shape, in 2DBP-SC items additionally block this capacity on all other sides of the
bin. Only items of identical type may use this blocked area (indicated by hatched
area). This means that the concrete capacity consumption of a single item depends
on the actual packing of the bin. Notice that another item of type A (green) with
dimensions (w, h) � (4, 6) could be placed in the bottom right corner on the rear
side of the bin, whereas an identically shaped item of type B cannot be placed in this
position, because it would overlap with area blocked from the front side for type A.
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Fig. 1 Example Packing

The motivation for this problem originates from a real-world application.
We analyzed a bottleneck resource in a paint shop. Items have to be placed on racks
with two faces (front and rear). Additionally, two types of items exist. These types
are not allowed to be placed face-to-face for quality reasons. Due to these restric-
tions the utilization of racks was very low and this production step became a limiting
factor. 2DBP-LC corresponds directly to this problem. The same problem must be
solved when packing a multi-temperature compartment truck. These trucks consist
of flexible departments, dividing them into different temperature zones. The cargo
has to be packed into shelves, while every item has to be in its respective temperature
zone.

2 Lower Bounds

We introduce already known lower bounds for 2DBP and 3DBP and adapt them to
our new class of 2DBP-SC. In general, two ideas exist: The geometric bound sums
up volumes of all items and divides it by the area available in a single bin [1, 6]. In
contrast, the bound of large items focusses on items fulfilling the conditions wi > W

2
and hi > H

2 .We combine both ideas as in [5] to bound LSC
2 . By adapting the bound to

2DBP-SC, we can account for item types. This allows us to further improve existing
bounds.
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3 Upper Bound

For the 2DBP several solution heuristics exist: Lodi et al. [2] describe well-known
heuristics Next-Fit Decreasing Height, First-Fit Decreasing Height, and Best-Fit
Decreasing Height. The latter dominates the remaining two regarding solution
quality [3].

We adapt the Best-Fit Decreasing Height (BFDH) algorithm, first introduced by
[1]. Our algorithm, called Best-Fit Decreasing Height with side constraints (BFDH-
SC), creates feasible packings but does not guarantee to find an optimal one. We first
order all items according to (a) type and (b) non-increasing height. The first item in
the list—the active item—is packed on a level containing only items with identical
type and sufficient remaining space. According to the best-fit rule we select that level,
where the remaining horizontal space is minimized. If no such level exists, a new
level is initialized on top of the latest one, if the bin has enough remaining height. If
not, a new bin is initialized as well. Finally, the active item is removed from the list.
The algorithm terminates, if the list of items is empty. The heuristic has a runtime
complexity of O

(
n3

)
.

4 Solution Algorithm

We decompose the problem straightforward according to Dantzig-Wolfe and solve
the resulting set covering formulation with column generation. In particular, we
form a (Restricted) Master Problem (RMP) and a two dimensional packing problem
(2DPP), acting as the subproblem.

We will solve the RMP in every iteration of the column generation procedure
to obtain the dual variables πi associated with every item. We can then use this
information to find a new feasible packing that can improve the current solution of
the RMP by solving the subproblem. Thereafter, the next iteration starts over again
by solving the slightly enlarged RMP. If all sufficient columns are added to the RMP,
its solution is optimal, i.e. the LP-relaxation of RMP has been solved. From theory
the bound improves the LP-relaxation of the original problem.

Initial columns are created by BFDH-SC, LSC
2 acts as initial lower bound. During

the course of the algorithm, new lower bounds are available in every iteration [4],

using optimal solution values of RMP and subproblem LCG �
[

zRMP
1−zsub

]
.

4.1 Subproblem Decomposition

In our approach the subproblem has to find a feasible packing pattern p with neg-
ative reduced costs cπ

p < 0. If no negative reduced cost column exists, the column
generation algorithm terminates with the optimal LP solution of RMP.
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Fig. 2 Iteration scheme of column generation process

To solve this complex subproblem, we follow the approach of [7]. There, the
pricing problem is decomposed into a one dimensional knapsack problem (1DKP)
and a relaxed 2DPP. 1DKP selects a subset of items I ′ ⊆ I prior to the packing
problem. We then solve the 2DPP with this reduced set, what leads to an increase in
speed for the latter problem. Notice that this comes at the cost of decreasing solution
quality, since we cut a quite large region of the solution space. If any item, which
is part of the optimal packing in this iteration, is not an element of I ′, then 2DPP is
not able to find this optimal solution, so it will be necessary to solve 2DPP for the
original set of items I in some iterations (Fig. 2).

First, we extend a MIP formulation for a traditional 2DPP first published in [7] to
take item types into account.Decision variables indicatewhether a pair of items is part
of the packing

(
ai , a j � 1

)
and if so, the relative position of two items

(
fi j , li j , bi j

)
.

Two non-overlapping items may ether be in front, behind, left, right, above, or below
of each other. The side-constraint is implemented as (I I I ). The problem’s goal is to
create a new pattern with minimal reduced costs.

Second, we additionally introduce a packing heuristic inspired by an algorithm
by [5] to speed up the process of creating a new column. This greedy algorithm starts
with an empty bin and aligns items along edges of already placed items until no more
items fit into the bin. It takes the side constraint explicitly into account but does not
guarantee to find the minimum reduced-cost packing, though it is much faster than
solving the subproblem to optimality with the above formulation.

The algorithm works as follows. Items are initially sorted by non-increasing rela-
tive value, so πi

wi hi
. The first item is then placed on the bottom left corner of the front

side. Now, items are placed iteratively by selecting the best valid position. These posi-
tions are generated based on the current packing and the shape of the current item.
Valid positions in the sense of this heuristic are all corner points of already placed
items. These points are copied to every side of the bin, no matter on which side
the actual item is positioned. The points are reduced to those, which allow placing
the current item without violating any constraint. We consider the point maximizing
the distance between item and borders of the bin the best point. Any other selection-
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z2DPP � min1 − ∑

i∈I
πi ai (I)

s.t. :

fi j + f j i + li j +
l j i + bi j + b ji +
(1 − ai ) +(
1 − a j

)

≥ 1 ∀i, j ∈ I :
i < j

(II)

li j + l j i + bi j +
b ji + (1 − ai ) +(
1 − a j

)

≥ 1 ∀i, j ∈ I :
i < j ∧ ti 	� t j

(III)

xi − x j +Wli j ≤ W − wi ∀i, j ∈ I (IV)

yi − y j + Hbi j ≤ H − hi ∀i, j ∈ I (V)

si − s j + S fi j . ≤ S − 1 ∀i, j ∈ I (VI)

xi ≤ W − wi ∀i ∈ I (VII)

yi ≤ H − hi ∀i ∈ I (VIII)

si ≤ D − 1 ∀i ∈ I (IX)

xi , yi , si ≥ 0 ∀i ∈ I (X)

li j , bi j , fi j binary ∀i, j ∈ I (XI)

ai binary ∀i ∈ I (XII)

rule can be used as well, but trying to place items of same type behind of each other
as soon as possible leads to good results.

We use this heuristic in every subiteration and only if it fails to find a promising
packing, will we relax the knapsack constraint and apply an exact algorithm for
2DPP-SC. This combination of the two approaches proved to be very efficient. But
the exact method is still computationally expensive, due to the geometrical structure
of the problem.

5 Experimental Results

For a numerical study, we use test instances described in [6]. Originally, items were
member of one of four groups (‘wide’, ‘tall’, ‘large’, small’), defining a range for
width and height of the individual item. Groups were extended with subclasses (‘A’,
‘B’) determining types of items. The first subclass assigns types independently of
an item’s dimensions. In instances of subclass ‘B’, item types are predetermined by
dimensions.

We defined bins to be of size W � 10, H � 10 with sides S � 2 and different
item types |T| � 2. For this setup, the algorithm was able to solve 179 of 400
instances to proven IP optimality, although its goal is to solve the LP-relaxation only.
Initial lower bounds were improved in 89 cases, and initial solutions in 77 cases, so a
significant number of instances—especially but not only small ones—could be solved
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to optimality by BFDH-SC. The absolute gap could be reduced to 0.78 (initially 1.2)
bins, which corresponds to a relative gap of 6.8%over all instances. Results prove, the
used algorithm is able to generate many columns in short time. Its biggest weakness
is to meet the termination criterion, so to prove that no new negative reduced-cost
column exists.

6 Conclusion

This thesis is the first work to introduce a new class of bin packing problems side
constraint. One of its main contributions is to formally describe this new problem
class. We proved such problems to be NP-hard and that the usage of a compact MIP-
formulation is practically unsolvable. We applied several lower bounds of related bin
packing problems and showed in a computational study that these bounds are quite
tight. Additionally, we developed a new best-fit algorithm for our new problem to
obtain fast and good solutions heuristically.

The development of a column generation procedure and extensive computational
experiments on a set of extended, standard benchmark instances is another main con-
tribution of this thesis. First,we decomposed the problemaccording toDanzig-Wolfe.
Due to the enormous complexity, we further decomposed the subproblemprocess and
introduced an additional knapsack problem, as well as a heuristic packing algorithm.
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A First Derivative Potts Model
for Segmentation and Denoising
Using ILP

Ruobing Shen, Gerhard Reinelt and Stephane Canu

1 Introduction

Segmentation is a fundamental task for extracting semantically meaningful regions
from an image. In this paper we consider the problem of partitioning a given image
into an unknown number of segments, i.e., we assume that no prototypical features
about the image are available, it is a so-called unsupervised image segmentation
problem. In a general setting this problem is NP-hard. Exact optimization models
such as the multicut problem [1, 2] are based on integer linear programming (ILP)
and solved using branch-and-cut methods.

Another aspect of image processing is denoising. Main tools for denoising are
the variational methods like the approach with Potts priors which was designed to
preserve sharp discontinuities (edges) in images while removing noises. Given n
signals, denote their intensities y = (y1, y2, . . . , yn) (e.g. grey scale or color values)
and define w = (w1, w2, . . . , wn) as the vector of denoised values. The classical
(discrete) Potts model (named after R. Potts [3]) has the form

min
w

‖w − y‖k + λ‖∇1w‖0, (1)

where the first part measures the �k norm difference betweenw and y, and the second
part measures the number of oscillations inw. Recall that the discrete first derivative
∇1x of a vector x ∈ R

n is defined as the n − 1 dimensional vector (x2 − x1, x3 −
x2, . . . , xn − xn−1) and the �0 norm of a vector gives its number of nonzero entries.
The scalar λ is a parameter for regularization. Recently, various modifications and
improvements have been made for the Potts model, see [4] for an overview.
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In general, solving the discrete Potts model (1) is also NP-hard. In [5] local
greedy methods are used to solve it. Recently, [6] uses an ILP formulation to deal
with the �0 norm for a similar problem in statistics called the best subset selection
problem.

Motivated by the above mentioned two models, we are interested in simultane-
ously segmentation and denoising. We assume that the input is an image given as
grey scale values (RGB images can be easily transformed) for pixels located on
an m × n grid. Let V = {p1,1, . . . , pm,n} denote this set of pixels. For represent-
ing relations between neighboring pixels, we define the corresponding grid graph
G = (V, E) where E contains edges between pixels which are horizontally or verti-
cally adjacent. A general segmentation is a partition of V into sets {V1, V2, . . . , Vk}
such that ∪k

i=1Vi = V , and Vi ∩ Vj = ∅, i �= j . So in graph-theoretical terms the
image segmentation problem corresponds to a graph partitioning problem.

The paper is organized as follows. In Sect. 2 we introduce our mixed integer
programming (MIP) formulation of problem (1) for the 1D signal case. We then
review the multicut problem in Sect. 3. Section 4 presents our main ILP formulation
for 2D images and introduces two types of redundant constraints. Computational
experiments of 3 instances are presented in Sect. 5. Finally, we conclude and point
to future work in Sect. 6.

2 The First Derivative Potts Model: 1D

Given n signals p = (p1, . . . , pn) in some interval D ⊆ R with intensities y =
(y1, . . . , yn). We call a function f piecewise constant over D if there is a partition of
D into subintervals D1, . . . , Dk such that D = ∪k

i=1Di , where Di ∩ Dj = ∅, and f
is constant when restricted to Di . Throughout the paper, we assume the input images
or signals contain noises. The task of segmentation and denoising then becomes
piecewise constant fitting. The fitting value for signal pi is denoted wi = f (pi ).

In 1D, the associated graph G(V, E) is simply a chain, where V = {pi | i ∈
[n]} and E = {ei = (pi , pi+1) | i ∈ [n − 1]}. Here, [n] denotes the discrete set
{1, 2, . . . , n}. We propose to formulate problem (1) as an MIP by introducing n − 1
binary variables xei , where xei = 1 if and only if the end nodes of ei are in different
segments. If so, the edge is called active, otherwise it is dormant. Sincew is restricted
to be constant within the same segment, it follows that wi+1 − wi �= 0 if and only if
pi and pi+1 are on the boundary (i.e., xei = 1). Thus the signals between two active
edges define one segment and the number of segments is

∑n−1
i=1 xei + 1. See the left

part of Fig. 1 for an example, where there are two active edges and three segments.
An MIP formulation for (1) is

min
∑n

i=1
|wi−yi | + λ

∑n−1

i=1
xei (2)
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Fig. 1 Left: 1D-fitting, 3 segments and 2 active edges. Right: multicut in a 4 × 4-grid

|wi+1 − wi | ≤ Mxei , i ∈ [n − 1], (2a)

wn ∈ R, i ∈ [n], (2b)

xei ∈ {0, 1}, i ∈ [n − 1], (2c)

where λ is the penalty parameter for the number of segments to prevent over-fitting,
andM is usually called the ”bigM” constant inMIP to ensure that the constraints (2a)
are always valid. It enforces that the pixels corresponding to the end nodes of a
dormant edge (xe = 0) have the same fitting value. Note that we use the �1 norm
because it can be easily modeled with linear constraints. Namely, constraint (2a)
is replaced by the two constraints wi+1 − wi ≤ Mxei and −wi+1 + wi ≤ Mxei , and
the term |wi − yi | is replaced by ε+

i + ε−
i wherewi − yi = ε+

i − ε−
i and ε+

i , ε−
i ≥ 0.

Moreover, it is more robust to noise than �2.
The solution of (2) gives the fitting value wi for the signal pi and the boundaries

of two segments are given by the active edges (xe = 1). From now on, for simplicity,
we will just specify models in form (2).

3 The Multicut Problem

The multicut problem [1] formulates the graph partitioning problem as an edge
labeling problem. For a partition V = {V1, V2, . . . , Vk} of V , the edge set δ(V1, V2,

. . . , Vk) = {uv ∈ E | ∃i �= j with u ∈ Vi and v ∈ Vj } is called themulticut induced
by V . We introduce binary edge variables xe and represent the multicut by a set of
active edges.

With the edge weight c : E → R representing the absolute differences between
two pixels’ intensities, the multicut problem [2] can be formulated as the following
ILP

min
∑

e∈E − cexe +
∑

e∈E λxe (3)
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∑

e∈C\{e′} xe ≥ xe′ , ∀ cycles C ⊆ E, e′ ∈ C, (3a)

xe ∈ {0, 1}, ∀e ∈ E, (3b)

Constraints (3a) are called themulticut constraints and they enforce the consecutive-
ness of the active edges, and in turn the connectedness of each segment. Thus each
maximal set of vertices induced only by dormant edges corresponds to a segment.
The right part of Fig. 1 shows a partition of a 4 × 4-grid graph into 3 segments where
the dashed active edges form the multicut.

Problem (3) is NP-hard in general and while the number of inequalities (3a) can
be exponentially large, violated constraints can be found efficiently using shortest
path algorithms. They are added iteratively until the solution is feasible [1, 2].

4 The First Derivative Potts Model in 2D

The main formulation is modeled as a discrete first derivative Potts model and is
obtained by formulating (2) per row and column.We also talk about adding redundant
constraints to speed up computation in Sect. 4.2.

4.1 Main Formulation

Given a 2D image, following notation from Sect. 2, we further divide E = Er ∪ Ec

into its row (horizontal) edge set Er and column (vertical) edge set Ec. Denote eri, j ∈
Er as the row edge (pi, j , pi, j+1) and eci, j ∈ Ec as the column edge (pi, j , pi+1, j ). Our
main formulation is

min
∑m

i=1

∑n

j=1
|wi, j − yi, j | + λ

∑

e∈E xe (4)

|wi, j+1 − wi, j | ≤ Mxeri j , i ∈ [m], j ∈ [n − 1], (4a)

|wi+1, j − wi, j | ≤ Mxeci j , j ∈ [n], i ∈ [m − 1], (4b)

wi, j ∈ R, i ∈ [m], j ∈ [n], (4c)

xe ∈ {0, 1}, e ∈ E . (4d)

4.2 Redundant Constraints

It is common practice to add redundant constraints to an MIP for computational
efficiency. A constraint is redundant if it is not necessarily needed for a formulation
to bevalid.However, theymaybeuseful because they forbid some fractional solutions
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during the branch-and-bound approach, where the MIP solver iteratively solves the
linear programming (LP) relaxation, or because they impose a structure that help
shrink the search space.

It is well known that if a cycle C ∈ G is chordless, then the corresponding con-
straint (3a) is facet-defining for the multicut polytope [2], thus providing the tightest
LP relaxation. Inspired by the multicut problem (3), in a grid graph, although the
number of such constraints is still exponential, it may be advantageous to add the
following 4-edge chordless cycle constraints

∑

e∈C\{e′} xe ≥ xe′ , ∀ cycles C ⊆ E, |C | = 4, e′ ∈ C (5)

to (4). Meanwhile, if the user has some prior knowledge or good guesses on the num-
ber of active edges, it might be beneficial to add the following cardinality constraints

∑
xe ≤ k (6)

per row and column in a given image.
We show detailed experiments in Sect. 5 on how adding the above two types of

constraints affects the computation.

5 Computational Experiments

Computational tests are performed using Cplex 12.6.1, a standard MIP solver, on
a Intel i5-4570 quad-core desktop with 16GB RAM. We compare three different
models where Model 1 is the multicut problem (3), Model 2 refers to our main
formulation (4), with and without the 4-edge cycle constraints (5), and Model 3 is
the main formulation (4) with both (5) and (6). We take two images from [7], and
resize them to 40 × 40 and 41 × 58. We add Gaussian and salt and pepper noise, and
set a time limit of 100s.

Parameter setting. We first compute the average intensity of each 4 × 4 pixels
block in the image, and then calculate the absolute difference of its maximum and
minimum value, denoted Y ∗. So Y ∗ somehow represents the global contrast of the
image. We set the constant M to Y ∗, and λ to 1

4σ1Y ∗, where σ1 is a user defined
parameter. When there exists an extreme outlier, model (4) tends not to treat the
single outlier as a separate segment, since doing so would incur a penalty of 4λ.
Denote Y r

i = (yi,1, . . . , yi,n), the constant kri in (6) of row i is set to the number of
elements in ∇1Y r

i that are greater than σ2Y ∗, where 0 < σ2 < 1 is some suitably
chosen parameter. Constant kcj is computed similarly for each column j .

Figure 2 shows the input images, detailed setting of the parameters, and the seg-
mentation results for the 3 models.

With andwithout (5).We first report thatModel 2 with (5) saves 0.9s in the second
instance, and narrows 23.5% of the Cplex optimality gap on average, compared to
without (5). In later comparison, we denote Model 2 as the formulation (4) with (5).



58 R. Shen et al.

Fig. 2 Segmentation results of three models. S: number of segments. t: running time. G: optimality
gap when it hits the time limit of 100s

Running time and optimality gap. Model 1 is very fast to solve, takes less than
0.1s in all three instances. Model 2 and 3 take 2.4 and 4.5s in the second instance
and hit the time limit in the other two. The optimality gap for Model 2 and 3 on the
first and the third instance, are 5.5, 27.8, 1.8 and 28.1% respectively.

Model 2 versus 3. We keep σ1 the same when comparing the effects of adding (6).
There is no clear advantage of adding the cardinality constraints (6), since for exam-
ple, it enlarges the optimality gap in the third instance while the solution is visually
better.

As we can see from Fig. 2, Model 1 is sensitive to noise and the parameter λ. As
a result, it is over partitioned, and is hard to control the desired number of segments.
On the other hand, although requiring more computational time, Model 2 and 3 are
robust to noise, less sensitive to parameters, and give better segmentation results. In
addition, we found it beneficial to add the 4-edge cycle constraints (5), while there
is no clear conclusion on whether to add the cardinality constraints (6) to (4).

6 Conclusions and Future Work

We present an ILP formulation of a discrete first derivative Potts model with �1
data term for simultaneously segmenting and denoising. The model is quite general,
firstly, it can use any heuristic method like [5] as an initial solution and provide a
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guarantee (lower bound) by solving an LP. Secondly, it could improve the initial
solution by finding a better solution within the branch-and-bound framework using
any MIP solver.

Decomposition algorithms such as superpixel lattice algorithms [8] could be used
as preprocessing towards larger images. We will also explore the possibilities of
applying our model to 3D images. Finally, since the underlying problem is piecewise
constant fitting, applications beyond the scope of computer vision are also of interest.
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Consumer’s Sport Preference as
a Predictor for His/Her Response to
Brand Personality

Friederike Paetz and Regina Semmler-Ludwig

1 Introduction

The increasing competition in saturated markets drives companies to adopt highly
sophisticated communicationmix strategies. This is the case especially for categories
of products that possess similar physical attributes, e.g., sport shoes. For these prod-
ucts, the brand attribute constitutes a key driver affecting consumers’ final purchase
decision. However, what affects consumers’ choice of a specific branded product?
Wright [11] has claimed that consumers often tend to choose aproduct that arouses the
most positive brand affect rather than taking certain product attributes into account.
Hence, recent literature has focused on central drivers for (positive) brand affects,
i.e., constructs that arouse positive brand emotions such as joy or happiness. In this
context, brand personality has been identified as a central driver for affective brand
loyalty, which encompasses the abovementioned brand-related emotions. Brand per-
sonality could be described according to a person’s personality and therefore refers
to personality characteristics, e.g., trustworthiness and activity, that are associated
with the brand. Recent studies have revealed that consumers prefer brands that are
aligned with their own personality traits (e.g., Mulyanegara et al. [7]). Because brand
personality is created by a company’s communication mix, companies may explore
the personality traits of their target market segments and attach the corresponding
personality traits to their brand. However, focusing on consumers’ personality traits
for market segmentation (i.e., market evaluation) is challenging since personality
traits are not directly observable.

In the context of unobservable segmentationvariables/bases,Wedel andKamakura
[10] stated that three of six criteria for successful market segmentation variables, i.e.,
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stability, accessibility and responsiveness, are not clearly supported in the relevant
literature (p. 14), while identifiability, substantiality and actionability are supported.
However, linking the unobservable variables underlying personality traits to observ-
able variables may solve these drawbacks. In particular, the criterion accessibility,
which refers to the degree to which the target market segment is reachable through
a company’s communication efforts, is a key variable identified in the research of
drivers of affective brand loyalty. The existence of an easily observable variable,
which could be linked with consumers’ personality traits and may serve as a predic-
tor of consumer response to brand personality, may therefore simplify and reduce a
company’s communication efforts.

In this contribution, we search for such an easily observable variable. We explore
whether a consumer’s preference for/choice of a specific sport and, correspondingly,
his/hermembership in a specific sport cluster, may serve as an appropriate observable
variable in this context and, hence, as a predictor of the consumer’s response to brand
personality, i.e., affective brand loyalty.

In the next section, we review the theoretical bases of consumer and brand person-
ality and discuss relations between these two constructs. In the third section, we use
empirical data to explore the personality traits of several sport clusters. Furthermore,
we give recommendations on how these results may be used within communication
mix strategies. Finally, we conclude our results by explicitly pointing out the appro-
priateness of a consumer’s sport preference as a predictor of the consumer’s response
to brand personality, i.e., affective brand loyalty.

2 Consumer Personality and Brand Personality

Since the 1980s, there has been a consensus about five (independent) personality
traits that determine a person’s personality. This Big Five model constitutes of the
following five factors: agreeableness, conscientiousness, extraversion, neuroticism
and openness to experience (cp. McCrae and John [6]).While agreeableness is linked
to facets such as altruism and modesty, conscientiousness is connected with traits
such as efficiency and dutifulness. Neuroticism summarizes facets such as vulner-
ability and impulsiveness, and extraversion is described by traits such as warmth
and talkativeness. Openness could be described by fantasy and wide interests. To
measure the degree of each of these five factors in a person, several rating-based
tests have been developed. The most popular test constitutes the NEO-PI-R test of
Costa and McCrae [2], which lays the ground for most subsequent tests. Almost all
tests rely on Likert scales, where respondents rate their self-application to different
personality statements. For example, “I am efficient” is a facet of consciousness.
These facet results are subsequently pooled to yield an overall result for the focal
Big Five factor.

In accordancewith consumer personality, brandpersonality could bedefined as the
“set of human characteristics associated with a brand” (Aaker [1], p. 347). Aaker [1]
workedout five factors that determine a brand’s personality, i.e., sincerity, excitement,
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Fig. 1 Relations between consumer personality, sport cluster membership, brand personality and
affective brand loyalty

competence, sophistication and ruggedness. These factors could be described by
different facets, e.g., sincerity refers to cheerfulness, excitement to imaginativeness,
sophistication to glamor and ruggedness to toughness (p. 351). Brand personality
is created by company’s communication mix, e.g., an advertisement that aligns the
brand with certain personality traits. For example, Thomas and Sekar [9] found that
the sport brand Nike is associated with ruggedness.

Aaker [1] has found parallels between three of the Big Five factors and brand
personality factors: agreeableness and sincerity, extraversion and excitement, and
consciousness and competence. Several studies identified relations between con-
sumer and brand personality: Lin [5] found positive relationships between the Big
Five factors agreeableness and extraversion and the brand personality trait excite-
ment as well as a positive relation between the Big Five factor agreeableness and the
brand personality traits of sincerity and competence. Geuens et al. [3] found positive
correlations between consciousness resp. extraversion and competence as well as
between agreeableness resp. consciousness and sincerity.

Brand personality has been identified as a central driver for affective brand loy-
alty. Affective brand loyalty constitutes one part of brand loyalty as it refers to a
consumer’s preference for a specific brand. Affective brand loyalty could be seen
as a predictor of action loyalty, which constitutes another part of brand loyalty and
could be measured by actual purchases (Lin [5]). Since consumers prefer brands that
are aligned with their own personality traits, a consumer’s personality may be used
as a predictor for his/her affective brand loyalty (Lin [5]). The bottom part of Fig. 1
illustrates these relations. However, a consumer’s personality traits are rarely directly
observable. Hence, the search for amore easily observable variable (here: consumer’s
sport cluster membership), which may finally serve as a predictor for affective brand
loyalty, is appropriated to reduce a company’s communication efforts. In this con-
tribution, we therefore check whether customers in different sport clusters differ in
their personality traits. In this case, a consumer’s membership in a specific sport
cluster would mirror his/her personality traits (cp. dashed double arrow in Fig. 1),
which would subsequently predict his/her affective brand loyalty as a result of brand
personality (cp. dotted arrow in Fig. 1).
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3 Empirical Study

To answer our research question, we conducted an empirical study at a German uni-
versity. A total of 153 students of different study courses participated. Most of the
respondents were male (67%), and the mean age was 26 years. The respondents were
asked to answer two questionnaires. The first questionnaire was related to the respon-
dents’ sports activities. The respondents were asked about their favored sports. The
second questionnaire encompassed a Big Five self-test adopted from Saum-Aldehoff
[8], pp. 190–198. Respondents’ self-reports on different facets of the Big Five factors
were collected by using rating-scales. The score for each factor ranges from −20 to
20, where a high/low score reflects a high/low level of the focal Big Five factor. To
handle the high number of reported sports activities, we followed the advice of Hart-
mann et al. [4], p. 43, and built seven sport clusters, i.e., sport games (39 members);
fitness sports (36 members); endurance-trained athletes such as swimmers, long-
distant runners and triathletes (21 members); adventure/nature sports (17 members);
sport fighting (14 members); dancing/gymnastics (13 members); and others, such
as riders (10 members). Furthermore, a special cluster was built for students who
refused to state their preferred sports (three members). To check for personality dif-
ferences between those clusters, we pooled respondents’ individual scores of the Big
Five factors for each sport cluster and conducted one-way ANOVAs. Extraversion
(p = 0.077) and openness to experience (p = 0.033) turned out to differ signifi-
cantly across clusters. While conscientiousness (p = 0.121) was on the threshold at
a 90% significance, neuroticism (p = 0.751) and agreeableness (p = 0.532) showed
no significant cluster-specific differences.

To gain further insight, we subsequently conducted pairwise t-tests between sport
clusters for the Big Five factors that turned out to differ at least weakly signifi-
cantly. Fig. 2 depicts bar charts, which plot the means and standard deviations for
extraversion, conscientiousness and openness to experience in each sport cluster.

Fig. 2 Means of conscientiousness, openness and extraversion in sport clusters
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On average, sport players (3.692), sport fighters (3.286) and others (2.333) rate
themselves as weakly extraverted. These sport clusters are (at least by trend) less
extraverted than fitness sportsmen (6.333, p < 0.05) and adventure/nature sports-
men (6.588, p ≤ 0.122). Fitness sportsmen are the most conscientious (11.167).
Their results differ (at least by trend) from the means of sport players (9.307,
p = 0.105), dancers/gymnasts (8.307, p = 0.121) and significantly from adven-
ture/nature sportsmen (7.824, p = 0.073) and others (6.800, p = 0.042). Adven-
ture/nature sportsmen exhibit the highest mean (10.294) of openness to experience.
They score significantly higher than sport players (6.180, p = 0.031), sport fighters
(5.286, p = 0.024) and endurance-trained athletes (7.095, p = 0.081). Obviously,
differences in personality traits across sport clusters exist. In accordance with Fig. 1,
a consumer’s membership in a specific sport cluster mirrors the consumer’s person-
ality traits. Hence, the consumer’s sport cluster membership predicts affective brand
loyalty resulting from brand personality. From a practical point of view, companies
may use this result to simplify their communication strategies for creating brand
personality. To harmonize brand personality and the personality of the target market
and thereby achieve affective brand loyalty of consumers, companies may infer a
consumer’s personality from his or her sport cluster membership. For example, if a
company wants to sell hiking boots, it could use information on highly extraverted
and open adventure/nature sportsmen and attach the corresponding personality trait
to its brand. Hence, rather than exploring the personality traits of their target mar-
ket by cost-intensive market surveys, companies may simply focus on the (easily
inferable/observable) product-corresponding sport cluster to draw conclusions for a
harmonious brand personality. This approach saves communication costs and there-
fore contributes to the company’s profit.

4 Conclusions

This study aimed to explore whether a consumer’s preference for a specific sport -
measured by the consumer’s membership in a specific sport cluster - predicts the
consumer’s affective brand loyalty as a result of brand personality. To answer this
research question, we used empirical data on personality traits - measured by the
popular Big Five approach - and sport cluster memberships of respondents. Using
one-wayANOVA and pairwise t-tests, we found evidence that different sport clusters
differ significantly with respect to certain personality traits. Since the recent litera-
ture has identified a consumer’s personality traits as predictors for his/her response
to brand personality, our results imply that a consumer’s sport cluster membership
is a key predictor for his/her affective brand loyalty. From a practical point of view,
consumers’ sport cluster membership - compared to their personality traits - is eas-
ily observable. Hence, companies may use our results to simplify and reduce the
communication efforts associated with creating brand personality.
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Detecting Changes in Statistics of Road
Accidents to Enhance Road Safety

Katherina Meißner, Cornelius Rüther and Klaus Ambrosi

1 Introduction

When trying to detect changes in car accident statistics, police analysts are facedwith
a large amount of incidents on the one hand andmany attributes with several attribute
values leading to multitudinous possible combinations on the other. Of course, not
all combinations and changes therein are essential to decide upon police actions to
enhance road safety. But defining potentially interesting combinations to track in
advance can lead to a narrow perspective on the actual situation. If there was an
increase in the frequency of a particular combination, which had not manually been
predefined, this increase would remain unrecognized and therefore untreated by the
police for some periods. Tracking changes manually in these numerous operating
figures is not possible.

We propose an automated approach based on Frequent Itemset Mining to detect
significant changes in the statistical figures. It is basedon theknownApriori algorithm
which we apply to monthly slices of accident data to retain a sequence of monthly
support values for each itemset. With these sequences, we try to classify the itemsets
according to their appearance frequencies in each month. One major question to be
answered within our framework is how to find changing itemsets that are worth being
presented to the police analyst.

This paper is organized as follows: In Sect. 2, the related work is reviewed. The
data set and the preparations made are then introduced in Sect. 3 before the algorithm
and its parameters are presented in Sect. 4. With the frequent itemsets found for each
month, we show how to detect changes in these data structures in Sect. 5. Finally,
we discuss our conclusions and suggest future work in Sect. 6.

K. Meißner (B) · C. Rüther · K. Ambrosi
Department of Economics and Information Systems, University of Hildesheim,
Universitätsplatz 1, 31141 Hildesheim, Germany
e-mail: meissner@bwl.uni-hildesheim.de

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_10

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_10&domain=pdf


68 K. Meißner et al.

2 Related Work

There are some interesting approaches in change mining on the one hand and in
association rule mining on accident data on the other hand. Song et al. [9] and Chen
et al. [3] showed how to mine changes in customer behavior. They both focused on
pattern mining in a marketing application. In a more general approach, Liu et al. [6]
presented a method to distinguish between stable and trend rules. This approach is
used for change detection in our framework.

Böttcher et al. [2] built a framework for change mining and defined the term itself.
Baron et al. [1] divided the data mining process in two parts, mining the model and
mining the changes, to speed up the mining process on evolving data.

As to the analysis of road accident data, Geurts et al. [4] made use of association
rule mining to evaluate accident causes in so-called black spots, i. e. places where
accidents regularly happen, and in contrast, the causes of accidents in other places in
Belgium. Based on accident data from Florida, Pande et al. [8] conducted a market
basket analysis to find associations between the accidents’ characteristics. In 2014,
Moradkhani et al. [7] did the same for UK-accident data, which is the data used
for this research. The main focus of all of these approaches lies on finding the root
causes for accidents. None of the above evaluated the change in accident statistics.

3 Data Preparation

The GB-accident data is openly available for the years 2005–2015. All accidents
with personal injuries are provided with statistical information. The data set consists
of 1.8million accidents with 3.5million vehicles and 2.6million casualties, both
having a one-to-many-relationship to accidents which has to be dissolved during
data preparation. Some of the 55 variables utilized are e.g. date and time of the
accident, weather conditions, type of vehicle, and age of casualty.

We decided to focus on the years 2014 and 2015 to build the analytics framework.
With no other filters applied, we have a data set D consisting of 285,000 transac-
tions with more than 300,000 different items (attribute-value-pair) after applying the
following reduction methods. A single accident consists of 19–85 different items.
Attributes containing location information were removed, as they were too detailed
to find relevant frequencies. Attribute values like ‘data missing’ or ‘none’ were also
not considered in order to prevent the mining algorithm from evaluating these unin-
teresting items. Moreover, attribute values with an occurrence level above 95% were
pruned in advance.

Most of the attributes are provided as categorical data. The ones that are not, for
example ‘hour of accident’ or ‘age of vehicle’, had to be discretized first. This is
done automatically by building clusters with equal frequencies.

To analyze changes over time, D is finally separated into monthly data sets Di

and transformed to transactional data in order to find frequent itemsets.
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4 Finding Frequent Itemsets

The Apriori algorithm for detecting frequent itemsets is performed on each Di ∀ i =
1, . . . ,m, resulting in m = 24 different sets of itemsets Ii . An itemset is considered
frequent in our framework if at least 3% of the monthly data Di support, i. e. contain,
its combination of attribute values (minsupp = 0.03). For months with about 12,000
accidents, the algorithm detects about 55 million frequent itemsets. Because this
amount is too high to find any interesting changing patterns, Ii must be condensed
to a representative level. Therefore, the lossless representation of closed frequent
itemsets is chosen. By removing supersets of itemsets with exactly the same support
as the itemset itself, the amount is drastically reduced. The resulting itemsets are
more general and therefore more applicable in practice than the pruned superset.

Xiong et al.’s [10] approach of a hyperclique pattern miner is used to only keep
potentially interesting patterns, even when using a quite low minsupp. By applying
this approach, all itemsets in Ii with an all-confidence value below 15% (minAconf )
are pruned, as the itemswithin these sets tend have a poor correlation. All-confidence
is defined as all-confidence(X) = supp(X)

maxx∈X {supp(x)} , where maxx∈X is the maximum
support of all items x within itemset X . For association rule induction this would
imply that all rules derived from this itemset X have a minimum confidence of
all-confidence at least.

Association rules were not considered in the final framework. The dependence
of items which the rules seemed to illustrate was contradictory, since many rules
with similar confidence were found having the shape A ⇒ B and B ⇒ A. Sorting
them by confidence and removing the duplicates led to difficulties when joining the
rules of two different intervals, because it could not be ensured that from one itemset
the same rule was kept for all months. Hence, changes within the rules support or
confidence could hardly have been detected that way.

The thresholds forminsupp andminAconf are determined by trading off the huge
amount of itemsets returned with low parameter values and the possible interesting
itemsets being pruned when using values that are too high. The data structure with
an immense amount of items but only a relatively small number of transactions per
month is optimal for a depth-first search algorithm like Eclat. Surprisingly, experi-
ments on the data sets with different parameter combinations showed that Eclat was
significantly slower than Apriori in finding closed frequent itemsets while the task
of finding all frequent itemsets was performed faster.

5 Detecting Changes

The preparation for the change detection process is conducted in accordance with Liu
et al.’s [6] approach. The itemsets Ii found for each month i are joined to one set of
itemsets I to obtain support sequences of lengthm for each itemset. Missing support
values for parts of the sequence,which occurwhen the respective itemset is infrequent
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Fig. 1 Monthly progression of changing, semi-stable and stable itemsets

in one month’s accident data Di or has an all-confidence value below the threshold,
are filled with the itemset’s support generated on the entire transactional data D
(overall support). This way, unintended breaks in the sequential data are avoided.
Itemsets with an overall support or an overall all-confidence below the thresholds
defined in Sect. 4 are then pruned to further reduce the amount of itemsets.

Change detection for each itemset X j ∈ I ∀ j = 1, . . . , |I | is initiated by calcu-
lating the relative deviation devi (X j ) between the itemset’s support suppi (X j ) ∀ i =
1, . . . ,m for each month and the corresponding mean(X j ) of the monthly support
values as shown in Eq. (1).

devi (X j ) = suppi (X j ) − mean(X j )

mean(X j )
, i = 1, . . . ,m (1)

Based on this computation we define two thresholds εs and εc to classify all itemsets
X j according to their change level unambiguously.

Stable itemsets Is with |devi | ≤ εs ∀ i = 1, . . . ,m.
Semi-stable itemsets Iss with |devi | ≤ εc ∀ i = 1, . . . ,m and ∃ i : |devi | > εs .
Changing pattern itemsets Ic with |devi | > εc ∀ i = 1, . . . ,m.

The thresholds εs and εc are determined by evaluating the itemset progresses visually
using graphs. In particular, we examined the itemsets within these classes that have
either a very high or very low sumof deviations, as the probability ofmisclassification
is severe for these itemsets. In Fig. 1, we show some characteristic sequences for
itemsets within the classes. Due to the boundary to both other classes, the class of
semi-stable itemsets has to be evaluated for both thresholds εs and εc (cf. Fig. 1b, c).

We get similar class sizes for the changing and stable class with about 70,000
itemsets each, while the semi-stable class contains nearly twice the number of item-
sets. Since the changing itemsets are most important for our purpose, these will be
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Fig. 2 Sample changing itemsets with particular progresses

presented to a police analyst first, while stable and semi-stable itemsets do not need
to be investigated in the first place. The remaining class size is still too large to
monitor all changes. Therefore, we propose to rank the changing itemsets by their
amplitude of support values.

Based on our purpose to detect changes in accident characteristics, Fig. 2 displays
some typical sequences for changing itemsets. Itemsets with no clear direction as in
Fig. 2a or providing outliers in Fig. 2b are not following any trend and can there-
fore hardly be predicted. They have to be detected by measuring the support growth
between two subsequent months for example, and presented to police analysts for
further investigation. Itemsets with seasonal change as in Fig. 2d, are mostly depend-
ing on weather conditions and are therefore not surprising, which is why they can be
neglected. Itemsets with structural breaks, as Fig. 2c shows, should be detected as
fast as possible, since they point out a major change in the underlying data.

6 Conclusion and Future Work

Conclusion We were able to present a basic framework to detect change patterns in
road accident statistics. Our assumptions were evaluated using the road safety data
set for Great Britain.With a lowminsupp and a condensed representation of itemsets,
we were able to find the most interesting itemsets. We then divided the itemsets in
three classes according to their dispersion from the mean support over the whole
sequence and ranked the itemsets by their amplitude.

Research Agenda To utilize our framework in police practice the approach requires
further research. For instance, the classification of change levels could not only be
based on basic thresholds for the deviation from mean but also on growth rates
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for different time intervals. A time series analysis for each itemset sequence would
also be conceivable to detect seasonal changes as well as linear trends. As can be
seen in Fig. 1, many itemsets have the same shape of progression of the monthly
support. Here, the approach of fundamental rule changes [5] could further reduce the
number of itemsets without any information loss. With an approach to cluster these
sequences, we could however refrain from using manual thresholds for detecting
changing sequences at all.

The geographical aspect has not been considered yet. Taking the accident location
into account, e. g. by geographical clustering, will lead to even more useful results
for police forces, as they will be enabled to act preventative on local black spots and,
even more important, on geographically shifting black spots.
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AMixed Integer Linear Program
for Election Campaign Optimization
Under D’Hondt Rule

Evren Güney

1 Introduction

Prior to elections political parties try to influence voters by investing their resources
in marketing campaigns [9]. The voters who do not have a clear decision about their
choice, which are called swing voters are the primary targets of these campaigns.
We define the Election Campaign Optimization Problem (ECOP) as determining the
best way to allocate a political party’s resources to maximize the seats or member of
parliaments (MPs) won. The effect of advertising to convince voters has been studied
extensively in designing the best advertising strategy or determining the marketing
mix [11]. Most of the studies focus on computing the magnitude and significance
of the effect of spending by using various regression analysis methods. Jacobson
[8] is one of the first researches who tests the significance of monetary support
for success in elections using regression analysis, which indicate a positive relation
between the two and the significance of this relation is higher for the challengers than
for the incumbents. Many other studies also focus on the significance of spending
money for gaining votes reporting a positive correlation between the two, but some
studies claim that the effect is statistically insignificant [4]. Also there is an on going
discussion about the higher significance of financial support for challengers rather
than the incumbents [2].

From the aspect of optimization several studies focus on different issues of
the problem. Fleck [5] presents how voting effects the allocation of governmental
resources by an optimization model which maximizes the probability of re-election
under a limiting budget constraint. Belenky [1] develops a knapsack model for
approximately calculating the minimal fraction of the popular vote needed to elect a
US President in the Electoral College. Ostapenko et al. [10] formulates the problem
of choosing an optimal strategy for allocating the scarce resources among regions.
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A game theoretic approach is proposed and the existence of a unique equilibrium is
proven.

In this study, the objective is to determine the election regions to focus or to
market heavily so that the party wins extra MPs in those regions. To achieve this, we
provide mathematical relations to compute the minimum amount of votes needed to
pass the opponent to win extra seat(s). We base our studies on the D’Hondt election
rule, which is one the most widely used multiple-winners election rule [3]. Next,
we develop a mixed integer linear program (MILP) for the ECOP and test it on the
Turkish Parliamentary elections data.

The organization of the paper is as follows: In Sect. 2 basic assumptions and
the mathematical methodology are presented. In Sect. 3, the details of the ECOP is
provided as a MILP. In Sect. 4 experimental analysis and results are presented. The
last section concludes the paper.

2 Election Model, D’Hondt Rule and Calculating
the Amount of Necessary Votes

D’Hondt rule is one of the most widely used multiple-winners election method
which determines the allocation of seats in the countries having a parliamentary
and more than 40 countries are actively using it [3]. According to the D’Hondt rule,
in an election region which has N seats, the seats are distributed among the parties
according to the following steps. First, the votes of each party are divided into N
consecutive numbers from 1 to N to determine the so called “quotients”. Next, all
quotients are ranked in a descending order to construct a sorted list. Finally, N seats
are allocated one-by-one to the parties whose quotients are in the top N ranks of the
sorted list.

To compute the minimum amount of necessary votes to win an extra seat under
the D’Hondt rule, we need to develop certain mathematical relations. First we will
focus on the simple case where there are only two competing parties and then we
are going to extend our results for the general case. Let I show the set of parties
attending to the election with |I| = I . Assume that according to the poll results the
votes of the participating parties are estimated and the vote for party i is vi , i ∈ I.
Also let vs be the amount of swing votes according to the polls again. Then the total
amount of valid votes is vT = vs + ∑

i∈I
vi .

Assume that there are K seats to be distributed among two political parties with
expected votes v1 and v2, respectively. Hence, the total votes for this election region is
vT = v1 + v2 + vs . Let q1k and q2k shows the set of quotients computed by dividing
the votes of each party to the D’Hondt divisors k = 1, 2, . . . , K . So q11 = v1, q12 =
v1/2,…, q1K = v1/K . Also let’s assume that out of a total of K seats the first party is
taking n of them and the second party is taking K − n, where n ≥ K − n. Therefore
the nth quotient of first party should be greater than the (K − n + 1)-th quotient,
otherwise thenth seatwould go to the secondparty.Mathematically,q1n > q2(K−n+1),
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or equivalently v1/n > v2/K − n + 1. Let’s define λ = (K − n + 1)/n, showing
the ratio between the next integer greater than the number of seats won by the
challenger and the number of seats of the incumbent party.

Before themarketing campaign by the challenger party, the swing votes vs are split
among the two parties proportional to their estimated votes. After the split of swing
votes, the total votes of parties are v1 + v1/(v1 + v2) and v2 + v2/(v1 + v2). Now
when the challenger performs the extra marketing activities (by shifting some of the
campaign budget that is previously allocated to some other region) and persuades
vx voters, where vx < vs then only the remaining swing votes (vs − vx ) are split
between two parties proportional to their initial votes. Given this setting we can state
the following proposition. If the amount of swing votes vs in a region is greater than
vx , then there is definitely an opportunity for the challenger party to win an extra seat.
Conversely, for those election regions with vs < vx , there is no chance of winning an
extra seat even if all the swing voters are convinced to choose the challenger party.

Proposition 1 Given there are a total of K seats and the incumbent winning n seats,
than the minimum number of votes vx necessary for the challenger party to win one
extra seat, i.e., K − n + 1 seats under the D’Hondt rule is vx > vT

(λv1−v2)

v1(1+λ)
.

In the multiple party case with I > 2, the ranked quotients of parties are mixed, so
to compute the necessary votes required for an additional seat, one has to determine
the first non-winning quotient qNW and its ranking r NW for the challenger party and
the last winning quotient just ranked before qNW , i.e. qLW with rank r LW of the
corresponding party. Here r NW and r LW show the rank of the seat within the corre-
sponding party’s list. Let λ = (r NW )/r LW . Also let v1 and v2 show the votes of the
last winning party and the challenger (first non-winning) party, respectively. Lastly,
let vc = vT − v1 − v2 − vs , which is the total expected votes of all the remaining
parties, before distributing the slack votes.

Proposition 2 Given there are a total of K seats and I competing parties with a
total vote of vT = vs + ∑

i∈I
vi , the minimum number of votes vx necessary for the

challenger party to win an extra seat under the D’Hondt rule is vx > vT
(λv1−v2)

v1(1+λ)+vc
.

The proofs of the propositions are available in our previous work [6] and due to
lack of space they are skipped.

3 A MILP Formulation for ECOP

ECOPseeks for the optimal resource allocation strategy for a single political party and
aims tomaximize to total number of seatswon. Let the unit cost of persuading a swing
voter be c, which is constant and equal for any party and region. Determining c is a
hard task as it is difficult to materialize the monetary value to persuade an individual
by a political party’s marketing campaign. However, there are many studies that
focus on how to find the unit cost of a vote [2]. Let j ∈ J represent the set of election
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regions and m j = cvx j represents the minimum amount of budget to win one more
MP in region j . They are computed by the mathematical formulae presented in the
previous section. Similar tom j , one can compute n j , themaximum amount of budget
a party can cut in region j so that it still gets the same number of seats even when
n j/c votes are lost. Finally, let s j = cvs j , that is the required budget to cover all the
swing votes in region j .

We assume that, given the level of swing votes and the voter population of the
election regions, all parties allocate their budgets proportional to the amount of swing
voters. Namely, if the number of swing votes in region j1 is twice asmuch as of region
j2, then the budget allocated to region j1 is also twice of the budget of region j2.
Another assumption is the budgets of parties are considered to be proportional to their
expected votes. This rough assumption is again reasonable, because the government
subsidy for political parties is usually proportional to the number of current seats
in the parliament and the amount of sponsorship revenues of the parties are again
usually parallel to their popularity and thus their estimated votes. Therefore, when the
poll results are unleashed, each party allocates its budget among regions proportional
to the swing votes of the region. Then the amount of swing votes they win are exactly
proportional to their estimated votes. This assumption is also reasonable, because in
the public polls most of the time the swing votes are distributed among the parties
proportional to their original vote rates and since we assumed the budgets to be
proportional to their expected votes, we will get the same ratios. Shortly, if the polls
show that party A has twice the votes of party B, then party A will again win twice
more swing votes than party B.

Observe that shifting some of the budget from various regions may be beneficial,
only if the extra budget can result in winning extra seats. In other words if m j1/c <
n j2/c, then the party can shift the required budget m j1 from region j2 to region j1
to win one more seat in region j1 without losing a seat in region j2. By exploiting
this strategy for all possible regions a party can try to win as many seats as possible.
Under a parliamentary system the number of seats that can be selected from a region
is usually more than one. Especially in populous regions a party can aim to win more
than one additional seats when the number of swing votes is respectively higher than
the average votes necessary for a single seat. Thus a second index k is introduced
representing the kth additional seat in a region. Let K j be the maximum possible
number of seats that can be won in region j . K j are simply the last index k where∑

k
m jk ≤ vs j holds, meaning that the amount of swing votes in a region are large

enough to win K j more seats.
Two sets of continuous decision variables u j and w j are introduced to represent

the amount of budget allocated to or removed from region j, respectively. Also let x jk

and y jk be binary variables showing if the party wins or loses the kth seat in region
j . Then the following MILP represents the ECOP:
ECOP:

max z =
∑

j∈J

∑

k∈K j

x jk − y jk (1)
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s.t.
∑

j∈J
u j = ∑

j∈J
w j (2)

x jk ≤ u j

m jk
j ∈ J, k ∈ K j (3)

w j

n jk
− 1 ≤ Myjk j ∈ J, k ∈ K j (4)

u j ≤ MI j j ∈ J (5)

w j ≤ M(1 − I j ) j ∈ J (6)

x jk, y jk, I j ∈ {0, 1} j ∈ J, k ∈ K j (7)

0 ≤ u j , 0 ≤ w j ≤ s pj j ∈ J (8)

The objective function (1) maximizes the total number of seats won. First con-
straint (2) balances the amount of budget shifted (since c is constant it is equivalent to
the amount of votes shifted) among regions. Constraints (3) and (4) are the threshold
constraints. In other words, to win the kth seat in region j the budget u j allocated
should be at least m jk . Similarly, a party will only lose a seat if the total amount of
budget removed is at least n jk . Constraints (5) and (6) disallow to both invest and
save budget at the same region together with the auxiliary binary variables I j . Lastly,
constraints (7) and (8) are bounds and binary requirements on the decision variables.
Notice that s pj is the estimated amount of swing votes that the party will win with its
normal campaigns.

4 Computational Results

The computational results on the performance of our mathematical model and some
insights on the effect of certain parameters on the optimal solution are given in
this section. The 2015 (June) Turkish Parliamentary Election data is used in our
analysis, where 4 major parties compete. There are some other small parties as well
as independent candidates but to simplify the computations, they are discarded from
the data. There are 85 election regions in Turkey with a total of 550 seats. mik and
nik values are computed using the propositions developed in Sect. 2 and then they
are used as parameters of the MILP. All the analysis are carried out for the second
party, but similar results are obtained for the remaining parties as well. We run our
tests by varying the following two parameters: swing vote rate percentage (s = 1%
to s = 20%) and unit vote cost (c = 1 to c = 50). The integer programs are coded in
C# environment and CPLEX 12.6 callable library [7] is used.

The results are displayed in Fig. 1. Observe that by shifting budget among regions
a significant number of additional seats can be won. Also the effects of swing votes
or unit vote cost can be be easily tracked. As the unit costs decrease or swing vote
rate increases, the gain increases. Finally, notice the diminishing returns behavior,
where the effects of per increase in swing vote rate or decrease in unit cost decreases
gradually.
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(a) Effects of unit vote cost (b) Effects of swing vote rate

Fig. 1 a Effects of unit vote cost. b Effects of swing vote rate Effects of unit vote cost and swing
vote rates

5 Conclusion

In this study the election campaign optimization problem is formulated and solved.
Various mathematical relations are proposed for easily computing the necessary
amount of votes to identify potential gains according to poll estimates prior to the
elections. Computational analysis show that a party can significantly increase its
number of seats in the parliament without an increase in the total votes or marketing
budget, but rather carefully allocating its budget in the best way. As a future work
one can focus on the problem with a game theoretic approach, where the competitors
will also benefit from similar optimizations.
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Long-Term Projections for Commodity
Prices—The Crude Oil Price Using
Dynamic Bayesian Networks

Thomas Schwarz, Hans-Joachim Lenz and Wilhelm Dominik

1 Introduction

The commodity exploration and production industry has project life cycles of ten,
twenty or up to 60 years. The scenario technique is a methodology for allowing
such long lead times. It enables making assumptions and statements about the future
system state with subject, time and region well defined. A “what-if”-analysis allows
generating various future world states of interest.

In contrast to econometric models or time series analyses, scenario technique is
able to make predictions on forecast horizons larger than 10 years. This is inevitable
as the entire project development and production period (full project life cycle) may
last for up to 60 years. This paper proposes a new mathematical approach for future
projections of prices for those long horizons using a Dynamic Bayesian Network
(DBN). The DBN approach is verified at the crude oil price example.

The advantage of using DBN over econometric models is twofold. First, the fore-
cast horizonmay be very long. A comprehensive overview on forecasting specifically
the various prices of oil give [1]. However, they do not provide any detail on very
long-term forecasts.

Second, a DBN allows analyses of different future states simply by changing
assumptions towards for example extreme case scenarios. In order to approach the
variability of the input variables, the possible input range may be divided into inter-
vals. Whereas, the uncertainty of future developments is modeled by probabilities
for the transition from one state to another. Additionally, in DBN linguistic terms can
replace real numbers, which may make it easier to describe possible future states.
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2 Crude Oil Price and Oil Field Life Cycle

For the application of the scenario technique in order to project commodity prices,
crude oil is chosen for two reasons. First, crude oil is the most important commodity
as it is the basis for many industries. It is a global product, which is produced in
various regions around the globe. This is combined with a global market for crude
oil and its derivates. Furthermore, there are financial products on oil and oil can be
shipped to any place around the globe.

Second, the oil market is rather liquid. The trading volume is reasonable as well
as the number of players at the market. This holds in comparisons for example to the
rare-earth elements.

There are various hydrocarbons and within them various crude oils with different
characteristics. The two most important crude oils are Brent from the North Sea and
WTI from the US. They are the most traded crude oils and often the price setters for
other crude oils and hydrocarbons and their further derivatives.

2.1 Brief Overview of Oil Price History

In history, the price of crude oil is volatile. That means, that the forecast and espe-
cially the long-term forecast of the crude oil price is hardly possible using common
econometric models, which do need a sufficiently long supporting area. However,
having those long supporting areamay yield to an inclusion of different price regimes.
Analysing the crude oil price for horizons up to a century, which is necessary for
forecasting 60 years, shows, that there are multiple changes in the crude oil price
regime.

Figure 1 shows the annual crude oil price from 1861 to 2015 [2, p. 14]. The
Nominal Values curve shows no significant changes after a small peak in the 1860s
until the mid-1970s. That is, there is no change of crude oil prices at all for around
100 years. Beginning in the mid-1970s, the curve shows a higher volatility with a
strong increase in prices from 2000 onwards.

In contrast, the 2015 Prices, which are the nominal values deflated using the
Consumer Price Index for the US, show a strong volatility already in the first 20 years
until 1880. Afterwards, there are again peaks, however, the price always returns to
a USD-20-level. Likewise the Nominal Values curve, the 2015 Prices curve shows
a stronger volatility with three major peaks in 1980, 2008 and 2011 with a price of
more than USD 100.

2.2 Oil Field Life Cycle

From a user perspective being e.g. an oil company, it is necessary to project the future
development of crude oil prices. For any development and production project, it is
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Fig. 1 Annual Crude Oil Price from 1861 to 2015. 2015 Prices: Nominal Values deflated using the
Consumer Price Index for the US Data for 1861–1944: US average. Data for 1945–1983: Arabian
Light posted at Ras Tanura. Data for 1984–2015: Brent dated. [p. 14 and corresponding data base]
[2]

necessary to forecast the costs as well as the revenues. For those development and
production projects the most important source for revenues is the price of crude oil
sold. Thus, the decision makers need to project the future price of oil for the entire
“field life cycle”. The field life cycle describes the different phases of an oil field from
gaining access to the oil field to exploration, development, production and, finally,
decommissioning the oil field.

Figure 2 shows a detailed picture of an oil field life cycle, which is based on [6].
Focussing on the forecast of the price of oil, this life cycle shows only the periods
until end of production or the economic cut-off. Also the phases of gaining access
and appraisal are not considered here.

In total, there are threemain stages.However, the production phasemay be divided
into two phases. First, the phase of conventional production from oil wells, which
is equivalent to natural flow production. This phase may also be known as primary
oil recovery. Second, the phase of production from improved oil recovery (IOR)
and enhanced oil recovery (EOR). This second phase also comprises the so-called
secondary oil recovery, which includes waterflooding and gas injection in order to
keep the pressure in the reservoir constant. The EOR is also known as tertiary oil
recovery.

The total lengthof anoil exploration andexploitationprojectmaybeup to60years.
Following this consideration, there are five main decision points, t1, . . . , t5, in

an oil field life cycle. At each point, a decision has to be made in order to conduct
successfully an exploitation project. However, it happens that during an oil field life
one passes the same decision point multiple times. Let t0 being the date of modelling.
At t0 a forecast on the possible revenues of the project needs to be included in a first
feasibility study. Thus, a forecast on the price of crude oil is needed.
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Fig. 2 The oil field life cycle and typical decision points (own illustration)

The length of each interval between two time points differ from phase to phase.
Furthermore, each project is unique and, therefore, the length of each period may
vary strongly from one project to another.

3 Scenario Technique and Dynamic Bayesian Networks

Scenario technique can be formalized by the tuple (G, I, E) with G = (V, K , P)
being the model graph, V being a finite, not empty set of variables (knots) with finite
Range (v), v ∈ V . K is a finite, not empty set of linked pairs of variables (directed
edges) v,w ∈ V . P represents a set of measures of uncertainty on V and is a finite,
not empty set of marginal, subjective probability distributions over V . I describes
the inference mechanism, which derives in DBN for directed acyclic graphs (DAG)
and for fixed e ∈ E (evidences) the distribution pv ∈ P (compare [3, 5]). Under the
first-order Markov assumption, P can be decomposed in

∏
pv|i (v ∈ parents (i)).

Using scenario technique assumes at least two different points in time (today
and in the future), multi-causal influence (v → (x, y, z)) with interdependencies or
interactions and cause and effect relationships without feedback (compare with [4]).
In our application we use up to five points in time. Therefore, we need to define
multiple time slices, which consists of V , K and I .

3.1 Dynamic Bayesian Networks

We apply the DBN framework in order to forecast the price of crude oil. The advan-
tage is tomodel an observable variable by a number of causal unobservable variables.
The assumption is, that the values of the unobservable variables may cause the value
of the observable variable of interest. The quantification of this “causal” effect lies
in the respective conditional probabilities.
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Table 1 Unobservable variables of the DBN grouped by topic

Global demand Global supply Industrial development

Global consumption Politics oil prod. countries Oil technology

Global warming politics Peak oil Renew. technology

Substitution and competition OPEC Cartel Other technology

Additionally, we simplify the DBN by assuming, that the underlying data gen-
erating process follows a Markov-process of order 1. That means, that the current
value of each variable only depends on the previous value but not on prior values.

P (Xt |X0:t−1) = P (Xt |Xt−1)

with Xt being the set of non-observable variables at time point t .
Another advantage of theDBN is the fact, that the different time points do not need

to be equidistant. Furthermore, no two-way interaction is allowed, that is two-way
interaction between variables at the same point in time.

3.2 Variables for Modelling Crude Oil Prices

The choice of variables is based on our considerations on the various factors in-
fluencing the price of oil. For oil price variables we use value-per-unit variables,
whereas all other are stock variables. The variability of the input is determined by a
pre-defined range.

The observable variable of interest is the price of Brent crude oil. The Brent spot
price is publicly available on a daily basis. All other variables are unobservable.

In order to reflect the oil price at a global market, we introduce a variable Global
Oil Price. This variable drives the Brent price in an asymmetric way. This occurs
due to the fact, that Brent shows one of the highest qualities and, thus, is always at
the higher end of possible prices. Additionally, the Brent oil field will be exhausted
in near future. Brent and Global Oil Price are both value-per-unit variables.

The main driver in terms of modelling is the demand-supply-relationship. Ev-
ery variable chosen affects the demand or supply side. We choose nine variables
determining the Global Oil Price. Additionally, we introduce a specific variable ad-
dressing especially the scarcity of Brent crude oil. Peak Oil theory comes into play
with the corresponding variable. Though, it describes a specific demand-supply-
relationship problem. Substitutional effects will be modelled with the corresponding
variable. The following table names all variables, which enter the DBN model as
unobservable stock variables (Table1).

The Global Consumption variable describes the global consumption of hydro-
carbons based on the status of the global economic cycle. The Global Warming
Politics variable describes the global political situation with respect to global warm-
ing, whereas the variable Substitution & Competition describes substitutional effects
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Fig. 3 Example of Dynamic Bayesian Network graph with one time slice tm

Global Oil Price tm-1 Low High
Economy tm-1 Demand High Supply High Demand High Supply High

Economy tm
Demand High 0.8 0.7 0.3 0.5
Supply High 0.2 0.3 0.7 0.5

Technology tm-1 Economy tm-1 Technology tm-1

No Development 0.2 Demand High 0.25 No Development Evolution
Evolution 0.8 Supply High 0.75 Technology tm

No Development 0.4 0.8
Evolution 0.6 0.2

Global Oil Price tm-1 Brent tm-1

Low 0.8 Low 0.8
High 0.2 High 0.2

Brent tm-1 Low High
Global Oil Price tm-1 Low High Low High

Brent tm
Low 0.85 0.1 0.4 0.05
High 0.15 0.9 0.6 0.95

Economy tm-1 Demand High Supply High
Technology tm-1 No Development Evolution No Development Evolution
Global Oil Price tm-1 Low High Low High Low High Low High

Global Oil Price tm
Low 0.3 0.1 0.5 0.3 0.8 0.5 0.95 0.6
High 0.7 0.9 0.5 0.7 0.2 0.5 0.05 0.4

Fig. 4 Conditional probabilities tables for the example of Dynamic Bayesian Network

and the competition to other energy resources. Those three variables affect the global
demand of crude oil.

The global supply of crude oil is affected by other three effects. The Politics of the
Oil Producing Countries together with the fact whether the OPEC acts as a Cartel
cause the supply side. Furthermore, the variable Peak Oil tackles the fact of crude
oil being an exhaustive resource.

Finally, the developments or disruptions in the various technologies are modelled
by three variables. The developments in the Oil Technology influence directly the
price of oil. The developments in Renewable Technologies as well as in all Other
Technologies affect the price of oil indirectly and depends also on substitutional
effects.
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3.3 An Introductory Example

Figure 3 shows an example of a Dynamic Bayesian Network. On the one hand, it
illustrates the complexity of the approach. On the other hand, it points out how the
model approach can be simplified assuming identically characterized time slices. In
this example, there is one observable variable Brent and three unobservable variables
Technology, Economy and Global Oil Price.

The value of the variable Brent at time tm depends on its own past value at time
tm−1 and on the value of the variable Global Oil Price at time tm . The Global Oil
Price at tm depends on its own past value at time tm−1 and on past values (tm−1) of
the variables Technology and Economy. The variable Technology depends only on
its own past, whereas Economy is dependent on its own past as well as the past of
the Global Oil Price.

Figure 4 shows as an illustration the conditional probability tables for the given
example. This example should give a sense on how those conditional probabilities
have to be chosen and how large the number increases with an increasing number of
variables as well as input range or intervals. For each variable, we choose only two
different states “Low” versus “High”, or “No Development” versus “Evolution”.
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Prognosis of EPEX SPOT Electricity
Prices Using Artificial Neural Networks

Johannes Hussak, Stefanie Vogl, Ralph Grothmann
and Merlind Weber

1 Introduction

In the recent years, two major trends can be observed within the European electric-
ity market: a growing share of renewable energy supply and an increased market
interconnection. Simultaneously, a steadily growing trading volume and a high price
volatility are observed at the EPEX SPOT day-ahead market [1]. Providing an accu-
rate price forecast creates a strategic as well as an economic advantage, which is
important to all participants of the EPEX SPOT day-ahead market. Current fore-
casting approaches mainly apply linear regression, GARCH, ARMA and ARIMA
models or artificial neural networks [2]. Especially artificial neural networks are
able to capture real world market processes mathematically and market dynamics
can be transferred into a market model [3]. In terms of neural network approaches,
three-layer networks, known as multilayer perceptrons (MLPs), are state of the art.
However, deep neural networks have proven in many cases, that they can approxi-
mate complex dynamics better and with fewer units [4]. In this paper, we propose
a market modeling approach applying deep neural networks in order to secure a
holistic and robust market model with accurate predictions. The forecasts are given
each day at 11:30 am, in order to have sufficient time to place the orders at the EPEX
SPOT day-ahead market, where order books close at 12:00 pm. Only data, which
are available until 11:30 am are considered in the modeling process. This makes the
whole system real-time capable.
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2 Empiric Market Modeling

2.1 Neural Network Approach

Originally, artificial neural networks were developed to model the biological pro-
cesses within the human brain. Their characteristic to capture highly non-linear and
complex systems makes them well suited for econometric modeling. The internal
information processing within an artificial neural network can be interpreted as the
mathematical model of the real world decision-making process of a trader at the
stock exchange. Here, the trader needs to rate all information according to their
relevance, aggregate the weighted information and derive a final decision. In the
artificial neuron, the first two steps, weighting and aggregation of relevant informa-
tion, are mathematically captured by multiplying the numerical input information
with a certain weight and summing them up:

∑n
i=1 wi xi . In a mathematical model,

the decision-making process is described by a step function f . Since step functions
are not continuously differentiable, sigmoid functions are applied in the artificial
neuron: f

(∑n
i=1 wi xi

)
. These three steps form the information process within an

artificial neuron (see Eq.1 and Fig. 1 left). An additional threshold w0 is considered
here, which can be used as certain stimulus threshold for the decision making.

Mathematical information process within an artificial neuron:

y = f

(
n∑

i=1

wi xi − w0

)

(1)

Since each artificial neuron can be interpreted as an individual trader, a network of
artificial neurons can thus be seen as a whole market model. In the right side of
Fig. 1, a three layer neural network with four hidden neurons is displayed. All hidden
neurons are connected to each input neuron (numerical input information) and each

Fig. 1 Left: Information process within an artificial neuron, right: Structure of an artificial neural
network
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output neuron. To any link, a certain weight is attached, which filters the information.
Whereas in reality, the trader weights the available information according to his gut
feeling or his experience, in artificial neural networks a mathematical algorithm
adjusts the weights such, that the outcome assimilates the target function. This is
achieved by applying the backpropagation algorithm, which computes the gradient
of the error function with respect to each weight. Afterward, a suitable optimization
algorithm searches for the optimal weights.

2.2 Deep Neural Networks

According to [5], a sufficiently large three-layer neural network is actually able
to capture any kind of continuous function on a compact domain [5]. However,
deep neural networks often show better results using fewer units to approximate
complex functions [4]. Therefore, we apply three-layer neural networks as well as
deep neural networks. In this context, a neural network model is called "deep", if it
consistsmore than one hidden layer. This can be achieved by simply adding additional
hidden layers to the three-layer model. However, this has some major drawbacks. As
described in [6], it is not ensured, that the lower layers contribute to the final output at
all. Additionally, through a large tower-like construction, relevant input information
might get lost on the long forward path, whereas the error signal in the backward path
decays, while it propagates through the large number of hidden layers. Therefore,
the topology depicted in Fig. 2 is applied within this study. Each hidden layer is
separately connected to the input layer. By the use of the shared weight matrix A,
each hidden layer will get the same input information. Moreover, all hidden layers
are connected with a separate output layer. Thus, on the backward path learning
is applied on each single intermediate layer. The information is transferred from

Fig. 2 Topology of the
applied deep neural network
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one hidden layer to the following through the backbone of the model. Applying
additional highway connections, here visualized with dashed lines, the information
can also surpass intermediate layers. The error, on the other hand, is not propagated
through the backbone.

In the empirical study, the optimal values for the meta-parameters training set,
validation set, pattern learning sequence, activation function, training epochs as well
as the best topology needs to be determined.

2.3 Quantile Base Bias Correction

Just as per mathematical definition, artificial neural networks are not able to extrapo-
late. Inmost cases, it can be observed, that higher values aremore likely to be underes-
timatedwhereas smaller values are often overestimated.We propose a quantile-based
scalingmethod (QBS) in order to further reduce the prognosis error, especially for the
rare events. In the quantile-based scaling process, the cumulative distribution func-
tions (CDFs) are computed and their percentiles compared. The difference between
the mean of the model quantile xmodelq and the corresponding target quantile xtargetq
is computed and added to the corresponding model output xmodelq . Since model and
target CFDs only show larger deviations at very large and very low values, only
these areas are adjusted using this method. This results in more accurate predictions,
especially for the rare events of high or low prices.

QBS : x̂q = (
xmodelq − xtargetq

) + xmodelq (2)

3 Results and Conclusion

As described above, at first, optimal values for all meta-parameters need to be distin-
guishedwithin an empirical study. In the case ofmodeling theEPEXSPOTday-ahead
market, the underlying dynamics can be captured best applying the following setup:

Trainingset : 4368 pattern (182days)
Validationset : 336 pattern (14days)
Generalizationset : 24 pattern (1day)
ActivationFunction : tanh
Patternselection : Permute
Trainingepochs : 50
Statedimension : 30

The subsequent modeling study shows, that a setupwith four hidden layers combined
with the use of shared weights matrices A, B, C and highway connections results
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Table 1 Final performance errors (MAE [e/MWh])

Last Day FFNN Deep Deep + QBS

Total 6.47 2.62 2.56 2.51

Season

Winter 8.51 3.25 3.31 3.22

Spring 5.95 2.43 2.41 2.31

Summer 4.85 1.65 1.66 1.61

Autumn 6.60 3.17 2.89 2.93

Day

Sunday 6.89 3.44 3.36 3.37

Monday 11.15 3.39 3.45 3.45

Tuesday 6.22 2.74 2.75 2.62

Wednesday 5.30 2.16 2.07 1.92

Thursday 4.42 2.24 2.09 2.09

Friday 4.69 2.18 2.07 2.02

Saturday 6.66 2.23 2.17 2.15

Fig. 3 Comparison of final results in an exemplary winter week in 2016

in the lowest mean absolute error (MAE). In Table1 it can be seen, that the neural
network approach by far outperforms the simple estimate of applying the previous
days’ prices. Compared to the best three-layer neural network setup, the optimal
setup of the deep neural network shows superior results, especially in autumn. Here,
the deep neural network reduces the remaining error by 9%. The quantile based bias
correction further reduces the error. This effect can be seen in Fig. 3. Whilst the three
models perform quite similar in the medium price range, larger deviations occur in
sharp price peaks as on the 9th of February 2016. For these events, the deep neural
network architecture and especially the QBS approach reduce the remaining residual
errors significantly. As the QBS mostly affects the tales of a distribution (i.e. rare
events), the overall error is only reduced slightly. However, this method helps to
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identify extreme values and can be effectively combined with a trigger function for
rare events.

Through the systematic process of understanding and capturing real world infor-
mation, extracting relevant parameter in the sensitivity analysis, a large empirical
neural network study and the statistical bias correction step,weobtain accurate results
from a robust model setup. The findings within this paper can either be directly used
for an improved trading at the EPEX SPOT day-ahead market or can be used as the
basis for further research. The proposed approach can easily be transferred for the
modeling of other markets, other products or different forecasting horizons. More-
over, it can be applied to analyze the impact of future market developments on the
EPEX SPOT price.
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Computing the Splitting Preconditioner
for Interior Point Method Using an
Incomplete Factorization Approach

Marta Velazco and Aurelio R. L. Oliveira

1 Introduction

The interior point methods search directions [10] are computed by solving one
or more linear systems with the same coefficient matrix. The performance of the
implementations using an iterative solution depend upon the choice of an appropri-
ate preconditioner. In particular, for interior pointmethods, the linear systembecomes
highly ill-conditioned as an optimal solution is approached. Recently, a hybrid pre-
conditioner was proposed [1]. This approach assumes that the optimization occurs in
two phases, and different preconditioners are used for each phase. In the initial phase,
a preconditioner obtained by incomplete factorization [3] of the matrix is used. In
the second phase, a splitting preconditioner specific for interior point systems is used
[7]. This paper presents a new splitting preconditioner for the second phase and is
organized as follows. Section2 introduces the primal-dual interior point methods.
The linear systems arising from these methods are presented in Sect. 3. Sections4
and 5 describe the hybrid preconditioner and the new preconditioner, respectively.
Numerical experiments are also carried out. Finally, Sect. 7 concludes the paper.

2 The Predictor-Corrector Primal-Dual Method

Consider the primal-dual pair of linear programming problems in standard form:

minimize cT x s.t Ax = b, x ≥ 0, Primal,
maximize bT y s.t AT y + z = c, z ≥ 0. Dual,
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where A ∈ Rm×n , rank(A) = m, c, x, z ∈ Rn ,b, y ∈ Rm . TheKarush–Kuhn–Tucker
optimality conditions for the primal and dual problems are:

Ax − b = 0,
At y + z − c = 0,

X Ze = 0,
(x, z) ≥ 0,

(1)

where X = diag(x), Z = diag(z) and e ∈ Rn is the vector of all ones. In interior
point methods, the nonlinear equations system of the optimality conditions (1)
disregarding the nonnegativity constraint is solved by the Newton method. The
predictor-corrector primal-dual method computes the search direction in two steps:
the predictor direction and the corrector direction. For each step, a linear system (2)
is solved with the same coefficient matrix but different right-hand sides. A new point
is computed from the directions, and the stepsize ensures that the point is interior
((x, z) > 0). ⎡

⎣
A 0 0
0 AT I
Z 0 X

⎤
⎦

⎡
⎣

Δx
Δy
Δz

⎤
⎦ = r. (2)

3 Linear System Solution

The solution of the linear systems to compute the search directions is the most
expensive step for such methods. The linear system (2) can be reduced to a normal
equation system, by eliminating the variables Δx and Δz, as shown below:

(ADAT )Δy = AD(rd − X−1ra) + rp. (3)

where D = Z−1X , dii > 0 is a diagonal matrix and rp, rd e ra are the residuals:
rp = b − Ax , rd = c − AT y − z, e ra = −X Ze of the system (1). When iterative
methods are used for the solution of system (3), the success of the method depends
on a good preconditioner. The elements of the diagonal matrix D = Z−1X have an
undesirable characteristic; on final iterations of the interior point methods, the values
of dii are either very large or very small. Consequently, the matrix ADAT is very ill-
conditioned and makes the system (3) very difficult to solve without an appropriate
preconditioner.

4 The Hybrid Preconditioner

In 2007, Bocanegra et al. [1] introduced a hybrid preconditioner to solve the linear
system from interior point methods. Bocanegra et al. [1] assume that the optimization
process takes place in two different phases and different preconditioners are used in
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each phase. The first phase occurs at the beginning of the optimization, and the
controlled Cholesky factorization preconditioner [3] is used. In the second phase,
the splitting preconditioner [7] is used, which is specific for the ill-conditioning
matrix from interior point method. A heuristic determines the change of phase [9].

4.1 The Controlled Cholesky Factorization Preconditioner

The controlled Cholesky factorization [3] (CCF) is an incomplete Cholesky fac-
torization of the matrix ADAT with controlled fill-in. Consider ADAT = LLt =
L̃ L̃ t + R, where L is the factor of the complete Cholesky factorization, L̃ is the fac-
tor of the incomplete factorization, and R is a remaindermatrix.Bydefining E = L −
L̃ , the preconditioned coefficient matrix is: L̃−1ADAT L̃−T = (Im + L̃−1E)(Im +
L̃−T E)T . From this formulation, when L̃ ≈ L =⇒ E ≈ 0 =⇒ L̃−1(ADAT L̃−T ≈
Im . The CCF is built considering the minimization of the Frobenius norm of E :

minimize ‖E‖2F =
m∑
j=1

c j , where c j =
m∑
i=1

|li j − l̃i j |2. Consider c j =
t j+η∑
k=1

|lik j −

l̃ik j |2 +
m∑

k=t j+η+1
|lik j |2, where t j is the number of nonzero elements below the diago-

nal in the j th column of matrix ADAT and η is the number of extra element allowed
for each column. TheCCF can be computed by the following heuristics: (1) Choosing
the t j + η elements of L̃ with largest absolute value; (2) Increasing η, allowing more
fill-in for the L̃ factor. The preconditioner L̃ is built by columns. During the com-
putation of the column, small values or even negatives can appear in the diagonal;
CCF uses an exponential shift to avoid loss of positive definiteness.

4.2 The Splitting Preconditioner

The splitting preconditioner [7] has a better performance near the solution of the
optimization problem where the matrices are ill-conditioned. Consider P ∈ Rn×n ,
a permutation matrix, such that A = [BN ]P , where B ∈ Rm×m is nonsingular and
N ∈ Rm×(n−m); thus,we have: ADAT = BDBBT + NDN NT .The splitting precon-

ditioner for normal equations is given by D
− 1

2
B B−1, and the preconditioned matrix

is defined as: D
− 1

2
B B−1(ADAT )B−T D

− 1
2

B = Im + D
− 1

2
B B−1NDN NT B−T D

− 1
2

B . The
choice of A columns to form matrix B has a great influence on the performance of

the preconditioner. A strategy to form B is to minimize ‖D− 1
2

B B−1ND
1
2
N‖. Results

presented in [9] show that the best performance is obtained when the first m linearly
independent columns of AD with the largest 2-norm are chosen. The columns of
AD are found by LU factorization, and this is the most expensive step in the con-
struction of the preconditioner. One column is treated at a time, and the linearly
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dependent columns are discarded. The factorization continues with the next column
in the ordering. During the factorization, excessive fill-in can occur; in which case
the independent columns found until then are reordered by sparsity and the factoriza-
tion is restarted using the new ordering. The process is repeated until m independent
columns are found.An advantage of the splitting preconditioner is that the same set of
columns can be used for some iterations. Thus, the preconditioner will be very cheap
and can be quickly compute for such iterations since B is kept and only the diagonal
matrix D changes. Finding the m independent columns is the most expensive step
in the construction of the splitting preconditioner. In this search, the order of the
columns by the 2-norm may not necessarily be maintained. In the following section,
a new splitting preconditioner will be presented where the order of the columns is
maintained instead of its linear independence.

5 A New Splitting Preconditioner

In this work, a new splitting preconditioner for the second phase of optimization
is proposed. In the construction of the splitting preconditioner, the most expensive
step is to find the m linearly independent columns with the largest 2-norm via the
LU factorization. In the new splitting preconditioner, the first k columns of AD with
the largest 2-norm will be taken, thus eliminating the need to obtain a nonsingular
matrix. Next, with the new B, the new preconditioner L̃ B will be computed by the
CCF of the matrix BDBBT . For k ≥ m columns of AD, B may not be full rank, and
therefore, the matrix BDBBT may not be positive definite, and very small or even
negative pivots may appear. When the failure occurs, an exponential increase in α

is globally applied to BDBBT , and the incomplete factorization of BDBBT + α I is
restarted. This process is repeated until the factorization is successfully completed.

6 Numerical Experiments

For the numerical experiments, a modified version of the code PCx was used. The
original code PCx [4] solves linear programming problems using the predictor-
corrector method, and the linear systems are solved with the Cholesky factorization.
In the modified version of PCx, the linear systems are solved by the preconditioned
gradient method with the hybrid preconditioner [1, 8]. The computational tests were
performed on a 2.80 GHz Intel Core i7 platform with 6 GB RAM running 64-bit
Linux and the GNU gcc and gfortran compilers. The preconditioner was tested on
26 problems from public libraries [2, 5, 6]. Table1 describes the test problems. The
columns are: name of the problem (PROBLEM), library (LIBRARY), size (M × N)
and the sparsity of the restriction matrix (SPARSITY) after preprocessing.

Table1 also presents the computational results with the two preconditioners.
Columns 5 and 6 show the total time required to solve the problem by the predictor-
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Table 1 Test problems and computational results. N means fail to converge

Problem Library M×N Sparsity (%) Time HP (s) Time NHP (s)

AA01 MESZAROS 712 × 8904 99,0043 6,28 17,70

AA03 MESZAROS 690 × 8572 99,0053 7,40 7,39

AIR04 MESZAROS 712 × 8904 99,0034 6,27 17,69

AIR05 MESZAROS 367 × 7195 98,2761 2,6 3,97

AIR06 MESZAROS 690 × 8572 99,0053 7,77 7,38

CHR22B QAP 5587 × 10417 99,9372 33,93 103

CHR25B QAP 8149 × 15325 99,9564 53,71 324,98

DEGEN2 MISC 442 × 757 98,7546 0,15 0,34

INDATA MESZAROS 2152 × 7440 98,8329 22,41 24,86

I09A13L1D MESZAROS 244 × 1483 98,7124 0,18 0,33

NEMSCEM MESZAROS 479 × 1540 99,5290 0,08 0,13

NUG05 MISC 148 × 225 97,7777 0,02 0,02

NUG05-3RD MISC 1208 × 1425 99,6791 N 0,58

NUG06 MISC 280 × 486 98,7654 0,05 0,08

NUG06-3RD MISC 3540 × 4686 99,8814 N 7,9

NUG07 MISC 474 × 931 99,2481 0,32 0,43

NUG07-3RD MISC 8594 × 12691 99,9484 N 47,58

NUG08 MISC 742 × 1632 99,5098 0,60 0,76

NUG08-3RD MISC 18270 ×
29856

99,9747 N 316,30

NUG15 MISC 5698 × 22275 99,9326 N 856,85

P0040 MESZAROS 23 × 63 90,8212 0,0 0,0

PS MESZAROS 5698 × 22275 99,9326 N 907,18

QAP08 QAP 742 × 1682 99,5243 0,54 0,84

QAP12 QAP 2794 × 8856 99,8644 N 138,87

QAP15 QAP 5698 × 22275 99,9326 N 798,93

T0331-4L MESZAROS 664 × 46915 98,6164 126,68 73,56

corrector method when the hybrid preconditioner and the new hybrid preconditioner
are used, respectively. The comparison of the two approaches can be summarized as
follows:

• When the two approaches reach an optimal solution, the previous preconditioner
requires less computational time in most cases: The new splitting preconditioner
does not need to select the first m linearly independent columns; the CCF of
BDBBT matrix is computed with the first k columns of A with the largest 2-norm.
The CCF of the matrix is expensive to compute, because when small or even
negative diagonal elements are found, the CCF discards the factor, increases the
diagonal by a shift, and computes the factor again. Additionally, at each iteration of
the interior point method, a new CCF is computed, and if the number of iterations
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of the preconditioned conjugate gradient increase, the fill-in in the factorization
increases too and more time is needed. The previous splitting preconditioner can
use the same matrix B for some interior point iterations, thus computational time
is saved.

• When the previous hybrid preconditioner does not complete the optimization pro-
cess (the letter N represents this status on the table), the new preconditioner con-
cludes the optimization process and an optimal solution is found. In the previ-
ous splitting preconditioner, during the LU factorization, an excessive fill-in may
occur; in this case, the independent columns found until then are reordered by
sparsity and the factorization is restarted using the new ordering. For these cases,
the previous splitting preconditioner fails and the optimization process does not
finish. On the other hand, the new preconditioner does not present these problems.
Note that this occurs in problems where the coefficient matrix is sparser.

7 Conclusions

This paper presents a new splitting preconditioner, computed applying the CCF
to the first k columns of the matrix AD ordered by the 2-norm. The new matrix
can be singular, and in the CCF an exponential shift on the diagonal is used to
compute the factorization. The new preconditioner exhibits good performance in the
tested problems. The best performance was obtained for the problems where the
factorization of matrix B is dense. This is the most expensive step in the splitting
preconditioner because when the factorization is very dense, it must be restarted. In
these cases, the new preconditioner provides a good solution of the systems, and the
optimal solution is reached.

Acknowledgements Thisworkwas supported by the Foundation for the Support of Research of the
State of São Paulo (FAPESP-2010/06822-4), the National Council for Scientific and Technological
Development (CNPq) and Faculty of Campo Limpo Paulista (FACCAMP).

References

1. Bocanegra, S., Campos, F. F., & Oliveira, A. R. L. (2007). Using a hybrid preconditioner for
solving large-scale linear systems arising from interior point methods. Computational Opti-
mization and Applications, 36(2), 149–164. https://doi.org/10.1007/s10589-006-9009-5.

2. Burkard, R. S., Karisch, S., & Rendl, F. (1991). QAPLIB a quadratic assignment problem
library. European Journal of Operational Research, 55, 115–119.

3. Campos, F. F., & Birkett, N. R. C. (1998). An efficient solver for multi-right hand side linear
systems based on the CCCG(η) method with applications to implicit time-dependent partial
differential equations. SIAM Journal on Scientific Computing, 19(1), 126–138. https://doi.org/
10.1137/S106482759630382X.

4. Czyzyk, J., Mehrotra, S., Wagner, M., & Wright, S. J. (1999). PCx: An interior-point code for
linear programming. Optimization Methods and Software, 11(1–4), 397–430.

https://doi.org/10.1007/s10589-006-9009-5
https://doi.org/10.1137/S106482759630382X
https://doi.org/10.1137/S106482759630382X


Computing the Splitting Preconditioner … 103

5. Miscellaneous LP models. Hungarian Academy of Sciences OR Lab. Online at http://www.
sztaki.hu/meszaros/public_ftp/lptestset/misc

6. Mittelmann LP models. Miscellaneous LP models collect by Hans D. Mittelmann. Online at
http://plato.asu.edu/ftp/lptestset/pds/

7. Oliveira, A. R. L., & Sorensen, D. C. (2005). A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming. Linear Algebra and Its
Applications, 394, 1–24. https://doi.org/10.1016/j.laa.2004.08.019.

8. Silva, D., Velazco,M.,&Oliveira, A. (2017). Influence ofmatrix reordering on the performance
of iterative methods for solving linear systems arising from interior point methods for linear
programming.Mathematical Methods of Operations Research, 85(1), 97–112. https://doi.org/
10.1007/s00186-017-0571-7.

9. Velazco, M. I., Oliveira, A. R. L., & Campos, F. F. (2010). A note on hybrid preconditions for
large scale normal equations arising from interior-point methods. Optimization Methods and
Software, 25, 321332. https://doi.org/10.1080/10556780902992829.

10. Wright, S. J. (1997). Primal-dual interior-point methods. Philadelphia: SIAM Publications.

http://www.sztaki.hu/meszaros/public_ftp/lptestset/misc
http://www.sztaki.hu/meszaros/public_ftp/lptestset/misc
http://plato.asu.edu/ftp/lptestset/pds/
https://doi.org/10.1016/j.laa.2004.08.019
https://doi.org/10.1007/s00186-017-0571-7
https://doi.org/10.1007/s00186-017-0571-7
https://doi.org/10.1080/10556780902992829


Quadratic Support Functions
in Quadratic Bilevel Problems

Oleg Khamisov

1 Statement of the Problem

We consider bilevel programming problem in the following form [1]

F(x, y) → min
x,y

, (1)

A1x + B1y ≤ r1, f (x, y) − ψ(x) ≤ 0, A2x + B2y ≤ r2, (2)

ψ(x) = min
y

{ f (x, y) : A2x + B2y ≤ r2}, (3)

where F : Rn1 × Rn2 → R is a quadratic function, A1 is an (m1 × n1) matrix, B1 is
an (m1 × n2)matrix, A2 is an (m2 × n1)matrix, B2 is an (m2 × n2)matrix, r1 ∈ Rm1 ,
r2 ∈ Rm2 ,

f (x, y) = xT Py + yT Gy + wT y, (4)

P is a (n1 × n2) matrix, G is a positive definite (n2 × n2) matrix (G � 0), w ∈ Rn2 .
The approach suggested in the paper differs fromothers applicable to problem (1)–

(4) (see [3, 4, 11, 12]). We do not elaborate optimality conditions (see, for example
[2]). The idea of our approach is based on using so called nonlinear support functions
[8, 9] in combination with outer approximation technique in global optimization [7].

Below we will assume that linear inequalities in (2) are consistent and determine
a bounded polyhedron in Rn1+n2 . This assumption is not in general strict, we just
concentrate our attention on the idea description and omit here some technical details
related to a more general case. The same can be said about condition G � 0. It is
used also to simplify the below description and can be relaxed to G � 0.
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2 Support Functions

Since the function ψ in (3) is given implicitly we can not directly use different global
optimization techniques. For approximating implicit inequality (3) upper and lower
support functions can be used.

Problem (3) is a convex programming problem which has a unique solution for a
given x . From the duality theory we have another representation for ψ,

ψ(x) = max
λ≥0

{−1

4
(PT x + BT

2 λ + w)T G−1(PT x + BT
2 λ + w) + (A2x − r2)

Tλ =
(5)

= 1

4
max
λ≥0

{−λT B2GBT
2 λ − (2B2G

−1PT x + A2x + 2B2G
−1w − r2)

Tλ}− (6)

− 1

4
xT PG−1PT x − 1

2
wT G−1PT x + wT G−1w. (7)

It is not difficult to see, that expression (6) represents a convex in x function and
expression (7) represents a concave in x function. Hence, function ψ is a so called
d.c. (difference of convex) function [7], in which convex part is still implicit, but
concave part is already explicit.

Let some x̃ be given. By solving problem (3) or, equivalently, problem (5) we find
the corresponding dual solution λ̃. Define function

ϕ(x) = −1

4
(PT x + BT

2 λ̃ + w)T G−1(PT x + BT
2 λ̃ + w) + (A2x − r2)

T λ̃. (8)

Then, ψ(x̃) = ϕ(x̃) and ψ(x) ≥ ϕ(x) for x �= x̃ , i.e. function ϕ is a lower support
function of ψ. If we substitute implicit inequality f (x, y) − ψ(x) ≤ 0 by explicit
inequality f (x, y) − ϕ(x) ≤ 0 in (2), we obtain inner explicit approximation of
the implicit feasible set of problem (1)–(4). Then we can solve this explicit inner
approximation problem and obtain an improvement of the given x̃ in the sense of
the objective function F . However, quite often the only feasible point of the inner
approximation problem is point x̃ itself, so no progress w.r.t. objective F . That is the
reason why we suggest to use upper support functions.

Denote by λ∗(x) dual solution of (5) for a given x . Assuming that x is bounded
and using different techniques (see [6, 10]) we can compute a bound γ such, that
λ∗
i (x) ≤ γ ∀x, i = 1, . . . ,m2. Then for given x̃ we have

ψ(x) = max
λ∈Λ

min
y

{ f (x, y) + λT (A2x + B2y − r2)} = (9)

= min
y

max
λ∈Λ

{ f (x, y) + λT (A2x + B2y − r2)} ≤ (10)

≤ f (x, ỹ) + max
λ∈Λ

{λT (A2x + B2 ỹ − r2)} = (11)
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= f (x, ỹ) + γ max{0, (A21x + B21 ỹ − r21), . . . , (A2m2 x + B2m2 ỹ − r2m2 )} = η(x),
(12)

whereΛ = {λ ≥ 0 :
m2∑

i=1
λi ≤ γ}, A2i , B2i are i th rows of matrices A2 and B2 respec-

tively, r2i is i th element of vector r2. Hence, ψ(x̃) = η(x̃) and ψ(x) ≤ η(x) for
x �= x̃ , i.e. η is an nonconvex but explicit upper support function of ψ. Substituting
inequality f (x, y) − ψ(x) ≤ 0 by inequality f (x, y) − η(x) ≤ 0 in (2) we obtain
explicit outer approximation problem for problem (1)–(4). Optimal value of the outer
approximation problem gives a lower bound for an optimal value of the initial bilevel
problem. Upper support functions is the base for outer approximation method for
solving (1)–(4).

3 The Outer Approximation Algorithm

Detailed description of the algorithm is as follows.

Step 0. Solve the problem
F(x, y) → min

x,y
, (13)

A1x + B1y ≤ r1, A2x + B2y ≤ r2. (14)

Let (x0, y0)be a solution of (13)–(14). Set k = 0.
Step 1. Solve the problem

f (xk, y) → min
y

, (15)

A2x
k + B2y ≤ r2. (16)

Let ỹkbe a solution of (15)–(16).
Step 2. If f (xk, yk) = f (xk, ỹk)then stop: (xk, yk)is a solution of the initial

bilevel problem (1)–(4).
Step 3. Solve the outer approximate problem

F(x, y) → min
x,y

, (17)

A1x + B2y ≤ r1, A2x + B2y ≤ r2, (18)

f (x, y) − f (x, ỹ j ) − γ max{0, (A2i x + B2i ỹ
j − r2i ), i = 1, . . . ,m2)} ≤ 0,

(19)
j = 0, . . . , k. (20)

Let (xk+1, yk+1)be a solution of (17)–(20).
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Step 4. Set k = k + 1and goto Step 1.

Algorithm generates sequence of functions which are used at the Step 3. From
the boundedness assumption and the problem data structure we can conclude that
this sequence of functions is equicontinuous and uniformly bounded. Then, from the
theory of global outer approximation algorithms [7] it follows that every accumula-
tion point of sequence (xk, yk) is a solution of the initial implicit global optimization
problem (1)–(4).

At each iteration we have to solve one convex optimization problem (15)–(16)
and one multiextremal problem (17)–(20). The main advantage of the multiextremal
problem is that it is explicit, so one can use different global optimization techniques
for its solution. Outer Approximation Algorithm substitute solution of one implicit
global optimization problem by a sequence of explicit global optimization problems.

From the above consideration we can see that properties of the objective function
F and function f w.r.t. x are not used. So, the performance of the algorithm can
be improved by using this fact. For example, if functions F and f are convex, then
the approximate problem (17)–(20) breaks up into a number of convex optimization
problems, which essentially improves the effectiveness of the algorithm. On the other
hand it follows that the outer approximation algorithm can be used in a more general
situation.

4 Examples

In order to show that the outer approximation algorithm is practically implementable
we consider two examples.

Example 1 Consider the following bilevel problem

(x − 3)2 + (y − 2)2 → min,

0 ≤ x ≤ 6,

(y − 5)2 → min
y

,

−2x + y − 1 ≤ 0, x − 2y + 2 ≤ 0, x + 2y − 14 ≤ 0,

0 ≤ y ≤ 6.

Its solution (x∗, y∗) = (1, 3), F(x∗, y∗) = 5. Outer approximation algorithm finds
an approximate solution in 15 iteration. Absolute error in the objective ε = 0.01.
This example shows us the useless of the lower support function (8). Take x̃ = 0,
then the corresponding primal and dual solutions of the follower problem are ỹ = 1
and λ̃ = (8, 0, 0, 0, 0). Point (x̃, ỹ is feasible and F(0, 1) = 10. The correspond-
ing inequality f (x, y) − ϕ(x) = (y − 5)2 − 16 + 16x ≤ 0 in combination with all
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linear constraints gives only feasible point (x̃, ỹ) = (0, 1), so using lower support
function gives no progress in the objective F . We just stuck at (0, 1).

Example 2 ([5]) This example demonstrates that the suggested algorithm can be
extended to a nonquadratic case. The bilevel problem is

F(x, y) = x3y1 + y2 → min
x,y

,

0 ≤ x ≤ 1,

−y2 → min,

g1(x, y) = xy1 − 10 ≤ 0,

g2(x, y) = y21 + xy2 − 1 ≤ 1,

−1 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 100.

Solution (x∗, y∗
1 , y

∗
2 ) = (1, 0, 1), F(x∗, y∗) = 1. Outer approximation problem at

the Step 3 of the algorithm has now the following form

F(x, y) → min
x,y

,

0 ≤ x ≤ 1, g1(x, y) ≤ 0, g2(x, y) ≤ 0,

f (x, y) − f (x, ỹ j ) − γ max{0, g1(x, ỹ j ), g2(x, ỹ
j )} ≤ 0, j = 0, k,

y ∈ Y = {y : −1 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 100}.

After 5 iterations the following approximate solution was obtained (x5, y51 , y
5
2) =

(1,−0.001, 1), F(x5, y5) = 0.9985.

Acknowledgements This work is supported by the Russian Science Foundation (project 17-11-
01021).

References

1. Dempe, S. (2002). Foundations of bilevel programming. Dordrecht: Kluwer Academic Pub-
lishers.

2. Dutta, J., & Dempe, S. (2006). Bilevel programming with convex lower level problem. In S.
Dempe & V. Kalashnikov (Eds.), Optimization with multivalued mappings (pp. 51–71). LLC:
Springer Science + Business Media.



110 O. Khamisov

3. Etoa Etoa, J. B. (2010). Solving convex quadratic bilevel programming problems using an
enumeration sequential quadratic programming algorithm. Journal of Global Optimization,
47, 615–637.

4. Etoa Etoa, J. B. (2011). Solving quadratic convex bilevel programming problems using a
smoothing method. Applied Mathematics and Computation, 217, 6680–6690.

5. Gümüs, Z. H., & Floudas, C. A. (2001). Global optimization of nonlinear bilevel programming
problems. Journal of Global Optimization, 20, 1–31.

6. Hiriart-Urruty, J.-B., & Lemaréchal, C. (1993). Convex analysis and minimization algorithms
II. Berlin: Springer.

7. Horst, R., &Tuy, H. (1996).Global optimization. (Deterministic approaches). Berlin: Springer.
8. Khamisov, O. V. (1999). On optimization properties of functions with a concave minorant.

Journal of Global Optimization, 14, 79–101.
9. Khamisov, O. V. (2016). Optimization with quadratic support functions in nonconvex smooth

optimization. AIP Conference Proceedings, 1776, 050010. https://doi.org/10.1063/1.4965331.
10. Mangasarian, O. L. (1985). Computable numerical bounds for Lagrange multipliers of station-

ary points of non-convex differentiable non-linear programs. Operations Research Letters, 4,
47–48.

11. Muu, L. D., & Quy, N. V. (2003). A global optimization method for solving convex quadratic
bilevel programming problems. Journal of Global Optimization, 26, 199–219.

12. Strekalovsky, A. S., Orlov, A. V., & Malyshev, A. V. (2010). On computational search for
optimistic solution in bilevel problems. Journal of Global Optimization, 48, 159–172.

https://doi.org/10.1063/1.4965331


Part IV
Decision Theory and Multiple Criteria

Decision Making



Valuation of Crisp and Intuitionistic
Fuzzy Information

Olga Metzger, Thomas Spengler and Tobias Volkmer

1 Introduction

Information decision problems are decision problems in which it is necessary to clar-
ify whether additional information (and if so, which) should be obtained in order to
make good decisions. In this regard, the decision maker is confronted with two deci-
sion problems: on one hand with the choice of an action from the original decision
problem, and on the other hand with the meta-problem of making a rational informa-
tion decision. The information valuation in the standard model using Bayesian statis-
tics is limited to the processing of additional information on prior state probabilities.
This article provides an extended view to the problem of obtaining and evaluating
additional information. Therefore, we extend the standard approach of Emery [1]
in the version of Laux [2] and present different variations of the standard case. In
this context, we consider situations where a decision maker obtains information in
order to improve prior assessments of consequences, identify new actions or new
decision-relevant states of nature. Additionally, we discuss their economic effects on
information valuation. We also address the role of a possible negative information
value and its importance for rational information decisions. Subsequently we present
another variation of the standard model, where we use intuitionistic fuzzy logic to
handle the presence of vague information within information decision problems.
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2 Extentions of Crisp Information Valuation

Let S := {s|s = 1, 2, . . . , S, S + 1, S + 2, S∗} be a set of states of nature with corre-
sponding probabilities w(s) and let A := {a|a = 1, 2, . . . , A, A + 1, A + 2, A∗} be
a set of actions. In addition, let E pr be a set of all prior consequences eas , E

pos
(∗) a set

of posterior consequences eas given information result (∗) and eas , E pra
(∗) a set of prior

consequences eas which a posteriori become irrelevant due to information result (∗).
The subsets A0 = {a|a = 1, 2, . . . , A} ⊂ A and S0 = {s|s = 1, 2, . . . , S} ⊂ S rep-
resent a priori known actions and states of nature. Combined with the corresponding
w(s) and the set E pr they characterize the standard case. Within this standard case
the decision maker may obtain information in order to improve his or her prior prob-
ability judgements. The gross value (V I = EV I − EV ) of this kind of additional
information (before subtracting information costs) is calculated as follows:

V I =
∑

i∈I
w(i) · max

a∈A0

∑

s∈S0
w(s|i) · eas − max

a∈A0

∑

s∈S0
w(s) · eas (1)

with EV I =
∑

i∈I
w(i) · max

a∈A0

∑

s∈S0
w(s|i) · eas and EV = max

a∈A0

∑

s∈S0
w(s) · eas

(2)
By obtaining information, the prior probabilitiesw(s) alter into conditional posterior
probabilities w(s|i) of state s given i ∈ I , where I is defined as a set of information
results leading to a revision of decision maker’s prior estimates on state probabilities.
The probability update results formally from the application of the Bayes’ theorem
and depends on the probabilities of receiving a particular information result (w(i))
as well as the decision maker’s estimates on the prediction quality of the informa-
tion source (w(i |s)). We now extend the standard case to cases where additional
information regarding new consequences (case 1), new actions (case 2) and new
decision-relevant states (case 3) is obtained. J := { j | j = 1, . . . , J } is defined as a
set of information results for case 1, K := {k|k = 1, . . . , K } as a set of information
results for case 2 and L := {l|l = 1, . . . , L} as a set of information results for case 3.
Case 4 combines these three decision situations (see Table1). The probabilities for
receiving information results j , k and l are denoted byw( j),w(k) andw(l). It should
be noted that the value EV I in the extended cases differs from the value EV I in
the standard model in terms of content and formulation, depending on the extension.
But EV is always the reference point for determining the information value in all
cases. There is also a distinction concerning prior and posterior components in the
model variations. Whereas the standard model solely focuses on prior and posterior
probabilities and expected values, in the extended cases we also deal with prior and
posterior consequences (cases 1 and 4), actions (cases 2 and 4) as well as states of
nature (cases 3 and 4). So far, these types of information decisions have been iden-
tified as significant in the literature, but yet no attempt has been made to present a
formalization of these types of decision situations.
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Table 1 (Components of) posterior pay-off matrices

w(s = 1) … w(s = S) w(s = S + 1) … w(s = S∗)
s = 1 … s = S s = S + 1 … s = S∗

a = 1 e11 … e1S e1,S+1 … e1,S∗
.
.
.

.

.

.
. . .

.

.

. (Q1)
.
.
.

. . .
.
.
. (Q2)

a = A eA1 … eAS eA,S+1 … eA,S∗

a = A + 1 eA+1,1 … eA+1,S eA+1,S+1 … eA+1,S∗
.
.
.

.

.

.
. . .

.

.

. (Q3)
.
.
.

. . .
.
.
. (Q4)

a = A∗ eA∗,1 … eA∗,S eA∗,S+1 … eA∗,S∗

In Case 1 (Q1), we consider decision situations where information is obtained to
improve judgements regarding prior consequences. Therefore, in this case a poste-
riori available consequences e′

as have to be considered in order to determine EV I .
It is assumed that the respective information results do not lead to a probability
update (w(s) replaces w(s|i)). Under these circumstances the information value V I
is calculated by

V I =
∑

j∈J

w( j) · max
a∈A0

∑

s∈S0
w(s) · e′

as − max
a∈A0

∑

s∈S0
w(s) · eas

with e′
as ∈ {E pr \ E pra

j } ∪ E pos
j .

(3)

Case 2 (Q1, Q3) depicts decision situations where information about new actions is
obtained. In addition to the previously known actions a ∈ A0, a posteriori new actions
a ∈ {A + 1, A + 2, . . . , A∗} become available to the decision maker. The index sets
Ak contain the posterior actions which are discovered after receiving information
result k. In analogy to case 1, the prior probabilities w(s) are used to determine
EV I . This results in

V I =
∑

k∈K
w(k)· max

a∈A0∪Ak

∑

s∈S0
w(s) · e′

as − max
a∈A0

∑

s∈S0
w(s) · eas

with e′
as ∈ E pr ∪ E pos

k .

(4)

Case 3 (Q1, Q2) maps situations where the decision maker acquires information in
order to discover previously unknown states s ∈ {S + 1, S + 2, . . . , S∗}. The index
sets Sl capture those posterior states added through information result l. Due to
stochastic dependencies between s and l, conditional probabilitiesw(s|l) are now to
be considered here. This results in
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V I =
∑

l∈L
w(l)·max

a∈A0

∑

s∈S0∪Sl

w(s|l) · e′
as − max

a∈A0

∑

s∈S0
w(s) · eas

with e′
as ∈ E pr ∪ E pos

l .

(5)

InCase 4 (Q1–Q4) the first three decision situations are combined. Taking J · K · L
posterior pay-off matrices into account, for case 4 we determine the information
value V I by

V I =
∑

j∈J

w( j)
∑

k∈K
w(k)

∑

l∈L
w(l) · max

a∈A0∪Ak

∑

s∈S0∪Sl

w(s|l) · e′
as − max

a∈A0

∑

s∈S0
w(s) · eas

with e′
as ∈ {E pr \ E pra

j } ∪ E pos
j ∪ E pos

k ∪ E pos
l .

(6)
It can easily be shown that the gross information value can never become negative
in the standard model using the Bayes’ theorem. The same applies to case 2. If new
actions become available to the decision maker, with expected values lower than EV
he or she will still choose the initial action. This results in a gross information value
of 0. It also can easily be shown that in cases 1, 3 and 4, however, negative gross
information valuesmay result due to certain data constellations.Whereas the standard
model recommends to obtain any information that has a positive net information
value at the time of the information decision, now a new question arises: Should
the decision be made for or against obtaining information, when the information
value becomes negative? Despite the fact, that the negative information value results
from a lower posterior expected value compared to the expected value of the initially
chosen action, it represents an information gain. Given reliability of the information
source used, the EV I corresponds with the “true” expected value. Therefore, a
rational decision maker should not strictly reject a negative information value. He or
she has to consider its relevance before making the particular information decision
individually. It may also be useful to take the absolute value of the information into
account.

3 Vague Information Valuation

In the context of the extensions described so far, cases with crisp information struc-
tures are considered; in the following,we discuss possibilities for a formal handling of
vague informationwithin information decisions. In principle, all elements of the deci-
sion field as well as the objective function can be vague. A decision maker could, for
example, have only vague judgements about state probabilities w(s), consequences
eas , or the prediction qualityw(i |s)of an information source. In the following,wepar-
ticularly examine the latter case. For this purpose,wepresent a further extensionof the
standardmodel basedon intuitionistic fuzzy logic (see [3]). To illustrate our approach,
we formulate a numerical example with three actions and three states. The decision
maker assumes crisp prior probabilities, where w(s = 1) = 0, 7, w(s = 2) = 0, 2
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Table 2 Pay-off matrix (example)

s = 1 s = 2 s = 3

a = 1 180 100 −120

a = 2 150 150 20

a = 3 80 80 80

Table 3 w(i |s) - intervals
i = 1 i = 2 i = 3

s = 1 [0, 65; 0, 7] [0, 05; 0, 1] [0, 15; 0, 2]
s = 2 [0, 05; 0, 1] [0, 75; 0, 8] [0, 05; 0, 1]
s = 3 [0, 25; 0, 3] [0, 05; 0, 1] [0, 55; 0, 6]

Table 4 Intuitionistic fuzzy values

i = 1 i = 2 i = 3

s = 1 (0, 65; 0, 3; 0, 05) (0, 05; 0, 9; 0, 05) (0, 15; 0, 8; 0, 05)
s = 2 (0, 05; 0, 9; 0, 05) (0, 75; 0, 2; 0, 05) (0, 05; 0, 9; 0, 05)
s = 3 (0, 25; 0, 7; 0, 05) (0, 05; 0, 9; 0, 05) (0, 55; 0, 4; 0, 05)

and w(s = 3) = 0, 1. The consequences eas can also be precisely determined by
the decision maker (according to Table2). The inaccuracy regarding the prediction
quality of the information source is represented by probability intervals of the form
[w(i |s);w(i |s)]. The corresponding sample values for three information results are
given in Table3.

The probability intervals are transformed into intuitionistic fuzzy values of the
formα(i |s) = (μα(i |s), να(i |s),πα(i |s)) according to the method proposed byMet-
zger and Spengler [4] (see Table4). The particular elements of the α(i |s) are
defined as subjectively perceived degrees of realizability(μα(i |s)), non-realizability
(να(i |s)) and indeterminacy (πα(i |s)) concerning the (non-)realizability of the
respective information result i under the assumption that state s occurs in the future.
Formally the following interdependencies apply: μα(i |s) ∈ [0, 1], να(i |s) ∈ [0, 1],
μα(i |s) + να(i |s) ≤ 1 and πα(i |s) = 1 − μα(i |s) − να(i |s).

As Table4 shows, in our example πα(i |s) has a value of 0.05, which is equivalent
to the width of the corresponding intervals [w(i |s);w(i |s)]. It can be interpreted
as a relatively low degree of the decision makers indeterminacy concerning his or
her judgement about the information source prediction quality. Basically, πα(i |s)
can be redistributed ex post fully or in part to the degree μα(i |s) (realizability of
information result i is assessed higher than before) or to the degree να(i |s) (non-
realizability of i is assessed higher than before). After this redistribution, π equals
0 and the corresponding probability w(i |s) then again corresponds to a point (crisp)
value within the interval boundaries. The decision maker is not able to observe
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this redistribution even after the state of nature s has occurred. Therefore, a precise
information value cannot be determined at the time of the information valuation. In
this regard we have to identify the set of information values which anticipates all
potential cases of the redistribution of πα(i |s). For the formal handling of the lower
bound of the expected value with information (EV I ), we propose to take the degree
μα(i |s) into account, to which the decision maker considers i |s to be necessarily
feasible. This seems to be plausible since this value represents the lower bound of
the prediction quality, the decision maker assigns to the information source. It is easy
to show that V I can also be determined by modifying Eq. (1) and replacing w(i |s)
by μα(i |s). Using this modification, the lower bound of the information value (V I )
can be determined as follows:

V I =
∑

a∈A0

max
a

∑

s∈S0
μα(i |s) · w(s) · eas − max

a∈A0

∑

s∈S0
w(s) · eas (7)

The decision maker cannot observe the redistribution of πα(i |s) to μα(i |s), or to
να(i |s), neither at the time of the information decision nor after the occurrence
of state s. Nevertheless, the best case is a full reallocation of πα(i |s) to μα(i |s).
Therefore, we suggest determining the upper bound of the information value (V I )
as follows:

V I =
∑

a∈A0

max
a

∑

s∈S0
((μα + πα)(i |s)) · w(s) · eas − max

a∈A0

∑

s∈S0
w(s) · eas (8)

Accordingly, the information value is element of the interval [V I ; V I ]. Applying
(7) and (8) to the example illustrated in Tables2, 3 and 4, we get an information
value interval of V I ∈ [−10, 9; 9, 5]. It turns out that indeterminacy, even to a small
extent, can have a strong impact on the information value. In this example, we get
among others a negative V I . We recommend not to neglect this fact when making
the corresponding information decision.

4 Conclusions

In this article, we present various (crisp and fuzzy) extensions of the standard model
of information valuation. For one thing, these do not focus on the prior probabil-
ities of states considered, but on other elements of the decision field. For another
thing, vague information is taken into account (at least partially) using intuitionistic
fuzzification. Here, we consider the intuitionistic fuzzy logic in terms of intuitionis-
tic fuzzy values according to [4]. In further research, it is necessary to clarify how
vagueness concerning consequences, actions and states of nature can be integrated
in the information valuation process based on the intuitionistic fuzzy set theory.
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Multiobjective Spatial Optimization: The
Canadian Coast Guard

H. A. Eiselt, Amin Akbari and Ron Pelot

1 Introduction

The concern of this short paper is the improvement of the operations of the Canadian
Coast Guard by mathematical methods. At present the Canadian Coast Guard oper-
ates 140 vessels of different kinds for a variety of missions, see [1]. About one third
of these vessels operates inNewfoundland and Labrador and theMaritime Provinces.
This piece deals exclusively with search and rescue missions. Services are provided
to a diverse clientele, ranging from large tanker and container vessels to smaller
commercial fishing vessels, as well as recreational boats. Similar to the standard
triage system in hospitals, incidents are classified into three categories from distress
calls to potential distress and non-distress calls. The years 2005–2012 (except 2007,
which was excluded for technical reasons) saw 8,033 incidents on the Atlantic Coast
[2]. These incidents are not distributed evenly throughout the year as Fig. 1 clearly
demonstrates.

There are a number of decision variables that planners can use to optimize the
service provided by the Coast Guard. Among them are the choice of the equipment
(in the long run), the location of the existing vessels, and operational procedures.
This paper will investigate and optimize the location of the vessels. In order to do
so, we need to define objectives. An obvious customer-centered objective is the

H. A. Eiselt (B)
Faculty of Business Administration, University of New Brunswick, 4400, Fredericton, NB E3B
5A3, Canada
e-mail: haeiselt@unb.ca

A. Akbari · R. Pelot
Department of Industrial Engineering, Dalhousie University, 15000, Halifax, NS B3H 4R2,
Canada
e-mail: Amin.Akbari@dal.ca

R. Pelot
e-mail: Ronald.Pelot@dal.ca

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_17

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_17&domain=pdf


122 H. A. Eiselt et al.

0 

50

100

150

200

250

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

IN
CI

DE
N

T 
CO

U
N

T

MONTH

2005 2006 2008 2009 2010 2011 2012

Fig. 1 Incidents distribution by month in the Atlantic region

time it takes to reach the site of an incident with the appropriate vessel in order to
render assistance. The Coast Guard in Atlantic Canada has a total of 24 vessels,
which include lifeboats, multi-tasking ships and offshore patrol vessels. Since the
available data do not distinguish between different types of calls and their respective
requirements regarding equipment, we will locate the existing vessels based on their
speed and other features. A second criterion concerns the number of vessels that are
“within reach” of the Coast Guard and, by extension, help. In order to operationalize
this measure, we will define an acceptable response time, i.e., the time between
receiving a distress call and the time that the vessel is reached, as six hours. This
figure was chosen in consultation with the Coast Guard, who use it as a benchmark.
Given that,wewill then attempt tomaximize thenumber of vessels that canbe reached
within that time. The third criterion is based on the possibility of congestion. While
past experience indicates that congestion is not really a problem, this may become an
issue at peak times. For that reason, we have decided to also include backup coverage
as an objective to be maximized.

Given that vessels are not restricted to specific routes (in contrast to commercial
traffic that is restricted to established shipping lanes), suitably modified Euclidean
distances are an appropriate tool for the task. They should be modified, though, in
order to include land avoidance for some trips close to the shoreline. The use of
Euclidean distances will make the problem nonlinear and as such presents compu-
tational problems. In order to avoid these, we have chosen to digitize the model by
defining cells, whose size ranges from ¼ × ¼ degree close to the shoreline, four
times this size farther from shore, and sixteen times that size in outlying areas that
had very low incident rates in the past. The digitization will allow us to formulate
our model in integer terms. Another concern relates to the historic data. While the
past is often a good guide to the future, it is realistic to assume that incidents do not
generally occur at the same sites at which they occurred in the past. Instead, we make
the weaker assumption that incidents occur with the same probability they did in the
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Fig. 2 Number of past incidents in cells

past. For that purpose, we determine the relative frequency of incidents happening in
the individual cells and use those frequencies in different scenarios via kernel density
estimation. In each of these scenarios, we simulate specific incidents and determine
the solution that best satisfy our objectives.

In order to provide a visualization of the problem, Fig. 2 shows the past incidents
in the cells. Darker colors indicate more incidents. It is apparent that concentrations
of incidents are found in the Grand Banks east of Newfoundland (the area also
includes the Hibernia oil fields), the southwestern shore of Nova Scotia, and areas
in the Northumberland Strait and areas close to the shore of Newfoundland.

2 The Model

This section will develop the main features of the model. For further details, readers
are referred to [2]. The objective function includes:

(1) primary coverage at each possible cell location (defined as the expected number
of customers that are covered, i.e., are located in the predefined coverage radius
centered at each of the cells,

(2) backup coverage, defined as the expected number of incidents in a scenario that
are covered by at least two vessels, and

(3) the mean access time between a customer and the vessel that is located closest
to him.

Note that the first two objectives are of the “maximization” type, while the third
objective is of the “minimization” type.

The formulation of the model then integrates the three objectives as follows. First
there are constraints that require each of the objectives not to fall short of a value
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that represents a minimal requirement. This is an absolute constraint that cannot
violated. Secondly, the decision maker defines target values. These are optional and
the optimizer will attempt to minimize the weighted deviation of a solution’s conse-
quence (i.e., its primary coverage, backup coverage, and average access time) from
the target values. Clearly, the deviations only measures the differences between the
target values and the undesirable outcomes, i.e., the coverage that falls short of the
target value and the access times that exceed the target values. Among the constraints
are also capacity restrictions as well as limitations of pre-positioning rescue vessels
at offshore locations. The latter constraints are necessary as some small boats do not
allow overnight stays of the crew.

This model is a weighted goal programming problem of the type discussed in
many texts and research papers; see, e.g., [3–5]. This type of model was chosen,
as it allows maximal flexibility. In particular, while the different scenarios allow
us to avoid explicit inclusion of probabilistic features in the model, the reduction
of the multiple objectives to a single weighted objective—while we acknowledge
the typical problems with commensurability and interpretation—allows flexibility
in modeling and provides insight into the sensitivity of the solutions.

3 Optimization and Computational Results

As applied to the Coast Guard, Atlantic Region, our model has 242,761 variables and
248,849 constraints. We used Gurobi 6.0.4 as a solver with Intel Core i7 CPU and
8GB of RAM. The solution times were typically below 6min, with only one instance
requiring about 24 min. All different scenarios resulted in 93–95% of primary cov-
erage, 71–83% of backup coverage, and access times of 2.5–2.7 h. In contrast, the
present arrangement has a primary coverage of 89.4%, backup coverage of 60.2%,
and a mean access time of 3.14 h. In other words, the optimization has produced
solutions that represent improvements of 5% over the present primary coverage,
25% better than the present backup coverage, and have 17% better access time.

In order to present further insight into the results, we compare the results of
our model with weights of 0.5, 0.2, and 0.3 on the respective objective function
components with the solutions of single-objective models that optimize the coverage
(the usual max cover problem first formulated in [6]) and the p-median model (first
envisaged in [7] and first formulated in [8]). Table 1 compares the results, inwhich the
rows represent the model that is solved, while the columnsmeasure the achievements
regarding the three criteria used to evaluate solutions. As an example, solving the
max cover problem, the mean access time in the solution is 2.79 h. The other entries
in the table are interpreted similarly.

It is apparent that the multiobjective solution has a quality somewhere between
that of the max cover problem and the p-median model on primary coverage and
mean access time, but it shines when it comes to backup coverage, which is more
than ten percentage points better than that of either of the other two single-objective
models.
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Table 1 Comparison of our multiobjective model with single-objective formulations

Solution (objective values)

Primary coverage (%) Backup coverage (%) Mean access time
(hrs)

Maximal covering 95.2 60.1 2.793

p-Median 94.3 63.1 2.534

Multiobjective model 94.1 74.8 2.611

4 Outlook

This paper has examined a location problem that finds sites for Coast Guard vessels
in the Northwest Atlantic along the Canadian coast, so as to optimize three criteria,
which are different expressions of the quality of service. The results demonstrate
that there is room for improvement and one of the advantages of our solutions is that
they can easily be implemented, as they use the resources that are already available
and simply move them to different locations.

An extension and a long-term viewwas taken in [9].More specifically, the authors
assumed that the present resources were all to be sold and new vessels would be
purchased with the resulting revenue plus any additional amount, whichmay become
available. The model’s objective then minimized the average access time to any of
the customers who were covered. Given the Coast Guard’s wishes to hold on to
their large multitasking vessels, the model ensured that they would be kept. The
constraint included a budget constraint, and a constraint that ensured that at least a
given proportionα of all customerswould be covered. Coverages beyond 95%proved
to be impossible with the given budget and average access times were stable at about
2.3 h. What is more interesting, though, is the fact that the optimized mix of vessels
is very different from the equipment that is presently at the Coast Guard’s disposal.
The optimized types of equipment are very stable until the required coverage is high.
At that point the solutions become very “jumpy” and unstable.

There are a number of research directions that could be followed in the future.
One issue is to model the impacts of cooperation of the Coast Guard with other
Government agencies, e.g., air force and navy. In this context, it would also be
desirable to include helicopters and fixed-wing aircraft in the model. However, this
would requiremore detailed historical data on their usage in order to incorporate their
operating characteristics and the types of incidents that they typically respond to.
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Discrete and Integer Optimization



A Linear Program for Matching
Photogrammetric Point Clouds
with CityGML Building Models

Steffen Goebbels, Regina Pohle-Fröhlich and Philipp Kant

1 Introduction

CityGML is an XML-based description standard for city models (see [7]). Such
models are used for cadastral, planning and simulation purposes [2]. Each CityGML
polygon has a semantic meaning. Thus it represents either a wall or a roof facet
or a door, etc. On the other hand, textured (photo) meshes are often used for 3D
visualization. They just represent triangulated surfaces without considering the types
of objects they show. Their vertices can be taken from photogrammetric point clouds,
and triangles can be textured using the photogrammetric input data.

Most current CityGMLmodels are given in a level of detail that requires buildings
to only have walls, roofs, and a ground plane. To add detailed facades, we want to
map textured meshes onto CityGML polygons, see Fig. 1. Based on such textures,
detection of windows and doors can be performed.

To generate point clouds and textured meshes, one can use overlapping photos
or videos. Depending on the material’s source there might or might not be geo-
referencing. In general, it is possible to manually do a coarse registration with, for
example, theUTM(ETRS89) coordinate system.But precisionmight be not adequate
to directly map textured meshes to city models. One needs an automated adjustment
of the given coarse point cloud registration.

The Iterative Closest Point algorithm (ICP) is the standard non-feature-based
approach to align a roughly calibrated point cloud P with a calibrated cloud Q. It
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Fig. 1 The textured mesh to the left has to be aligned with the city model to the right

estimates a transformation matrix A iteratively by greedily assigning each point of
cloud P to its nearest neighbor in cloud Q, measured in Euclidean l2 norm, cf. [9].

We generate point clouds and corresponding textured meshes from internet UAV
videos. Resulting clouds have large gaps but cover multiple building corners. For
principal, a direct ICP registration is possible with a point cloud Q that is sampled
from the city model and enriched with points of a digital terrain model. In our case,
Point Cloud Library’s ICP based on Singular Value Decomposition does not yield
reliable results or converges slowly in point-to-pointmode. It performsbetter in point-
to-plane mode. However, running times exceed those of Linear Programs by powers
of ten. Therefore, we try to detect a set P of building corners in the photogrammetric
cloud. Then we align it with a set Q of vertices taken from a CityGML model.
Unfortunately, P and Q are both small and not all elements of P correspond with
model vertices in Q. For the data shown in Fig. 1, Point Cloud Library’s ICP, applied
to align feature set P with Q, does not find enough correspondences. Instead, we
propose to use a Mixed Integer Linear Program (MIP) or a Linear Program (LP)
relaxation of this MIP. To obtain an LP description, we measure absolute distances
in l1 instead of l2 norm, see [4] for implications.

LP and MIP are established means in 3D modeling. For example, in [3] a MIP
is used to reconstruct surfaces from point clouds. An LP is used in [6] to heal non-
planarity in 3D city models. Coarse registration of point clouds based on MIP is
described in [10]. Also, a MIP is used to compute non-rigid matchings between 3D
shapes based on small surface patches [12]. Wang et al. [8, 11] use a MIP that is
a linearized min-max version of the quadratic assignment problem. They align two
sets so that distances between points in one set correspond to distances between
matched points in the second set. But as in the definition of the quadratic assignment
problem, they match all points of the first set. In our application there might exist no
counterpart of a point of one set within the other.

We use an LP relaxation of a MIP to match a largest subset P ′ of the cloud’s
building corners P with cadastral vertices Q. Finally, we compute a transformation
matrix A that adjusts P ′ with correspondences in Q by executing another LP.
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2 Detection of Corner Points and Linear Programs

Todetect building corners,wefirst rotate the point cloud so thatwalls becomevertical.
We do this based on RANSAC estimates of wall planes. Then we project points to a
density greyscale picture that represents the x-y-plane. Thereby, we exclude green
points because theymost likely belong to vegetation and not to buildings. The number
of points projected to the same pixel determines the grey value of this pixel so that,
because of the initial rotation, vertical walls become clearly visible dense lines, see
Fig. 2. After thresholding this picture to a binary mask, Harris corner detector finds
candidates for building corners, see circles in Fig. 2. For each corner we select both its
probable intersection point with the ground and its probable intersection point with
a building’s roof. To this end we look for the smallest and the greatest z-coordinates
of all points within a surrounding (with radius 1

3 m) of each candidate. This results in
two building corner points. Let P ⊂ R

4, P = {p1, . . . , pm} be the set of all corner
points in homogeneous coordinates, i.e. the fourth component of each point is set to
one. Thus, each corner point pi is given as a column vector with coordinates pi .x ,
pi .y, pi .z, 1. We will align P with a set Q = {q1, . . . , qn} of vertices from a city

Fig. 2 The upper left picture shows vertical density of the point cloud. In the upper right figure,
walls are textured with points that coincide with model facades after registration. Both pictures
in the second row show footprints of buildings (grey), candidates of walls detected from density
representation of point cloud (black) and their detected corners (circles). To the left, the situation
before transformation is shown. Walls of the point cloud differ significantly from footprints. Using
LP relaxation we find correspondences between detected corners and vertices of footprints. These
correspondences are marked with short black lines. Based on such pairs, the transformation matrix
is computed using an LP. The right picture shows the result of transformation. Short black lines
visualize corner movements
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model that are also given in homogeneous coordinates. To be more concise, we put
vertices of CityGML intersection lines between walls and terrain into Q. For each
such vertex, we also add the highest roof vertex with same x- and y-coordinates to Q.
Therefore, we get points with different height values, i.e. z-coordinates, even for flat
terrains. This will allow to compute z-coordinate scaling and translation. Before any
computation, we shift coordinates so that P’s center of gravity becomes the origin.
Small coordinates support numerical stability.

To find a transformation matrix A := (ak,l) ∈ R
4×4 with a4,1 = a4,2 = a4,3 = 0,

a4,4 = 1, that optimally aligns P with Q, we first define a MIP to detect a maximum
set of matching pairs of points pi ∈ P and q j ∈ Q. This is different to the 2D point
registration approach of Baird [1] that uses an LP (within a pruned search) to check
if a given set of pairs fulfills a registration property.

Since we require a coarse registration, distances between corresponding points
can be assumed to be shorter than a threshold value d (we use d = 6m). Therefore,
we do not have to consider all pairs of points but only those within R := {(i, j) :
|pi − q j | < d for i ∈ [m] := {1, 2, . . . ,m}, j ∈ [n]}.

Binary variables xi, j , (i, j) ∈ R, indicate whether points pi ∈ P and q j ∈ Q
match. Then xi, j = 1, otherwise xi, j = 0. A MIP determines an initial version of
matrix A that maps matching points to each other within a certain error bound. In a
second step, we then fine-tune the matrix A using an LP.

TheMIP’s task is to find a largest number of matchings such that a transformation
matrix A exists so that for matching pairs (pi , q j ) the coordinates of A · pi and q j

are within a small threshold distance ε > 0. Let M be a large number, for example
twice the greatest distance between points of P and Q.We find correspondences with
the following MIP for xi, j ∈ {0, 1}, d+

i, j , d
−
i, j ∈ (R≥0)4, (i, j) ∈ R, ak,l ∈ R, k ∈ [3],

l ∈ [4]:

Max
∑

(i, j)∈R

xi, j , s.t.
∑

i∈[m]:(i, j)∈R

xi, j ≤ 1 for j ∈ [n], and
∑

j∈[n]:(i, j)∈R

xi, j ≤ 1 for i ∈ [m],

d+
i, j − d−

i, j = q j − A · pi , max{d+
i, j .x, d

+
i, j .y, d

+
i, j .z, d

−
i, j .x, d

−
i, j .y, d

−
i, j .z} + Mxi, j ≤ ε + M.

A maximum might be obtained for a matrix A that cannot be described as a
product of matrices for scaling, rotation, and translation. For example, we have to
avoid mirroring. Thus, we seek a matrix A that is defined with small angles α, β,
and γ near to zero, scaling factors s1, s2, s3 near to one, and offsets d1, d2, and d3 for
translations:

⎛

⎜⎜⎝

s1(cosα cos γ −sin α sin β sin γ ) −s1(sin α cos γ +cosα sin β sin γ ) −s1 cosβ sin γ d1
s2 sin α cosβ s2 cosα cosβ −s2 sin β d2

s3(cosα sin γ +sin α sin β cos γ ) s3(cosα sin β cos γ −sin α sin γ ) s3 cosβ cos γ d3
0 0 0 1

⎞

⎟⎟⎠

≈

⎛

⎜⎜⎝

s1 −s1α −s1γ d1
s2α s2 −s2β d2
s3γ s3β s3 d3
0 0 0 1

⎞

⎟⎟⎠ .
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Taylor expansion and omission of even smaller products of small angles lead to the
approximate version of A. As a heuristics to reduce the set of feasible matrices we
use threshold values δ = 0.3 and μ = 0.1 in connection with

1 − δ ≤ ai,i ≤ 1 + δ for i ∈ [3], −δ ≤ ai, j ≤ δ for i, j ∈ [3], i �= j, (1)

−μ ≤ a1,2 + a2,1 ≤ μ, −μ ≤ a1,3 + a3,1 ≤ μ, −μ ≤ a3,2 + a2,3 ≤ μ. (2)

Instead of calling aMIP solver, it turned out to be sufficient to approximately solve
the MIP using LP relaxation. Thus we allow xi, j ∈ [0, 1]. Based on an optimal LP
solution, we define the set R′ of pairs (i, j) ∈ R for which xi, j ≥ 1 − 4 ε

M (instead of
selecting pairs with xi, j = 1 in a MIP solution). There exists a linear mapping A that
maps pi to a point that is close to p j for all (i, j) ∈ R′, i.e. 0 ≤ d±

i, j .x, d
±
i, j .y, d

±
i, j .z ≤

ε + M(1 − xi, j ) ≤ 5ε. There might still be a systematic error up to the magnitude of
5ε. Therefore, we now use a second LP thatminimizes distances between coordinates
of matching pairs in R′. The LP relaxation also computes a transformation matrix
A that can serve as an initial configuration for this second LP. We use the same
variable names as for the MIP, i.e. d+

i, j , d
−
i, j ∈ (R≥0)4, (i, j) ∈ R′, and ak,l ∈ R,

k ∈ [3], l ∈ [4]. To compute matrix A we solve

Min
∑

(i, j)∈R′
(d+

i, j .x + d+
i, j .y + d+

i, j .z + d−
i, j .x + d−

i, j .y + d−
i, j .z)

s.t. d+
i, j − d−

i, j = q j − Api and conditions (1), (2).

3 Results

We execute LPs with the GNU Linear Programming Kit library. The approach works
if a couple of significant corners can be detected. Then results depend on the error
bound ε and on the resolution of the density image that is used to detect corners. Data
shown in Fig. 1 belong to a point cloud with 5,577,195 points. The cloud has to be
matched with 1,440 vertices of the city model. Figure2 illustrates the outcome for
resolution 9dots/m2 and ε = 0.6 m. Figure3 shows distances between transformed
corners and model vertices of matching pairs in R′. Overall running time on one i5
processor core is less than one second. Without relaxation, the running time does not
change significantly (ε replaced by 5ε for consistency). With increasing resolution
also accuracy increases. However, the higher the resolution is, the less visible become
walls, and the number of detected corners decreases.

Our approach works for scenes that cover multiple significant building corners.
This might not be the case if videos are taken from street level. But then one can
detect (few) lines in the density picture and match them with corresponding lines of
the city model’s building footprints using a MIP, see [5].
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Fig. 3 Distances between transformed corners and CityGML vertices of matching pairs in meters:
Boxplots show the results of LP relaxation of the MIP (denoted MIP) and subsequent LP optimiza-
tion (denoted LP) for density images with 9 and 36dots/m2. Median 0.25 for parameter ε = 0.3m
and resolution 36dots/m2 is within metering precision
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AModified Benders Method for
the Single- and Multiple Allocation
P-Hub Median Problems

Hamid Mokhtar, Mohan Krishnamoorthy and Andreas T. Ernst

1 Introduction

Hubs are employed in several network design contexts that involve flow interchange
between nodes. Hubs are used in the design of, for example, airline networks, parcel
delivery networks, and telecommunications networks. Flow between nodes (referred
to as access nodes) is routed via hubs, which acts as a consolidator and forwarder.
The (volume) flow between the hubs is discounted because of the large volumes that
accrues from flow consolidation. Hub location design problems then determine the
location of the hubs and the allocations of access nodes to the hubs. Thus, through
the use of hubs, origin-destination flows/demands can be fulfilled using a smaller
number of links, while delivering economies of scale [4]. Usually it is assumed that
the hubs do not have capacity/flow restrictions, and the hubs are fully connected.
Then, given a positive integer p, we either get the uncapacitated single allocation
p-hub median problem (USApHMP) if each access-node is allocated to exactly one
hub, or the uncapacitated multiple allocation p-hub median problem (UMApHMP)
if access nodes can be allocated to multiple hubs.

After seminal works of O’Kelly [12, 13] on the hub location problem (HLP),
a few hub median problems were introduced and formulated by Campbell [2, 3].
Ernst and Krishnamoorthy [7–9] developed and presented a compact 3-index for-
mulation for USApHMP and UMApHMP and provided exact solution approaches
for these problems. Recently, modified Benders decomposition methods have been
developed, with remarkable success, for solving some classes of HLPs (see [5, 6]). In
many cases degeneracy in the subproblems of the method could lead to slow conver-
gence of the method. This issue was noticed and addressed by Magnanti and Wong
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[11] who introduced the generation of ‘pareto optimal’ cuts using some ‘core point’.
This improvement is employed in many implementations of the Benders method,
including the one by Contreras et al. [5] for HLP with multiple allocation. In the
current paper we take advantage of these pareto optimal cuts. We then remarkably
enhance this approach by choosing better core points and generating stronger cuts.
We also come up with a more efficient approach for solving subproblems to gen-
erate cuts by converting the subproblems to minimum cost network flow problems.
Through the use of more effective Benders cuts and more efficient solution of sub-
problems, our method results in fewer iterations and faster running times.We believe
this paper is the first implementation of Benders method to solve USApHMP and
UMApHMP.

2 Problem Statement

We are given a set of n nodes N = {1, 2, . . . , n}, distances between each pair of
nodes, di j , and a positive integer p with n ≥ p. We consider a complete digraph
G = (N , A), where A = N × N so that the weight of each link is the distance of
its endpoints. We suppose that hubs are connected through a complete graph on the
set of hubs, and non-hub nodes are only connected to hubs. For every pair of nodes
(i, j), Wi j ≥ 0 denotes the amount of flow demand from i to j .

In practice, flow between hubs is discounted by a transfer coefficient α, and flow
from a non-hub to a hub, and flow from a hub to a non-hub have collection (χ )
and distribution (δ) cost coefficients respectively. Usually α ≤ 1, χ ≥ α and δ ≥ α

in practical applications. The problem of locating p hubs among n ∈ N nodes, and
allocating each non-hub node to exactly one hubwithminimum total cost of fulfilling
flow demands is USApHMP. When each non-hub node can be allocated to arbitrary
number of hubs, the problem is UMApHMP.

We may assume that all flow must be routed through at most two (not necessarily
distinct) hubs since using two hubs is always cheaper than using three or more hubs
because of the triangular inequality assumption. Therefore, any path between i and j
must contain three links, (i, k), (k, l), and (l, j), where i and j are connected to hubs
k and l respectively.We denote such a path by i-k-l- j . Let xi jkl be the fraction of flow
request Wi j that is sent on the i-k-l- j path, for all i, j, k, l ∈ N . Let binary decision
variable hk = 1 if node k is chosen as hub, and hk = 0 otherwise, for each k ∈ N .
Let binary decision variable zik = 1 if node i is connected to hub k, and zik = 0
otherwise, for all i, k ∈ N . Then the cost of using i-k-l- j path, considering the cost
coefficients of different link types, is Ci jkl = χdik + αdkl + δdl j . Furthermore, the
establishment of node k ∈ N as a hub corresponds to a fixed cost Fk . An integer
linear programming formulation of USApHMP is presented below:
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min
∑

k∈N Fk hk + ∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈NCi jkl Wi j xi jkl (1)

s.t.
∑

k∈Nhk = p, (2)
∑

k∈N zik = 1, ∀i ∈ N (3)
zik ≤ hk , ∀i, k ∈ N (4)
∑

k∈N
∑

l∈N xi jkl = 1, ∀i, j ∈ N (5)
∑

l∈N xi jkl ≤ zik , ∀i, j, k ∈ N (6)
∑

k∈N xi jkl ≤ z jl , ∀i, j, l ∈ N (7)
hk , zik ∈ {0, 1}, xi jkl ≥ 0 ∀i, j, k, l ∈ N . (8)

By dropping allocation variables zik and constraints (3)–(4) from the above for-
mulation of USApHMP, and substituting (6)–(7) with the following constraints, we
obtain a formulation for UMApHMP:

∑
l∈N xi jkl ≤ hk , ∀i, j, k ∈ N

∑
k∈N xi jkl ≤ hl , ∀i, j, l ∈ N .

Both USApHMP and UMApHMP are NP-hard in general. However, UMApHMP
with fixed location of hubs can be solved polynomially [9], but USApHMP for
p ≥ 3 is NP-hard even when the location of hubs are fixed [10]. The large number
of variables and constraints corresponding to the flows between pairs of nodes leads
us to the idea of solving the problems using Benders decomposition.

3 Benders Decomposition

In Benders decomposition method [1], the original problem is decomposed into
a master problem MP, which may consist of integer variables and corresponding
constraints, and a subproblem SP, which consists of the remaining variables and
constraints. MP and SP are solved iteratively in a dependant manner. In the case that
SP is feasible for any feasible solution of MP (such as the problems in this paper),
only optimality Benders cuts will be added to MP to improve the feasibility of the
current MP solution, until no further improvement is needed.

In order to apply Benders decomposition method to USApHMP, in each iteration,
the location and allocation variables, h = (hk)k∈N and z = (zik)i,k∈N respectively,
are fixed to some ĥ and ẑ. We then obtain a linear programming subproblem in the
iteration, which is the problem of optimal routing between n2 pairs for specified
hubs and allocations by ĥ and ẑ. The subproblem can be further decomposed into
n2 subproblems because we can find an optimal routing for each pair of nodes sep-
arately/independently. This decomposition results in n2 Benders cuts, which may
provide tighter cuts for MP, and faster convergence. The dual of SP for any pair of
nodes (i, j) ∈ N 2 is as follows:
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DSi j : max fi j − ∑
k∈N ẑikui jk − ∑

l∈N ẑ jlvi jl
s.t. fi j − ui jk − vi jl ≤ Ci jkl Wi j , ∀k, l ∈ N (9)

ui jk, vi jl ≥ 0, fi j ∈ R ∀k, l ∈ N . (10)

By an optimal solution ( f̂i j , ûi j , v̂i j ) of DSi j for each (i, j) ∈ N 2, a Benders cut is
generated. Thus, in each iteration we obtain n2 Benders cuts:

ηi j ≥ f̂i j − ∑
k∈N zik ûi jk − ∑

l∈N z jl v̂i jl ∀i, j ∈ N , (11)

where ηi j is a real non-negative variable. Then the master problem is:

MP: min
∑

k∈N Fk hk + ∑
i∈N

∑
j∈Nηi j .

s.t. (2) − (4), (11), hk, zik, ηi j ≥ 0 ∀k, i, j ∈ N .

The optimal solution of DSi j is not unique since SP is degenerate. The strength
of Benders cuts (11) is dependent on the choice of optimal solutions of DSi j . We
maximise a weighted summation of dual variables among optimal solutions of DSi j
by defining a slope for the objective function of a secondLP to generate different cuts.
Let z′

ik, z
′
jl for k, l ∈ N be non-negative real parameters and m ′

0 be a real parameter.
Define

DLi j : max m ′
0 fi j − ∑

k∈N z
′
ikui jk − ∑

l∈N z
′
jlvi jl

s.t. fi j − ∑
k∈N ẑikui jk − ∑

l∈N ẑ jlvi jl = δ̂i j

(9) − (10),

where δ̂i j is the optimal value of DSi j .
The strength of our generated Benders cuts is directly related to the slope of the

objective function of the above SP. When (h′
k, z

′
ik)i,k∈N is an interior point of the

convex hull of MP (called a ‘core point’), and m ′
0 = 1, we obtain an acceleration

of the Benders method proposed by Magnanti and Wong [11], which is shown to
generate ‘pareto optimal’ cuts. Generated cuts by their method, however, might
not be the strongest cuts in general. We observed in most cases (across a few test
implementations we ran) that a modification of their method – in which the objective
function is minimised – results in stronger cuts, fewer number of branch and bound
iterations, and faster convergence. So pareto optimality is not sufficient to measure
the strength of Benders cuts.

Here we set z′
i j = (z′

i1, . . . , z
′
in, z

′
j1, . . . , z

′
jn) for DLi j which may not be equiva-

lent to a core point, but results in stronger cuts for USApHMP. We set

z′
ik = Γi/(n − p) if ẑik = 0, z′

jl = Γ j/(n − p) if ẑ jl = 0, (12)

where Γi , Γ j > 0, z′
ik = 1 if ẑik = 1, and z′

jl = 1 if ẑ jl = 1. By this combination, we
control the number of non-zero coefficients of allocation variables in Benders cuts
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which are associated to i- j paths through non-hubs shorter than the shortest path
through allocations specified by ẑ, i-k̂-l̂- j . We show in next section that, on average,
our approach for some choice of z′

i j substantially reduces the number of iterations
and the computational time.

Another issuewe address in this paper is the computationally expensive generation
of Benders cuts. By exploiting the structure of SP, we reformulate SP as a minimum
cost network flow problem on an auxiliary network with 2n + 2 nodes and n2 + 2n
arcs, and the capacity of arcs are determined by z′

ik for k ∈ N and z′
jl for l ∈ N . The

amount of flow for pair (i, j) in this network is Γi + Γ j . This results in generating
Benders cuts more efficiently.

With a similar discussion for UMApHMP and a given feasible solution of MP,
the corresponding DLi j has the same set of constraints as that of USApHMP, but
its objective function is m ′

0 fi j − ∑
k∈Nh

′
kui jk − ∑

l∈Nh
′
lvi jl . Then for an optimal

solution ( f ′
i j , u

′
i j , v

′
i j ) of DLi j , the Benders cuts for UMApHMP are:

ηi j ≥ f ′
i j − ∑

k∈Nhku
′
i jk − ∑

l∈Nhlv
′
i jl ∀i, j ∈ N .

For UMApHMP we set h′
k = Γi/(n − p) if ĥk = 0, and h′

k = 1 if ĥk = 1.

4 Computational Results

Wecompare the computational resultswhenSPs are solved by simplex, andminimum
cost network flow (MCNF) methods, and also our modified Benders methods for
USApHMP and UMApHMP. We suffice to present our computational results since
in the literature of the two problems, there is no implementation of Benders method,
and not many recent results using exact methods.

Tables1 and 2 present the computational results of, respectively, USApHMP
and UMApHMP tests on the problem instances with n nodes and p hubs in the
Australia Post data sets [7]. All methods were coded in C/C++ using CPLEX 12.7,
and performedon aPCwith 8 cores of 3.6GHz speed and32GRAMwith time limit of
2 hours. Columns SPLXandMCNF, respectively, show results of computationswhen
SPs are solved using simplex, and MCNF algorithms for some ‘core-point’ (h′

k =
p/n and z′

ik = 1/n for i, k ∈ N ). The results of our judicious choice of objective
function slope of DLi j is presented in column z′-DLi j , in which we set Γi = 2.4,
Γ j = 1.6 in (12). For each node pair we generated two cuts with m ′

0 = 1 and m ′
0 =

−0.2.
As Tables 1 and 2 show, solving SPs by MCNF significantly improves the com-

putational times (shown in sec.), although in a few cases the number of Benders
iterations (B-itr) and branch&bound nodes (BBN) are increased. Note that differ-
ent methods with the same parameters may get different cuts due to the degeneracy
of SPs. On the other hand, SPLX method encounters memory shortage (indicated
by ‘m’) so that it is unable to solve problems with n ≥ 60. In contrast, MCNF did
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Table 1 USApHMP on Australia Post data sets

n p SPLX MCNF z′-DLi j

B-itr BBN Time B-itr BBN Time B-itr BBN Time

25 3 7 0 59.78 9 11 1.58 4 0 0.37

25 4 14 27 119.46 13 37 3.11 6 2 0.99

50 3 6 0 2773.01 6 14 24.10 6 0 3.26

50 4 7 0 3522.72 9 42 41.58 5 0 3.76

75 3 m 17 57 330.02 6 4 31.32

75 4 m 17 140 534.28 9 28 53.80

100 3 m 19 114 1918.67 8 14 191.97

100 4 m 22 203 1712.07 8 8 106.41

125 3 m 15 125 5122.10 11 23 745.47

125 4 m 20 184 5349.48 14 16 362.12

150 3 m t 13 8 1759.09

150 4 m t 32 22 2618.44

Table 2 UMApHMP on Australia Post data sets

n p SPLX MCNF z′-DLi j

B-itr BBN Time B-itr BBN Time B-itr BBN Time

25 3 12 0 47.50 7 22 0.49 6 24 0.27

25 4 10 0 38.54 10 12 0.59 10 24 0.41

50 3 10 10 2502.39 8 64 11.63 8 54 5.30

50 4 7 12 1980.66 9 74 15.56 8 66 6.77

75 3 m 14 68 112.59 8 52 21.05

75 4 m 10 56 49.95 10 102 41.61

100 3 m 19 76 973.85 10 154 195.21

100 4 m 14 164 634.43 19 184 720.72

125 3 m 16 122 2200.58 15 138 537.01

125 4 m 18 196 914.29 15 132 613.04

150 3 m t 19 72 1083.39

150 4 m t 28 190 4721.91

200 3 m t 10 72 2427.48

200 4 m t 27 94 5021.77

not have memory issue for tested problems, but was unable to solve instances with
n ≥ 150 in 2h (indicated by ‘t’).

Our modified Benders method outperforms the traditional accelerated Benders
method in the computational times for all cases, and also in B-itr and BBN for most
cases. In particular, it solved a few instances which other methods were not able to
solve. Thus our approach enables us to solve larger problems.
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The Ubiquity Generator Framework:
7 Years of Progress in Parallelizing
Branch-and-Bound

Yuji Shinano

1 Introduction

This paper deals with the Ubiquity Generator (UG) framework [20, 24], a software
package that allows to parallelize branch-and-bound (B&B) solvers—in particular
solvers for mixed integer linear programming (MILP) problems. The standard algo-
rithm used to solve MILP is an LP-based branch-and-bound with many advanced
procedures such as primal heuristics, preprocessing and conflict analysis, which
implicitly enumerates the whole solution space to find an optimal solution. The
reader is referred to [10] for details about these procedures and the latest survey
of parallel MILP solvers. This paper presents the ground design and general fea-
tures of UG, current development based on it, and discusses 7years of progress in
parallelizing branch-and-bound solvers with UG.

2 Towards a General Branch-and-Bound Parallelization

Standardization of the message passing interface started in the mid-90s. In the same
period of time, general parallel branch-and-bound software framework/library devel-
opment started [2, 21, 23]. Comparing between a sequential sophisticated B&B
implementation and a naive parallel B&B one for solving an optimization problem,
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the former is overwhelmingly high-performance in terms of solvability. In order to
investigate effectiveness of parallelization for a sophisticated B&B implementation,
the CPLEX solver was parallelized by using PUBB2 [19]. However, it soon turned
out that parallelizing a black-box solver with a general parallel B&B framework does
not easily lead to a significantly enhanced performance. Therefore, the development
of ParaLEX [18] was started, which was specialized for the CPLEX solver and could
run on distributed memory environments. Yet, when ParaLEX was redesigned in
2008 [13] by the author of this article, the idea of developing a general software
framework to exploit state-of-the-art MILP solvers re-emerged and subsequently
gave rise to the UG framework described in the following.

2.1 The Ubiquity Generator (UG) Framework

UG is a generic framework to parallelize any existing state-of-the-art B&B based
solver, subsequently referred to as base solver. UG is composed of a collection
of base C++ classes, which define interfaces that can be customized for any base
solver and allow descriptions of subproblems and solutions to be translated into a
solver independent form. Additionally, there are base classes that define interfaces
for different message-passing protocols. Implementations of ramp-up, dynamic load
balancing, and check-pointing and restarting mechanisms are available as a generic
functionality (see details in [20]). The B&B tree is maintained as a collection of
subtrees by the base solvers, while UG only extracts and manages a small number of
subproblems from the base solvers for load balancing.

The concept of UG is thus to abstract from a base solver and parallelization library
and to provide a framework that can be used, in principle, to parallelize any powerful
state-of-the-art base solver on any computational environment. For a particular base
solver, only the interface to UG in form of specializations of base classes needs to be
implemented. Similarly, for a particular parallelization library, a specialization of an
abstract UG class is necessary.

Aparticular instantiatedparallel solver is referred to as ug [a specific solver name, a
specific parallelization library name]. Here, the specific parallelization library is used
to realize the message-passing based communications. In [10], recent parallel MILP
solvers are summarized in terms of aspects such as load coordination mechanisms,
or granularity of working unit. According to the term defined in [10], UG employs a
Supervisor-Worker coordination mechanism with subtree-level parallelism (the unit
of work is a subtree). One of the most important characteristics of UG is that it
makes algorithmic changes to that of the base solver, such as multiple presolving,
and performs very adaptive algorithms, such as racing ramp-up [20] and distributed
domain propagation [5].
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2.2 Instantiated Parallel Solvers by UG

The following parallel solvers are instantiated by UG. The current distribution of UG
has the capability to use the parallelization librariesMPI (Message Passing Interface)
and pthreads (POSIX Threads).

Academic solver SCIP as the base solver Two solvers have been developed for
the academic SCIP solver [11], ParaSCIP (= ug [SCIP, MPI]) [14] and FiberSCIP
(= ug [SCIP, Pthreads]) [20]. Algorithmically, both solvers are identical, since
they are parallelized by the same software framework UG. The run-time behavior
has been investigated in detail for theMIPLIB2010 benchmark instances by using
FiberSCIP. ParaSCIP successfully solved 14 previously unsolved instances from
MIPLIB2003 andMIPLIB2010 as of writing this document [15, 16]. The longest
and the biggest scale computation conducted to solve an open instance by Para-
SCIP is presented in Fig. 1. The rmine10 instance was solved for the first time
with 48 restarted runs from checkpoint files that were generated by previous
runs using between 6144 and 80,000 cores. In total, it took about 75days and
6,405years of CPU core hours.

Commercial solver FICO Xpress as the base solver Two solvers have been
developed for the commercial Xpress, the solversParaXpress (= ug [Xpress,MPI])
and FiberXpress (= ug [Xpress, Pthreads]). Xpress itself is a shared memory par-
allel MILP solver. Therefore, FiberXpress can be viewed as a multi-level threaded
parallel shared memory MILP solver. When there is more than one core, it is
necessary to decide how cores are assigned to UG threads and how many to the
Xpress threads. The assignment also changes the solving behavior of the algo-
rithm. ParaXpress has the same assignment issue in between UG processes and
FICO Xpress internal threads. The difference in assignments was investigated in
[17].

Distributed memory parallel solver PIPS-SBB as the base solver UG has also
been used to parallelize the PIPS-SBB [8] solver for two-stage stochastic program-
ming problems (ug [PIPS-SBB,MPI]) [9]. PIPS-SBB can solve large-scale LPs
on distributed memory computing environments. Therefore, this parallel solver
instantiation shows that UG is capable of parallelizing distributedmemory parallel
base solvers.

2.3 Instantiated Parallel Solvers by ug [SCIP,*] Libraries

UG has been developed mainly in concert with SCIP. Therefore, ug [SCIP,*] is the
most mature and also has user-customizable libraries. By using these libraries with
the plug-in architecture of SCIP, a customized parallel solver can be developed with
minimal effort.
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Fig. 1 Evolution of computation for solving rmine10 by using up to 80,000 cores

ug [SCIP-Jack, * ] One of the most successful results of using this development
mechanism is the SCIP-Jack solver for Steiner tree problems and its variants: ug
[SCIP-Jack, MPI] solved three open instances from the SteinLib [22] benchmark
set [4]. The SCIP Optimization Suite contains all source codes of this parallel
solver. Only one file with 116 lines of code (without comments) in the source
code of ug is required for the parallelization of SCIP-Jack.

ug [SCIP-Scheduler, * ] The SCIP applications moreover contain a Scheduler,
which is a solver for resource-constrained project scheduling problems [1]. Also
this solver can be parallelized by ug [SCIP,*] libraries.

ug [SCIP-SDP, * ] TheMixed Integer Semidefinite Programming (MISDP) solver
has been developed in a project of SCIP-SDP [12] at TU Darmstadt. The solver
is realized as plugin for SCIP. Therefore, this solver can be parallelized by ug
[SCIP,*]; libraries and the code will be published in the near future.

3 UG Synthesizer (UGS)

The strategy of composing multiple heuristic algorithms within a single solver that
chooses the best suited one for each input is called algorithm portfolio. In order
to exploit performance variability [3, 6] for MILP solving, a solver may solve an
instance in parallel with several different configurations of parameters (including
parameter for permutation of columns and rows of input data). This procedure is
called racing [20]. It is a natural idea to run several (parallel) heuristic solvers together
with several B&B based solvers in parallel to share a good primal solution to cut-off
search trees in the B&B based solvers.UG synthesizer (UGS) is a software framework
to realize this strategy on a distributedmemory computing environment; it is a general
framework to realize any combinations of algorithm portfolio and racing.

Although a parallel solver instantiated by UG has a single executable file and
runs as a SPMD (Single Program, Multiple Data) model MPI program, a parallel
solver configured byUGS has several executable files and it runs asMPMD (Multiple
Program, Multiple Data) model MPI program. In UGS solvers, a heuristic solver or
a B&B solver has a separate executable file and is referred to as a UGS solver that
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can be a distributed memory parallel solver. Currently, shared memory parallel B&B
UGS solvers ugs_Xpress, ugs_CPLEX, and ugs_Gurobi have been developed. As
for these solvers, the corresponding commercial solvers are extended to run as UGS
solvers. And also, distributed memory heuristic UGS solvers ugs_PAC_CPLEX and
ugs_PAC_Xpress have been developed. These are implementations of alternative
criteria search [7] using different MILP solvers. Any ug [*,*] solver can run as a
UGS solver.UGS provides one special executable file ugs, whichmediates incumbent
solutions among the UGS solvers.

A parallel UGS solver can be configured at run-time flexibly. For example, it
runs with ugs, ugs_Xpress1, ugs_Xpress2, ugs_CPLEX1, ugs_PAC_CPLEX1 and
ug [Xpress,MPI]1. The different numbers at the end of the same solver name denote
the multiple solvers for one UGS solver can run in parallel with different parameter
settings. The solver configuration is specified by a special file and is passed to each
solver at run-time. Therefore, the configuration can be decided flexibly depending
on the computing environment used to solve an instance. On top of that, whenever
a new promising algorithm implementation has appeared, a new UGS solver can be
added without any modification of the other existing solvers, since the executable
file is separate.

4 Concluding Remarks

Some of the instances solved by ParaSCIP for the first time are currently solvable
by commercial solvers on a common desktop machine in a reasonable amount of
time. This can be taken as an indication that algorithmic improvements are more
crucial than parallelizations. Nevertheless, by providing a way to apply large-scale
parallelization to the latest algorithm implementations, UG has in many cases suc-
ceeded to “look ahead in time” and in some cases helped to guide sequential solver
development.

Besides this fact, a solver instantiated by UG causes algorithmic changes to that
of the base solver by adding more cores, though the program code is the same. An
open question is whether this kind of algorithmic change can fundamentally help to
increase the solvability of problems or not.
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Exploring the Numerics of
Branch-and-Cut for Mixed Integer
Linear Optimization

Matthias Miltenberger, Ted Ralphs and Daniel E. Steffy

1 Introduction

The branch-and-cut algorithm for mixed integer linear optimization problems
(MILPs) combines aspects of the branch-and-bound algorithmwith the cutting plane
algorithm to strengthen the initial LP relaxation (see [4] for a complete description
of these operations and the definitions of these terms). While branching increases
the number of subproblems to be solved and should thus be avoided in principle, the
addition of too many cutting planes often results in an LP relaxation with undesir-
able numerical properties. Recent research into the viability of solving MILPs using
a pure cutting plane approach has provided some insight into how and why this hap-
pens and has explored techniques to generate a sequence of valid inequalities whose
addition to the LP relaxation is less likely to cause difficulties [5, 9].

In general, branching and cutting must be used carefully in concert with each
other to maintain numerical stability. The effect of these operations on numerics
is not well understood, however, and is difficult to control directly. There exists a
number of approaches to effectively combine the branching and cutting operations.
In some solvers, cutting is only done at the root node, while in others, cuts are
added throughout the tree. As with any numerical process, implementations of these
solution algorithms use floating-point arithmetic and are subject to accumulation
of roundoff errors within the computations. Without appropriate handling of these
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errors, the algorithms may return unreliable results, failing to behave or terminate as
expected.

Modern MILP solvers use a wide range of techniques to mitigate the difficulties
associated with numerical errors. For example, it is standard practice to discard or
modify cuts whose coefficients differ significantly in magnitude, since these inequal-
ities are likely to degrade the conditioning of the LP relaxation. This and other tech-
niques help to ensure that the LP relaxation will have better numerical properties and
increases the computational stability of the algorithm.

It is well understood that the addition of cutting planes has the potential to neg-
atively impact the numerical properties of the LP relaxation, even after steps have
been taken to improve their reliability. On the other hand, branching may counteract
this effect to some extent, leading to a more stable algorithm overall. In this paper
we seek to carefully investigate the impact of both branching and cutting on the
numerical properties of the LP subproblems solved in the branch-and-cut algorithm.
The purpose of this work is both to confirm existing folklore, namely that branching
improves condition and cutting degrades it, as well as to explore the potential for
directly controlling numerical properties through judicious algorithmic choices.

In Sect. 2 we discuss the choice and computation of the basis matrix condition
numbers as a measure of numerical stability. In Sect. 3 we describe computational
results regarding how branching and cutting affect the condition numbers. Section4
discusses some implications of our findings and ongoing work.

2 Condition Numbers

The condition number of a numerical problem is a bound on the relative change
(in terms of a given norm) in the solution to a problem that can occur as a result
of a change in the input (see [3] for formal definitions). For example, the condition
number of a matrix A is κ(A) = ‖A‖2‖A−1‖2 and yields a bound on how much the
solution to the linear system of equations Ax = b might change, relative to a change
in the right hand side vector b. For LPs, a handful of different condition numbers have
also been defined; a comprehensive treatment of condition numbers for LPs, along
with much more general discussion regarding the concept of problem condition, is
given in [3].

When LPs are solved by the simplex method, a sequence of basis matrices are
encountered (see [4]), each corresponding to a square system of linear equations.
Although condition numbers can be defined for LPs themselves, it is the condition
number of the basis matrices encountered during a simplex solve (particularly the
optimal basis) that is the most relevant measure of numerical stability of the branch-
and-cut algorithm. A primary reason for this is that the solution to the LP relaxation
is obtained by solving a system of equations involving the basis matrix so that the
condition number of this matrix determines the multiplicative effect of numerical
errors in the computed cuts.
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After applying cutting planes or branching at a node, the resulting modified LP is
re-solved. In general, we expect that the newly added cuts or branching inequalities
will be binding at the new basic solution, which means that these additional con-
straints are a factor in determining the conditioning of the basis. Thus, measuring
the condition number of these linear systems and how they change as a result of
the added cuts or branching inequalities should give some insight into the numerical
behavior of the simplex algorithm and ultimately the branch-and-cut algorithm. In
this paper, we are looking for overall trends (how much does the addition of cuts
generally degrade the conditioning), so we consider these numbers in the aggregate
and provide some suggestions for visualizing this data.

Since we are interested in an accurate picture, we use the 2-norm power iteration
method to determine condition numbers. This method provides an accurate answer,
though it is unlikely to be efficient enough for practical use. An excellent discussion
on algorithms for condition number estimation is given in [6, Chap. 15].

3 Experiments

To study the effect of cuts on conditioning, we solved a subset of instances from
MIPLIB 3 [2], MIPLIB 2003 [1], and MIPLIB 2010 [7] test sets, collecting detailed
statistics. The solver used was SCIP 4.0 with the LP solver SoPlex 3.0 [8] (with slight
modifications to allow access to the condition number information). We used a time
limit of one hour and a node limit of 10,000.

To get a clearer picture, we deactivated many advanced features, such as primal
heuristics, domain propagation, and conflict analysis. Furthermore, we only gener-
ated Gomory cuts and disabled all other cutting plane generators. While SCIP only
applies cutting planes at the root by default, we enabled cut generation at all nodes
in order to study how this affects conditioning. Note that although cuts are generated
throughout the tree, SCIP still uses a scoring strategy to determine which inequalities
should actually be added.

In what follows, we first study how the condition number of the basis matrix
evolves at the root node, where the initial LP relaxation is solved and initial rounds
of cuts are added, and then study how the condition number of the basis matrices are
affected by branching and cutting as the algorithm progresses.

3.1 Root Node Analysis

In general, we expect the condition number of the basis matrix to degrade as a
result of operations performed in the root node and our initial computations are
aimed at confirming this. Figure1 shows the condition number of each basis matrix
encountered during each iteration of the solution of the initial LP relaxation and
during each iteration of the re-solve occurring after adding each round of cuts for
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Fig. 1 Condition number development (vertical axis, in log scale) for every simplex iteration in
the root node (horizontal axis) including re-optimizations after adding cutting planes in multiple
rounds (vertical lines). A plot of objective values at each iteration is overlaid as a dashed gray line
with the scales given to the right of each plot

Fig. 2 Root node:
Comparison of condition
numbers of the original LP
and including cutting planes

selected instances from our test set. One can observe that during the early iterations—
especially of the initial relaxation in the root node—the condition numbers of the
basismatrices grow quickly. This is expected, asmore structural variables are pivoted
into the basis, while slack variables are pivoted out. Since the initial basis is always
the identity matrix, which has condition number 1, the conditioning can only degrade
at first. After the initial optimization, the MILP solver tries to generate Gomory cuts.
This computation involves the basis matrix itself, so an ill-conditioned basis matrix
can prevent precise calculation of the coefficients of the new constraint. Moreover,
adding these new rows to the LP often deteriorates its condition number even further
as can be seen in Fig. 1. This sample of instances clearly shows the expected behavior.

Figure2 is a visualization of the difference between the condition number of the
optimal basis of the original LP and two other numbers: (1) the average over all
bases encountered during the cutting procedure and (2) the condition number of the
final optimal basis. While for some instances there is a slight improvement after
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Fig. 3 Effects of branching
and cutting

adding cuts, in most cases addition of cuts leads to an increased condition number,
as expected.

3.2 Tree Analysis

One way in which the addition of cuts can cause basis matrices to become poorly
conditioned is if the associated hyperplanes are nearly parallel; addition ofmany such
cuts may lead to a tailing off of the cutting plane algorithm as many similar cuts are
generated and the process stalls. Although branching also involves imposing a special
kind of “cut” to the resulting subproblems, these branching constraints have a simple
form (the coefficient vector is a unit vector), which makes them quite attractive from
a numerical point of view. In particular, they are mutually orthogonal and unlikely
to degrade the conditioning much in general. As such, we may be tempted to hope
that the addition of this special kind of inequality may even improve conditioning.

Despite the apparent plausibility of this hypothesis, our experiments do not fully
support it, though they do show a significant difference between the effect of branch-
ing versus cutting, as expected. In Fig. 3, we show how branching and cutting impact
the numerical stability. The left plot shows the average relative change in the con-
dition number as a result of the addition of the branching constraints. Similarly, the
right plot shows the average relative change in conditioning resulting from the addi-
tion of cuts. In each case, we took the difference between the condition numbers
of the optimal basis matrices before and after either branching or cutting. Each dot
then represents the average across all nodes for a given instance. The bar represents
the mean over all instances. While branching does not seem to have a significant
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Fig. 4 Condition number development in the tree. Left: Distribution of linear regression slopes of
all instances in the test set. Right: Single instance example

effect on average, adding cutting planes clearly leads to an increase in the condition
number. Thus, despite the observation that branching does not appear to degrade the
condition number in the same way as cut generation, it does not appear to help it
either.

In Fig. 4 we visualize how condition numbers degrade generally as a function of
the depth of a given node. The idea is to determine whether conditioning generally
degrades consistently as the tree gets deeper. The right figure plots the average con-
dition number across all nodes at a given depth, along with a regression line showing
the average degradation in the log of the condition number per level in the tree for
a single instance. The left figure shows the distribution of slopes of this same linear
regression across all instances both with cuts and with a pure branch-and-bound.

It appears that in general, the condition number often has a strong positive correla-
tionwith the tree depth if cuts are added throughout the solving process.When cutting
is disabled this effect is much less strong. One has to be aware that the behavior of
a single instance might be much different from what the trend predicts.

4 Outlook

In this paper, we presented a preliminary exploration of the numerical behavior of
SCIP, a state-of-the-artMILP solver. In the future, we hope to do similar explorations
with other solvers to determine what the overall behavior is and where additional
control of the numerical stability might have an impact. The eventual goal is to
determine whether it is possible to more directly estimate the impact of certain
algorithmic choices on numerical behavior and whether this could lead to improved
control mechanisms.
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Four Good Reasons to Use an Interior
Point Solver Within a MIP Solver

Timo Berthold, Michael Perregaard and Csaba Mészáros

1 Introduction: MIP and the Analytic Center

Mixed integer programming (MIP) is one of the most important techniques in Oper-
ations Research and Discrete Optimization. Amixed integer program is an optimiza-
tion problem of the form:

min{ct x : Ax = b, x ≥ 0, xI ∈ Z
I }, (1)

with matrix A ∈ R
m×n , vectors b ∈ R

m and c ∈ R
n , and a subset I ⊆ N := {1, . . . ,

n}. The LP relaxation of a MIP is the continuous optimization problem which we
get by dropping the integrality requirements of (1). The feasible region of the LP
relaxation is a polyhedron. For an introduction to MIP, see [19].

The analytic center xac of a bounded polyhedron given in equality form (Ax =
b, x ≥ 0) has been introduced by Sonnevend [21] and is defined as

xac = argmin{−
∑

j∈I
ln x j : Ax = b}. (2)

The analytic center can be efficiently computed by using a barrier algorithm, see next
section.Note that the strong convexity of the logarithm implies that the analytic center
of a bounded polyhedron is indeed uniquely defined. Furthermore, it maximizes the
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distance to the boundary due to the logarithm going towards minus infinity when
going to zero. If the polyhedron is a simplex, the analytic center is also the barycenter
of the polyhedron [22].

The FICO Xpress Optimization Suite is a toolbox for mathematical optimiza-
tion [6, 15]. It features software tools used to model and solve linear, integer,
quadratic, nonlinear, and robust optimization problems. The core solver of this suite
is the FICO Xpress-Optimizer (from here on: Xpress), a state-of-the-art MIP solver
which combines ease of use with speed and flexibility. All computational results
mentioned in this paper have been conducted with Xpress.

MIP solvers likeXpress feature a variety of algorithmic components which extend
the basic branch-and-bound search andwhich are the reason thatmodernMIP solvers
can solve some of the most complex optimization problems. These include primal
heuristics to find feasible solutions, presolving techniques to reduce the problem size
and branching strategies to efficiently split the problem into disjoint subproblems.
All of the named techniques will be addressed in the present paper.

2 Impact of Barrier for LP Solving

Unlike the simplex algorithmwhich iterates over extremal vertex solutions, the New-
ton barrier method iterates through solutions in the interior of the feasible region of
the LP [13]. The name barrier comes from replacing the non-negativity constraints
in the LP by logarithmic penalty terms, as in (2), and solving the problem

min{ct x − µ
∑

j∈N
ln x j : Ax = b}. (3)

Whenµ converges to zero, the solution of the barrier problem converges to an optimal
solution of the original LP (the barrier solution xbar). The set of solutions for different
µ describes the so-called central path which connects xac with xbar. Note that xbar

is the analytic center of the optimal face of the LP. The barrier algorithm can be
generalized to convex programming and thereby in particular to convex quadratic
programming. Besides the nice property of being of polynomial complexity, the
barrier method excels by its practical running time in particular on sparse problems.
For an overview on interior point methods, see [20]. The barrier algorithm in Xpress
is based on the solver described in [16]. It is a primal-dual algorithm extended by
predictor-corrector and target-following techniques.

The observation that there is no clear dominance between simplex and barrier
algorithm in terms of solving speed leads to the first, probably most obvious, appli-
cation of an interior point solver within a MIP solver. For solving the initial LP
relaxation, it is the default behavior of Xpress to run primal simplex, dual simplex
and barrier (with a subsequent crossover) side-by-side in separate threads. Primal
and dual each use one thread, all other threads are occupied by barrier. This method
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is known as concurrent LP solving. It will be interrupted when one of the algorithm
solves the LP relaxation to proven optimality.

For MIP solving, the impact of concurrent LP solving on the overall running time
is limited, about 2% speedup on MIPLIB [14]. However, the time for solving the
initial LP relaxation improves by 36%. As a side effect of solving the initial LP faster,
the time to find a first MIP solution improves by about 4%.

Note that even if barrier plus crossover is not the concurrent winner, barrier alone
might have finished before the winning simplex algorithm. In this case, we might
use xbar without the need to compute it from scratch.

3 Using the Analytic Center for Presolving

The barrier solution is in the center of the optimal face, hence it minimizes the
number of variables which are at their bound. In particular, it maximizes the number
of fractional binaries. Similar to simplex solutions, the barrier solution comes with
a dual solution, from which a set of reduced costs can be computed. These can be
used for reduced cost fixing, a bound tightening algorithm.

The analytic center of the optimal face provides a maximal set of non-zero dual
values and hence of non-zero reduced costs. If a variable has a zero reduced cost in
this solution, it must have a zero reduced cost in any optimal LP solution. Note that
this is different from, but related to a recent work by Bajgiran et al. [3] who compute
a set of reduced costs s.t. a maximal set of variables can be fixed w.r.t. a given primal
MIP solution value. Conversely, if wewanted to find an integer solution in the optimal
face, we could safely fix all variables with non-zero duals to their current bounds.
This could, also be used in the context of pump-reduce [1] to reduce the size of the
auxiliary LP.

Besides using the dual values, there is a direct, primalway to use the analytic center
for fixing variables. Assume for the remainder of this section, that we have an analytic
center solution xac for the whole feasible region. By definition, this solution is strictly
in the relative interior of the feasible region. Hence, any variable that is at its bound
in this solution must therefore be at its bound in any feasible solution. This allows
us to fix and remove such variables from any further consideration during a MIP
solve. Principally, the same holds for slack variables. This is potentially beneficial
for ranged rows, where fixing the slack will result in the ranged row to be tightened
to an equation.

Note that the fixed variables would have been at their bound in any LP or MIP
solution anyway. So the direct impact of this presolving step is limited. There is a
certain benefit from the sheer reduction in the problem size if many variables can
be fixed that way. Additional benefit might occur indirectly from extra presolving
that has been enabled by the analytic-center-based fixings. In our computational
experiments, we observed about 2% improvement from fixing variables w.r.t. the
analytic center of the whole problem. The impact of using reduced costs from barrier
solutions was performance neutral.
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4 An Analytic Center Heuristic

Naoum-Sawaya [18] introduced (recursive) central rounding, which is based on the
idea to round the analytic center to the nearest integer vector. Their intuition was
that for general integer variables, a point in the “middle” of the relaxation’s feasible
region is more likely to have an integer feasible solution in its vicinity as compared
to an extremal solution of the relaxation.

We suggest a different way to interpret the analytic center of the whole problem in
a heuristic context. It can be seen as an indicator for the direction intowhich a variable
is likely to move when going towards feasibility. This is particularly interesting for
variables that are close to zero or one in a pure binary problem. However, not all of
them might be simultaneously set to their corresponding bound value; thus a pure
rounding approachmight not be sufficient.We propose to rather apply a soft rounding
in a large neighborhood search fashion, compare, e.g., proximity search [9].

Thus,we set up an auxiliary objective function,whose coefficients are proportional
to the analytic center solution values. That is, the closer a binary is to one in the
analytic center solution, themore the objectivewill try to push it towards one. Further,
we tentatively fix some variables that are very close to one of their bounds and finally
apply an auxiliary MIP solve with strict working limits on the modified problem.
Note that this heuristic, similar to the feasibility pump [8], completely disregards the
original objective function of the MIP. Thus, it makes most sense as a start heuristic
to find a first feasible solution, not so much as an improvement heuristic.

This heuristic is relatively expensive, as it involves computing the analytic center
xac and solving at least some nodes of a MIP of similar size as the original. Thus,
Xpress only uses it in rare cases. For instances forwhich it is particularly cumbersome
to find a feasible solution, however, it makes a big difference.We observed an overall
speedup of 40% on the Feasibility benchmark of Hans Mittelmann [17]. This big
difference is due to the fact that there are a few instances for which this heuristic is
the only one finding a solution within the time limit of that benchmark.

5 Branching w.r.t. Analytic Centers

Finally, we present a branching strategy that makes use of the analytic center of
the whole problem. As argued in the previous section, the analytic center can be
understood as an indicator in which direction variables are easiest to move while
maintaining feasibility. The analytic center branching in Xpress branches on binary
variables that are close to one. Additionally, it searches the subtree resulting from
the up-branch first.

This is applied only for extremely dual degenerateMIPs and only on the top levels
of the branch-and-bound tree. This follows the idea that when the analytic center has
only a few binaries close to one, then it is likely that those, or at least most of those,
should be one in any optimal MIP solution. While for the variable fixing procedure
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in Sect. 3 it is important that we use the actual analytic center, for the heuristic in
Sect. 4 or for branching, other interior points might work similarly well.

As said, this strategy is only applied in a few cases, but relatively efficient on
those. Overall, branching w.r.t. analytic centers gives 2% speedup on MIPLIB. This
comes from few instances on which this branching strategy improves performance
by orders of magnitude.

6 Conclusion

Taking all the uses of the barrier solver and analytic center solutions together, having
a barrier available makes up for 10% speedup in solving MIPs to proven optimality
and three more MIPLIB2010 problems being solved by Xpress. The number of
branch-and-bound nodes reduces by 6% and the primal-dual integral [5] by 9%.

Within Xpress, the proposed presolving, heuristic, and branching strategy all
improve performance, but comewith the computational burden of having to compute
the analytic center first. For each of the individual procedures, this is a rather big
overhead. However given that the analytic center only needs to be computed once
to enable the application of all of them, it seems worthwhile to consider further
applications of the analytic center within MIP, even if a single application will not
justify the computational cost. This includes, e.g., extensions of the feasibility pump
which make use of the analytic center [2, 7]. In the present paper, we did not discuss
possibilities to use the analytic center for generating cutting planes, as it is done in
convex programming [11, 12] or for filtering cuts. Compare also [4, 10] for the use
of interior points for cutting plane separation.
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Measuring the Impact of Branching
Rules for Mixed-Integer Programming

Gerald Gamrath and Christoph Schubert

1 Introduction

All state-of-the-art solvers formixed-integer programs (MIPs) are based on the linear
programming (LP) based branch-and-bound method [9]. One of the key components
of the algorithm is the branching rule, which splits the current problem into two
or more disjoint sub-problems. How this is done can have a large impact on the
solving process and has been subject to intensive research over the last decades,
see [3, 4, 6, 7] among many others. When new ideas are presented in publications,
they are typically evaluated on a set of benchmark instances and compared to other
common rules. One of the most common criteria for comparison is the solving time
to optimality, complemented by the number of instances solved to optimality within
the given time limit.

In this paper, we focus on another measure that is often used to describe the
impact of branching rules: the size of the branch-and-bound tree needed to prove
optimality. This gives a good estimate of the effectiveness of branching rules, as
those are responsible for building the tree. This estimate, however, can be flawed by
side-effects of a branching rule that artificially decrease the tree size. An extreme
case of such a branching rule would just solve the problem corresponding to the
current node as a sub-MIP. Then, it transfers all solutions back and installs the dual
bound computed by the sub-MIP as the local dual bound of the current node. If no
limits are applied to the sub-MIP solving process, this branching rule would solve
every instance at the root node and clearly dominate all other branching rules in this
regard! The reader will probably agree that this is an unfair comparison, because
this had nothing to do with branching and the rule did not even do any branching.
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However, it is just exaggerating the flaw present in many comparisons of branching
rules with inherent side-effects.

In the next section, we discuss the usefulness of the tree size as a performance
indicator for branching and illustrate side-effects of common branching rules. Based
on this, we propose the fair node number, a new measure for the quality of the
decisions takenby a branching rule. Section3presents an evaluation of some common
branching rules, before we close with concluding remarks.

2 Measuring the Impact of Branching Rules

When evaluating new features of a MIP solver, important insights can be achieved
by complementing the solving time with another criterion that is tailored more to
the algorithmic change being investigated. In the case of branching rules, the canon-
ical candidate for this is the number of branch-and-bound nodes needed to solve
an instance to optimality. This is a direct indicator for the quality of the branch-
ing decisions taken, which build the tree and naturally aim at keeping it small. The
node number has several positive attributes in this context. It allows to measure
the potential of a branching rule even with a first prototype that is not necessarily
implemented very efficiently. This allows to evaluate research ideas at an early stage
and might motivate further investigation of ideas that show some potential without
already reducing the solving time. From a practical viewpoint, it is not depending
on reliable time measurements, which allows to run multiple experiments in parallel
on the same machine. Finally, the tree size reduction may become more important
than sequentially measured running times when switching to a massive parallel envi-
ronment, where distributing nodes of the tree causes a message passing overhead.
Summing up, there is a strong incentive to use the size of the branch-and-bound
tree created by a branching rule as a measure for its performance in addition to the
solving time.

When comparing node numbers between different branching rules, we must only
take into account instances solved to optimality within the time limit by all of the
rules.Otherwise, final nodenumbers are unknownand cannot be compared. If a solver
timed out, a smaller node count might be an indicator for better decisions creating
a smaller tree but could as well point to a slowdown caused by the branching rule,
resulting in a larger solving time with a similar or even higher node count.

Many publications follow this approach. However, side-effects of branching rules
are often disregarded, but can have a huge impact, see the motivation in the intro-
duction. In common branching rules, side-effects are often encountered when the
branching rule uses some form of strong branching (SB) [7]. SB evaluates a poten-
tial branching decision by solving an auxiliary LP for each of the potential child
nodes. In the first place, this provides very reliable predictions of the dual bounds
improvement in both child nodes, whichmost branching rules try to predict andmax-
imize. However, there are more potential implications which are not directly related
to the final branching decision. First, if SB on a variable detects that both auxiliary
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SB: xi

xi ≤ 0 xi ≥ 1

(a) Strong branch-
ing on variable xi.

xi ≤ 0

(b) Bound added
to current node.

xi ≤ 0

(c) Only feasible
child node created.

xi ≤ 0 xi ≥ 1

(d) Both child nodes
created.

Fig. 1 Strong branching proves infeasibility of a potential child node (a) and three different ways
to apply this information in branching

LPs are infeasible, infeasibility of the current node can be deduced and the node is
just cut off without any branching. Analogously, if exactly one of the two auxiliary
LPs is infeasible, this node does not need to be investigated by the branch-and-bound
algorithm anymore. The way this information is exploited differs among solvers, see
Fig. 1. Some solvers will just branch on the variable but omit the infeasible child
node as illustrated in Fig. 1c. Others just add the branching bound change of the
feasible child directly to the current node and iterate the processing of that node,
cf. Fig. 1b. Clearly, this leads to inconsistencies between solvers when evaluating the
impact of branching rules and “hides” nodes from the evaluation that could not have
been omitted by a branching rule that just returns the best branching variable. Other
side-effects exceeding the pure branching decision include the knowledge of dual
bounds for both child nodes created by branching as well as an improved dual bound
for the current node based on the minimum of the dual bounds of any pair of SB LPs.
This information might be used to discard them later in case a better primal solution
was found. We also get better estimates for the best primal solution contained in the
sub-trees rooted at the child nodes and more accurate pseudo-costs—history infor-
mation about the dual bound improvement after branching on a variable [4]. Finally,
conflict constraints can be extracted from infeasible SB LPs [1]. All this introduces
a bias towards SB based branching rules, because it decreases the number of nodes
reported by the solver additionally to the effect of better branching decisions.

This motivates us to propose a new measure to cover the quality of the branching
decision better: the fair node number. It is based on the notion of a branching oracle,
which, given the current LP solution, does nothing else than returning a variable
to branch on. The valuable information that one or both of the two potential child
nodes for a branching candidate are infeasible can then only be returned indirectly by
selecting this variable for branching. This branching adds two nodes to the branch-
and-bound tree to obtain the same information otherwise learned directly from SB, as
the node(s) will be found infeasiblewhen being processed, cf. Fig. 1d. If all compared
branching rules can be interpreted as such an oracle, they are on a level field and
their branch-and-bound nodes allow for a fair comparison. There are two means to
reach this fair comparison for other branching rules. First, node numbers should
be adjusted by mimicking that two branch-and-bound nodes were created for every
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cutoff or domain change identified. This means that the number of nodes is increased
by two for each SB cutoff and by one or two for each domain change identified by
SB, depending on whether the solver already created one child node in such a case
or directly applied the reduction at the current node (see Fig. 1).

Other algorithmic features that cause side-effects, e.g., conflict analysis for infea-
sible SB children, should be disabled if possible. This typically includes providing
the optimal objective value as an upper bound at the beginning of the solving pro-
cess and disabling primal heuristics, cf. [6]. By this, the variability introduced by
finding solutions at a different point of time is removed, while focusing on the main
task of branching rules, which is improving the dual bound and proving optimality.
This helps to reduce most side-effects. Since the upper bound is already optimal,
improved dual bounds obtained by SB for child nodes as well as the current node
either directly cause a reduction that will lead to an adjusted node count or will never
allow to prune that node. They might influence node selection, as do the changed
estimates, but due to the optimum being known upfront, the tree size is not influ-
enced by the node selection, except for rare side-effects of the selection. Finally,
pseudo costs are updated as a part of the branching rule and used later for branching.
However, they also have other uses which might cause side-effects, e.g., in primal
heuristics and node selection. Since these main other applications are disabled or
without effect due to the installed upper bound, the side-effects should be negligible.

3 Computational Results

We performed computational experiments to evaluate common branching rules
implemented in SCIP [1] with respect to time, node count, and fair node number. All
regarded rules perform variable branching, i.e. create the sub-problems by splitting
the domain of an integer variable with fractional value in the current LP solution into
two disjoint parts. However, the methodology could as well be applied to general
constraint branching, an active field of research that did not make it into state-of-
the-art rules for general MIP so far. All computations were performed on a cluster
of 2.5GHz Intel Xeon E5-2670v2 CPUs with 64GB main memory, running only
one job per node at a time. We used theMMMC test set consisting of all benchmark
instances from the last threeMIPLIB [8] versions as well as the Cor@l test set [5].
As suggested in the previous section, we installed the optimal objective value as an
upper bound upfront and disabled primal heuristics as well as conflict analysis for
temporary SB children. We restrict the comparison to the 156 instances that needed
some branching to be solved and were solved by all branching rules within the time
limit of 8 h.

Table1 summarizes the results. For each branching rule,we list the average solving
time to optimality, the number of nodes reported by SCIP and the fair node number
introduced in the previous section, as well as the number of domain reductions and
cutoffswhich are needed to compute the fair node number.All averages are computed
using the shifted geometric mean [1] with a shift of 10.
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Table 1 Aggregated results over the 156 instances solved by all branching rules

Settings Time (s) Nodes Fair nodes DomReds Cutoffs

MIB 134.77 10957.54 10957.54 0.00 0.00

PCB 45.37 3192.05 3192.05 0.00 0.00

FSB 80.86 203.44 1301.82 534.50 85.15

FSBDP 82.40 190.97 1287.02 535.19 90.61

RB 37.58 993.94 1748.13 167.21 21.60

HB 34.20 857.97 1582.86 156.40 25.97

The first two rows show results for most infeasible branching (MIB) and the
pseudo-cost branching rule [4] (PCB), two rules without any side-effects, so that
the fair nodes equal the number of nodes reported by SCIP. While MIB selects an
integer variable with fractional part of the solution value closest to 0.5, PCB uses
pseudo-costs to predict the lower bounds obtained in both child nodes and chooses
a variable which maximizes the lower bound improvements. This helps to decrease
both time and nodes by a factor of about three.

More accurate, but also more expensive, is full strong branching (FSB) which
applies SB at every node for each fractional variable. The node reduction by a factor
of 15 is in line with experiments in the literature [3]. However, we now see that
this is largely caused by side-effects: SB proves infeasibility for more than every
third node, and identifies on average 2.5 bound changes per node. Thus, the fair
node number is more than six times higher than the node count. This means that the
better branching decisions reduce the tree size by “only” 59% compared to PCB. The
side-effects, on the other hand, further reduce the node number by another 84%. Full
strong branching with domain propagation [6] (FSBDP) improves SB predictions
by applying domain propagation techniques during SB. This mainly identifies more
domain changes and cutoffs per node, so that a node decrease of 5% diminishes to
about 1% in the fair node number.

The reliability pseudo-cost branching rule [3] (RB) is a combination of PCB and
SB and uses SB only a few times on each variable to obtain reliable predictions.
This reduces the average solving time significantly while increasing the number of
reported nodes by a factor of almost five compared to FSB. However, this is mainly
due to fewer SB calls which result in fewer domain reductions and cutoffs being
identified. Consequently, the difference to FSB is smaller in the fair node number,
where reliability branching needs only 34% more nodes.

Finally, hybrid branching [2] extends reliability branching by using additional
statistics about infeasible nodes and domain changes inferred by domain propagation
as tie breakers. The implementation we used also makes use of SBDP as well as
statistical methods to filter out unpromising candidates. All this together gives the
fastest variant and a fair node number that is only 23% higher than that of FSBDP,
the branching rule performing best with respect to this criterion. This proves how
important it is to support early branching decisions by SB, while using pseudo costs
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later does not deteriorate the quality of branching decisions very much anymore but
just generates fewer side-effects.

4 Conclusions

We presented the fair node number, a new measure for the quality of a branching
rule. It distinguishes between the quality of the branching decisions themselves and
additional reductions learned, e.g., by strong branching. Both help to reduce the tree
size, but investigating those effects individually can provide valuable insights. The
fair node number, which focuses on the former effect, can be read from the statistics
of SCIP if a few parameters are adjusted. It can be used to fairly assess the potential
of branching rules with different side-effects. Thereby, it does not replace other
measures like the branch-and-bound tree size reported by the solver or the solving
time, but rather complements them, allowing for a better analysis of the impact of
branching rules.
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The Multiple Checkpoint Ordering
Problem

Philipp Hungerländer and Kerstin Maier

1 Introduction

In this paper we introduce and analyze the multiple Checkpoint Ordering Problem
(mCOP), which is a new variant of a row layout problem. An instance of the mCOP
consists of n one-dimensional departments D := {1, 2, . . . , n} with given positive
lengths �1, . . . , �n , m checkpoints C := {n + 1, . . . , n + m} with given positions
and pairwise weights wi j , i ∈ D, j ∈ C . We are looking for a non-overlapping
placement of the departments without gaps between them, where the weighted sum
of the distances of all departments to all checkpoints is minimal. The corresponding
optimization problem can be written down as minπ∈�n

∑
i∈D, j∈C wi j zπ

i j , where �n

is the set of permutations of the departments D and zπ
i j is the distance between the

center of Department i and Checkpoint j with respect to a particular permutation
π ∈ �n .

Hungerländer [3] introduced and analyzed the Checkpoint Ordering Problem
(COP), which is the special case of the mCOP with m = 1. The COP is weakly
NP-hard, while the complexity of the mCOP is still open. The mCOP has connections
to other combinatorial optimization problems like the Single-Row Facility Layout
Problem (SRFLP) and scheduling on m identical parallel machines with the objec-
tive of minimizing the sum of weighted completion times that is defined as follows:
We are given a set of jobs J that have to be scheduled on m identical parallel
machines. Each Job j ∈ J is specified by its processing time p j ≥ 0 and by its
weight w j ≥ 0. Every machine can process at most one job at a time, and every job
has to be processed on onemachine in an uninterrupted fashion. The completion time
of Job j is denoted byC j . The goal is to minimize the total weighted completion time
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∑
j∈J w jC j . In the standard classification scheme of Graham et al. [2] this schedul-

ing problem is denoted by P||∑ w jC j form part of the input, and by Pm||∑w jC j

for constant m. The key differences between the mCOP and the weakly NP-hard [5]
Pm||∑w jC j are the following ones:

1. For the mCOP the sum of the lengths of the departments that are placed to the
left and to the right of the checkpoints are predetermined through the positions of
the checkpoints as there are no spaces allowed between the departments. E.g. for
the COP with a centered checkpoint the sums of the lengths of the departments
to the left and to the right of the checkpoint have to be equal. Contrary to that
for the Pm||∑w jC j there are typically no capacity restrictions imposed on the
machines.

2. The checkpoints must not lie exactly at a splitting point of two departments, but
they can also be covered by departments. I.e. the checkpoints do not necessarily
define a partition of the departments. When considering a scheduling set-up, the
COP can be described as follows: We are given two machines and it is allowed to
split an arbitrary job into two parts at any point and then the two parts have to be
scheduled first on the two machines. The mCOPwithm ≥ 2 cannot be formulated
in this scheduling set-up anymore because the distances of the departments to all
checkpoints are relevant in the objective.

Due to these differences it is not possible to directly carry over complexity and poly-
hedral results, dynamic programming (DP) algorithms and integer linear program-
ming (ILP)models and their corresponding approximation results from scheduling
on identical parallel machines [4] to the mCOP.

In this paper we propose two solution approaches for the mCOP and compare
them in a computational study, where we observe that the mCOP seems much harder
to solve in practice than the related SRFLP and Pm||∑w jC j . There is no clear
winner between our two methods. While the ILP approach is hardly influenced by
the department lengths and number of checkpoints considered, the performance of
the DP algorithm, which is only exact for one checkpoint, deteriorates for increasing
department lengths and an increasing number of checkpoints.

The paper is structured as follows. In Sects. 2 and 3 we suggest an ILP approach
and a DP algorithm for solving the mCOP and in Sect. 4 we conduct computational
experiments, indicating the practical applicability and limitations of the approaches
suggested. For future research it would be interesting to design more sophisticated
exact approaches and heuristics for the mCOP. Furthermore it is still an open question
if the mCOP is weakly or strongly NP-hard.

2 An ILP Formulation for the mCOP

In this section we propose an integer linear programming (ILP) approach for solv-
ing themCOPwith an arbitrary but fixednumber of checkpoints that is a generalization
of the ILP for the COP suggested in [3]. First we define S as the sum of the lengths
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of all departments

S =
∑

i∈D
�i . (1)

The locations of the m checkpoints are defined by p j ∈ [0, 1], j ∈ C , where S · p j

gives the position of Checkpoint j .
Next we introduce binary ordering variables xi j , i ∈ D, j ∈ D ∪ C, i < j,

xi j =

⎧
⎪⎨

⎪⎩

1, if Department i lies to the left of

Department respectively Checkpoint j,

0, otherwise,

to relate the positions of the n departments to each other and to the m checkpoints.
To ensure transitivity on these variables, we use the 3-cycle inequalities

0 ≤ xi j + x jk − xik ≤ 1, i, j ∈ D, k ∈ D ∪ C, i < j < k, (2)

which are sufficient for guaranteeing that there is no directed cycle.
Now we are able to express the distances of the departments from the m check-

points as quadratic terms in ordering variables. The position di of the center of
Department i ∈ D is given as the sum of the lengths of the departments left of i
plus �i/2. The difference d j − di , i ∈ D, j ∈ C , gives the distance of the center of
Department i to Checkpoint j , if Department i is located to the left of the checkpoint.
If Department i is located to the right of the checkpoint, this difference is minus the
distance of the center of Department i from Checkpoint j . Therefore we multiply
d j − di , i ∈ D, j ∈ C , by the term (2xi j − 1) that is 1, if the center of Department
i lies to the left of Checkpoint j and −1 otherwise:

zi j = (2xi j − 1)
(
d j − di

)
, i ∈ D, j ∈ C, (3)

di = �i

2
+

∑

k∈D, k<i

�k xki +
∑

k∈D, k>i

�k(1 − xik), i ∈ D, d j = S · p j , j ∈ C,

Expanding and simplifying (3) yields

zi j = (2xi j − 1)
(
S · p j − �i

2
−

∑

k∈D
k<i

�k xki −
∑

k∈D
k>i

�k(1 − xik)
)
, i ∈ D, j ∈ C. (4)

The multiplication of (d j − di ) with (2xi j − 1) ensures a correct calculation of all
distances through the following constraints:

zi j ≥ 0, i ∈ D, j ∈ C. (5)
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To model the mCOP as an ILP, we apply standard linearization and introduce new
variables for all products of ordering variables in (4):

yi jki = xi j (1 − xik), i < k, yi jki = xi j xki , i > k,

where i, k ∈ D, j ∈ C . Now (4) can be further rewritten as:

zi j =(2xi j − 1)

(

S · p j − �i

2

)

+
∑

k∈D
k<i

�k xki

+
∑

k∈D
k>i

�k(1 − xik) − 2
∑

k∈D
k �=i

�k yi jki , i ∈ D, j ∈ C.

(6)

Moreover we use the following standard constraints to relate the ordering variables
and their products:

yi jki ≤ xi j , yi jki ≤ 1 − xik, i < k, yi jki ≤ xki , i > k,

yi jki ≥ xi j − xik, i < k, yi jki ≥ xi j + xki − 1, i > k,
(7)

where i, k ∈ D, j ∈ C . Overall we obtain the following ILP model for the mCOP:

min
∑

i∈D, j∈C
wi j zi j

s.t. (1), (2), (5) − (7),

xi j ∈ {0, 1}, i ∈ D, j ∈ D ∪ C, i < j,

yi jki ∈ {0, 1}, i, k ∈ D, j ∈ C, i �= j.

3 A Dynamic Programming Algorithm for the mCOP

In [3] an exact dynamic programming (DP) algorithm for solving the COP was
proposed. In this section we suggest how to extend this algorithm to the mCOP. As
our extension is not exact for m ≥ 2, it is still an open question if the mCOP with
m ≥ 2 is weakly or strongly NP-hard. Note that Pm||∑w jC j is weakly NP-hard
as it can be solved in pseudopolynomial time by a DP approach [5].

Now let us give a brief outline of our DP algorithm. In an optimal layout depart-
ments that are positioned to the left or to the right of all checkpoints adhere to the
well-known V-shaped property [1], i.e. they are arranged in non-increasing order
from the leftmost or rightmost checkpoint to the border of the layout with respect

to their relative weights
(∑

j∈C wi j

)
/�i , i ∈ D. Contrary to that departments with

a high relative weight that are located between two checkpoints should not nec-



The Multiple Checkpoint Ordering Problem 175

Table 1 Results obtained by our ILP approach using Gurobi 6.5 restricted to one thread with a
time limit of 12h. The running times are given in hh:mm:ss

# Checkpoints 1 2

Instance Best
solution

Gap (%) Time Best
solution

Gap (%) Time

AnKeVa80set4dep15 2042.00 0.0 00:10:21 7280.50 0.0 00:53:25

AnKeVa80set4dep20 2280.50 20.3 12:00:00 10802.00 34.6 12:00:00

AnKeVa80set4dep25 3663.00 60.9 12:00:00 19273.00 65.6 12:00:00

AnKeVa80set4dep30 5594.00 96.2 12:00:00 25929.00 96.3 12:00:00

HuRe40set4dep15 259.50 0.0 00:01:31 894.75 0.0 00:06:22

HuRe40set4dep20 303.00 0.0 00:02:56 1169.50 0.0 01:53:40

HuRe40set4dep25 324.50 0.0 00:05:15 2084.50 15.9 12:00:00

HuRe40set4dep30 1116.00 37.9 12:00:00 3529.75 64.2 12:00:00

# Checkpoints 3 4

Instance Best
solution

Gap [%] Time Best
solution

Gap [%] Time

AnKeVa80set4dep15 7662.25 0.0 05:01:40 976.20 0.0 07:20:14

AnKeVa80set4dep20 14017.00 61.7 12:00:00 22402.50 73.2 12:00:00

AnKeVa80set4dep25 25523.50 78.1 12:00:00 34161.00 86.7 12:00:00

AnKeVa80set4dep30 34290.00 99.9 12:00:00 44552.50 97.4 12:00:00

HuRe40set4dep15 1176.50 0.0 00:35:10 1718.50 0.0 02:17:54

HuRe40set4dep20 1486.50 27.3 12:00:00 3757.30 53.4 12:00:00

HuRe40set4dep25 2685.50 44.1 12:00:00 4655.80 81.2 12:00:00

HuRe40set4dep30 3952.50 97.3 12:00:00 9037.90 94.5 12:00:00

essarily be positioned close to a checkpoint. This is why we arrange departments
between two checkpoints k and k + 1 in non-increasing order regarding the ratio(∑k

j=n+1 wi j

)
/
(∑n+m

j=k+1 wi j

)
, i ∈ D. Unfortunately the obtained arrangements

may not be optimal for m ≥ 2. In fact the approach is not even guaranteed to find a
feasible solution. Nonetheless our DP algorithm proves to be a good heuristic for the
mCOP, in particular if m is small.

At the heart of our approach lies a recursive relation that is used to decide where
Department j should be placed with respect to the checkpoints. For one checkpoint
the recursion tells us whether to assign Department j to the left or to the right of the
checkpoint:

Fj (s) = � jw j

2
+ min

{
Fj−1(s + � j ) + (s + �1c)w j ; Fj−1(s) + (M − s + �2c)w j

}
,

where s indicates the remaining free space to the left of the checkpoint, M gives the
overall remaining free space either to the left or to the right of the checkpoint, c is
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Table 2 Results obtained by our DP algorithm with a time limit of 12h. The running times are
given in hh:mm:ss. In column DP versus ILPwe compute Solution of DP- Solution of ILP

Solution of DP , hence in case
of a negative entry the DP provided a better feasible layout than the ILP

# Checkpoints 1 2

Instance Best
solution

DP versus
ILP

Time Best
solution

DP versus
ILP

Time

AnKeVa80set4dep15 2280.50 0.00 00:00:02 7280.50 0.00 12:00:00

AnKeVa80set4dep20 2042.00 −10.46 00:00:01 10899.00 0.89 12:00:00

AnKeVa80set4dep25 3663.50 0.00 00:00:06 20482.00 6.27 12:00:00

AnKeVa80set4dep30 5584.00 −0.17 00:00:08 25885.00 −0.17 12:00:00

HuRe40set4dep15 259.50 0.00 00:00:01 894.75 0.00 00:00:14

HuRe40set4dep20 304.00 0.00 00:00:01 1187.50 1.54 00:02:22

HuRe40set4dep25 324.50 0.00 00:00:01 2118.50 1.66 00:07:26

HuRe40set4dep30 1115.00 −0.09 00:00:01 3544.25 0.41 00:20:44

# Checkpoints 3 4

Instance Best
solution

DP versus
ILP

Time Best
solution

DP versus
ILP

Time

AnKeVa80set4dep15 8651.75 12.91 12:00:00 − − 12:00:00

AnKeVa80set4dep20 15419.00 10.00 12:00:00 − − 12:00:00

AnKeVa80set4dep25 − − 12:00:00 − − 12:00:00

AnKeVa80set4dep30 − − 12:00:00 − − 12:00:00

HuRe40set4dep15 1176.50 0.00 01:08:56 1719.50 0.06 12:00:00

HuRe40set4dep20 1517.50 2.09 12:00:00 4074.90 8.45 12:00:00

HuRe40set4dep25 2681.50 −0.01 12:00:00 5226.60 12.26 12:00:00

HuRe40set4dep30 4022.50 1.77 12:00:00 8859.30 −1.98 12:00:00

the center department covering the checkpoint and �1c (�
2
c) is the length of the part of

the center department left (right) to the checkpoint.
A detailed description of our DP algorithm, including in particular a discussion

of the general recursive relation form ≥ 2 checkpoints, is omitted in this short paper
due to space limitations and will be provided in a forthcoming paper.

4 Computational Experiments

All experiments were performed on a Linux 64-bit machine equipped with Intel(R)
Xeon(R) CPU e5-2630 v3@2.40GHz and 128GB RAM. The algorithms were
implemented in C (DP) and Gurobi 6.5 (ILP) respectively. To generate mCOP
instances, we utilized benchmark instances from row layout literature by simply ran-
domly choosing m + n departments from these instances and using them as our n
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departments and m checkpoints. Accordingly we took the corresponding pairwise
connectivities in these instances as our mCOP weights wi j , i ∈ D, j ∈ C .

In our computational study we consider two different instance sets from the lit-
erature. AnKeVa80 consists of 80 departments with department lengths between 1
and 60. HuRe40 contains 40 departments with department lengths between 1 and
10. Each of our mCOP instances consists of 10–30 departments and has 4 check-
points. We choose the checkpoint positions dependent on the number of checkpoints
considered, but independent from the number of departments. All instances can be
downloaded from http://tinyurl.com/layoutlib.

In Tables1 and 2 we respectively state the results of our ILP approach and our
DP algorithm. We observe that the mCOP withm ≥ 2 is already very hard to solve to
optimality for instances of moderate size. In particular the mCOP seems much harder
to solve in practice than the closely related strongly NP-hard Single-Row Facility
Layout Problem and the weakly NP-hard Pm||∑w jC j .

The performance of theILP approach is hardly influenced by increasing the num-
ber of checkpoints or the length of the departments. Contrary to that the performance
of our DP algorithm deteriorates both for an increasing number of checkpoints and
for larger department lengths. Note that on the AnKeVa80 instances the DP algo-
rithm does not provide any feasible solution when considering all 4 checkpoints.
Nonetheless for each number of checkpoints there are instances for which the DP
algorithm provides better solutions than the ILP approach.
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An Improved Upper Bound for the Gap
of Skiving Stock Instances of the
Divisible Case

John Martinovic and Guntram Scheithauer

1 Introduction and Preliminaries

The 1D skiving stock problem (SSP) is strongly related to the dual bin packing
problem (DBPP) and can be formulated as follows: how many (large) objects of
length not less than L can at most be build by connecting m ∈ N given (small) item
types of length li and quantity bi , i ∈ I := {1, . . . ,m}? Without loss of generality,
we may assume all input data to be positive integers.

Originating from applications in paper recycling [3], such objectives are of high
interest in industrial production [2, 9] and wireless communications [4] as well.
After having been introduced as the dual bin packing problem by Assmann et al.
[1], a generalization for larger availabilities was firstly considered in [9] and termed
skiving stock problem. A detailed survey on different modelling approaches and
their computational behaviour has recently been published in [5]. Throughout this
paper, we will use the abbreviation E := (m, l, L , b) for an instance of the SSP with
l = (l1, . . . , lm)� ∈ Zm+ and b = (b1, . . . , bm)� ∈ Zm+. Any feasible arrangement of
items leading to an object of length not less than L is called (packing) pattern
of E , and is represented by a nonnegative vector a = (a1, . . . , am)� ∈ Zm+ where
ai ∈ Z+ denotes the number of contained items of type i ∈ I . Note that considering
the set P�(E) of minimal patterns (where each appearing item is indeed necessary
to ensure l�a ≥ L) is sufficient. Let x j ∈ Z+ count how often the minimal pattern

a j = (
a1 j , . . . , amj

)� ∈ Zm+ ( j ∈ J �) of E is used where J � = {1, . . . , n} represents
an index set of P�(E). Then the standard model of the skiving stock problem [5, 9]
can be formulated as

J. Martinovic (B) · G. Scheithauer
Institut für Numerische Mathematik, Technische Universität Dresden, 01062 Dresden, Germany
e-mail: john.martinovic@tu-dresden.de

G. Scheithauer
e-mail: guntram.scheithauer@tu-dresden.de

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_25

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_25&domain=pdf


180 J. Martinovic and G. Scheithauer

z�(E) = max

⎧
⎨

⎩

∑

j∈J �

x j

∣
∣∣∣

∑

j∈J �

ai j x j ≤ bi , i ∈ I, x j ∈ Z+, j ∈ J �

⎫
⎬

⎭
. (1)

A common (approximate) solution approach consists in considering the continuous
relaxation

z�
c(E) = max

⎧
⎨

⎩

∑

j∈J �

x j

∣∣∣∣
∑

j∈J �

ai j x j ≤ bi , i ∈ I, x j ≥ 0, j ∈ J �

⎫
⎬

⎭
(2)

and/or the application of appropriate heuristics. Then, the difference Δ(E) :=
z�
c(E) − z�(E) is called gap (of E).

Definition 1 A set T of instances has the integer round-down property (IRDP), if
Δ(E) < 1 holds for all E ∈ T , and it has themodified integer round-down property
(MIRDP), if Δ(E) < 2 holds for all E ∈ T .

It is conjectured, see [9], that the skiving stock problempossesses theMIRDP. Indeed,
the currently largest known gap is given byΔ(E) = 325/276 ≈ 1.1775. But, since a
general verification for arbitrary instances (or the presentation of a counterexample)
is very difficult, frequently only some special subclasses, e.g. the so-called divisible
case1 [6], are considered. For this special case, we may assume without loss of
generality that E does not contain any exact pattern,2 i.e., a pattern a ∈ Zm+ with
a ≤ b and l�a = 1. Moreover, upper bounds for the gap of arbitrary instances can
be obtained from those of the divisible case [7].

In the next section, we describe the best fit decreasing heuristic (for the SSP) and
some of its most important properties. Afterwards, we show how a detailed analysis
of this algorithm leads to an improved upper bound for the gap of the divisible case.

2 The Best Fit Decreasing Heuristic and Basic Properties

In [6], the MIRDP of the divisible case has been proved by a quite deep study of
a two-phase first fit decreasing algorithm. In this section, we apply an alternative
heuristic of much easier description that will lead to an improved upper bound. Let
t ∈ N and empty bins B1, . . . , Bt be given. In a particular step of the algorithm, let
C( j) describe the current total length of items that have been allocated to Bj

1An instance E = (m, l, L , b) of the SSP belongs to the divisible case (for short: E ∈ DC ) if li | L
holds for all i ∈ I . Then, E can be described by E = (m, l, 1, b) with li ∈ {1/2, 1/3, . . .} for all
i ∈ I .
2Each upper bound of the gap that holds for such instances can easily be transferred to unrestricted
instances of the divisible case, too (see [6, Theorem 9]).
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Algorithm 1 Best Fit Decreasing with Parameter t ∈ N

1: Consider a number t ∈ N of bins B1, . . . , Bt . Define T := {1, . . . , t}, ñ := e�b and sort all
items according to decreasing lengths, i.e. 1 > l ′1 ≥ l ′2 ≥ . . . ≥ l ′̃n .

2: for all i ∈ {1, . . . , ñ} do
3: Allocate item i to bin Bτ where τ is given by τ := τ(i) := min argmin j∈T {C( j)}.
4: end for

As an introductory observation, note that also this heuristic leads to theMIRDP of the
divisible case, see [8] for the details. In the following, we will show that the currently
best upper bound of Δ(E) < 3/2 (for the divisible case, see [8]) can be improved
by a more detailed analysis of this algorithm. Moreover, this new upper bound will
also contain the problem-specific input data (i.e., the lengths l and availabilities b)
of a given instance.

Definition 2 Let K ∈ N be given. Then we defineDC (K ) as the set of all instances
of the divisible case satisfying

⌊
l�b

⌋ = K .

Let us consider an instance E = (m, l, 1, b) ∈ DC (K ) with

l�b − K ≥ 1

2
− 1

2K
. (3)

Our aim is to show that, in this particular setting, Algorithm 1 with t := �l�b	(= K )

leads to a feasible (integer) solution of the skiving stock problem with t patterns. As
a direct consequence, this observation implies the improved upper bound Δ(E) <

3/2 − 1/(2K ) for instances E ∈ DC (K ), since z�
c(E) = l�b always holds for E ∈

DC , see [6].

Lemma 1 At the end of Algorithm 1 with t := �l�b	, there is some j ∈ T with
C( j) > 1.

Proof This result is an immediate consequence of the pigeonhole principle and the
abscence of exact patterns. �
Let j� ∈ T denote the bin that is filled first during Algorithm 1, and let item i� ∈
{1, . . . , ñ} of length li� = 1/q for some q ∈ N, q ≥ 2 be responsible for that. In
order to ease the notation, we define W (q) = ∑i�−1

d=1 l
′
i , i.e., W (q) denotes the total

length of all items that have been allocated prior to that moment when Bj� is filled.
Note that W (q) can be bounded above by the optimal objective value of the discrete
optimization problem

W �(q) := max

{
κ(q)�x

∣∣
∣∣ x ∈ Z

q
+, ∀y ∈ Z

q
+, y ≤ x : κ(q)�y �= 1

}
, (4)

where κ(q) := (1, 1/2, 1/3, . . . , 1/q)� ∈ Q
q
+ holds3. In order to ease the notation,

we define Q := Q(q) := {1, . . . , q}. As an introductory result, note that the feasible
region of this problem can obviously be considered to be finite:

3Due to the absence of exact patterns, x1 = 0 has to hold in any feasible solution of (4). This means
that, actually, it is not necessary to consider the length κ1 = 1 in the corresponding maximization
problem. Nevertheless, we will work with the given definition of the vector κ for the sake of an
easier presentation, since then κd = 1/d is true for all d ∈ {1, . . . , q}.



182 J. Martinovic and G. Scheithauer

Lemma 2 Let x be a feasible solution of (4), then we have x j ≤ j − 1 for all j ∈ Q.

Proof Assuming x j > j − 1 for some j ∈ Q, we can choose y = j · e j as a feasible
vector with y ≤ x and κ(q)�y = 1 which gives the contradiction. �
In a more sophisticated approach this observation can be extended to:

Lemma 3 Let x be a feasible solution of (4), then there is a feasible solution x ′ with
the same objective value such that x ′

j ≤ t ( j) − 1 holds for all j ∈ Q \ {1}, where
t ( j) := min{ρ ∈ P | ρ divides j} denotes the smallest prime divisor of j ∈ Q \ {1}.
Proof Let x be a feasible solution of (4) with x j ≥ t ( j) for some j ∈ Q \ {1}. With-
out loss of generality, let j be chosen maximal with respect to this property. Due to
t ( j) | j we have t ( j)/j = 1/k for some k ∈ {2, . . . , j − 1}. But then, we can define
x ′
i = xi for i ∈ Q \ { j, k}, x ′

i = xi − t (i) for i = j , and x ′
i = xi + 1 for i = k. Note

that x ′ is feasible for (4). In particular, we obtain that x ′ provides the same objective
value as x , and x ′

j < x j as well as x ′
i ≤ t (i) − 1 for all i > j are satisfied. After a

finite number of such steps we are done. �

3 An Improved Upper Bound

These preliminaries can be used to obtain the following upper bound.

Theorem 1 The inequality W �(q) ≤ q+1
2 ·

(
1 − 1

q

)
holds.

Proof Let x be a solution of (4). Note that every denominator k from the set
{1/1, 1/2, . . . , 1/q} possesses a unique representation as k = 2u · v with u ∈ Z+
and v odd. LetO := O(q) denote the set of odd numbers not larger than q. Then we
obtain

W �(q) =
q∑

j=1

x j

j
=

∑

v∈O

⎛

⎝
∑

k=2u ·v, u∈{0,...,�log2(q/v)	}

xk
k

⎞

⎠

≤
∑

v∈O

⎛

⎝v − 1

v
+

∑

k=2u ·v, u∈{1,...,�log2(q/v)	}

1

k

⎞

⎠

=
∑

v∈O

⎛

⎝v − 1

v
+

�log2(q/v)	∑

u=1

1

2u · v

⎞

⎠ =
∑

v∈O

⎛

⎝v − 1

v
+ 1

v
·

�log2(q/v)	∑

u=1

(
1

2

)u
⎞

⎠

where xk ≤ 1 has been used for all k ∈ N with 2 | k in the second line.
For all v ∈ O, the corresponding geometric sum leads to

�log2(q/v)	∑

u=1

(
1

2

)u

= 1 −
(
1

2

)�log2(q/v)	
≤ 1 − 2− log2(q/v) = 1 − v

q
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Plugging in this result in our first calculation gives

W �(q) ≤
∑

v∈O

(
v − 1

v
+ 1

v
·
(
1 − v

q

))
=

∑

v∈O

(
1 − 1

q

)
≤ q + 1

2
·
(
1 − 1

q

)

since there are exactly �q/2 ≤ (q + 1)/2 odd numbers not larger than q. �

Consequently, we can obtain the following result by using Theorem 1.

Corollary 1 The inequality q ≥ 2t holds.

Proof This is an immediate consequence of

q + 1

2
·
(
1 − 1

q

)
≥ W �(q) ≥ W (q) > t ·

(
1 − 1

q

)
,

where the last inequality has been shown in [8, Proof of Lemma 2]. �

Now we are able to prove the main result of this section.

Theorem 2 Let E ∈ DC (K ) denote an instance of the skiving stock problem that
satisfies inequality (3). Then, for the choice t = �l�b	, all bins are filled at the end
of Algorithm 1.

Proof Let us assume that C(k) < 1 holds for some k ∈ T after applying Algorithm
1. Then, no item has been added to any filled bin (since they would not have been
minimal with respect to line 3 of Algorithm 1). Hence, we have C( j) < 1 + 1/q for
all j �= k and C(k) < 1 leading to

l�b − t =
t∑

j=1

C( j) − t < (t − 1) ·
(
1 + 1

q

)
+ 1 − t = t − 1

q
≤ t − 1

2t
,

where Corollary 1 has been used. Due to t = K , this gives the contradiction to the
initial assumption (3). �

Consequently, an instance of DC (K ) possesses the IRDP whenever l�b − K ≥
1/2 − 1/(2K ) holds. Thus we can state:

Theorem 3 Let E = (m, l, 1, b) ∈ DC (K ). Then the inequality Δ(E) < 3/2 −
1/(2K ) holds.

Remark 1 Bymeans of an extensive theoretical study, it can be shown thatW �(q) =
O(q/ ln(q)) holds for q → ∞. Hence, better upper bounds forW (q) (and also better
upper bounds for Δ(E)) can be found if q is assumed to be sufficiently large.

Note that better upper bounds for the divisible case are also helpful to obtain improved
bounds for the gap of arbitrary instances, see [7].
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4 Conclusions

In this paper we investigated the gap of the one-dimensional skiving stock problem
with respect to the well known divisible case. To this end we applied the best fit
decreasing heuristic and showed how an improved upper bound can be obtained by
means of a detailed theoretical analysis. Due toW �(q) = O(q/ ln(q)) (for q → ∞)
even better bounds are possible for special subclasses of the divisible case.
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Closed Almost Knight’s Tours on 2D
and 3D Chessboards

Michael Firstein, Anja Fischer and Philipp Hungerländer

1 Introduction

The closed knight’s tour problem is a well-studied problem [3, 6, 7]. Given a rect-
angular two-dimensional (2D) chessboard of size m × n does there exist a tour (a
Hamiltonian cycle or closed knight’s tour) over all cells of the chessboard such that
each move is a knight’s move? A knight’s move is a step of length

√
5 where we

move one cell in one direction and two cells in the other direction. There also exist
extensions of the closed knight’s tour problem to generalized chessboards in arbitrary
dimension [3, 4]. It is well-characterized for which 2D and 3D chessboards a closed
knight’s tour exists. For the 2D case Schwenk [7] proved the following result:

Theorem 1 ([7]) An m × n chessboard with m ≤ n has a closed knight’s tour if
(m, n) /∈ {(3, 4), (3, 6), (3, 8)} ∪ {(m, n) : m ∈ {1, 2, 4}} and if m, n are not both
odd.

DeMaio and Mathew [3] have extended Theorem 1 to 3D chessboards:

Theorem 2 ([3]) An m × n × � chessboard with m, n, � ≥ 2 has a closed knight’s
tour if (m, n, l) �= (2, 3, 3), (m, n) �= (2, 2) and at least one of m, n, � is even.

For chessboards that do not have a closed knight’s tour we define a closed almost
knight’s tour as a Hamiltonian cycle of minimal length if only moves of at length
at least

√
5 are allowed. The problem of determining closed (almost) knight’s tours
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on 2D and 3D chessboards is equivalent to the so called traveling salesman problem
with forbidden neighborhoods (TSPFN) with radius two on regular 2D and 3D grids.
Given points in the Euclidean space and some radius r ∈ R+, the TSPFN asks for a
shortest Hamiltonian cycle, where connections between points with distance at most
r are forbidden. The TSPFN was originally motivated by an application in laser
beam melting where a workpiece is built in several layers. By excluding the heating
of positions that are too close during this process, one hopes to reduce the internal
stresses of the workpiece.We refer to [5] and the references therein for further details
on this application and for results for regular 2D grids and r ∈ {0, 1,√2}. In this
paper we present construction schemes for closed almost knight’s tour on 2D and
3D chessboards that are based on the ideas for constructing knight’s tours suggested
by Lin and Wei [6].

The paper is structured as follows. In Sect. 2 we consider 2D chessboards of
size m × n with m, n ≥ 5. For m and n odd, a closed almost knight’s tour uses
only knight’s moves except for one move of length

√
8. In Sect. 3 we consider 3D

chessboards of size m × n × �,m, n ≥ 5, � ≥ 3. For m, n, � odd a closed almost
knight’s tour uses only knight’s moves except for one move of length

√
6. In Sect. 4

we conclude the paper and give suggestions for future work.

2 Closed Almost Knight’s Tours on 2D Chessboards

We considerm × n chessboard wherem is the number of rows and n is the number of
columns. Each cell of the chessboard is denoted by a tuple (i, j), i ∈ {1, . . . ,m}, j ∈
{1, . . . , n}.
Lemma 1 Given an m × n chessboard with m, n ≥ 5 and m and n odd, then (mn −
1)

√
5 + √

8 is a lower bound on the length of a closed almost knight’s tour.

This result follows directly from Theorem 1 because there does not exist a closed
knight’s tour for the considered chessboard sizes and the shortest move longer than√
5 has length

√
8. Next we show that there always exists a closed almost knight’s

tour with this length. Form × m chessboard the existence of such an almost knight’s
tour follows from a result in [1] on the existence of s-t-knights path on quadratic
chessboard between cells s and t .

Theorem 3 Given an m × n chessboard with m, n ≥ 5 and m and n odd, then there
always exists a closed almost knight’s tour with length (mn − 1)

√
5 + √

8.

Proof We prove this result algorithmically by providing a construction scheme for
building closed almost knight’s tours. Explicit closed almost knight’s tours form × n
chessboards with m, n ∈ {5, 7, 9} are depicted in Fig. 1. These basic tours for our
construction scheme can, e. g., be derived by solving an integer linear program that is
obtained byfixing certain variables to zero in the classical formulation of the traveling
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1 22 11 16 3
12 17 2 21 10
23 8 25 4 15
18 13 6 9 20
7 24 19 14 5

1 12 27 22 3 10 29
26 23 2 11 28 21 4
13 16 35 24 7 30 9
34 25 18 15 32 5 20
17 14 33 6 19 8 31

1 42 21 26 3 40 35 6 11
22 27 2 41 20 5 10 39 34
43 18 45 4 25 36 31 12 7
28 23 16 19 30 9 14 33 38
17 44 29 24 15 32 37 8 13

33 12 29 42 3 14 27
30 43 32 13 28 5 2
11 34 41 4 1 26 15
44 31 10 25 40 19 6
35 24 49 46 9 16 39
48 45 22 37 18 7 20
23 36 47 8 21 38 17

31 62 27 40 1 16 23 52 45
28 39 30 37 26 51 44 15 22
61 32 63 2 41 24 17 46 53
6 29 38 25 36 43 50 21 14
33 60 7 42 3 18 11 54 47
8 5 58 35 10 49 56 13 20
59 34 9 4 57 12 19 48 55

53 64 79 58 1 8 17 32 41
80 59 54 63 78 31 40 9 18
65 52 81 2 57 16 7 42 33
60 55 4 77 62 39 30 19 10
51 66 61 56 3 6 15 34 43
68 27 72 5 76 29 38 11 20
73 50 67 28 71 14 23 44 35
26 69 48 75 24 37 46 21 12
49 74 25 70 47 22 13 36 45

Fig. 1 Closed almost knight’s tours on m × n chessboards with m, n ∈ {5, 7, 9}

1 14 29 20 3 12
30 21 2 13 28 19
15 8 17 24 11 4
22 25 6 9 18 27
7 16 23 26 5 10

1 18 9 26 3 20
36 25 2 19 10 27
17 8 35 28 21 4
24 31 22 13 34 11
7 16 29 32 5 14
30 23 6 15 12 33

1 14 39 26 3 16
42 25 2 15 36 27
13 38 29 40 17 4
30 41 24 37 28 35
9 12 31 20 5 18
32 23 10 7 34 21
11 8 33 22 19 6

1 26 21 16 3 28
54 15 2 27 20 17
25 22 53 18 29 4
14 41 24 51 34 19
23 52 35 42 5 30
40 13 50 31 46 33
49 10 47 36 43 6
12 39 8 45 32 37
9 48 11 38 7 44

Fig. 2 Open knight’s tours for 5 × 6, 6 × 6, 7 × 6, 9 × 6 chessboards needed (sometimesmirrored
at the diagonal) in the proof of Theorem 3. They start at (1, 1) and end in (2, 1)

salesman problem by Dantzig et al. [2], see [5] for details. We want to emphasize
that our closed almost knight’s tours in Fig. 1 have some special structure. Indeed,
they all contain the edges {(m − 1, 1), (m, 3)} and {(1, n − 1), (3, n)}.

In our construction scheme, which is similar to the approach for constructing
knight’s tours suggested in [6], we now extend our basic tours from the right and
from below in order to derive a closed almost knight’s tour for the whole chessboard.
This is done iteratively, increasing the size in horizontal or vertical direction by six
in each step. For these extensions we use open knight’s tours on the 5 × 6, the 6 × 6,
the 7 × 6 and the 9 × 6 chessboard, see Fig. 2, and also [6], for a visualization. It is
easy to check that the open tours and our basic tours are built in such a way such that
the construction depicted in Fig. 3, where we delete the dotted edges and connect
the single tours and paths by knight’s moves, is feasible.

In summary starting with one of the basic tours from Fig. 1 we can construct a
closed almost knight’s tour for all m × n chessboards m, n ≥ 5 and m and n odd by
iteratively adding open knight’s tours from Fig. 2. �	
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Fig. 3 Combining an
m1 × n1 basic tour with
m1 × 6, 6 × n1 and 6 × 6
open knight’s tours to obtain
a closed almost knight’s tour
on an m × n chessboard with
m, n ≥ 5 and m and n odd.
For large values of m, n
several open knight’s tour
have to be included. To
improve visibility we
separated the single building
blocks by some space

Corollary 4 Optimal TSPFN tourswith r = 2 on regularm × n gridswithm, n ≥ 5
have length mn

√
5 for m or n even and length (mn − 1)

√
5 + √

8 for m and n odd.

3 Closed Almost Knight’s Tours on 3D Chessboards

In this section we consider m × n × � chessboards where � is the number of layers.
For an illustration of the 3 × 3 × 3 chessboard we refer to Fig. 4.

Lemma 2 Given an m × n × � chessboard with m, n, � ≥ 3 and m, n, � odd,
(mn� − 1)

√
5 + √

6 is a lower bound on the length of a closed almost knight’s
tour.

This result follows directly from Theorem 2 because there does not exist a closed
knight’s tour for the considered chessboard sizes and the shortest move longer than√
5 has length

√
6. Next we show that there always exists a closed almost knight’s

tour with this length. The proof idea is, similar to [4], to use slightly adapted 2D
tours in each layer and to delete some specific edges so that nodes from different
layers can be connected by some new edges.

Theorem 5 Given an m × n × � chessboard with m, n ≥ 5, � ≥ 3 and m, n, � odd,
there always exists a closed almost knight’s tour with length (mn� − 1)

√
5 + √

6.

Proof We prove this result algorithmically by providing a construction scheme for
building closed almost knight’s tours. First, we use specific knight’s tours for every
layer and then we connect different layers via new edges.

We build an m × n closed almost knight’s tour using the construction scheme
described in the proof of Theorem 3 and then modify the upper left area that belongs
to the 5 ≤ m, n ≤ 9 building blocks, see Fig. 1, as follows. We delete the edge of
length

√
8 connected to Cell 1 and one further edge and adapt the cell sequence of

the new tours (subtours for the 3D chessboard) as follows:
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Fig. 4 Visualizations of the 3 × 3 × 3 chessboard. The left picture shows the numbering of layers
l ∈ {1, 2, 3}. In the middle picture, the dark gray cell is (3, 3, 1) and the light grey one is (1, 1, 3).
In the right picture, each layer has one color, where layers with smaller numbers are darker

• (1, . . . , 21, 22, 25, 24, 23, 1) for the 5 × 5 chessboard,
• (1, . . . , 12, 35, 34, . . . , 13, 1) for the 5 × 7 chessboard,
• (1, . . . , 42, 45, 44, 43, 1) for the 5 × 9 chessboard,
• (1, . . . , 40, 49, 48, . . . , 41, 1) for the 7 × 7 chessboard,
• (1, . . . , 40, 63, 62, . . . , 41, 1) for the 7 × 9 chessboard and
• (1, . . . , 78, 81, 80, 79, 1) for the 9 × 9 chessboard,

where the numbering refers to Fig. 1. After the first modification, each such 2D tour
has length (mn − 1)

√
5 + 2 instead of (mn − 1)

√
5 + √

8.
Now we use these modified tours for all layers except for Layer � and con-

nect Layers k and k + 1, k odd, by replacing the edges {(i, j, k), (i + 2, j, k)} and
{(i, j, k + 1), (i + 2, j, k + 1)} of length 2 that lie directly above each other by
the edges {(i, j, k), (i + 2, j, k + 1)} and {(i, j, k + 1), (i + 2, j, k)} that switch the
layer.

Next we connect Layers k and k + 1, k even, by using the same exchange as in [4].
We delete the two edges of a so called bi-site (see [4]) where two knight’s moves of
our subtours cross each other. A bi-site can be found in the lower left corner of each
grid in Fig. 1, e. g. {23, 24} and {7, 8} for the 5 × 5 chessboard or {35, 36} and {23, 24}
for the 7 × 7 chessboard. In general let the bi-sites be {(i, j, k), (i + 2, j + 1, k)}
and {(i, j + 1, k), (i + 2, j, k)} for k = 1, . . . , � − 1, then we use afterwards edges
{(i, j, k), (i + 2, j, k + 1)} and {(i + 2, j + 1, k), (i, j + 1, k + 1)}.

It remains to connect Layer � where we use an original closed almost knight’s
tour to the other layers. To do so we delete the edge of length

√
8 in Layer � and one

appropriate edge in Layer � − 1 (depending on the position of the edge of length 2)
such that the exchange visualized in Fig. 5 is possible. The squares highlighted light
gray are connected by a move of length

√
6 and the squares highlighted dark gray

are connected by a move of length
√
5. It is easy to check that the respective edges

exist in each of these tours and that we do not create subtours. �	
For illustration purposes we depict a closed almost knight’s tour for the 5 × 5 × 5

chessboard in Fig. 6.

Corollary 6 Optimal TSPFN tours with r = 2 on regular m × n × � grids with
m, n ≥ 5 and � ≥ 3 have length mn�

√
5 for m or n or � even and length (mn� −

1)
√
5 + √

6 for m, n, � odd.
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Fig. 5 Moves connecting Layers � − 1 and � in closed almost knight’s tours

Fig. 6 Visualization of a closed almost knight’s tour on a 5 × 5 × 5 chessboard

4 Conclusion and Future Work

In this paper we introduced the concept of closed almost knight’s tours and proposed
construction schemes for such tours on 2D and 3D chessboards that do not have a
classical closed knight’s tour. We restricted our analysis to the case with m, n ≥ 5
in 2D and m, n ≥ 5 and � ≥ 3 in 3D. It remains to determine closed almost knight’s
tours for the remaining chessboard sizes. Furthermore, one can think of extending the
results to arbitrary chessboard dimensions. For the closely related traveling salesman
problem with forbidden neighborhoods it seems to be worthwhile to study also other
values for r .
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SCIP-Jack—A Solver for STP
and Variants with Parallelization
Extensions: An Update

Daniel Rehfeldt and Thorsten Koch

1 Introduction

TheSteiner tree problem ingraphs (STP) is a classicalNP-hard problem [1] entailing
awealth of research articles.Given anundirected, connected graphG = (V, E), costs
c : E → Q≥0 and a set T ⊆ V of terminals, the problem is to find a tree S ⊆ G of
minimum cost that includes T .

While Steiner tree problems can be found in various applications, these problems
are usually one of the many variants of the STP, such as for instance the rectilinear
Steiner tree problem [2] or the prize-collecting Steiner tree problem [3]. The 2014
DIMACSChallenge, dedicated to Steiner tree problems, marked a revival of research
on the STP and related problems: Both at and in the wake of the Challenge several
new Steiner problem solvers were introduced and many articles were published.
One of these new solver is SCIP-Jack, which was by far the most versatile solver
participating in the DIMACS Challenge, being able to solve the STP and 10 of its
variants (note that in the current version onemore variant can be handled). Moreover,
SCIP-Jack was able to win two categories of the Challenge.

SCIP-Jack is described in detail in the article [4], but already in an updated version
that vastly outperforms its predecessor participating in the DIMACS Challenge.
However, the development of SCIP-Jack did not stop with [4]. In the following we
will report on recent improvements and provide current results that again demonstrate
a significant speed-up of SCIP-Jack (Table1).

Internally, all problems are transformed into the Steiner arborescense problem
(SAP), the directed version of the STP [4]. In only two cases it is necessary to add
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Table 1 SCIP-Jack can solve the STP and 11 related problems

Abbreviation Problem Name

STP Steiner tree problem in graphs

SAP Steiner arborescence problem

RSMT Rectilinear Steiner minimum tree problem

OARSMT Obstacle-avoiding rectilinear Steiner minimum tree problem

NWSTP Node-weighted Steiner tree problem

PCSTP Prize-collecting Steiner tree problem

RPCSTP Rooted prize-collecting Steiner tree problem

MWCSP Maximum-weight connected subgraph problem

RMWCSP Rooted maximum-weight connected subgraph problem

DCSTP Degree-constrained Steiner tree problem

GSTP Group Steiner tree problem

HCDSTP Hop-constrained directed Steiner tree problem

Table 2 Transformations, heuristics, and preprocessing according to problem type

Problem Special
constraints

Virtual
vertices

Virtual arcs Special
preprocessing

Special
heuristics

STP – – � � �
SAP – – – � �
RSMT – � � – –

OARSMT – � � – –

NWSTP – – � – –

PCSTP – � � � �
RPCSTP – � � � �
MWCSP – � � � �
RMWCSP – � � – �
DCSTP � – � – �
GSTP – � � – –

HCDSTP � – – � �

specific constraints. The transformations are a distinct feature of SCIP-Jack and allow
for a generic solving approach with a single branch-and-cut algorithm. Descriptions
on some of the transformations can be found in [5]. While in principle it would be
possible to only employ solving routines for the SAP (since each problem variant can
be transformed to it), this approach falls far short of being competitive as it fails to
utilize special properties of particular problem types. Therefore, SCIP-Jack includes
a plethora of specialized heuristics and preprocessing routines. Table 2 indicates for
which problem variants specialized algorithms are used. Detail on the heuristics is
given in [4, 5] (and in Sect. 2), while detail on the preprocessing can be found in [6].
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2 Recent Improvements

Apart from general improvements, particular progress has been made with the
MWCSP and the PCSTP. Therefore, these two variants will be discussed separately
in Sect. 2.2.

2.1 General Improvements

The general improvements of SCIP-Jack include a change in the default propagator,
see [4], which now additionally employs reduction techniques to fix variables (of the
underlying IP formulation) to zero. These variables correspond to arcs in the SAP—
to which all Steiner tree variants including the STP are transformed. Whenever
ten percent of all arcs have been newly fixed during the branch-and-cut procedure,
the underlying, directed, SAP graph D is (re-) transformed into a graph G for the
respective Steiner tree problem variant. All edges (or arcs) in G that correspond to
arcs that have been fixed to 0 in D are removed. Thereupon, the default reduction
techniques of SCIP-Jack are used to further reduceG and the changes are retranslated
into arc fixings in D.

A further important development is the reimplementation of the separation algo-
rithm of SCIP-Jack, which is based on the warm-start preflow-push algorithm
described in [7]. The new separation algorithm is for many instances more than ten
times faster than the old one. The cause of this speed-up lies both with an improved,
cache-optimized implementation and the use of new heuristics. Notably, the under-
lying maximum-flow routine also vastly outperforms the algorithm described in [8],
which is commonly used as a benchmark for maximum-flow algorithms.

2.2 Improvements for MWCSP and PCSTP

Maximum-weight connected subgraph problem. Given an undirected graph G =
(V, E) and node weights p : V → Q, the objective is to find a connected subgraph
S = (VS, ES) ⊆ G such that

∑
v∈VS

pv is maximized.
Prize-collecting Steiner tree problem. Given an undirected graph G = (V, E),

edge-weights c : E → Q+, and node-weights p : V → Q≥0, a tree S = (VS, ES) ⊆
G is required that minimizes

C(S) :=
∑

e∈ES

ce +
∑

v∈V \VS

pv. (1)

The most important component for accelerating exact solving of both PCSTP and
MWCSP is graph reduction—which can for instance be employed in preprocessing.
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A simple reduction routine for theMWCSP is for example to contract all adjacent ver-
tices of positiveweight.However, several reduction techniques are considerablymore
sophisticated—in [9], for instance, three techniques for the MWCSP are described
that involve N P-hard subproblems. By adding these preprocessing techniques to
SCIP-Jack, not only most MWCSP problems can be solved during preprocessing,
but also several instances could be solved for the first time to optimality [6, 9].

Another important component is constituted by heuristics. The current version of
SCIP-Jack includes for instance a straightforward greedy heuristic for the PCSTP
that starts with a single vertex tree S0 = v with v ∈ V and repeatedly connects the
current tree Si to another vertexw ∈ V with pw > 0 such that this extension leads to
a tree Si+1 with C(Si+1) ≤ C(Si ). This procedure is implemented by a modification
of Dijkstra’s algorithm. More refined heuristics in SCIP-Jack for both PCSTP and
MWCSP are described in [5, 9].

3 Computational Results

The computational experiments described in the following were performed on a
cluster of Intel Xeon X5672 CPUs with 3.20GHz and 48GB RAM. SCIP 4.0.0
was used and CPLEX 12.61) was employed as the underlying LP solver. Moreover,
the overall run time for each instance was limited by two hours. If an instance was
not solved to optimality within the time limit, the gap is reported, which is defined
as |pb−db|

max{|pb|,|db|} for final primal bound (pb) and dual bound (db). The average gap

is obtained as an arithmetic mean. The averages of the number of nodes and the
solving time are computed by taking the shifted geometric mean with a shift of 10.0
and 1.0, respectively. For reasons of space we only provide results for STP, PCSTP,
and MWCSP.

The results in Table 3 show that the majority of STP instances can be solved
within short time. The new version of SCIP-Jack can solve several more instances
to optimality than the previous version described in [4]. Also, the run time has been
more than halved for the majority of instances.

As can be seen in Tables 4 and 5, with the combination of the new reduction
techniques, heuristics and transformationsmost of the PCSTP andMWCSP instances
can be solved easily. Only the PUCNU test set has unsolved instances left. Notably,
the results not only demonstrate a speed-up of more than 200% for many instances
as compared to the previous version of SCIP-Jack, but also mark a demarcation from
other state-of-the-art PCSTP or MWCSP solvers. For example for several problems
from the SHINY test, SCIP-Jack outperforms the best run-times reported in the
literature [10] by three orders of magnitude and solves problems in less than 0.1s
that are intractable for other solvers.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Table 3 Computational results for steiner tree problem in graphs

Test set # Solved Optimal Timeout

∅nodes ∅ time [s] ∅nodes ∅gap [%]

X 3 3 1.0 0.1 – –

E 20 20 1.8 0.3 – –

I640 100 80 23.3 6.6 980.1 0.7

ALUE 15 13 1.3 22.9 1.0 1.9

Vienna-i-
advanced

85 83 1.8 70.2 1.8 0.0

Table 4 Computational results for (rooted) prize-collecting Steiner tree problem ((R)PCSTP)

Test set # Solved Optimal Timeout

∅nodes ∅ time [s] ∅nodes ∅gap [%]

Cologne1 14 14 1.0 0.0 – –

Cologne2 15 15 1.0 0.1 – –

JMP 34 34 1.0 0.0 – –

CRR 80 80 1.0 0.2 – –

PUCNU 18 11 28.0 26.2 865.6 1.8

Table 5 Computational results for maximum-weight connected subgraph problem (MWCSP)

Test set # Solved Optimal Timeout

∅nodes ∅ time [s] ∅nodes ∅gap [%]

JMPALMK 72 72 1.0 0.0 – –

SHINY 39 39 1.0 0.0 – –

ACTMOD 8 8 1.0 0.1 – –

4 Conclusions and Outlook

The computational results of SCIP-Jack demonstrate that improved preprocessing
and transformation techniques can have a dramatic effect on performance when solv-
ing Steiner tree variants. In many cases it is possible to solve problems to optimality
even before it is necessary to employ the branch-and-cut kernel.

In the future we will continue on this path, adding more specific routines, while at
the same time improving those sections that apply to all problem variants. The aim
is to both improve the run-time of SCIP-Jack, in particular for the STP, and, equally
important, tackle additional previously unsolved instances.
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Extended Formulations for Column
Constrained Orbitopes

Christopher Hojny, Marc E. Pfetsch and Andreas Schmitt

1 Introduction

Modeling combinatorial optimization problems as mixed integer optimization prob-
lems often leads to formulations which contain symmetry, i.e., solutions can be
permuted to obtain new solutions with the same objective value. This slows solving
via branch-and-bound down, since equivalent solutions are repeatedly inspected in
different nodes of the branching scheme.

We illustrate this setting with the aid of the so-called balanced partitioning prob-
lem (BPP), a variant of the graph partitioning problem. Given an undirected graph
(V, E) with m = |V | nodes and a positive divisor n of m, the task is to find a
partition of the nodes into exactly n equal sized parts that minimizes the number
of edges between different parts, see, e.g., Lisser and Rendl [11] and Karisch and
Rendl [9]. Applications include solving sparse matrix-vector multiplications with
iterative-parallel algorithms, see Karypis and Kumar [10]. The problem can be for-
mulated using binary variables Xv,i to model whether node v belongs to part i .

The problem exhibits obvious symmetry: Permuting the labels of the parts of a
feasible solution yields another feasible solution. If the X -variables are considered
as an m × n-matrix, this permutation can be expressed by permuting columns of X .

A class of techniques to handle symmetry considers the removal of all but one
lexicographically maximal representative of the set of equivalent solutions from
the problem by cutting planes. In the above case, these hyperplanes would cut off
all solutions whose columns in X are not sorted lexicographically non-increasing.
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To understand the polyhedral properties of these cutting planes, the notion of full
orbitopes Om,n has been introduced in [8]. The polytope Om,n is the convex hull of all
binary m × n-matrices whose columns are sorted lexicographically non-increasing.
Adding its facet-defining inequalities to the problem at hand destroys the sym-
metry.

Utilizing further problem structure of orbitopes can give stronger cuts. In (BPP),
for example, each row of X contains exactly one 1-entry. This additional structure can
be handled by partitioning orbitopes, see [8] or Faenza and Kaibel [3]. Besides the
row constraints, (BPP) consists of further bounds on X , namely exactly m

n 1-entries
are allowed in each column. For this reason, we consider the column constrained
(partitioning) orbitope C=k

m,n with bound k ∈ [m] := {1, . . . , m}. This polytope is
the convex hull of all binary m × n-matrices contained in Om,n that have exactly k
1-entries in every column, i.e.,

C=k
m,n := conv

({
X ∈ Om,n ∩ {0, 1}m×n :

m∑
i=1

Xi, j = k, j ∈ [n]
})

.

In this paper, we will shortly sketch an efficient algorithm to optimize over C=k
m,n .

Afterwards, an extended formulation for the case of two columns is derived via
a disjunctive programming approach. A numerical comparison of symmetry han-
dling with this extended formulation and the partitioning orbitope concludes our
work.

2 Column Constrained Orbitopes

Loos [12] presented a polynomial time algorithm to optimize over full orbitopes.
It uses dynamic programming and relies on the vertex structure of orbitopes. A
binary matrix X ∈ {0, 1}m×n is a vertex of Om,n if and only if there exists a column
index t ∈ [n] ∪ {0} such that the first row of X consists of t 1-entries followed by
n − t 0-entries and the two submatrices spanning all rows below the first row and
columns 1 to t and t + 1 to n, respectively, are vertices of orbitopes with suitable
dimensions. Thus, an optimal vertex can be computed recursively and a Bellman
equation for a dynamic programming algorithm can be derived.

The vertices ofC=k
m,n have a similar structure. The first row of a vertex again divides

into a 1-part of size t and a 0-part of size n − t . The two submatrices below the first
row must belong to C=k−1

m−1,t and C=k
m−1,n−t , respectively. By adjusting Loos’ algorithm

to regard the different bounds k and k − 1, optimization over column constrained
orbitopes is possible in timeO(mn3k). Thus, there are no obstacles from complexity
theory preventing us to find a compact linear description of C=k

m,n . For the bound
k = 1 the description of C=k

m,n is provided by the following system:
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m∑
i=1

Xi, j = 1, j ∈ [n], (1a)

s∑
i=1

Xi, j+1 −
s∑

i=1

Xi, j ≤ 0, (s, j) ∈ [m] × [n − 1], (1b)

Xi, j ≥ 0, (i, j) ∈ [m] × [n]. (1c)

These inequalities force feasible binary matrices to contain exactly one 1-entry in
each columnand their columns tobe lexicographically non-increasing.Consequently,
these matrices are exactly the vertices ofC=1

m,n . In fact, System (1) is a complete linear
description of C=1

m,n , because the coefficient matrix of (1) is a network matrix, and
thus totally unimodular.

For general bounds k, computational experiments with polymake [5], however,
show thatC=k

m,n has amuchmore complicated facet structure. But since handling sym-
metry associated with C=k

m,n is completely possible by forcing each pair of adjacent
columns of X to belong to C=k

m,2, cf. [6, Proposition 29], it suffices to only consider
the column constrained orbitope C=k

m,2 with two columns. The latter polytope has
an easier vertex structure than C=k

m,n: The first column of a vertex X of C=k
m,2 has to

be lexicographically not smaller than the second column by definition. Thus, either
the first column coincides with the second or there exists a row � ∈ [m] such that
the entries coincide in each row above � and (X�,1, X�,2) = (1, 0). This leads to the
definition of the critical row of a vertex X of C=k

m,2, cf. Kaibel and Loos [7]:

crit(X) := min({� ∈ [m] : (X�,1, X�,2) = (1, 0)} ∪ {m + 1}).

We can partition the vertices of C=k
m,2 based on their critical row and define the

polytopes P� for � ∈ [m + 1] by

P� := conv
({

X ∈ C=k
m,2 ∩ {0, 1}m×2 : crit(X) = �

})
.

These polytopes are completely described by the following constraints

m∑
i=1

Xi, j = k, j ∈ [2], (2a)

Xi,1 − Xi,2 = 0, i ∈ [� − 1], (2b)

(X�,1, X�,2) = (1, 0), (2c)

0 ≤ Xi, j ≤ 1, (i, j) ∈ [m] × [2]. (2d)

Lemma 1 For � ∈ [m] the polytope P� consists of all those matrices X ∈ Rm×2

which satisfy constraints (2a) to (2d). The polytope Pm+1 is given by the constraints
(2a), (2b) and (2d) with � = m + 1.
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Proof Our arguments above show that every vertex of C=k
m,2 with critical row � sat-

isfies the constraints. Also every integer point satisfying them is a vertex of C=k
m,2,

since there are exactly k 1-entries in each column by (2a) and the second column is
lexicographically smaller or equal to the first by (2b) and (2c). Via elementary oper-
ations, we can transform the coefficient matrix of constraints (2a) and (2b) into a
node-arc incidence matrix of a directed graph. Thus, the matrix is totally unimodular
and system (2a)–(2d) defines an integral polytope. ��

With the descriptions of the P�, we derive an extended formulation of C=k
m,2.

Theorem 1 Let m ∈ N and k ∈ [m]. A matrix X ∈ Rm×2 lies within the column
constrained orbitope C=k

m,2 if and only if there exist matrices Y � ∈ Rm×2 and scalars
λ� ∈ R for � ∈ [m + 1] satisfying the constraints

Xi, j =
m+1∑
�=1

Y �
i, j , (i, j) ∈ [m] × [2], (3a)

m∑
i=1

Y �
i, j = kλ�, (�, j) ∈ [m + 1] × [2], (3b)

Y �
i,1 − Y �

i,2 = 0, � ∈ [m + 1], i ∈ [� − 1], (3c)

(Y �
�,1, Y �

�,2) = (λ�, 0), � ∈ [m], (3d)

0 ≤ Y �
i, j ≤ λ�, (�, i, j) ∈ [m + 1] × [m] × [2], (3e)

m+1∑
�=1

λ� = 1. (3f)

Proof Since C=k
m,2 = conv

(∪m+1
�=1 P�

)
and we know a complete linear description of

each P�, we can apply disjunctive programming, seeBalas [1, Theorem2.1], to derive
an extended formulation of C=k

m,2 which is given by (3). ��
Theorem 1 shows that C=k

m,2 admits a compact extended formulation with O(m2)

variables and constraints. Note, however, that a complete linear description of C=k
m,2

in the original space is unknown.
These results can bemodified for the column constraint packing orbitopewith two

columnsC≤k
m,2 := conv

({
X ∈ Om,2 ∩ {0, 1}m×2 : ∑m

i=1 Xi, j ≤ k, j ∈ [2]}). Replac-
ing equality in Constraint (2a) by inequality preserves totally unimodularity. Thus,
changing equality in Constraint (3b) to inequality yields an extended formulation
for C≤k

m,2. A similar modification results in an extended formulation for the column

constrained covering orbitope with two columns C≥k
m,2, which has at least k 1-entries

in each column.
Coming back to the initial example (BPP), we observe that not only the number of

1-entries in each column of a solution is bounded, but additionally exactly one entry
in each row must be 1. We can incorporate this further information by considering
the polytope
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conv
({

X ∈ C=k
m,2 ∩ {0, 1}m×2 : Xi,1 + Xi,2 ≤ 1, i ∈ [m]}) (4)

to handle symmetry. Adding this polytope for each pair of adjacent columns, the
number of 1-entries in each row is forced to be at most one. By a slight modification
we can adjust the extended formulation fromTheorem 1 to complywith Polytope (4):
For each vertex X , the rows (Xi,1, Xi,2) with i < crit(X) must be zero, since these
rows are either (0, 0) or (1, 1), but are only allowed to contain at most one 1-entry.
These rows can thus be neglected in P�. Also Constraint (2b) is obsolete; instead
Xi,1 + Xi,2 ≤ 1 for i ∈ {� + 1, . . . , m} needs to be added. Furthermore, the vertices
can only have a critical row � ≤ m − 2k, otherwise there would not be enough 1-
entries in each column. Thus, we do not use P� for � > m − 2k in the extended
formulation.

3 Numerical Results and Conclusions

We investigated the practical use of the derived extended formulation of C=k
m,2 to

handle the symmetry of (BPP) using the framework SCIP 3.2.1 [4] on a Linux
cluster with Intel Xeon E5 CPUs with 3.50GHz, 10MB cache, and 32GB memory.
The adjacency matrices of the graphs of our instances are from the University of
Florida Sparse Matrix Collection [2]. We considered matrices with at least 6 and
less than 100 rows, which are non-diagonal and pattern symmetric, i.e., only square
matrices A with Ai, j 	= 0 if and only if A j,i 	= 0. This results in 40 instances, which
are to be partitioned into n ∈ {5, 10, 20} parts. We added isolated nodes to the graph
if n did not divide the number of nodes and disregard calculation when n exceeds the
number of nodes. We compared two settings to estimate the strength of the extended
formulation. The first setting restricts the variables to lie inside the partitioning
orbitope via an already existing SCIP plugin. This plugin fixes the variables in
the upper right triangle of X to zero and separates the facets of the partitioning
orbitope. In the second setting, we added for each pair of adjacent columns of X the
variables and constraints belonging to the extended formulation of the Polytope (4)
with k = m

n .
We are most interested in the improvement of the LP relaxation by adding (con-

strained) orbitopes. Thus, we compared for each setting the value of the first solved
LP relaxation.

To evaluate the improvement of adding the extended formulation, we calculated
for each instance the quotient of the value of the extended formulation’s LP relaxation
def and the value of the LP relaxation obtained by the orbitope setting dorbi, i.e., the
value def/dorbi. Since we consider a minimization problem a value greater than 1
indicates a better LP relaxation of the extended formulation.

Table 1 summarizes our results. Column “#instances” shows the number of con-
sidered instances for a fixed value of n (recall that some instances are disregarded),
whereas the last three columns collect the arithmetic mean together with the min
and max over the relative values for instances with the same partition size. We see
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Table 1 Statistics on the improvement ratio def/dorbi for partition sizes n ∈ {5, 10, 20}
n #instances Arithmetic mean Min Max

5 40 1.0276 1.00 1.1931

10 37 1.0270 1.00 1.1382

20 34 1.0218 0.85 1.1149

that on average the LP relaxation of the extended formulation setting performs about
2% better than the orbitope. Except for one instance with n = 20, the values are
always at least 1. With an increasing number of parts the advantage of the extended
formulation decreases. Nevertheless, improvements of nearly 20% for n = 5 to 11%
for n = 20 can be observed for some instances.
Conclusions. In this paper, we introduced orbitopes with additional requirements
and incorporated these properties to orbitopes via an extended formulation. In a
computational study, we have seen that this extended formulation improves the first
LP relaxation, on some instances even substantially. However, this effect decreases
if we consider orbitopes with more columns. Furthermore the blow up of the variable
space makes adding the whole extended formulation impractical. To benefit from the
positive effect on the LP relaxation, schemes to separate the extended formulation as
well as descriptions of C=k

m,n with fewer variables should be considered. In particular,
a complete description in the original space would be desirable, but could not be
achieved so far.
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The k-Server Problem with Parallel
Requests and the Corresponding
Generalized Paging Problem

R. Hildenbrandt

1 The Formulation of the Model

Firstly, wewant to describe the generalized k-server problem. Let k ≥ 1 be an integer,
and M = (M, d) be a finite metric space where M is a set of points with |M | = N .
An algorithm controls k mobile servers, which are located on points of M . Several
servers can be located on one point. Requests r t for service at several points come in
over time. In online computation, an algorithm must decide how to act on incoming
requests without any knowledge of future inputs. In contrast, an offline procedure
would be allowed to know the entire sequence of requests in advance, before it makes
any decisions. Now, let σ = r1, r2, . . . , rn be such a sequence of requests. A request
r is defined as an N -ary vector of integers with ri ∈ {0, 1, . . . , k}, i = 1, 2, . . . , N
(“parallel requests”). The request means that ri servers are needed on point i, i =
1, 2, . . . , N .

Principally, two cases of requests have to distinguished:
N∑

i=1
ri ≤ k describes the

surplus-situation. The request can be completely fulfilled. We say a request r is

served if at least ri servers lie on i, i = 1, 2, . . . , N . In contrast,
N∑

i=1
ri ≥ k means

the scarcity-situation. The request cannot be completely met, however it should
be met as much as possible. The request r is served if at most ri servers lie on
i, i = 1, 2, . . . , N .

By moving servers, the online algorithm must serve the requests r1, r2, . . . , rn

sequentially. For any request sequence σ and any k-server algorithm ALG, ALG(σ )

is defined as the total distance (measured by the metric d) moved by the ALG’s
servers in servicing σ .
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Analogous to (Borodin and El-Yaniv, p. 152) working with lazy algorithms ALG
is sufficient. Thismeans, servers are notmoved in a step if they are not needed to fulfil
requests in this step. For that reason we define the set of feasible servers’ positions
with respect to the previous servers’ positions s and the request r in the following
way

ÂN ;k(s, r) = {
s ′ ∈ SN (k)

∣
∣ri ≤ s ′

i ≤ max{si , ri }, i = 1, . . . , N
}

(1)

where SN (k) :=
{

s ∈ ZZN
+ |

N∑

i=1
si = k

}

(2)

in the case of the surplus-situation and

ÂN ;k(s, r) = {
s ′ ∈ SN (k)

∣
∣min{si , ri } ≤ s ′

i ≤ ri , i = 1, . . . , N
}

(3)

in the case of the scarcity-situation. The metric d implies that (SN (k), d̂) is also
a finite metric space where d̂ are the optimal values of the classical transportation
problems with availabilities s and requirements s ′ ∈ SN (k).

We want online algorithms whose cost compares favorably to the cost of an
optimal offline algorithm. The competitive ratio is a measure of how much better an
algorithm could do if it knew the future (in more detail, see e.g. [2], pp. 3, 46).

In the specific case that all distances between two points of M are equal the
above described problem could be seen as a generalized paging problem. An other
interpretation of a paging problem includes a two-level memory system, where each
level can store a number of pages. The first level, the slow memory, hereby stores a
fixed set of N pages. The second level, the fast memory can store any k pages. Given
a request for certain pages, then the system must make these pages available in the
fast memory (or as much pages as possible in the case of the scarcity-situation). If
these pages are already in the fast memory, the system does not do anything. (See
also [2], pp. 32, 33.)

2 Generalized Paging

A well-known optimal offline algorithm for usual paging is the algorithm LFD
(Longest-Forward-Distance), see e.g. [2], p. 33. A natural generalization of this
algorithm, adapted to the generalized paging problem, is the following:

Surplus-situation: If it is necessary, replace pages in the fast memory,
whose next requests are latest.

Scarcity-situation: Do not copy requested pages in the fast memory,
whose next requests are latest.

Theorem 1 LFD is an optimal offline algorithm for generalized paging.
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This Theorem has been proved by E. Jäger1.
Well-known competitive online algorithms for usual paging are, for example, the

deterministic algorithm LRU (Least-Recently-Used) and the randomized algorithms
RAND and MARK, see e.g. [2], pp. 33, 46, 50. These algorithms can also be gen-
eralized in a natural way. It seems that these generalizations of the algorithms are
competitive in the cases of the surplus-situation with the same bounds of the ratio as
in the cases of the usual problems. In the case of the scarcity-situation these gener-
alizations are also competitive, but additional conditions may be necessary. Proofs
of the corresponding statements for the generalized algorithms LRU and MARK are
ongoing research.
The natural generalization of RAND can be stated as follows:

Surplus-situation: If it is necessary evict pages, which are chosen randomly
and uniformly among all not requested fast memory pages.

Scarcity-situation: Copy requested pages, which are chosen randomly
and uniformly in the fast memory.

Theorem 2 RAND attains a competitive ratio of c(k) = max {k, R(k) − k + 1}
against an adaptive online adversary if

∑

i∈M
rti ≤ R(k) ∀t for given R(k) > k ([4]).

3 The Generalized k-Server Problem

Well-known competitive online algorithms for usual k-server problems are the deter-
ministic work function algorithm and the randomized Harmonic k-server algorithm.
The proofs to show the competitiveness of these algorithms are extensive, see [2],
pp.164–174 and [1].

Natural generalizations of the algorithms are not competitive in the case of the
scarcity-situation (see Example 1 in [5] and Example 1 in [6]). Until now, to answer
the question, whether these algorithms are competitive or not in the case of the
surplus-situation are difficult open problems. Thats why, we suggest new “compound
algorithms". We have proved that these algorithm are competitive with the bounds of
the ratio as in the cases of the usual problems. The compound algorithms are derived
from surrogate problems, where each step of the original problem will be replaced
by a number of steps in the surrogate problem.

3.1 The Compound Harmonic k-Server Algorithm

A natural generalization of the Harmonic algorithm would send a sufficient set of
servers with probability proportional to the inverse of its distance from the current
request locations. In more detail,

1Diploma thesis, in preparation.
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PH (s ′|s, r) =
1

d̂(s,s ′)
∑

s ′′ :s ′′∈ ÂN ;k (s,r)

1
d̂(s,s ′′)

for s ′ ∈ ÂN ;k(s, r). (4)

A surrogate problem is created in the following way: Let s denote the online
servers’ positions at the beginning of a step t , let r be the request in the t th
step and N̄ ⊆ {1, 2, . . . , N } the set such that rl > 0 if and only if l ∈ N̄ . Fur-
thermore, let n̄ = |N̄ | and i a bijection from {1, 2, . . . , n̄} to N̄ . If n̄ > 1 then we
replace the t th step of the generalized k-server problem with the request r by a
number of steps t1,1, t1,2, . . . , t1,n̄, t2,1, t2,2, . . . , t2,n̄, . . . with the request sequence
(r̄1,1, r̄1,2, . . . , r̄1,n̄, r̄2,1, r̄2,2, . . . , r̄2,n̄, . . .), where r̄ j, f

i( f ) = ri( f ) and r̄ j, f
f̄

= 0 for

j ∈ {1, 2, . . .}, f̄ ∈ {1, 2, . . . , N } , f̄ �= i( f ). Probabilities PM(s̄ ′ j, f |s̄ j, f , r̄ j, f ), for
s̄ ′ j, f ∈ ÂN ;k(s̄ j, f , r̄ j, f ) are be computed as m−step transition probabilities:

PM(s̄ ′ j, f |s̄ j, f , r̄ j, f ) :=∑

{(s ′1,s ′2,...,s ′m−1,s̄ ′ j, f )}
PH (s ′1|s̄ j, f , r ′1) · PH (s ′2|s ′1, r ′2) · · · · PH (s ′|s ′m−1, r ′m) (5)

where m = ri( f ), r ′ f ′
with r ′ f ′

i( f ) = f ′, r ′ f ′

f̄
= 0 for f ′ ∈ {1, 2, . . . ,m} ,

f̄ ∈ {1, 2, . . . , N } , f̄ �= i( f ), s ′ f ′ ∈ ÂN ;k(s ′ f ′−1, r ′ f ′
) and

PH (s ′ f ′ |s ′ f ′−1, r ′ f ′
) = 1/d(l0,i( f ))∑

l:s′ f ′−1
l >0,l �=i( f )

1/d(l,i( f )) , l0 : s ′ f ′
l0

= s ′ f ′−1
l0

− 1.
(6)

If s ′ denotes the online servers’ positions at the end of step t in case of the generalized
k-server problem then several sequences
(s̄ ′1,0, s̄ ′1,1, s̄ ′1,2, . . . , s̄ ′1,n̄, s̄ ′2,1, s̄ ′2,2, . . . , s̄ ′2,n̄, . . . , s̄ ′ j̄ ,1, s̄ ′ j̄ ,2, . . . , s̄ ′ j̄ ,l̄)with s ′ j, f ∈
ÂN ;k(s̄ j, f , r̄ j, f ) for j ∈ {

1, 2, . . . , j̄
}
, f ∈ {1, 2, . . . , n̄} exist, where s̄ ′1,0 = s, s ′ j̄,l̄

= s ′and s̄ j, f = s ′ j, f −1 ( f > 1 or j = 1) or s̄ j,1 = s ′ j−1,n̄ , respectively. (If s̄ j, f
i( f ) ≥

r̄ j, f
i( f ) > 0 then the corresponding surrogate step could be also omitted.)
Such sequences represent realizations of a time-homogeneousMarkov chain with

transient states (s̄ j, f , r̄ j, f ), absorbing states s ′ ∈ ÂN ;k(s, r) and transition probabil-
ities PM(s̄ ′ j, f , r̄ j, f +1|s̄ j, f , r̄ j, f ) := PM(s̄ ′ j, f |s̄ j, f , r̄ j, f ) ( f < n̄) or PM(s̄ ′ j,n̄, r̄ j+1,1

|s̄ j,n̄, r̄ j,n̄) := PM(s̄ ′ j,n̄|s̄ j,n̄, r̄ j,n̄), respectively.
The probabilities PC(s ′|s, r), s ′ ∈ ÂN ;k(s, r), which are used by the compound

Harmonic algorithm, are defined as absorbing probabilities. Absorbing probabilities
can be computed by means of linear systems (see e.g. [3], Theorem 6.6). For this
purpose all states of the above mentioned Markov chains must be known and the
corresponding transition probabilities PM(·|·, ·) are the coefficients of these linear
systems. The number of these states is finite. Furthermore

∑

s ′∈ ÂN ;k (s,r)
PC(s ′|s, r) = 1

is valid and the solutions of the linear systems are unique.
Clearly, if n̄ = 1 then the computation of more-step transition probabilities is

sufficient in this special case.
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In general, the compound Harmonic algorithm uses absorbing probabilities PC
instead of the probabilities PH . In the following Example probabilities PC , used by
the compound Harmonic algorithm, are compared with probabilities PH used by the
Harmonic algorithm.

Example 1 Let k = 4 and let the metric space M consist of 6 points p1, p2, . . . , p6
of the two-dimensional Euclidean space with the distances
d(p3, p1) = 5, d(p4, p1) = 3, 85, d(p5, p1) = 1, 6, d(p6, p1) = 4, 5, d(p2, p1) =
2, 4 and d(p3, p2) = 4, d(p4, p2) = 5, d(p5, p2) = 2, 1, d(p6, p2) = 4, 55.

The current online servers’ positions are given by s = (0, 0, 1, 1, 1, 1)T

and the current request by r = (1, 1, 0, 0, 0, 0)T .
Then we have 6 feasible online servers’ positions with respect to s and r :
s ′(1) = (1, 1, 0, 0, 1, 1)T , s ′(2) = (1, 1, 0, 1, 0, 1)T , s ′(3) = (1, 1, 0, 1, 1, 0)T ,

s ′(4) = (1, 1, 1, 0, 0, 1)T , s ′(5) = (1, 1, 1, 0, 1, 0)T , s ′(6) = (1, 1, 1, 1, 0, 0)T .
Corresponding distances d̂(s, s ′(i)), probabilities PH (s ′(i)|s, r) and PC(s ′(i)|s, r)

can be found in the following Table.
i 1 2 3 4 5 6

d̂(s, s ′(i)) 7,85 5,60 8,50 5,95 8,40 6,15
PH (s ′(i)|s, r) 0,1459 0,2045 0,1347 0,1924 0,1363 0,1862
PC(s ′(i)|s, r) 0,0836 0,2504 0,0781 0,2582 0,0829 0,2466

.

We can observe that PC(s ′(i)|s, r) < PH (s ′(i)|s, r) for greater distances d̂(s, s ′(i)) and
PC(s ′(i)|s, r) > PH (s ′(i)|s, r) for smaller d̂(s, s ′(i)).

Theorem 3 The compound Harmonic algorithm applied to the generalized k-server
problems with parallel requests is ((k + 1)(2k − 1) − k)-competitive against an
adaptive online adversary in the case of the surplus-situation ([5]).

3.2 The Compound Work Function Algorithm

Firstly, we want to generalize the definition of the work functions, which are used in
the work function algorithm applied to the usual k-sever problem (see e. g. [2], pp.
164, 165). A work functions wt+1(s) is defined as the optimal offline cost (sequen-
tially) servicing all requests in σt , starting from the initial configuration s0 and ending
at configuration s.Work functions can be computed recursively (bymeans of dynamic
programming) as follows:

w∅(s) = d̂(s0, s) (There ∅ denotes the empty request sequence.) (7)

Assume that the valuewt (s) is known for any configuration s. Given the next request
r t+1 and a configuration s,

wt+1(s) = min
s̃:∈ ÂN ;k (s,r t+1)

{wt (s̃) + d̂(s̃, s)}. (8)
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Note, that these generalized work functions are quasi-convex in the cases of the
surplus- and the scarcity-situation ([2], Lemma 1).

The following algorithm represents a natural generalizations of the deterministic
work function algorithm (WFA): Let σt be the request sequence thus far and let s ′t
be the configuration of the WFA algorithm after servicing σt . Then, given the next
request r t+1. WFA serves r t+1 with s∗W satisfying

s∗W = arg min
s̃:∈ ÂN ;k (s ′t ,r t+1)

{wt (s̃) + d̂(s̃, s ′t )} . (9)

The cost of algorithm WFA to serve the request r t+1 is d̂(s∗W , s ′t ).
Now, we create a surrogate problem, where at most one server must be moved

in servicing the request in each step. For this we replace the steps of the original
problem by a number of steps in the surrogate problem.

In more detail, let r t = (r t1, r
t
2, . . . , r

t
N ) be the request in the tth step.

Thenwe set N̄ := {i | r ti > 0}, n̄ := |N̄ | andρi := r ti , ρ̄i :=
i∑

l=1
ρl for i = 1, . . . ,

N , ρ̄0 := 0, ρ̄ := ρ̄N . (Note that N̄ and ρ̄, . . . depend on t .)
Furthermore, let j̄ be an integer with j̄ = 1 if n̄ = 1 and with

δ∗ · ( j̄ − 1) > ρ̄ · δ∗ = (
N∑

i=1
r t ) · δ∗, if n̄ > 1, respectively,

where δ∗ = min
{i1,i2}⊆N̄ ,i1 �=i2

d(i1, i2), δ∗ = max
i∈N̄ ,s∈M

d(i, s).
(10)

We replace a step t of the generalized k-server problem by steps
t1,1, . . . , t1,ρ̄ , t2,1, . . . , t2,ρ̄ , . . . , t j̄,1, . . . , t j̄,ρ̄ with requests r̄1,1, . . . , r̄1,ρ̄ ,

r̄2,1, . . . , r̄2,ρ̄ , . . . , r̄ j̄,1, . . . , r̄ j̄,ρ̄ in the surrogate problem, where

r̄ j, f
i =

⎧
⎨

⎩

f − ρ̄i−1 for i with r ti �= 0, f ∈ {ρ̄i−1 + 1, ρ̄i−1 + 2, . . . , ρ̄i } ,

and j = 1, . . . , j̄
0 otherwise

.

(11)
Since r̄ j, f are independent of j we set r̄ f := r̄ j, f for f = 1, 2, . . . , ρ̄.

For example, r t = (0, 2, 3) implies that n̄ = 2, ρ̄ = 5 and r̄1 = (0, 1, 0), r̄2 =
(0, 2, 0), r̄3 = (0, 0, 1), r̄4 = (0, 0, 2), r̄5 = (0, 0, 3).

The compound work function algorithm (compound WFA) consists of the
following two steps:

1. Apply the usual WFA to the surrogate problem.
2. Skip the movements of servers which are unnecessary for the original

problem.

Theorem 4 The compound WFA algorithm is (2 k − 1)-competitive for any k and
any metric space in the case of the surplus-situation ([6]).
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The Traveling Salesperson Problem with
Forbidden Neighborhoods on Regular 3D
Grids

Anja Fischer, Philipp Hungerländer and Anna Jellen

1 Introduction

In this paper we study the Traveling Salesperson Problem with Forbidden Neighbor-
hoods (TSPFN) on regular three-dimensional (3D) grids. The task of the TSPFN is
to determine a shortest Hamiltonian cycle over given points in the Euclidean plane,
such that the distance between consecutive points along the tour is larger than some
given r ∈ R+.

The TSPFN was originally motivated by an application in laser beam melting,
where a workpiece is built in several layers. By excluding the heating of positions
that are too close during this process, one hopes to reduce the internal stresses of
the workpiece, see [3] and the references therein for further details. Furthermore, the
TSPFN has connections to the maximum scatter TSP (msTSP), where the length z
of a shortest edge in a tour is maximized. Clearly for optimal z, there exists a TSPFN
tour for all r < z. For details on the msTSP see, e. g., [1] for the general case and [4]
for a version on 2D grids.

In this workwe determine optimal TSPFN tours on regular 3D grids with arbitrary
grid sizes for the smallest reasonable forbidden neighborhoods r = 0 and r = 1. We
considerm × n × � grids, wherem is the number of rows, n is the number of columns
and � is the number of layers. So each cell/vertex of the grid is represented by three
coordinates. For a visualization we refer to Fig. 1. In the 3D case we always assume
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Fig. 1 Visualizations of the 3 × 3 × 3 grid. The left picture shows the numbering of layers l ∈
{1, 2, 3}. In the middle cube, the dark gray cell has the coordinates (3, 1, 1) and the light gray one
has the coordinates (1, 3, 3). In the right cube, each layer has one color, where layers with larger
numbers are lighter

Fig. 2 Optimal TSP tours
on m × n grids for m even, n
even and both m and n odd
[3]. The two tours on the left
are denoted as “rook tours”

m, n, � ≥ 2. If 1 ∈ {m, n, �}, we are in the 2D case of the TSPFN. Results for this
case can be found in [3].

The TSPFN on grids can easily be described as an integer linear program (ILP). In
comparison to the classic formulation of the TSP byDantzig et al. [2], we additionally
forbid connections that are too short by setting the respective variables to zero, see
[3] for the ILP formulation of the TSPFN in the 2D case.

2 Results for r = 0

If r = 0, then the TSPFN is equivalent to the Euclidean TSP. Since our constructions
in the 3D case are an extension of the ones for the 2D case, first we recall some
construction schemes of optimal TSP tours on regular 2D grids in Fig. 2.

Considering now the 3D case, we divide the grid cells into odd and even vertices,
where a vertex is odd (even), if the sum of its indices is odd (even). We denote the
subgrid of the odd (even) vertices as o-grid (e-grid).

For r = 0, the shortest connections have length 1, running between an even and an
odd vertex. Hence a trivial lower bound on the optimal tour length is mn�. If m, n, �

are odd, there is one more odd than even vertex. Thus in this case mn� − 1 + √
2 is

a lower bound. Next we show that these lower bounds are in fact the optimal lengths
of TSPFN tours with r = 0 on regular 3D grids.

Theorem 1 An optimal TSP tour on an m × n × � grid has length mn�, if m or n
or � is even, and length (mn� − 1) + √

2, if m, n, � are odd.
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Fig. 3 Optimal TSP tours on the 4 × 5 × 3 grid and the 5 × 5 × 3 grid, respectively. The three
numbers in the cells correspond to the three layers with Layer 1 at the bottom

Proof We prove this by presenting tour construction schemes, where the tour lengths
equal the lower bounds given above. The construction always starts in (1, 1, 1) and
we gowith steps of length 1 to (1, 1, 2), (1, 1, 3), . . . , (1, 1, �).Whenwe reach Layer
�, we apply the appropriate construction schemes from the 2D case, see Fig. 2, of
course not yet closing the tour. We distinguish two cases:

• m or n or � is even: W. l. o. g. we assume that m or n is even. Hence we can apply
one of the rook tours that end in (1, 2, �). Now we change the layer by taking
a step of length 1 to (1, 2, � − 1). Here we apply the open rook tour again, but
in the other direction, such that it ends in (2, 1, � − 1). We repeat using these
construction schemes until we reach Layer 1. Depending on the parity of �, the
last rook tour ends in (2, 1, 1) or (1, 2, 1). Both cells have distance 1 to the start
vertex (1, 1, 1).

• m, n, � are odd: We proceed in a similar way as above, applying the construction
scheme of the 2D case with both m, n odd. The alternating start and end cells of
these open rook tours are (2, 1, i) and (2, 2, i), i ∈ {1, . . . , �}. Finally, in Layer
1 we end in (2, 2, 1) that has a distance of

√
2 to (1, 1, 1). �

To further clarify the construction schemes of optimal TSP tours on regular 3D grids,
we depict some optimal tours on the 4 × 5 × 3 and 5 × 5 × 3 grids in Fig. 3.

3 Results for r = 1

For the TSPFN with r = 1 the shortest possible step has length
√
2, see Fig. 4 for

a visualization of the corresponding forbidden neighborhood. A step of length
√
2

is either possible between two even or between two odd vertices. For determining a



216 A. Fischer et al.

Fig. 4 Illustration of the
forbidden neighborhood for
the TSPFN with r = 1 on
regular 3D grids. The current
grid cell is the black one in
the middle, the forbidden
cells are the gray ones
around it and the cells that
we are allowed to visit next
are white

lower bound we assume the existence of Hamiltonian paths on the o-grid and the e-
grid that consist only of steps of length

√
2. The shortest feasible step for connecting

the paths on the subgrids has length
√
3. Hence (mn� − 2)

√
2 + 2

√
3 is a lower

bound for the length of optimal TSPFN tours with r = 1 on an m × n × � grid. In
the following we present construction schemes for tours whose lengths coincide with
this lower bound. We start with � = 2, then we consider � = 3 and eventually we
extend our construction schemes to an arbitrary number of layers.
Construction scheme for � = 2: We construct tours on each subgrid and connect
them with steps of length

√
3. Putting two layers of a subgrid upon each other, we

obtain a full 2D grid, where every step is allowed, because vertices belonging to the
same subgrid have a distance of at least

√
2. Nowwe can again apply the construction

schemes for r = 0 of the 2D case, this time for determining tours over two layers,
where every step of length 1 in the original construction scheme corresponds to a
step of length

√
2. Slightly adapting the 2D solution by using steps of length

√
2

within one layer, we can choose different start- and end-cells and derive a tour of
the desired length. To further clarify this construction scheme we depict the optimal
TSPFN tour with r = 1 on the 4 × 5 × 2 grid in Fig. 5.
Construction scheme for � = 3: As above we put layers of the same subgrid upon
each other so that they look like a full 2D grid and connect the two subgrids by steps
of length 3. Note that in this case vertices of the 2D visualization that are in Layer 1
or 3 have to be visited twice and vertices that are in Layer 2 have to be visited once.
Our construction scheme starts on the o-grid in (1, 1, 1). Initially we visit all cells
in the first two columns and continue with covering the columns pairwise until three
columns are left. Then we go to (1, n − 3, 1) and visit the first two remaining rows.
Again we cover the rows pairwise and stop when five rows are left. It remains a 5 × 3
grid on which we apply an explicitly determined subpath. With a step of length

√
3

we change to the e-grid. The construction scheme on the e-grid is a slightly adapted
and rotated (by 180 degrees) version of the construction of the o-grid. A detailed
description of the construction scheme over three layers is given in Fig. 6. To further



The Traveling Salesperson Problem … 217

1

20

21

40

25

19

23

1

17

33

9

21

27

11

34

3

15

31

7

38

29

13

36

5

18

24

20

22

26

10

40

2

16

32

8

39

28

12

35

4

14

30

6

37

Fig. 5 Illustration of an optimal TSPFN tour with r = 1 on the 4 × 5 × 2 grid. The tour consists
of two Hamiltonian paths on the o-grid (left) and the e-grid (Picture 2) that are connected by steps
of length

√
3. The two right pictures display the tour explicitly (Level 1 left)
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Fig. 6 Illustration of drawing patterns for � = 3. The pictures show the construction scheme for
the odd vertices (left) and the even vertices (right). For larger m, n the gray parts can be repeated.
Black vertices correspond to Layers 1 and 3 and hence are visited twice. White vertices correspond
to Layer 2 and hence are visited once. “S” and “E” indicate the start and end vertices

clarify this construction scheme we depict an optimal TSPFN tour with r = 1 on the
7 × 5 × 3 grid in Fig. 7.
Construction scheme for an arbitrary �: Finally in the proof of Theorem2wedescribe
how the above construction schemes for � = 2 and � = 3 can be used to obtain a
construction scheme for an arbitrary number of layers �.

Theorem 2 An optimal TSPFN tour on the m × n × � grid with r = 1 has length
(mn� − 2)

√
2 + 2

√
3.

Proof We prove this by presenting an explicit construction scheme, where the length
of the tours equals the lower bound derived above. The optimal solutions for the
3 × 3 × 3 and the 3 × 5 × 3 grids were derived explicitly by the ILP formulation
discussed in the introduction. So let us consider the other cases.
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Fig. 7 Illustration of an
optimal TSPFN tour with
r = 1 on the 7 × 5 × 3 grid.
The odd (even) vertices are
depicted in the left (right)
picture. The gray cells
belong to Layers 1 and 3 and
hence are visited twice
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First note that for all grid sizes there exists a construction scheme over two layers
that visits all odd vertices such that (1, 1, i) and (1, 2, i + 1) for i odd are the start-
and end-cells, see Fig. 8. We start in (1, 1, 1), apply this construction scheme and
hence terminate in (1, 2, 2). Then we take a step of length

√
2 to (1, 1, 3) and apply

again the same construction scheme.
Now we distinguish two cases:

1. m or n or � is even:We assume, w. l. o. g., that � is even. Hence we can continue
with the application of the construction scheme over two layers until we reach
(1, 2, �). Now we have covered all odd vertices and need to take a step of length√
3 to change to the e-grid. We go to (2, 1, � − 1) and apply a slightly adapted

construction scheme that is depicted in Fig. 8, Picture 5. Using this drawing
pattern we visit all even vertices on the Layers � and � − 1 and terminate in
(1, 2, � − 1). For the even vertices on the remaining layers, except for Layers 1
and 2, we again iteratively apply the construction schemes illustrated in Pictures
1 to 3 of Fig. 8. Finally on Layers 1 and 2 we use a slightly adapted construction
depicted in Fig. 8, Picture 4, in order to end in (2, 2, 2). From (2, 2, 2) we go to
(1, 1, 1) with a step of length

√
3.

Fig. 8 Construction schemes for tours on either the o-grid or the e-grid over two layers using
only steps of length

√
2. The three left construction schemes are applied for subgrids with different

parities, i. e. m even, n even or m and n odd (from left to right). For the e-grid over Layers 1 and 2
(Picture 4) as well as Layers � − 1 and � (Picture 5) slight adaptions are needed. The pictures show
the interesting part of the upper 9 highlighted nodes, the remaining connections do not change
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2. m, n, � are odd: We apply the construction scheme over two layers from Fig. 8 on
theo-grid untilwe reach (1, 2, � − 3).Wemake a step of length

√
2 to (1, 1, � − 2)

and then use the construction scheme from Fig. 6 on the last three layers and end
in (2, 1, � − 2). We make a step of length

√
2 to (1, 1, � − 3). Finally, we visit

the remaining even vertices as in Case 1. �

It remains for future work to extend the presented results to larger values of r or to
grids, where the cells are cuboids. Looking at the application in laser beam melting
it is not only interesting to enforce some minimum distance between consecutive
points in the tour, but also of points that are close in the tour so that, e. g., some areas
of the workpiece can cool down over a longer time period.
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Traveling Salesman Problems
with Additional Ordering Constraints

Achim Hildenbrandt

1 Introduction and Notation

The Traveling Salesman Problem (TSP) is probably one of themost studied problems
of combinatorial optimization. In this paper we consider four variants of the TSP
which each contain an additional type of ordering constraint. Applications of such
problems often appear in the context of disaster logistics.

Thefirst variantwe consider is theClusteredTravelingSalesmanProblem (CTSP).
In this problem the set of nodes is partitioned into k clusters. Each feasible tour
must then visit the nodes of one cluster successively. We denote the clusters with
Ci ⊆ V, i = 1, . . . , k.

A special case of this problem is the Ordered Clustered Traveling Salesman Prob-
lem (OCTSP), where an additional order in which the clusters must be visited is
specified. This problem is also sometimes called Hierarchical TSP. When there are
only two clusters this problem is equivalent to the Traveling Salesman Problem
with Backhauls (TSPB). We denote the start node of the tour by d. The clusters are
numbered according to the order in which they have to be visited.

The third problem we study in this paper is the Precedence Constrained Traveling
Salesman Problem (PCTSP). In this variant each feasible tour must fulfill a list of
precedence constraints.We denote these constraints with the ordered set P ⊆ V × V
where (i, j) is in Pwhen i has to be visited before j . This problem is called Sequential
Ordering Problem in the Hamiltonian Path version.

Last but not least we consider the Target Visitation Problem (TVP) which is a
connection of the TSP and the Linear Ordering Problem (LOP). So for each two
nodes i, j ∈ V there exists a value pi j which we get as bonus when we visit i before
j in the tour.
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The aim of this paper is to study the connection between these four problems and
present a fast method to solve them to optimality.

2 Literature-Review

In this section we give a short overview of existing research considering these four
problems. We focus on literature which is concerned with exact approaches for
solving these problems. The CTSP was introduce by Chisman in [4]. In this article
the CTSP is solved exactly by applying the well know branch-and-bound algorithm
by Little et al. [7]. Jongens and Volgant propose an Lagrangean Relaxation for the
symmetric variant of the CTSP in [8] which seems to work very well. For the OTCP,
there exists not much literature. Aramgiatisiris describes an algorithm in [2] which
solves the TSPB exactly using decomposition techniques. This algorithm could also
be used for the OCTSP. For the PCTSP a branch-and-cut algorithm could be found in
[1]. Valid inequalities for the associated polytope are described in [3]. The TVP was
introduced by Grundel et al. in [5]. An extensive survey on different solving methods
for the TVP can be be found in [6]. In addition we also want to mention an article
by Lokin [9] concerning a branch-and-bound algorithm (based on the algorithm of
Little) which is applied to the CTSP, PCTSP und OCSTP.

3 Connections

Obviously all these problems are connected with each other. In the following we
explain these connections in more detail.

Every instance of an OCTSP can be transformed to an instance of the TVP which
has the same optimal solution. This transformation is done as follows: The distance
cost matrix is copied while the preference matrix is constructed in the following way
(M hereby denotes a very large value compared to the traveling cost of the TSP):

pi j :=
{

−M if i ∈ Cl and j /∈ {Cl,Cl+1}with l ∈ {1, . . . , k − 1},
0 otherwise.

Also every instance of PCTSP can be transformed to an instance of the TVP with
a similar big-M construction. Again the distance matrix is copied and this time pi j
is defined as follows:

pi j :=
{
M if (i, j) ∈ P,

0 otherwise.
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Last but not least every instance of an OCTSP could be transformed to an instance
of a PCTSP by defining P as follows:

(i, j) ∈ P if and only if i ∈ Cl and j ∈ Cm with l < m.

4 IP Modeling

In this section we examine how these four problems can be modeled as integer pro-
grams. To make things easier we transform our TSPs to Hamiltonian path problems
(HPP). That means instead of a tour which visits all nodes we are looking from now
for a path that visits all nodes. So we can forget about the start node of the tour. Such
transformation have been introduced by Queyranne et al. in [10] and been used for
the TVP before (see [6]).

So from now on we treat our problems as HPPs with additional ordering con-
straints. Sowe first present an IPmodel for theHPP. There are existingmany different
approaches. The most common one uses variables xi j defined by;

xi j :=
{
1 if node i is directly followed by node j in the path,

0 otherwise.

which leads to the objective function

min
n∑

i=1

n∑
j=1
j �=i

di j xi j ,

where di j denotes the traveling costs from node i to node j . To obtain a valid
solution it is sufficient to include degree constraints:

n∑
i=1
i �= j

xi j ≤ 1, j ∈ V and
n∑
j=1
j �=i

xi j ≤ 1, i ∈ V

as well an as the subtour elimination constraints∑
i∈S

∑
j∈S
i �= j

xi j ≤ |S| − 1, S ⊂ V, 2 ≤ |S| < n

and the constraint that a path through n nodes must contain n − 1 edges

n∑
i=1

n∑
j=1
j �=i

xi j = n − 1.
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To model our problems we will extend this model and add additional constrains
(and in some cases also new variables). We start with the TVP which is the only
problem where the added constraints are not depending on the given instance. The
following integer programming model can be found in [6]. It combines the IP model
of the HPP with the IP model for the Linear Ordering Problem. That means we have
to introduce some additional variables

wi j :=
{
1 if node i is visited before node j in the path,

0 otherwise.

With this the objective function must be modified as follows:

max
n∑

i=1

n∑
j=1
j �=i

pi jwi j −
n∑

i=1

n∑
j=1
j �=i

di j xi j

We also have to add three new classes of constrains to the HPP model:

wi j + w jk + wki ≤ 2, 1 ≤ i, j, k ≤ n, i < j, i < k, j �= k,

xi j − wi j ≤ 0, 1 ≤ i, j ≤ n, i �= j,

w j i + wi j = 1, 1 ≤ i < j ≤ n.

For the case of the CTSP an IP model has been stated in [4]. It consists of adding
the following constraints to the HPP model:

∑
i∈Cu

∑
j∈Cu

xi j = |Cu | − 1 ∀u = 1, . . . , k where |Cu | ≥ 1.

These equations describe the fact that a path that visits all nodes of a cluster
Cu successively must contain |Cu | − 1 edges. Alternative: Add variables wi j which
are analogously defined as in the TVP-model and constrains wi j + w jl ≤ 1, ∀i, l ∈
Cu, j ∈ Cv .

For modeling the OCTSP we simply add the constraints:

xi j = 0 ∀i ∈ Cu and j ∈ Cv with Cu > Cv

to the HPP model. Optionally the following equations could also be added:

i) xi j = 0 ∀i ∈ Cu and j ∈ Cv with Cv > Cu + 1
ii)

∑
i∈Cu

∑
j∈Cu+1

xi j = 1 ∀u ∈ {1, . . . , k − 1}
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Table 1 Results on the PCTSP problems

Instance Nodes 10% 20% 30% 40% 50%

p43 43 0:00:10 0:00:05 0:00:07 0:00:02 0:00:04

ry48 48 Mem. Mem. 0:00:24 0:00:05 0:00:06

ftv55 55 55:52:28 0:05:04 0:00:51 0:00:07 0:00:03

ft70 70 Mem. 0:34:51 0:01:23 0:00:47 0:00:12

kro124p 100 Mem. Mem. Mem. Mem. Mem.

Table 2 Results on the OCTSP problems

Instance Nodes 3 Clu. 4 Clu. 5 Clu. 6 Clu. 8 Clu. 10 Clu.

p43 43 1:50:42 0:20:42 0:01:14 0:07:31 0:00:54 0:00:03

ry48 48 0:00:22 0:00:10 0:00:17 0:00:05 < 1 < 1

ftv55 55 0:00:02 0:00:04 0:00:02 < 1 < 1 < 1

ft70 70 3:15:28 0:13:47 0:02:50 0:00:04 0:00:02 0:00:02

kro124p 100 4:38:15 1:04:59 4:03:26 0:21:54 0:01:21 0:01:41

ftv70 170 4:22:33 1:46:06 0:21:07 0:10:03 0:03:59 0:03:24

For the PCTSP an IP model can be found for example in [1]. This formulation
contains an exponential number of constraints, but they can be separated in polyno-
mial time. However we try a new approach and use the IP model of the TVP. There
we only have to add the constraints wi j = 1 ∀(i, j) ∈ P and we have to leave out
the ordering part of the objective function.

5 Branch-and-Cut

In this section we present a branch-and-cut algorithm which could solve PCTSP,
OCTSP and TVP to optimality. For this purpose we adopted code written by Reinelt
andRinaldi. The algorithm iswritten inC and usesCPLEX, especially its opportunity
of using callback functions. We also use the TVP facet classes 25, 29, 31, 39, and 41
which have been stated in [6].

The test instances for theTVPwere also taken from [6]. For the other twoproblems
we took asymmetric TSP instances from the TSP-library [11] and extended them in
the following way: In case of the OCTSP we put the first k1 nodes in cluster C1, the
next k2 nodes in cluster C2 and so on. For the PCTSP we generated a random tour,
and then we randomly included a defined percentage of constraints implied by this
tour.

We execute our algorithm on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
with 16GB Ram. As one can see the TVP is the hardest of these problems since at
the moment it is not possible to solve instances with more than 50 nodes, even if
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Table 3 Results for the TVP instances

Instance n B.-and-C. in [6] New B.-and-C.

ER_CFO_30_2 30 0:23:49 0:05:14

ER_MCO_30_2 30 0:26:08 0:10:01

LD_CFO_35_1 35 0:24:19 0:46:06

LB_CFO_35_1 35 0:17:37 0:01:40

ER_CFO_40_2 40 3:44:44 0:45:51

ER_CFO_40_4 40 Mem. 12:01.38

LD_MCO_40_1 40 3:24:02 0:01:00

they have a metric order on the distances and a complete ordering on the preferences
(see Table 3 for results). Nevertheless our algorithm is faster than the branch-and-cut
algorithm presented in [6]. As one can see in Table 2 in case of the OCTSP it seems
that an increasing number of clusters makes the problem much easier. So we were
able to solve instances where clusters contain at most 10 nodes in at most 3 minutes.
In case of the PCTSP it depends on the number of constraints how difficult a instance
is, even if there are more than 50 % of all possible constraints included in P, it is not
possible to solve instances with 100 or more nodes (see Table 1).

6 Conclusion and Further Research

In this paper we considered several TSPs with additional ordering constraints. We
showed that they are all connected to each other. That why it was possible to use
results valid for the TVP to solve the other problems as well. We also present a
branch-and-cut algorithm which shows good results. In the future we want to extend
our branch-and-cut algorithm so it can also solve CTSP instances and we want to
examine associated polytopes to determine some additional cutting planes to speed
up the algorithm.
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Benefits and Limitations of Simplified
Transient Gas Flow Formulations

Felix Hennings

1 Introduction

For the past years, the mathematics of gas transport have been intensively studied,
mainly focusing on the stationary (time-independent) case, which can be applied to
planning scenarios for example [2, 6]. However, when aiming to optimize the actual
short-term control of the technical gas network elements, we have to consider the
time dependent so-called transient case. Here, research is still in the early stages
and current state-of-the-art approaches cannot solve instances of large real-world
network size [7].

One difficulty are the Euler Equations [2] describing the one dimensional gas flow
in a cylindric pipeline, a set of nonlinear hyperbolic partial differential equations.
For the isothermal case they can be stated as

∂ρ

∂t
+ ∂(ρ v)

∂x
= 0

∂(ρ v)

∂t
+ ∂(p + ρ v2)

∂x
+ λ

|v| v
2D

ρ + g ρ h′ = 0,

where x denotes the position in the pipe, t the time, ρ the density of the gas, v the
velocity of the gas, p the pressure of the gas, λ the friction factor of the pipeline,
D the diameter of the pipeline, g the gravitational acceleration and h′ the constant
slope of the pipe. Note that ρ, v and p depend on x and t. The second equation can be
further simplified by assuming the terms ∂t(ρ v) and ∂x(ρ v

2) to be small as in [1].We
finally reduce the number of variables by rewriting the constraints using the equation
of state for real gases p = Rs ρT z(p) and the definition of the mass flow q = Aρv
with A = D2π/4 being the cross sectional area of the pipe as
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A

Rs T z

∂p

∂t
+ ∂q

∂x
= 0 (1)

∂p

∂x
+ λRs T z

2DA2

|q| q
p

+ g h′ p

RsTz
= 0. (2)

Here Rs denotes the specific gas constant, T the constant gas temperature and z(p,T )
the compressibility factor, which is often assumed to be constant and hence just stated
as z.

This model of gas flow in pipelines still contains non-convex terms, which intro-
duce a lot of complexity to any model aiming to solve these equations. For this
reason, we will present an additional simplification of the constraints and investigate
the resulting theoretical properties as well as evaluate the caused errors based on
historic flow data of real pipelines.

2 A Linearization Approach

The non-convexity of the stated equations is based in the second term in (2)

f := λRs T z

2DA2

|q| q
p

describing the friction-based pressure difference per meter on a pipeline. Using the
definition of mass flow and the equation of state above we get a definition of the
velocity in terms of pressure and mass flow as

v = Rs T z

A

q

p
⇒ |v| = Rs T z

A

|q|
p
. (3)

We can now rewrite (2) as

∂p

∂x
+ λ |v|

2DA
q + g h′ p

RsTz
= 0

and observe that the equation becomes linear if we assume the absolute velocity in
the friction term to be constant, that is |v| = vc. Note that we do not restrict ourselves
to one flow direction, since we fix the absolute velocity. Furthermore, we only fix the
absolute velocity in the friction term. Hence, the actual absolute velocity calculated
from p and q might be different from vc.

If the proposed simplification can be verified to be reasonable, the overall model-
ing complexitywoulddecrease drastically.However, since the friction-basedpressure
difference scales linearly with the velocity, the assumption of fixed velocity might
easily lead to large errors in terms of pressure differences. On the other hand, both the
friction-induced pressure difference and the absolute velocity increase with increas-
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ing absolute flow values. As a consequence, overestimating the absolute velocity
should in general be more favorable for minimizing the error in terms of pressure
differences.

3 Analysis of Real-World Data

In order to see if the approximation of the friction term by using a constant absolute
velocity is reasonably close to the actual friction-induced pressure differences, we
use real pipeline data in the network of our project partner OGE [4], which is the
biggest gas network operator in Germany. For this network, a history of states is
given, measured every three minutes over a period of two years. There are two types
of pipelines we consider here: (a) four large pipes A toD, which are used to transport
gas between large network intersection areas, and (b) two small pipelines E and
F , which are part of the network section connecting customers nodes with bigger
pipelines. An overview of the properties of the six pipes can be found in Table 1.

One idea to choose a fixed absolute velocity value for each pipe is to set this value
to a mean velocity computed over a given time period. The fixed velocity error would
be small if a major part of absolute velocity values were to lie within a small interval
and hence near the mean value. To investigate this, we plotted the absolute velocity
values occurring on all pipelines over the two years in Fig. 1.

We can observe that the pipes A, B and C share a distinct characteristic with a
high population of similar values and steep tails of the distributions. For example, for
pipe A, the absolute difference between the 10th percentile and the 90th percentile
is 3.10. Thus, only a relative error of less than 36% has to be taken into account
for these values, when assuming a mean value of 4.290 m/s. For B and C the same
percentiles yield a relative error of less than 44% resp. 54% for mean values of 3.445
resp. 2.610 m/s.

Table 1 Properties of the analyzed pipelines. The averages are computed over each pipe for each
state and afterwards over all states of the two years.For the pressure averages a stationary formula
(Lemma 2.3 from [2]) is used.The calculation of the velocities (3) uses for the compressibility
factor z the formula of Papay [5, 8] and as an aggregated gas mixture computed from the mixtures
at entries using a formula for mixtures at junctions from [2] Chap. 2 column denotes the percentage
of times when gas was flowing into the main direction

Pipe L [km] D [mm] Avg p [bar] Avg |v| [m/s] Flow in main
direction (%)

A 16 1000 56 4.2 100

B 16 900 63 3.4 99

C 15 1100 70 2.5 99

D 20 1100 71 1.4 76

E 3 400 54 2.7 93

F 2 300 16 4.4 100
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Fig. 1 Sorted absolute
velocity values of each pipe
over two years (cumulated
distribution functions)

Fig. 2 Relative velocity
change over time. Average
values over two years
ignoring abs. velocities
below 0.02 m/s

In contrast, the other pipes have a much larger span of velocity values, even
when ignoring the first 13% of values smaller than 0.02 m/s of pipe E. We can
conclude that for the bigger pipes with unique flow directions, namely A, B and C, a
precalculated constant mean velocity value should lead to relatively small errors in
terms of friction loss.

A second idea to approximate the velocity term, would be to fix the velocity to
some value known from the recent history, such as the velocity value given in the
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initial state of the gas network control problem for example. To estimate a possible
error here, we compute for each time step the relative velocity changes over oneweek
and average these over the whole time period of two years. The results are given in
Fig. 2. In our discussion we focus on the value at 48h since this is a typical time
horizon for short-term gas network control problems.

In the picture we see, that for the pipes A, B and C the velocities change only
slowly over short time periods, i.e. on average less than 0.35 m/s in 48h for each of
the pipes. Pipe A and C even seem to reach some constant level of relative velocity
change over time. For the other three pipes we have higher relative velocity changes
in the first 48h, especially for pipe D. However, the smaller pipes E and F seem to
have some daily pattern with a local minimum every 24h, which should be taken
into account when substituting the velocity with historical values.

4 Determining Fixed Velocity Values

After studying the historical velocity values on the six pipes, we will now compute
concrete predefined velocity values and examine the actual errors in terms of pressure
difference. We use the two approaches already briefly mentioned above: Calculating
a constant velocity for each pipe based on a large set of historical data (approachA)
and taking the velocity, which has been measured on the pipe exactly 48h before
(approach B).

The constant velocity of A is calculated as the velocity that minimizes the sum
over time of squared pressure difference errors on the whole pipe length fL. These
errors are derived based on (2) by replacing the derivative with the corresponding
difference quotient and using vc. Again we use Papay for the compressibility factor
z and the formula of Nikuradse [3] for the friction factor λ. To have an unbiased
evaluation, we use only the first year of the time period for calculating the constant
velocity and compare the results of the two approaches on the basis of the second
year data.

The results of approachA can be found in Table 2. We observe, that the constant
velocity values are slightly above the average values given in Table 1. This supports
our claim from Sect. 2 that overestimating the velocity is more favorable to reduce
the pressure difference error. The actual average error values are quite small in terms
of absolute values. However, when comparing to the actual average friction values,
the values are quite high with an error to friction ratio above 20%. For pipe D the
error is even higher than the friction-based difference.When looking at themaximum
values, the relative errors are mainly at a level of about 50%, which is also rather
high.

In contrast to the results expected in Sect. 3, the values for pipes A to C are not
significantly better than the ones of pipes D to F . The only clear difference between
the pipes in the results is the bad average error of pipe D in relation to the friction
values.
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Table 2 Results of approachA including the calculated constant absolute velocity vc, the average
pressure difference error, the correspondingmaximumerror, the average andmaximum real friction-
based pressure differences and the ratio of errors to friction values for the average and the maximum
case

Pipe vc in m/s Avg err in
bar

Max err in
bar

Avg |fL|
in bar

Max |fL|
in bar

Avg
err/avg
|fL|

Max
err/max
|fL|

A 4.969 0.130 0.801 0.621 1.519 0.210 0.527

B 5.165 0.103 0.355 0.451 1.247 0.228 0.285

C 4.355 0.084 0.330 0.183 0.926 0.458 0.356

D 5.021 0.120 0.406 0.100 0.826 1.202 0.491

E 4.669 0.064 0.976 0.207 1.788 0.309 0.546

F 8.603 0.052 0.526 0.133 1.124 0.390 0.468

Table 3 Results of approach B including the average pressure difference error, the corresponding
maximum error, the average and maximum real friction-based pressure differences and the ratio of
error to friction values for the average and maximum case

Pipe Avg err in
bar

Max err in
bar

Avg |fL| in
bar

Max |fL| in
bar

Avg err/avg
|fL|

Max
err/max |fL|

A 0.104 0.938 0.621 1.519 0.167 0.618

B 0.100 0.675 0.451 1.247 0.222 0.542

C 0.052 0.399 0.183 0.926 0.284 0.431

D 0.047 0.781 0.100 0.826 0.471 0.945

E 0.048 0.878 0.207 1.788 0.234 0.491

F 0.032 0.613 0.133 1.124 0.238 0.545

For approach B the results are shown in Table 3. For all pipes, the average values
are smaller for approach B. The best improvement is made on pipe D, where the
error could be more than halved. However, in relation to the average friction, pipe D
has still by far the highest ratio.

For the maximum values, B performs even worse than A on all pipes except for
pipe E. On pipe B and D the error value nearly doubled, which leads to a maximum
error nearly as big as the actual friction on pipe D.

Regarding the expected performance due to the investigated velocity changes in
Sect. 3, we observe that the values for pipeD are better than expected, but are clearly
still the worst among all pipes, which is consistent with Fig. 2. Despite the different
values for hour 48 in the graphic, the other five pipes have quite similar results. One
reason could be the different evaluation periods: two years for Fig. 2 and only the
second year for the results of Table 3.
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5 Conclusion

We linearized the isothermal Euler Equations by fixing the velocity in the friction
term to a constant value for each pipe. The results of approach B for determining
the constant value, where we fixed the velocity to the historic values of two days
before, indicate that the average errors made are not too large compared to the overall
friction-induced pressure drop on the pipelines. However, the maximal error values
turned out to be quite high, even in relation to the maximal friction values. Hence,
we can conclude that the presented fixed velocity approaches can only be considered
as rough approximations.

For future research, the results on our six pipes have to be verified on the complete
network. Especially the bad values of pipe D have to be analyzed to find potential
structural problems, maybe due to the change in flow direction. Furthermore, more
sophisticated approaches to determine the fixed velocity might be possible. One
option is to examine if compressor configurations at network intersection points
have an impact on the velocity of the adjacent pipelines.
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An Optimization Model to Develop
Efficient Dismantling Networks
for Wind Turbines

Martin Westbomke, Jan-Hendrik Piel, Michael H. Breitner, Peter Nyhius
and Malte Stonis

1 Introduction and Research Background

Today, the dismantling of onshore wind turbines is generally conducted completely
on-site. The rotor blades are cracked, the tower segments are separated, and the
nacelle is cutted into smaller pieces. This undistributed dismantling of wind turbines
is very time-consuming, inefficient, and implies ecological and economic risks. The
dismantling of a singlewind turbine takes around twoweeks and entails costs ofmore
than e130,000 [1]. The entire dismantling infrastructure needs to be transported to
the wind farm and thus its operating capacity is not fully utilized. Further, in case
of a repowering project, the time-consuming undistributed dismantling substantially
delays the construction of new wind turbines and leads to lost revenues. An option
to the undistributed dismantling is the transportation of only partly dismantled wind
turbines to specialized dismantling sites for further handling. These specialized sites
permit a better refining and thus higher revenues from selling the raw materials.
Further, the specific costs for the necessary dismantling steps can be significantly
reduced due to the specialization in the dismantling sites. However, this distributed
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dismantling implies higher costs for the complex transportation of large-scale com-
ponents and the initialization of dismantling sites. Consequently, when planning a
distributed dismantling of wind turbines, assigned companies face the challenge of
determining the optimal dismantling depth for each component as well as the optimal
location of specialized dismantling sites.

Although such location and allocation problems are extensively investigated in
various studies in the field of reverse logistics, studies presenting solutions for the
dismantling of large-scale products, as for example wind turbines, are rare. Most
of the studies focus on the end-of-life handling of conventional products, such as
batteries [2] and vehicles [4]. However, in contrast to conventional products, large-
scale products are typically stationary such that their dismantling needs to begin
on-site [4]. Hence, the application of existing solutions to the dismantling of wind
turbines is highly limited. One rare example focusing on the network design for end-
of-life wind turbines is the study of Cinar and Yildirim [5]. They present a mixed
integer linear programmingmodel proposed to determine a long-term strategy for the
dismantling of wind turbines. Their objective function minimizes the transportation
and operation costs of the network by determining optimal locations for recycling
and re-manufacturing sites. Nonetheless, their optimization model is based on the
assumption of fixed component sizes. Variable dismantling depths are not taken into
account, although both transportation and dismantling costs of large-scale products
highly depend on the dismantling depths. Given the trade-off between these two types
of costs, the consideration of variable depths is, however, essential for the network
optimization.

In order to address this research gap, we present an optimization model for the
development of efficient dismantling networks for wind turbines that optimizes both
the location of specialized dismantling sites and the dismantling depths of specific
wind turbine components. Our model generates the network design by optimally
allocating every necessary dismantling step to a dismantling site, including either
the wind farm itself or a specified dismantling factory.

2 Optimization Model

Different approaches exist for the optimal design of material streams in reverse logis-
tic networks. If the locations within such networks are not fixed, location planning
problems arise. For the efficient design of dismantling networks for wind turbines,
the decision to establish potential dismantling sites also requires an allocation of
dismantling steps to the respective sites. Planning problems of this kind belong
to the class of Koopmans-Beckmann problems and are predominantly formulated
as quadratic assignment problems [6]. Consequently, we transfer and adapt the
Koopmans-Beckmann modelling approach to fit to the problem of designing effi-
cient dismantling networks for wind turbines. To do so, several model assumptions
need to be established: (1) The sites of the wind turbines and the potential disman-
tling sites and sinks are known; (2) the dismantling process begins at the location
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of the wind turbines; (3) a second market for the complete sale of decommissioned
wind turbines is not considered; (4) dismantling sites can be established accord-
ing to demand at predefined potential locations, which entails initialization costs;
(5) the transportation and disposal costs depend on the dismantling depth; (6) the
dismantling costs depend on the dismantling sites.

Min Z =
M∑

m=1

Tm ·
( W∑

w=1

D∑

d=1

ewd ywdm +
W∑

w=1

S∑

s=1

ews ywsm +
D∑

d=1

S∑

s=1

eds ydsm

)

︸ ︷︷ ︸
transport costs

+

(1)

S∑

s=1

M∑

m=1

Em ysm

︸ ︷︷ ︸
disposal costs

+
M∑

m=1

( W∑

w=1

Cwm ywm +
D∑

d=1

Cdm ydm

)

︸ ︷︷ ︸
dismantling costs

+
D∑

d=1

Id yd
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ini tiali zation costs

(2)

M∑

m=2

ywm ≥ 1 ∀ w ∈ W (3)

M∑

m=1

ydm ≤ yd · B ∀ d ∈ D (4)

ywdm + ywsm = ywm ∀ d ∈ D, w ∈ W, m ∈ M (5)

ysdm = ydm ∀ m ∈ M, s ∈ S, d ∈ D (6)

ysdm + ywsm = ysm ∀ m ∈ M, s ∈ S, d ∈ D (7)

Our optimization model consists of the following indices, sets, parameters, and
variables. The dismantling tasks are defined as m ∈ (1, . . . ,M). The indices w
∈ (1, . . . ,W ), d ∈ (1, . . . , D) and s ∈ (1, . . . , S) determine the locations. The cor-
responding sets are W for wind turbines, D for dismantling sites and S for disposal
sites. The parameters ewd , ews and eds describe the distance between the locations,
while Tm describes the specific transportation costs after dismantling task m. Cwm

and Cdm define the dismantling costs of dismantling task m at location w and d. The
disposal costs after dismantling task m are described by Em . Id are the initialization
costs of a dismantling site d and B is a sufficiently large number. Z describes the
dismantling network costs. The binary variable yd ensures that the initialization costs
are incurred only if at least one taskm is allocated at location d. The binary variables
ywm , ydm and ysm assume a value of one if a dismantling task m is assigned to the
respective location w, d or s. If a transportation takes place after dismantling task m
at location w to location d, the binary variable ywdm takes a value of one. The same
logic applies to the binary variables ywsm and ydsm . The objective function (1) of our
optimization model minimizes the total costs Z of a dismantling network for wind
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turbines, including total transportation costs in the first term, total disposal costs
in the second term, total dismantling costs in the third term and total initialization
costs for dismantling sites in the fourth term. Constraint (2) determines that further
dismantling tasks can be allocated at the locations of each wind turbine. Constraint
(3) ensures that initialization costs are incurred for each implemented dismantling
site. Constraints (4) and (5) secure that each transport is carried out from a location
where a dismantling task was performed. The constraint (6) ensures that the disposal
costs are taken into account.

3 Case-Study and Results

In order to demonstrate the applicability of our optimization model, we present a
proof-of-concept based on a case-study of an exemplary wind farm in Northern
Germany. We obtained the case-study characteristics in corporation with a German
recycling company operating in this region. The case-study includes the dismantling
of a wind farm with six Nordex N117/2400 wind turbines [7] and two sinks. We
consider two different scenarios with the aim of investigating whether a distributed
dismantling can bemore cost efficient than the undistributed alternative. The first sce-
nario represents the undistributed dismantling, while the second scenario represents
the distributed dismantling in a dismantling network. The second scenario considers
three potential dismantling sites in addition to the wind turbines and sinks. Figure1
presents the locations of the wind farm, the potential dismantling sites and the sinks.
Table1 shows the given dismantling, transportation, and disposal costs depending
on the dismantling depth of the blades, tower, and nacelle. The dismantling depth is
indicated in different stages. The higher the stages, the more dismantling tasks have
been performed. While the first stage indicates that no dismantling is performed, the
last stage represents a complete dismantling. Proportionate initialization costs are
e1,000 per established dismantling site and the disposal of the foundations entails
costs ofe21,500 per wind turbine. In order to permit the application of our optimiza-
tion model to the case-study, we implemented the optimization model in GAMS and
utilized a CPLEX solver.

Figure1 presents the resulting allocation of the necessary dismantling tasks to the
potential dismantling sites for both scenarios, which finally determines the disman-
tling depth at the wind farm site. Dismantling sites and sinks that are not taken into
account by the solver are grayed out. The arrows show the established transport con-
nections. For the undistributed and distributed dismantling, the solver allocated the
entire dismantling of tower and foundation to the wind farm site. The solver deter-
mines that the blades are sawn to 8m pieces (stage 2) and that the drive train is cut
off from the nacelle (stage 3) at the wind farm site. Afterwards, both components are
transported to the sink. This optimal solution results in minimal costs ofe30,986 per
wind turbine for the undistributed dismantling. For the distributed dismantling, two
out of three potential dismantling sites are established in the optimal solution. The
blades are sawn to 8m pieces at the wind farm site. The dismantling of the nacelle
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Table 1 Dismantling (DM), transportation, and disposal costs depending on the dismantling depth
of each component

Component Blades Tower Nacelle

DM depth 1 2 3 4 5 1 2 3 1 2 3 4 5

DM costs
on-site (e/t)

– 150 250 250 450 – 20 30 – 35 40 45 65

DM costs at
DM site (e/t)

– 30 60 70 100 – 10 15 – 30 35 40 50

Transport costs
(e/km)

5.23 0.25 0.1 0.08 0.05 3.92 1 0.06 1.12 0.25 0.25 0.25 0.01

Disposal costs
(e/t)

450 300 270 250 200 –180 –200 –220 –180 –200 –200 –200 –220

Dismantling rotor
blades of 10 cm pieces

Dismantling of
nacelle

Scenario 1 – undistributed
dismantling

Dismantling rotor
blades of 8 m pieces

Dismantling of
drive train

Wind farm

Dismantling
site

Sink

Dismantling of
drive train

Dismantling rotor
blades of 8 m pieces

Scenario 2 – distributed
dismantling

Fig. 1 Optimal network designs for the undistributed and distributed dismantling

differs, as it is only roughly dismantled to 8m pieces (stage 2) at the wind farm site
before it is transported to a dismantling site. At the dismantling site, the drive train is
cut off from the nacelle (stage 3) and the partly dismantled nacelle is then transported
to the sink. Another dismantling site is established for further handling of the blades,
which are reduced up to a maximum size of 10cm pieces (stage 3). The resulting
minimal costs for the distributed dismantling in the described dismantling network
are e20,320 per wind turbine, which is a cost reduction of e10,666 relative to the
undistributed alternative.

4 Discussion and Conclusions

The aim of this paper was to present an optimization model for the development
of cost-efficient dismantling networks for wind turbines. Due to high similarities
with our optimization problem, we adapted an existing modelling approach for the
optimization of the allocation of tasks to machines and factory layouts, known as
Koopmans-Beckmann problem, to the dismantling of wind turbines. In order to proof
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our concept, we applied our optimization model to a real-world case-study and ana-
lyzed the two extrema of network designs: an undistributed and a distributed disman-
tling. Our results indicate that dismantling companies can realize high cost reductions
(of up to 34.42% in the analyzed case-study) when selecting a distributed disman-
tling in a cost-efficient dismantling network instead of an undistributed dismantling
entirely on-site. Consequently, depending on the conditions in each individual case,
a distributed dismantling can be economically reasonable. In order to further con-
firm this hypothesis and to identify important input factors, future research should
focus on extensive sensitivity and robustness analyses. Furthermore, as our current
optimization model depicts only a part of the factors influencing the dismantling of
wind turbines, future research should, alongside economic aspects, also implement
ecological and logistical aspects in the optimization model.
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Model Generator for Water Distribution
Systems

Corinna Hallmann and Stefan Kuhlemann

1 Motivation

In recent years, the optimization of water distribution systems has gained more and
more attention. In the literature, there can be found different optimization problems,
such aswater network design [6], pipe optimization [8], tank optimization [7], energy
minimization [2] or pump scheduling [4]. All those problems have in common that
there existmanymathematical optimizationmodels and a variety of different solution
methods for each of them. Most research work is evaluated either on few realistic
networks that are only available for one special use case or on those few test networks
that are available in the literature. These networks are mostly very small and often
lack in realistic properties, cf. [3]. In order to evaluate models and solution methods
and compare them to other researchwork, it is inevitable to havemany different water
network models. These models require to be of realistic size and to have realistic
properties. In this paper, we present a model generator for water distribution systems.
With this generator it is possible to create network models with realistic properties
and size. The generator can also control the structure of the network to guarantee a
realistic reflection of a water distribution system. To ensure the hydraulic properties
in the network we use a hydraulic simulation tool in our generator. Details about the
generation process and the application of different use cases will be shown in this
paper.
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2 Literature Review

There are a few research papers that consider the generation of water network mod-
els. The generation approaches can be divided into manual and automatic ones. A
manually generated network is the network EXNET, cf. [5]. It is a very large network
model with several realistic properties and can be used as a test model to evaluate
different use cases. Brumbelow et al. [1] developed two different network mod-
els Micropolis and Mesopolis representing a small and a large city with 5000 and
100,000 inhabitants, respectively. They use the models mainly for simulating cases
of incidence such as electrical power failure. Those manually generated networks
have very detailed and realistic properties, but it is a very time-consuming process to
generate such networks. Thus, there are some research papers considering automatic
generation of networkmodels.Muranho et al. [10] developed the EPANET extension
WaterNetGen for automatically generating network models. With this generator it is
possible to generate network models with hundreds of nodes within a few minutes.
The generator does not consider valves, pumps and reservoirs. Thus, the generated
network models are not very realistic. Möderl et al. [9] present the graph-theory-
based Modular Design System (MDS). This system generates networks depending
on the demand of the nodes, the number of sources and the connectivity of the system.
The authors present a set of 2280 virtual networks. In their approach the length of
the pipes, the roughness and the elevation of the nodes are considered to be constant
and pumps, valves and tanks are not integrated. De Corte and Sörensen [3] state
that the generation of the networks is therefore not realistic. Sitzenfrei et al. [12]use
the MDS to generate more realistic network models. Therefore, they use GIS data
and the structure of the landscape and connect different graph structures. With these
techniques it is possible to achieve more realistic structures. The tool HydroGen, cf.
[3], can generate water network models of arbitrary size. It was developed to extend
existing water network models.

3 Generator for Water Distribution Network Models

This section describes the process implemented in the generator for network models.
The process can be divided into six different steps, which are described in the fol-
lowing. The application of these steps will be visualized in Fig. 1, where an example
network is shown in Fig. 1a.

1. Import Network: The generator is able to import any network model in the inp
format, which is commonly used when simulating and modeling water networks,
cf. [11].

2. Adding components for basic structure: It is decidedwhich components should
be added to the network. It is possible to add pipes and nodes, which also can
be tanks. Nodes are randomly added to one of the four edges or one of the four
corners of the existing network model and then connected to the network via
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(a) Original network model (b) Network model after adding
nodes on edges and corners

(c) Network model after adding
more nodes

(d) Network model after connect-
ing nodes

(e) Network model after deleting
nodes

Fig. 1 Different steps of the generation process
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pipes. To determine the parameters of the new components, values of the existing
components are used and are varied by predefined parameters. After adding a node
with a corresponding pipe the network is simulated via a hydraulic simulation
tool to check the modified network for infeasibilities. The simulation tool was
recently developed by our industry partner Rechenzentrum für Versorgungsnetze
Wehr GmbH and is based on EPANET [11]. The infeasibilities are for example a
too low pressure on a node or numerical warnings of the algorithms. If numerical
warnings occur, the node and the link that causes the problem will be deleted.
If there are some infeasibilities, the parameters of the new node and link are
modified until the network is feasible. If the modification of the parameters failed
five times in a row, the node and the link will be deleted from the network as
well. The user can decide how many of the new nodes should represent tanks.
The implementation of tanks is important to ensure that there is enough water
in the system also for the new components. Figure1b shows the network after
applying this step.

3. Adding more nodes: In this section more nodes are added to the network. These
nodes are added to connect the nodes that were added in the previous step. The
parameters of the pipes that are added to connect the nodes differ in such amanner
that the resulting network is diversified and realistic. After adding new nodes and
pipes, the network is simulated again to verify the correctness of the network. If
some infeasibilities occur the parameters of the pipes are modified. If this fails,
the new components are deleted from the network. The structure of the network
is shown in Fig. 1c.

4. Connect nodes: This step connects the nodes of the previous step to each other.
The nodes are chosen randomly but it is ensured that the newpipes do not intersect.
The user can specify the maximal number of connections in order to vary the
generated network. This step is displayed in Fig. 1d.

5. Deleting Nodes: In the previous steps a dense network with new nodes and pipes
was generated around the original network. To get amore realistic networkmodel,
some of the new nodes and pipes are deleted in this step. With that, the network
model gets a more realistic structure as the nodes are no longer aligned in the
same way. The user can specify the rate of deleted nodes from the network. The
resulting network is visualized in Fig. 1e.

6. Export Network: In this section the network is exported into the inp format.

4 Results

With the generator, any network model can be extended to an arbitrary size subject
to the feasibility within a fewminutes. In this section we present different versions of
one network. Therefore, we use the networkmodelHG-SP-1-4, which was generated
by Hydrogen, cf. [3]. Figure2 shows 6 different versions of the model and Table1
shows the properties of those models. It can be seen, that it is possible to generate a
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(a) Original network model (b) Network model version 1

(c) Network model version 2 (d) Network model version 3

(e) Network model version 4 (f) Network model version 5

(g) Network model version 6 (h) Network model version 7

Fig. 2 Different generated network models
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Table 1 Properties of the generated network models

Junctions Pipes Tanks

Original 73 102 0

Net1 163 198 1

Net2 311 355 2

Net3 515 565 5

Net4 555 627 3

Net5 1060 1171 4

Net6 2262 2357 6

Net7 6194 6796 10

variety of different network models with different sizes and different structures out
of one original model. This shows the usefulness and the power of the presented
generator.

5 Summary and Outlook

In this paper, we presented a generator for water networkmodels.With this generator
we can construct network models of arbitrary size. A simulation tool guarantees
that the generated network model is feasible. The generator adds components in
a structured manner and afterwards deletes some of those components to ensure a
realistic structure of themodel. In future workwewould like to implement the adding
of valves and pumps to the generation of network models.

References

1. Brumbelow, K., Torres, J., Guikema, S., & Bristow, E. (2007). Virtual cities for water distribu-
tion and infrastructure system research. World Environmental and Water Resources Congress
(pp. 15–19).

2. Burgschweiger, J., Gnädig, B., & Steinbach, M. C. (2004). Optimization Models for Oper-
ative Planning in Drinking Water Networks (pp. 04–48). Berlin: Konrad-Zuse-Zentrum für
Informationstechnik. ZIB-Report.

3. De Corte, A., & Sörensen, K. (2014). HydroGen: An artificial water distribution network
generator. Water Resources Management, 28(2), 333–350.

4. De La Vega, J., & Alem, D. (2014). An improved stochastic optimization model for water
supply pumping systems in urban networks. CEP(vol. 18052).

5. Farmani, R., Savic, D. A., & Walters, G. A. (2004). HydroGen: Exnet benchmark problem for
multi-objective optimization of large water systems. Modelling and Control for Participatory
Planning And Managing Water Systems.



Model Generator for Water Distribution Systems 251

6. Farmani, R., Walters, G. A., & Savic, D. A. (2005). Trade-off between total cost and reliability
for anytown water distribution network. Journal of Water Resources Planning and Manage-
ment, 131(3), 161–171.

7. Hallmann, C., & Suhl, L. (2015). Optimizing water tanks in water distribution systems by com-
bining network reduction, mathematical optimization and hydraulic simulation. OR Spectrum,
38(3), 577–595.
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Effects of Constraints in Residential
Demand-Side-Management
Algorithms—A Simulation-Based Study

Dennis Behrens, Cornelius Rüther, Thorsten Schoormann,
Thimo Hachmeister, Klaus Ambrosi and Ralf Knackstedt

1 Problem Identification

Climatic changes, urbanization, changing in living patterns and new technologies are
only few of the current challenges occurring in energy grids. Hence, improvements
in the management of energy grids, especially in managing and controlling appli-
ances, are required. New developments contribute to face these challenges by, for
example, considering sustainable but volatile energy resources (e.g., photovoltaic,
wind or water), installing Smart Meters (e.g., [7, 9]) or managing Electric Vehicles
(EVs). Demand-Side-Management (DSM) is one possibility that contributes to this
by controlling loads, saving energy or reducing peaks in energy grids (e.g., [8]).
Often not the whole energy grid is managed, as this is a very complex and chal-
lenging task. Instead, a microgrid consisting of different living units (houses, flats,
etc.), is regarded. For implementing DSM (overviews can be found for example in
[1–3]), different frameworks are available such as radius optimization, centralized
and decentralized controlled optimization.

However, most of these algorithms make assumptions regarding load characteris-
tics, which are not meeting the reality [6]. Behrens et al. [6] identified five different
constraints, which are regarded by (some) DSM algorithms. Nevertheless, not all
algorithms consider all constraints. Accordingly, our study adresses the following
goal: analysing the effects of constraints on DSM algorithms.

Our paper is structured as follows: First, the individual constraints and the mathe-
matical model to represent them are described (Sect. 2). In order to analyse the effects
of these constraints, we choose a simulation. The setting and further selections, for
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example, the data used, are described first (Sect. 3.1). Afterwards, the results are
presented (Sect. 3.2). By discussing these results, it can be seen that the constraints
have an effect to the results regarding the quality of the flattened load profile and
savings. As the possibility of being able to manage appliances is increasing and even
more shiftable devices will be implemented in the future, these effects will be more
important (Sect. 4).

2 Constraints

2.1 Description

Behrens et al. [6] introduced a taxonomy of five constraints (C). Our focus lies in
C1 (horizontal separability), C2 (vertical separability) and C3 (time interval of use).
We excluded C4 (environmental effects, too much user information needed) and C5
(dependencies between loads, rated most unimportant) (see Fig. 1).

Horizontal separability of loads (C1). This means, for example, to pause the load
after starting it. The load profile itself remains unchanged. Examples are the washing
process of a washing machine or a dishwasher.

Vertical separability of loads (C2). A load can be separated vertically according its
intensity. The load profile is therefore variable. An example is the charging process
of an EV, which often offers a fast charging mode.

Time interval of use (C3). Some loads can only be turned on during specific time
intervals or need to be finished at a specific time. Most of these deadlines or intervals
are connected to the user’s habits and requirements (e.g., an EV needs to be charged
in the morning because of the user’s travel to work).

2.2 Mathematical Model

Based on [4, 6], we derive a mathematical model. Let N be all considered living
units, An be the appliances of living unit n ∈ N and ω be the sample rate of the

Fig. 1 Schematic representation of DSM constraints (cf. [6])
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discrete model (time periods) over one day. Moreover, let xh = ∑
n∈N

∑
a∈An

xh
n,a

with h ∈ T = {0, 1, . . . ,ω} be the sum of the consumption xh
n,a for all appliances

a ∈ An and all living units n ∈ N in the timeslot h.
Let lk

n,a be the load profile in a local time interval k ∈ Tl = {0, 1, . . . , δn,a}, ln,a =
∑

k∈Tl
lk
n,a the load sum and δn,a the length of the load of a ∈ An . In doing so, we can

transform a given horizontal and inseparable load profile from its local time interval
Tl to the global one T (C1) through shifting the whole Tl by an appropriate constant
mn,a , i.e. hk = k + mn,a with 0 ≤ mn,a ≤ ω − δn,a .

Furthermore, let γh,min
n,a be the min and γh,max

n,a be the max borders for a load xh
n,a

with h ∈ T, n ∈ N , a ∈ An , so we can specify, in which borders the intensity of the
load of a can be shifted, i.e. γh,min

n,a ≤ xh
n,a ≤ γh,max

n,a (C2). We note that the given load
profiles have to satisfy the inequality γh,min

n,a ≤ lhk
n,a ≤ γh,max

n,a for all k ∈ Tl to get a
feasible solution.

Let αn,a be the starting and βn,a be the ending time slot of a load for an appliance
a, then we can restrict time interval T to [αn,a,βn,a] (C3). We note that the interval
length between αn,a and βn,a has to be at least the length of the load profile δn,a to
get a feasible solution, i.e. βn,a − αn,a ≥ δn,a .

To turn on and off the constraint i for each appliance a let ci
a ∈ {0, 1} be a binary

variable that shows if a constraint is turned on (ci
a = 1) or not (ci

a = 0).
The objective function describes the total cost of the given load profiles, while

the cost in a time slot h is a function depending on h and the total load xh , i.e.
ch = c(h, xh) · xh . Generally, c is a concave function with regard to the load xh ,
which causes that the optimal load profile is smoothed,which is an important property
for energy providers.

The resulting mathematical model that minimizes the energy costs and holds the
described contraints can be formulated as follows.

min
xh

n,a

C =
ω∑

h=0

ch =
ω∑

h=0

c(h, xh) · xh (1)

ω∑

h=0

xh
n,a = ln,a ∀ n ∈ N , a ∈ An (2)

(xhk
n,a − lk

n,a) · c1a = 0 ∀ k = 0, . . . , δn,a,∀ n ∈ N , a ∈ An (C1)

(xh
n,a − γh,max

n,a ) · c2a ≤ 0

(γh,min
n,a − xh

n,a) · c2a ≤ 0

}

∀ n ∈ N , a ∈ An (C2)

⎛

⎝
βn,a∑

h=αn,a

xh
n,a − ln,a

⎞

⎠ · c3a = 0 ∀ n ∈ N , a ∈ An (C3)

xh
n,a ≥ 0 , ci

a ∈ {0, 1} ∀ h ∈ T, n ∈ N , a ∈ An, i = 1, 2, 3 (3)
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3 Simulation

3.1 Setting

In order to analyse the effects of the constraints, a simulation is the method of
choice here. To do so, we need to choose a suitable dataset (scenario), give these
data to several algorithms and compare the results (different impact factors) with
each other. The data need to be extended with additional data (e.g., the information
which intervals of usage are suitable for a user to meet his behaviour patterns, etc.).
Moreover, the dependency between different loads and many environmental effects
is difficult to provide, because they are highly user-specific. We therefore decided
to implement C1, C2 and C3. C1 and C2 can be realized without any additional
assumptions (e.g., a washing machine cannot be paused and the load profile is fixed).

Data selection. As described in [5], two types of data can be selected: artificial or
real data. As we want to cover a wide range of possible scenarios, and real datasets
often lack in additional information, we decided to use artificial data, for example
generated by the LoadProfileGenerator (urlwww.loadprofilegenerator.de). Here, dif-
ferent predefined load profiles can be chosen. We decided to choose the following
seven (predefined) load profiles: (1) family, 3 children, both work, (2) single woman,
2 children, with work, (3) multigenerational home (working couple, 2 children, 2
seniors), (4) single woman under 30 with work, (5) single man under 30 years with
work, (6) couple under 30 years with work and (7) family with 2 children, man at
work. All of these living units possess a washing machine, a dryer and a dishwasher
as shiftable appliances. Out of these seven living units we formed one microgrid,
which tries to reach a global optimum. We simulated each household over one com-
plete year, including holidays, seasons, etc. Besides the habits, which are already
included in the data, we needed to add several time intervals, where certain loads
could be run or has to be finished. We proposed the washing machine, dryer and
dishwasher could run between 8 and 24 o’clock.

Algorithm selection. In order to implement two DSM algorithms, we chose a
Greedy-based algorithm (e.g., [10]) and aMulti-Agent-System-based algorithm (e.g.,
[4]), as they embody two contrary classes of DSM algorithms: a centralized (Greedy)
and a decentralized (MAS) decision making.

Factor selection. For comparing the results, several impact factors can be selected.
By analysing existing DSM algorithms, several factors can be identified. In order
to measure the results, we chose the following factors: (a) peak-to-average-ratio
(PAR, measure the highest peak), (b) (root-)mean-squared-error ((R)MSE, measure
flattening) and (c) savings (compared to no DSM is used).
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3.2 Results

By simulating the scenario described above (seven living units over one complete
year), we were able to derive several results. The mean values over 365 days of
the stated factors can be found in Fig. 2. We excluded C2 from the figure, as it
has no effect. The reason is therefore quite easy to find: We have not included any
appliances in our data (such as an EV) that fulfills this constraint. Regarding the
remaining constraints C1 and C3 and also C1+C3, we can see that the effects varied
in accordance with the individual day. Even the savings showed negative numbers
during our simulation during a few days. Comparing the individual constraints to
each other, we can state that C1 has a bigger effect on the result (in a negative way)
than C3 does. However, C3 is strongly dependent on the set intervals from the user.
If we shortened these, C3 might be more restrictive. The “worst” results are achieved

h2

h2

Fig. 2 Results for 365 days with the mean, the max and min value for each factor
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by considering C1 and C3, as for example the savings dropped from over 16% to
under 10% (Greedy) and from 14% to under 8% (MAS). The other factors, i.e. PAR,
MSE and RMSE, show the same picture only with rising values (lower values are
more advantageous). However, all combinations of simulated constraints on average
achieved a benefit compared to not using DSM. Comparing both algorithms, we
can state that Greedy algorithm performs better then MAS. Nevertheless, there is a
deterioration of around 7% (Greedy) to 6.3% (MAS). On the basis of the results in
our scenario, the MAS seems to generatea better outcome.

4 Discussion

Contribution. We conducted a simulation with a microgrid consisting of seven
different living units (e.g., with certain consumption patterns, appliances). For sim-
plicity, we did not add further infrastructure (e.g., PV, batteries). As a result, we can
state that the reviewed constraints have effects on savings, PAR and (R)MSE. Thus,
we conclude that DSM algorithms should take these constraints into account. This
gets even more important nowadays, as EVs rush into the market and so do new
electric appliances, which will cause more consumption and possibly peaks. Hence,
constraints will have bigger effects in the future.

Limitations. We used artificial data that is built with regard to real and observed
consumption patterns, behaviour, etc. Thus, we claim to have met the reality. Addi-
tionally, we made assumptions about the time intervals of use.

Research agenda. For future research, we plan to (a) use field data, (b) review all
five constraints, (c) vary the additional information such as intervals and behaviour
patterns, (d) add more infrastructure and EVs to the microgrid, (e) take the utility of
the user into account, (f) investigate how the acceptance might be affected by (not)
considering these constraints and (g) investigate the effects in different contexts such
as the industrial and commercial context.
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Production Process Modeling
for Demand Management

Stefanie Kabelitz and Martin Matke

1 Introduction

The electricity supply is growing increasingly dependent on the weather as the share
of renewables increases. Nevertheless, different measures can maintain grid reliabil-
ity and quality. These include the usage of storage technologies, grid expansion and
options for responsiveness of supply and demand. The latter is known as demand-side
management. In the private sector, this idea is gaining in importance with the emer-
gence of smarthome-technologies [3]. In the industrial sector, potential for demand-
side management arises from the occurence of processes that are not directly linked
with the production. In practice this means, that quantities of electricity can be pur-
chased spontaneously at the stock market for energy (EEX), or potentials to shift the
load can be offered at the German Electricity Balancing Market.

The theoretical and economical potentials of demand-sidemanagement have been
determined in [2, 7]. However, the economic potential has been studied solely from
the perspective of the energy supply side. The effects of the current legal situation
on the willingness of the demand side to participate have been neglected so far.
Furthermore, studies that investigate incentives for companies to look for flexibility
potential among production processes are still missing. These are part of the aims of
the investigations within the innovation cluster for Smart, Energy Efficient Regional
Value Chains in Industry (ER-WIN®) [6] which our study is part of.
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Fig. 1 Production scheme

2 Problem Description

We investigated a production-planning problem for a real sand processing facility
in order to determine the economic potential for load shifting. At the facility, raw
sand is extracted from a lake and processed in several stages to obtain sand for the
construction industry. Themain steps consist of classifying the raw sand into different
grain sizes, draining the wet sand, drying the damp sand, and cooling the warmed up
sand. At the end, the raw sand is processed into eight main products and ready for
loading onto truck or train containers. Figure1 illustrates the general procedure.

The production site aroused our interest through its potential for demand man-
agement. From a mathematical point of view, the problem at hand is interesting for
its relatively large-scaled production scheme and the characteristic that it includes
both continuous processes and discontinuous batch processes.

3 Problem Modeling

The aim of our model is to reflect the planning process of the sand processing facility
for a period of 48 hours. In particular, we designed our model in order to obtain
a production plan that safeguards the demand requirements while considering the
integration of a cogeneration unit to the energy supply. Additionally, we sought to
formulate our model in such a way, that it enables us to investigate potential effects
of changed conditions, for instance the introduction of time-dependent energy prices
or the option to participate at the German Electricity Balancing Market and the
day-ahead spot market.
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3.1 The MILP in General

In a nutshell our model represents the facility as a combinatorial graph based on a
mixed integer linear program (MILP). We discretized our planning horizon into 192
periods of 15min and declared our decision variables (for storage, flow, etc.) for these
periods. The underlying graph consists of 66 nodes and 102 edges, which represent
the production processes and map the connections among them. The size of the
graph and the number of periods considered led to a relatively large-scaled problem.
Nevertheless, the actual complexity of our problem is due to the introduction of the
discontinuous batch processes. Needless to say, it was also the aspect that kept the
problem being interesting.

The objective function of our model consists of costs for the electricity usage.
In addition, we tested the integration of balancing energy into the objective and
manipulated the cost vector to extract information about potential effects of different
pricing schemes.

The constraints of our model can be divided into five main groups. Namely
constraints modeling the nature of the input (raw sand) and the output (demands);
constraints mapping production, storage and energy consumption for continuous
processes and discontinuous batch processes, and, finally, constraints representing
the interactions among the various processes, which primarily consist of constraints
on the edges.

3.2 Assumptions

To put our model into work we first assumed that all data is given a priori. We
further simplified the production facility by not considering a distinction between
train and truck loading. These initial assumptions can be justified by creating a stock
to compensate inexact forecasts for the composition of the raw sand and the extent
of the demand.

We integrated a stockpile into our model by initializing the storage variables x S
v,0

at the start of the planning horizon as non-zero for some of the processes v, and
forced our optimization problem to attempt to maintain the initial storage volume at
the end of the planning horizon by penalizing the offset xO

v in the objective function.
This can be achieved via:

∀v ∈ V :
x S

v,tmax
− x S

v,0 ≤ xO
v

xO
v ≥ 0

(1)

where tmax represents the last period of the planning horizon.
The integration of the cogeneration unit proofed to be a minor challenge in both

modeling and computational terms. If we assume that the maximum output of the
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cogeneration unit is a priori known for all periods t to be xCE
t and the energy needed

in our system to produce accumulates to x PE
t for each period t , then the energy

consumption our system needs to cover in addition to the cogeneration unit x EE
t can

be obtained via:
∀t ∈ T :

x PE
t − xCE

t ≤ x EE
t

x EE
t ≥ 0.

(2)

The formulation in (2) is essentially the same as in (1). A greater challenge
occurred with the integration of both continuous and discontinuous processes into
our model.

3.3 Continuous Process Modeling

To model the continuous processes of our production scheme we essentialy formu-
lated the following constraints.

We linked the output x P
v,t of a continuous process v to the previous inflow I (v, t −

1) via:
x P

v,t = I (v, t − 1), (3)

and linked the storage variable x S
v,t at each process v for each period t with the

production x P
v,t and the outflow O(v, t) via:

x S
v,t = x S

v,t−1 + x P
v,t − O(v, t). (4)

Note that I (v, t) and O(v, t) denote the sums of the flow variables at t on the
edges that enter and leave v, respectively. For the source node (raw sand processing)
and the final nodes (loading) the equations in (3) and (4) require minor changes.
The time and energy consumption are in the continuous case directly proportional
to the production output. Detailed information on the concrete implementation can
be found in [5].

3.4 Batch Process Modeling

To model the discontinuous batch processes of the bunkers for wet sand and the
drying and cooling plants we introduced a binary decision variable δv,t for each of
these processes v in each period t , with δv,t = 1 denoting that a batch process starts
in v at t and δv,t = 0 that it does not. To represent the nature of the discontinuous
processes in our model we included the following constraints.
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First, in each discontinuous process no more than one batch can be processed at a
time. Given the time T (v) a batch takes in process v we can express this restriction
via:

∀t : ∑t+T (v)−1
i=t δv,i ≤ 1. (5)

To avoid that completed charges mix up with untreated sand we introduce:

x L
v,t/L(v) + δB

v,t ≤ 1, (6)

where L(v) is the maximum charge volume of a given process v (e.g. the volume of
a bunker) and x L

v,t is the volume contained at a given period t . The inequality (6) is a
linear formulation of the expression that δB

v,t = 0 or x L
v,t = 0 and ensures, that a batch

process can only start when already processed sand has been forwarded completly.
By assuming a continual use of energy over the period of a batch process, we

integrated the energy consumption of the discontinuous processes into our existing
model via:

x PE
v,t = E(v)/T (v) ∗ ∑t

i=t−T (v)+1 δv,t , (7)

with E(v) being the total energy consumption to process a single charge in v. Con-
straint (7) could be easily customized for energy consumption patterns different to
the assumed continual consumption.

Themodeling of the flow and the storage variables for the discontinuous processes
basically follows the formulations in 3.3. Further details can be found in [5].

4 Results and Discussion

For the results we used real input data. Our industrial partner provided the overall
electric consumption of the facility accumulated for 15min periods and informa-
tion on the supply and demand of the different sand types. Furthermore, we had
information available for the processes, such as the installed load of the machines.

We were able to successfully describe the nature of both the continuous and
discontinuous processes within our MILP model. Figure2 illustrates the develope-
ment of the storage and energy decision variables for a discontinuous batch process,
namely a sand drying plant, within our model. For the planning horizon two charges
are processed in the illustrion. The characteristics of batch processes, mapped by
the constraints (5)–(7) as well as the fulfillment of the storage constraints in (4) are
clearly visible.

We could show that it is possible to create a production plan that reacts to volatile
energy prices. Hence, it is possible to reduce the energy costs in our model assuming
real-time pricing. However, such purchasing strategies are uncommon due to the
inherent risks and the considerable effort for individual enterprises.
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Fig. 2 Illustration of a batch process

5 Outlook

We have been able to model the production processes of our case example. The
benefit is, thatwe gained the possibility to investigate potential effects of different law
concepts that are designed to make the electricity price components more dynamic
[1]. In further studies, we seek to investigate how existing laws promote flexibility
schemes and which legal situation could be favourable for the demand side.

Nevertheless, it is to question whether there is a simpler procedure. One such
approach is the evaluation of the energy flexibility of the production processes, as
for instance in [4, 8]. These approaches examine, whether the energy flexibility of
the modeled processes match the energy flexibility of the real world experiences
and to which extent these can be substituted. It is possible, that the question of
economical sustainability to offer energy flexibility options can be determined by the
sole knowledge about the energy flexibility of the production or individual production
processes.

Furthermore, energy flexibilitywould provide ameasurement to classify a produc-
tion. The investigations provided a rather limited view for the case study. However,
the production sites energy flexibility might represent a variety of other facilities.
This approach will be further investigated in the course of the innovation cluster
ER-WIN®.
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Decoupled Net Present Value—An
Alternative to the Long-Term Asset Value
in the Evaluation of Ship Investments?

Philipp Schrader, Jan-Hendrik Piel and Michael H. Breitner

1 Introduction and Research Background

The uproarious times of the financial crisis in 2008/09 presented a critical juncture
for the practice of ship valuation, which had hitherto been mainly conducted accord-
ing to comparable transactions in the market. The LTAV, introduced in 2009 by the
Hamburg Shipbroker Association VHSS e.V., allowed banks to assess ship values
based on a DCF approach. Designed in particular for valuations in distressed mar-
kets, the LTAV quickly gained in popularity among banks, as it allowed to postpone
necessary impairments on shipping loans and to smooth asset values. As with other
DCF models, the selection of an appropriate discount rate is most critical. The LTAV
mandates the use of a risk-adjusted discount rate (RADR), comprised of the risk-free
rate and a risk premium to account for both the time value of money and risk at the
same time.

However, the bundling of time preference and risk distorts the evaluation of invest-
ment risks, in general by assuming time and risk to be interchangeable [1]. In partic-
ular, [8] for instance discuss the problem of valuing negative cash flows. In this case,
increasing the discount rate may result in a higher overall Net Present Value (NPV),
especially if cash outflows occur late in the life cycle of the investment. This also
creates the incentive to transfer liabilities into the future, which in turn encourages
short-term thinking [3]. The seemingly obvious solution to apply a lower RADR
to negative cash flows, on the other hand, further disconnects risk from its actual
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sources and assumes that negative cash flows are less uncertain, which might not be
the case [1]. The shortcomings of RADRs are exacerbated if company-wide rates
are used to evaluate single projects. Investments riskier than the company as a whole
seem more favourable when evaluated using the lower company wide RADR and
vice versa, leading to over-investment in relatively riskier projects [6].

The Decoupled Net Present Value (DNPV), introduced by [2, 3] presents itself as
an alternative to traditional DCF models, promoting the segregation of risk and time
preference as well as a thorough analysis of investment risks. This is achieved by
first acknowledging that investors in real projects face both systematic and unsystem-
atic risk and have to be compensated for both. The DNPV framework then defines
investors as insurance providers for risks that are not transferred to third parties.
In exchange for holding onto these risks, they are compensated with so-called syn-
thetic insurance premiums (SIP), which represent the price of individual risks and
are treated as costs to the investment. Capturing risks in these SIPs renders the invest-
ment’s cash flows risk-free and hence allows discounting with the risk-free rate. The
pricing of risks via SIPs requires the identification, segmentation and quantification
of all risks affecting the investment. As a result, the DNPV can support a systematic
approach to risk and a comprehensive basis for investment decisions. In contrast to
aggregating risks in the discount rate, individual modeling also enables an accurate
communication of the investment risk profile [3].

Shipping has always been a high-risk business, given the fluctuations in charter
revenues (CR) and its capital intensive, highly leveraged assets. Understanding the
factors that drive the profitability of an investment in a vessel means understanding
its risks. Incorporating these in an investment evaluation is of utmost importance for
shipowners and banks alike. However, despite being developed as an alternative to
the market approach in distressed and therefore highly volatile markets, the LTAV
itself is ill-equipped to account for the full range of risks in a consistent manner.
The DNPV as an approach focused towards risk has been applied to infrastructure
and renewable energy projects [3, 4]. However, to the best of our knowledge, an
application to a cargo ship investment case is missing from the literature. In order to
address this research gap, we provide a proof of concept illustrating the applicability
of the DNPV in maritime investment evaluation. To this end, we develop a prototype
in Python and document its application to a real-world vessel investment simulation
study.

2 Vessel Investment Case

Our investment case is designed akin to the exemplary LTAV valuation presented in
[7]. It takes the perspective of a ship financing bank that is approached with a loan
request for the acquisition of the Conti Emden, a container vessel with 2.700 TEU.
Determining a reasonable purchase price going into negotiations and judging the
profitability of the investment, the LTAV and the DNPV are to be applied alongside
each other. The remaining operative live time of the vessel is 15 years, at the end of
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Table 1 Free cash flows analysis of the investment case in thousand $

Parameter Year 1 Year 4 Year
11

... Year
15

PV Distributiona

Charter rev-
enues

2,427 4,413 4,308 ... 10,020

OPEX 2,330 2,547 3,132 ... 5,482

EBITDA 96.29 1,866 1,176 ... 4,537 9,801 =LTAV

GCR SIP 126.98 230.89 225.43 ... 233.78 1,875 T(11,600, 80%, 140%)

OPEX SIP 46.82 51.16 62.92 ... 110.13 550 BP(6,000, 95%, 125%)

TS SIP 42.04 76.43 74.62 ... 80.77 616 BIN(20%, 31 days)

PS SIP 178.29 165.46 84.83 ... 36.11 1,167 BIN(0.3%, $ 2m clean up)

RV SIP 22.82 33.47 145.23 ... 128.52 723 Stochastic Approach

Total SIPs
416.95 557.40 593.03

... 589.32 4.903

Decoupled
FCF

-
320.65

1,308
583.31

... 3,948 8,947 =DLTAV

aTriangular T(mode, min in %, max in %); betaPERT BP(mode, min in %, max in %); binomial
BIN(μ, comment)

which it is scheduled to be scrapped at a steel price of $ 300 per lightweight tonne,
adjusted for inflation. Operating days are 358 in regular years and 343 in years
requiring survey. Inflation rates of 2 and 3% apply to Gross Charter Rate (GCR) and
Operating Expenditure (OPEX), respectively.

For the followingDNPV analysis, we identified themost important risk categories
as GCR and OPEX risk, risk of permanent shutdown (PS) and temporary shutdown
(TS) of the vessel and residual value risk (RV). The type of distribution to model
each risk is determined in accordance with [3, 4]. The choice of distributions and
their shapes in the last column of Table1 have been matched in consultation with
industry experts. From the expected values of the distributions inTable1, the revenues
and OPEX for the cash flow model are derived. For the detailed planning period of
three years, the GCR equal $ 7.109, the average of the rates suggested by [5]. The
10-year average of $ 11.600 serves as the mode for the triangular distribution. Fees
and commissions of 6.5% apply to the GCR. OPEX include costs for repairs and
maintenance, insurance, stores, crew and administration and are set at $ 6,000 per
day in the BetaPERT distribution. Drydocking and special survey costs sum up to
$ 1.25M every five years [5].

3 Decoupled Net Present Value Analysis

Equation1 illustrates the central equation in the DNPV framework. In the equation,
R̃V,t and R̃I,t represent the costs of risks, i.e. the SIPs associatedwith revenues Vt and
expenditures It , respectively. Revenues from the vessel‘s residual value are included
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in VT . After accounting for risks as costs in the numerator of Eq. 1, the resulting
net cash flows are considered risk-free and can be discounted at the risk-free rate.
The separate treatment of revenues and expenditures highlights the understanding
of risk underlying the DNPV. According to [2], risk is defined as a deviation from
the expected value that negatively affects profitability, i.e. revenues being lower than
expected or expenditures being higher than expected. This notion of risk is also
central to the actual pricing of risks via the concept of SIPs.

DN PV =
∑

t

∑

i, j

(Ṽt,i − R̃t,i ) − ( Ĩt, j + R̃t, j )

(1+ r f )t
(1)

The DNPV framework offers three distinct methods to derive the price of risk.
Whereas the heuristic approach uses expert opinion about the impact of risks, the
stochastic and probabilistic approaches feature the use of stochastic processes and
probability distributions, respectively. Focusing on the latter, we highlight the ver-
satility of this approach by illustrating the calculation of SIPs with two different
distributions. When dealing with distributions to calculate SIPs, a distinction has to
be made between revenue and expenditure risk. For the former, Eq.2 shows that the
price of revenue risk is comprised of the probability of revenues being lower than

expected (PR
[
Ṽt > Vt

]
) and the average amount lost in such a case, i.e. the mean

shortfall (Ṽt − Ṽt ). As shown in Eq.3, the difference between actual and expected
cash flows is multiplied with the probability that costs exceed their expected value.

R̃V,t = (Vt − Ṽt ) · Pr
[
Ṽt > Vt

]
= Lt · Pr

[
Ṽt > Vt

]
(2)

R̃I,t = ( Ĩt − It ) · Pr
[
It > Ĩt

]
= Lt · Pr

[
It > Ĩt

]
(3)

To further illustrate the calculation of SIPs, Fig. 1 shows the Monte-Carlo simula-
tion with 10,000 iterations of the triangular distribution for revenue risk as well as the
pricing of PS risk with a binomial distribution. The latter assumes a total hull loss at
a certain period with probabilityΘ . The cash flow loss in this case equals the value of
the ship in that period plus costs for environmental clean up. The ship value is deter-
mined by the remaining cash flows, discounted at a probability-adjusted risk-free
rate (1+ r f + Θ). Calculating the expected value of the cash flow loss distribution
gives the SIP [2].

Table1 depicts the cash flow model of the investment case as well as the SIPs cal-
culated based on the distributional settings in the last column. Looking at the present
values of the SIPs gives a sense of the risk structure of the investment. Unsurpris-
ingly, the risk associated with charter revenue fluctuation is the most important risk
category, followed closely by PS risk, which decreases with the value of the ship.
OPEX risk is limited as the uncertainty surrounding OPEX forecasts is far less than
for charter rates. Discounting the EBITDA at the discount rate of 7.3% published
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Fig. 1 SIP calculation for CR and TS in year one. Applying Eq.3 to the CR distribution results in
an SIP of ($ 12,180–$ 10,977) · 52.98% = 5.2% of CR or $ 126.984. Applying it to the binomial
distribution for PS gives a SIP of 0.3% · (PV of remaining cash flows + Liability) = $ 178, 294

Fig. 2 Though profitable from both perspectives, risk performance could still be improved. Easing
the impact of PS risk could be achieved by purchasing loss of hire and/ or vessel pollution insurance,
as long as the premiums do not exceed the increase in value resulting from the reduced risk

by [9] as the official rate suggested for LTAV applications yields a value of $ 9.8M.
Deducting the SIPs from EBITDA and discounting the resulting decoupled free cash
flows at the risk-free rate of 1.58% yields a (decoupled) LTAV of $ 8.9M.

At a purchase price of $ 7M, both approaches signal a viable investment. However,
the lowerDNPV suggests that the LTAVunderestimates the risks of the investment. In
order to reconcile both approaches and ease preconceptions amongLTAVproponents,
[2] advise to evaluate the investment’s financial and risk performance separately in
the matrix of Fig. 2. The ratio of Internal Rate of Return (IRR) to the applied RADR,
i.e. the Weighted Average Cost of Capital (WACC) in Fig. 2 is used to measure
financial performance only and represents the standard NPV decision rule, while risk
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performance is measured by the ratio of IRR to implied risk-adjusted discount rate
(iRADR), the RADR that sets theNPV equal to theDNPV and therefore incorporates
the same amount of risk as suggested by the DNPV.

4 Conclusion and Outlook

In the current market environment, the feasibility of ship investments depends on
a thorough understanding of their risks. We demonstrated that the DNPV can be
applied to ship investments and can support investment decisions by framing risks
as costs to the investment. Modeling of risks in SIPs allows for the decoupling
of time preference and risk. This not only alleviates some of the shortcomings of
traditional DCF methods, but also provides a new and comprehensive perspective
on the risk profile of the investment. However, the advantages of the DNPV depend
on the ability to model risks in shipping accurately, which confronts investors with
additional efforts compared to the LTAV. We contributed to the existing research on
the DNPV by providing a proof of concept in shipping and ship finance. Further
research has to be conducted to establish the DNPV in these fields and in order for
it to rival incumbent valuation techniques. Certainly, important areas to address are
how specific risks can be modeled in the DNPV framework and the accuracy of risk
modeling. The acceptance of the DNPV as an addition to the LTAV in practice would
benefit from comparative studies of time series of ship values resulting from both
methods.
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Fast Methods for the Index Tracking
Problem

Dag Haugland

1 Introduction

Passive fund managers aim to compose a portfolio that brings approximately the
average market return. A common strategy to accomplish this, referred to as index
tracking, is to construct funds that simulate a chosen benchmark, typically a stock
market index. To save administration costs, the index tracking portfolios consist of
only a small subset of the assets present in the index.

It is crucial for the fund manager to select the portfolio assets carefully, and to
determine how large proportion of the portfolio each asset is to constitute. Ameasure
of difference between a portfolio and the benchmark which it mimics is referred to
as the tracking error, and the problem is to find a portfolio minimizing this measure.
Only portfolios of a given (small) size are to be considered.

Building on recent theoretical results and computational procedures for cardinality
constrained index tracking, the contributions of the current work are fast methods for
near-optimal solutions. Answering the need to reduce the running time of previously
suggested construction and improvement methods, we develop new methods, by
which we prove that the running time can be reduced by one order of magnitude.

2 Notation and Definitions

For finite sets M ⊆ N and i ∈ N , M + i and M − i denote M ∪ {i} and M \ {i},
respectively. Denote by xi the component of x ∈ R

N corresponding to i , and let xM
denote the vector with components x j ( j ∈ M). For finite sets Mj ⊆ N j ( j = 1, 2)
and a matrix A ∈ R

N1×N2 , AM1M2 denotes the submatrix of A consisting of rows
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corresponding to M1 ⊆ N1 and columns corresponding to M2 ⊆ N2. If M1 = {k}
(M2 = {k}), then notation AkM2 (AM1k) is used, while the element in row i ∈ N1 and
column j ∈ N2 is denoted ai j . Vector ei ∈ R

n is the unit vector with a 1-entry in
position i .

Henceforth, N is the set of assets in a benchmark index, and the index tracking
portfolio is denoted M ⊆ N . Vectors w, x ∈ [0, 1]N consist of asset weights in the
index and the portfolio, respectively, andm denotes the imposed portfolio size. Jansen
and van Dijk [3] suggest the tracking error definition f (x) = (x − w)TQ(x − w),
where Q ∈ R

N×N is the estimated covariance matrix of the stock returns. Adopt-
ing this definition, the minimum tracking error corresponding to portfolio M is
z(M) = minx∈RN+

{
f (x) : ∑

i∈M xi = 1, xN\M = 0N\M
}
, and the Index Tracking

Problem is defined as: min {z(M) : M ⊆ N , |M | = m}.
For an overview of alternative error definitions, index tracking problems, and

associated algorithms, readers are referred to recent literature [1, 2]. It has been
shown [4] that the Index Tracking Problem is strongly NP-hard, and that mixed
integer programming solvers are unsuitable for the problem. The construction and
improvement heuristics developed in [4] are also time-consuming when the index
has more than a thousand assets. In the sequel, we develop alternative methods, and
prove their more favorable running times.

3 Construction Heuristic - Best Extension by One Asset

Consider a portfolio M ⊂ N and an asset k ∈ N \ M , and the corresponding matrix
A(M, k) ∈ R

M×M and vector b(M, k) ∈ R
M defined as

A(M, k) = QMM − QMk1TM − 1MQkM + qkk1M1TM , and (1)

b(M, k) = qkk1M + QMNw − 1MQkNw − QMk . (2)

It was recently proved [4] that

• A(M, k) is positive definite, implying that xM = A−1(M, k)b(M, k) exists.
• If xM ≥ 0 and

∑
i∈M xi ≤ 1, then the optimal asset weights corresponding to

portfolio M + k are xi (i ∈ M), xk = 1 − ∑
i∈M xi , and xi = 0 (i ∈ N \ M − k).

• If x ≥ 0, then z (M + k) = wTQw − 2wTQNk + qkk − bT(M, k)xM .

The construction heuristic in [4] keeps track ofA(M, k) for all possible extensions
k. Extension by asset k is then evaluated by solving an |M | × |M |-system of linear
equations. If k∗ 	= k is added to M , the systemA(M + k∗, k)xM+k∗ = b(M + k∗, k)
is solved in the next iteration. Whereas O(|M |3) operations are needed to solve
A(M, k)xM = b(M, k) from scratch, only O(|M |2) operations are needed if the
QR-factorization P(M, k)R(M, k) of A(M, k) is available. Updating P(M, k) and
R(M, k) to P(M + k∗, k) and R(M + k∗, k), respectively, runs in O(|M |2) time.
Thus, Algorithm 1 runs inO (

n2 + nm3
)
time (n = |N |), whereas a straightforward
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implementation needsO (
n2 + nm4

)
time. The term n2 stems from the computation

of wTQw, needed in the calculation of z(M + k).

Algorithm 1 Best extension by one

M ← ∅, v ← Qw, wQw ← wTv, for k ∈ N do x(k) ← ek
for t ← 1, . . . ,m do
for k ∈ N \ M do z (M + k) ← wQw − 2vk + qkk − ∑

i∈M bi (k)xi (k)
Choose k∗ ∈ argmin {z (M + k) : k ∈ N \ M, x(k) ≥ 0}
x ← x(k∗), z ← z(M + k∗), M ← M + k∗
for k ∈ N \ M do

(P(k),R(k)) ← QR-decomposition of A(M, k)
xM (k) ← R−1(k)PT(k)b(k), xk(k) ← 1 − ∑

i∈M xi (k), xN\M (k) ← 0
return (M, x, z)

4 Construction Heuristic - Fast Extension by One Asset

In each of m iterations of Algorithm 1, the most error-reducing extension by one
asset is made. By sacrificing this quality, a faster method is achievable. Consider an
� ∈ N for which the tracking error wTQw − 2Q�Nw + q�� of single-asset portfolios
is minimized. Asset �, referred to as the root, is the first to be included in M .

Algorithm 2 Fast extension by one

Compute v ← Qw and
{
ck0 ← wTv − 2vk + qkk : k ∈ N

}

Choose a root � ∈ argmink∈N {ck0}, let M ← {�} and x ← e�

while |M | < m do
xQx ← xTMQMMxM
for k ∈ N \ M do
ck1 ← qkk + vTMxM − QkMxM − vk , ck2 ← xQx + qkk − 2QkMxM

Choose k∗ ∈ argmink∈N\M
{
ck0 − c2k1/ck2 : 0 ≤ ck1 ≤ ck2

}
, M ← M + k∗

repeat
Update P and R such that PR = A(M − �, �)

xM−� ← R−1PTb(M − �, �), x� ← 1 − ∑
i∈M−� xi , xN\M ← 0

M ← M \ {i ∈ M : xi < 0}, if � /∈ M then choose a new root � ∈ M
until x ≥ 0

return
(
M, x, xTMQMMxM + wTv − 2xTMvM

)

Algorithm 2 evaluates a currently excluded asset k ∈ N \ M by computing
the minimum of f on the straight line segment between the current solution
x, where A (M − �, �) xM−� = b (M − �, �), and ek . Only vectors where the rel-
ative proportions x j/

∑
i∈M xi remain unchanged are considered. At λ ∈ [0, 1],

we have f (λx + (1 − λ)ek) = ck0 − 2ck1(x)λ + ck2(x)λ2, where ck0 = (ek − w)T

Q (ek − w), ck1(x) = (ek − w)T Q (ek − x), and ck2(x) = (ek − x)T Q (ek − x). The
minimum value ck0 − c2k1(x)/ck2(x) of f is obtained for λ = ck1(x)/ck2(x). When
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x has negative components, Algorithm 2 backs up by removing all corresponding
assets from M . If x� < 0, a new root in M is picked arbitrarily.

In the case of no removals, Algorithm 2 requires O (
n2 + nm2

)
operations,

O (
n2

)
for the computation of v and {ck0 : k ∈ N }, and O(n|M |) for the updates

of {ck1, ck2 : k ∈ N }. This dominates the updating of PR and x (O(|M |2)). For each
removal, it takes O(|M |2) operations to update PR and x. Root removals require
computation of PR from scratch, which amounts to O(|M |3) operations.

5 Local Search - Best Exchange by One

In portfolio M , Algorithm 3 replaces an asset j∗ ∈ M by a k∗ ∈ N \ M until no
reduction in z is achieved, while maximizing the reduction in each iteration. It is
shown [4] that each iteration runs in O(n|M |3) time.

Algorithm 3 Best exchange by one (M , x, z)
v ← Qw, wQw ← wTv
repeat
done←true
for ( j, k) ∈ M × (N \ M) do
yM− j ( j, k) ← A−1(M− j, k)b(M− j, k)
yk( j, k) ← 1 − ∑

i∈M− j yi ( j, k), yN\M+ j−k( j, k) ← 0

z( j, k) ← wQw − 2vk + qkk − bT(M, k)yM− j ( j, k)
Choose ( j∗, k∗) ∈ argmin j,k {z( j, k) : y( j, k) ≥ 0}
if z( j∗, k∗) < z then
M ← M + k∗ − j∗, x ← y( j∗, k∗), z ← z( j∗, k∗), done←false

until done
return (M , x, z)

6 Local Search - Fast Exchange by One

Faster asset swapping is accomplished by assuming no change in relative weights
among remaining assets. Letting y( j) = (1 − x j )

−1
(
x − x je j

)
, this corresponds to

minimizing f (λy( j) + (1 − λ)ek)with respect toλ ∈ [0, 1] and ( j, k) ∈ M × (N \
M). From Sect. 4, we get f (λy( j) + (1 − λ)ek) = ck0 − c2k1(y( j))/ck2(y( j)) for
λ = ck1(y( j))/ck2(y( j)). In Algorithm 4, ( j∗, k∗) is consequently chosen as a mini-
mizer of ck0 − c2k1(y( j))/ck2(y( j)). Portfolio M + k∗ − j∗ is accepted if its tracking
error is smaller than the one of M , otherwise the search terminates.

Like Algorithms 2 and 4 stores the QR-factorization PR of only one matrix
A(M, �). If j∗ = �, a new root � ∈ M with corresponding A(M, �) and b(M, �)

are chosen, and PR = A(M, �) is computed (O(|M |3)). Otherwise, only an update
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of PR is needed (O(|M |2)). If the weight vector x has negative entries, it is replaced
by λy( j∗) + (1 − λ)ek∗ ≥ 0.

Algorithm 4 Fast exchange by one (M , x, z)
Compute v ← Qw, wQw ← wTv,

{
ck0 = wTv − 2vk + qkk : k ∈ N

}

Choose a root � ∈ M , and compute A(M, �) and b(M, �) using (1)–(2)
repeat
done←true
for ( j, k) ∈ M × (N \ M) do
y( j) ← (1 − x j )−1

(
x − x j e j

)
, c0[ j, k] ← (ek − w)T Q (ek − w)

c1[ j, k] ← (ek − w)T Q (ek − y( j)), c2[ j, k] ← (ek − y( j))T Q (ek − y( j))
Choose ( j∗, k∗) ∈ argmin j,k

{
c0[ j, k] − c21[ j, k]/c2[ j, k]

}

M̂ ← M + k∗ − j∗, λ ← c1[ j∗, k∗]/c2[ j∗, k∗]
if � = j∗ then choose a new root � ∈ M + k∗ − j∗
Compute/update the QR-factorization PR = A(M̂, �)

x̂M̂−� ← R−1PTb(M̂, �), x̂� = 1 − ∑
j∈M̂−� x̂ j , x̂N\M̂ ← 0

if x̂ � 0 then x̂ ← λy( j∗) + (1 − λ)ek∗

if f (x̂) ← wQw + x̂T
M̂
QM̂ M̂ x̂M̂ − 2wTQN M̂ x̂M̂ < z then

x ← x̂, z ← f (x), M ← M̂ , done←false
until done
return (M , x, z)

Once QNMxM (O(nm)) and vTx (O(n)) are available, c1 and c2 are computed in
constant time. In iterations where j∗ = �, the calculations of P and R take O(m3)

floating point operations.When j∗ 	= �, onlyO(m2) operations are needed for updat-
ing the factorization. In the worst case ( j∗ = �), one iteration of Algorithm 4 hence
takes O(nm + m3) time. Under the assumption that j∗ = � occurs at a frequency
1/m or less, average running time of one iteration is O(nm).

7 Computational Experiments

Application of Algorithm 1 (Algorithm 2) to construct M , followed by Algorithm 3
(Algorithm 4) to improve it, is denoted Algorithm 1+3 (Algorithm 2+4). To assess
the practical performance of the methods, we report results from experiments with
Algorithms 1+3 and 2+4. All experiments are run on a computer with an Intel
Core i5–2400 processor with a frequency of 3.10GHz and 3.8GB memory. All test
instances, a subset of those in [4], correspond to real stock market indices. They are
denoted S&P 500 (n = 482), S&P 600 (n = 569), Russell 1000 (n = 852), Russell
2000 (n =1301), and Russell 3000 (n = 1920). For m ∈ {20, 40, . . . , 100}, Table1
shows tracking errors (z) obtained and the CPU-times (cpu) in seconds spent by the
two algorithms.

Observe from the table that the reduction in tracking error obtained by apply-
ing the slower Algorithm 1+3 is considerable. On the other hand, the amount of
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Table 1 Performance of Algorithms 1+3 and 2+4 in instances S&P 500 and 600
S&P 500 S&P 600

m
z cpu z cpu

1+3 2+4 1+3 2+4 1+3 2+4 1+3 2+4
20 0.3638 0.6740 2 0.0 0.0427 0.0595 2 0.0
40 0.0927 0.1533 35 0.0 0.0143 0.0193 19 0.0
60 0.0492 0.0676 64 0.0 0.0066 0.0100 78 0.1
80 0.0295 0.0353 284 0.1 0.0040 0.0062 310 0.1

100 0.0203 0.0247 548 0.1 0.0026 0.0043 828 0.1
Russell 1000 Russell 2000 Russell 3000

m
z cpu z cpu z cpu

1+3 2+4 1+3 2+4 1+3 2+4 1+3 2+4 1+3 2+4 1+3 2+4
20 0.2464 0.8153 4 0.0 0.0674 0.3559 5 0.1 0.1779 0.9305 14 0.1
40 0.0683 0.1286 65 0.1 0.0238 0.1101 57 0.1 0.0524 0.2442 147 0.2
60 0.0349 0.0603 122 0.1 0.0127 0.0313 247 0.3 0.0267 0.0928 355 0.4
80 0.0203 0.0360 501 0.2 0.0086 0.0216 506 0.3 0.0169 0.0465 925 0.6

100 0.0140 0.0261 1411 0.3 0.0065 0.0128 1365 0.5 0.0124 0.0298 1381 0.9

computational work is correspondingly big. While the faster Algorithm 2+4 con-
cludes in less than a second even in the largest instance with m = 100, the running
time of Algorithm 1+3 is, at worst (Russell 3000, m = 100), 23 minutes. This is
only partly explained by the running time analysis in Sects. 3, 4, 5 and 6. The more
accurate improvement method (Algorithm 3) proves to identify, on average, about
four times asmany error reducingmoves as does Algorithm 4. This reflects the risk of
neglecting error-reducing moves when applying an inexact measure of the tracking
error.

8 Conclusions

Fast construction and improvement methods for the problem of computing cardinal-
ity constrained portfolios with minimum tracking error are developed in the current
work. It is reviewed how QR-factorization of a matrix, derived from the covariance
matrix of stock returns, can be exploited in order to speed up the selection of assets.
It is further demonstrated how construction and improvement moves can be made
faster if the exact computation of the resulting tracking error is replaced by an approx-
imate one. This is accomplished by assuming constant relative proportions of assets
remaining in the portfolio. When applied to real-life stock market indices, compu-
tational experiments prove that the accelerated solution techniques run faster than
the original versions. The reduced effort does however come at the cost of portfolios
with significantly larger tracking errors.
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Non-acceptance of Losses—An
Experimental Study on the Importance
of the Sign of Final Outcomes in
Ultimatum Bargaining

Thomas Neumann, Stephan Schosser and Bodo Vogt

1 Introduction

Consider the standard ultimatum game [1]: two players have to share a pie between
them. One player, the proposer, suggests an allocation of the pie. The second player,
the responder, decides whether to accept or reject this offer. In the event of the
latter, both players receive nothing. If the responder accepts the proposer’s offer, the
allocation of the pie is paid. The game theoretic solution concept for an ultimatum
game is that of a subgame perfect Nash equilibrium [2]. The responder’s best choice
is to accept any positive share, since it is (strictly) better than nothing. Foreseeing
the responder’s behavior, it is optimal for the proposer to offer the smallest possible
share.

Typically, the ultimatum game is played in a gains domain; i.e., if both players
reach an agreement, their payoffs increase in comparison to the initial situation. One
very common finding of studies that have focused on ultimatum bargaining over
gains is that the actual behavior of the players deviates from the subgame perfect
equilibrium prediction (e.g., [3–6]). On average, proposers offer between 40 and
50% of the pie and that these offers are almost always accepted by the responders
[3]. Another finding is that distributions that result in the responder receiving less
than 40% of the pie are frequently rejected.
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The literature that specifically focuses on ultimatum bargaining over losses is
sparse. Only a few studies have investigated players’ bargaining behavior in an ulti-
matum game over losses. Corresponding to the findings of research that focused
on games over gains, a high fraction of players in games over losses split the pie
equally. In addition, Camerer et al. [7] reported that the average offer was similar in
the game over losses as it was in the game over gains. However, Buchan et al. [5]
found that offers and demands were higher in games over losses than in games over
gains. Lusk and Hudson [8] found that players made more aggressive offers when
bargaining over losses. In line with this finding, Camerer et al. [7] found that players
more frequently rejected offers when bargaining over losses.

All the studies described above compare the results from ultimatum games over
gains with those of games over losses. In this experimental study, we combined both
aspects within the bargaining task. We introduced a game in which the players bar-
gained over the distribution of a pie; however, the strategic advantages (implemented
through different initial positions) of the players were different.

In contrast to existing work on ultimatum bargaining, we found that while the
behavior of proposers does not change, responders focused on breaking even, i.e.,
they rejected offers which yield a negative payoff for themselves and accepted any
higher offer. The wish to break-even was even stronger than the desire to reach
an outcome close to the equal split. We argue that this result can help to better
understand ultimatum game behavior under losses: Deviations from the subgame
perfect equilibrium in ultimatum game behavior can be justified with other regarding
preferences (e.g., [9, 10]). As we observed, the wish to break-even is a strongmotive,
too. Hence, the more aggressive behavior under losses, described in related work,
might be driven by the desire to break-even.

2 Game Design

We found preliminary evidence of bargaining behavior based on two modified ulti-
matum games, as presented in Table1. These ultimatum games differ from previous
work as the payoffs for not reaching an agreement were negative for both players.
In addition, we framed the games in a sense that proposers perceived all offers as a
loss, while responders saw it as a gain.

Table 1 Ultimatum games over mixed outcomes

Payoffs, if responder...

...accepts the proposer’s offer ...rejects the proposer’s offer

Proposer Responder Proposer Responder

Game 1 75 − xP −25 + xP −25 −25

Game 2 50 − xP −50 + xP −50 −50
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In both games, the players who acted as proposers were asked to distribute a pie of
size s = 100 by choosing how much of the pie, xp, they would give to the responder.
Simultaneously, the responders specified the minimum share, xR , they wanted to
receive. Varying the initial positions of the players imposed different bargaining
motives and goals. A piece of the pie xp > 0 reduced the proposer’s final payoff
and, therefore, served as a loss. From the perspective of the responder, each offer
of xp > 0 increased his final payoff and, therefore, served as a gain. Both games
represented bargaining sets, which we refer to as mixed outcomes.

According to prospect theory [11], players are loss averse, meaning that losses
loom larger than gains. Therefore, one could expect the proposer to offer a lower
share of the pie than he would in the standard ultimatum game. This expectation is
supported by the consideration that the responder is also loss averse and, therefore,
should have a strong interest in reducing his loss (his initial position).

On the other hand, offering an equal split might be covered by common fairness
considerations within the players. From the perspective of the responder, the costs
of not reaching an agreement are much lower than the costs of the proposer. Thus,
it is a credible threat that the responder will reject unfair offers. Another possible
assumption is that the responder will accept any offer that compensates him for his
initial loss. If the proposer assumes this, he will offer the exact initial loss of the
responder and the smallest possible amount in addition.

3 The Experiment and Procedure

We played the ultimatum games (Table1) using the strategy vector method [12].
That is, each player made decisions as proposer and responder, and each player
participated in two treatments: Game 1 and Game 2.

We ran the experiment in the MaXLab, the experimental laboratory of the Uni-
versity of Magdeburg. The participants consisted of students from various faculties
of the university. We ran our experiment over two sessions with 25 participants in
the first session and 26 participants in the second. Participants were recruited using
hroot [13] and were randomly assigned to seats in the laboratory.

The participants were not permitted to communicate with each other at any point
during the experiment. They did not receive any information about the identity of
their matched partners. To ensure that no reciprocity occurred, the players also did
not get to know the outcomes of the first treatment until the end of the experiment.

The participants played both roles, proposer and responder, in the two different
ultimatum games; i.e., theymade four decisions, of which onewas randomly selected
and paid off. Prior to the experiment, all participants received a show-up fee of 5.00
EUR and were told that this payoff could increase or decrease depending on the
decisions they make during the experiment.
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4 Results

In the remainder of this section, we will first focus on the behavior of the proposers
and, thereafter, on the behavior of the responders. In both games, the proposer offered
45% of the pie on average (see Table2), which was in line with previous findings in
the literature.

In Game 1, offers below 25% were not made; i.e., all proposers compensated
the responder’s initial loss at a minimum. The vast majority of proposers offered an
equal split of the pie in both games.

Since we used a within-subject deign, we were able to analyze the proposer’s
behavior during the two games in more detail. To analyze the difference in behavior,
we used the formula dP = xG1

P − xG2
P , where xG1

P (xG2
P ) was the offer of the proposer

in Game 1 (Game 2).
As Table3 shows, 34 players offered the same share of the pie in Game 1 as

they did in Game 2, 8 (9) participants offered less (more) in the second game. The
behavioral difference between both games was insignificant (Wilcoxon test, two-
sided, p = 0.7436).

Let’s now focus on the responders.We found that the responder’s average demand
was 33% in Game 1 and 40% in Game 2 (see Table4). Only 8 participants demanded
an equal split in Game 1 in comparison to 28 participants in Game 2.

Table 2 Comparison of proposers’ offers in both games

No. of proposers who
offered...

Game 1 Game 2 Difference

...more than 50% 0 0 0

...exactly 50% (equal
split)

34 39 5

...less than 50% 17 12 5

Average Offer 0.4489 0.4527 0.0038

Standard Deviation 0.0858 0.1046 0.0816

Table 3 Classification of differences (dP ) in proposers’ offers

Classification of Differences (dP ) in Proposers’ Offers

<–more– equal –less–>

dP ≤ −0.10 −0.10 < dP <

0.00
dP = 0.00 0.00 < dP <

0.10
0.10 ≤ dP

6 3 34 2 6

(−0.1583) (−0.0500) (0.0000) (0.0150) (0.1458)

Averages of differences in parenthesizes
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Table 4 Comparison of responders’ demands in both games

No. of responders
who demanded...

Game 1 Game 2 Difference

...more than 50% 0 1 1

...exactly 50% (equal
split)

8 28 20

...less than 50% 43 22 21

Average Offer 0.3323 0.4014 0.0691

Standard Deviation 0.1359 0.1588 0.1257

Table 5 Classification of differences (dR) in responders’ demands

Classification of Differences (dR) in Responders’ Demands

<–more– equal –less–>

dR ≤ −0.10 −0.10 < dR <

0.00
dR = 0.00 0.00 < dR <

0.10
0.10 ≤ dR

24 7 15 0 5

(−0.1725) (−0.0443) (0.0000)) (—) (0.1850)

Averages of differences in parenthesizes

We analyzed the behavioral differences of the responders in more detail using
the formula dR = xG1

R − xG2
R , where xG1

R (xG2
R ) was the demand of the responder in

Game 1 (Game 2).
As Table5 shows, 15 participants demanded the same share of the pie in both

games. While 5 participants demanded less in Game 2 than Game 1, 31 partici-
pants demandedmore. The behavioral difference between both gameswas significant
(Wilcoxon-test, two-sided, z = 3.3999, p = 0.0007).

5 Discussion and Conclusion

We presented the preliminary results of bargaining in a modified ultimatum game
that incorporated asymmetric strategic advantages. While, for one player, the bar-
gaining problem represented a distribution of a loss, the same problem represented
a distribution of a gain for the counterparty.

In line with previous research findings, we found that the majority of proposers
offered an equal split of the pie. The decision to offer an equal split may have been
driven by two possible motives: (1) a common fairness consideration, and (2) the
desire to compensate for the initial loss of the other player, which could be assumed
to represent a minimum requirement.
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Contrary to the findings related to the behavior of responders in an ultimatum
game over losses, we found that responders accepted offers below 40% of the pie
in Game 1. They need to be awarded a compensation for their initial loss, i.e., the
responders’ desire to break-even seemed to be stronger than their longing for fairness.

Of course, one could think of other motives and factors that could be at play
in this scenario; e.g., changes in the players’ beliefs of the other players behavior,
differences in the players’ risk attitudes, etc. Future research should investigate these
factors in more depth.
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A Graph Theoretic Approach to Solve
Special Knapsack Problems
in Polynomial Time

Carolin Rehs and Frank Gurski

1 Introduction

Let G = (V, E) be a graph. An independent set of G is a subset V ′ of V such that
there is no edge in G between two vertices from V ′. A maximum independent set is
an independent set of largest size. A maximal independent set is an independent set
that is not a proper subset of any other independent set. A clique of G is a subset V ′
of V such that there is an edge in G between every two different vertices from V ′
and a maximum clique is clique set of largest size. As usual let α(G) be the size of a
maximum independent set and ω(G) be the size of a maximum clique in G.

The family of allmaximal independent sets of somegraphG is denoted byMIS(G)

and its cardinality is denoted by mis(G). Enumerating and counting maximal inde-
pendent sets in graphs is an often studied problem in the field of special graph classes,
see [6, 10].We will solve these problems for k-threshold graphs and apply the results
to knapsack problems.

An extended version of this paper can be found in [3].
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2 Knapsack Problem and Threshold Graphs

Name: Max Knapsack (Max KP)
Instance: A set A = {a1, . . . , an} of n items, where for every a j there is a size s j

and a profit p j . Further there is a capacity c of the knapsack. The parameters n,
p j , s j , and c are assumed to be positive integers.

Task: Find some subset A′ ⊆ A, such that the total profit of X is maximized and
the total size of A′ is at most c.

Let I be an instance forMax KP. Every subset A′ of A such that
∑

a j∈A′ s j ≤ c is
a feasible solution of I . A feasible solution which is not the subset of another feasible
solution is called maximal. An instance I forMax KP and a graph G = (V, E) are
equivalent, if there is a bijection f : A → V such that A′ ⊆ A is a feasible solution
of I if and only if { f (a j ) | a j ∈ A′} is an independent set of G.

In general not every instance forMax KP has an equivalent graph and not every
graph has an equivalent instance for Max KP. This situation changes if we restrict
to threshold graphs.

2.1 Threshold Graphs

Threshold graphswere introduced byChvátal andHammer in the 1970s [2] as a graph
class which allows to distinguish between independent and non-independent sets in
a very simple way. Formally G = (V, E) is a threshold graph if there exist non-
negative integers wv, v ∈ V , and T such that for everyU ⊆ V it holds

∑
v∈U wv ≤ T

if and only if U is an independent set of G.
Threshold graphs have many known characterizations, see [7, Theorem 1.2.4].

We next mention two of them. A graph G is a threshold graph if and only if G
contains no cycleC4, no path P4, and no matching 2K2 as induced subgraph. Further
a graph G = (V, E) with V = {v1, . . . , vn} is a threshold graph if and only if it can
be constructed from the one-vertex graph by repeatedly adding an isolated vertex or
a dominating vertex. A creation sequence for G (cf. [4]) is a binary string t1, . . . , tn
of length n such that there is a bijection v : {1, . . . , n} → V with ti = 1 if v(i) is a
dominating vertex for the graph induced by {v(1), . . . , v(i)} and ti = 0 if v(i) is an
isolated vertex for the graph induced by {v(1), . . . , v(i)}. W.l.o.g. we define t1 = 1.
Using the linear time recognition algorithm of [7, Figure1.4] a creation sequence
can be found in linear time for some given threshold graph. Further there is linear
time recognition algorithm which also gives a forbidden induced subgraph from
{2K2, P4,C4} if the input is not a threshold graph [5].

By definition every threshold graph has an equivalent instance ofMax KP. It even
holds that for every knapsack instance with equivalent graph, this graph is threshold
[8]. The maximal independent sets in threshold graphs represent maximal feasible
solutions of corresponding knapsack instances. Every optimal solution is among one
of these sets. Therefore we show how to count and enumerate these sets.
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Fig. 1 Enumerating all maximal independent sets in a threshold graph

2.2 Maximal Independent Sets in Threshold Graphs

We give a method to enumerate all maximal independent sets in a threshold graph.

Theorem 1 For every threshold graph G on n vertices which is given by a creation
sequenceMIS(G) can be enumerated in timeO(ω(G) · n) and it holds thatmis(G) =
ω(G).

Proof Let G be a threshold graph and t = t1 . . . tn be a creating sequence for G. By
the method given in Fig. 1 we generate all maximal independent sets in G. Since
{v(i) | ti = 1} leads a maximum clique, it holds that mis(G) = ω(G). �

A creation sequence can be found in linear time by [7, Figure1.4].

Corollary 1 For every threshold graph G on n vertices and m edges MIS(G) can
be enumerated in time O(ω(G) · n + m) and it holds that mis(G) = ω(G).

Theorem 2 Let I be an instance for Max KP on n items which has an equivalent
graph. Then I can be solved in time O(n2).

Proof Let I be some instance forMax KP on n itemswhich has an equivalent graph.
Then I is equivalent (proof in [3]). to graph G(I ) = (V (I ), E(I )) with V (I ) =
{v j | a j ∈ A} and E(I ) = {{v j , v j ′ } | s j + s j ′ > c}, which can be constructed from
I in time O(n2). Graph G(I ) is a threshold graph.

Thus the ω(G) ≤ n maximal independent sets in G(I ) can be found in O(n2) by
Corollary 1 and correspond to the maximal feasible solutions of I . For every of these
solutions we can compute its profit in time O(n). �

3 Multidimensional Knapsack Problem and k-Threshold
Graphs

Name: Max d- dimensional Knapsack (Max d- KP)
Instance: Given is a set A = {a1, . . . , an}ofn items and a numberd of dimensions.

Every item a j has a profit p j and for dimension i the size si, j . Further there is a
capacity ci for every dimension i . The parameters n, d, p j , si, j , and ci are assumed
to be positive integers.
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Task: Find some subset A′ ⊆ A, such that the total profit of A′ is maximized and
for every dimension i the total size of A′ is at most the capacity ci .

Let I be an instance forMax d- KP. Every subset A′ of A such that
∑

a j∈A′ si, j ≤
ci for every i ∈ [d] is a feasible solution of I . A feasible solution which is not the
subset of another feasible solution is called maximal. An instance I forMax d- KP
and a graph G = (V, E) are equivalent, if there is a bijection f : A → V such that
A′ ⊆ A is a feasible solution of I if and only if { f (a j ) | a j ∈ A′} is an independent
set of G.

For someMax d- KP instance I and i ∈ [d]wedefine by Ii theMax KP instance
on the same item set A with profits p1, . . . , pn , sizes si,1, . . . , si,n , and capacity ci .

3.1 k-Threshold Graphs

A graph G = (V, E) on n vertices is a k-threshold graph, if there are at most k linear
inequalities

a j,1x1 + · · · + a j,nxn ≤ Tj (1)

such that X ⊆ V is an independent set in G if and only if the characteristic vector
(x1, . . . , xn) of X satisfies for j = 1, . . . , k the inequalities of type (1). Equivalently,
a graph G = (V, E) has shown to be a k-threshold graph if there are at most k
threshold graphs Gi = (V, Ei ), 1 ≤ i ≤ k, such that E = E1 ∪ . . . ∪ Ek , see [2].

Thus 1-threshold graphs correspond to threshold graphs and can be recognized
in linear time. The set of 2-threshold graphs can be recognized in polynomial time
[9]. For every fixed k ≥ 3 it is NP-complete to determine whether a given graph is a
k-threshold graph, see [11].

3.2 Maximal Independent Sets in k-Threshold Graphs

Next we show how to enumerate and count the maximal independent sets in a k-
threshold graph G using these sets for k covering threshold graphs of G.

Theorem 3 For every k-threshold graph G on n vertices and m edges whose edge
set can be covered by k threshold graphs Gi = (V, Ei ), 1 ≤ i ≤ k, MIS(G) can be
enumerated in time O(

∑k
i=1 mi + n · (�k

i=1ω(Gi ))
2) ⊆ O(n2k+1) and it holds that

mis(G) ≤ �k
i=1ω(Gi ).

Proof Let G be a k-threshold graph on n vertices and m edges. Further let Gi =
(V, Ei ), 1 ≤ i ≤ k, be a covering by k threshold graphs for G and mi denote the
number of edges in Gi . By the method given in Fig. 2 we generate all maximal
independent sets in G.
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Fig. 2 Enumerating all maximal independent sets in a k-threshold graph

The running time for computing MIS(Gi ) for 1 ≤ i ≤ k can be bounded using
Corollary 1 by O(

∑k
i=1 ω(Gi ) · n + mi ) = O(n · ∑k

i=1 ω(Gi ) + ∑k
i=1 mi ).

For every tuple (M1, . . . , Mk) the intersection M1 ∩ . . . ∩ Mk can be computed
in time O(k · n) and the set of all intersectionsI can be computed in time O(k · n ·
(�k

i=1ω(Gi ))).
Then we have to eliminate non-maximal subsets in I , which takes time O(n ·

(�k
i=1ω(Gi ))

2).
By assuming ω(Gi ) ≥ 2 for 1 ≤ i ≤ k the overall running time is in

O(
∑k

i=1 mi + n · (�k
i=1ω(Gi ))

2) ⊆ O(n2k+1).

The correctness holds as follows. Every independent set S in G is also an inde-
pendent set in graph Gi for every 1 ≤ i ≤ k. Thus every independent set S in G
is a subset of some maximal independent set Mi in graph Gi for every 1 ≤ i ≤ k.
Thus every independent set S in G is a subset of the intersection M1 ∩ . . . ∩ Mk for
some maximal independent sets Mi in graph Gi for every 1 ≤ i ≤ k. Further since
every such intersection M1 ∩ . . . ∩ Mk is an independent set in G and we remove the
non-maximal independent sets from the set of all these intersections in the last step
of our method, we create exactly the set of all maximal independent sets of G. �

Theorem 4 Let I be an instance for Max d- KP on n items such that for every
dimension i ∈ [d] instance Ii has an equivalent graph. Then I can be solved in time
O(n2d+1).

Proof Let I be some instance forMax d- KP on n items such that for every dimen-
sion i ∈ [d] instance Ii for Max KP has an equivalent graph Gi . For every dimen-
sion i ∈ [d] instance Ii is equivalent [3] to graph G(Ii ) = (V (Ii ), E(Ii )) which was
defined in the proof of Theorem 2 and which can be constructed in time O(n2) from
Ii . Further graph G = (V, E)where V = V (I1) and E = E(I1) ∪ . . . ∪ E(Id) leads
an equivalent graph for instance I . Graph G is a d-threshold graph.

Thus the �d
i=1ω(Gi ) ≤ nd maximal independent sets in G can be found in time

O(n2d+1) by Theorem 3 and correspond to the maximal feasible solutions of I . For
every of these solutions we can compute its profit in time O(n). �
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The theorem is even true for instances I ofMax d- KPhaving an equivalent graph,
it is not necessary that there is an equivalent graph for each dimension i ∈ [d]. The
much longer proof of this theorem can be found in our paper [3].

4 Conclusions

The presented methods allow us to solve special instances of the NP-hard knapsack
problem in polynomial time using a method to list all maximal independent sets in a
corresponding threshold graph in polynomial time. This results extend an approach
to solve special instances forMax d- KP suggested by Chvátal and Hammer in [2].

Since every maximum independent set is a maximal independent set, our results
also can be applied to list all maximum independent sets in threshold graphs. By
the method given in Fig. 1 and removing non-maximum sets we obtain a method of
running time O(ω(G) · n) for listing all maximum independent sets in a threshold
graphG. We can compute α(G) in the same time. The related problem of finding one
maximum independent set in a threshold graph was solved in [1] in timeO(n log n).
This problem can also be solved in O(n) along a given creation sequence.

Further by omitting the last step of the method given in Fig. 2 and remov-
ing non-maximum sets we obtain a method of running time O(

∑k
i=1 mi + k ·

n · (�k
i=1ω(Gi ))) ⊆ O(k · nk+1) for listing all maximum independent sets in a k-

threshold graph G. We can compute α(G) in the same time. The related problem of
finding one maximum independent set in a k-threshold graph was solved in [1] in
time O(n log n + nk−1).

Comparing our solutions and these of [1] we observe that we require graph repre-
sentations and the authors of [1] use the coefficients occurring in knapsack instances.
Each of these versions can transformed into the other. Especially when we can bound
the vertex degree of the threshold graphs our results are much better.
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Bootstrap Percolation on Degenerate
Graphs

Marinus Gottschau

1 Introduction

An r -neighbor bootstrap percolation process on some given graph G = (V, E) with
vertex set V and edge set E is a discrete time infection process. Initially at time zero
there is some set of infected vertices. Then, at every time step, every vertex that has
at least r infected neighbors becomes infected in the next time step, too. The process
was first introduced by Chalupa, Leath and Reich in 1979 in [1] and is a simple
example for a cellular automaton. It is also closely related to the Glauber dynamics
which represent the Ising model at zero-temperature (see [2]). Another application
one can think of is rumor spreading in a social network, where individuals start
spreading a rumor to all their friends once they have heard that rumor from a number
of other friends. Instead of speaking of infection, the literature also uses the term
activation but we shall stick to the term infection and write bootstrap percolation or
simply process instead of r -neighbor bootstrap percolation process. We now shortly
introduce the process formally before giving some known results. Call the set of
initially infected vertices A0 and the vertices that are infected at the end of the
process A f . More formally, let At be the vertices which are infected at time t , where
At := At−1 ∪ {v ∈ V : |N (v) ∩ At−1| ≥ r} and N (v) denotes the neighborhood of
some vertex v ∈ V and thus A f = ⋃

t>0 At . Usually, the set A0 is a random set of
vertices, where each vertex is initially infected independentlywith a given probability
p, or some other reasonable probabilistic choice function is used. The dynamics of
bootstrap percolation shall be depicted on an example graph in the following figure
(Fig. 1).

For several graph classes there is already much known about the behavior of this
process and there are a quite few things of interest. First of all one can study the
probability of percolation, i.e. the probability that A f = V , depending on p, which
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infected vertex
uninfected vertex

t = 0 t = 1 t = 2 t = 3

A0

A1 A2 Af

Fig. 1 Dynamics of the 2-neighbor bootstrap percolation process on an example graph where
|A0| = 2 and A f = V

is the probability with which each vertex independently is initially infected. Several
authors surveyed the threshold for the infection probability at which percolation
is more likely to occur than not. For example, if the underlying graph is the d-
dimensional cube graph [n]d , the exact threshold function for d = r = 2 was shown
by Holroyd in [3] to be π2

18 log n + o( 1
log n ). Later, Balogh et al. gave the exact threshold

function for all d ≥ r ≥ 2 in [4].
Additionally, bootstrap percolation was studied on trees, like periodic trees in [5]

and Galton–Watson trees in [6] and [7].
Some papers also study the size of sets of vertices that infect the whole graph,

so called percolating sets. There is also a special class of percolating sets, namely
minimal percolating sets, which are sets of vertices where any proper subset does not
infect the whole graph. Riedl showed in [8] that for a tree on n vertices with l vertices
of degree less than r , a minimal percolating set A0 is of size

(r−1)n+1
r ≤ |A0| ≤ rn+l

r+1 .
Riedl also gave an algorithm in his paper that computes the size of a minimum
percolating set for r ≥ 2 as well as the size of a maximum minimal percolating
set for r = 2 in linear time. In another paper he extended the studies of minimal
percolating sets to hypercubes under 2-bootstrap percolation (see [9]).

Also, other graphs like the well known Erdős-Rényi random graph have been
studied, for example in [10] by Janson et al. There, the authors give a function for
the edge probabilities when percolation occurs with high probability, depending on
the size of A0.

Another quite interesting parameter is the running time of such a process,
which is the time until no new vertex becomes infected, i.e. the least t such that
At = At+1 = A f . This parameter has been studied for several graphs like the grid
[n]2, where Benevides and Przykucki [11] showed that for r = 2 the running time
is bounded by 13

18n
2 + O(n). In [12], Przykucki considered bootstrap percolation

on the d-dimensional hypercube and proved the time to be at most � d2

3 � again for
r = 2. Bollobás et al. [13] analyzed the time of bootstrap percolation on the discrete
torus while Janson et al. [10] gave a time bound for bootstrap percolation on the
Erdös-Rényi random graph.

In this paper we focus on the size of the infected set A f at the end of the process
on degenerate graphs.We give a result for r -neighbor bootstrap percolation when the
underlying graph is a degenerate graph and the set A0 is any subset of the vertices.
Furthermore, our theoremhas implications on the size ofminimumpercolating sets as
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well as the running time of the process on degenerate graphs. Finally, it is noteworthy
that, due to bounded degeneracy of several known graph classes, like trees or planar
graphs, our results also covers more commonly studied graph classes.

2 Bootstrap Percolation on Degenerate Graphs

Our result gives a bound on the size of the set A f of vertices that are infected at the
end of the process on degenerate graphs, so let us define degeneracy first.

Definition 1 A finite graph G = (V, E) is called d-degenerate if every subgraph
contains a vertex of degree at most d.

There are many graph classes that have a bounded degeneracy. For example forests
are 1-degenerate graphs, planar graphs are 5-degenerate while outerplanar graphs
are 2-degenerate. Also, scale free networks generated by the Barabási-Albert model
using a preferential attachment mechanism, have bounded degeneracy.

The definition of degeneracy has a useful equivalence as stated in the following
lemma, which we are going to make use of later.

Lemma 1 A graph G = (V, E) is d-degenerate if and only if it has an order-
ing of the vertices on a line such that each vertex has at most d neighbors
to its left, which is formally there exists a permutation π : V → V such that
|{w ∈ N (v) : π(w) < π(v)}| ≤ d for all v ∈ V .

The proof of this lemma is straightforward and left as an exercise to the reader.
Let us now state our main theorem.

Theorem 1 Consider bootstrap percolation on a d-degenerate graph G with
r ≥ d + 1 and a set of initially infected vertices A0. Then the set A f of vertices
that are infected at the end of the process fulfills

|A0| ≤ |A f | ≤
(

1 + d

r − d

)

|A0|.

Proof We introduce a potential Ψi , which, after each timestep i of the infection pro-
cess, bounds the number of vertices thatmight be infected in the next step from above.
Due to Lemma 1 there exists an ordering π : V → V of the vertices, where each ver-
tex has at most d < r neighbors to its left, i.e. |{w ∈ N (v) : π(w) < π(v)}| ≤ d.
Since d < r , every vertex that becomes infected at some point must have at least one
already infected vertex to its right. Now let Ψi = ∑

v∈V Ψ v
i , where

Ψ v
i :=

{
0, if v /∈ Ai

|{w ∈ N (v) : π(w) < π(v)} \ Ai |, else
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v

= λ

≤ d < r

= ρ ≥ r − λ

infected vertrex
uninfected vertex

Fig. 2 Left and right neighborhood of v at the time of its infection

is the number of uninfected vertices in the left neighborhood of vertex v if it is infected
and is 0 otherwise. Note that an uninfected vertex might be counted more than once
in our potential if it has more than one infected vertex in its right neighborhood.
Clearly, Ψ0 ≤ d|A0| since every initially infected vertex has at most d uninfected
neighbors to its left.
Claim The potential decreases for each infection at time i by at least r − d, i.e. we
have that Ψi−1 − Ψi ≥ (r − d)|Ai \ Ai−1|.

Proof (Proof of claim) Consider the set of vertices infected at time i and let vertex
v be such a vertex, i.e. v ∈ Ai \ Ai−1. Due to the degeneracy of the graph, v has at
most d uninfected neighbors in its left neighborhood and therefore v can increase the
potential by at most d. Observe next that for vertex v to become infected it must have
at least r infected neighbors. Now there are two kinds of such infecting vertices,
namely those that lie in the right neighborhood of v and those that lie in the left
neighborhood of v as depicted in Fig. 2.

Let λ be the number of infected vertices in the left neighborhood and ρ be the
number of infected vertices in the right neighborhood. For each infected vertex w

that lies in the right neighborhood, the potential decreases by one, since vertex v was
accounted for in Ψ w

i−1 but is no longer uninfected and therefore does not contribute
to Ψ w

i . Each of the λ infected vertices in the left neighborhood of v does not add to
the potential either, since it is already infected, so Ψ v

i ≤ (d − λ) + Ψ v
i−1. If v is the

only vertex infected at time i , we have that

Ψi ≤ (d − λ) − ρ + Ψi−1 ≤ (d − λ) − (r − λ) + Ψi−1 ≤ Ψi−1 − (r − d),

which, since r > d, means that the potential decreases by r − d. Finally note that
additional, simultaneous infections do not increase Ψ v

i and the above argumentation
can independently be done for each vertex that is infected at time i , and thus each
infectiondecreases the potential by the aforementioned amount and the claim follows.

Once the potential is less than 1 there does not exist an uninfected vertex that has an
infected vertex in its right neighborhood and hence could be infected next, as r > d,
and the process stops. Using the claim and the fact that Ψ0 ≤ d|A0| we get

|A f | ≤ |A0| + Ψ0

r − d
≤ |A0| + d|A0|

r − d
=

(

1 + d

r − d

)

|A0|.

It is obvious that |A0| ≤ |A f | which finishes the proof of Theorem 1.
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H

U1 I1

Uk

Ik

|H| = d |Ui| = d ∀i ∈ [k] |Ii| = r − d ∀ i ∈ [k]

G :

Fig. 3 Schematic picture of the constructed graphs that get arbitrarily close to the given upper
bound

It is also remarkable that our bound on the size of A f is sharp in a sense:
For every d ≥ 1, r ≥ 2 and ε > 0 there exists a d-degenerate graph with an ini-
tially infected set A0 such that the set A f at the end of the process fulfills
|A f | ≥ (1 − ε)

(
1 + d

r−d

) |A0|. For the construction of such a graph take a set H of d
vertices. Next, take k pairs (Ui , Ii ) of sets of vertices with |Ui | = d and |Ii | = r − d
where every vertex in Ii is adjacent to all vertices in Ui for all i ∈ [k]. Further-
more, every vertex in H is adjacent to all vertices in

⋃
i∈[k] Ui . Finally, choose

A0 = H ∪ (
⋃

i∈[k] Ii ). It is easy to see that this graph is a d-degenerate graph by
construction. A schematic picture of the graph can be seen in Fig. 3.

The set A0 is of size d + k(r − d) while the set A f , since every vertex will be
infected at the end, is of size d + k(r − d) + kd = d + kr . Therefore

|A f | − |A0|
|A0| = d + kr − (d + k(r − d))

d + k(r − d)
= kd

d + k(r − d)
= d

d
k + r − d

,

which tends to d
r−d for k tending to infinity. Thus, one can choose k large enough

such that |A f | is arbitrarily close to the given upper bound.
Let us now state two corollaries.

Corollary 1 Consider bootstrap percolation on a d-degenerate graph with n ver-
tices and let r ≥ d. Then the size of a percolating set A0 fulfills

r−d
r n ≤ |A0|.

This is simply obtained by setting |A f | = n in Theorem 1 and observing that r−d
r ≤ 0

for r ≤ d.
Next, we draw a connection to the results given by Riedl in [8]. First of all, note

that every tree is a 1-degenerate graph, since every subgraph of a tree is a forest
and thus contains at least one leaf, which is a vertex of degree one. As mentioned
in the introduction, Riedl considered the size of minimal percolating sets on trees
and proved that a minimal percolating set is of size at least r−1

r n + 1
r . Our bound
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yields due to integrality of |A0| the same bound unless n ≡ 0 mod r , in which case
our bound is one less. Also the construction given in Fig. 3 can be used to show that
there exist d-degenerate graphs for which the smallest percolating set A0, which is
of course also a minimal percolating set, is of size ( r−d

r + ε)n.
Next, recall that the running time τ of a bootstrap percolation process is the least

t such that At = At+1.

Corollary 2 Given a d-degenerate graph, then the running time τ of the r-bootstrap
percolation process with a given set A0 and r ≥ d + 1 is bounded by τ ≤ d

r−d |A0|.
This again follows immediately from Theorem 1, as every additional infection takes
at most one time step.
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A Hypergraph Network Simplex
Algorithm

Isabel Beckenbach

1 Directed and Graph-Based Hypergraphs

A directed hypergraph is usually defined as a pair (V,A) where V is a finite set
of vertices and A is a set of pairs a = (T (a), H(a)) where T (a), H(a) are disjoint
subsets of V . The set T (a) is called the tail and H(a) the head of hyperarc a. A good
survey on directed hypergraphs can be found in [1]. Inspired by an application to
railway rotation planning Borndörfer et al. [2] defined directed hypergraphs slightly
differently. Namely, they start with an ordinary directed graph and define a hyperarc
to be a set of pairwise disjoint arcs.

Definition 1 Let D = (V, A) be a directed graph. A directed hypergraph based on
D is a pair H = (V,A) where V is the vertex set of D and A is a set of non-
empty subsets E ⊆ A consisting of vertex-disjoint arcs. In this setting we call H a
graph-based hypergraph.

Agraph-based hypergraph can be seen as a special kind of directed hypergraph by set-
ting T (E) = {v ∈ V : ∃w ∈ V, (v,w) ∈ E} and H(E) = {v ∈ V : ∃w ∈ V, (w, v)

∈ E} for E ∈ A. For v ∈ V we set δin(v) := {E ∈ A : v ∈ H(E)} and δout (v) :=
{E ∈ A : v ∈ T (E)}. Using linear programming terminology theminimumcost flow
problem can be stated as follows.

Definition 2 Given a graph-based hypergraph H = (V,A), and functions b : V →
R, c : A → R≥0, u : A → R ∪ {∞} the minimum cost hyperflow problem is the
following linear optimization problem
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min
∑

E∈A
c(E) f (E)

∑

E∈δin(v)

f (E) −
∑

E∈δout (v)

f (E) = b(v) ∀v ∈ V (1)

0 ≤ f (E) ≤ u(E) ∀E ∈ A. (2)

For integral input data b, c, u there always exists an integral min-cost flow in directed
graphs. For the special case that every hyperarc has at most one vertex in its head
and b is nonnegative, the integrality of b implies the existence of an integral min-
cost hyperflow which can be found by a combinatorial primal-dual algorithm, see
[3]. However, this is not true for the min-cost hyperflow problem in general. In
particular, it is N P-hard to find an integral min-cost hyperflow (e.g. by reduction
to 3D-Matching); even if all hyperarcs consist of at most two arcs (see [4] where
the NP-hardness of the hyperassignment problem which can be formulated as an
integral min-cost hyperflow problem is proven).

In the remainder we only consider the uncapacitated minimum cost flow problem
(u ≡ ∞) to make the presentation less technical and focus more on the underlying
algorithmic ideas. However, the network simplex type algorithm described in the
next section can also be adjusted to the capacitated case (details are deferred to a full
version of the paper).

2 Min-Cost Hyperflow on Graph-Based Hypergraphs

In this section we characterize the basis matrices in the min-cost hyperflow problem
on graph-based hypergraphs and show how most of the simplex operations can be
done combinatorially. We do not specify any particular simplex rule, and leave any
issues on the number of pivot iterations open for future research. Convergence can
be guaranteed by usual methods.

In the remainder of this section let H = (V,A) be a hypergraph based on the
directed graph D = (V, A) and let M ∈ {0, 1,−1}V×A be its incidence matrix, i.e.,

Mv,E =
⎧
⎨

⎩

1 v ∈ H(E)
−1 v ∈ T (E)
0 v /∈ H(E) ∪ T (E)

. (3)

With this definition, all inequalities of type (1) can be written asM f = b. We assume
without loss of generality that D is connected and {a} ∈ A for all a ∈ A. The column
M.E corresponding to hyperarc E = {a1, . . . , ak} equals the sumof the columnsM.ak .
This implies that the rank of M is the same as the rank of the vertex-arc incidence
matrix of D which is |V | − 1 as D is connected.

In the following we will denote the submatrix of M restricted to the columns in
some set B ⊆ A by MB . For a set B ⊆ A we denote by B1 = {E ∈ B : |E | = 1}
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the set of all standard arcs and by B2 := B \ B1 the set of all “proper” hyperarcs.
An easy observation shows that if B is a basis, then D[{a ∈ A : {a} ∈ B1}] is a
forest having |B2| + 1 connected components, see for example [5]. If B2 �= ∅ this
condition is not sufficient. In this case, we choose a root r ∈ V for each tree of the
forest D[{a ∈ A : {a} ∈ B1}], denote this tree by Tr , and let R be the set of roots.
We define a matrix MR ∈ Z

R×B2 by

MR (r, E) = |V (Tr ) ∩ H(E)| − |V (Tr ) ∩ T (E)|.

MR is independent of the concrete choice of the roots for the trees Tr . Furthermore,
the columns of MR have the following useful property.

Theorem 1 Let B be a basis with B1, B2, R, {Tr }r∈R and MR as defined above.Given
E ∈ B2 there exists a unique function f : B → R such that f (E) = 1, f (E ′) = 0
for all E ′ ∈ B2 \ {E} and f (δin(v)) = f (δout (v)) for all v ∈ V \ R. Furthermore,
the demand f (δin(r)) − f (δout (r)) at a root vertex r ∈ R is given by MR (r, E).

Proof We first show that a function f with f (E) = 1, f (E ′) = 0 for all E ′ ∈ B2 \
{E} and f (δin(v)) = f (δout (v)) for all v ∈ V \ R exists. Therefore we set b(v) = 1
for all v ∈ T (E), b(v) = −1 for all v ∈ H(e) and b(r) := |V (Tr ) \ {r} ∩ H(E)| −
|V (Tr ) \ {r} ∩ T (E)|. With this definition we have

∑
v∈V (Tr )

b(v) = 0 for all trees Tr
in particular

∑
v∈V b(v) = 0. This implies that there exists f ′ : {a : {a} ∈ B1} → R

such that f ′(δin(v)) − f ′(δout (v)) = b(v) for every v ∈ V . The uniqueness follows
from the fact that f ′ is uniquely determined on every tree Tr . Setting f ({a}) :=
f ′({a}) for all {a} ∈ B1, f (E) = 1, and f (E ′) = 0 for all E ′ ∈ B2 \ {E} gives a
unique function satisfying the requirements of Theorem 1.

Now, we look at the demand induced by f on the roots. If r /∈ T (E) ∪ H(E),
then f (δin(r)) − f (δout (r)) = b(r) = MR (r, E). If r is a head vertex of E ,
then f (δin(r)) − f (δout (r)) = b(r) + 1 = |V (Tr ) \ {r} ∩ H(E)| − |V (Tr ) \ {r} ∩
T (E)| + 1 = MR (r, E) − 1 + 1 = MR (r, E) . The case r ∈ T (E) is similar. �

Theorem 1 shows that MR has the same properties as the matrix Cambini et al. [6]
defined. In contrast to us, they used matrix operations and assumed that M has full
rank which is not the case in our setting. The matrix MR enables us to characterize
the basis matrices for the min-cost hyperflow problem.

Theorem 2 Let B ⊆ A be a subset of size |V | − 1. MB is a basis matrix for the
linear program defined by (1)–(2) if and only if

(a) D[a ∈ A : {a} ∈ B] is a forest with |B2| + 1 connected components.
(b) MR has rank |B2|.
Proof Let MB be a basis matrix. (a) is easy to show. If (b) does not hold, then there
exists a non-zero vector y ∈ R

B2 with MR · y = 0. For every E ∈ B2, let f E ∈ R
B

be a vector with the properties described in Theorem 1, and set f = ∑
E∈B2

y(E) f E .
For every v ∈ V \ R we have



312 I. Beckenbach

f (δin(v)) − f (δout (v)) =
∑

E∈B2

y(E) · ( f E (δin(v)) − f E (δout (v))
)

=
∑

E∈B2

y(E) · 0 = 0,

and for r ∈ R we get

f (δin(r)) − f (δout (r)) =
∑

E∈B2

y(E) · ( f E (δin(r)) − f E (δout (r))
)

=
∑

E∈B2

y(E) · MR(r, E) = 0.

Furthermore, f E (E) = 1 and f E
′
(E) = 0 for all E ′ ∈ B2 \ {E} imply that f (E) =

y(E) for all E ∈ B2. Thus, f is a non-zero vector with MB · f = 0 which is impos-
sible as the columns of MB are linearly independent.

Now, suppose (a) and (b) hold. The rows of MB sum to zero, thus its rank is at
most |B|. By this fact and basic linear algebra, the rank of MB equals |B| if and
only if for every b ∈ R

V with
∑

v∈V b(v) = 0 the system MB · f = b has a unique
solution. By (a) we can find a flow f ′ on B such that f ′(E) = 0 for all E ∈ B2

and f ′(δin(v)) − f ′(δout (v)) = b(v) for all v ∈ V \ R. Next, we set δ(r) := b(r) −
( f ′(δin(r)) − f ′(δout (r))) for all r ∈ R and solve MR · y = δ. Again, let f E be the
unique flow with the properties of Theorem 1. We set f = ∑

E∈B2
y(E) f E + f ′.

For v ∈ V \ R we have

f (δin(v)) − f (δout (v))

=
∑

E∈B2

y(E) · ( f E (δin(v)) − f E (δout(v))
) + f ′(δin(v)) − f ′(δout (v))

= 0 + b(v),

and for r ∈ R

f (δin(r)) − f (δout (r))

=
∑

E∈B2

y(E) · (
f E (δin(r)) − f E (δout (r))

) + f ′(δin(r)) − f ′(δout (r))

=
∑

E∈B2

y(E) · MR(r, E) + b(r) − δ(r) = b(r).

This shows that MB · f = b holds. The uniqueness follows from the fact that the
function values at B2 are uniquely determined by (b), and given the values on B2 the
function f on B1 is uniquely determined by property (a). �

Algorithm1 describes a network simplex type algorithm for the min-cost hyper-
flow problem on graph-based hypergraphs. By our assumption, there exists a
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Algorithm 1
Input: Digraph D = (V, A), Hypergraph H = (V,A)based on D,b : V → Rwith

∑
v∈V b(v) =

0, and c : A → R≥0, a feasible flow x on D, corresponding basis B, initial spanning tree T =
D[B].

Output: A min-cost hyperflow x : A → R≥0.
1: Choose a root r arbitrarily, set Tr = T , R = {r}.
2: Solve πT MB = cTB (Dual).
3: Compute reduced cost cπ(E) = c(E) − ∑

v∈H(E) π(v) + ∑
v∈T (E) π(v) for all non-basic

hyperarcs E ∈ A \ B.
4: if cπ ≥ 0 then
5: Output x (x is optimal).
6: else
7: Choose a hyperarc Ein ∈ A \ B with cπ(Ein) < 0.
8: Solve the system MB f = −MEin (Primal).
9: Choose a hyperarc Eout = argmin{x(E)/ − f (E) : f (E) < 0, E ∈ B}.
10: Set B ← B \ {Eout } ∪ {Ein} update x , R, trees {Tr }r∈R , and matrix MR .
11: Goto 1.
12: end if

feasiblemin-cost hyperflow if and only if there exists a feasible flowon the underlying
digraph. Our algorithm receives such a feasible flow together with the corresponding
Basis B as an input.

Algorithm 2 Flow
1: procedure Flow(B, {Tr }r∈R , dN , f2)
2: d(r) ← 0 for all r ∈ R and d(v) ← dN (v) for all v ∈ V \ R.
3: for all E ∈ B2, v ∈ V do
4: if v ∈ T (E) then d(v) ← d(v) + f2(E).
5: if v ∈ H(E) then d(v) ← d(v) − f2(E).
6: end for
7: for all trees Tr do
8: for j = |V (Tr )| − 1 to 1 do
9: if a j = (v, v j+1) then f1(a j ) ← d(v j+1).
10: if a j = (v j+1, v) then f1(a j ) ← −d(v j+1).
11: d(v) ← d(v) + d(v j+1)

12: end for
13: end for
14: dR(r) ← −d(r) for all r ∈ R.
15: return dR , f1
16: end procedure

In the remainder we show how to solve problems of the type MB f = b (Primal)
and πT MB = cTB (Dual) where MB is a basis matrix. We always assume that the
trees {Tr }r∈R have its vertices and arcs ordered such that v1 is the root, v j is a leaf in
T [{v1, . . . , v j }] and a j−1 is the arc v j is incident to.We start with the primal problem
MB f = b forwhichwe basically use the algorithmdescribed in the proof of Theorem
2. As a subroutine we need Algorithm2 which given the demand dN on the non-root
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vertices N := V \ R, and flow f2 on the non-tree hyperarcs B2 computes the unique
flow f1 on the tree arcs B1 and demand dR on the roots R such that

MB ·
(

f1
f2

)
=

(
dN
dR

)

where the rows and columns of MB are arranged accordingly.
Using the algorithm above we can solve MB f = b as follows:

1. Compute Flow(B, {Tr }r∈R, bN , 0).
2. Solve MR · y = (bR − dR).
3. Compute Flow(B, {Tr }r∈R, bN , y).

In the first step we compute a flow with value zero on all hyperarcs E ∈ B2 which
induces the right demands on the non-root vertices. In the second step we calculate
the flow needed on B2 to correct the demand at the root vertices, and finally in step
3 we adjust the flow on the tree arcs.

For the dual problem πT MB = cTB we need Algorithm3 as a subroutine. Given the
cost c1 of all tree arcs B1, and the potential πR at the root vertices it computes a cost
vector e2 on B2 and potential πN on the non-root vertices such that (πT

N ,π
T
R )MB =

(cT1 , e
T
2 ), i.e., the reduced cost of every basic hyperarc is zero.

Algorithm 3 Potential
1: procedure Potential(B, {Tr }r∈R, c1,πR)
2: π(v) ← πR(v) for all v ∈ R and π(v) = 0 for all v ∈ V \ R.
3: for all tress Tr do
4: for j = 1 to |V (Tr )| − 1 do
5: if a j = (v, v j+1) then π(v j+1) ← π(v) + c1(a j ).
6: if a j = (v j+1, v) then π(v j+1) ← π(v) − c1(a j ).
7: end for
8: end for
9: for all E ∈ B2 do
10: e2(E) ← ∑

v∈H(E) π(v) − ∑
v∈T (E) π(v).

11: end for
12: return e2,π.
13: end procedure

As the rank of MB is |V | − 1 the system πT MB = cTB has no unique solution.
Thus, we can fix the value of one vertex, for example we can choose one of the roots
r1 ∈ R and set π(r1) = 0.

Now, we can solve Dual as follows.

1. Compute Potential(B, {Tr }r∈R, c1, 0).
2. Find a solution to yT MR = (cT2 − eT2 ) with y(r1) = 0.
3. For all r ∈ R set π(r) ← y(r) and π(v) ← π(v) + π(r) for all v ∈ V (Tr )

First, the potential on the roots is set to zero, and we compute a potential on the
non-root vertices such that the reduced cost of every tree arc is zero. In the second
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step the correct potential of the root vertices is calculated, and in step 3 the potential
on the non-roots is adjusted. In contrast to the primal problem, we do not have to
call Algorithm3 a second time. It suffices to add the potential of the root vertex to
the potential of the other vertices in the tree.
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Rapid Mathematical Programming
for Cooperative Truck Networks

Jörg Rambau

1 Cooperative Truck Networks

Cooperative Truck Networks (CTN) are an idea from [1]: In order to reduce idle
times of the trucks and overnight stays of the drivers, cooperate among various
(small) logistic companies in the following way: Any driver leaves the depot with a
truck and a full trailer in the morning and returns with that same truck and (maybe)
another trailer in the afternoon. We call such a one-day home-away-home truck tour
a depot commute. The full truckload stays on its trailer, and the trailer is passed on
from truck to truck until it arrives at its destination. For example: Instead of two full
truckload transportations, one from Hamburg to Munich and one from Munich to
Hamburg that take a whole day one-way one could exchange the trailers in Kassel
to get home on the same day.

Of course, dispatching such a cooperative transportation system is a complicated
task. Usually, not all transport routes will fit together. For example, if some transport
traverses an edge that is not traversed in the opposite direction by any other transport
route on the same day, then this transport cannot be carried out by a sequence of
depot commutes.

The organizational task tomaximize the number of transports that can be operated
by the CTN for Fixed Routing (FR) (i.e., with given fixed scheduled routes for all
transport requests) was algorithmically studied for the first time in [2]. Let us call
this problem the fixed-route CTN relay problem (FR-CTNRP). In order to evaluate
the actual benefit, also monetary consequences must be assessed. Therefore, cost
calculations havebeenprovided in [3].Using an ad-hocoptimization algorithm, itwas
observed in [2] that inmany real-world cases the fraction of transport requests that can
be cooperatively processed is too small to convince small companies to participate in
a CTN. This problem was later confirmed by exact optimization calculations carried
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out by the author. Thus, the idea of injecting more flexibility into the problem setting
was born. The first attempt in this direction is Multi Routing (MR), i.e., to allow
for multiple routing alternatives for each transport request. The resulting problem
is called the multi-route CTN relay problem (MR-CTNRP). Detailed information
concerning the business process and the data handling can be read in two other
contributions to this volume [4, 5] and the thesis [6].

This paper contributes aRapidMathematical Programming Approach in the spirit
of [7] based on mixed-integer linear programming (MILP). Based on the presented
numerical results on real-world data some insights for the algorithm designer and
for the manager are provided.

2 Formal Problem Definition

Let the set of time slots be T = {0, 1, . . . N }, where one time slot extends to half
the duration of a shift.Morning time slots are even, afternoon time slots are odd t’s.
Any driver can drive for the length of two time slots per day, first a morning time
slot, then an afternoon time slot. Let G = (V, E) be the transportation network of
the CTN. Its nodes V are the possible trailer exchange points including all the home
depots of the trucks. Its edges E connect two nodes whenever it takes no more than
one time slot to go from one node to the other. Each truck belongs to a depot. The
set of depots is denoted by D ⊆ V .

Moreover, there is an index set of transport requests Q. For each q ∈ Q we
have an index set of routing alternatives Pq with a default route p(q) ∈ Pq . We
set P = ⋃

q∈Q
({q} × Pq

)
. The routing alternatives are specified by a routing and

scheduling function r : Pq → 2T×E that assigns to each routing alternative p ∈ Pq
for transport request q a scheduled route, i.e., a set of time-stamped, chronologically
adjacent edges that specifywhen andwhere the trailer loadedwith transport request q
shall go from one node to another. Origin and destination of a transport request q can
be read off the common origin and destination nodes of its routing alternatives. We
define a depot commute as a pair of scheduled edges (p, t, d, b) and (p′, t + 1, b, d)
where p, p′ are routing alternatives, t is a morning time slot, d is a depot, and b is
some node.

For some subset of routing alternatives P ′ ⊆ P let L(P ′) = ⋃
p∈P ′

({p} × r(p)
)

be the link collection of P ′, i.e., the total set of route-labeled scheduled transport
links traversed by the routes in P ′. Each route p ∈ P induces a network transport
cost βp if p ∈ P ′ and a direct transport cost γp > βp if p ∈ P \ P ′. The network
transport cost is calculated assuming that the transport can be carried out along the
route by depot commutes of trucks only, passing on the trailer at the end of a morning
time slot. The direct transport cost is calculated assuming that the transport is carried
out along the route by a single driver and a single truck keeping the same trailer
throughout.
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The task of theMR-CTNRP is to find a (by some criterion) optimal subset P∗ ⊆ P
whose link collection L(P∗) can be partitioned into loaded depot commutes and for
which at most one routing alternative is chosen for each transport request. For an
MR-CTNRP-solution P∗, nettrips are the transport requests using a route from P∗
cooperatively, and dirtrips are remaining transport requests using the default route
directly. The FR-CTNRP is the special case of the MR-CTNRP where |Pq | = 1 for
all q ∈ Q, i.e., there is only one routing alternative for each transport request.

The optimality criterion we investigated for this work are, first, the maximization
of the number |P∗|of nettrips and, second, theminimization of the total transportation
cost incurred by nettrips and dirtrips.

3 A Mixed-Integer Linear Programming Model

We use the principle of “Rapid Mathematical Programming”, first systematically
discussed in [7]. Moreover, we use the modeling language zimpl introduced in the
same work. Our goal is to provide a lean model for the MR-CTNRP with enough
flexibility to evaluate model variants fast. We define binary selection variables z p
for each routing alternative p ∈ P . Moreover, we define binary depot assignment
variables xp,t,d,b and xp,t,a,d indicating that p uses the departure link (d, b) or home
link (a, d), respectively, of a depot commute at time slot t . We introduce additional
non-negative measurement variables for the number of nettrips (u integer) and the
total cost (v continuous) in order to be able to read off those values from the solution
values. The resulting model reads as follows:

max u or min v (1)

such that

u −
∑

p∈P

z p = 0 (2)

v −
∑

p∈P

βpz p −
∑

q∈Q
γp(q)(1 −

∑

p∈Pq

z p) = 0 (3)

xp,t,d,b − z p = 0 ∀(p, t, d, b) ∈ L(P)
with d ∈ D, t even (4)

xp,t,a,d − z p = 0 ∀(p, t, a, d) ∈ L(P)
with d ∈ D, t odd (5)

∑

p∈P:
(p,t,d,b)∈L(P)

xp,t,d,b −
∑

p∈P:
(p,t+1,b,d)∈L(P)

xp,t+1,b,d = 0 ∀d ∈ D,∀t ∈ T even (6)
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∑

p∈P:
(p,t,a,d)∈L(P)

xp,t,a,d −
∑

p∈P:
(p,t−1,d,a)∈L(P)

xp,t−1,d,a = 0 ∀d ∈ D,∀t ∈ T odd (7)

∑

p∈Pq

z p ≤ 1 ∀q ∈ Q (8)

xp,t,d,b, z p ∈ {0, 1} ∀(p, t, d, b) ∈ L(P).
(9)

We optimize in the objective function (1) one of the measurement variables u
or v. Restrictions (2) and (3) compute these values from the independent variables.
Restrictions (4) and (5) ensure that a path can be selected if and only all of its morning
links and all of its afternoon links have been assigned to the appropriate part of some
depot commute. Restrictions (6) and (7) guarantee that for each depot commute the
number of paths assigned to the leaving part of the commute equals the number
of paths assigned to the returning part. In restriction (8) we allow for at most one
selected route per transport request. Whenever we want to compare the FR optimum,
we can fix the selection variables to be one on the fixed route only. This way, we can
easily test variants of possible CTN operations with only slight modifications.

4 Computational Results

In Table1 we show the results of our tests. In numerical experiments we computed
optimal solutions for model variants on the basis of real-world instances. The exper-
iments with 6 start time slots (t6) are typical instance sizes for a daily operation
on the moving horizon. The experiments with 14 start time slots (t14) have been
carried out in order to evaluate the value of the additional future information. We
applied two strategies to keep the number of routes under control: The instances l3
allow only routes with at most 3 nodes, the instances l5 allow routes with at most
five notes. Moreover, we distinguish the case in which shifting is allowed: shifting
(–s) provides for each single-link transport request a canonical routing alternative
that uses the same single-link route but on the other time slot of the same day. For
each solution we are interested in the fraction of transport requests that are carried
out cooperatively and in the cost savings incurred by cooperative transportation.
The instances maxtrips maximize the number of nettrips, the instances mincost
minimize total costs.

All instances were provided by Bernd Nieberding from the ILAN project at the
FH Erfurt. The cost for each route and transportation mode was estimated by the
ILAN project team according to [3].

Weusedzimpl 3.3.1/cplex 12.5.0.0onaMacBookPro (2012)/MacOS
10.11.6. Thecplex parameterwere changed to “set timelimit 3600” (time-
out), “set mip tol mipgap 0.01” (increased optimality gap), “set mip
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tol integrality 1e-7” (decreased integrality gap), and “set emph mip
1” (search preferably for integer feasible solutions).

The following insights can be drawn from Table1:

1. Our model scales well for alternative routes of length at most three nodes; the
computation times explode if the maximal path length is increased to five nodes.
Managerial insight: stickwith routes of length atmost three. Algorithmic insight:
if longer routes need to be handled in the model for some reason, then more
sophisticated solution methods are needed (most notably dynamic column gen-
eration for alternative routes). Possible explanation: with routes of at most three
nodes (starting in the morning and arriving in the afternoon), our model reveals
that then all decisions can be made independently for each day, so that the solu-
tion method scales well with an increasing number of time slots.

2. The idea to provide multiple routes for each transport request is effective; the
optimal number of nettrips increases by around 50%. Managerial insight: moti-
vate companies to provide alternative routes.

3. The idea to allow of shifting is very effective: it roughly yields another 60–70%
increase of possible nettrips. Managerial insight: utilize both time slots of each
day for single-link transports.

4. Maximizing nettrips usually yields low-cost solutions, and minimizing costs
usually yields high-nettrips solutions. Managerial insight: use a suitable combi-
nation of both, e.g., if driver satisfaction is important in its own right.

5. Cost minimization seems to scale better in theMILP solution process with prob-
lem size (see MR-mincost-t14-l5, which yield a better fraction of nettrips than
both MR-maxtrips-t14-l5 and MR-maxtrips-t14-l5-s). Algorithmic insight:
for maximizing nettrips, perturb the objective by a cost term.

6. A longer horizon does not lead to a substantially larger fraction of nettrips.
Managerial insight: the model is suitable for a rolling-horizon planning on a
short planning horizon. Possible explanation: again, the model for short paths is
uncoupled over days.

The rapidmathematical programming investigation with exact mathematical soft-
ware yields useful information for the design and operation of a CTN. Even more
(capacities, fair share of benefit, etc.) could be incorporated. We showed that almost
half of the transports can be carried out as nettrips in a CTN with multirouting and
shifting. Lifting additional potential of the CTN concept requires a more sophisti-
cated machinery of Mathematical Programming – which lifts the entry hurdle for
small companiesmaybe too high. Thus, there is evidence for the fact thatmultirouting
plus shifting on single-day routes (length 3) yields a well-balanced CTN operation
mode with high potential.
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Multi-routing for Transport-Matching
in Cooperative, Full Truckload, Relay
Networks

Bernd Nieberding

1 Introduction

Full truckload (FTL) is described as so-called point-to-point or over-the-road dis-
patching, with standard curtain-sided or box trailers, where the smallest transporta-
tion unit is one trailer and a load is directly transported between origin and destination
by a single driver, [1]. InGermany the segment of FTL, has a high lack of productivity
due to small companies with non-industrialized transport processes, which leads to
vehicle-workload of less than 30%, [2]. Approaches using truckload relay networks
are known as so-called Advanced Truckloading and were introduced to reduce the
high driver turnover of US truckload carriers, [1]. To fit the characteristics of the
German FTL market these approaches were adapted and modified in [3]. The basic
idea is a cooperative network of different carriers, with transport processes similar
to the processes in the part load or less than truckload (LTL) segment, [4, 5]. Each
location of a carrier serves as a relay depot with an assigned zone for pickup or
delivery of loads, designated to be dispatched in the relay network. To increase the
operation time of the truck, a restaffing of the truck is necessary. Therefore, direct
transports between two depots are only executed, if the driving distance between
them satisfies conditions such that a driver returns to his home depot by the end of
his working period. Other transports are handled as a relay of direct transports in the
network. A parial matching of transports on each relay link avoids empty runs and
enhances the overall-costs.

Previous investigations, [6, 7], have shown that the use of only single routes
for each transport leads to an unsatisfying number of transports handled within the
network. This paper generalizes the model presented in [6, 7] to sets of routes, called
multi-routes, which gives a higher flexibility in the matching of relay transports.

B. Nieberding (B)
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2 Multi-routes and Matching

The relay-network and transport routes are describedby adirectedgraphG = (V, E),
where a node vi ∈ V , i = 1, . . . , D, represents a depot or exchange place in the
network and an arc (vi , v j ) ∈ E ⊆ V × V represents the connection between two
depots vi , v j ∈ V . We define (vi , v j ) := (v j , vi ). To take transport distances or
transport times into account we consider the weighted graph (G,ω)), where the
weight function ω : E → R≥0 assigns each arc (v,w) ∈ E to a transport dis-
tance or time ω(v,w) ∈ R≥0. The set of scheduled operation periods is defined as
T = {tn ∈ R>0}n=1,...,N , where tn < tn+1 holds for all n = 1, . . . , N and N ∈ N>0

is the total number of considered operation periods.

2.1 Transport Routes

Let P ⊂ G be a directed path between two depots vP0 ∈ V and vPl ∈ V , with VP ={
vP0 , . . . , vPl

}
and EP = {

(vP0 , vP1), . . . , (vPl−1 , vPl )
}
. Further, let (tn ∈ T )n=n0,...nl−1 ,

with nl−1 − n0 = l, be a sequence of operation periods. Then, inside the relay-
network a dispatching from a pickup-depot vP0 to a delivery-depot vPl , along path
P , beginning in period tn0 and ending in period tnl−1 , can be described as a sequence

R(vP0 , vPl , tn0 , tnl−1) = (((
vPi , vPi+1

)
, tni

))
i=0,...,l−1 . (1)

We call R(vP0 , vPl , tn0 , tnl−1) a transport route from depot vP0 to depot vPl and the
tuples

((
vPi , vPi+1

)
, tni

)
are the so-called transport relay segments. For a transport

k = 1, . . . , K all existing transport routes R j
k , j = 1, . . . , J (k), between two nodes

vk ∈ V and wk ∈ V , i.e. there exists a path P from vk to wk satisfying constraint
ωnet on each edge in E(P), beginning earliestly in operation period tnk and ending
latestly in period tmk are stored in the set

Rk(vk, wk, tnk , tmk ) :=
{
R j
k (vk, wk, t

j
n0 , t

j
nl−1

)
}

j=1,...,J (k)
, (2)

where t1 ≤ tnk ≤ t jn0 ≤ t jnl−1 ≤ tmk ≤ tN holds for all j . For a given set of K transports
and their transport route sets, a compact notation of the finite set of all transport routes
is given by R := ⋃K

k=1 Rk(vk, wk, tnk , tmk ).

2.2 Transport-Matching

Empty-runs play a crucial role with respect to transport costs in freight dispatch-
ing. The aim of our solution approach is to match two transport relay segments in
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a way such that each relay segment of a transport receives a backload given by a
relay segment from another transport in a subsequent operation period. More pre-
cisely, for two given transport routes R j1

k1
and R j2

k2
in R, with k1 �= k2 ∈ {1, . . . , K },

j1 ∈ {1, . . . , J (k1)}, j2 ∈ {1, . . . , J (k2)}, there exists a partial matching between
a transport relay segments

(
(vk1 , wk1), tnk1

)
of R j1

k1
and

(
(vk2 , wk2), tnk2

)
of R j2

k2
, iff

(vk1 , wk1) = (vk2 , wk2) and tnk1 = tnk2 + 1 holds, with nk1 = 2mk1 − 1 and mk1 ∈
N>0. Due to small driver and truck capacities, the condition n = 2m − 1 is nec-
essary to design a two-periodical process consisting of parallel network processes in
one half (tn and tn+1) and parallel pick up and delivery processes in the other half (in
the non-scheduled times before tn and after tn+1) of each day in our model, without
overlapping. In general this condition can be dropped to allow both process types at
all times.

The partial matching graph G is a tuple (VG, EG) consisting of a set VG :=⋃K
k=1 Vk := ⋃K

k=1

⋃J (k)
j=1 V

j
k of nodes, where v j,n

k ∈ V j
k iff there exists ((v,w), tn) ∈

R j
k : v,w ∈ V ∧ tn ∈ T and a set EG of edges, where for k1 �= k2

{
v
j1,n
k1

, v
j2,n+1
k2

}
∈

EG iff there exists partial matching between v
j1,n
k1

and v
j2,n+1
k2

.
If a set of transports is handled in the intended framework. Two conditionsmust be

satisfied: Firstly, if a relay segment of a transport is used for a partial matching, then
the transport has to be matched on all its segments. Secondly, each route segment
of a transport can serve as a load or back load only one time, because the smallest
transport unit is one trailer. This leads to the following definition of a matching:
A matching M ⊆ G is a tuple (VM, EM) ⊆ (VG, EG) such that if there exists k ∈
{1, . . . , K } , n ∈ {1, . . . , N } , j ∈ {1, . . . , J (k)} such that v j,n

k ∈ VM, then V j
k ⊂

VM and
⋃J (k)

l=1
l �= j

V l
k � VM, and for all v ∈ VM holds deg(v) = 1.

The problem tomaximize the number of transports in thematchingwas considered
with an ad-hoc method in [6], for two operation periods and using directed cycles
in [7], and with an rapid mathematical programming approach with mixed-integer
linear programming and further objective functions in [8].

3 Calculation of Multi-routes

The calculation of a route set (2) for each transport belongs to the field of path
enumeration, i.e. the aim is not to find a specific solution, as for example given by
Dijkstra’s algorithm, instead we are searching for a set of feasible solutions, which
are all satisfying specific constraints. Here, we are searching for the k shortest paths,
with unknown k, satisfying constraints with respect to edge-weights, path-length,
scheduling-time and costs, which in general is known as the k-constrained shortest
path problem. A similar approach was used in [1], where path enumeration was
used for a non-cooperative FTL network in the USA, with constraints regarding to
path-length and circuity.
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The main routing-process is divided into two steps: In a pre-processing step all
paths between two different depots are calculated pairwisely under constraints to
edge-weight, path-length and costs. This process has to be re-calculated only if the
network structure is changed. Therefore, calculation time plays a minor role. In a
post-processing each route given by the pre-processing is assigned to a transport, if
constraints corresponding to pickup- and delivery depot, scheduling-time and costs
are satisfied. This has to be performed for each new transport in the calculation, but
does not require high computing ressources, see Table2.

3.1 Pre-processing

In the desired framework a returning of the driver to his home-depot is an important
precondition to restaff the vehicle. To this, we introduce a network operation con-
straint ωmax ∈ R≥0, which describes the maximally allowed driving distance or time
of a relay segment such that a driver can return to his homedepot.Under this constraint
a route (1) is only valid, if maxi=0,...,l−1

{
ω

((
vPi , vPi+1

))
, ω

((
vPi+1 , vPi

))} ≤ ωmax

is satisfied. In this context ωmax puts a ceiling on the distance between two relay-
depots that a driver is allowed to drive. It is assumed to be in the range of 4–
4.5h with respect to driving time and a variable, route-based transport-velocity or
between 250–300Km in case of a constant transport-velocity. In a dense network
structure, i.e. a big number of depots distributed to a small region, where the radii
for pickup- and delivery-processes of different depots overlap, it can be useful to
bound the distances of the transport relay segments from below by ωmin ∈ R≥0 with
mini=0,...,l−1

{
ω

((
vPi , vPi+1

))
,ω

((
vPi+1 , vPi

))} ≥ ωmin.
In realistic scenarios it is useful to restrict the length of paths in transport routes

due to two main reasons. The first reason is related to the transport processes. Here,
geographical data, especially the network-covered region and distances between
depots in the network, may lead to a maximal number of trailer exchanges on the
route, which are accepted by the forwarders in the network. On the other hand
a dense network structure will drastically increase the calculation time to find all
possible paths between to depots. In this case we have to find a good balance between
the flexibility of transport routes with respect to the number of transports in the
matching and the available ressources allowing to calculate and evaluate all routes in
an acceptable time. Let λmax be the maximal path-length, then a transport route (1)
beginning in period tn0 and ending in period tnl−i is only valid if nl−1 − n0 = l ≤ λmax.

Similar to [1], it is not a requirement to the network to perform all transportswithin
this framework. Especially transports with a better cost-situation in the conventional
dispatching, without relays, can be excluded from the data set. To this, we restrict
the costs of a path P . Let Cpre

dir be the costs of a direct transport between two depots
and Cpre

net (P) the costs of a relay transport along P , where Cpre
dir and Cpre

net (P) are as

proposed in [2]. Then, a path P is only valid if 1 − Cpre
net (P)
Cpre
dir

≥ cadv, where cadv is a
parameter for a desired cost-advantage of network transports.



Multi-routing for Transport-Matching in Cooperative … 329

The computation of valid paths between two different depots v ∈ V and w ∈ V
consists of the following steps: First, ωmax and ωmin are used to reduce the edge set
of G such that the constraints ωmax and ωmin are satisfied for all egdes in the reduced
edge set E∗ ⊆ E . Then, a depth-limited search (DLS) algorithm is used to calculate
all paths satisfying the determined constraints.

3.2 Post-processing

The scheduling of each transport to the set of operation periods T may be subjected to
restrictions given by shippers or receivers. To this, each transport k has aminimal time
period tnkmin

, which is the first operation period, where the transport can be handled in
the relay network, and a maximal time period tnkmax

, which is the last period, in which
a relay transport can be performed. For route sets (2) this leads to the time-constraint
tnkmin

≤ t jn0 ≤ t jnl−1 ≤ tnkmax
for all routes j . In the case t knmin

> t knmax
the transport can not

be handled as a relay transport. Beside the effect on transport scheduling, tnkmin
and

tnkmax
implicitly give a maximal length lkmax = nkmax − nkmin + 1 of paths that can be

used to route transport between two depots.
While in the pre-processing the costs of a transport along a path P in the network

graph were only considered between two depots, the post-processing considers the
total transport cost, i.e. including the distances from its origin and destination to
the pickup and delivery depots, respectively. Let Cpost

dir be the total costs of a direct
transport and Cpost

net (P) the total costs of a relay transport along P , where Cpost
dir and

Cpost
net (P) are also as proposed in [2]. Then, a path P of a route (1) in a route set (2)

is only valid, if 1 − Cpost
net (P)

Cpost
dir

≥ cadv.

3.3 Computational Results

The nodes in the network graph consists of 87 depots in allmost all of the 95 postcode
areas in Germany, which is similar to the situation of a part load network. Especially
in the west, the network structure is dense. For cadv = 0, Table1 shows the results
for the pre-processing.

Here, Reliso is the number relations without any route, Relcon is the number of
relations with at least one route, Relav is the average number of routes on a relation,
Relmin or Relmax are the minimal or maximal number of routes on a relation and tcomp

is the computation time in minutes. While ωmin has a small effect on the relation
structure and computation time, the path-length λmax increases the number of routes
on these connection drastically with a high drawback to tcomp.
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Table 1 Results of pre-processing for 87 depots and cadv = 0

ωmin ωmax λmax Reliso Relcon Relav Relmin Relmax tcomp

0 300 3 2856 4626 1.7 0 25 1.04

0 300 5 1262 6220 25.3 0 972 120.35

100 300 3 3432 4050 1.3 0 15 0.65

100 300 5 1872 5610 9.6 0 420 28.39

Table 2 Results of post-processing for 100414 transports and cadv = 0

Shift ωmin ωmax λmax Trout Trin Trav Trmax tcomp

0/1 0 300 3 67084 33330 5.6 22 0.2

0/1 0 300 5 56892 43522 35.7 972 1.8

0/1 100 300 3 70924 29490 5.0 13 0.1

0/1 100 300 5 60973 39441 14.7 420 0.7

In the post-processing we have evaluated a set of 100414 transports given by our
project-partners. In the first scenario, Shift = 0, there is no degree of freedom with
respect to scheduling, i.e. tnkmin

= t jn0 ≤ t jnl−1 = tnkmax
. In the second scenario, Shift= 1,

transport routes with only one relay segment will have a route alternative, where the
transport route with only one relay segment is shifted to the subsequent operation
period. Thismakes sense, due to the fact that network-processes cover two subsequent
operation periods. For cadv = 0, Table2 shows the results for the post-processing,
where Trout is the number of transports with an empty route set, Trin is the number
of transport with at least one valid route, Trav is the average number of routes of
transports with non-empty route sets, Trmax is the maximal number of routes in a
route set and tcomp is the computation time in minutes.

Compared to the pre-processing, the post-processing is much faster. The effects
of the parameter ωmin and λmax are the same as in the pre-processing.
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On a Technique for Finding Running
Tracks of Specific Length in a Road
Network

David Willems, Oliver Zehner and Stefan Ruzika

1 Introduction

Many sport events, especially endurance sport competitions, take place in urban
spaces. Throughout the past years, fun runs or obstacle runs gained public attention
with growing participant numbers. Labels like XLETIX, ToughMudder, Strongman,
Münz Sportkonzept or B2Run emerged from the popularity of such events. For
example, the Münz Firmenlauf 2017 in Koblenz is expecting about 17,500 athletes
[1]. For a city like Koblenz this constitutes an immense intervention into traffic for
each afternoon the run is being carried out. Often, those competitions are reoccurring
on an annual basis and have grown to an extent that their race track disrupts the
local traffic situation. Traffic participants may encounter road closures and long
waiting times. Up until now event organizers have to propose a potential track at the
corresponding municipal administration office and order office including start point
and finish point considering all requirements for the track. If the authorities approve
the proposed track the event organizer is free to publish and advertise their venture.
This planning step is not trivial as the event may be canceled because authorities
consider the route as inadequate or the track may negatively affect the local traffic
situation. Overcrowded roads and impatient drivers can lead to a bad reputation for
the organizer, which may lead to cancellation in the future as well. In this paper, we
present a combinatorial algorithm to find possible running tracks of specific length in
a road network. Since also running tracks are often designed as cycles the presented
method constitutes a valuable tool for organizers of running events.
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In this article, we provide a combinatorial algorithm to solve the problem of
finding given-length cycles or given-length paths. This method of finding such paths
and cycles especially benefits organizers of running events as this algorithm can be
applied to road networks. As a result, this approach constitutes a simplification tool
in the decision making process of finding adequate race tracks. Since the algorithm
returns a number of possibilities from which organizers are able to choose the track
that meets most requirements desired by the organizer, it is also thinkable to apply a
second optimization phase to these solutions.

2 Preliminaries from Network Optimization

The algorithms used in this paper rely on basics of graph theory and network opti-
mization. We will briefly recall the most important definitions in this section. For a
more detailed overview, we refer the reader to the book of [2].

A directed graph G = (V, A) consists of a set V of nodes (or sometimes called
vertices) and a set A of edges whose elements are ordered pairs of distinct nodes. A
directed network is a directed graph whose nodes or edges have associated numerical
values (typically costs, lengths, travel times, capacities…).

In this paper we do not make a distinction between graphs and networks, so we
use the terms “graph” and “network” synonymously. For convenience we set n = |V |
the number of nodes and m = |A| the number of edges in the network.

For a directed graph G = (V, A) with node set V , edge set A and cost function
c : A → N that associates costs ci j with each edge (i, j) ∈ A and a distinguished
node s ∈ V , Dijkstra’s Algorithm [2] can be used to compute shortest paths from the
source node s to all other nodes in the graph.

Remark 1 Dijkstra’s algorithm using a naïve implementation has a worst case
time-complexity of O(n2) [2]. Using Fibonacci heaps, the time complexity can be
improved to O(m + n log n) [3].

In the following, we assume that only simple paths are qualified as candidates
for running tracks. A path is called simple if it contains no repeated vertices. The
simpleness of a running track is an important property, since otherwise the path
would contain repeated edges and thus intersections which may lead to interruptions
in the operational flow.

3 Finding Paths or Cycles of Specific Lengths

In this paragraph, we describe the algorithm used to find simple paths or cycles in a
network with prespecified length.

First, we address the computational complexity of the problem. For a given graph
G = (V, A), two distinguished nodes s, t ∈ V and a target length L ∈ N, the task is
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to find a simple path Ps,t from s to t such that its cost c
(
Ps,t

)
is as close as possible

to L . If L ≤ c∗ (
Ps,t

)
where c∗ (

Ps,t
)
is the cost of the shortest path between s and t ,

the problem is solvable in polynomial time since it suffices to compute the shortest
path between s and t . Otherwise, it can be shown that the problem is NP-hard.

Theorem 1 The general problem of finding a simple path P between two nodes
s, t in a weighted directed graph whose cost c(P) equals a given target value L is
NP-hard.

Proof The problem is clearly in NP. We construct a reduction from the subset-sum
problem, which is known to be NP-complete [4].

Given an instance ({s1, . . . , sn}, L) of the subset-sum problem, construct a
weighted graph GL = (VL , AL), where VL = {v0, . . . , vn, v

′
0, . . . , v

′
n} and there is

an edge (vi−1, vi ) with weight si . Additionally, add the edges (vi−1, v
′
i ) and (v′

i , vi )

with a weight of zero. Obviously, there exists a simple path between v0 and vn of
cost L if and only if there is a subset of {s1, ..., sn} whose sum is equal to L , which
concludes the proof. �

As a consequence of Theorem1, there is no algorithm to solve the general problem
of finding a path with specific length in a network in polynomial time, provided that
P �= NP.

Nevertheless, a combinatorial approach to solve the problem is now as follows:
from a given starting point s use the K -shortest path algorithm by [5] to successively
compute new shortest paths to the target point t until the length of the kth shortest
path (for 1 ≤ k ≤ K ) is within a threshold of the desired target length L . A formal
description of Yen’s Algorithm is given in Algorithm 1.

Yen’s Algorithm works in two phases, determining the first of the K -shortest path
P1 and subsequently determining all other K -shortest path for K > 1. The algorithm
maintains a list A to save the k-shortest path and a heap B to hold the potential k-
shortest paths. Using this notation, the first element of A is the shortest path from
the starting point s to finish t . To determine this shortest path, we use Dijkstra’s
algorithm.

Lemma 1 For a given graph G = (V, A), Yen’s Algorithm to find the K short-
est loopless paths can be implemented in such a way that the time complexity is
O(K n(m + n log n)).

Proof The time complexity of Yen’s Algorithm mainly depends on the shortest path
algorithm used in line 12 for the computation of the spur paths. We assume that
Dijkstra’s Algorithm is used. Yen’s Algorithm makes Kl calls to the Dijkstra algo-
rithm in computing the spur paths, where l is the length of spur paths. In the worst
case, the spur path passes all other nodes in the graph, so it holds that l = n. This
concludes the proof. �

Remark 2 The technique described in this section can be used to find paths of specific
length. Due to theway howYen’s Algorithmworks, Algorithm 1 cannot be used if we
want to find a cycle, i.e., it holds that s = t . This can be fixed by a small modification
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Algorithm 1: Yen’s Algorithm, [5]
Input : A weighted graph G = (V, A), a nonnegative cost function c : A → N, a source

s ∈ V , a target t ∈ V and some K ∈ N.
Output: A list A with the K shortest paths from s to t in ascending order.

1 A[0] = ShortestPath(G, s, t) // Determine shortest path from s to t
2 B = [] // Initialize heap to store candidates
3 for k = 1 to K do
4 for i = 0 to length(A[k − 1]-1) do
5 spur Node = A[k − 1].node(i)
6 root Path = A[k − 1].nodes(0, i)
7 foreach path p ∈ A do
8 if root Path == p.nodes(0, i) then
9 G.remove_edge(i, i + 1)

10 foreach root PathNode ∈ root Path \ {spur Node} do
11 G.remove_node(root PathNode)
12 spur Path = ShortestPath(G, spur Node, t)
13 total Path = root Path + spur Path // Build the entire s-t-path
14 B.push(total Path) // Push candidate onto the heap
15 G.restore_edges() // Add back the edges that were removed
16 G.restore_nodes() // Add back the nodes that were removed
17 if B.is_empty() then
18 break
19 B.sort ()
20 A[k] = B.pop() // Add path with lowest cost to A
21 return A

of the original network: instead of using the identical nodes s and t as input for the
algorithm, we introduce an artificial node t̃ with small distance ε to s to the network
and use the nodes s and t̃ for the computations.

4 Application and Results

The core idea of finding a running track with prespecified length is now as follows:
For a given starting point s and target t compute successively paths Pk

s,t with Yen’s
Algorithm until the length c(Pk

s,t ) is within a feasible windows around the desired
length L . Algorithm 2 shows the algorithmic framework of this approach.

To illustrate the application of our model, we compare our results to the actual
track of the 5km long B2RUN Kaiserslautern run from the year 2017. The map of
the event is shown in Fig. 1a. One solution with the same starting and target point
and similar length (≈ 4993m) found by our method is shown in Fig. 1b. Obviously,
it is also possible to reconstruct the original running track for a fitting threshold
parameter l.

Furthermore, the presented methodology can easily be adapted to to integrate
“routes of interest” into the running track. This can be done in an iterative approach
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Algorithm 2: Running track algorithm
Input : A weighted graph G = (V, A), a nonnegative cost function c : A → N, a source

s ∈ V , a target t ∈ V , the desired target length L and a threshold l.
Output: A list A with s-t-paths with lengths from L − l to L + l in ascending order.

1 A = [ ] // Initialize empty list to store paths
2 for path in Yen(G, s, t, MaxInt) do // Iteratively generate paths
3 if L − l <= length(path) <= L + l then
4 A.append(path)
5 if length(path) > L + l then
6 Break
7 return A

(a) The running track of the B2RUN event
in Kaiserslautern, Source: [2]

(b) A solution found with our method. Start
and target are at the same location as in
the original.

Fig. 1 Application and comparison of the proposed method

by adding intermediate targets: to include a desired route in the running track, one
uses Algorithm 2 from the starting point of the running track to the starting point
of the route and additionally uses Algorithm 2 from the endpoint of the route to the
target point. This approach may cause the algorithm to malfunction in the following
way: since the algorithm operates on two separate parts of the running track, it is not
assured that the overall concatenated path is simple, so an additional filtering step
might be needed.

5 Conclusions and Further Research

In this paper we presented a real world problem of finding paths or cycles of pre-
specified lengths in a network. We showed that this problem cannot be solved in
polynomial time until P �= NP. However, we adapted a combinatorial algorithm to
solve the problem in reasonable time.
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In contrast to other methods like integer programming based models, our method
is capable to find several solutions within the window around the desired target
length. All the found solutions fulfill the length requirement by construction of the
algorithm. In an additional step, those solutions can be classified further. A possible
extension of our model would be (multiobjective) optimization over the solution
set. For instance, the altitude difference that is traveled in the course of the running
track is one criterion, that can be optimized. Alternatively, the shape of the route
can be optimized. Since the original algorithm only takes the length of the track into
account, the solutions may contain artifacts like zig-zags in such a way, that the track
is not suitable as a running track.
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Finding Maximum Minimum Cost Flows
to Evaluate Gas Network Capacities

Kai Hoppmann and Robert Schwarz

1 Introduction

Recent regulation towards a market liberalization in the EU has led to the decoupling
of gas trading and transport. Now the transport system operators (TSOs), who own
and operate the gas networks, sell so-called transport capacity, which can be booked
by the traders at entry and exit points independently. Within these booked capacities,
the traders may then nominate any amount of gas that they want to insert into or
withdraw from the network in the short term, that is hours or days. The TSOs have
to ensure that transportation can be realized in all balanced situations, meaning that
the amount of gas inserted at the entries is equal to the amount withdrawn at the exits
during a certain time horizon.

Different strategies to estimate the overall transport capacity of gas networks have
been developed, usually based on the evaluation of realistic and severe transport
situations, see [1] or [2] for examples. An important measure for the severity of a
scenario is the so-called transportmoment, i.e., the value of the induced Minimum
Cost Flow Problem (MCF) [3]. The goal of the Uncapacitated Maximum Minimum
Cost Flow Problem (UMMCF), which we introduce in this article, is to determine a
scenario with maximum transportmoment.

In the following,we formulate two linear bilevel optimizationmodels forUMMCF
differing in the linear program used for the induced MCF. Additionally, we propose
a greedy-style heuristic and present our first computational results.
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2 Definitions and Notation

In this article, we consider directed flow networks G = (V, A) with node set V and
arc set A ⊆ V × V , where each arc a ∈ A has an associated nonnegative length
�a ∈ R≥0 and infinite capacity. V+ ⊆ V and V− ⊆ V denote the sources and sinks
of the network and w.l.o.g. we assume that V+ ∩ V− = ∅. Additionally, we demand
that there exists at least one directed path from each source u ∈ V+ towards each
sink w ∈ V− in the network.

Further, for each source u ∈ V+ a lower and an upper bound bu, bu ∈ R≥0 with
bu ≤ bu on its supply are given. Similarly, for each sink w ∈ V− there is a lower
and an upper bound bw, bw ∈ R≤0 with bw ≤ bw on its demand. At the inner nodes
V 0 := V \ (V+ ∪ V−) flow conservation is assumed. Hence, we define bv = bv = 0
for each v ∈ V 0. Finally, b ∈ R

|V | is called demand and supply vector or scenario if
bv ∈ [bv, bv] for all v ∈ V . It is called balanced if

∑
v∈V bv = 0.

3 Bilevel Optimization Models

Next, we formulate the first linear bilevel optimization model for UMMCF. For an
introduction to bilevel optimization and common notation and definitions we refer
to [4].

max
b

∑

a∈A

�a fa (1)

s.t. bv ∈ [bv, bv] ∀v ∈ V (2)

min
f

∑

a∈A

�a fa (3)

s.t.
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = bv ∀v ∈ V (4)

fa ≥ 0 ∀a ∈ A (5)

For each node v ∈ V the variable bv represents its supply or demand. Its value is
chosen by the leader with respect to the upper and lower bounds (2). Given the
resulting supply and demand vector, the follower solves the induced MCF problem
with unlimited capacities on the arcs stated in (3)–(5). Here, the nonnegative fa
variables (5) describe the amount of flow on arc a ∈ A. Constraints (4) guarantee
that the demands and supplies of all sources and sinks are satisfied and that flow
conservation holds at all inner nodes. While the follower routes the flow through
the network such that the cost

∑
a∈A �a fa is minimized, it is the leaders goal to

choose the supplies and demands in such a way that the cost is maximized, see (3)
and (1). Since the arc flow formulation for the MCF problem [3] is used, we call
this model the arc flow formulation (AFF) for UMMCF. Note that the demand and
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supply vector b ∈ R
|V | as it is chosen by the leader must be balanced. Otherwise the

follower’s MCF problem does not admit a feasible solution. If the bounds allow for
no balanced scenarios, the problem is infeasible.

Another well-known formulation for theMCF problem, the path flow formulation
[3], features flow variables for all directed paths from the sources towards the sinks
instead. Since all arcs have infinite capacity in UMMCF, we can restrict ourselves
to shortest paths (w.r.t. the arc lengths) here. Hence, let puw denote an arbitrary but
fixed shortest path for each pair u ∈ V+ and w ∈ V− in G. Additionally, we define
P := ⋃

u∈V+
⋃

w∈V− puw, as well as Pu := ⋃
w∈V− puw and Pw := ⋃

u∈V+ puw to
simplify notation. With �p := ∑

a∈p �a being the length of the path p ∈ P and f p
denoting the flow on it, the path flow formulation (PFF) for UMMCF can then be
stated as follows:

max
b

∑

p∈P

�p f p (6)

s.t. bv ∈ [bv, bv] ∀v ∈ V (7)

min
f

∑

p∈P

�p f p (8)

s.t.
∑

p∈Pu

f p = bu ∀u ∈ V+ (9)

−
∑

p∈Pw

f p = bw ∀w ∈ V− (10)

f p ≥ 0 ∀p ∈ P. (11)

It is easy to verify that each optimal solution of PFF can be identified with an optimal
solution of AFF. Thus, we can restrict ourselves to the reduced networkG ′ = (V, A′)
where A′ := {a ∈ A | a ∈ p for some p ∈ P} when solving AFF.

4 Classical KKT Reformulation

A common way to solve bilevel optimization problems is to reduce them to single
level problems. In this article we apply the so-called classical Karush-Kuhn-Tucker
(KKT) transformation [4]. The linear programs of the follower are replaced by their
KKT conditions: The primal and dual constraints together with the corresponding
complementary slackness conditions. Applying it to AFF and PFF yields the follow-
ing two non-linear single level problems:
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max
b, f,π,φ

∑

a∈A

�a fa (12)

s.t.
∑

a∈δ+(v)

fa −
∑

a∈δ−(v)

fa = bv ∀v ∈ V (13)

πv − πu + φa = �a ∀(u, v) = a ∈ A (14)

φa fa = 0 ∀a ∈ A (15)

fa ≥ 0 ∀a ∈ A (16)

φa ≥ 0 ∀a ∈ A (17)

bv ≥ bv ≥ bv ∀v ∈ V, (18)

max
b, f,λ,μ

∑

p∈P

�p f p (19)

s.t.
∑

p∈Pu

f p = bu ∀u ∈ V+ (20)

−
∑

p∈Pw

f p = bw ∀w ∈ V− (21)

λw − λu + μp = �p ∀puw = p ∈ P (22)

μp f p = 0 ∀p ∈ P (23)

f p ≥ 0 ∀p ∈ P (24)

μp ≥ 0 ∀p ∈ P (25)

bv ≥ bv ≥ bv ∀v ∈ V . (26)

In the following, we denote these two models by KKT-AFF and KKT-PFF.

5 Greedy Minimum Cost Flow Heuristic

The Greedy Minimum Cost Flow Heuristic is based on the Greedy Minimum Cost
Flow Method presented in [5]. To describe it here, we introduce some additional
notation: For a balanced scenario b ∈ R

|V | we denote the optimal value of the induced
MCF problem by T (b). Furthermore, if we say two nodes are close to another or far
away from another, this is always w.r.t. the length of a shortest path between them.
The Greedy MCF Heuristic works as follows:

1. Choose a balanced scenario binit and set bmax := binit and Tmax := T (binit).
2. For each source x ∈ V+:

(a) Set u := x , b := binit, and T := T (binit).
(b) Choose w ∈ V− with bw > bw being farthest away from u.
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(c) Increase bu and decrease bw simultaneously until one of the values hits a
bound. Denote the resulting balanced scenario by b′ and let T ′ := T (b′).

(d) If T ′ < T go to (e). Otherwise set b := b′ and T := T ′. If b′
u = bu for all

u ∈ V+ or b′
w = bw for all w ∈ V− go to (e). Otherwise, assign u an entry

u′ with bu′ < bu′ being closest to x and go to (b).
(e) If T > Tmax, set bmax := b and Tmax := T .

3. For each sink y ∈ V−:

(a) Set w := y, b := binit, and T := T (binit).
(b) Choose u ∈ V+ with bu < bu being farthest away from w.
(c) Increase bu and decrease bw simultaneously until one of the values hits a

bound. Denote the resulting balanced scenario by b′ and let T ′ := T (b′).
(d) If T ′ < T go to (e). Otherwise set b := b′ and T := T ′. If b′

u = bu for all
u ∈ V+ or b′

w = bw for all w ∈ V− go to (e). Otherwise, assign w an exit
w′ with bw′ > bw′ being closest to y and go to (b).

(e) If T > Tmax, set bmax := b and Tmax := T .

4. Return bmax.

The roles of entry x and exit y in the inner loops of the heuristic are to describe
the direction fromwhich flow is supposed to enter or leave the network in the created
scenario, respectively. To do this, the supplies or demands of the entries or exits close
to them are increased in a greedy fashion by using the corresponding farthest aways
node for balancing.

Further, in the initialization phase (Step 1) the Greedy MCF Heuristic needs
a scenario to start with. One way to generate it is the following: Start with the
scenario where bu = bu for all u ∈ V+ and bw = bw for all w ∈ V−. If for example∑

v∈V bv < 0, increase the supply at one entry after the other until it hits its upper
bounds using any consecutive order on V+. Continue until the scenario is balanced.
In case that bu = bu for all u ∈ V+ at some point, but the scenario is still not balanced,
the problem is infeasible. If

∑
v∈V bv > 0 proceed analogously.

6 Computational Experiment

Next, we present a small computational experiment based on the data from the
gaslib-582 network from the GasLib benchmark library [6]. The network topology
and parameters are based on real data of a part of the German pipeline system, but
slightly perturbed. In addition, it contains a collection of 4227 balanced scenarios,
that were created with the methods described in [2]. For each source we used zero
as the lower and the maximum supply value occuring in these scenarios as upper
supply bound. Equivalently, for each sinkwe used zero as the upper and theminimum
demand value occuring in these scenarios as the lower demand bound. The table
below lists some important quantities concerning the reduced network.
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instance |V | |A′| |V+| |V−|
gaslib-582 582 420 15 70

In our experiment we solve the KKT-AFF and KKT-PFF model of the gaslib-
582 instance. All experiments were performed with the non-commercial MIP solver
SCIP 4.0.0, using SoPlex 3.0.0 as LP solver [7]. The experiments were run on an
Intel Core i7-5600U CPUwith 2.6GHz and 8GB of RAM and a time limit of 3600s.
All computations were run single-threaded.

It is important to note that for our experiment all non-linear constraints of type
(15) and (23)were reformulated as SOS1 (Special Ordered Set of Type 1) constraints:
Given such a set of variables, at most one of them is allowed to be non-zero in any
feasible solution. In our case all the SOS1 sets contain two variables only, namely
the f - and φ-variable for each a ∈ A′ in KKT-AFF and the f - and μ-variable for
each p ∈ P in KKT-PFF. For more information about SOS in general we refer to
[8]. Important quantities of the two models and the computational results are shown
below.

vars cons sos1 LB UB time (in s)

KKT-AFF 1507 1002 420 − − 3600
KKT-PFF 2270 1135 1050 1406674 1406674 338

The second column lists the number of variables, while the third column states
the number of linear constraints of the models. In the fourth column the number of
SOS1 sets can be found. In the fifth column the value of the best solution is given
while the sixth column contains the best upper bound found by SCIP. Finally, the
last column states the solving time for the models.

While the KKT-PFF is solved to optimality within 338s, the KKT-AFF fails to
find a feasible solution, even though it contains significantly less constraints of type
SOS1. Additionally, SCIP is not able to determine any upper bound on the optimal
solution within the time limit. A possible explanation for this behaviour is that SCIP
detects useful variable bounds for KKT-PFF due to the sparsity of its coefficient
matrix compared to KKT-AFF. The result is going to be the topic of future analysis.

We additionally ran the Greedy MCF Heuristic for the instance. For the MCF
problems arising in the different steps of the heuristic, we solved the arc flow for-
mulation for the reduced network. The Greedy MCF Heuristic provided a feasible
solution with value 1379907 in 88s. The heuristic should be used to provide an initial
feasible solution for the two models in future implementations.
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A Synthetic Model for Multilevel Air
Transportation Networks

Marzena Fügenschuh, Ralucca Gera and Tobias Lory

1 Motivation and Related Work

The global transportation system is a very dynamic and intricate network. Optimizing
travel through this network to efficiently transport goods and people via air travel,
as well as analyzing its resilience to disruption, is highly desirable. Based on the
real-world limitations of airports, aircrafts, financial and personnel resources as well
as the unpredictability of weather and natural disasters, many variables must be
taken into account. In order to effectively study the real world development of this
complex network, methodical means of creating synthetic networks comparable in
scope and behavior to real world data are needed. The natural development of air
transportation networks is difficult to model because of the multilayered nature of
the networks. Each airline independently creates routes based on market analysis for
profit, competitor routes and available resources and destinations. On the other hand,
each airport is separately developed by the municipalities it services with input and
oversight from national and international governing bodies.

One way that this network has been studied in the past is through the analysis of
multilayered networks. Multilevel or multilayered networks, frequently referred to
as multiplexes, have been considered as a detailed extension of the single layered
networks [1–3]. This structure is desirable in our case, as each airline company can
easily be modeled by a layer, with the airports being captured by the nodes. While
generating synthetic networks [4] has been very active research area, less has been
done in syntheticmultilayered network generation [3]. In themost common approach
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growingmultiplex networkmodels are based on preferential attachment [5, 6] as they
usually model relations in social networks.

Particular attention has been paid to the European Air Transportation Network
(EATN), studied in [7]. A model for the network was introduced in [8], where the
scale-free structure of airline networks is exploited and models simulating air traffic
network based on preferential attachment are introduced. However, these models
do not exploit the multilayered structure. In [9] the multilayer and the scale-free
structure of EATN is exploited to design a generative model based on an enhanced
preferential attachment method to imitate the EATN. As investigations of existing
air transportation networks confirmed their scale-free nature [8], the approach of
Barabási-Albert comes in handy to model the layers of this network. The preferen-
tial attachment method can indeed deliver a reliable multiplex network model [9].
However, the inter- and intra-layer structure has not been considered in detail.

In the current work, we build on the BinBall model using the Barabási-Albert
approach to model the diversity of the layers within a multiplex network.

2 An Enhanced Synthetic Model for a Multiplex

A multiplex as a complex network consists of several layers (subnetworks), on the
same set of nodes.As each layer is givenby adifferent attribute (different airline in our
case), the edges of the layers may duplicate each other. Thus, the multiplex M , is an
undirectedmultigraph consisting of simple undirected graphs, the layers, L1, . . . , L�,
for some � > 1, i.e. M = ⋃�

k=1 Lk . A node of a multiplex can be viewed within a
single layer, or globally in the whole network. Thus one distinguishes between the
local degree of a node u with respect to some layer L , degL(u), and the global degree
with respect to the multiplex, degM(u).

In theBinBallmodel [9], an empty network on the node set shared across all layers
is initialized. The node set is divided into possibly equally-sized subsets indicating
the layers. Edges are added iteratively. For each edge, e = (u, v), the layer L is
chosen randomly. The selection of the end nodes is based on their local and global
degrees. The probability of a node u being chosen as the first end-node of an edge,
and a node v as the second end-node is:

α degL(u) + s
∑

t∈VL
(degL(t) + s)

and
α degM(v) + P(v) + s

∑
t∈V (degM(t) + P(v) + s)

,

respectively. Here, α, s and P are predefined values: α is a scaling factor mapping a
node degree to a weight, s the zero appeal - a base value added to all nodes’ weights
when randomly choosing a node, and P a mapping from the nodes to positive reals
indicating a node’s global weight.

The BinBall model simplifies the multiplex structure, because a unified evolu-
tion manner is applied to all layers. As a result, layers of similar node and edge
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sizes contribute to the network. All layers evolve alike with respect to their degree
distribution.

We introduce StarGen, a model summarized in Algorithm 1, that focuses on the
diversity of the distinct layers within a multiplex. Inspired by BinBall’s preferential
attachment we create an asynchronous growth of the layers in the multiplex. To do
so, we allow different sizes of the layers based on a predefined distribution of layers’
edge count. Furthermore, we decouple the scaling factor α by distinguishing between
local and global α-values. We vary the local α-values to influence the variety of the
intra-layer structure: to each layer Lk , 1 ≤ k ≤ �, we assign αk as the layer’s own
local exponent. We consider

(degL(u))αk

∑
t∈VL

(degL(t))αk
(1)

as the probability of a node u being chosen as the first end node, as well as,

α deg(v) + s
∑

t∈V (α deg(t) + s)
, (2)

the probability of a node being chosen as the second end node.

Algorithm 1 StarGen
Input
l,m, n - the total number of layers, edges and nodes in the multiplex, resp.
s - zero appeal, α - global α-value, α1, . . . αl - local α-values
PE
L = (p1, . . . , pl) - layer edge sizes distribution

1: initialize multiplex M on n nodes, and empty layers L1, . . . , Ll
2: for each edge e ∈ 1 . . .m do
3: select a layer, say Li , with respect to PE

L
4: if node_si ze(Li ) ≤ 0.25 · n then
5: select start node u according to the local preferential attachment (1)
6: select end node v according to the global preferential attachment (2)
7: else
8: select start and end node u, v randomly from nodes in Li
9: end if
10: add the edge e = (u, v) to layer Li and to multiplex M
11: update local and global degree distribution of u and v according to (1) and (2)
12: end for
Output M, L1, . . . , Ll .

The layer’s sizes evolve via the preferential attachment. To avoid very large layers
we enforce a random selection of both nodes from the layer, if its node count exceeds
25% of the multiplex node size.
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3 Data Analysis and Model Validation

Following [9] we validate our model with a real-world multiplex network data of [7].
In airline networks, nodes represent airports and edges represent flights between two
airports on a given airline. A layer in this network represents the contribution of a
particular airline to the network. As already reported in [7] the EATN consists of 450
distinct node labels, 37 layers, and 3588 edges (including duplicates from different
layers). The layers, especially those corresponding to national airlines, tend to build
a hub and spoke structure. The emergence of a hub in one layer makes it a good
candidate for a spoke in another layer. As a result, the multiplex as the union of all
layers has a power law degree distribution.

Our analysis of the inner, layered structure of the network revealed that the lay-
ers vary from 35 to 128 nodes, and from 34 to 601 edges. While the layer’s sizes
based on nodes are nearly uniformly distributed, the edge counts follow a power law
distribution. Although almost all layers resemble hub and spoke structure, it shapes
differently over the layers. We deduce it from the highly volatile percentage of one
degree nodes across the layers, see the first chart on the left in Fig. 1. Each color rep-
resents the group of nodes of degree 1, followed by the ones of degree less than t%of
local maximum degree, where t ∈ {10, 20, . . . , 100}. For each x-value representing
a layer, the y-value is the count of each color group, normalized by the layer’s node
count.

Wemeasure the performance of theStarGen-model by comparing it to theBinBall-
model and EATN. We sample 100 synthetic networks of both models with common
input values for � = 37, m = 3588, n = 450, and α = 1.0. In BinBall-model, the
P-values represent node degrees of a random preferential attachment graph on the
multiplex’s node set, with incoming nodes attaching with one edge, and s is set to
0.9 as in [9]. In StarGen-model, we generated the probabilities PE

L using the degree
distribution of a random preferential attachment graph on the set of � nodes, with
incoming nodes attaching with one edge.

Based on our experiments, we chose local α-values in StarGen algorithm at ran-
dom, uniformly distributed over the interval [1.1, 1.8]. Varying the types of distri-
butions and the boundaries of the sampled interval, we observed that wider intervals

Fig. 1 The comparison of the layer degree structure of the multiplex models
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Fig. 2 Layer edge and node counts comparison: Average over BinBall and StarGen samples (left),
statistics on StarGen sample (right)

lead to higher fluctuations of one-degree node count per layer, independently of
the distribution. Additionally, the percentage of one-degree nodes increases with
growing local α-values. Therefore we assign small local α-values to layers with big
PE
L -values. Furthermore, we noticed that the zero appeal (s-value) influences the

number of zero degree nodes as well as the maximum degree value in the multiplex.
In our setting the value s = 1.1 ascertained to perform best.

We refer once more to Fig. 1 showing four plots, the first being EATN, the next
one is the average of 100 runs of BinBall, followed by the average of 100 runs of
StarGen, and lastly one example of the analysis of a StarGen network. Particularly,
the one-degree node count is very large overall and variable for different layers in
EATN which we reproduced in StarGen due to the varying local α-value. The other
color bands are also less uniform in the StarGen than in the BinBall samples, and
match better the EATN’s profile.

Figure 2 shows the edge and node (inset) count per layer for EATN, and the
average of 100 runs of BinBall and StarGen algorithm. The right two figures show
the boxplots of the StarGen samples. The appropriate choice of the distribution for
layer edge counts in StarGen-model substantiates the good match of the layer sizes.
Even the node sizes evolve adequately, although influenced only by the preferential
attachment method and the limit on the maximum value. As seen in Fig. 3, the
StarGen-model delivers a better model for the EATN-multiplex, based on the degree
distribution, the average shortest path length per node, and the average centrality per
node. Nevertheless, StarGen’s multiplexes tend to come out with higher values for
the highest degree nodes.
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Fig. 3 Multiplex: Degree distribution (left), average shortest path length per node (upper right),
average centrality per node (lower right)

4 Conclusion

Synthetic networks provide a valuable tool to generate replicas of real world net-
works or to predict their growth. To obtain reliable models, various characteristics of
the modeled network have to be reproduced. The more complex the network is, the
more challenging it is to design a straightforward procedure to emulate the network.
In this work we shaped an easy-to-follow method to replicate a multiplex supporting
the variety in the layers’ structure. We were able to show that our model consider-
ably outperforms its prototype BinBall and delivers a reliable replication of EATN,
especially its intra-layer formation.

In our tests we set the interlayer structure out of scope. We observed however that
it needs a further consideration as StarGen’s as well as BinBall’s layers overlap very
poorly in comparison with those of EATN.
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On Finding Subpaths With High Demand

Stephan Schwartz, Leonardo Balestrieri and Ralf Borndörfer

1 Introduction

In this paper we consider the following subpath load computation problem (SLCP).
Given a directed graph G and user demands in the form of weighted paths in G,
compute the load of every (sub)path in G. The load of a subpath P is the sum of the
weights of all user paths T which contain P as a subpath.

The problem has applications in toll billing where users of a given network are
billed for certain subpaths, called segments, which they cover during their trip. This
graph segmentation problem is described in detail in [1] where the problem is solved
using a set-packing integer programming formulation. The information of all sub-
paths’ loads serves as an input for the IP and is therefore crucial for the formulation.

The SLCP has connections to finding frequent subpaths. In [2], the problem of
miningpathswhich are frequent subpaths of given trajectories is considered.There, as
usual formining frequent substructures of a graph, the term frequent is determined by
a given threshold value. Consequently, the focus of the used algorithms is a bottom-up
approach where frequent substructures are combined to larger substructures which
are then pruned if they are not frequent themselves, see [3] for an overwiew. In
contrast, we aim at computing the loads or frequencies of all possible subpaths,
favoring a different approach.

While the SLCP can be solved in polynomial time, efficient computations become
necessary with large networks and even larger numbers of user paths. We tackle the
problem in two steps. First, we construct a subpath-graph to better handle duplicate
subpaths. In the second step, we employ a recursive approach on the subpath-graph
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to compute the loads of all subpaths. Our runtime analysis shows, that the presented
approach compares very well against the theoretical minimum runtime.

2 The Subpath Load Computation Problem

Let G = (V, E) be a directed graph with |V | = n and let P denote the set of simple
paths in G. Moreover, let T ⊆ P be a set of user trajectories in G with |T | = t and
a demand dT ∈ N for every T ∈ T . For a path P ∈ P we define the load of P as
follows:

�(P) :=
∑

T∈T : P⊆T

dT .

In other words, the load of a path can be seen as the number of users covering the
path during their trip. The subpath load computation problem (SLCP) is to compute
the load of every possible path in G.

First, we can observe that �(P) = 0 if P �⊆ T for all T ∈ T . Consequently, we
define

PT := {P ∈ P | ∃ T ∈ T : P ⊆ T }

and state that |PT | ≤ t
(n
2

)
since each user trajectory T ∈ T has at most

(n
2

)
subpaths.

As a result, we only have to compute the loads for paths P ∈ PT and therefore avoid
the exponential size of |P|.

Now let us take a closer look at the size of PT and define s := |PT |. While there
are instances with s ∈ Θ(tn2), e.g. with arc-disjoint user trajectories, in many cases
we have s � tn2 due to intersecting user trajectories. For example, consider a path
graph on n nodes with every possible user trajectory

(
i.e. t ∈ Θ(n2)

)
. Therefore, we

have t
(n
2

) ∈ Θ(n4) while on the other hand, we have s ∈ Θ(n2).
A natural first approach is to consider every user trajectory T ∈ T and every

possible subpath of T to collect the demand for all subpaths. As pointed out above,
this algorithm runs inO(tn2) sincewe consider every subpath of every user trajectory.

In particular, every subpath in the intersection of two trajectories is considered
multiple times. For example, consider the instance given in Fig. 1. Since the subpath
(2, 3) is part of every trajectory it is explored |T | times with the above algorithm.
In particular, if trajectories share a longer subpath, e.g. (1, 2, 3), all subpaths of this
subpath are considered for each of those trajectories.

In order to avoid these multiple considerations we introduce a subpath-graph that
ensures that every subpath is expanded only once.
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Fig. 1 User trajectories and considered subpaths for an instance of SLCP with G = K5, d ≡ 1
and T = {(1, 2, 3, 4, 5), (2, 3, 4, 5), (5, 1, 2, 3), (4, 1, 2, 3), (1, 2, 3)}

3 Constructing the Subpath-Graph

In the following we describe a problem-specific construction of what we call the
subpath-graph. For a given instance (G, T , d) of the SLCP, the corresponding
subpath-graph D = (W, A) is a directed graph, where each node w ∈ W repre-
sents a path w = (v1, . . . , vk) in G. More specifically, we have W = PT , i.e. the
nodes in D correspond to the subpaths of T . For every node w = (v1, . . . , vk) ∈ W
with k ≥ 3 we introduce an arc (w,w1) with w1 = (v1, . . . , vk−1) and another arc

(1,2,3,4,5)

(2,3,4,5) (1,2,3,4) (5,1,2,3) (4,1,2,3)

(3,4,5) (2,3,4) (1,2,3) (5,1,2) (4,1,2)

(4,5) (3,4) (2,3) (1,2) (5,1) (4,1)

Fig. 2 Examplary subpath-graph for T = {(1, 2, 3, 4, 5), (2, 3, 4, 5), (5, 1, 2, 3), (4, 1, 2, 3),
(1, 2, 3)} and G = K5 as well as d ≡ 1
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(w,w2) with w2 = (v2, . . . , vk). Figure 2 presents an exemplary subpath-graph on a
small network.

First, we can observe that the subpath-graph is a directed acyclic graph, since the
head of every arc represents a proper subpath of its tail. Moreover, every node in D
not representing an arc in G has exactly two successors, namely the two subpaths
obtained by removing the first and the last node, respectively, which implies that
|A| ≤ 2|W |.

Algorithm 3.1 specifies the construction of the subpath-graph. The setW contains
nodes for which all outgoing arcs have been created while Q contains the candidates
to be added to W . For every candidate w we check if it has already been considered
(line 5). If it was not added to W before, we generate the successors of w as well
as the corresponding arcs and add the successors as candidates to Q. The algorithm
terminates if the set of candidates is empty.

Algorithm 3.1 construct subpath-graph
Require: user trajectories T of paths in G
Ensure: subpath-graph D = (W, A)

1: W, A := ∅

2: Q := T
3: while Q �= ∅ do
4: w := Q.pop() // w = (v1, . . . , vk)
5: if w /∈ W then
6: W := W ∪ {w}
7: if k ≥ 3 then
8: w1 := (v1, . . . , vk−1)

9: w2 := (v2, . . . , vk)
10: A := A ∪ {(w,w1), (w,w2)}
11: Q := Q ∪ {w1,w2}
12: return (W, A)

With the observations above we can evaluate the runtime of this algorithm. First,
note that in line 11 we only add node w to the candidate set Q if w is a head of an arc
in the subpath-graph D. As we have |A| ≤ 2s, the loop in line 3 is executed at most
2s + t times which lies in O(s). If the check in line 5 is implemented using a prefix
tree with already added nodes (cf. [2]), the lookup can be done inO(n Δ(G)) where
Δ(G) is the maximum degree of G. The total runtime of Algorithm 3.1 is then in
O(s n Δ(G)).

4 Solving the SLCP Recursively

Now that we have constructed the subpath-graph, we will describe an algorithm to
efficiently compute the loads of all nodes in D to solve the SLCP.
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Algorithm 4.1 Compute loads for all subpaths
Require: subpath-graph D, user trajectories T with demands (dT )

Ensure: loads L = (
�(w)

)
w∈W

1: Compute Wm := {w = (v1, . . . , vm) ∈ W } for m = 2, . . . , n
2: �(w) := 0 ∀w ∈ W
3: �(w) := dT ∀w = T ∈ T
4: for m ∈ {n, . . . , 2} do
5: for (v1, . . . , vm) ∈ Wm do
6: if m ≥ 3 then
7: �(v1, . . . , vm−1) := �(v1, . . . , vm−1) + �(v1, . . . , vm)

8: �(v2, . . . , vm) := �(v2, . . . , vm) + �(v1, . . . , vm)

9: if m ≥ 4 then
10: �(v2, . . . , vm−1) := �(v2, . . . , vm−1) − �(v1, . . . , vm)

11: return L = (
�(w)

)
w∈W

Algorithm 4.1 starts by partitioning the node setW into several level sets depend-
ing on the length of the path associated with each node (line 1). Afterwards, starting
at the top level we descend the graph and for every node w = (v1, . . . , vm) that we
consider, we add the load of the current node to the load of both of its successors,
given that w is not a leaf, i.e. m ≥ 3. We also subtract the current load from the
load of “the inner path” (v2, . . . , vm−1), if this is still a path, i.e. m ≥ 4. We will see
in a moment that this is necessary to respect the inclusion-exclusion principle (cf.
Theorem 1) and that the algorithm indeed computes the loads of all subpaths.

Let us first analyze the runtime of Algorithm 4.1. Computing the level setsWm can
be done inO(s) if we start at the leafs (m = 2) and traverse the graph with reversed
arcs. In the main part we consider every node in W exactly once and since all other
operations can be performed in O(1) the total runtime of this algorithm is in O(s).

In the following we prove the recursion which is implemented in Algorithm 4.1.
We start by introducing further notation to simplify the illustration of the recursion.
For P = (v1, . . . vk) ∈ P we define N−(P) := {v0 ∈ V | (v0, v1, . . . , vk) ∈ P} and
for v ∈ N−(P) we set v � P := (v, v1, . . . , vk). This means that N−(P) are the
predecessors of node v1 which are not part of path P . Therefore, (v, v1, . . . , vk) with
v ∈ N−(P) is a simple path inG which we denote by v � P . Analogously, we define
N+(P) := {vk+1 ∈ V | (v1, . . . , vk, vk+1) ∈ P} and set P � v := (v1, . . . , vk, v) for
v ∈ N+(P). Finally, for P ∈ P we write T (P) := {T ∈ T : P ⊆ T } and obtain the
following result.

Lemma 1 For P ∈ P we have

T (P) = ({P} ∩ T ) ∪
⋃

u∈N−(P)

T (u � P) ∪
⋃

v∈N+(P)

T (P � v). (1)

Moreover, for arbitrary u ∈ N−(P) and v ∈ N+(P) we have

T (u � P) ∩ T (P � v) = T (u � P � v).
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Proof Let P ∈ P and T ∈ T . We know that P = T ⇐⇒ ({P} ∩ T ) = T and we
can also observe that P is a proper subpath of T if and only if there is a node
u ∈ N−(P) or v ∈ N+(P) such that u � P ⊆ T or P � v ⊆ T . This proves the first
equation. To prove the second equation let P = (v1, . . . , vk) and let u ∈ N−(P)

and v ∈ N+(P). Now obviously (u, v1, . . . , vk) ⊆ T and (v1, . . . , vk, v) ⊆ T iff
(u, v1, . . . , vk, v) ⊆ T which concludes the proof. �

Now we extend the user demand to all paths by defining dP := 0 ∀P /∈ T to
formulate the following recursion.

Theorem 1 Let P ∈ P , then

�(P) = dP +
∑

u∈N−(P)

�(u � P) +
∑

v∈N+(P)

�(P � v) −
∑

u∈N−(P)

∑

v∈N+(P)

�(u � P � v).

Proof We use Lemma 1 and the inclusion-exclusion principle. First note that for
u1 �= u2 ∈ N−(P) we have T (u1 � P) ∩ T (u2 � P) = ∅. Analogously, for v1 �=
v2 ∈ N+(P) we have T (P � v1) ∩ T (P � v2) = ∅. Inserting the identity from (1)
into the definition of �(P), the statement immediately follows using the inclusion-
exclusion principle. �

Theorem 2 Algorithm 4.1 is correct.

Proof With Theorem 1 it is easy to prove the correctness of Algorithm 4.1. For any
path P ∈ PT and for arbitrary u ∈ N−(P)weknow that either u � P /∈ PT or u � P
is a predecessor of P in the path-graph D. While the first implies that �(u � P) = 0,
the latter ensures that the load is added to �(P) in line 8 of the algorithm when the
node u � P and its successors are considered.Analogously, this holds for v ∈ N+(P)

and the paths P � v and u � P � v, proving the correctness of Algorithm 4.1. �

We conclude that the subpath-graph can be constructed inO(s n Δ(G)). In many
networks we can assume that the maximum degree is bounded, leading to a runtime
of O(s n). If the subpath-graph is constructed, our recursive algorithm to solve the
SLCP runs in O(s). Given that considering every subpath at least once leads to a
minimum runtime ofO(s), the presented algorithms are very well suited for solving
the SLCP.
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Kidney Exchange Programs with a Priori
Crossmatch Probing

Filipe Alvelos and Ana Viana

1 Introduction

Patients suffering from chronic kidney disease have three alternatives for transplant –
find a compatible donor in a deceased donors waiting list, have a willing compatible
living donor or join a kidney exchange program (KEP). In these programs patients
with a willing incompatible donor join a pool of incompatible patient-donor pairs
and, if compatibility between patient in one pair and donor in another is found,
patient in one pair can receive an organ from the donor in another pair and vice-
versa. The problem can be represented by a graph where each node Pi represents
an incompatible pair i and an arc from Pi to P j means that the donor in pair i is
compatible with the patient in pair j . A feasible exchange plan corresponds to a set
of disjoint cycles in the graph.
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Fig. 1 Compatibility graph
and proposed solution (arcs
in bold)

P1 P2 P3

P4 P5 P6

In Fig. 1 we present an example of a compatibility graph for a program with six
pairs, and a possible set of exchanges (arcs in bold) corresponding to the disjoint
cycles 1− 2− 4− 1 and 3− 6− 3.

To assess preliminary pair compatibility besides comparing patient and donor
blood types it is necessary to perform an additional test, virtual crossmatch, that
detects whether patients have antibodies to donors specific antigens, or not. If the
virtual crossmatch result is negative, patient and donor(s) are considered compatible.
Based on this information, an exchange plan is proposed. However, a more accu-
rate crossmatch test (hereby simply referred to as crossmatch as opposed to virtual
crossmatch) is performed later for selected donor and receiving patient. This test
can detect new incompatibilities that will prevent the actual transplant, as well as all
transplants in the cycle that involves that transplant, from being performed. Because
the bigger the cycle the more transplants will be cancelled due to new incompatibil-
ities detection, in general KEPs define a limit k to the size of the cycle. This limit is
also due to logistics reasons.

The problem of selecting the pairs that should be considered for transplant so that
a given objective is optimised, was modeled as an Integer Program (IP) by several
authors [1, 3]. Classically, those models do not consider in the decision process the
possibility of new incompatibilities being detected and, as so, it can happen that the
actual number of transplants performed is significantly reducedwhen compared to the
planned number. The work in [6] addresses the problem by considering an objective
where cycles that can be replaced by other (sub)cycles if an arc fails are preferred. In
[5], probabilities of positive crossmatch are taken into account for maximizing the
expected number of transplants. A robust optimization approach can be found in [7].

In this paper we propose and evaluate a new approach that also aims at increasing
the number of actual transplants. We depart from a compatibility graph and, prior
to proposing a solution, we consider the possibility of making crossmatch tests to
a pre-defined number of arcs, possibly modifying the transplants plan each time an
incompatibility is found. Two types of policies are proposed: one where exchanges
that were already tested are fixed in the plan; another, where those exchanges can
be removed from the plan if a plan with more (potential) transplants exists (flexible
policies).

Computational tests on instances of realistic size show that the flexible policies
allow for substantial improvement on the actual number of transplants with a small
number of tests.
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The paper is organized as follows. Following this introduction, in Sect. 2 we
describe the problem and the proposed approaches. In Sect. 3, we report computa-
tional results. In Sect. 4, the main conclusions are drawn.

2 A Priori Crossmatch

If no a priori crossmatch tests are considered, the optimal number of transplants in
a KEP can be obtained via integer programming using, most commonly, the cycle
formulation (see [1]).

For each transplant in the plan corresponding to the optimal solution found, amore
accurate test, consisting in physically mixing cells from both the donor and patient,
is conducted. Some of these actual crossmatch tests may contradict the previous
compatibility assumptions and preclude the tested transplants, as well as the others
involved in affected exchanges. In the optimization model, an actual crossmatch
corresponds to testing the existence of the corresponding arc. If the crossmatch is
positive, the transplant is not feasible, the arc is removed from the graph, and the
cycle including the arc must be removed.

In this paper, we study a priori crossmatch policies, where actual crossmatches
are conducted before a definite transplants plan is defined. Given that an actual
crossmatch requires resources (at least, money and time), a limit on the number of
actual crossmatches to be conducted is imposed. The problem now is to decide on
the (possibly temporary) solution to consider and on the arcs to test as, opposed to
maximizing the number of planned transplants. In the next subsections we describe
three policies that differ on how to select the arc to test and on the solution considered
in each iteration.

2.1 Fixed Solution Policy

In this policy, in each iteration, one arbitrary arc of the current solution (that was
not tested before) is tested. According to the general algorithm, if the arc exists (i.e.
the crossmatch test is negative), the solution is kept and another arc is chosen to be
tested. If the arc does not exist, a new solution is obtained by maximizing the number
of transplants in the residual graph. In this policy all arcs already tested that exist are
forced to be part of the solution (if it does not preclude feasibility).

For the example, in Fig. 1, 5 transplants will be performed if all arcs exist. Suppose
now that arc 1− 2 is selected to be tested. If it exists, then another arc is chosen to be
tested and arc 1− 2will be forced to be part of the solution in the remaining procedure
(unless no feasible solution exists with arc 1− 2). If incompatibility between 1 and
2 is found, another plan is obtained after removing arc 1− 2 from the graph.

It is important to note that this policy may not lead to the number of transplants
that would be reached with complete information, even if all arcs could be tested.
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An arc that exists but is not part of the optimal solution with complete information
may be fixed in the solution. Nevertheless, this policy may be relevant in practise,
as it assures that if a crossmatch is negative, the involved pairs are being considered
for actual transplantation.

2.2 Flexible Solution Policies

In a flexible policy, the solution does not necessarily include existing tested arcs. If, in
an iteration, the tested arc does not exist, lexicographic optimization is applied. The
first objective is tomaximize the number of transplants, assuring that no solutionwith
a high potential is lost (and thus convergence to the complete information optimal
number of transplants). Among the solutions with maximum number of transplants,
a solution with arcs that were already tested (potentially allowing a higher actual
number of transplants) and as similar as possible to the current one (avoiding large
variations on the actual number of transplants) is preferable. These two criteria are
treated in a single objective through weights (incentives are given to arcs tested that
exist, and to cycles and arcs that belong to the current solution).

We consider two flexible policies that differ in the way the arc to be tested is
selected. In the first policy (named arbitrary), that arc is chosen arbitrarily. In the
second policy (named delta), the arc to be tested is the one whose failure implies
the loss of more planned transplants. The rationale for the delta policy is that if the
failure of one arc does not have an impact in the value of the maximum number of
transplants (because there are solutions not including the arcs with the same value),
conducting the corresponding crossmatch does not provide any additional useful
information - independently of the crossmatch being positive or negative, a solution
with the same number of planned transplants exists.

As an example, let us consider again the plan of Fig. 1. The deltas for the arcs in
the plan are δ12 = 0 (solution 2− 4− 5− 2 and 3− 6− 3 also have 5 transplants),
δ24 = 1 (optimal plan without arc 2− 4 is 2− 5− 2 and 3− 6− 3 with value 4),
δ41 = 0, δ36 = 2 and δ63 = 2. Since they both have the larger delta, in this case one of
the arcs 3− 6 and 6− 3would be tested. If the arc fails, an optimization is conducted
to obtain a new plan. However, in this policy arcs already tested are not forced to be
part of the plan, although if there is more than one solution with the same (maximum)
number of transplants, solutions with more tested arcs with will be preferred.

3 Computational Results

Weperformed a set of computational tests in order to assess themerits of the proposed
policies and quantify the relation between the number of arcs tested and the number
of actual transplants. In particular, it is of most practical relevance to address two
questions: (i) Howmany additional transplants can be actually performed for a given
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Fig. 2 Number of transplants versus number of arcs tested for the 30 (left) and 50 (right) nodes
instances. Upper curves: planned transplants; lower curves: actual transplants

number of arcs tested and (ii) How many tests must be conducted to achieve a
given number of additional actual transplants (in the limit, the complete information
number of transplants)?

For that purpose we used two sets of 50 instances each, one with 30 nodes and
the other with 50 nodes. The instances’ generator takes into account probabilities of
blood type and HLA as described in [4]. For each instance, 100 independent runs
were conducted. In each run, the existence of each arc is determined according to
the estimation of the probability of a positive crossmatch from [2]. All tests were
conducted on a machine with a Intel Core i7 CPU @ 2.3GHz and 6GB RAM.
The maximum length of a cycle was set to three (as common in practice). The
computational times revealed very small: for the 50 nodes instances, in average, it
took less than one second for testing all the arcs for all the three methods.

Figure2 shows the average number of planned (upper curves) and actual (lower
curves) number of transplants with respect to the number of tested arcs for the
instances with 30 and 50 nodes. When no arcs are tested, the number of actual
transplants is around 60% of the number of planned transplants (for the 30 and 50
nodes instances, in average, 12.3 and 23.5 transplants are planned and 7.7 and 14.2
are performed, respectively).

Both flexible policies behave similarly in both sets of instances, converging to the
complete information number of actual transplants (10.9 and 21.6) when around 10%
of the arcs are tested. For the 30 nodes instances, on average, after 29.4 arcs are tested
the complete information solution is reached for both flexible policies. For the 50
nodes instances, on average, after 55.5 (delta policy) and 58.0 (arbitrary policy) arcs
are tested the complete information solution is reached. The same does not happen
with the fixed policy which does not converge to the complete information actual
number of transplants.

Furthermore, for flexible policies, there is a approximately linear behaviour in the
first part of the actual transplants curve for both sets of instances, which allows to
conclude that for around 7 arcs tested, there is one additional transplant.
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4 Conclusions

In this paper we proposed new policies for Kidney Exchange Programs that try
to reduce the number of planned transplants that are cancelled due to last minute
incompatibilities and increase the actual number of transplants. These policies allow
for actual crossmatch tests to be performed in a set of selected pairs. Three policies
were proposed: a fixed policy and two flexible policies. For the fixed policy, after a
transplant plan is set, one arbitrary arc of the current solution (that was not tested
before) is tested. If the test is positive, the current solution is updated to a solution that
maximizes the number of transplants, excludes that arc and includes all arcs already
tested and having negative crossmatch. For the flexible policies, if a test is positive,
the current solution is updated to a solution that maximizes in lexicographic order
two objectives. Two possibilities are considered when selecting the arc for probing:
(1) the one that implies a larger deterioration in the number of transplants if the arc
fails, and (2) arbitrarily.

Results show that the flexible policies have similar results, that are much better
than the fixed policy. For the flexible policies only a small percentage (around 10%)
of the total number of potential transplants needs to be tested to achieve themaximum
possible number of transplants (that corresponds to the case where no new incom-
patibilities arise). For small absolute values of the number of arcs tested, the number
of actual transplants grows approximately linearly (around one more transplant for
every 7 arcs tested).
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Preventing Hot Spots in High Dose-Rate
Brachytherapy

Björn Morén, Torbjörn Larsson and Åsa Carlsson Tedgren

1 Introduction

High Dose-Rate Brachytherapy (HDR BT) is a modality of radiation therapy, used
e.g. in prostate cancer treatment. Contrary to external beam radiation, in BT the
radiation dose is delivered from within the body using catheters (hollow needles).
The radiation source steps through the catheters between dwell positions, and at
each of these it can dwell for some time. We consider the number of catheters
and their placements to be predetermined in the dose planning. In addition to the
tumour (Planning Target Volume, PTV), which should receive a high enough dose,
there are healthy organs and tissue nearby (Organs At Risk, OAR), which should
be spared if possible. The PTV and OAR are discretised into dose points, where the
radiation doses (in Gray, Gy) are calculated and used for evaluating dose plans. For
an introduction to radiotherapy and BT see [4].

Clinically, dose plans are constructed either manually, with graphical tools avail-
able in treatment planning software, or with mathematical optimization. The most
used optimization model for BT dose planning is the Linear Penalty Model (LPM,
see e.g. [5, pp. 33–35]), which we also used in this study. For each dose point there
is a penalty if the dose is outside a specified interval, and this penalty increases
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linearly with the deviation from the interval. The LPM is easily solved with Linear
Programming (LP) methods.

The primary criteria for evaluating dose distributions areDosimetric Indices (DIs).
For the PTV, the portion of its volume that receives at least a specified prescription
dose is of interest, while for an OAR it is the portion that receives at most a specified
dose. For the PTV a DI is denoted V PTV

x , where x is a percentage of the prescription
dose. Note that all DIs are only aggregate measures of the dose. An optimization
model that handles DIs explicitly is the dose-volume model. It has been studied in
e.g. [2, 7]. For a thorough introduction to mathematical optimization in HDR BT
dose planning see [5].

While it is important that the PTV receives a dose that is high enough, it is not
good if the dose is too high. The concept of a hot spot refers to a noticeable contiguous
volume that receives a dose that is much too high. When a dose distribution satisfies
the treatment goals in terms of DIs, it is common clinical practice to visually inspect
the spatial dose distribution before approving the plan. If there are too large hot spots,
the dose plan is manually adjusted to reduce their volumes, while trying to maintain
the levels of the DIs.

The purpose of our work is to study this adjustment process by means of mathe-
matical optimization and introduce criteria that explicitly take the spatial distribution
of the dose into account. The aim is twofold and we show that

1. there is some degree of freedom in the dose planning even though we keep the
levels of the DIs close to the values of an initial acceptable plan, and

2. it is possible to use this degree of freedom to reduce the prevalence of hot spots,
within a clinically feasible computing time.

Wehavedesigned amethod to resemble the clinical planningprocess.After finding
an initial acceptable dose plan with respect to the primary criteria (the DIs), the plan
is adjusted, with constraints on the DIs, to improve it with respect to the spatial dose
distribution. Thus we consider both aggregate and spatial measures, which is our
contribution. This two-step approach was chosen since there is a clear priority of the
two goals. It is also an advantage that the adjustment step is independent of the first
step and therefore applicable to any given dose plan.

2 Models

The set of dose points in the PTV is T , the set of OAR is S, the set of dose points
in organ at risk s is OARs , and the set of dwell positions is J . The value of a DI is
ω for the PTV and τ s, s ∈ S, for OAR. The prescribed dose for the PTV is L . For
OAR the prescribed upper bounds are Us, s ∈ S, and the maximal allowed doses
are Ms, s ∈ S. The parameter di j denotes dose contribution from dwell position j to
dose point i . Dwell time variables are denoted t j . The received dose at a dose point i
is Di = ∑

j∈J di j t j , i ∈ T . The contribution to a DI from a dose point is defined by
a step function (Heaviside function, H) and can be modelled using binary variables.
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These are yi , i ∈ T , for the PTV, and vsi , i ∈ OARs, s ∈ S, for OAR. The former
variables take the value 1 if the dose is high enough and the latter take the value 1 if
the dose is low enough.

The adjustment step is based on the following optimization model, with a general
objective function, f (t), where t = (t j ) j∈J , which will be defined later.

min f (t)
s.t.

∑
j∈J di j t j ≥ Lyi , i ∈ T
∑

i∈T yi ≥ ω | T |∑
j∈J di j t j ≤ Us + (Ms −Us)(1 − vsi ), i ∈ OARs, s ∈ S

∑
i∈OARs

vsi ≥ τ s | OARs | , s ∈ S
t j ≥ 0, j ∈ J
vsi ∈ {0, 1}, i ∈ OARs, s ∈ S
yi ∈ {0, 1}, i ∈ T

(1)

The first two constraints togethermodel a requirement on theDI V PTV
100 , where the first

constraint ensures that each binary variable takes the correct value and the second is
forcing a high enough dose to a large enough portion of the PTV. The combination
of the third and fourth constraints models requirements on DIs for OAR. The third
constraint ensures that each binary variable takes the correct value and the fourth is
forcing a large enough portion of theOAR to receive a dose that is low enough.Model
(1) is based on a standard formulation of a dose-volume model, which includes the
same constraints,with τ s, s ∈ S, as parameters butwithω as a variable, and objective
to maximise ω (i.e., V PTV

100 ).
The prevalence of hot spots can be reduced, either by decreasing the number of

dose points with a too high dose, if possible, or by redistributing them, to make
the spatial dose distribution more uniform. To achieve this, we suggest an objective
function that gives a penalty for each pair of dose points in the PTV if the dose is
too high in both points. Further, this penalty is larger the closer the dose points are.
The objective function is given by

∑

i, j∈T :i �= j

g(Di )g(Dj )

distance(i, j)2
, (2)

where the denominator is the squared Euclidean distance between dose points i and
j . We tried two formulations of the function g:

g(Di ) = {max (0, Di − b)}2, (3)

g(Di ) = H(Di − b). (4)

Here b is an upper bound on the dose (e.g. 200% of the prescription dose).
Wealso considered a third objective function.Herewe represent potential hot spots

by dividing the PTV into small subvolumes, where each subvolume is located around
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two adjacent dwell positions. These subvolumes can overlap. Letting K denote the
set of all subvolumes we construct the objective function

100 × max
k∈K Ak +

∑

k∈K
Ak, (5)

where Ak , is the mean dose in subvolume k, k ∈ K .

3 Experiments and Results

We have tested our models on a data set consisting of 10 patients, previously treated
for prostate cancer, and all values given in this section are mean values for these
10 patients. The number of dose points was in the range 4369–7939, the number
of dwell positions in the range 190–352, and the number of catheters in the range
14–20. In line with clinical practice, the PTV and OAR (urethra and rectum) were
contoured on medical images and we added artificial healthy tissue surrounding the
PTV. Prescription dose for the PTV was 8.5Gy and the bounds on the DIs for OAR
were 90%. To simulate problems in the catheter placement, which is a common
cause for hot spots, we modified the patient data by removing three catheters and
corresponding dwell positions for each patient.

We compare four models. Model I is the LPM, which gave an initial dose plan
as input to the adjustment step, in which models II–IV were used. These are based
on the model (1) with objective to minimise (3)–(5), respectively. In the adjustment
step the lower bound on V PTV

100 was set to its initial value minus one percentage point.
We tried to solve model III as a Mixed Integer Program (MIP), which however

showed to be intractable. Therefore, the binary variables were approximated (cf. [3])
and replaced with nonlinear functions 0.5(1 + tanh (β (Di − b))), where β > 0 is a
constant. This approximation was also used in models II and IV.

Gurobi was used to solve LPs and MIPs, and the Matlab solver fmincon was used
for nonlinear models, with computing times in the order of a few minutes.

First, to study the degrees of freedom in the adjustment step, we calculate the
difference in dwell times between the adjusted plan and the initial plan. The mean
total dwell timewas 437s formodel I and 420s formodel II, and the 1-normdeviation
of the dwell times was 401s. Since this value includes both increased and decreased
dwell times, half of it, 200.5 s, is more representative for the actual deviation. This
is 46% of the total dwell time and indicates that a dose plan can be substantially
changed while keeping the initial levels of DIs.

A large number of active dwell positions (that is, with t j > 0) is considered advan-
tageous because it can give a more homogeneous dose distribution and also a more
robust plan with respect to uncertainties in the catheter placement. Restrictions on
dwell times to getmore active dwell positions andmore evenly distributed dwell times
have been studied in [1, 2]. Typically the LPM gives fewer active dwell positions
and longer maximum dwell times compared to manual planning [6]. In Fig. 1a we
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Fig. 1 a Shows the number of active dwell positions and b shows V PTV
200

see that the number of active dwell positions from models II and III are significantly
higher than from model I.

Figure1b shows a decrease in mean V PTV
200 , from 15% for model I to 7% for model

III. This indicates that the dose plan has indeed changed substantially. The decrease
in V PTV

200 is probably beneficial in terms of prevalence of hot spots, although the DI
does not take spatiality of the dose into account.

Second, for a comparison of dose plans with respect to spatial distribution, Fig. 2a
is based on the division of the PTV into subvolumes. For each subvolume k, V k

200
is calculated and the figure shows the highest values for the 10 patients. Since each
subvolume corresponds to a small, spatially connected volume, a high value indicates
a hot spot. From model III, we got a mean result of 41%, compared to 62% from
model I. Figure2b shows the mean dose in the subvolume with the highest mean
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Fig. 2 a Shows the highest V k
200 in a subvolume. b Shows the highest mean dose in a subvolume,

with the horizontal line at the 200% dose level
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dose, with results of 28 and 15Gy for models I and IV, respectively. Both these
results indicate significant dose reductions for the hottest subvolumes, which is an
important target for the adjustment step.

4 Conclusions and Future Research

The primary criteria for evaluating HDR BT dose distributions are DIs, which are
aggregate measures. We study the possibility to take spatial aspects into account and
find that it is possible to adjust dwell times and dose plans significantly in this respect
while maintaining DIs on acceptable levels. Our models can be used clinically since
they provide solutions within a short time.

We have presented criteria that evaluate the dose distribution in subvolumes of
the PTV which indicate potential hot spots, and we show improvements for the
hottest subvolumes. There might however be other aspects worth studying, possibly
better related to treatment results. For evaluating treatment results with respect to
prevalence of hot spots, more studies on the effect on complications for patients
are needed. Such studies would also be helpful in designing objectives for spatial
distribution that fit the clinical goals. We would also like to study patient data where
hot spots are of higher concern, e.g. for head-and-neck cancer, and with clinically
used dose plans as input.

Since models II–IV give non-convex optimization models, fmincon is not guar-
anteed to find the global optimum, and it is therefore possible to improve the results
by using more advanced optimization algorithms.
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Active Repositioning of Storage Units
in Robotic Mobile Fulfillment Systems

Marius Merschformann

1 Introduction

In today’s increasingly fast-paced e-commerce an efficient distribution center is one
crucial element of the supply chain. Hence, new automated parts-to-picker systems
have been introduced to increase throughput. One of them is the Robotic Mobile
Fulfillment System (RMFS). In a RMFS mobile robots are used to bring rack-like
storage units (so-called pods) to pick stations as required, thus, eliminating the need
for the pickers to walk and search the inventory. A task which can take up to 70%
of their time in traditional picker-to-parts systems (see [6]). This concept was first
introduced by [7] and an earlier simulation work by [2]. The first company imple-
menting the concept at large scale was Kiva Systems, nowadays known as Amazon
Robotics.

One of the features of RMFS is the continuous resorting of inventory, i.e. every
time a pod is brought back to the storage area a different storage location may be
used. While this potentially increases flexibility and adaptability, rarely used pods
may block prominent storage locations, unless they are moved explicitly. This raises
the question whether active repositioning of pods, i.e. picking up a pod and moving it
to a different storage location, can be usefully applied to further increase the overall
throughput of the system. In order to address this issue we focus on two approaches
for active repositioning. First, we look at repositioning done in parallel while the
system is constantly active and, second, we look at repositioning during system
downtime (e.g. nightly down periods). While the assignment of storage locations to
inventory is a well studied problem in warehousing (see [1]) the repositioning of
inventory is typically not considered for other systems, because it is usually very
expensive.
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2 Repositioning in RMFS

In a RMFS passive repositioning of pods is a natural process, if the storage location
chosen for a pod is not fixed. For example, in many situations using the next available
storage location is superior to a fixed strategy, because it decreases the travel time
of the robots and by this enables an earlier availability for their next tasks. However,
this strategymight cause no longer useful pods to be stored at very prominent storage
locations, which introduces the blocking problem discussed earlier. There are two
opportunities to resolve this issue: on the one hand it is possible to already consider
characteristics of the pod content while choosing an appropriate storage location,
while on the other hand it is possible to activelymove pods from inappropriate storage
locations to better fitting ones. We call the latter approach active repositioning of
pods. Both repositioning approaches are shown in Fig. 1. Additionally, the figure
shows an excerpt of the basic layout used for the experiments, i.e. the replenishment
stations (yellow circles), pick stations (red circles), pods (blue squares), the storage
locations (blocks of 2 by 4) and the directed waypoint graph used for path planning.
This layout is based on the work by [3].

In order to assess the value of storage locations and pods we introduce the follow-
ing metrics. First the prominence FSL of a storage location w ∈ W SL is determined
by measuring the minimum shortest path time to a pick stationm ∈ MO (see Eq.1).
The shortest path time f A

∗
t is computed with a modified A∗ algorithm that considers

turning times to achieve more accurate results. The storage location with the lowest
FSL (w) is considered the most prominent one, since it offers the shortest time for
bringing the pod to the next pick station. In order to assess the value of a pod b at time
t we introduce the pod-speed (FPS) and pod-utility (FPU ) measures. The speed of a
pod (see Eq.2) is calculated by summing up (across all SKUs) the units of an SKU
contained ( f C ) multiplied with the frequency of it ( f F ). This frequency is a relative
value reflecting the number of times a SKU is part of a customer order compared to
all other SKUs. By using the minimum of units of an SKU contained and the demand
for it ( f D), the utility of a pod (see Eq.3) sums the number of potential picks when
considering the customer order backlog. Thus, it is a more dynamic value. Both
scores are then combined in the metric FPC (see Eq.4). For our experiments we
consider the weights wS = wU = 1 to value both characteristics equally.

Fig. 1 Active repositioning move (green arrow) versus passive repositioning (red arrow)
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Algorithm 1: CalculateWellsortednessCombined

1 L ← Sort( W SL , i ⇒ FSL (i)) , r ′ ← 1, f ′ ← min
i∈W SL

F SL (i)

2 foreach i ∈ {0, . . . , Size(L)−1} do
3 if FSL (i) > f ′ then r ′ ← r ′ + 1, f ′ ← FSL (i)
4 ri ← r ′
5 c ← 0, d ← 0
6 foreach i1 ∈ {0, . . . , Size(L)−1} do
7 foreach i2 ∈ {i1 + 1, . . . , Size(L)−1} do
8 if IsPodStored(L[i1]) ∧ IsPodStored(L[i2]) ∧ rL[i1] �= rL[i2] then
9 b1 ← GetPod(L[i1]), b2 ← GetPod(L[i2])

10 if FPC (b1, t) < FPC (b2, t) then c ← c + 1, d ← d + (
rL[i2] − rL[i1]

)

11 return a ← d
c

F SL (w) := min
m∈MO

f A
∗
t (w,m) (1)

FPS (b, t) :=
∑

d∈D

(
f C (b, d, t) · f F (d)

)
(2)

FPU (b, t) :=
∑

d∈D

(
min

(
f C (b, d, t) , f D (d, t)

))
(3)

FPC (b, t) := FPS (b, t)

max
b′∈B

FPS (b′, t)
· wS + FPU (b, t)

max
b′∈B

FPU (b′, t)
· wU (4)

For evaluation purposes we can use these measures to determine an overall “well-
sortedness” score for the inventory. The procedure for calculating thewell-sortedness
score is described in Algorithm 1. At first we sort all storage locations by their
prominence score in ascending order (see line 1 f.). Next, ranks ri are assigned to
all storage locations i ∈ W SL , i.e., the best ones are assigned to the first rank and
the rank is increased by one each time the prominence value increases (see line 2 f.).
Then, we assess all storage location two-tuples and count misplacements, i.e., both
storage locations are not of the same rank and the score of the better placed pod at i1
is lower than the worse placed pod at i2 (see line 5 f.). In addition to the number of
misplacements we track the rank offset. From this we can calculate the average rank
offset of all misplacements, i.e., the well-sortedness. Hence, a lower well-sortedness
value means a better sorted inventory according to the given combined pod-speed
and pod-utility measures.

In this work we investigate the following repositioning mechanisms:

Nearest (N) For passive repositioning this mechanism always uses the nearest
available storage location in terms of estimated path time ( f A

∗
t ). This mechanism

does not allow active repositioning.
Cache (C) This mechanism uses the nearest 25% of storage locations in terms

of estimated path time ( f A
∗
t ) as a cache. During passive repositioning pods with

combined score (FPC ) above a determined threshold are stored at a cache storage
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location and others are stored at one of the remaining storage locations. In its
active variant it swaps pods from and to the cache.

Utility (U) This mechanism matches the pods with the ranks of the storage loca-
tions (see Algorithm 1) on the basis of their combined score (FPC ). A nearby
storage location with a close by rank is selected during passive repositioning. In
its active variant pods with the largest difference between their desired and their
actual storage location are moved to an improved one.

3 Computational Results

For capturing and studying the behavior of RMFS we use an event-driven agent-
based simulation that considers acceleration / deceleration and turning times of the
robots (see [5]). Since diverse decision problems need to be considered in an RMFS
we focus the scope of the work by fixing all remaining mandatory ones to simple
assignment policies and the FAR path planning algorithm described in [4]. A more
detailed overview of the core decision problems of our scope are given in [5]. For
all experiments we consider a simulation horizon of one week, do 5 repetitions to
reduce noise and new customer and replenishment orders are generated in a random
stream with a Gamma distribution (k = 1,Θ = 2) used for the choice of SKU per
order line from 1000 possible SKUs. Furthermore, we analyze repositioning for four
layouts. The specific characteristics are set as follows:

Layout Small Wide Long Large
Stations (pick / replenish) 4/4 8/8 4/4 8/8
Aisles (hor. x vert.) 8x10 16x10 8x22 16x22
Pods 673 1271 1407 2658

For the evaluation of active repositioning effectiveness we consider two scenarios.
At first, we look at a situation where the system faces a nightly down period (22:00–
6:00) during which no worker is available for picking or replenishment, but robots
can be used for active repositioning. In order to keep the replenishment processes
fromobscuring the contribution of nightly inventory sorting, replenishment orders are
submitted to the systemat 16:00 in the afternoon in an amount that is sufficient to bring
the storage utilization back to 75% fill level. For pick operations we keep a constant
backlog of 2000 customer orders to keep the system under pressure. Additionally,
we generate 1500 orders per station at 22:00 in the evening to increase information
for the pod utility metric about the demands for the following day. Secondly, we look
at active repositioning done in parallel in a system that is continuously in action. For
this, we consider three subordinate configurations distributing the robots per station
as following:
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R1P3A0: 1
4 replenishment, 3

4 picking, no active repos.
R1P2A1: 1

4 replenishment, 2
4 picking, 1

4 active repos.
R1P3A1: 1

5 replenishment, 3
5 picking, 1

5 active repos. (+1 robot per station)

This scenario is kept under continuous pressure by keeping a backlog of constant
size for both: replenishment (200) and customer orders (2000).

The main performance metric for the evaluation is given by the unit throughput
rate score (UTRS). Since we use a constant time of T P = 10s for picking one unit
an upper bound for the number of units that can possibly be handled by the system
during active hours can be calculated by UB := ∣∣MO

∣∣ 3600
T P with the set of all pick

stationsMO . Using this we can determine the fractional score by dividing the actual
picked units per hour in average by this upper bound.

The results of the experiment are summarized in Table1. For the comparison of
resorting the inventory during the nightly down period (line: Activated) vs. no active
repositioning at all (line: Deactivated) we can observe an advantage in throughput.
However, for the parallel active repositioning it is not possible to observe a posi-
tive effect. When moving one robot per pick station from pick operations to active
repositioning (lines: R1P3A0 and R1P2A1) we observe a loss in UTRS, because
less robots bring inventory to the pick stations. Even with an additional robot per
pick station (line: R1P3A1) we cannot observe a substantial positive effect. For most
cases, the effect is rather negative as a result of the increased congestion potential
for robots moving within the storage area.

In the following we take a closer look at the nightly down period scenario. If we
keep the system sorted with the passive repositioning mechanism (C-C and U-U),
nightly active repositioning does not have a noticeable positive effect, because the
passive repositioning mechanism already keeps the inventory sorted for the most
part. However, the Nearest mechanism which has a better overall performance, can
benefit from a nightly active repositioning (N-C and N-U). Especially for the Large
and Long layouts we can observe a reasonable boost in UTRS. The greater merit for
layouts with more vertical aisles suggest that shorter trip times of the robots are the
reason. This can also be observed when looking at the detailed results of a run with
and without active repositioning (see Fig. 2). First, more orders can be completed per
hour after the inventory was sorted over night (first graph). This boost is eliminated
as soon as replenishment operations begin. Thus, when and how replenishment is
done is crucial to the benefit of resorting during down times, because the effect may
be lost quite quickly. In the third graph the shorter times for completing trips to the
pick stations after sorting the inventory support the assumption that these are the
the main reason for the boost. Lastly, the second graph provides the well-sortedness
measure and shows that sorting the inventory can be done reasonably fast.
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Fig. 2 Time-wise comparison of layout long andmechanismsN-Uwith (colored lines) and without
(gray lines) active repositioning at night

4 Conclusion

The results suggest that active repositioning may boost throughput performance of
RMFS. If the system faces regular down periods, costs for repositioning (energy
costs, robot wear) are reasonable and charging times allow it, active repositioning
can make a reasonable contribution to a system’s overall performance. Since the
introduced mechanisms greedily search for repositioning moves, more moves are
conducted than necessary to obtain a desired inventory well-sortedness. For future
research we suggest to predetermine moves before starting repositioning operations,
e.g. by using a MIP formulation matching pods with storage locations and selecting
the best moves. The source-code of this publication is available at https://github.
com/merschformann/RAWSim-O.
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How to Control a Reverse Logistics
System When Used Items Return with
Diminishing Quality

Imre Dobos, Grigory Pishchulov and Ralf Gössinger

1 Introduction

We study an integrated production–inventory system that manufactures new items of
a particular product and receives some of the used items back after a period of use.
These can be either remanufactured on the same production line or disposed of. Used
items awaiting remanufacturing need to be held in stock. Both manufacturing and
remanufacturing operations require setting up accordingly the production equipment.
Remanufactured items are considered to be as good as new and can serve the product
demand on a par with the new ones. New and as-good-as-new items are kept in stock,
from which the product demand is satisfied.

Controlling such a system involves decisions with regard to disposal of used
items, succession of manufacturing and remanufacturing operations, and the choice
of respective lot sizes. Existing research has studied control policies for such pro-
duction–inventory systems in a variety of different settings. Specifically, beginning
with the work of Schrady [5] and Richter [4], significant attention has been devoted
to settings assuming deterministic constant demand and return rates. A more recent
work has referred to settings assuming variation in quality of returned items [1] as
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well as a limited number of remanufacturing cycles that an item can undergo due
to wear and tear [3]. We extend this line of research by studying a setting in which
used items return in a condition that depends on the number of remanufacturing
cycles an item underwent and determines the inventory holding costs of that item.
We determine optimal lot sizing for such a system and derive sufficient conditions
for an optimal policy to forego remanufacturing.

The paper is organized as follows. Section 2 presents the model and the optimal
total lot size. Section 3 gives sufficient optimality conditions. Section 4 concludes.

2 The Model and the Optimal Solution for the Total Lot
Size

Consider a production–inventory system with two shops. The first shop is capable of
producing new items of a certain product and also remanufacturing used items, which
are then considered as good as new. Both kinds of items are used to satisfy market
demand. They return after a period of use and are either disposed of or accumulated
in the second shop during the collection interval [0, T], at the end of which these
items are shipped to the first shop. The shipment time is constant and normalized to
zero. The collection interval thus determines the length of a manufacturing–reman-
ufacturing cycle in the first shop. A cycle begins with remanufacturing used items,
if any. The latter are distinct w.r.t. the number of times i they have been remanu-
factured already before and are respectively called type-i items (Fig. 1). We assume
that remanufacturing proceeds in the order of increasing type index i. We seek to
minimize time-average system costs over an infinite horizon.

Model parameters:

d deterministic demand and product return rate,
L maximum possible number of times an item can be remanufactured,
β i fraction of items that return and are of type i − 1 (i = 1, …, L +1),
h holding cost of new and as-good-as-new items, per unit per time unit,
ui holding cost of returned type items of type i − 1 (i = 1, …, L), per unit per time

unit, non-increasing in i,
si setup cost of manufacturing (i = 0) or remanufacturing a batch of used items of

type i − 1 (i = 1, …, L).

Decision variables:

l how many times to remanufacture used times, l ≤ L,
T length of the manufacturing-remanufacturing cycle,
q0(l) manufacturing lot size, positive,
qi remanufacturing lot size of used items of type i − 1 (i = 1, …, l),
n0(l) number of manufacturing lots, positive integer,
ni number of remanufacturing lots of type i − 1 (i = 1, …, l), positive,
x total lot size of the new and as-good-as-new products, x = d·T , positive,
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Fig. 1 Material flow when returned items of types above l are disposed of
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It holds for the respective fractions of returned items that β0(l) +
∑l

i�1 βi � 1.
Note that type-L items are disposed of due to wear and tear, while any other items
are disposed of for economic reasons. Manufacturing and remanufacturing volumes
within a cycle are then, respectively:

n0(l) · q0(l) �
(
1 −

∑l

i�1
βi

)
· x and ni · qi � βi · x (i � 1, . . . , l). (1)

Average total costs per time unit can be expressed as (Dobos and Richter [2]):

(2)
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(
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x
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x

2
h
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]

+
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d

x
sini +

x

2

[

(h − ui )
β2
i

ni
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(
βi + β2

i

)
]}
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where the first bracketed expression represents the setup and holding costs associated
with manufacturing new items, and the expression in the curly braces represents the
respective costs associated with the items of type i–1.

Assume for now that βi > 0 holds for all i �1, …, l. By expressing the lot sizes
{qi }li�0 from (1) and substituting these into (2), we get:

(3)

AC
(
l, {qi } l

i�0, x
) � β0(l)

(

s0
d

q0
+ h

q0
2

)

+
l∑

i�1

βi

[

si
d

qi
+ (h − ui )

qi
2
+
x

2
ui (1 + βi )

]

where the numbers of lots have to satisfy: n0(l) � xβ0(l)/q0 ≥ 1, ni � xβi/qi ≥
1 (i � 1, . . . , l). Given a total lot size x, the optimal lot sizes can be derived from
(3):

q0(l, x) � min

{

xβ0(l),

√
2s0d

h

}

, qi (x) � min

{

xβi ,

√
2sid

h − ui

}

(i � 1, . . . , l).

It can be shown that q0(l, x) ≥ q0 (l + 1, x), i.e. the manufacturing lot sizes are
declining in the remanufacturing limit l. Substituting the lot sizes into (3) gives:

AC ′(l, x) � β0(l)

[

s0
d

q0(l, x)
+
h

2
q0(l, x)

]

+
l∑

i�1

{

βi

[

si
d

qi (x)
+
h − ui

2
qi (x)

]

+ x
ui
2

(
βi + β2

i

)
}

Define u0 �0, and let

x1 � 1

1 −∑l
i�1 βi

√
2s0d

h − u0
� 1

β0(l)

√
2s0d

h
, xi+1 � 1

βi

√
2sid

h − ui
(i � 1, . . . , l).

The value xi–1 represents the total lot size that optimizes the type-i lot size. Let xi
(i �1, …, l+1) be arranged in a non-decreasing order: 0 < xi1 ≤ . . . ≤ xil+1 . Then

AC ′ (l, x) �
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AC ′(l, x) is convex and continuously differentiable in x. Thus for a given l, the
optimal total lot size xl satisfies d AC ′(l, xl )/dx � 0. Define xi0 � 0. Then it holds
that

xl �
√
√
√
√
√

2d
∑l+1

j�k◦ si j
∑k◦−1

j�1 ui j
(
βi j + β2

i j

)
+
∑l+1

j�k◦

(
hβ2

i j
+ ui j βi j

) and xik◦ −1
≤ xl < xik◦

for some k
◦ ∈ {1, . . . , l + 1} that can be easily determined by evaluating the sign

of the derivative d AC ′(l, x)/dx at the boundary points xik for k �1, …, l+1. The
minimal average total costs for the given l are accordingly found to be

AC ′ (l, xl
) �

k
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)
+
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hβ2

i j
+ ui j βi j

)
⎤

⎦.

The above results can now be easily extended to the case of any βi � 0 by
excluding the respective type from (3) and all subsequent expressions. Below we
address the problem of determining an optimal lo � arg min0≤l≤L AC ′(l, xl ).

3 A Type of Optimal Solutions: No Remanufacturing

In this section we are looking for sufficient optimality conditions of a policy that
excludes any remanufacturing. It is easy to see that the following trivially holds:

AC ′(l + 1, xl+1) − AC ′(l, xl ) ≥ AC ′(l + 1, xl+1) − AC ′(l, xl+1) (l � 0, . . . , L−1).
(4)

If the right-hand side in (4) is nonnegative then AC ′(l, xl ) ≤ AC ′(l + 1, xl+1)
holds for all l �0,…, L–1, and hence an optimal solution excludes remanufacturing.

It can be shown that the right-hand side in (4) can be rewritten as AC1(l + 1) −
AC0(l), where AC0(l) � β0(l)

(
s0d/q0(l, xl+1) + hq0(l, xl+1)/2

)
,
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Fig. 2 Convex envelope
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and x, x0, xl+1 are suitably chosen lot sizes whose closed-form expressions are
omitted for reasons of space and available from the authors on request.

It is easy to see that AC1(l +1) converges to AC1(l) as β l+1 approaches zero. Now
defining Kl(βl+1) :� AC1(l + 1), we can immediately use Lemma 1 by Dobos and
Richter [2], which yields the following result.

Lemma 1 Kl(β l+1) can be computed as follows:

(i)

sl+1h [β0(l) − βl+1]
2 ≥ s0

(
hβ2

l+1 + ul+1βl+1
)
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2sl+1d (h − ul+1)

+
√
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{
h [β0(l) − βl+1]2 + ul+1

(
β2
l+1 + βl+1

)}
.

Using Lemma 1, we can evaluate AC1(l + 1) and thus the right-hand side in (4).
If the latter is nonnegative for all l then it is optimal to forego remanufacturing.

Further observe that disposing of all returns of type l is equivalent to enforcing
βl+1 � 0 in our model. Below we obtain a sufficient optimality condition for aban-
doning remanufacturing regardless of the specific return fractions. To this end, we
let βl+1 vary within the range [0, 1], and refer to the concept of a convex envelope
function K̃ l (βl+1) for Kl (βl+1) (see Fig. 2 for an illustration).

Lemma 2 If the convex envelope functions K̃ l (βl+1) are monotone increasing for
l �0, …, L–1 then it is optimal not to remanufacture given any return fractions
βl+1 (l � 0, . . . , L).
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The proof is obvious because AC ′(l + 1, xl+1) − AC ′(l, xl+1) ≥ 0 proves to hold
true for all βl+1 and l �0, …, L–1, which implies optimality of disposing of type-l
items, while type-L items are disposed of due to wear and tear. Of course, if the
convex envelopes have minimum points then it can be optimal to remanufacture.

4 Conclusion

Wehave investigated amanufacturing–remanufacturingmodelwith quality consider-
ations. The goal of the decision maker is to minimize the relevant EOQ related costs,
and to choose an optimal number of remanufacturing cycles. We have examined a
special case when remanufacturing is not optimal and obtained sufficient conditions
for that.

A further study could address settings where the decision maker acquires used
items depending on the number of remanufacturing cycles they have undergone.
Another extension could be the search for an optimal policy in case of variable
return rates.
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Consistent Inventory Routing with Split
Deliveries

Emilio Jose Alarcon Ortega, Michael Schilde, Karl F. Doerner
and Sebastian Malicki

1 Introduction

In this paper we face an important problem, referred to in the literature as Inventory
Routing Problem (IRP). We extend it by adding the consistency aspect, where we
consider that a customer has consistent deliveries if the arrival times of all deliveries
are the same or similar. We allow split deliveries in order to satisfy all customers
demands and to deal with deliveries that exceed the capacity of a single vehicle.
Furthermore, we include time windows in the problem because bars, restaurants,
and other retailers have different opening hours and days. It is remarkable that, in the
literature, there are still very few solution methods that are able to solve IRPs with
time windows or other real-world problem characteristics. We denote our problem
as Consistent Inventory Routing Problem with Time-Windows and Split Deliveries
(CIRPTWSD).We solve the problem by applying an order up to level policy in order
to minimize the total number of deliveries made to the customers.

Previous work about the IRP and variants was summarized in [1]. A similar prob-
lem was presented in [2] where the authors assumed that the inventory levels are
monitored by the company. In [3], the authors dealt with the arrival-time consistency
aspect of the problem by proposing template-based routes. Consistency and its vari-
ants were also reported in [4]. Furthermore, in [6], authors propose an algorithm to
solve the split delivery vehicle routing problem.
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2 Problem Description

The CIRPTWSD can be formulated as a mixed integer program. Given a directed
graph G = (A, V ), where V = 0, . . . , n is the set of nodes with 0 being the depot
and A is the set of arcs given by all pairs of nodes i and j . The planning horizon
covers P periods, and at the same time these periods are divided into R subperiods.
Subperiods are introduced to state a maximum driving time and also to deal with
the different working shifts that beer companies have. Due to the complexity of this
problem we consider only a single product. We assume that demands are known for
each period and subperiod and consumption rates are continuous.

The decision variables in our model are:

• xkpri j : binary variables that indicate if vehicle k drives from customer i to customer
j in period p and subperiod r .

• ykpri : binary variables that indicate if customer i is visited by vehicle k in each
period and subperiod.

• qkpr
i continuous variables that show the amounts delivered.

• t kpri : continuous variables that show the arrival times.
• I pri : continuous variables that indicate the final inventory levels at the end of each
subperiod.

• tmax
i and tmin

i : earliest and latest arrival times at each customer i .
• opr

i : amounts of demand lost at every customer due to stock-out situations.

The objective of themodel is tominimize the costs related to the routing, inventory
holding, consistency and stock-outs. Routing costs are measured as the total travel
distance. The inventory cost of each customer is the difference between the initial and
the final inventory levels, if the final inventory level is lower than the initial. Thus, the
inventory cost helps us to create a solution which can be repeated as a rolling horizon
solution. Otherwise the model would tend to avoid late deliveries in order to save
extra routing costs. Both, stock-out cost and inventory holding cost, are multiplied
by a penalty factor L in order to integrate them in the objective function. Consistency
costs are measured as the difference between the latest and the earliest arrival time
to each customer, weighted with a parameter α. In our objective function, in order
to unify all costs and balance them, we use a parameter L = 3 that will represent
a penalty of 3e for each liter of beer (assuming that the beer price on the market
is around 1 e/liter). To measure the impact of consistency in our objective, we set
α = 1.

Apart from the different costs in this problem, we have different groups of con-
straints. Some of these constraints are well known and widely commented in the
literature. Routing, time, and inventory flow constrains are considered in the math-
ematical model as well as constraints related to the use of a maximum number of
capacitated vehicles. Furthermore, apart from these constraints, we include some
others to calculate out of stock amounts and to forbid overstock situations at the
retailers by taking into account the possibility of split deliveries and the time con-
tinuous consumption of commodity at every customer location. We also consider a
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group of constraints used to satisfy the order up to level policy, while taking into
account the split delivery characteristic of the problem. This way we ensure that at
the moment the last delivery to a customer in a subperiod is performed, the amount
delivered by the vehicle satisfies the order up to level policy.

3 Solution Approach

To solve the CIRPTWSD, we develop a matheuristic solution approach based on
the concept of Adaptive Large Neighborhood Search (ALNS). The initial solution
is generated using an adaptation of the cheapest insertion heuristic combined with a
local search.After applying theALNSwe solve a reduced problembased on the prob-
lem formulation to repair the obtained solution by improving possible inconsistent
deliveries, stock-outs, and excessive inventory holding costs.

3.1 Constructive Heuristic

To construct an initial solution for each period and sub-period, we create a list of
customers which require service in this subperiod. These customers either run out
of stock in the current subperiod, or they run out of stock before the end of the next
possible delivery time window. We then calculate an upper and lower bound for
the delivery amount for each customer. The upper bound is the difference between
the current inventory level and the order up to level. The lower bound is the amount
necessary to avoid a stock-out before the end of the next delivery time window. Then,
we use cheapest insertion to insert the customers with the largest possible amount.
The customers that remain are inserted with the lowest possible amount. If even this
is not possible, we split the remaining customers’ deliveries to two vehicles. After
finishing this procedure, we apply two improve operators to the obtained solution.
An operator to destroy single-customer routes and a 2-opt algorithm.

3.2 Adaptive Large Neighborhood Search

After the run of the constructive heuristic, we have an initial feasible solution. Then,
we apply theALNSprocedure in order to improve the quality of the obtained solution.
In the proposed ALNS we use two sets of operators to destroy and repair the current
solution, and a procedure to update the inventory after applying an operator.

We propose five destroy operators and three repair operators that are selected
using a roulette-wheel selection. There are five destroy operators are: 1. “Remove
worst” operator: deletes the p worst customers (with respect to the detour a cus-
tomer causes between its preceding and succeeding customer visit along the route).
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2. “Remove random” operator: deletes p random customers. 3. “Remove vehicle”
operator: removes all customers in all routes of a randomly selected vehicle. 4.
“Remove subperiod” operator removes all routes in a randomly selected subperiod.
5. “Remove least consistent” operator deletes p customers whose arrival times are
very inconsistent. After we apply a random destroy operator we update the inven-
tory levels of the removed customers and we create a list of customers that must be
repaired because of stock-out situations. We then apply a randomly selected repair
operator. The three operators are: 1. “Repair best before stock-out day” operator:
creates a list of possible insertions in the day a stock-out occurs and the preceding
days for customers that must be repaired, the possible insertions are sorted by the
total distance of the detour this insertion causes, where the amount delivered is at
least equal to aminimum amount calculated in the solution evaluation.We then select
randomly one of the three best possible insertion positions and insert the customer
into the route. If, after evaluating the new inventory flow of the customer, it still
presents stock-out situations in the succeeding days, we repeat the process between
the new stock-out day and the last insertion. 2. “Repair random before stock-out day”
operator: this operator create a list of possible insertions as in the previous operator
and then randomly selects one of them from the list. Also here we repeat the process
as long as a feasible solution is reached. 3. “Repair consistency” operator: inserts
customer such that the difference between earliest and the latest arrival times to this
customer is minimized.

For each iteration of the ALNS we evaluate the new solution obtained and update
the “best solution” as well as the weights of the destroy and repair operators that
have been used in this iteration, if required. The stopping criterion for the ALNS
is given as an overall time limit or as a maximum duration since the last solution
improvement was found.

3.3 Postprocessing

After terminating the ALNS, we use the best solution obtained to solve a reduced
variant of themathematical problem formulation to optimality. This problem is solved
in order to minimize consistency costs, that can be avoided by introducing waiting
times, as well as to improve the performance of the algorithm with respect to the
amounts delivered and final inventory levels. In this model, the visited customers and
the route sequences for each vehicle, day, and subperiod are given by the solution
obtained during the ALNS. We solve a linear program where we do not have binary
or integer variables which allows a relatively short solving time.
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4 Computational Experiments and Conclusion

Preliminary computational tests using the described algorithm implemented in C++
have been performed using a benchmark set for the periodic vehicle routing problem
with time windows [5]. These instances were adapted to include the inventory hold-
ing information needed to solve our problem. In Table1 we summarize the results
obtained by considering a time horizon of 4 periods and 1 subperiod. The results are
compared to the best solution obtained by solving the mathematical problem using
CPLEX with a time limit of 10h. The time limit for ALNS was set to 10min. The
algorithm has been tested by solving instances with 5, 10, 15, 20, and 48 customers
with an initial inventory level of 25, 50, 75, and 100 percent of the inventory capac-
ity. In Table2 we present results for a time horizon of 4 periods and 2 subperiods on
instances of 5, 10, 15 and 20 customers, where for instances of 48 customers CPLEX
cannot find any feasible solutionwithin 10h (an asterisk indicates an optimal solution
in both tables). In both tables we can see that the consistency cost are reduced to 0
in almost all instances while inventory holding costs are still significant with a time
limit of 10min. Further computational experiments including more realistic solution
techniques to deal with stochastic demands and multi-product scenarios are planned
for the future.
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Order Picking with Heterogeneous
Technologies: An Integrated
Article-to-Device Assignment and
Manpower Allocation Problem

Ralf Gössinger, Grigory Pishchulov and Imre Dobos

1 Problem Description

In a warehouse multiple devices (non-automated or automated equipment) are used
to pick articles according to customer orders. At each device the activities of order
picking and storage slot replenishment are performed. Devices vary in the number
of workplaces and storage slots, slot dimension, time per pick and per slot replen-
ishment. Their capacity can only be utilized, if manpower is allocated to it. There
are a number of specialized operators qualified to work at a certain device only and
a pool of generalists able to work at all devices, yet with a lower efficiency. Article
data includes information on demand, dimension and eligibility for being picked at
specific devices. Regular fluctuations of workload induce a sequence of slack and
peak periods per day. In slack periods all slots of devices are replenished so as to
reduce the number of replenishments during the peak periods.

Two basic decisions are relevant for the article-to-device assignment and man-
power allocation (ADAMA) problem: Which articles have to be picked at which
devices? How much manpower of which kind has to be allocated to each device?
Further two decisions have to be made for each device: How many slots have to
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be occupied by each article? How many replenishments have to be performed for
each article? All decisions have to be made subject to the operational objective of
minimizing the makespan.

Despite of its relevance, the ADAMA problem has not been discussed yet in the
literature, but there is research on structurally similar problems: Forward-reserve
assignment and allocation problems (FRAAP) occur in warehouses with two types
of storage areas: Reserve areas hold the bulk storage and replenish forward areas.
Order picking at these areas is possible, but time-consuming. Forward areas allow
for fast order picking, but have very limited storage space. This induces replenish-
ments, which are the more frequent, the more articles share the forward area [3].
Accordingly, there is a trade-off between picking and replenishment time when the
article assignment changes [8]. The question is, how much of the limited forward
area space has to be allocated to each article in order to minimize the total demand
fulfillment time [5]. To solve this ADA problem a heuristic based on a ranking index
is developed in [5]. A branch-and-bound procedure to find optimal solutions is devel-
oped in [3]. Further FRAAP approaches consider objects with limited divisibility [4,
8, 9]. Such discrete problems are found to be generalized knapsack problems that
require heuristics for solving real-world instances in reasonable time. In comparison
to the ADAMA problem, existing FRAAP approaches do not consider the following
aspects: manpower needed for picking and replenishment activities; more than two
picking devices (except for [4]); articles can be picked simultaneously at several
devices.

More general analyses are performed under the topic dual resource constrained
systems (DRC). DRC are production systems with capacity restricted by both,
machine and labor [10]. From this point of view the interdependent sub-problems of
machine loading (ML), job dispatching (JD) and manpower allocation (MA) are to
be solved. Two approaches are similar to the ADAMA problem. Integrative ML-MA
decisions in a cellular manufacturing system (CMS) with multiple work zones and a
pool of differently skilled workers are analyzed in [1]. A simultaneous and a sequen-
tial ML-MA optimization approach as well as a heuristic approach are developed
and compared. In the context of CMS a sequential approach for theMA-ML problem
is developed in [7] and remarkably generalized in [2]. The ADAMA problem sub-
stantially differs from the situations analyzed in [1, 2, 7] in two regards: Instead of
loading the whole system by releasing orders, articles are assigned to multiple types
of devices and occupy one or multiple storage slots there; replenishment activities
have to be considered in addition to picking activities.

With regard to the problem discussed in this paper FRAAP and DRC are comple-
mentary approaches. This paper aims at combining both in order to allow for a more
efficient manpower and device utilization. The extent of efficiency improvement is
dependent from the ability to coordinate interdependent deployment decisions. Plan-
ning approaches that make both decisions sequentially cannot bring about a better
coordination than a simultaneous one, but will reduce computational effort. Hence,
the question is, how a sequential approach balances the trade-off between coordina-
tion deficit and solution time.
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The remainder of the paper is organized as follows: Sect. 2 presents the simultane-
ous and the sequential decision models for the ADAMA problem. Both approaches
are compared with respect to solution quality and solution time under different oper-
ating conditions (Sect. 3). Finally conclusions on the applicability of the approaches
are drawn in Sect. 4.

2 Decision Models

Based on the problem description a simultaneous ADAMAmodel can be formulated
as follows (cf. Table 1 for notations and co-domains of variables):

ADAMA

minm (1)

s.t.

m ≥ di ∀i (2)

di ≤ d̄ ∀i (3)
∑

i

ei j · ai j � 1 ∀ j (4)

∑

i

s f
i ≤ 1 (5)

wi · ssi + w f · s f
i ≤ pi ∀i (6)

y j · ai j ≤ ρi j · ⌊
hi/g j

⌋ ∀i, j (7)
∑

j

oi j ≤ li ∀i (8)

oi j ≤ ρi j ∀i, j (9)

oi j ≥ ai j ∀i, j (10)
∑

j

(
y j · ai j · t pi j +

(
ρi j − oi j

) · tri j
)

≤
(
wi · ssi + λ · w f · s f

i

)
· di ∀i (11)

The model aims at minimizing the makespan (1), which is the longest time one
device needs for fulfilling demand of assigned articles (2). Constraints (3, 4) prevent
tardy demand fulfillment. The time neededmust not exceed the peak period’s duration
(3). All suitable devices can be used to completely fulfill article’s demand (4). Con-
straints (5, 6) avoid infeasibleMA.Manpower of flexible operators can be allocated to
each device up to its maximum extent (5). The number of specialists and generalists
deployed at one device must not exceed its number of workplaces (6). Constraints
(7–10) prohibit unrealizable ADA. Storage slot requirements of an ADA have to be
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Table 1 Notations

Indices

i Device i � 1, . . . , I

j Article j � 1, . . . , J

Parameters

d̄ Duration of peak period

ei j Eligibility of j to be picked at i

g j Size of j

hi Length of one storage slot at i

λ Output ratio between generalists and specialists 0 < λ < 1

li Number of storage slots available at i

t pi j Time per piece to pick j at i

tri j Time to replenish one slot at i with j

pi Number of workplaces at i

wi Number of specialists available for i, with wi < pi

w f Number of available generalists

y j Demand of j

Variables

ai j Share of jth demand assigned to i, ai j ∈ [0, 1]

di Total time to fulfill article demand assigned to i, di ∈ R+
0

m Makespan m ∈ R+
0

oi j Number of storage slots occupied by j at i, oi j ∈ N0

ri j Number of storage slot replenishments for j at i , ri j ∈ R+
0

ρi j Total storage slot usage for j at i, with ρi j � ri j · oi j , ρi j ∈ R+
0

s f
i Share of generalists allocated to i, s f

i ∈ [0, 1]

ssi Share of specialists allocated to i, ssi ∈ [0, 1]

Indicators

s̃ f
i Estimated share of generalists allocated to i

s̃si Estimated share of generalists allocated to i

fulfilled by occupying and replenishing storage slots (7). At a device the number of
occupied storage slots cannot be greater than the number of available storage slots
(8). Constraint (9) requires using all occupied slots, while constraint (10) requires an
article to occupy at least one slot at a device if any fraction of the article’s demand is
assigned to that device. Constraint (11) reflects the ADA-MA interdependency: The
workload induced by ADA has to be met by MA within device’s utilization time.
ADAMA represents a mixed-integer quadratically constrained program (MIQCP).
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In order to avoid non-linearity the described planning problem can be decomposed
to a sequential approach. At its top level the ADA problem is solved assuming that
at each device an estimated number of workplaces is manned. Therefore, in the ADA
model constraints (5) and (6) are not relevant and (11) becomes linear:

∑

j

(
y j · ai j · t pi j +

(
ρi j − oi j

) · tri j
)

≤
(
wi · s̃si + λ · w f · s̃ f

i

)
· di ∀i (12)

The s̃-values are estimated based onanticipated decision behavior of the base level
[6] which is assumed to be in line with preferring (a) manpower of more efficient
operators and (b) manpower allocation to more productive devices. From top level’s
objective and preference (a) follows s̃si � 1. For setting s̃ f

i the allocation rule AR
represents preference (b).

AR

1. Initialize: s̃ f
i :� 0, se :� 1.

2. Determine: U �
{
i | i � 1, . . . , I ∧ pi − s̃si · wi − s̃ f

i · w f > 0
}
.

3. If U � ∅, go to 7, else go to 4.
4. Calculate:

qi � qu
i∑

i∈U
qu
i

with qu
i �

max
i

(∑
j y j · ei j · t pi j/

∑
j y j · ei j

)

∑
j y j · ei j · t pi j/

∑
j y j · ei j ∀i ∈ U

�s̃ f
i � min(qi · se; (pi − s̃si · wi − s̃ f

i · w f )/w f ) ∀i ∈ U

5. Update:

se :�
∑

i∈U
max(0; qi · se − (pi − s̃si · wi − s̃ f

i · w f )/w f )

s̃ f
i :� s̃ f

i + �s̃ f
i ∀i ∈ U

6. If se > 0, go to 2, else go to 7.
7. Stop.

The solution to ADA provides the fixed values m̄, āi j , ρ̄i j , ōi j and the instruction for
the base level to fulfill workload (induced by āi j , ρ̄i j , ōi j ) within m̄ with minimum
manpower. Hence, the objective of the MA problem is

min
∑

i

(wi · ssi + w f · s f
i ) (13)

Furthermore constraints (5) and (6) are relevant and (11) becomes linear:

∑

j

(
y j · āi j · t pi j +

(
ρ̄i j − ōi j

) · tri j
)

≤
(
wi · ssi + λ · w f · s f

i

)
· m̄ ∀i (14)
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Table 2 Results of regression analyses regarding makespan

Subject m α βI βI I βI I I r2

Sim Linear 821 13 −307 −1542 0.990

Seq Linear 228 14 −175 −404 0.991

seq/sim Linear 1.00 0.00 0.00 0.11 0.999

Table 3 Results of regression analyses regarding solution time

Subject st α βI βI I βI I I r2

Sim expon. 36.12 1.00 0.53 3.94 0.893

Seq expon. 0.25 1.00 0.05 1.31 0.870

Seq/sim expon. 0.01 1.00 0.18 0.20 0.499

Thus, the MA problem is a linear program and its solution provides information
on ssi and s f

i .

3 Numerical Study

Real data of a pharmaceutical wholesaler is used. Per peak period order picking is
performed by a workforce of 12 operators (λ � 0.9), working at 4 automated and
2 manual devices.1 A representative sample of demand data reveals that orders are
fulfilled from an assortment of over 73,000 articles.We restrict attention in this study
to the 4% of articles eligible for both, automated and manual order picking. In each
problem instance, y j is sampled from a Poisson distribution with the parameter equal
to the average observed demand, g j is sampled from the empirical distribution of
standardized article size and tri j is dependent on g j and hi . We conduct a 3k full-
factorial study with k � 3 factors that characterize the specific problem instances:
(I) number of articles (500, 1000, 1500), (II) number of storage slots at automated
devices (25, 50, 75% of total slot requirements), and (III) the fraction of flexible
workforce (25, 50, 75%). For each combination of factor levels, 3 problem instances
are randomly generated, which altogether yields 33 · 3 � 81 instances. In contrast to
the sequential approach, the simultaneous one failed to solve 5 of the instances.2

A comparison of approaches reveals that the sequential approach exceeds the
minimum makespan (m) on average by 5.3% (CV 2.1%), but reduces solution time
(st) on average to 0.3% (CV 62.7%). Correlations between (I), (II), (III) andm, st are
quantified by multiple regression analyses based on absolute values observed with
each approach and their ratios (Tables 2 and 3).

1Data for instance generation and generated instances can be provided by the authors.
2We used a MINLP solver (BARON 15.9) for solving ADAMA, and a MIP solver (Gurobi 7.0.2)
for solving ADA-MA on a MacBook Pro computer (2 GHz Intel Core i5 with two cores).
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In both approaches the same tendencies can be noticed: (I) is by far the strongest
factor and positively correlated with m and st. (II) is negatively correlated with both
indicators and concerning m weaker than (III). The correlation directions of (III)
are negative/positive for m, resp. st. Ratios of observed values are not correlated
with (I), but positively/negatively correlated with (II) and (III) in case of m, resp.
st. Correlations of (III) are much stronger than those of (II) in case of m. That is,
the coordination deficit is noticeable positively correlated with (III). Since (III) is
considered in the sequential approach at the top level by anticipating the base level,
a deficit reduction could be achieved by improving AR.

4 Conclusions

For warehouses with heterogeneous order picking technologies we propose two
approaches that assign articles and allocate manpower to devices in an integrative
way. The simultaneous approach is a MIQCP. To avoid non-linearity, a hierarchical
decomposition leads to a sequential approach composed of a MIP (top level) and a
LP (base level). A numerical study reveals that the simultaneous approach cannot
handle real-world problems in acceptable time and fails sometimes. In contrast, the
sequential approach was able to solve all instances, allows for a strong reduction of
solution time, but slightly reduces solution quality. A regression analysis indicates
the fraction of flexible workforce as a driver of this coordination deficit. Therefore,
continuing research will be directed to the sequential approach, in particular towards
a better anticipation of the base level’s behavior.
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Metaheuristic for the Vehicle Routing
Problem with Backhauls and Time
Windows

José Brandão

1 Introduction

The vehicle routing problem with backhauls and time windows (VRPBTW) consists
in finding a set of routes, in order to serve a given number of dispersed customers,
whose geographical location, demand, and time window for the service are known.
Each route is travelled by one vehicle assigned to it, which starts the trip at the depot,
visits each customer of the route according to a given schedule, and, in the end returns
to the depot. It is well established that the VRPBTW is NP-hard.

In this problem there are two distinct sets of customers—those that require the
delivery of goods, who are called linehauls, and those that require the collection
of goods, named backhauls. In a route, the linehaul customers must be served first,
followed by the backhauls (this is called a precedence constraint), but a route may
contain only linehauls or only backhauls. In this paper, the objective is tominimise the
number of routes and, for the same number of routes, to minimise the total distance
travelled by the vehicles. So far as we know, the most relevant papers that used the
same objective function are the following: Thangiah et al. [8], Reimann et al. [5],
Ropke and Pisinger [6] and Vidal et al. [10]. Real-world applications and surveys of
this and similar types of problems can be found at Casco et al. [2], Toth and Vigo [9]
and Battarra et al. [1].
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The remainder of this paper is organised as follows. In Sect. 2, we describe our
iterated local search algorithm. In Sect. 3, we present the computational experiments
and compare the quality of our algorithm with the best algorithms published, and in
the final section, we draw the main conclusions.

2 The Iterated Local Search Algorithm

The reader can find a detailed description of the iterated local search in Lourenço
et al. [4]. Very succinctly, this metaheuristic consists of applying iteratively and
sequentially local search and perturbation. Given a solution s, the local search finds
a local optimum, s*, by exploring the neighbourhood of s and performing a set of
descent moves. The perturbation consists of applying a set of non-descent moves to
given local optimum, s*, generating sp*, in order to escape from this optimum. In
the following, first we describe the components of our iterated local search algorithm
and then we present its general framework.

The initial solution is generated by a sequential insertion method that takes into
account the insertion cost of each unrouted customer in the route under construction
and its time window wideness.

Our algorithm comprises the following neighbourhood structures for perform-
ing local search: (i) cross over, (ii) swap, (iii) insertion, (iv) interchange of chains
(2, 0), (2, 1), and (2, 2); (v) intra swap, (vi) shift and (vii) 2-opt. The first four
kinds of structures consist of moves between the routes of s, whilst the other three
are performed inside each route of s. All the solutions generated along the search
process must be feasible.

In our algorithm, the following five types of perturbation procedures were used:
P1—ejection chain, P2—swap of linehauls with backhauls and interchange of
chains, P3—direct swap, P4—insertion, and P5—filling. Note that some of these
procedures are similar to those already defined to perform the local search, but in
the perturbation non improving moves are executed. The ejection chain is applied
in every iteration before one of the other four, which are applied in this sequence
alternately. All the operators used in our algorithm are deterministic. Therefore, in
order to reduce the likelihood of cycling a large number of operators have been used
and the way of applying some of them depends on the iteration.

During the execution, after finishing the local search cycle, a set of elite solutions
is selected. The composition of this setmay change at each iteration, depending on the
quality of the solution just found. This quality is evaluated according to the following
hierarchical criteria: (i)Phase 1—number of routes, number of customers of the least
route, distance of the least route; (ii) Phase 2—number of routes, total distance of
the solution. After K iterations without improving the best known solution, the route
chosen to apply the perturbation is the best solution of this elite set not yet explored.
After some experiments, the cardinality of the elite set, E, and K were defined as 5
and 100, respectively.
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With the purpose of minimising the number of routes the following mechanisms
were used: 1—In any iteration, if the trial move generates a feasible solution with one
route less than the best known feasible solution, this move is immediately accepted,
independently of its cost. 2—In order to reinforce the natural ability of the insertion
move to eliminate a route, the following is done in phase 1: the trial insertion moves
always start with the least route, then if a customer is removed from this route the
(trial) insertion cost is reduced by a fixed cost (Fc), but if a customer is inserted
in this route the insertion cost is increased by Fc, which has been defined as Fc =
RD/N . Where R is the total number of routes of the initial solution and D is its total
distance.

Our algorithm comprises phase 1 and phase 2. These two phases are executed in
this sequence twice. The only difference between them is that phase 1 tries directly
to minimise the number of routes, while phase 2 tries to minimise the distance. This
is why mechanism 2 is not applied in phase 2. The execution of each phase stops
after T iterations without improving the best known solution. After repeating this
cycle twice, phase 2 is executed again during T iterations without improving the best
known solution. After some experiments, T was set equal 350 during the first two
cycles (phase 1 followed by phase 2) and 1000 in the last application of phase 2.

Framework of the Algorithm

sb—best solution found.
t—counter of the number of iterations without improving the best solution. It

restarts from zero in the beginning of each phase and when a new best solution is
found.

1. Generate the initial solution, s; sb= s.
2. Apply phase 1 or phase 2 while t<T//phase 1 and 2 are repeated twice sequen-

tially.
3. Repeat while there is an improvement of the current solution, s:

• Apply cross over;
• Apply swap;
• Apply interchange (2, 0) and (2, 1);
• Repeat while there is an improvement of s:
– Apply insertion and then intra swap to each route r ∈ s.

• Apply interchange (2, 2);
• Apply intra shift to each r∈ s and then 2-opt if r contains one type of customers
only.

4. Insert s in the elite set if it is better than any of those already in it.
5. Perturb s or the best solution of the elite set not yet explored if t mod 100 = 0,

set t = t + 1 and go to step 2.
6. Update T , set s = sb and execute phase 2 again, going to step 2.
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3 Computational Experiments

The benchmark problems were created by Gélinas et al. [3] and Thangiah et al.
[8] based on Solomon [7] data for the VRPTW. There are three sets of problems,
containing 100, 250 and 500 customers, respectively, where the first set contains 15
problems and the other two sets contain 12 problems each.

Our algorithm (JB, for short) was programmed in the C language, and was exe-
cuted on a desktop computerwith an Intel i7-3820 processor at 3.6GHz, and 32GBof
RAM. In order to evaluate the performance of JB, we compare it, in terms of solution
cost and computing time, with the best algorithms found in the literature that assume
the sameobjective function, namely the following: Thangiah et al. [8]—Thangiah, for
short, Reimann et al. [5]—Reimann, Ropke and Pisinger [6]—Ropke, andVidal et al.
[10]—Vidal. These algorithms were executed on the following computers, respec-
tively: NeXT, Pentium III at 900 MHz, Pentium IV at 1.5 GHz, and Opteron 250 at
2.4GHz. Following the literature, their speeds,measured inmillions of floating-point
operations per second (Mflop/s), can roughly be estimated as presented in Table 1.

JB is deterministic and, therefore, the results presented in the tables were obtained
with one execution of the algorithm, using always the same parameter values defined
in Sect. 2. Since in these articles there are several versions of the algorithm, we
compare with the version that produces better results, except in the case of Thangiah
where we use the best overall. The algorithms of Reimann, Ropke and Vidal contain
several stochastic parameters. Therefore, the authors executed them 10 times, but
they presented the results in different ways, as follows: Reimann—best results of
the 10 executions; Ropke—average number of routes (but not the average distance),
best solutions (routes and distance) and average computing time; Vidal—average
solutions (routes and distance), best solutions and average computing time. The
average results are the most relevant for the sake of comparison with our algorithm,
but if they are not provided, we present the best solutions and the computing time
required by the 10 executions. Note also that Reimann and Vidal only solved the first
set of problems. In the tables, R is the total number of routes of the solutions for each
set of problems, CPU is the total computing time, in seconds. The computing times
presented in Table 3 results from scaling the original times given by the authors,
according to the relative speeds of the computers defined by Table 1.

Table 1 Relative speeds of the computers used by the algorithms

Algorithm Processor Mflop/s Speed scaled

JB Intel i7-3820, 3.6 GHz 1960 1

Thangiah NeXT 1 0.0005

Reimann Pentium III, 900 MHz 234 0.1194

Ropke Pentium IV, 1.5 GHz 326 0.1663

Vidal Opteron 250, 2.4 GHz 1385 0.7066
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Table 2 Global results for the three sets of problems
Thangiah Reimann Ropke Vidal JB

R Distance R Distance R Distance R Distance R Distance

N = 100 274 24051.9 265b 23514.9b 259.9a 23416.7b 258.4a 23488.7a 259 23672.6

N = 250 517 57688.9 – – 449a 54499b – – 446 55062.0

N = 500 799 93156.1 – – 680a 82796b – – 663 84446.7

aThis is the average of 10 runs
bThis the best of 10 runs

Table 3 Computing times for each set of problems, in seconds

Problem set Thangiaha Reimannb Ropkec Vidalc JB

N = 100 0.4 2686 283 2607 206

N = 250 6.0 – 1006 – 1504

N = 500 63.4 – 3492 – 7381

aTime to execute all the versions
bTime to execute 10 runs
cAverage time of 10 runs

Looking at the first set, Table 2 shows that JB produces very slightly worse solu-
tions than the algorithm of Vidal, a little bit better than the algorithm of Ropke (note
that the distance presented for this algorithm is the best from 10 executions and,
consequently, it is not directly comparable with the distance yield by JB), better
than Reimann, and substantially better than Thangiah. In terms of computing time,
Table 3 shows that Thangiah is much faster than JB, but JB is faster than any of the
others, being much faster than the algorithms of Vidal and of Reimann (about ten
times).

The results for the other two sets show that the quality of the solutions given by JB
becomes increasingly better than the yield by the other two algorithms (Thangiah and
Ropke) as long as the number of customers increases. For example, the total number
of routes given by Thangiah is 5.8, 15.9 and 20.5% more than the yield by JB, for
the problems with 100, 250 and 500 customers, respectively, and a similar trend
is observed with Ropke. In what concerns to the computing time, the behaviour
in relation to the algorithm of Thangiah is just the opposite, i.e., the percentage
difference decreases when the dimension of the problem increases, but it is still much
faster than JB. On the contrary, JB becomes increasingly slower than the algorithm
of Ropke.

As final conclusion, we can say that, in general, JB produces better solutions
than the other algorithms and it is rather fast. Note that the algorithm of Thangiah
is much faster, but this is not sufficient to compensate the difference in the quality
of the solutions. For example, for the set of problems with 500 customers the initial
solution of JB is better (34 routes less) and takes less than one twentieth of computing
time.
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4 Conclusions

This paper presents an iterated local search algorithm for the VRPBTW that has
proven to be very competitive with the existing algorithms, both in terms of quality
of the solutions and computing time. This performance owes a lot to the effectiveness
of the perturbations applied and also to the use of elite solutions. Furthermore, our
algorithm is deterministic, what means that the results are fully reproducible.
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Convex Approach with Sub-gradient
Method to Robust Service System Design

Jaroslav Janáček and Marek Kvet

1 Introduction

Public service systems are established to provide users by necessary service in emer-
gency situations. Since the traversing time between service center and the affected
user might be impacted by various random events, the system must be resistant to
such critical events [7]. One of common approaches to robust system designing uses
a set of scenarios to model various combinations of failures in service deliveries [1,
8]. Whereas the standard service system can be designed by solving min-sum loca-
tion problem [5, 6], the robust design is usually formulated as min-max problem,
where maximum of objective functions associated with the individual scenarios is
minimized. The transformation of the original min-sum problem to the new more
complex min-max problem brings difficulties into the computational process. The
min-max link-up constraints represent an undesirable burden, because the branch-
and-bound method converges much slower than the computational process solving
a simple service system design problem [3, 4]. Slow convergence may be caused
by the link-up constraints, which formalize relation between the individual scenario
objective functions and their upper bound. Here, we focus on bad convergence of the
branch-and-boundmethod and try to improve the computational process by replacing
the waste relaxed model by a smaller one obtained by a convex combination.
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2 Robust Service System Design and Lagrangean
Relaxation

The robust service system design problem can be described by the following deno-
tations, where symbol J denotes the set of users’ locations and symbol I denotes
the set of possible service center locations. We denote by bj the volume of service
demand at the user location j. To solve the problem, p locations must be chosen from
I so that the maximal scenario objective function value is minimal. The scenario
objective function value is defined as a sum of users’ distances from the location of
the nearest center, where each distance is multiplied by the associated demand bj.
Let symbolU denote the set of possible detrimental scenarios. The distance between
locations i and j under a specific scenario u ∈ U is denoted by diju. The variable
yi ∈ {0, 1} models the decision on service center location at place i ∈ I by the value
of 1 if a service center is located at i and by the value of 0 otherwise. The variable
h represents an upper bound of the objective function issues corresponding to the
individual scenarios. The nonlinear model of the problem follows.

Minimize h (1)

Subject to :
∑

i∈I

yi ≤ p (2)

∑

j∈J

bjmin
{
diju : i ∈ I , yi = 1

} ≤ h for u ∈ U (3)

yi ∈ {0, 1} for i ∈ I (4)

h ≥ 0 (5)

The objective function (1) represented by single variable h gives an upper bound of
all objective function values corresponding to the individual scenarios. The constraint
(2) limits the number of located service centers by p. The link-up constraints (3)
ensure that each scenario objective function value is less than or equal to the upper
bound h. As the min-max link-up constraints (3) represent an undesirable burden
in any integer programming problem, we applied the Lagrangean relaxation on the
constraints (3). Each of these constraints is associatedwith a nonnegative Lagrangean
multiplier λu and the following relaxed problem is formulated.

Minimize h +
∑

u∈U

λu

⎛

⎝
∑

j∈J

bjmin
{
diju : i ∈ I , yi = 1

} − h

⎞

⎠ (6)

Subject to : (2), (4) and (5)
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According to [3], we can restrict ourselves on such setting of non-negative mul-
tipliers, which sum equals to one. The commonly known propositions claim that the
optimal objective function value of (6), (2), (4) and (5) gives lower bound of the
optimal solution of the model (1)–(5) and the optimal solution of (6), (2), (4) and
(5) is the optimal solution of (1)–(5), if and only if the gap (7) equals to zero for h
determined as maximum of the individual objective functions.

gap = −
∑

u∈U

λu

⎛

⎝
∑

j∈J

bjmin
{
diju : i ∈ I , yi = 1

} − h

⎞

⎠ (7)

The original method employing Lagrangean relaxation minimizes the gap by
iterative adjusting the Lagrangean multipliers. In the convex approach, we use the
inequality (8) to surrogate problem (6), (2), (4), (5) by a smaller "convex" problem.
Thus, the problem (9), (2) and (4) will be solved instead of (6), (2), (4), (5).

11.3

∑

u∈U

λu
(
min

{
diju : i ∈ I , yi = 1

}) ≤ min

{
∑

u∈U

λudiju : i ∈ I , yi = 1

}
for j ∈ J (8)

Minimize
∑

j∈J

bjmin

{
∑

u∈U

λudiju : i ∈ I , yi = 1

}
(9)

3 Radial Formulation of the Min-Sum Location Problems

Using the denotations, variables and constraints introduced in Sect. 2, wewill present
the radial formulation of the problem (6), (2), (4) and (5) taking into account that
the variable h leaves the model due to the sum of considered λu equals to one.
To formulate the radial model, the integer range [0, m] of all possible distances of
the matrices {diju} is partitioned into m unit zones according to [2, 3]. The zone s
corresponds to the interval (s, s + 1]. Further, auxiliary zero-one variables xjus for
s = 0 . . . m − 1 and u ∈ U are introduced. The variable xjus takes the value of 1,
if the distance of the user at j ∈ J under scenario u ∈ U from the nearest located
center is greater than s and it takes the value of 0 otherwise. Then the expression
xju0 + xju1 + · · · + xju(m−1) constitutes the distance dju∗ from user location j to the
nearest located service center under scenario u ∈ U . Let us introduce a zero-one
constant as

iju under scenario u ∈ U for each i ∈ I , j ∈ J , s ∈ [0, m − 1]. The constant
as

iju is equal to 1, if the distance diju between the user location j and the possible
center location i is less than or equal to s, otherwise as

iju is equal to 0. Then the radial
model of the problem takes the form of (10)–(12), (2) and (4).
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Minimize
∑

u∈U

λu

∑

j∈J

bj

m−1∑

s=0

xjus (10)

Subject to : xjus +
∑

i∈I

as
ijuyi ≥ 1 for j ∈ J , u ∈ U, s = 0, . . . , m − 1 (11)

xjus ≥ 0 for j ∈ J , u ∈ U, s = 0, . . . , m − 1 (12)

The problem (9), (2) and (4) can be formulated in similar way, where auxiliary
zero-one variables xjs for s ∈ [0, m − 1] are introduced. The zero-one constant as

ij for
each i ∈ I , j ∈ J , s ∈ [0, m − 1] equals 1, if the convex combination of diju for u ∈ U
with coefficients λu is less than or equal to s for the user location j and the possible
center location i, otherwise as

ij = 0. Then, the model takes the form of (13)–(15), (2)
and (4). Obviously, this model is |U | times smaller than the previous one.

Minimize
∑

j∈J

bj

m−1∑

s=0

xjs (13)

Subject to : xjs +
∑

i∈I

as
ijyi ≥ 1 for j ∈ J , s = 0, . . . , m − 1 (14)

xjs ≥ 0 for j ∈ J , s = 0, . . . , m − 1 (15)

4 Sub-gradient Iterative Method

We try to minimize the gap (7) so that h is set to the value of the best found solution
of the problem (1)–(5) (further denoted as upper bound UB) and we aim to reach
estimation (13) of (10) as big as possible by suitable adjustment of λu. The algorithm
performs according to the following steps.

0. Initialize λu = 1/|U | for u ∈ U and set the bounds LB = 0 and UB = +∞.
1. Solve the problem (13)–(15), (2) and (4) obtaining solution y. Compute associ-

ated objective function values fu(y) and h = max {fu(y) : u ∈ U }. Compute the
estimation ULB as the value of (6) for given y.

2. If UB > h, update UB = h and ybest = y. If LB < ULB, then update LB = ULB
and update components gu = fu(y) − h of gradient and determine magnitude α

of the step in direction given by the gradient. Otherwise, set α = α/(1 + β).
3. If termination rule is met, finish, otherwise update λu for u ∈ U and go to 1.
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5 Numerical Experiments

Thegoal of performed experimentswas to compare suggested approaches concerning
the computational time and the objective function value of the resulting solution.
The studied instances were solved using the optimization software FICO Xpress
8.0 (64-bit, release 2016) and the experiments were run on a PC equipped with the
Intel Core i7 5500U processor with the parameters: 2.4GHz and 16GB RAM. The
experiments were performed with the pool of benchmarks obtained from the road
network of Slovakia corresponding to the self-governing regions, i.e. Bratislava -
BA, Banská Bystrica - BB, Košice - KE, Nitra - NR, Prešov - PO, Trenčín - TN,
Trnava - TT and Žilina - ZA. The set of communities represents both the set J of
users’ locations and the set I of possible center locations. Due to the lack of common
benchmarks, ten detrimental scenarios for each self-governing regionwere generated
randomly [3, 4]. An individual experiment was organized so that the exact solution
of the problem (1)–(5) was obtained first. Then, the approaches based on Lagrangean
relaxation were applied. The results are summarized in Table1.

The exact solution is reported in the columns denoted by “EXACT”. All columns
denoted by “time” contain the computational time in seconds. The optimal objective
function value is reported in the column denoted by h. The right part contains the
results of suggested approaches based on Lagrangean relaxation. The basic version
of the solving method is denoted by “LAGRANGE” and the reduced ones combined
with the convex combination of scenarios are denoted by “L-CONVEX-OLD” and
“L-CONVEX-NEW” respectively. The difference between “L-CONVEX-OLD” and
“L-CONVEX-NEW” approaches consists in the way of parameter α adjustment in
λu updating. The multipliers λu are generally updated according to (16), assuming
that the denominator is greater than zero.

λupdated
u = max {0, λu + αgu}∑

w∈U max {0, λw + αgw} for u ∈ U (16)

The original way (OLD) of α adjustment assures that all positive λu stay positive
after update [3]. The alternative way (NEW) chooses α so that at least one of positive
λu stays positive. The parameter β was set to the value of 1 in all presented exper-
iments. Each method using Lagrangean relaxation was evaluated by computational
time and dif defined as the percentual difference of the obtained objective function
value from the objective function of the exact solution taken as the base.

6 Conclusions

The paper deals with reduction of the robust service system design problem with
the goal of reaching good design in acceptable time. We suggested an approximate
method based on Lagrangean relaxation and sub-gradient adjustment of Lagrangean
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multipliers. The convex combination of scenarios was used to reduce the problem
size. Presented results show success in reducing the computational time, which was
approximately ten times lower than computational time of the standard Lagrangean
relaxation. The deviations of the results obtained by methods based on Lagrangean
relaxation from the exact solutionwere almost the same.Concerning tested parameter
β, no significant impact on the results was found. None of the alternative strategies
of α setting proved to dominate the other. Future research may be aimed at some
other forms of α setting strategies and possible adapting or learning methods.
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3. Janáček, J., & Kvet, M. (2016). Designing a robust emergency service system by Lagrangean
relaxation. Mathematical Methods in Economics, 349–353. (Liberec).
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Leasing with Uncertainty

Christine Markarian

1 Introduction

Traditionally, companies used to buy their resources at start-up and then update them
whenever needed (e.g., when new resources were released). Nowadays, due to rapid
technological advances, such updates have become necessary quite often. This has
led companies to lease their resources rather than buying them, thus maintaining up-
to-date resources for reasonable costs. Consequently, smart leasing decisions that
need to be made without knowing the future were constantly needed, i.e., when to
lease, which resource, and for how long, while not knowing future demands and
without paying much.
Recent Work. The first attempt to answer these questions was by Meyerson in
2005 [6].Meyerson introduced thefirst theoretic leasingmodelwith a simple problem
in which one resource is leased, the Parking Permit Problem. Each day, depending
on the weather, we have to either use the car (if it is rainy) or walk (if it is sunny). In
the former case, we must have a valid parking permit, which we choose among K
different types of permits (leases), each having a different duration and price. On any
day, lease prices respect economy of scale such that a longer lease costs less per day.
The goal is to buy a set of leases in order to serve all rainy days while minimizing
the total cost of purchases and without using weather forecasts. Since the seminal
work of Meyerson [6], there have been a number of works that extend the Parking
Permit Problem to problems including more resources [1, 2, 7]. All of these works
assume that all arriving demands must be served, and immediately upon arrival. In
some circumstances, however, it is possible to decline serving some demands at the
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cost of paying a penalty associated with them. Penalties have been studied in the
context of many online optimization problems (e.g., [4]) and scheduling problems
(e.g., [3]). Moreover, in many scenarios, demands need not be served immediately.
Abshoff et al. [5] introduced deadlines into the leasing model by Meyerson, such
that each demand is associated with a deadline and is allowed to be served anytime
before its deadline.
Our Contribution. In this paper we incorporate penalties into existing leasing
models by introducing the Lease-or-Decline and Lease-or-Delay leasing
models, described as follows. In the Lease-or-Declinemodel, not all demands
need to be served, i.e., the algorithmmay decline a demand as long as a penalty asso-
ciated with it is paid. In the Lease-or-Delaymodel, each demand has a deadline
and can be served any day before its deadline as long as a penalty is paid for each
delayed day. Note that this is a generalization of the model with deadlines proposed
by Abshoff et al. [5] in which no penalty is incurred for delays. The goal is to mini-
mize the total costs of leases and penalties. Shouldwe know the sequence of demands
in advance (offline version), the two problems can easily be solved optimally using
Dynamic Programming. Nevertheless, the demands are only revealed to us with time
and so we seek algorithms that provide provably good solutions without knowing the
future (online version). We give deterministic online primal-dual algorithms, evalu-
ated using standard competitive analysis in which an online algorithm is compared to
the optimal offline algorithmwhich knows the entire sequence of demands in advance
and is optimal. Given an input sequence σ , let CA(σ ) and COPT (σ ) denote the cost
incurred by an algorithm A and an optimal offline algorithm OPT , respectively. We
say algorithm A is c-competitive if CA(σ ) ≤ c · COPT (σ ) for all input sequences σ .
We seek algorithms that achieve competitive ratios independent of time.

2 The Lease-or-Decline Model

In this section we start be formally defining the Lease-or-Decline model which we
formulate as a primal-dual program.Thenwedescribe an online deterministic primal-
dual algorithm for the problem and analyze its competitive ratio.
Problem Description. The Lease-or-Decline model is an online problem defined
as follows. Given a set L of different lease types each with a fixed duration and
price. The duration of a lease of type i ∈ L is denoted as li and its price as ci . A
lease of type i that starts on day t is represented as a pair (i, t). These pairs form
the set Q. There is a set D of demands that need to be covered by the algorithm.
Each day the algorithm is either given one of these demands or no demand (it does
not know the set D in advance). A demand arriving on day j (we say demand j)
is covered if the algorithm buys some lease (i, t) such that j ∈ [t, t + li ]. A lease
that can cover demand j ∈ D is called j’s candidate. The algorithm has the option
not to cover a demand j (decline it) by paying a penalty p j associated with it. The
goal is to minimize the total costs of leasing and penalties. The linear programming
formulation of the problem is depicted in Fig. 1.
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min
∑

(i,t)∈Q
x(i,t) · ci +

∑
j∈D

xj · pj

Subject to: ∀j ∈ D:
∑

(i,t)∈Q,j∈[t,t+li]

x(i,t) + xj ≥ 1

∀(i, t) ∈ Q: x(i,t) ∈ {0,1}; ∀j ∈ D: xj ∈ {0,1}

max
∑
j∈D

yj

Subject to: ∀(i, t) ∈ Q:
∑

j∈D,j∈[t,t+li]

yj ≤ ci

∀j ∈ D: yj ≤ pj

∀j ∈ D: yj ≥ 0

Fig. 1 Linear program (Lease-or-Decline)

Lease configuration: we simplify any given instance of the problem by assuming
that no two leases of the same type overlap and all lease lengths are powers of two.
Meyerson showed that by doing so we only lose a constant factor in the competitive
ratio of the problem (Theorem2.2 in [6]).
Online Primal-dual Scheme. Whenever a demand j ∈ D arrives, we increase its
corresponding dual variable y j until some dual constraint becomes tight. If such a
constraint corresponds to the demand j : y j = p j (and not a candidate lease), we set
its corresponding primal variable to 1 (x j = 1). Else, we set the primal variables of
all leases corresponding to a tight dual constraint to 1. Next we show that the primal-
dual algorithm above has an O(|L|)-competitive ratio, where |L| is the number of
available leases. Note that this is the best ratio any deterministic algorithm for the
problem can achieve due to the lower bound of �(|L|) by Meyerson for the Parking
Permit (which is a special case of the Lease-or-Decline model in which all
penalties are set to infinity). We bound the costs of leasing and the costs of penalties
separately, as follows. Let P ⊆ Q denote the set of leases bought by the algorithm.
Because the dual constraint is tight for each (i, t) ∈ P , we have ci = ∑

j∈D, j∈[t,t+li ]
y j .

Thus,
∑

(i,t)∈P
ci = ∑

(i,t)∈P

∑

j∈D: j∈[t,t+li ]
y j = ∑

j∈D
y j

∑

(i,t)∈P: j∈[t,t+li ]
1. Notice that due to

the configuration of the leases, there are exactly |L| leases covering any single day.
So the algorithm does not buy more than |L| leases for each demand. This means∑

(i,t)∈P: j∈[t,t+li ]
1 ≤ |L|. Nowwe bound the costs of penalties. Since the dual constraint

is tight for each demand j declined, we have p j = y j . Thus,
∑

j∈D
x j · p j ≤ ∑

j∈D
y j .

Hence, since both the primal and dual solutions constructed are feasible, we can
apply Weak Duality Theorem - any feasible solution to the primal (minimization)
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program is a lower bound for any feasible solution to the corresponding dual program
- and conclude that:

Theorem 1 There is a deterministic O(|L|)-competitive primal-dual algorithm for
the Lease-or-Decline model.

3 The Lease-or-Delay Model

In this section we start be formally defining the Lease-or-Delay model which we
formulate as a primal-dual program.Thenwedescribe an online deterministic primal-
dual algorithm for the problem and analyze its competitive ratio.
ProblemDescription. The Lease-or-Delaymodel is an online problem defined
as follows. Given a set L of different lease types each with a fixed duration and price.
The duration of a lease of type i ∈ L is denoted as li and its price as ci . A lease of
type i that starts on day t is represented as a pair (i, t). These pairs form the set Q.
We assume the same lease configuration as in the Lease-or-Decline model.
There is a set D of demands that need to be covered by the algorithm. Each day the
algorithm is either given one of these demands or no demand (it does not know the set
D in advance). Each demand arriving on day j (we say demand j) is associated with
a deadline duration d. We denote by dmax the longest available deadline duration.
A demand j with deadline duration d is covered if ∃ day t ′ ∈ [ j, j + d] and lease
(i, t) bought by the algorithm such that t ′ ∈ [t, t + li ]. A lease that can cover demand
j is called j’s candidate. Each day t ′ ∈ [ j, j + d] is associated with a penalty p j

t ′
that needs to be paid if the algorithm covers demand j on day t ′. These penalties,
associated with each demand j , are increasing with time (the later the demand is
covered, the higher the penalty paid) and given to the algorithm as soon as demand
j arrives. The goal is to minimize the total costs of leasing and penalties. The linear
programming formulation of the problem is depicted in Fig. 2.
Online Primal-dual Scheme. Whenever a demand j ∈ D arrives, we uniformly
increase the dual variables z jt corresponding to each t ∈ [ j, j + d] until some dual
constraint corresponding to a candidate lease becomes tight. At this point there
is at least one such lease (i, t ′) that covers day j . Moreover, we always main-
tain (y j − z jt ) ≥ 0 for each t ∈ [ j, j + d]. Hence, we increase the dual variable
y j corresponding to the demand until the dual constraint corresponding to some
t ∈ [ j, j + d] becomes tight. Note that the dual constraint corresponding to no
other day t ∈ [ j + 1, j + d] will become tight strictly before the dual constraint
corresponding to day j . We then set the primal variables x(i,t ′) and x j

j to 1. Notice
that the algorithm covers a demand on the day of its arrival. Had it been the case
that it knew future demands (offline instance), it might have considered delaying
a demand (pay more penalties but buy leases shared by more demands). Next we
show that the primal-dual algorithm above has an O(|L| + dmax

lmin
)-competitive ratio,

where |L| is the number of available leases, dmax is the longest available dead-
line duration, and lmin is the shortest lease length. Since the Parking Permit Prob-
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min
∑

(i,t)∈Q
x(i,t) · ci +

∑
j∈D

j+d∑
t=j

xj
t · pj

t

Subject to: ∀(j, d) ∈ D:
j+d∑

t=j

xj
t ≥ 1

∀(j, d) ∈ D, t ∈ [j, j + d]: xj
t ≤

∑

(i,t′)∈Q,t∈[t′+t′+li]

x(i,t′)

∀(i, t) ∈ Q: x(i,t) ∈ {0,1}; ∀(j, d) ∈ D, t ∈ [j, j + d]: xj
t ∈ {0,1}

max
∑

(j,d)∈D
yj

Subject to: ∀(i, t) ∈ Q, (j, d) ∈ D, t′ ∈ [j, j + d]:
∑

t′∈[t,t+li]

zjt′ ≤ ci

∀(j, d) ∈ D, t ∈ [j, j + d]: yj − zjt ≤ pj
t

∀(j, d) ∈ D: yj ≥ 0; ∀(j, d) ∈ D, t ∈ [j, j + d]: zjt ≥ 0

Fig. 2 Linear program (Lease-or-Delay)

lem is a special case of the Lease-or-Delay model in which dmax = 0 and all
penalties for all demands are set to 0, the lower bound of �(|L|) by Meyerson
holds here as well. We bound the costs of leasing and the costs of penalties sep-
arately, as follows. Let P ⊆ Q denote the set of leases bought by the algorithm.
Because the dual constraint is tight for each (i, t) ∈ P , we have ci = ∑

j∈D, j∈[t,t+li ]
y j .

Thus,
∑

(i,t)∈P
ci = ∑

(i,t)∈P

∑

j∈D: j∈[t,t+li ]
y j = ∑

j∈D
y j

∑

(i,t)∈P: j∈[t,t+li ]
1. Unlike in the previ-

ousmodel, for each demand j , the algorithmmay buymore than |L| leases. Although
it buys leases covering only day j to cover demand j , the latter may have more than
|L| candidates shared by other demands arriving later. Hence the algorithm may
end up buying some of j’s candidates on a later day. Abshoff et al. [5] showed an
upper bound of (|L| + dmax

lmin
) on the total number of these candidates, for the special

case in which demands also have deadlines but can be covered any day before their
deadline without incurring any penalty costs. Thus,

∑

(i,t)∈P: j∈[t,t+li ]
1 ≤ |L| + dmax

lmin
.

Now we bound the costs of penalties. Since the algorithm covers a demand j on
only one day t and the dual constraint is tight for that day, we have p j

t ≤ y j . Thus,
∑

j∈D

j+d∑

t= j
x j
t · p j

t ≤ ∑

j∈D
y j . Hence, by Weak Duality Theorem (both primal and dual

solutions are feasible), we conclude that:

Theorem 2 There is a deterministic O(|L| + dmax
lmin

)-competitive primal-dual algo-
rithm for the Lease-or-Delay model.
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4 Conclusion

The algorithms in this paper perform under the uncertainty of the future in terms
of both the arrival times of demands as well as the penalties associated with them.
In certain scenarios, it might be the case that the algorithm is partially aware of the
future (e.g., it may not know the arrival times of demands in advance, but has some
information about the penalties (such as penalties are drawn from some probability
distribution)). It is interesting to know whether better solutions can be attained under
such assumptions. Furthermore, we are curious to know how our algorithms will
perform in actual leasing scenarios from real markets and what modifications might
be necessary in terms of bothmodels and algorithms, in order to close the gap between
theory and practice.
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Risk Averse Scheduling with Scenarios

Mikita Hradovich, Adam Kasperski and Paweł Zieliński

1 Preliminaries

We are given a set J of n jobs, which can be partially ordered by some precedence
constraints. Namely, i → j means that job j cannot start before job i is completed.
For each job j ∈ J a nonnegative processing time p j , a nonnegative due date d j and
a nonnegative weight w j can be specified. A schedule π is a feasible permutation
of the jobs and Π is the set of all feasible schedules. We will use C j (π) to denote
the completion time and Tj (π) = [C j (π) − d j ]+ the tardiness of job j in schedule
π, where [x]+ = max{0, x}. Let f (π) be a nonnegative cost of π ∈ Π . The follow-
ing cost functions are commonly used (see, e.g., [2]): total weighted completion
time f (π) = ∑

j∈J w jC j (π), total weighted tardiness f (π) = ∑
j∈J w j Tj (π), and

maximum weighted tardiness f (π) = max j∈J w j Tj (π). We will denote scheduling
problems P by using the standard Graham’s notation (see, e.g., [2]).

In this paper we assume that job processing times and due dates can be uncertain.
The uncertainty is modeled by a discrete scenario set U = {ξ1, ξ2, . . . , ξK }. Each
realization of the parameters ξ ∈ U is called a scenario. For each scenario ξ ∈ U a
probability Pr[ξ] > 0 of its occurrence is known. We will use p j (ξ) and d j (ξ) to
denote the processing time and due date of job j under scenario ξ ∈ U . We will also
denote by C j (π, ξ) the completion time of job π under ξ ∈ U and by f (π, ξ) the
cost of schedule π under ξ. Given a feasible schedule π ∈ Π , we denote by F(π) a
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random cost of π. Notice that F(π) is a discrete random variable with the probability
distribution induced by the probability distribution in U .

The scenario-based representation allows us to avoid assumptions on distributions
of random parameters. It has been applied to capture the randomness of uncertain
parameters in several discrete optimization problems (see, e.g., [1, 6, 12]). A fre-
quent goal, in this case, is to minimize the expected cost of a solution built.This
criterion assumes that a decision maker is risk neutral and leads to a solution that
guarantees an optimal long run performance. However, sometimes a solution found
may be questionable, especially when it is implemented only once (see, e.g., [7]).
Moreover, the expected cost criterion does not take a decision maker’s risk aversion
into account [3]. In order to compute a risk averse schedule that hedges against the
uncertainty, we adopt performance measures of schedule π, called the value at risk
and the conditional value at risk. We recall their definitions, following [10, 11].

Given a random variable Y with a fixed level α, we define the Value at Risk as
the α-quantile:

VaRα[Y] = inf{t : Pr[Y ≤ t] ≥ α},α ∈ (0, 1]. (1)

The Conditional Value at Risk can be defined as follows:

CVaRα[Y] = inf{γ + 1

1 − α
E[Y − γ]+ : γ ∈ R},α ∈ [0, 1). (2)

Let Y be a discrete random variable taking the values b1, . . . , bK . Then the values
of VaRα[Y] and CVaRα[Y] can be computed by solving the following programs,
respectively (see, e.g., [1, 9, 11]):

(a) min θ (b) min γ + 1

1 − α

∑

i∈[K ]
Pr[Y = bk]uk

s.t. bk − θ ≤ Mβk, k ∈ [K ] s.t. γ + uk ≥ bk, k ∈ [K ] (3)
∑

k∈[K ]
Pr[Y = bk]βk ≤ 1 − α uk ≥ 0, k ∈ [K ]

βk ∈ {0, 1}, k ∈ [K ]

where M ≥ max{b1, . . . , bK }. The following property will be used in Sect. 2:

Property 1 LetX andY be twodiscrete randomvariables taking nonnegative values
a1, . . . , aK , and b1, . . . , bK , respectively, with Pr[X = ak] = Pr[Y = bk] and ak ≤
γbk for each k ∈ [K ] and some fixed γ ≥ 0. Then CVaRα[X] ≤ γCVaRα[Y] for
each α ∈ [0, 1) and VaRα[X] ≤ γVaRα[Y] for each α ∈ (0, 1].
Proof We will show the proof for the value at risk criterion (the proof for the
conditional value at risk is straightforward). Let θ∗, β∗

k , k ∈ [K ], be an optimal
solution to (3a). Since γ ≥ 0, the constraint γbk − γθ∗ ≤ γMβ∗

k holds for each
k ∈ [K ]. By ak ≤ γβk for each k ∈ [K ], we get ak − γθ∗ ≤ M ′β∗

k , where M ′ =
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γM ≥ max{a1, . . . , aK }, k ∈ [K ]. We also have
∑

k∈[K ] Pr[X = ak] · β∗
k ≤ 1 − α.

Hence VaRα[X] ≤ γθ∗ = γVaRα[Y]. �

The value at risk is an estimate of the maximum potential loss with a certain
confidence level α. It is known that the following relations among the conditional
value at risk, the value at risk, the expected cost and the maximum cost crite-
ria hold (see, e.g., [9]), namely, CVaR0[F(π)] = E[F(π)] = ∑

i∈[K ] Pr[ξi ] f (π, ξi ),
is the expected cost of schedule π and VaR1[F(π)] = limα→1 CVaRα[F(π)] =
Max[F(π)] = maxi∈[K ] f (π, ξi ) is the maximum cost of π under scenario set U ,
which is a popular criterion used in robust optimization [7]. For a deeper motiva-
tion of using the risk criteria in decision making and a description of their various
properties, we refer the reader to [10].

In this paper we will discuss the problems Min- VaRα P , Min- CVaRα P ,
Min- Exp P , and Min- Max P , in which we minimize the corresponding perfor-
mance measure for a fixed α and a specific single machine scheduling problem P
under a given scenario set U . Scheduling problems with risk criteria have been
recently discussed in [1, 12].

2 Complexity and Approximation Results

We first prove the following result:

Theorem 1 If Min- Exp P is approximable within σ > 1 (for σ = 1 it is poly-
nomially solvable), then Min- CVaRα P is approximable within σρ, where ρ =
min{ 1

Prmin
, 1
1−α

}, for each constant α ∈ [0, 1).
Proof We first show that for any π and α ∈ [0, 1), it holds

E[F(π)] ≤ CVaRα[F(π)] ≤ min

{
1

Prmin
,

1

1 − α

}

E[F(π)], (4)

where Prmin = mink∈[K ] Pr[ξk]. The first inequality follows directly from the defini-
tion of the conditional value at risk. We now show the second inequality. The value
of CVaRα[F(π)] can be computed by solving the following linear program. Indeed,
it is easily seen that (5) is the dual to (3b).

max
∑

k∈[K ]
rk f (π, ξk)

s.t. r1 + · · · + rK = 1
0 ≤ rk ≤ Pr[ξk ]

(1−α)
, k ∈ [K ]

(5)
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Let r∗
1 , . . . r

∗
k be an optimal solution to (5). Thus

CVaRα[F(π)] =
∑

k∈[K ]
r∗
k f (π, ξk) ≤

∑

k∈[K ]

Pr[ξk]
(1 − α)

f (π, ξk) = 1

1 − α
E[F(π)].

Moreover, CVaRα[F(π)] ≤ ∑
k∈[K ]

Pr[ξk ]
Prmin

f (π, ξk) = 1
Prmin

E[F(π)] and (4) holds. Let
π∗ minimize the expected cost and π′ minimize the conditional value at risk for a
fixed α ∈ [0, 1). We will denote by π̂ a σ-approximation schedule for Min- Exp P .
Using (4), we get CVaRα[F(π̂)] ≤ ρE[F(π̂)] ≤ σρE[F(π∗)] ≤ σρE[F(π′)] ≤ σρ
CVaRα[F(π′)], and the theorem follows. �
In the following, we will show some applications of Theorem 1. Consider the prob-
lems Min- Exp 1|prec|∑ w jC j and Min- Exp 1|p j = 1| ∑ w j Tj . The first prob-
lem is equivalent to the deterministic counterpart 1|prec|∑ w jC j with the average
processing times p̂ j = ∑

k∈[K ] p j (ξk)Pr[ξk]. Hence it is polynomially solvable for
some particular structure of the precedence constraints (see [2]) and approximable
within 2 in the general case (see [4]). It is not difficult to verify that the second prob-
lem is equivalent to the minimum assignment with costs ci j = ∑

k∈[K ] Pr[ξk]w j [i −
d j (ξk)]+, i, j ∈ [n], where ci j is the cost of placing job i at position j . We
can thus obtain approximation algorithms for Min- CVaRα 1|prec| ∑ w jC j and
Min- CVaRα 1|p j = 1| ∑w j Tj by applying Theorem1. Notice that the former
problem is NP-hard due to the results obtained in [7, 8].

We now show a sketch of 2-approximation algorithms for the problems with
the weighted total flow time criterion. Our analysis will be similar to that in [8].
First, for each processing time scenario ξk , k ∈ [K ], we invert the role of process-
ing times and weights obtaining the weight scenario ξ′

k . Formally, p j = w j and
w j (ξ

′
k) = p j (ξk) for each k ∈ [K ]. The new scenario set U ′ contains scenario ξ′

k
with Pr[ξ′

k] = Pr[ξk] for each k ∈ [K ]. We also invert the precedence constraints,
i.e. if i → j in the original problem, then j → i in the new one. Given a feasi-
ble schedule π = (π(1), . . . ,π(n)), let π′ = (π(n), . . . ,π(1)) be the corresponding
inverted schedule. Of course, schedule π′ is feasible for the inverted precedence
constraints. It is easy to verify that f (π, ξk) = f (π′, ξ′

k) for each k ∈ [K ]. In conse-
quence CVaRα[F(π)] = CVaRα[F′(π′)] and VaRα[F(π)] = VaRα[F′(π′)], where
F′(π′) is the random cost of π′ for scenario set U ′. Since now the processing times
are deterministic, we can express the set of feasible job completion times by the
following system of constraints:

VC : C j = p j + ∑
i∈J\{ j} δi j pi j ∈ J

δi j + δ j i = 1 i, j ∈ J, i �= j
δi j + δ jk + δki ≥ 1 i, j, k ∈ J
δi j = 1 i → j
δi j ∈ {0, 1} i, j ∈ J,

(6)

where δi j = 1 if j is processed after i in the schedule constructed. We now relax
the constraints δi j ∈ {0, 1} with 0 ≤ δi j ≤ 1 obtaining a system of linear con-
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straints VC ′ and plug it into (3) with bk = ∑
j∈J w j (ξk)C j . We get a linear pro-

gramming problem for the case (3b) and a mixed integer problem, with K binary
variables, for the case (3a). In the latter case the problem is polynomially solv-
able when K is constant. Suppose that (C∗

1 , . . . ,C
∗
n ) are the optimal values in

the resulting program with the objective value of z∗. Let Y be discrete random
variable taking the values of

∑
j∈J w j (ξk)C∗

j , k ∈ [K ], with probabilities Pr[ξk],
k ∈ [K ], respectively. Clearly, VaRα[Y] = z∗ (CVaRα[Y] = z∗). We can relabel
the jobs so that C∗

1 ≤ · · · ≤ C∗
n . Consider a feasible schedule π = (1, 2, . . . , n).

Applying the same reasoning as in [8], we can show that C j (π) ≤ 2C∗
j , which

implies f (π, ξk) ≤ 2
∑

j∈J w j (ξk)C∗
j for each k ∈ [K ]. Now, Property1 implies

VaRα[F(π)] ≤ 2z∗ (CVaRα[F(π)] ≤ 2z∗). Because z∗ is a lower bound on the opti-
mal objective value, π is a 2-approximate schedule. The following theorem summa-
rizes the obtained results (we also use Theorem1):

Theorem 2 Min- Varα1|prec| ∑ w jC j is approximable within 2 when K is con-
stant. Min- CVaRα 1|prec| ∑ w jC j is approximable within 2 and approximable
within min{2, 1

1−α
} when the deterministic 1|prec|∑ w jC j problem is polynomi-

ally solvable.

We now address a scheduling problem P with the maximum weighted tardiness
criterion. Hence f (π, ξk) = max j∈J w j [C j (π, ξk) − d j (ξk)]+, k ∈ [K ]. All job pro-
cessing times, due dates, and weights under scenarios are assumed to be nonnegative
integers, and w j > 0 for each j ∈ J . The set of jobs can be partially ordered by
arbitrary precedence constraints. Minimizing the expected cost in such a problem
is NP-hard [5]. Let fmax be an upper bound on the schedule cost over all scenarios.
Let h : QK+ → Q+ be a nondecreasing with respect to Q

K+ function. Suppose that
h can be evaluated in g(K ) time for a given vector (t1, . . . , tK ) ∈ Q

K+ . Consider
the corresponding scheduling problem PS, in which we seek a feasible schedule
π ∈ Π minimizing H(π) = h( f (π, ξ1), . . . , f (π, ξK )). We can find such a sched-
ule by solving a number of the following auxiliary problems: given a vector ttt ∈ Z

K+ ,
check if Π(ttt) = {π ∈ Π : f (π, ξk) ≤ tk, k ∈ [K ]} is nonempty, and if so, return
any schedule πttt ∈ Π(ttt). Given any ttt ∈ Z

K+ , we first form scenario set U ′ by specify-
ing the following parameters for each ξk ∈ U and j ∈ J : p j (ξ

′
k) = p j (ξk), w′

j = 1,
d j (ξ

′
k) = max{C ≥ 0 : w j (C − d j (ξk)) ≤ tk} = tk/w j + d j (ξk). The scenario set

U ′ can be built in O(Kn) time. We then solve Min- Max P with the scenario set
U ′, which can be done in O(Kn2) time by using the algorithm constructed in [5]. If
the maximum cost of the schedule π returned over U ′ is 0, then πttt = π; otherwise
Π(ttt) is empty. From the monotonicity of the function h, it follows that for each
π ∈ Π(ttt) the inequality h( f (π, ξ1), . . . , f (π, ξK )) ≤ h(ttt). Thus, in order to solve
the problemPS, it suffices to enumerate all possible vectors ttt = (t1, . . . , tK ), where
ti ∈ {0, . . . , fmax}, i ∈ [K ], and compute πttt ∈ Π(ttt) if Π(ttt) is nonempty. A sched-
ule πttt with the minimum value of H(πttt ) is returned. Clearly, this can be done in
O( f Kmax(Kn2 + g(K ))) time. Since all the risk criteria are nondecreasing functions
with respect to schedule costs over scenarios and in this case g(K ) is negligible
in comparison with Kn2, we conclude that Min- VaRα P and Min- CVaRα P are
solvable in O( f KmaxKn2) time. This running time is pseudopolynomial if K is con-
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stant. Notice that the special cases of the problems, when P is 1|prec, p j = 1|Tmax

are solvable in O(KnK+2) time, which is polynomial if K is constant (in this case
fmax = n).
We now show that problem PS admits an FPTAS if K is a constant and

h(γttt) ≤ γh(ttt), for any ttt ∈ Q
K+ , γ ≥ 0. First we partition the interval [0, fmax] into

geometrically increasing subintervals: [0, 1) ∪ ⋃
�∈[η][(1 + ε)�−1, (1 + ε)�), where

η = 
log1+ε fmax� and ε ∈ (0, 1). Then we enumerate all possible vectors ttt =
(t1, . . . , tK ), where ti ∈ {0, 1} ∪ ⋃

�∈[η]{(1 + ε)�}, i ∈ [K ], and find πttt ∈ Π(ttt) if
Π(ttt) �= ∅. Finally, we output a schedule πt̂tt that minimizes value of H(πttt ) over
the nonempty subsets of schedules. Obviously, the running time is O((log1+ε fmax)

K

(Kn2 + g(K ))) = O((ε−1 log fmax)
K (Kn2 + g(K ))). Let π∗ be an optimal sched-

ule toPS. Fix �i ∈ {0, . . . , η} for each i ∈ [K ], such that (1 + ε)�i−1 ≤ f (π∗, ξi ) <

(1 + ε)�i , where we assume that (1 + ε)�i−1 = 0 for �i = 0. This clearly forces
Π((1 + ε)�1 , . . . , (1 + ε)�K ) �= ∅. Moreover, (1 + ε)�i ≤ (1 + ε) f (π∗, ξi ) for �i , i ∈
[K ]. By the definition of πt̂tt , we get H(πt̂tt ) ≤ h((1 + ε)�1 , . . . , (1 + ε)�K ). Since
h is a nondecreasing function and h(γttt) ≤ γh(ttt), h((1 + ε)�1 , . . . , (1 + ε)�K ) ≤
(1 + ε)h( f (π∗, ξ1), . . . , f (π∗, ξK )). Hence, H(πt̂tt ) ≤ (1 + ε)H(π∗). By Observa-
tion 1, the risk criteria satisfy the additional assumption on the function h(ttt). In
consequence, Min- VaRα P and Min- CVaRα P admit an FPTAS, when the num-
ber of scenarios is constant.

Acknowledgements MikitaHradovichwas supported byWrocławUniversity of Science andTech-
nology, Grant 0401/0086/16.

References

1. Atakan, S., Bulbul,K.,&Noyan,N. (2017).Minimizng value-at-risk in singlemachine schedul-
ing. Annals of Operations Research, 248, 25–73.

2. Brucker, P. (2007). Scheduling algorithms (5th ed.). Heidelberg: Springer.
3. Daniels, R. L., & Kouvelis, P. (1995). Robust scheduling to hedge against processing time

uncertainty in single-stage production. Management Science, 41, 363–376.
4. Hall, L. A., Schulz, A. S., Shmoys, D. B., & Wein, J. (1997). Scheduling to minimize average

completion time: Off-line and on-line approximation problems. Mathematics of Operations
Research, 22, 513–544.
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A Nonlinear Model for Vertical
Free-Flight Trajectory Planning

Liana Amaya Moreno, Armin Fügenschuh, Anton Kaier
and Swen Schlobach

1 Introduction

In recent years free-flight trajectory planning came into the focus for the commercial
airline industry. It provides a new way to deal with the rapid growth of the air traffic
in Europe [2] and the resulting difficulties that this entails for the air traffic manage-
ment (ATM). Although the priority of the ATM is to ensure the safety of the flight
operations, other factors such as CO2 emissions and, directly related to this, fuel
costs, could benefit if all three goals are considered simultaneously by an integrating
approach. This translates into computing fuel optimal trajectories that reduce the
environmental degradation due to carbon fuel combustion and might further lead to
a reduction in costs given the ever growing prices of fuel in the last years. From a
computational point of view, the challenge is to find trajectories, composed of adja-
cent segments connecting two points (on the earth’s surface), that avoid head-winds
and benefit from tail-winds. Moreover, a time constraint is always enforced in order
not to incur extra costs due to early or late arrival. This 4-dimensional problem (3
space dimensions plus time) is computationally difficult, and it is solved in practice
typically in two subsequent stages: a horizontal phase, in which the segments of a
2-dimensional trajectory are computed, and then a vertical phase, in which different
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altitudes are assigned to the segments. Moreover, fuel consumption data is needed
to optimally assign speed and altitude in order to minimize the amount of fuel used
during the flight. Fuel information is given by the aircrafts manufactures, as a black
box function which provides data only for a grid of points depending on speed, alti-
tude and weight levels. In general during the optimization process, fuel consumption
data is required for values that do not coincide with the given grid points, hence some
techniques must be applied to obtain the required intermediate fuel consumption val-
ues. To come up with this continuous formulation of the data, different interpolation
and approximation techniques are used. It is important to note that these drastically
affect the computation times. In this study we concentrate on the vertical flight plan-
ning of commercial aircrafts. We propose an NLP model in which we integrate local
and global interpolation and approximation techniques as continuous formulations
of the problem’s input data. We discuss briefly the characteristics of these formula-
tions. Moreover, we compare different available commercial solvers for nonlinear
programming for our test instances.

2 Mathematical Model

Our work is based on a model for vertical flight planning [1, 5], where speed and
altitude are assigned to each of the segments that compose the trajectory, and the
wind is assumed to be equal in all altitudes over one segment (but can vary from
segment to segment). The fuel consumption is a bivariate function that depends on
the current weight of the airplane (which is decreasing during the flight, since fuel
is consumed) and the selected speed, see Fig. 1. The fuel also depends on the flown
altitude, which is determined in a post-processing step, once the optimal speed and
weight are computed. Hence we do not need to consider altitude as a variable in our
model. The objective of the model is to assign to each of the segments that compose
the trajectory a speed and a weight value. Let n be total number of segments, and

Fig. 1 Unit fuel
consumption (kg per nautical
mile) for the airbus 320. The
horizontal axis is the aircrafts
speed (Mach number from
optimal speed to maximal
speed), and the vertical axis
is the weight (kg)
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let S = {1, . . . , n} denote the segment indexes. The nodes that link the segments
then have the indexes N = S ∪ {0}. Besides the fuel consumption data, the instance
is further specified by the following data: Li is the length of segment i ∈ S. The
minimumandmaximumduration of the entire trip are given by T and T , respectively.
The dry weight of the loaded airplane including the contingency fuel is Wdry .

We introduce the following variables: For each segment i ∈ S the variable vi ∈ R+
models the velocity of the airplane in this segment (the velocity can only be set
once for the entire segment). The weight of the airplane at node i ∈ N is denoted by
wi ∈ R+, andwmid

i ∈ R+ is the “middleweight” of the airplanewithin segment i ∈ S,
which is an auxiliary variable that is used in the computation of the fuel consumption
fi ∈ R+. The mathematical model reads as follows:

min w0 − wn (1)

s. t. t0 = 0, T ≤ tn ≤ T (2)

∀i ∈ S : �ti = ti − ti−1 (3)

∀i ∈ S : Li = vi · �ti (4)

wn = Wdry (5)

∀i ∈ S : wi−1 = wi + fi (6)

∀i ∈ S : wi−1 + wi = 2 · wmid
i (7)

∀i ∈ S : fi = Li · ̂F(vi ,w
mid
i ) (8)

The objective function (1)minimizes the fuel consumedduring the trip. It is computed
as the difference between the start and arrival weight. In Eq. (2) the starting time t0
is set to zero, and the final time tn is forced to be within the arrival time window.
Equation (3) enforces the time consistency, and the equation of motion is given by
(4). With Eq. (5) all the fuel is consumed during the flight. The weight consistency is
enforce byEq. (6). Themiddleweight is computed in (7)which is required to calculate
the fuel consumption in each segment in (8), where ̂F(vi ,wmid

i ) is the continuous
approximation or interpolation of the discrete fuel consumption data. This function
offers intermediate data points within the corresponding ranges. Both interpolation
and approximation techniques accomplish this purpose, however, the choice between
one or the other depends on user. Nonlinear solvers require information about the
first and sometimes the second order partial derivatives of all functions used in
the problem formulation. In our model, Eq. (1)–(7) are either linear or quadratic
equations, therefore its derivatives are easy to compute and this is done automatically
by the solver. For Eq. (8), we need to explicitly compute first and second derivatives
so they can be passed on to the solver. In the following we briefly describe the
interpolation and approximation techniques used in this work. Each of them yields a
polynomial function in two dimensions for the fuel consumption function. The first
and second derivatives of the fuel function are then approximated by taking the first
and second derivatives of these approximations.
Bilinear: Bilinear interpolation is a local technique, where intermediate values com-
puted based on the four neighboring points. The interpolant is obtained by perform-
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ing a linear interpolation along each of the dimensions of the table, which leads to a
second degree polynomial. Further details can be found in [4].
Bicubic: Bicubic interpolation is a local technique where intermediate values are
computed based on the four neighboring points, the first and second derivatives of
these points (which are approximated). This leads to a linear system of 16 equations
where the variables are the coefficients of a 6th order polynomial in two dimensions.
In this work we have approximated the derivatives at the points of the table by two
different methods, using finite differences and using cubic splines. For more details
we refer the reader to [4].
Cubic Splines: Intermediate values are computed based on the information of the
whole table. Therefore we refer to it as a global technique. The idea is to construct
one-dimensional cubic splines along all the rows of the table and evaluate them at
one of the first coordinate of the intermediate point. With these new values, another
one-dimensional spline is constructed and finally evaluated at the second coordinate
of the intermediate point. If smoothing is desired, a smoothing parameter is used
for the construction of the cubic splines (approximation method). This results in a
new set of points that best approximates the surface using cubic splines. For further
details we refer the reader to [3, 4].

3 Numerical Results

The models were written using AMPL as modeling language and solved by the NLP
solvers SNOPT 7.2-5, CONOPT 3.5C, KNITRO 8.1.1, and MINOS 5.51. We have
used similar test instances as in [1], that is, the airplanes Airbus 320, 380, Boeing
737 and 772. For each airplane several travel distances were tested ranging form 800
Nautical Miles (NM) for the B737. to 7500 NM for A380 and B772. Two different
time windows were used for each distance, for a total of 42 instances. Each flight
is divided into equidistant segments of 100 NM. Table1 summarizes the features
of the test instances. All instances were solved using a 6-core Intel Xeon E5 at
3.5GHz and 16GB RAM computing machine. In Table2, we give the percentage
of the instances that were actually solved within a 10% error of the global optimal

Table 1 Maximal speed (in Mach number), dry weight and maximal weight in (kg), maximal
distance (in NM) and number of segments |S| for each instance
Type Max. speed Dry weight Max. weight Max. distance |S|
A320 0.82 56614 76990 3500 15, 20, 30, 35

A380 0.89 349750 569000 7500 30, 40, 50, 60,
70 ,75

B737 0.76 43190 54000 1800 8, 12, 15, 18

B772 0.89 183240 294835 7500 25, 35, 45, 55
,65,75
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Table 2 Percentage of solved instances with each solver and each method

SNOPT MINOS KNITRO CONOPT

Bilinear 100 100 43 48

Splines1 100 100 67 100

Splines2 17 31 5 5

Bicubic1 0 12 0 0

Bicubic2 0 10 0 0

values reported on [1] by each solver using the different methods. We have used the
following abbreviations: Splines1 refers to cubic splines interpolation (no smoothing
of the data); Splines2 refers to themethod of smoothing cubic splines;Bicubic1 refers
to bicubic interpolation using finite differences approximations for the value of the
derivatives and finally, Bicubic2 refers to bicubic interpolation using cubic splines to
approximate the value of the derivatives. The results in Table2 indicate that the most
successful methods are Splines1 followed by bilinear, both interpolating techniques.
Splines1 is consistently, among all the solvers, the one that allows to solve the greatest
number of instances. In order to compare these two methods, and the solvers as well,
we give a graphical evaluation of the solution times in Fig. 2. On the x-axis of these
plots, the instances are listed in ascending order according to their size, i.e., according
the number of segments used for the trip. The data points, whose solution time are
100s, represent the instances that were not solved, within a 10% gap from the global
optimum. For both methods, the solution times of most instances are below 12s. For
the bilinear method, the solver Snopt outperforms the others. Note that the squared-
shaped data points are consistently below all other data points. Most of the instances
are solved within one second; the rest, within five. Minos is also very successful
using bilinear interpolation, as the solution of all instances requires at most 10 s. The
solution times of our instances using cubic splines interpolation are below 25s. In
this case, there is no straightforward outperformance of one solver over the others.
On the contrary, the solvers take similar time to compute the (same) optimal solution.
Knitro fails sometimes this purpose.

In conclusion, these two methods provide suitable continuous formulations of the
input data, that can efficiently be integrated into our NLP models. Bilinear interpo-
lation is very simple to implement and the number of computations needed is very
low in comparison to the cubic splines method. The latter one requires the solution
of many systems of linear equations (in the order of rows or columns in the input
data table). Thus one can expect that cubic splines takes a longer solving time. Nev-
ertheless, the derivatives provided with this last method, are smoother than the ones
obtained with the bilinear interpolation, which can explain its faster convergence to
a local optimum. What is important to note here, is that the approximations of the
derivatives with bilinear technique are still good enough for the solvers to search in
good directions for local minima. As for the bicubic methods, it is obvious, they are
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Fig. 2 Solution times of all test instances using a bilinear and b cubic splines interpolation with
each solver

not successful. A reason behind this, might be the inaccurate approximations of the
required first and second derivatives at the points of the table.

In our ongoing work we extend our methods to a full 4-dimensional trajectory
planning. That is, to include a vertical optimization phasewhere amore realistic wind
field (which can deviate also in altitude) is taken into account. This adds one more
dimension to the fuel consumption data. On the other hand, introducing dynamic
wind also increases one dimension to the wind data, therefore we need to study if
the interpolation and approximation techniques, here presented, extend efficiently to
more dimensions.
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Lattice Structure Design with Linear
Optimization for Additive
Manufacturing as an Initial Design
in the Field of Generative Design

Christian Reintjes, Michael Hartisch and Ulf Lorenz

1 Introduction and Motivation

The design process is not as automated as it can be as shown in [1]. Over the
last decade technical optimization became increasingly important for the modern,
energy-efficient and therefore material-saving construction. The factors essentially
responsible for this are increasing computing capacity and constant improvement of
construction software. Both factors are at a level that allows us to radically rethink
the entire design process [1].

The traditional approach uses construction software combinedwith human knowl-
edge to produce drawings and to display all technical data. The results can be con-
sidered in succeeding analysis, e.g. numerical or nonlinear topology optimization.
Irrespective of the quality of those methods, the initial drawing still is a product of
the human intellectual capacity.

The profitability of Lattice Structure Design with optimization for additive manu-
facturing has been shown by recent publications [1, 3, 4]. However, the development
of an approach which aims at solving a considerable amount of nodes in reasonable
time – and according to that a large construction volume or high granularity of the
lattice structure – by the use of appropriate simplifications for the elastic deformation
seems to be unconsidered.

Our approach is to use optimization in the first instance to generate the design
itself. Therefore, we want to provide optimization tools to compute the design,
since it might be possible that the computer-based design outperforms the human-
based design. As mixed-integer linear optimization is not able to take aesthetic and
manufacturing-friendly design into account some of the resulting structures still can
not be build using conventional manufacturing methods. However, due to the rapid
development in the field of additive manufacturing there is now the opportunity to
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combine optimization with this technology due to the high level of geometrical free-
dom which is needed to manufacture complex structures. An overview on research
in this field can be found in [2, 3].

2 Problem Setting

In this contribution we discuss a mixed-integer programming model to describe the
static load distribution in a two-dimensional space as a first approach. The required
amount of material should be minimized, as the number of truss beams is minimized.
It is important to note here, that this model is made to create an initial design and the
sizing of a lattice structure instead optimizing a given structure.

A two-dimensional assembly space consists of nodes and edges, whereas nodes
represent truss joints and edges represent beams, as specified in Fig. 1.

It is assumed that the truss joints are adequately dimensioned and ensure the point
of action of the forces to work in the center of the truss joint profile. The force axis

Fig. 1 The two-dimensional assembly space as an exemplary application with a width of 7 length
units and a height of 4. The two bearings and the nodes for external forces are marked
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and the central axis of the truss girders are identical. Girder non-linearities (yielding,
tearing, slippage etc.) are not possible. This is achieved by assigning a permissible
compressive and tensile loading at each truss girder. A safety factor for the limited
elasticity of the material is considered. The two-dimensional grid is mounted on
a locating/non-locating bearing arrangement. Introduced forces are only possible at
truss joints to avoid torques in the beams itself. The statical determinacy is considered
as an external and internal determinacy, whereby both conditions have to be fulfilled
(Tables1 and 2).

3 Model Formulation

Table 1 Parameters

Symbol Definition

m ∈ N Width of the assembly space

n ∈ N Height of the assembly space

V = {1, . . . , nm} Set of connecting nodes (possible truss joints)

T = {0, 1, . . . , s} Set of different beam types

ct ∈ R+ Capacity of beam type t

M ∈ R Big M - maximum capacity of the most robust
beam type

Costt ∈ R Costs of beam type t

Qi ∈ R+ Source force at node i ∈ V

VA ∈ R+ Vertical reaction force at fixed bearing
A = mn − m + 1 (bottom left)

VB ∈ R+ Vertical reaction force at floating bearing
B = mn (bottom right)

A = {|,−} Set of possible lines of action of the force in the
horizontal and vertical directions

O = {|,−, �, �} Set of possible lines of action of the force at a
node

N B(i) ⊆ V Set of neighboring nodes of i

N Bo(i) ⊆ N B(i) Set of neighboring nodes of i regarding the
orientation o

ri, j,a ∈ [0, 1] Force component at node i relative to the
reference plane a ∈ A, caused by beam
structure between i ∈ V and j ∈ V
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Table 2 Variables

Symbol Definition

Bt,i, j ∈ {0, 1} Binary variable indicating whether bar of type
t ∈ T is present between i ∈ V and j ∈ V

Fi, j ∈ R Flow of forces between nodes i ∈ V and j ∈ V

xi, j ∈ {0, 1} Binary variable indicating whether a bar is
present between nodes i ∈ V and j ∈ V

yi ∈ {0, 1} Indicator whether at least one bar is present at
node i ∈ V

Zi ∈ {0, 1} Indicator whether at least one of four possible
zero-force member bar combinations are
present at node i ∈ V

min
∑

i∈V

∑

j∈V

∑

t∈T
Bt,i, j · costt

s.t.
∑

j∈NB(i)

ri, j,a Fi, j − Qi1(a=|)

+ VA1(i=mn−m+1∧a=|) + VB1(i=mn∧a=|) = 0 ∀i ∈ V, a ∈ A (1)

Fi, j ≤ M · xi, j ∀i, j ∈ V (2)

Fi, j = −Fj,i ∀i, j ∈ V (3)

Bt,i, j = Bt, j,i ∀i, j ∈ V, t ∈ T (4)

xi, j = x j,i ∀i, j ∈ V (5)

Fi, j ≤
∑

t∈T
ct · Bt,i, j ∀i, j ∈ V (6)

∑

t∈T
Bt,i, j = xi, j ∀i, j ∈ V (7)

2yi ≤
∑

j∈NB(i)

xi, j ≤ 8yi ∀i, j ∈ V (8)

2�oi ≤
∑

j∈NBo(i)

xi, j ≤ �oi + 1 ∀ ∈ V, o ∈ O (9)

∑

o∈O
�oi ≤ 4Zi ∀i ∈ V (10)

∑

j∈NB(i)

xi, j ≥ 3Zi ∀i ∈ V (11)

xi, j , yi , �
o
i , zi ∈ {0, 1} ∀i, j ∈ V, o ∈ O (12)

The objective function aims at minimizing the costs of the used truss griders which
are needed to create a statically determined structure under the influence of external
forces exerted perpendiculary.
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Restriction (1) implies a force equilibrium point due to external forces and beam
forces in the horizontal and vertical directions exactly in the center of each truss joint.
The forces are determined by using vector arithmetic and the angle a between the
currently observed beam between the nodes i and j relative to the reference plane R−
or R|. The imaginary ray starting at i towards j is denoted g(i, j) and the parameters
ri, j,a can be precalculated as follows. Equations (14) and (15) describe the ray of the
horizontal and vertical reference planes, respectively.

ri, j,a = cos (∠ (Ra, g (i, j))) (13)

R− = g(mn − m + 1,mn) (14)

R| = g(1,mn − m + 1) (15)

For determining the two bearing reaction forces VA and VB the following equations
are used:

−
m∑

i=1

Qi · i + VB · (m − 1) = 0 (16)

m∑

i=1

Qi · (m − i) − VA · (m − 1) = 0 (17)

VA and VB are essential elements of the moment equilibrium condition for each
bearing and thus known from the beginning. Constraint (2) ensures that only used
beams can transfer forces. Constraint (3) represents Newton’s third law, whereas
Constraint (4) and Constraint (5) simply demand a used beam to go both ways.
Constraint (6) limits the force in a beam with regard to the permissible force of the
used beam type. Constraint (7) guarantees that a specific beam type is selected if a
beam is used.

Constraint (8) forbids the construction of a cantilever bearing, since (16) and (17)
would not be fulfilled. Besides that a bending moment distribution from the element
with the largest lever-arm to the bearing itself (maximum torque) would arise, which
is not covered by this purely statically approach of the model.

In order to avoid unstrained members Constraints (9), (10) and (11) are defined.
Possible unstrained members are identified by (9). If the direction of action in two
truss griders is the same, which implies they aremounted at the same angle in relation
to their joints, there is a combination possibility to use a unstrainedmember. It is used
to have a better case of the Euler buckling. Condition (9) and (10) can identify the
four combination possibilities, whereas (11) forces the model to add an unstrained
member in an arbitrary spatial arrangement if at least one combination possibility
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to use an unstrained member is present. All these factors result in a lower buckling
risk.

4 Computational Results

Using the providedmodel we investigated an assembly space of 164 (m = 41, n = 4)
nodes. Three vertical external forces of 250kN were used: one in the center at node
21 and two symmetrically arranged forces at nodes 11 and 31. We expected a sym-
metrical design and strength curve profile as a result. The given beam types were four
different round bars with 4.0, 20.0, 40.0 and 50.0mm average diameters with their
corresponding tensile/compressive strengths and costs. The 4.0mm bar represents
a zero-force member bar. For space reasons only the left-hand side of the resulting
design is displayed in Fig. 2, whereat the second half is arranged symmetrically.

As a result of the symmetric design in the solution each bearing is loaded equally.
A horizontal force component does not exist. The torque path spreads symmetrically
from themidpoint of the longitudinal axis to the outer bearings. The experimentswere
executed on a PC with an Intel i7-4790 (3.6GHz) processor and 32GBRAM with
IBM ILOG CPLEX Optimization Studio Version 12.6.1. Due to a practical calcula-
tion time and a planned integration to a CAD-software to receive a first construction
proposal the calculation time was limited to 4h .

In a second example a cantilever bridge with a triple articulated arch has been
calculated, which is a quite common construction solution to achieve a wide span
and total length of the bridge. A simple cantilever bridge has two cantilever arms
extending from opposite sides of the span and they meet at the center.

Fig. 2 Optimized structure with symmetrical design. Red arrows at the top level represent source
forces. The different beam types are marked blue, green, black and brown. The right-hand side of
the design is omitted
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5 Conclusion and Outlook

We presented a mixed-integer linear programming model to describe the static load
distribution in a two-dimensional space. The results show that it is possible to solve
a considerable amount of nodes in feasible time by the use of appropriate simpli-
fications for the elastic deformation. The computer-based design is consistent and
we focus on extending our solution approach to design three-dimensional test cases
controlled through an integrated software interface tomechanical CAD software (see
[5]). This creates the possibility of doing a subsequent FEM-analysis, analyze the
elastic behavior and export the 3D document as an STL file to use additive manu-
facturing methods. It might be possible to outperform the human-based design.
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Co-allocation of Communication
Messages in an Integrated Modular
Avionic System

Elina Rönnberg

1 Introduction

Electronics in an aircraft is called avionics and nowadays the majority of the avionics
industry uses an integrated architecture called Integrated Modular Avionics (IMA)
where applications share hardware resources on a common avionic platform. In such
architectures it is vital to prevent faults from propagating between different aircraft
functions and one component used to ensure this is pre-runtime scheduling of the
tasks and the communication in the system. For more details about the industrial
background of the IMA-system addressed in this paper, see [2], and for further
reading about resource allocation in hard real-time avionic systems, see [1].

In [2], a mathematical model and a constraint generation procedure for an indus-
trially relevant IMA-system is presented. The contribution of this paper is to extend
that model and solution approach to include the possibility of co-allocation of com-
munication messages to enable sending and receiving more than one message at a
time. This possibility is of practical relevance since it induces capacity savings by
reducing the execution requirements of certain tasks.

The addressed IMA-system can be considered as a multi-processing system that
constitutes of nodes connected by a Communication network (CN). In each node
there is a Communication module (CM) which handles both the inter-node and the
intra-node communication as well as communication with external systems. Each
node also hosts a set of Application modules (AMs) that run applications (software
processes).

The system executes periodically with a period referred to as a major frame for
which the schedule is cyclically repeated. The mathematical model for the system

E. Rönnberg (B)
Department of Mathematics, Linköping University, 581 83 Linköping, Sweden
e-mail: elina.ronnberg@liu.se

E. Rönnberg
Saab AB, 581 88 Linköping, Sweden

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_61

459

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_61&domain=pdf


460 E. Rönnberg

considers only one major frame and is formulated such that an infinite repetition of
the schedule for one major frame provides a valid infinite schedule for the system.
The schedule is created pre-runtime and each task has been beforehand assigned to
its module.

A full model for this problem can be divided into four components: Communica-
tion network scheduling, CM task scheduling, AM task scheduling, and Precedence
relations. The two latter components are of no interest for the scope of this paper
and will therefore not be presented here, instead the labels [AM-scheduling] and
[Precedence relations] are used in the models to refer to them, for details see [2].

A short summary of the solution approach developed in [2] is given in Sect. 2.
The existing approach exploits known characteristics of the problem and is designed
to cope with the main computational challenge of this problem, which is the huge
number of tasks to be sequenced on the CMs. The contribution of this paper, which is
how to extend the solution approach to facilitate co-allocation of messages, is given
in Sect. 3. Section4 presents some preliminary results and conclusions.

2 Existing Solution Approach

For the industrially relevant instances that the solution approach in [2] is derived
for, it is known that the CMs have huge numbers of tasks and that a large portion of
these are fixed. In the complete model, tailored for constraint generation, sequencing
of CM-tasks is achieved by two collaborating requirements. One is that each non-
fixed task is assigned to a section in-between fixed tasks and the other is sequencing
requirements for each subset of tasks that, for at least one section, can be assigned
to a section together.

In the solution strategy, a relaxed problem is obtained by omitting the sequencing
requirements for the subsets of tasks. In a solution to the relaxed problem, there will
be a subset of tasks assigned to each section. For such solution, a subproblem is
solved with the aim to sequence the tasks within the sections, still obeying all other
constraints of the original model. If the subproblem is successfully solved, a solution
to the original problem is obtained. If the subproblem fails to sequence all tasks,
sequencing constraints for subsets that include failed tasks are permanently added to
both models.

2.1 Common Components

The components [AM-scheduling] and [Precedence relations] are used in both of the
models together with the components presented in this section.

Denote the set of CMs by HCM and the set of tasks at CM h by ICM
h , h ∈ HCM.

Task i has an execution requirement ei and must execute within the interval between
its release time t ri and deadline tdi , i ∈ ICM

h , h ∈ HCM. For task i let the variable
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xi = start time of task i , and constrain it by t ri ≤ xi ≤ tdi − ei , i ∈ ICM
h , h ∈ HCM. If

t ri = xi = tdi − ei hold, task i is referred to as fixed.
Let M be an ordered set of CN-message indices and let lmsg

m be the capacity
required to send CN-message m, m ∈ M. Denote the set of CN-slots by N and let
the capacity of slot n be lslotn , n ∈ N . Let the binary variable znm indicate if CN-
message m is assigned to CN-slot n (= 1) or not (= 0), n ∈ N , m ∈ M. Constraint
(1) assigns each CN-message to a slot and constraint (2) ensures that the capacity of
the slots are respected.

There are four types of tasks involved in communicating a CN-message, these are
indexed by the set K = {1, 2, 3, 4} and have to execute in this given order, ensured
by using [Precedence relations]. Let the set IK

k include all tasks of type k, k ∈ K, and
let IM

m include all tasks used to communicate CN-messagem,m ∈ M. Introduce tM-r
nk

and tM-d
nk to respectively denote the release time and deadline of task i , i ∈ IM

m ∩ IK
k ,

if CN-messagem is assigned to slot n, n ∈ N , k ∈ K,m ∈ M. Constraint (3) makes
sure that these times are respected.

∑

n∈N
znm = 1, m ∈ M (1)

∑

m∈M
lmsg
m znm ≤ lslotn , n ∈ N (2)

∑

n∈N
tM-r
nk znm ≤ xi ≤

∑

n∈N
tM-d
nk znm − ei , i ∈ IM

m ∩ IK
k , k ∈ K, m ∈ M (3)

2.2 Relaxed Problem

Let RCM
h be the disjoint sections that correspond to intervals in-between pairs of

adjacent fixed tasks at CM h, and denote their lengths by lsecr , r ∈ RCM
h , h ∈ HCM.

Denote the set of tasks that can execute within section r by Isec
r and for task i let t rir

and tdir respectively be the release time and deadline in section r , i ∈ Isec
r , r ∈ RCM

h ,
h ∈ HCM. Introduce the binary variableαir that indicate if task i is assigned to section
r (= 1) or not (= 0), i ∈ Isec

r , r ∈ RCM
h , h ∈ HCM.

Constraint (4) assigns each non-fixed task to a section and constraint (5) makes
sure that the capacities of the sections are respected. Constraint (6) makes a task
respect the release time and deadlinewithin the section it is assigned to. The objective
function of the relaxed problem is given in Sect. 3.

∑

r∈Rh

αir = 1, i ∈ ∪r∈RhIsec
r , h ∈ HCM (4)
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∑

i∈Isec
r

eiαir ≤ lsecr , r ∈ Rh, h ∈ HCM (5)

∑

r∈Rh

t rirαir ≤ xi ≤
∑

r∈Rh

tdirαir − ei , i ∈ ∪r∈RhIsec
r , h ∈ HCM (6)

2.3 Subproblem

Introduce a set Sh that includes an index for each subset of non-fixed tasks that can,
for at least one section, be assigned together in the same section, and let the set
Isub
s include the tasks of subset s, s ∈ Sh , h ∈ HCM. Given a solution to the relaxed

problem there is one set s̄r for each section r and each non-fixed task i belongs to
exactly one set s̄r and must respect t rir ≤ xi ≤ tdir − ei , i ∈ Isub

s̄r
, r ∈ RCM

h , h ∈ HCM.
For each subset s̄r denote the set of possible immediate successors and predecessor
of task i by I+

i s̄r
and I -

i s̄r
respectively, r ∈ RCM

h , h ∈ HCM.
Let the binary variable βi s̄r indicate if task i is successfully sequenced within

section r (= 1) or not (= 0), and let the binary variable yi j s̄r indicate if task i is the
immediate predecessor of j in subset s̄r (= 1) or not (= 0), j ∈ I+

i s̄r
, i ∈ Isub

s̄r
, r ∈

RCM
h , h ∈ HCM. Further, introduce the tasks p̃ and q̃ placed first and last respectively,

with ep̃ = eq̃ = 0 and β p̃s̄r = βq̃ s̄r = 1.
The objective function of the subproblem, max

∑
h∈HCM

∑
r∈RCM

h

∑
i∈Isub

s̄r
βi s̄r , is

to maximise the number of tasks that are successfully sequenced, and constraints
(7)–(9) creates sequences for these tasks. If a task is not successfully sequenced it
means that it overlaps another task within its subset.

∑

j∈I+
i s̄r

yi j s̄r = βi s̄r , i ∈ Isub
s̄r \{q̃}, r ∈ RCM

h , h ∈ HCM (7)

∑

j∈I-
i s̄r

y ji s̄r = βi s̄r , i ∈ Isub
s̄r \{ p̃}, r ∈ RCM

h , h ∈ HCM (8)

x j ≥ xi + ei − (tdir − t rjr )(1 − yi j s̄r ), j ∈ I+
i s̄r , i ∈ Isub

s̄r , r ∈ RCM
h , h ∈ HCM

(9)

3 Co-allocation of CN-messages

Both the relaxed problem and the subproblem include the requirement that CN-
messages are co-allocated if and only if they are assigned to the same slot, enforced
by constraints (10)–(12). To avoid symmetries in the model, and without loss of
generality, co-allocated CN-messages are assumed to be placed in ascending order
with respect to CN-message number. To formulate the constraints, introduce the
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binary variables wmm ′ that indicate if m is placed immediately before m ′ in a slot
(= 1) or not (= 0), and wslot

nmm ′ that indicate if m is placed immediately before m ′ in
slot n (= 1) or not (= 0), n ∈ N , m ∈ M : m < m ′, m ′ ∈ M.

znm + znm ′ − 1 ≤
∑

m ′′∈M:m<m ′′≤m ′
wslot

nmm ′′ ≤ 1,

n ∈ N , m ∈ M : m < m ′, m ′ ∈ M (10)

wslot
nmm ′ ≤ znm, wslot

nmm ′ ≤ znm ′ , n ∈ N , m ∈ M : m < m ′, m ′ ∈ M (11)

wmm ′ =
∑

n∈N
wslot

nmm ′ , m ∈ M : m < m ′, m ′ ∈ M (12)

The subproblem includes the requirement that a set of CN-messages are co-
allocated if and only if their respective tasks that are of the same type and on the same
module aremerged. Tomerge tasksmeans that they are placed immediately after each
other in ascending order with respect to CN-message number (constraint (13)) and
that their total execution requirement is reduced as follows. The execution require-
ment of task i , i ∈ IM

m ∩ IK
k , k ∈ K,m ∈ M, constitutes of two terms of similar size:

initialisation einiti and a CN-message specific part ei − einiti . When a set of tasks is
merged, the initialisation time einiti can be omitted for all tasks but for the one placed
first, and this is achieved by replacing constraint (9) by constraint (14) and by adding
constraint (15).

Use the auxilliary notation Iaux
mkh = IM

m ∩ IK
k ∩ ICM

h , m ∈ M, k ∈ K, h ∈ HCM,
and for m ′ ∈ M, m ∈ M : m < m ′ introduce the constraints

wmm ′ ≤ yii ′ s̄r , i ∈ Iaux
mkh, i ′ ∈ Iaux

m ′kh, k ∈ K, r ∈ RCM
h , h ∈ HCM, (13)

xi + ei − einiti ′ wmm ′ − (tdir − t ri ′r )(1 − yii ′ s̄r ) ≤ xi ′ , (14)

xi ′ ≤ xi + ei − einiti ′ + (tdi ′r − t rir − ei + einiti ′ )(1 − wmm ′),

i ∈ Iaux
mkh, i ′ ∈ Iaux

m ′kh, k ∈ K, r ∈ RCM
h , h ∈ HCM. (15)

For tasks to be eligible for merging in the subproblem, a necessary condition in
the relaxed problem is that they are assigned to the same section. Let the variable
wsec

i i ′r indicate if tasks i ∈ Iaux
mkh and i ′ ∈ Iaux

m ′kh are both placed in section r on CM
h (= 1) or not (= 0), k ∈ K, m ∈ M : m < m ′, m ′ ∈ M, r ∈ RCM

h , h ∈ HCM. The
relaxed problem includes, by constraints (16)–(18), the requirement that a set of
CN-messages are co-allocated if and only if all their respective tasks that are of the
same type and on the same module are assigned to sections that facilitate merging.
The objective function of the relaxed problem, max

∑
m ′∈M

∑
m∈M:m<m ′ wmm ′ , is to

maximise the number of CN-messages that are co-allocated in this sense.
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For m ′ ∈ M, m ∈ M : m < m ′ introduce the constraints

αir + αi ′r − 1 ≤ wsec
i i ′r , wsec

i i ′r ≤ αir , wsec
i i ′r ≤ αi ′r ,

i ∈ Iaux
mkh, i ′ ∈ Iaux

m ′kh, k ∈ K, r ∈ RCM
h , h ∈ HCM, (16)

∑

h∈HCM

∑

k∈K

∑

i ′∈Iaux
m′kh

∑

i∈Iaux
mkh

⎛

⎝
∑

r∈RCM
h

wsec
i i ′r − 1

⎞

⎠ + 1 ≤
∑

m ′′∈M:m<m ′′≤m ′
wmm ′′ ≤ 1, (17)

wmm ′ ≤
∑

r∈RCM
h

wsec
i i ′r , i ∈ Iaux

mkh, i ′ ∈ Iaux
m ′kh, k ∈ K, h ∈ HCM. (18)

Further, constraint (5) is adjusted by subtracting from its left-hand side the term∑
k∈K

∑
m ′∈M

∑
m∈M:m<m ′

∑
i ′∈Iaux

m′kh

∑
i∈Iaux

mkh
einiti ′ wsec

i i ′r .

4 Preliminary Computational Results and Concluding
Comments

For the computational results, the instances that were thoroughly described in [2]
have been used. The implementation is made in Python Version 3.6 and the models
have been solved by Gurobi Optimizer Version 7.5.1.

As can be seen from Table1, the co-allocation component of the model was suc-
cessfully included and achieved co-allocation of CN-messages, without the solution
times becomingmuch higher than before. The current instances have only amoderate
number of CN-messages and for future work it is of interest to combine co-allocation
of CN-messages with other enhancements of the solution strategy in order to solve
much larger instances where co-allocation is expected to be required for finding a
solution to the problem.

Table 1 Instance characteristics (for details see [2]) and co-allocation results

Instance I II III

# [nodes, CM-tasks, CN-messages] [2, 6536, 64] [5, 14167, 96] [7, 19894, 96]

[Best, Worst] solution time (s) of [2] [164, 467] [1025, 29676] [2210, 52269]

Solution time (s) with co-allocation 452 2798 18663

Number of co-allocated CN-messages 25 32 13
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Computing Pareto-Optimal Transit
Routes Through Mathematical
Algorithms

M. Fawad Zazai and Armin Fügenschuh

1 Aim and Idea

Afghanistan is located geographically in the center of Asia. The country has great
potential to transform in South and Central Asia into a “logistical crossroad”. The
aim of this study is to develop trajectories for optimal transit routes in Afghanistan
by mathematical optimization methods. In the present research phase, the focus is to
apply algorithms for the shortest path problem, which compute point-to-point con-
nections between two cities. The shortest path problem belongs to the class of graph
problem and deals with the issue of how to find an optimal route between two nodes
or points (start and end point) within a graph G = (V, E, w) with respect to a cost
function that is the sum of non-negative weights wi, j of each edge {i, j} ∈ E that
is used in the route. The edge weight can represent (a) its length, (b) its construc-
tion cost, or (c) the height variation. In order to estimate the construction cost of
an edge, that may become part of a route, several factors are taken into account, in
particular the national land use of Afghanistan and the elevation profile of the terrain
(topography). These data are taken from publicly available sources. For the design
and modeling of the routes, a computer program named “Contra” (Computing an
Optimal Network of Transit Routes through mathematical Algorithms) was devel-
oped. Contra transforms the input data (land use, terrain) into a weighted graph
and applies Dijkstra’s shortest path algorithm [1] to find an optimal routes between
any two given nodes. Details of this are given in the next section.
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Fig. 1 Amap of Afghanistan with different land cover. Each color represents a specific land cover
(e.g., deserts or forests)

2 Input Data

To determine a route automatically with the help of mathematical optimization, the
following input data has to be provided to the program Contra:

1. Coordinates of start and destination points (given as latitude and longitude).
2. National land cover of Afghanistan in shapefiles (currently from date 1997) of

the organization AIMS, originally of the Afghan Geodesy and Cartography Head
Office [2]. The whole country is separated in polygonal shapes that describe the
respective type of land, see Fig. 1.

3. Topographic representation of Afghanistan, the SRTM data of USGS/NASA [3].
The resolution of the SRTM data for Afghanistan is 14000 × 18001 pixels. As an
example, in Fig. 2 the area of the Uruzgan province in Afghanistan is depicted.

4. The costs of construction and maintenance of a road. According to reports of the
Asian Development Bank the construction of a (two-lane) road in Afghanistan
on average is approximately 1 Mio. USD per km [4]. The cost amount can be
dependent on the height and the land surface on which it is built [5]. For this
research the assumption is an estimated cost ratio among the different land covers,
and thus determine the construction costs of the routes. In general, it is possible
to modify the estimated cost ratio.

3 Creating a Graph and a Shortest-Path-Problem

A weighted graph G = (V, E, w) is created as follows. A regular mesh grid Γ is
spanned over the terrain of a selected geographical area A, so that Γ (A) defines a
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Fig. 2 The topography of the Uruzgan province in Afghanistan. The color spectrum from dark to
light indicates the height of the terrain

geographical mesh grid of A. A grid consists of rectangles, which has corner points
in IR3. These points are added as nodes to the set V . The four side lines of each
grid rectangle is equidistantly subdivided into m ∈ IN segments. The end points of
these segments are also added as nodes to V . Note that each grid rectangle has 4m
associated nodes (see Fig. 3). All pairs of these nodes (but excluding those on the
same side of the rectangle’s boundary) are now connected by edges and added to
the edge set E of G, which gives 6m2 edges for each rectangle of the grid. The
problem of the construction of optimal routes in Afghanistan leads to the shortest
path problem. A shortest path is a route that is minimal with respect to the sum of
all costs of all segments that are used in the entire route. The non-negative cost per
segment (edge weight) wi, j are determined from the construction cost, the length or
the height variation (depending on the desired goal of the optimization). To solve the
shortest path problem Dijkstra’s algorithm [1] is used. The number of rectangular
subdivisions of the grid Γ as well as the value of m are set by the user. Clearly,
the finer the resolution, the more properly the route can follow the topography of
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Fig. 3 A single rectangle with m = 2 subdivision, hence 4m = 8 nodes and 6m2 = 24 connecting
edges. The edges represent the basic building segments of a route in Contra

the area. With modern computers, the solution time is not so much a bottleneck,
however, the memory consumption is very high and can easily touch the limits also
of modern workstations (64 GByte), even when special programming techniques
(such as sparse data structures for storing all edges) were applied. Besides focusing
on a single optimization goal, there are several conflicting objectives to consider.
This could be, for instance, minimizing the total length of the route as well as the
construction cost. These two can be in conflict, because a shorter route may go
through more difficult terrain that a slightly longer route would have avoided, and
thus turns out to be lest costly. In general, we consider three objectives “route length”,
“construction cost” and “elevation variation” that are in conflict with each other. That
means, there is no route that is simultaneously optimal for all three. Multi-objective
optimization (Pareto optimization) is an area of multi-criteria decision making, that
is concerned with mathematical optimization problems involving more than one
objective function, that have to be optimized simultaneously [6]. Here one seeks for
a Pareto optimum of a route, which is a route that cannot be improved with respect to
one criterion without worsening at least another. Using this concept, one can analyze
the trade-off between them.

4 Results

As an example, we compute routes between the city of Khas Uruzgan and the city of
Kabul. We first calculate optimal solutions for the three different single objectives,
e.g., the shortest route (red), the cost-minimal or cheapest route (blue), and the
most convenient route w.r.t. the elevation change (black), see Fig. 4. The columns
in Table 1 describe a) the construction costs of the routes in million USD, b) the
lengths of the routes in km and c) the absolute elevation changes of the routes, i.e.,
the sum of all height changes from the starting point to the ending point along the
route. Each of these three routes has a certain length and elevation profile. Fig. 5
shows the height profile along these three routes and Fig. 6 shows the Pareto front of
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Fig. 4 Three single-objective optimal routes: shortest (red), cheapest (blue), and most convenient
(black)

Table 1 The result of the three routes regarding the cost, length and absolute elevation change

the routes from Khas Uruzgan to Kabul regarding the two objectives “route length”
and “construction cost”. This chart shows on the horizontal axis the length of the
routes in km and on the vertical axis the construction cost of the routes in million
USD. The small red circles represent specific routes between these two cities. The
leftmost circle represents the shortest route and the rightmost circle represents the
cheapest route. The circles that lie between these two extremal circles, are other
optimal routes that are a combination of the shortest and cheapest route from Khas
Uruzgan to Kabul. As the project acronym Contra indicates, our future work is to
extend these point-to-point connections to automatically design large networks that
connect several cities with optimally located transit routes.
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Fig. 5 The height and length diagram of the shortest, the cheapest and the most convenient w.r.t.
the elevation route. The line in the middle of each chart is the average elevation
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Fig. 6 The Pareto front of the shortest and cheapest routes regarding length and construction cost
from Khas Uruzgan to Kabul. The shortest route costs 312.5 Mio. USD and has a length of 309.5
km, whereas the cost for a slightly longer route of 317 km already drops to 291 Mio. USD, and
even longer routes do not save much further cost anymore
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Energy-Efficient Design of a Water
Supply System for Skyscrapers by
Mixed-Integer Nonlinear Programming

Philipp Leise, Lena C. Altherr and Peter F. Pelz

1 Introduction

Especially in high buildings like skyscrapers, the supply pressure of the waterworks
is not sufficient to supply the higher floors with water. In this case, booster sys-
tems consisting of one or more pumps are used to increase the pressure. While there
are references for the placement of booster stations in buildings [3, 4], the deter-
mination of the exact number and position of pumps is mostly still done manually
for each application setting. Especially for larger buildings, it is not feasible for a
human designer to assess all different options, but the decision is made based e.g. on
experience or other heuristics. Technical Operations Research (TOR) [2, 5] however
ensures the consideration of all possible choices and allows to find the global optimal
solution. The optimization problem is formulated as a Mixed-Integer Nonlinear Pro-
gram (MINLP). The result after solving this model is the cost-optimal combination,
placement and control strategy of pumps, given a set of different load cases and their
frequencies, cf. Fig. 1. All possible layout options of the water supply network are
shown in Fig. 2. In this application example, a skyscraper with 9 floors has to be
supplied. Three adjacent floors are combined to one level of the abstract graph on
the left. The question marks denote that the optimization algorithm can choose the
location, type and number of parallel pumps at each pipe between the main levels.
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Fig. 2 Layout options and costs of different pump types of the construction kit

Given is a construction kit consisting of different pump types with different costs
and characteristic curves (pressure head and power consumption vs. volume flow).

2 Optimization Model

Our MINLP for modeling the water supply system for the skyscraper is shown in
Eqs. (1)–(28). In this model, capital letters denote variables and sets, lower-case
characters denote parameters, cf. Table1. We minimize the total costs of the water
supply system, consisting of the energy costs of all pumps, and the investment costs
for pumps and pipes, cf. Eq. (1).

In the building, it is possible to place a pipe between every two levels, but the
rooms in one level can only be supplied by one pipe. This leads to a tree-shaped
graph G(V, E) in which the pipes are represented by edges E , and the levels are
represented by nodes V . A binary variable K pipe

i, j indicates whether levels i and j
are connected by a pipe. On each pipe, it is possible to place multiple pumps of the
same type. Equations (2)–(10) are used to model these logic properties of the system.
Equations (11) and (12) set the normalized speed Ni, j,b,l to zero if the respective pump
is not used in load case l ∈ L, i.e. K load

i, j,b,l = 0. Equations (13)–(15) add boundary
conditions for the pressure head on each level. The continuity equation and general
flow constraints are represented by Eqs. (16)–(22).
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min
∑

b∈B

∑

(i, j)∈E
cpump
b K pump

i, j,b +
∑

(i, j)∈E
cpipei, j K pipe

i, j + cenergyτ
∑

l∈L

∑

b∈B

∑

(i, j)∈E
φlPi, j,b,l subject to

(1)

∑

(i, j)∈E : j=v

K pipe
i, j ≤ 1 (2)

∑

b∈B
K pump

i, j,b ≤ 1 (3)

K pump
i, j,b ≤ K pipe

i, j

(4)

K load
i, j,b,l ≤ K pump

i, j,b

(5)

K pump
i, j,b ≤ Y pump

i, j,b

(6)

K pump
i, j,b n

P ≥ Y pump
i, j,b

(7)

K load
i, j,b,l ≤ Y load

i, j,b,l

(8)

K load
i, j,b,ln

p ≥ Y load
i, j,b,l

(9)

Y load
i, j,b,l ≤ Y pump

i, j,b

(10)

K load
i, j,b,l ≥ Ni, j,b,l

(11)

nminK load
i, j,b,l ≤ Ni, j,b,l

(12)

HIn,l = h0 (13)

H1,l ≥ hmin
1

(14)

∀v ∈ V \ 1 : Hv,l ≥ hmin

(15)

Qi, j,l − qmaxK pipe
i, j ≤ 0 (16)

Qpart
i, j,l ≤ Qi, j,l

(17)
∑

(v, j)∈E
Qv, j,l + q load

v,l −
∑

(i,v)∈E
Qi,v,l = 0 (18)
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Y load
i, j,b,l Q

part
i, j,l + qmax(1 − K load

i, j,b,l) ≥ Qi, j,l

(19)

Y load
i, j,b,l Q

part
i, j,l − qmax(1 − K load

i, j,b,l) ≤ Qi, j,l

(20)

Qpart
i, j,l − Qi, j,l − qmax

∑

b∈B
K load

i, j,b,l ≤ 0 (21)

Qpart
i, j,l − Qi, j,l + qmax

∑

b∈B
K load

i, j,b,l ≥ 0 (22)

αQ,1
b Ni, j,b,l + βQ,1

b K load
i, j,b,l + qmax(1 − K load

i, j,b,l) ≥ Qpart
i, j,l

(23)

αQ,2
b Ni, j,b,l + βQ,2

b K load
i, j,b,l − qmax(1 − K load

i, j,b,l) ≤ Qpart
i, j,l

(24)

αP
b(Q

part
i, j,l)

2 + βP
b N

2
i, j,b,l + γP

b Q
part
i, j,l Ni, j,b,l + δPb Q

part
i, j,l + εPb Ni, j,b,l + μP

b ≤ Ppart
i, j,b,l

(25)

Y load
i, j,b,l P

part
i, j,b,l = Pi, j,b,l

(26)

K load
i, j,b,lα

H
b (Qpart

i, j,l)
2 + βH

b Q
part
i, j,l Ni, j,b,l + γH

b N
2
i, j,b,l = ΔHi, j,b,l

(27)

(Hj,l −
∑

b∈B
ΔHi, j,b,l+Δhi, j − Hi,l)K

pipe
i, j = 0 (28)

with v ∈ V, (i, j) ∈ E, b ∈ B, l ∈ L if not stated otherwise.
They ensure on the one hand that the flow through the network meets the demand

q load
v,l on vertex v ∈ V and in load case l ∈ L, and on the other hand that the total

flow rate Qi, j,l in each pipe is the sum of all partial flow rates Qpart
i, j,l through each

parallel pump on the specific pipe (i, j) in the network. Equations (23)–(27) are
characteristic curves dependent on the pump type b. They define the relationship
between volume flow, pressure head, and power consumption for each pump. The
head-volume flow characteristic is modeled according to [6] as a quadratic relation-
ship between the pressure head, the volume flow and normalized speed, cf. Eq. (27).
The power characteristic is modeled by a fully quadratic relation between the power
and the volume flow and normalized speed, cf. Eq. (25). This approach represents
a quadratic approximation to the cubic model in [6]. If a booster station consists
of multiple parallel pumps of the same type b, the highest energy-efficiency can
be achieved by operating all pumps with the same rotational speed, resulting in the
same volume flow and power consumption of each pump. Assuming equal rotational
speeds, Eq. (26) calculates the total power consumption of a booster station with
Y load
i, j,b,l pumps of type b operating in load case l. Equation (28) ensures that the head

between two different levels decreases proportional to the height difference between
them.
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Table 1 Decision variables and parameters

Index set Description

V Set of vertices of system graph G
E Set of edges of system graph G
L Set of load cases l

B Set of pump types b

Variable Description Domain

Qi, j,l Volume flow on edge (i, j) in load case l [0, qmax]
Q

part
i, j,l

Volume flow in pump on edge (i, j) in load case l [0, qmax]
Hv,l Pressure head on level v in load case l [0, hmax]
Ni, j,b,l Normalized speed on edge (i, j) for pump b in load case l [0, 1]
Pi, j,b,l Total power of pumps of type b on edge (i, j) in load case l [0, pmax]
P
part
i, j,b,l

Power of each pump of type b on edge (i, j) in load case l [0, pmax]
K

pipe
i, j

Indicator whether pipe (i, j) is used {0, 1}
K

pump
i, j,b

Indicator whether pumps of type b is used in pipe (i, j) {0, 1}
K

load
i, j,b,l

Indicator if pump b are used in pipe (i, j) in load case l {0, 1}
Y
pump
i, j,b

Number of parallel pumps of type b on edge (i, j) {0, nP}
Y
load
i, j,b,l

Number of active pumps of type b on edge (i, j) in load case l {0, nP}
Parameter Description Domain

qmax Upper bound for volume flow R
+

q loadv,l Volume flow demand on level v in loadcase l R

h0 Pressure head by water supplier R
+

hmin Minimal pressure head in each level, except the first one R
+

hmin
1 Minimal pressure head in first level R

+

hmax Maximum height of the building R
+

Δhi, j Pressure loss between level i and level j R
+

pmax Maximum power consumption R
+

np Maximum number of parallel pumps R
+

nmin Minimum normalized speed of all pumps [0, 1]
cenergy Energy costs per Watt R

+

cpump
b Investment cost for each pump R

+

cpipei, j investment costs per pipe R
+

φl frequency of load case l R
+

τ usage period R
+

Quantity Fitting parameters for each pump b ∈ B Domain

Power αP
b , β

P
b , γ

P
b ,δ

P
b ,ε

P
b ,μ

P
b R

Head αH
b , β

H
b , γ

H
b R

Flow α
Q,1
b , αQ,2

b , βQ,1
b , βQ,2

b R
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3 Application and Results

We analyze the potential energy savings in an exemplarily chosen hotel building. The
maximum daily water consumption is derived by taking into account the number of
floors, rooms, and consumers and the available guidelines [3]. The hotel starts 20m
above the input valve of the supply by the waterwork. It consists of 9 levels which are
each 3m high. We combine three adjacent floors into one node of the corresponding
graph. The daily water consumption is approximated by four different load cases,
cf. Fig. 1. A minimum pressure head of 15.25m is required at each level. This value
consists of the minimum pressure needed at the output of the network (i.e. a faucet)
and the additional pressure needed to overcome the pipe resistance from the rising
pipe to the rooms. The pressure head provided by the waterworks is 28.63m. The
optimizer can chose between four different booster stations with different costs, cf.
Fig. 2. B4 consists of up to four identical pumps and would conventionally be used.
B1 to B3 are single pumps, with different characteristics. The parameters for all
pump models in Eq. (25) and (27) are derived by a least-square fit based on data
provided by the manufacturer. The costs for pipes are estimated with 50e/m, energy
costs with 0.3e/kWh. We chose Scip (version 4.0.0) [1] for solving since it ensures
a global optimal solution, also for nonconvex MINLPs. We set the optimization gap
to 5%. The optimized layout is shown in Fig. 3 on the left side, the right side shows
the conventional layout for comparison. The conventional layout uses four pumps of
booster station B4, while in the optimized layout, only three pumps of this station
are used and another pump of type B2 is added. The algorithm increases the number
of pressure zones (floors with the same pressure). With the optimized layout, overall
energy savings of ≈18.9% can be achieved. The total costs (investment plus energy)
decrease by 12% for a usage period of τ = 15 a.

B4 B3 B4

OPTIMIZED
LAYOUT

CONVENTIONAL
LAYOUT

Objective:
64413
Power:
1303 W

Objective:
72890
Power:
1606 W

Fig. 3 Comparison of conventional and optimized system layouts. With our approach, energy
savings of almost 20% can be achieved compared to the conventional layout
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4 Conclusion

This work shows that the usage of mathematical programming in the engineering
domain can lead to significant improvements in the overall energy consumption of
technical systems. With the presented model , not only an optimal pump selection
and operation can be computed automatically, but also the division of the different
building levels in individual pressure zones. The developed model can therefore be
seen as a support tool for engineers.
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Mixed Integer PDE Constrained
Optimization for the Control
of a Wildfire Hazard

Fabian Gnegel, Michael Dudzinski, Armin Fügenschuh
and Markus Stiemer

1 Introduction

In a forest close to inhabited regions is an ongoing wildfire spread. Leaving it burning
uncontrolled might endanger the local population and their properties, hence the
firefighters are trying to plan their response in an optimal way, without endangering
themselves. A road network is passing through the forest that can now be used
for firefighting operations. The forest itself cannot be crossed; all movements are
restricted to the said road network. In order to prevent endangering the firefighters, no
movement should take place on roads leading through or too close to burning territory.
The resources necessary to control the fire (water, equipment, and manpower) are
limited, therefore an optimal resource allocation and proper scheduling might make
the difference between getting the fire under control or a major disaster.

In this situation an optimal planning has to take two different types of dynam-
ics into account: Firstly, the physics of the fire, which allows to predict the spread
direction and velocity, and secondly, the movement of the firefighters and their extin-
guishing agents (water). Those two systems cannot be considered separately. The
ultimate goal of any firefighter mission is to influence the spread of the fire, but
during this mission, the fire might temporarily prevent the firefighters from reaching
certain areas.

For the modeling of the fire a time dependent PDE is used, and a dynamic network
flow is used to model the movements of the firefighters, or more precisely, the water
that they use. In order to express the interdependencies, the flow variables of the
network are used as control variables for the PDE and additional constraints are
imposed on the network flow which include the state of the PDE. The inclusion of
these interdependencies make our model unique in comparison to other recent work.
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For example, Göttlich et al. [3] studied an evacuation planning problem in response
to a gas hazard, where the latter is modeled by a PDE, which is independent of the
network dynamics (i.e., flows of evacuating people). Frank et al. [2] consider the
coolest path problem, where an object traverses a network graph while being heated
or cooled on the arcs. Here the heat PDE gives rise to objective function coefficients
for a shortest path problem, but does not constrain the combinatorial decisions.

2 The Mathematical Model

In order to solve the planning problem of the response to the wildfire, an integrated
model for the spread of the fire and for themovement of the firefighters is formulated.
We define the sets and variables of this model, and then the constraints and the
objective function.

For the dynamic flow of the water used by the firefighters we assume that the road
network is given in form of a graph G := (V, A) with capacities ci, j and traversing
times δi, j for all arcs (i, j) ∈ A. Graph G is embedded in the plane by endowing
each vertex i ∈ V with a coordinate xi ∈ Ω , where Ω := [0, L]2 is a square area of
interest. The arcs (i, j) ∈ A are associated with a straight lines between the coordi-
nates of their respective incident vertices. The flow can start in source nodes, denoted
by S ⊂ V , and ends in demand nodes D ⊂ V , which are nodes suitable for extin-
guishing the fire. We introduce a discretization of the time horizon [0, T ] by the set
of time T := {0,Δt, . . . , ntΔt = T }.

The variables vi, j,t ∈ R+ represent the flow (of water) on arc (i, j), starting in
i at time t ∈ T. In nodes i ∈ S the flow can enter the network, and the intensity at
time t ∈ T is specified by the variables wi,t ∈ R−. Vice versa, the flow leaves the
network in nodes i ∈ D at time t ∈ T, with an intensity given by wi,t ∈ R+. The
temperature in the forest at location x ∈ Ω at time t ∈ T is given by u(x, t). Finally,
binary decision variables zi,t ∈ {0, 1} for i ∈ V and t ∈ T are introduced to link the
temperature to the flow, with zi,t = 0 if and only if the temperature at xi at time t
exceeds a certain threshold UB , at which further firefighter operations have to be
terminated for safety reasons, that is, the area is burning.

The following constraints are now used to ensure the desired behavior of the
firefighter operations (i.e., the flow of water), where we use a dynamic maximum
flow formulation (see [6] for a survey):

vi, j,0 = 0 ∀(i, j) ∈ A, (1a)
∑

i∈V :(i,k)∈A,δi,k≤t

vi,k,t−δi,k =
∑

j∈V :(k, j)∈A

vk, j,t + wk,t ∀k ∈ V, t ∈ T, (1b)

u(xi , t) − (1 − zi,t )M ≤ UB ∀i ∈ V, t ∈ T, (1c)
∑

s∈T:s≤min(δi, j ,T−t)

vi, j,t+s ≤ ci, j z j,t ∀(i, j) ∈ A, t ∈ T. (1d)
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The initial condition (1a) guarantees that no flow is inside the network at t = 0.
The flow conservation is ensured by (1b). Constraints (1c) and (1d) prevent flow
from passing through a burning area, where the first sets the binary switch variable
zi,t to zero if the threshold temperature is reached, and the second only allow for
flow (w.r.t. to the capacity restriction) as long as z j,t = 1.

The dynamics of the fire is modeled by the following PDE system:

ut (x, t) − c · ∇u(x, t) − dΔu(x, t) = y(x, t, w) ∀ (x, t) ∈ Ω × (0, T ), (2a)

∂

∂n
u(x, t) = hR(uR − u(x, t)) ∀ (x, t) ∈ ∂Ω × (0, T ), (2b)

u(x, 0) = f (x) ∀x ∈ Ω, (2c)

u(x, t) ≥ 0, ∀(x, t) ∈ Ω × (0, T ). (2d)

This is a convection-diffusion equation with Robin type boundary conditions on the
spacial domain Ω and the time domain [0, T ]. The fire model is able to express the
effect of the wind and the diffusive behavior of fire, while still being a linear PDE
(which we need later for computational reasons1). Condition (2b) imposes that the
normal derivative at the boundary is directly proportional to the difference of the
temperature on the boundary and the temperature UR . Parameter d is the coefficient
of the diffusion term, it determines the speed of the fire spread. Parameter c is the
velocity-vector of the wind. Furthermore condition (2d) ensures that, when the fire is
extinguished (at temperature zero), the control function cannot push the temperature
any lower thereafter.

The term in this PDE that represents an outer influence is y(x, t, w), which
depends on the outflow of water wi,t for i ∈ D of a nearby node (x ≈ xi ) as follows:
The controls at the different vertices and different points in time are independent of
each other, hence y is the sum of several individual control functions. It is further
assumed that each outflow variable wi,t (i ∈ D) has only a local effect with a peak at
the coordinate of its vertex and acts only for a certain duration TE . We assume that
the spatial effect follows a Gaussian distribution with the coordinates of the vertex
xi at its center:

y(x, t, w) = λ
∑

τ∈T

∑

i∈D
−wi,τχ[t,t+TE )(t) exp

(
−‖x − xi‖22

σ2

)
, (3)

where λ and σ are parameters that represent the spatial influence of the outflow
of water on the surrounding fire (more precisely, its temperature), and χI is the
characteristic function (i.e., χI (t) = 1 for t ∈ I and 0 otherwise) that restricts the
duration of the influence to a time interval of size TE .

1We remark that there are more complex fire models known, for example [4], where a further
nonlinear term expresses the consumption of fuel (here: wooden trees), but on such models our
presented computational techniques do not work. Their adaptation is a direction for future research.
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The objective is to minimize the damage caused by the fire. We assume that the
damage is proportional to a weighted integral of the temperature u(x, t) in Ω over a
time horizon [0, T ].

min
∫ T

0

∫

Ω

ω(x)u(x, t) dx dt,

s.t.(1a) − (1d), (2a) − (2d).

(4)

We present two approaches to solve (4). Neither of them solves this model directly.
Instead, we derive suitable finite dimensional systems that approximate (4), which
turn out to be linear mixed-integer problems (MILP) and thus can be solved using a
state-of-the-art MILP solver.

Finite Differences. The first approach uses a one-to-one replacement of the con-
straints and objective with a discrete counterpart. The PDE is replaced by a linear
system obtained from a convergent finite difference method [5] and the integral is
replaced by a quadrature formula. The domain is discretized by replacing Ω with
an equidistant grid of length Δx = L

nx
with nx ∈ N. The interval [0, T ] is replaced

by the discrete time set T, which was already used for setting up to the network
flow. Then for each point (iΔx, jΔx, t) of the grid a variable ui, j,t is added. The
function u(x, t) is approximated at each gridpoint, i.e., u((iΔx, jΔx), t) ≈ ui, j,t .
All constraints that depend on u have to be adjusted for those discrete variables. The
PDE and its initial and boundary conditions (2a)–(2c) are replaced by a linear system

(
A1 A2

) (
u
w

)
= b, (5)

where the coefficients in the matrices A1, A2 and the vector b are derived according
to a finite difference scheme. Condition (2d) is converted by enforcing it for the
discrete variables:

ui, j,t ≥ 0, ∀i, j ∈ {0, . . . nx }, t ∈ T. (6)

From the network conditions only (1c) has to be adjusted as

u j,k,t − (1 − zi,t )M ≤ UB, ∀i ∈ V, xi = ( jΔx, kΔx), t ∈ T. (7)

Note that we assume here for simplicity that the coordinates xi of the nodes i ∈ V
are aligned to the grid. More generally, then one can take the weighted sum of the
neighboring grid points according to their distance to the position of the vertex xi ,
which still gives a linear constraint. The objective function can be approximated by
the trapezoidal rule applied at the grid points. Then the first linear mixed-integer
approximation of (4) is:
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min (Δx)2Δt
∑

t∈T

nx∑

i, j=0

λtμiν jω(iΔx, jΔx)ui, j,t ,

s.t. (1a) − (1d), (5), (6), (7),

(8)

where: λ0 = 0.5, and λt = 1 if t > 0; μ0,μnx , ν0, νnx = 0.5, and μi , ν j = 1 other-
wise.

Finite Elements. The second approach is based on the observation that because of
the principle of superposition for linear PDEs the continuous state u can be defined
as

u = uinh +
∑

t∈T

∑

i∈V
wi,t ûi,t , (9)

where uinh is the solution of (2a) for w = 0, and ûi,t are the solutions of (2a) for
each individual summand of u and homogeneous boundary and initial conditions.
Since the summands of the control functions for a fixed vertex i can be obtained by
shifting ûi,0(t) to the right it holds for all τ ∈ T

ûi,τ (t) =
{
0, 0 ≤ t ≤ τ ,

ûi,0(t − τ ), τ < t ≤ T .

Therefore only |V | + 1 PDEs have to be solved in order to obtain u, and (9) can
be used to replace (2a)–(2c) in the continuous model. This also makes it possible
to separate the solution of the PDE from the optimization process, which opens up
the possibility to use adaptive finite element methods instead of finite differences.
Finite element methods in contrast to finite differences define a linear combination
of base functions and thus can be used to derive values anywhere in Ω and not only
on a grid. So independent on the meshes of the finite element method, it is possible
to define the discrete variables as:

ui, j,t = uinh(iΔx, jΔx, t) +
∑

τ∈T

∑

k∈V
wk,τ ûk,τ (iΔx, jΔx, t). (10)

With this we define the MILP for the second approach:

min (Δx)2Δt
∑

t∈T

nx∑

i, j=0

λtμiν jω(iΔx, jΔx)ui, j,t ,

s.t. (1a) − (1d), (6), (7), (10).

(11)
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Fig. 1 Computational results

3 Computational Results and Conclusion

Two different MILP were derived that approximate the continuous problem (4).
The second model (11) has much less constraints and variables compared to model
(8) based on finite differences. Yet it remains to be shown that the second model
indeed outperforms the first one. For solving the required PDEs, the object oriented
software package oFEM [1] has been employed. The computational results for a
problem formulated for the two models are included in the Fig. 1a, b. The different
graphs show the runtimes for different degrees of time and space discretizations. The
figures illustrate that the finite difference method was only able to solve problems
with only a 10× 10 spacial grid and up to 60 timestepswithin a time limit of 20, 000 s.
In contrast, the second method still solves problems with a 45× 45 spacial grid and
50 timesteps within the same timeframe, using IBM ILOG CPLEX 12.6.3.0 on a
2014 Mac mini with a 2.6GHz Intel Core i7 CPU and 16GB RAM.
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The Multiple Traveling Salesmen
Problem with Moving Targets
and Nonlinear Trajectories

Anke Stieber and Armin Fügenschuh

1 Problem Description of the MTSPMT

The MTSPMT is a dynamic variant of the classical TSP and the time plays an
important role here. The nodes (targets, objects) are not fixed as in the classical TSP,
they move over time on arbitrary trajectories. Each target is associated with a certain
speed value and a visibility time window. We consider hard time windows, so that a
target can only be intercepted by a salesman within its respective time window. This
variant also considers more than one salesman. Each salesman is assigned a certain
speed value. All salesmen start their tours from an initial depot, located w.l.o.g. in
the middle of the considered area or space. Each target has to be visited once and
by exactly one salesman. The aim is to find a tour for each salesman in order to
minimize the total traveled distance aggregated by all salesmen. If we restrict the
number of salesmen to one, fix each target to a certain local position and extend their
time windows to infinity, we obtain the classical TSP, which is NP-hard. Thus, the
MTSPMT as a generalization of the TSP is also NP-hard.

Applications can be found in the defense sector, e.g., protection of an airport or a
security zone (for details see Stieber et al. [9]) or in the logistic sector, e.g., supplying
a fleet of boats or mobile ground units. Formany such applications,MTSPMT should
be treated as an online optimization problem, that is, the targets are not known before
the optimization starts (“offline”), instead they occur afterwards. Still, a fast routine
to solve the “offline” variant could serve as the backbone of an online solver with a
moving horizon approach. Here new data is integrated into the offline algorithm at
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run-time, and a fast offline algorithm can be used to get a tentative decision to the
“online” problem that is re-optimize anytime new targets emerge.

In the literature the MTSPMT is only addressed considering small instances and
with many restrictions to the problem parameters, e.g., movement and speed of the
targets or the one-dimensional case is considered, see for example [1, 2, 4, 5, 7]. The
MTSPMT modeled with discrete time steps is also very similar to the asymmetrical
equality generalized multiple depot TSP (E-GMDTSP), where targets are assigned
to clusters and exactly one target from each cluster has to be visited by a salesman,
see for example [6, 8, 10]. To the best of our knowledge, there is no exact algorithms
to the asymmetrical E-GMDTSP.

2 Model Formulation

We presented a mixed-integer linear programming formulation for the MTSPMT in
Stieber et al. [9]. Therefor, the underlying graph is embedded in a time-expanded
network and the MTSPMT is formulated as a multi-commodity flow problem. We
recall the formulation in a concise way.

The set of salesmen is denoted by W = {1, . . . , w} and the set of targets by
V = {1, . . . , n}. All salesmen start their tour from the same depot location o, hence,
Vo = V ∪ {o}. Then we have the set of arcs (roads) as A ⊆ Vo × V . We consider
a finite time horizon [0, T ]. The distance for salesman k traveling from target i to
target j starting at time s in i and arriving at time t in j is given by the function
ci, j,k : [0, T ] × [0, T ] → R+ ∪ {∞}. Since each target i ∈ V is assigned a visibility
time window [t i , t i ], we have

ci, j,k(s, t) = ∞ if s /∈ [t i , t i ] or t /∈ [t j , t j ] or (t − s)v < ‖v j (t) − vi (s)‖2,

where vi (s) and v j (t) are the respective locations of the targets at the times s and t
and v is the maximum speed value of all salesmen. The arrival time of any salesman
at a target is equal to his departure time at the same target, because waiting times are
included in the traveling times. Thus, salesmen do not necessarily use the maximum
speed v.

The time horizon is discretized intom + 1 equidistant time steps T = {0, . . . ,m}
with step length �t , hence T = m�t . We evaluate c only at these:

cp,qi, j,k := ci, j,k(p�t, q�t).

In the time-expanded network arcs go from one time layer to a later time layer, hence
the time-dependent set of arcs is denoted by Ã and an arc is specified by (i, p, j, q)

with i ∈ Vo, j ∈ V and p, q ∈ T . This means the length of an arc (i.e., distance)
is dependent on the departure and arrival times. We introduce a family of binary
decision variables x p,q

i, j,k ∈ {0, 1}, where x p,q
i, j,k = 1 represents the decision of sending
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salesman k from target i to j , departing in i at time step p and arriving in j at time
step q. Then the optimization problem is given by

∑

k∈W

∑

(i,p, j,q)∈Ã
cp,qi, j,k x

p,q
i, j,k → min . (1)

s.t.
∑

k∈W

∑

(i,p,q):(i,p, j,q)∈Ã
x p,q
i, j,k = 1, ∀ j ∈ V. (2)

∑

(i, j,q):(i,p, j,q)∈Ã
x p,q
i, j,k ≤ 1, ∀ k ∈ W, p ∈ T . (3)

∑

(i,p):(i,p, j,q)∈Ã
x p,q
i, j,k ≥

∑

(i,p):( j,q,i,p)∈Ã
xq,p
j,i,k,

∀ j ∈ V, q ∈ T , k ∈ W. (4)

x ∈ {0, 1}Ã×W . (5)

The objective function (1) is the sum of all traveled distances of all salesmen. Con-
straints (2) ensure, that every target is reached once. Inequalities (3) guarantee, that
a tour is not split up and (4) are the flow conservation constraints. The presented
model is not restricted to particular shapes of the target trajectories. Thus, it can
handle linear and non-linear trajectories.

3 Instance Generation

The operating space for our test instances is a square of 500 length units. A test
instance is specified by the number of targets, the number of salesmen and the dis-
cretization level. The discretization level is a measure of how dense the discretization
is done. We used 3 different levels D32, D16 and D8. The first one is based on a
discretization every 32 length units (arc length) on each trajectory, the other dis-
cretization levels use a step size of 16 and 8 length units respectively. The targets are
assigned a constant speed value of 32 length units per time step and the salesmen
can travel with at most 200 length units per time step.

For the non-linear trajectories we used polynomial functions and trigonometric
functions and a combination by sum and product. We created 16 non-linear trajec-
tories. Then, instances for 6, 8, 10, 12, 14, and 16 targets were created in a way, that
we started with 6 trajectories and gradually added two more until we had 16. See
the left picture of Fig. 1 for their visualization. In the linear case we used randomly
generated trajectories. For reasons of visibility we avoided the straight lines from
intercepting each other. We created 5 instances per setting. The trajectories were
added the same way as for the nonlinear ones when the number of targets rises. All
generated trajectories have a length between 100 and 400 length units and time steps
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Fig. 1 Generated trajectories. Left picture: 16 nonlinear trajectories. Right picture: 16 linear tra-
jectories (one out of 5 instances). The trajectory number is given in blue and the first and last time
step of the trajectory is given in black. All trajectories were generated with the discretization level
D16

are distributed in a way that all instances are solvable instances. An instance with 16
linear trajectories is visualized in the right picture of Fig. 1 as an example.

4 Computational Results

All computational experiments were carried out on a 2014AppleMacmini computer
with an Intel Core i7CPU running at 2.6GHz on 4 cores, and 16GB1600MHzRAM.
Themodel was implemented in C++ and instances were solved with theMILP solver
IBM ILOGCPLEX 12.7.0 [3]. The computations were performed on a single thread,
the CPLEX parameter for the MIP gap was set to 0.0. All other CPLEX parameters
were used with their default values.

The computational results are listed in Table1. Here, the first two columns define
the number of targets (nbt) and the number of salesmen (nbs), columns 3 to 5 con-
tain the running times for different discretization levels (dl) and column 6 and 7 the
objective function values (ofv) for the nonlinear instances. The running times for
the linear instances are given in columns 8 to 10 (for different discretization levels).
Since the run-time values for the linear trajectories are averaged values over 5 differ-
ent instances, we do not provide objective function values. All values in Table1 are
rounded to one digit after point. The results show for both nonlinear and linear trajec-
tories, that the instances become more complex, when the discretization level rises.
But there is another effect, that is apparent in the results. For bigger instances (for
nonlinear trajectories 10 targets and greater with D16 and D8, for linear trajectories
12 targets and greater with D16 and D8) the running times for a salesman number
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Table 1 Running times in seconds. Values for linear instances averaged over 5

Instance Run-time nonlinear ofv nonlinear Run-time linear

nbt nbs D32 D16 D8 D32 D8 D32 D16 D8

6 2 0.1 0.2 0.9 449.2 431.1 0.0 0.1 0.6

6 4 0.1 0.5 1.3 437.6 422.0 0.0 0.1 0.7

6 6 0.2 0.8 2.2 437.6 422.0 0.0 0.3 0.9

8 2 0.1 0.5 3.4 584.3 521.9 0.1 0.7 5.0

8 4 0.1 0.8 3.8 531.6 484.0 0.1 0.4 1.3

8 6 0.1 1.3 4.8 531.6 484.0 0.1 0.6 2.8

10 2 0.4 3.9 44.3 849.3 818.3 0.1 0.9 16.1

10 4 0.4 1.7 4.5 716.1 666.2 0.2 1.2 13.6

10 6 0.6 1.7 9.1 716.1 666.2 0.2 1.9 18.7

12 2 0.5 6.9 34.3 998.2 965.5 0.3 6.2 77.9

12 4 0.6 1.7 6.5 865.1 813.2 0.2 3.0 15.3

12 6 0.9 2.6 10.9 865.1 813.2 0.4 3.2 22.7

14 2 0.8 13.0 80.5 1187.3 1136.9 0.6 16.0 3757.5

14 4 0.8 3.3 10.2 955.1 911.8 0.4 2.9 37.5

14 6 0.4 3.2 14.6 948.6 898.3 0.5 3.9 63.9

16 2 1.0 12.8 1763.4 1321.4 1276.7 0,5 14,3 4939,1

16 4 1.8 5.6 88.3 1071.8 1022.0 0,6 4,2 31,0

16 6 1.7 5.9 31.1 1039.1 982.5 0,6 4,6 41,4

Fig. 2 Solution tours with 16 targets and 6 salesmen with D16 is given by a red line. Left picture:
nonlinear trajectories. Right picture: linear trajectories



494 A. Stieber and A. Fügenschuh

of 2 is much higher than for 4 and 6 salesmen. The run-time for 2 salesmen is more
than twice as much as the run-time for 4 or 6 salesmen in the nonlinear case. Also,
in the linear case most of the instances follow this behavior. Considering the smaller
instances with 6 and 8 targets, the behavior is completely reversed, the run-times
increase when the salesman number rises. In the linear case this behavior is similar
but not so apparent as for the nonlinear trajectories, because of the instances with 8
targets. The optimal solutions of the trajectories visualized above are given in Fig. 2.

5 Conclusion

We considered the MTSPMT with a model as a multi-commodity flow problem. In
the literature and in [9] only linear trajectories were considered. Here, we solved
instances with nonlinear trajectories and compared them with linear ones. From the
computational results we can conclude, that the running time is not dependent on
the shape of the trajectories and that instances with 2 targets are often more complex
than with 4 or 6 targets.
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Product Family Design Optimization
Using Model-Based Engineering
Techniques

David Stenger, Lena C. Altherr, Tankred Müller and Peter F. Pelz

1 Introduction

Product families (PFs) consist of a number of different products which are derived
from a common platform and satisfy different customer requirements. When design-
ing a scale-based PF (cf. Fig. 1) engineers need to find the optimal platform config-
uration, specifying which platform parameters are identical for which products as
well as the optimal designs for each product. A product platform is defined here as
the set of all different platform parameter values across the PF.

Total PF costs, C tot, need to be minimised while maintaining technical feasibility
of single product designs. C tot = C ind(Xi, j ) + Cvar(�), with:

Xi, j Matrix defining a specific PF. i: Product index. j: Parameter index
�(Xi, j ) = [�1(X∗,1), Platform variance vector specifying the number of different values

�2(X∗,2), . . . , �m(X∗,m)] for each platform parameter of a given PF.
Vi Expected production volume for product i.
C ind = ∑n

i=1 c
ind
i (Xi,∗)Vi Cumulated individual product costs.

Cvar(�) Platform variance related costs.
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Fig. 1 Generic product family (left). Conflict of goals in PF optimization (right)

Cvar(�), consisting e.g. of tooling, logistic and development costs, decreases with
increasing commonality. In contrast, single product individual costs cindi (Xi,∗), which
only depend on each product’s parameters Xi,∗, typically increase with increasing
commonality due to overdesign caused by restrictions from the platform. They con-
sist e.g. of material and value added costs assuming constant quantities. This study
focuses on the optimization of a Bosch product family of electric drives. In early
design phases, a general cost model of production lines and logistics is not available.
Therefore the function Cvar(�) is unknown and the described trade-off cannot be
resolved by aggregation of costs. Instead, the conflict of goals between low individual
product costs and high commonality, cf. Fig. 1 right, is visualised and used during
the product development process as a basis for commonality decisions.

2 State of the Art

Extensive research has been conducted in the field of PF design optimization. For a
comprehensive literature review we refer to [1]. Common approaches to simultane-
ously optimize platform configuration and design parameters of individual products
include the usage of meta-heuristics such as genetic algorithms [2] and sensitiv-
ity and cluster analysis [3]. Commonality indices are widely used to aggregate the
high commonality goal in one objective function and therefore reduce the problem
complexity significantly. Little research has been conducted for the optimization
of product families with expensive black box simulations. In [4] meta-models are
employed to efficiently perform sensitivity analysis.

3 Problem Description

In thiswork the trade-off between low individual product costs and high commonality
in each platform parameter is examined. Commonality indices and sensitivity and
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cluster analysis are not used here, because they are unable to capture the whole pareto
frontier. Instead, the task is formulated as a vector optimization problem:

min
Xi, j∈D i, j

[C ind(Xi, j ),�1(X∗,1), . . . , �m(X∗,m)] ∀l ∈ {m, T, η . . .} : gl,i (Xi,∗) ≤ gmax
l,i

(1)

Individual product cost cindi (Xi,∗) and other design properties gl,i (Xi,∗), such as
mass m, efficiency η and temperature T are restricted by upper bounds gmax

l,i . They
cannot be calculated analytically with acceptable accuracy due to complex non linear
product behaviour. Instead individual designs Xi,∗ of each product i are evaluated
using multi-domain (mechanical, thermal, electromagnetic…) and multi-component
(E-motor, gearbox, ECU…) transient numerical simulations. The simulation of one
design for one set of customer requirements takes approximately one minute.

4 Exploration of Single Product Design Spaces and Tree
Search

The problem described in Eq.1 can be solved by exploring the design spaces of
the single products and combining feasible designs to pareto-optimal PFs using
bounded depth first tree search (DFS). The DFS-algorithm used guarantees global
pareto-optimal solutions given a set of evaluated designs. Therefore this approach is
used to generate reference solutions for the algorithm described in Sect. 5.

First the single product design spaces are discretised using expert-knowledge and
evaluated full-factorial. The resolution of discretisation is limited by the available
computational resources needed for the black-box simulations. The evaluated designs
are filtered for technical feasibility. Given sets Di of feasible designs for each product
i , the following discrete optimization problem needs to be solved:

min
d1,d2,...,dn

(

n∑

i=1

cindi (di )Vi ,�1,�2, . . . �m) di ∈ Di (2)

It can be seen as a decision tree with a depth equal to the number of products n
and a branching factor at depth i of the number of different evaluated designs for
product i . A path pi ∈ Pi = D1 × D2 × · · · × Di from the root to a node at depth
i corresponds to a partial product family with a partial platform variance �part(pi )
and partial cumulated product costs C ind,part(pi ) = ∑i

k=1(Vkcindk (dk)). A path from
the root to a leaf at depth n corresponds to one possible PF solution. To avoid
complete enumeration in the DFS-algorithm, an upper bound Bupper

i (�part) at depth
i is introduced as a function of the partial PF variance:

Bupper
i (�part) = max

r∈N+|�r≥�part
(C ind

min,�r ) −
n∑

k=i+1

Vk min
d∈Dk

cindk (d) (3)
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�r is a list of all possible platform variance vectors. C ind
min, �r are the cumulated

individual costs of the cheapest PFs already found for platform variance �r . The
subtrahend is the sum over products i + 1 to n of the cheapest of all feasible designs
for each product k. If for an explored node pi at any time of the search the cut off rule
C ind,part(pi ) > Bupper

i (�part(pi )) is true, pi cannot lead to an improved solution and
Its sub tree is not searched. Finally pareto optimal solutions are extracted by sorting
all nodes explored at depth n.

5 Meta-model Based Algorithm

In order to avoid the full-factorial exploration of single product design spaces on
the simulation model, we propose an optimization algorithm based on the globally
searching maximal expected improvement sampling method [5]. The steps outlined
in Fig. 2 are as following:

The adaptive initial sampling 1© is performed with the objective to achieve high
global meta-model accuracy. Designs with high model uncertainty are sampled suc-
cessively in a number of iterations. As a local measure of model uncertainty the
kriging variance is used. All design evaluations are stored in an archive. An initial
product family solution set is calculated by using the DFS-algorithm described in
Sect. 4 on the archived single product designs. The expected mean and estimated
prediction error of individual product costs, cindi (Xi,∗) and σcindi

(Xi,∗), and of all
other constrained system responses gl,i (Xi,∗) and σgl,i (Xi,∗) are modelled using an
anisotropic interpolating kriging meta-model 2© with a squared exponential kernel.
At each iteration of the optimization loop the model is fitted on the current archive
of system simulations. The length scales of the kernel are optimised by maximiz-
ing the marginal log likelihood. In order to generate candidate solutions 3©, two
statistical lower bounds corresponding to the adaptive confidence intervals Y1σ and
Y2σ are minimised, cf. Fig. 3. Y1 is adapted so that new candidate PFs incorporate at
least two not yet evaluated designs. Y2 is gradually increased at each iteration until
one PF candidate with at least one not yet evaluated design is found. Y1 enforces
a global and Y2 a local search component. Each single product design in the dis-
cretised product-specific optimization domain is evaluated on the kriging model. A
product design is considered feasible given a confidence interval Yk, k ∈ {1, 2}, if
∀l ∈ L : (gl,i (Xi, j ) − Ykσgl,i (Xi, j )) ≤ gmax

l,i . The DFS-algorithm described in Sect. 4
is used to combine these probably feasible designs to find new PF candidate solu-
tions for evaluation by simulation. Therefore, cindi (Xi,∗) in Eq.2 is replaced by the

statistical lower bound of the individual costs: cindi (Xi,∗) − Ykσcindi (Xi,∗). All candidate
solutions are sorted w.r.t. maximal expected improvement 4©. The expected improve-
ment with constraints, EIC, for a product family given the current best solution for
its platform variance C ind

min,�(Xi, j )
can be written as:
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Fig. 2 Scheme of the
proposed algorithm
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EIC(Xi, j ) =
n∏

i=1

k∏

l=1

P(gl,i (Xi,∗) < gmax
l,i ) · E[max{0,C ind

min,�(Xi, j )
− C̃ ind(Xi, j )}]

(4)
Thefirst factor is the probability that each design of the candidate PF complieswith

every constraint. The second factor denotes the expected improvement. The random
variable C̃ ind(Xi, j ) describes the normally distributed total cumulated individual PF
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Fig. 3 Kriging Model with
candidate solutions
belonging to two lower
bounds for a discretised 1-D
example

Candidate #1 
Min LB 1

Exp. Imp.: 7.4E-4 Candidate #2 
Min LB 2

Exp. Imp.: 5.6E-3

Current 
Optimum

costs. Its mean and standard deviation are calculated from cindi and σcindi
. Single

product designs belonging to candidate PFs with maximal expected improvement
are evaluated on the simulation model 5© and added to the archive of evaluated
designs. The number of design evaluations per iteration is controlled by the ratio
of overhead time (time for fitting the kriging model and for searching the response
surface) and the system simulation time. The solution is updated 6© by combining
all evaluated product designs stored in the archive to pareto-optimal product families
using the DFS-algorithm described in Sect. 4. The usage of the kriging meta-model
in combination with the minimization of the adaptive statistical lower bounds allows
the formulation of a probabilistic convergence criterion 7©. If Y2 is consistently
bigger than the maximum cross validation error of the standard deviation predictor,
it is likely that the optimum is reached.

6 Results

The proposed meta-model based algorithm is benchmarked on a Bosch product
family with 8 different products. Each of them is defined by 7 descritised design
parameters, resulting in 2016different designs per product and20168 ≈ 1026 possible
different PFs. Out of the 7 design parameters, one and two are chosen to be platform
parameters, respectively. For both cases the reference solutions are calculated using
the approach presented in Sect. 4. In this example the reference solution contains a
valid PF for every possible platform variance. The pareto-optimal set contains 4 and
11 PFs, respectively. In Fig. 4 the normalised deviations from the reference solution
are displayed. Within A© 4.4% and B© 7.1% of the function evaluations needed
for the reference solution, a PF is found for every possible platform variance �.
The average cumulated individual product cost of the reference solution is reached
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Fig. 4 Convergence plot of
the meta-model based
algorithm
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within 18.9 and 17.7%. Although after 8 and 12% a reasonable approximation of the
optimal solution is achieved. The convergence criterion is met at 24.2 and 33.4% of
the maximal number of function evaluations.

7 Discussion and Outlook

The DFS-algorithm allows designers to quickly search discretised problem domains
for pareto optimal PFs. It was shown that applying the kriging meta-model reduces
simulation effort significantly while in our test case also achieving the optimal refer-
ence solution. Additionally the introduced statistical convergence criterion enables
designers to conservatively estimate when global optimality is reached. Further
research will include the usage of meta-heuristics to directly search the response
surface for candidate solutions with maximal expected improvement.
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The Multistatic Sonar Location Problem
and Mixed-Integer Programming

Emily M. Craparo and Armin Fügenschuh

1 Introduction to Sonar

Sonar is a technique to detect objects that are under water or at the surface using
sound propagation. In active sonar systems, a sound is emitted from a source and
its echoes are detected by a receiver, revealing information about nearby objects.
Active sonar has been in use for nearly 100years and has become a key component
of undersea detection. The basic operating principle of active sonar is that acous-
tic energy is emitted from a source and its echoes are detected by a receiver; these
echoes reveal information about surrounding objects. In a monostatic system, the
source and the receiver are collocated in the same place. Bistatic sonar uses a source
and a receiver pair in different locations. Multistatic sonar uses several sources and
receivers simultaneously as a network. For the surveillance of a large area of the
ocean, a number of both types of devices must be deployed. This leads to an op-
timization problem to find the least costly multistatic network that is able to cover
all of a desired area. No algorithm currently in the literature provides an optimal
placement of an arbitrary number of sources and receivers. In a discretized setting,
we describe mathematical models designed to determine the minimum-cost sensor
layout that will cover a portion of the ocean (a tile) by sonar surveillance, with ad-
equate detection probability throughout the tile. We model the physical properties
of sound traveling between sources, target, and receivers, the ocean (temperature,
density, salinity) as well as geometrical considerations (obstacles such as islands or
coastlines). Details are given in Sect. 2. We formulate an integer nonlinear program
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for the multistatic sonar source-receiver location problem and discuss several lin-
earizations in Sect. 3. We compare these formulations empirically using topological
data from coastal areas around the world and a state-of-the-art solver MIP solver and
give concluding remarks in Sect. 4.

2 Input Data

We obtain ocean topography data from [10]. At present, we do not use sea level
information and only distinguish in a binary fashion between the ocean (negative
elevation value) and the dry land (positive elevation value). A desired part of the
ocean and shoreline (a tile) is taken from the database. Since the resolution of the
data is too fine to let each data pixel become a possible target/source/receiver location,
we aggregate the raw input data into larger rectangular areas (also called grid cells).
We then average the elevation data from all pixels within a cell and apply the resulting
elevation to the entire cell. Denote the set of rectangles with negative elevation (i.e.,
those that are underwater) by G (for grid) and the number of elements in G by
n := |G|.

The sonar signal is characterized by the range of the day �0, which indicates how
quickly the signal diminishes as the target, source, and receiver become farther apart.
In a definite range (“cookie-cutter”) sensor model, a target in a cell k ∈ G is detected
by a source placed in cell i ∈ G and a receiver placed in cell j ∈ G with probability
pi, j,k ∈ {0, 1}. Denote by di, j the Euclidean distance between (the centers of) cell i
and j . Necessary for detection (pi, j,k = 1) is that the target k is inside the Cassini
oval defined by the equation di,k · dk, j ≤ �2

0, c.f. [7]. If the target is too close to the
line from source to receiver, then the original signal and its reflection at the target
become indistinguishable at the receiver. This phenomenon is known as the direct
blast effect. The pulse length κb determines the severity of this effect, since longer
pulses are more prone to overlapping with the reflected signal. The direct blast zone
is defined by the ellipsoid di,k + dk, j ≤ di, j + 2κb, c.f. [6]. To account for the direct
blast effect, we say that pi, j,k = 0, if the target lies within the direct blast zone.
Additionally, if an obstacle lies on either straight-line path of source to target, target
to receiver, or source to receiver, then pi, j,k = 0.

The cost for each source is cs , and the cost for each receiver is cr . Typically,
cs � cr , i.e., a source is much more costly than a receiver, usually by a factor of 5.

3 Model Formulations

All model formulations below have in common the binary decision variables si , ri ∈
{0, 1} for each i ∈ G, which model the decision whether to place a source (si = 1)
or a receiver (ri = 1) in cell i . The objective (in all formulations) is to minimize the
total deployment cost, which we calculate as follows:



The Multistatic Sonar Location Problem and Mixed-Integer Programming 505

cs
∑

i∈G
si + cr

∑

j∈G
r j . (1)

An Integer NonlinearModel. In the first nonlinear formulation the binary variables
si and r j are multiplied in order to represent the joint decision of placing a source at
i and a receiver in j : ∑

i∈G

∑

j∈G
pi, j,ksir j ≥ 1, ∀k ∈ G. (2)

Each constraint of (2) is a quadratic knapsack constraint. In general, for any given
k ∈ G the non-negative matrix (pi, j,k)i, j is indefinite. The solver CPLEX is able
to process constraints of this form since version 12.6 [2]. Thus, the base run for
comparison with the other reformulation approaches is to solve the model:

min{(1)|(2); s, r ∈ {0, 1}G}. (3)

The Oldest Linearization Technique. The first documented linearization of a prod-
uct of binaries sir j by [1, 3] (and independently by others later on) introduces a new
binary variable hi, j ∈ {0, 1} with hi, j = 1 if and only if si = 1 and r j = 1. In this
method the constraints 2hi, j ≤ si + r j and si + r j ≤ 1 + hi, j (for all i, j ∈ G) are a
linear description of this relationship. In our case, because of the non-negativity of
all pi, j,k , only the first constraint is necessary. Thus the first linear version of (3) is

min (1), s.t.
∑

i∈G

∑

j∈G
pi, j,khi, j ≥ 1, ∀k ∈ G, (4a)

2hi, j ≤ si + r j , ∀i, j ∈ G, (4b)

s ∈ {0, 1}G, r ∈ {0, 1}G, h ∈ {0, 1}G×G . (4c)

Compared to the nonlinear integer formulation (3), this binary linear model has an
additional n2 binary variables and n2 constraints.

StandardLinearizationof theModel. A linearization for si r j similar to the previous
one from [5] introduces continuous auxiliary variables hi, j ∈ [0, 1] together with the
constraints hi, j ≤ si , hi, j ≤ r j and si + r j ≤ 1 + hi, j . This is perhaps the first and
most natural formulation to come to mind (and for good reason: Padberg [9] showed
that the constraints are facet defining), and is hence called “standard linearization.”
As before, the third constraint is not required in our case. Then, the second linear
version of (3) is

min (1), s.t.
∑

i∈G

∑

j∈G
pi, j,khi, j ≥ 1, ∀k ∈ G, (5a)

hi, j ≤ si
hi, j ≤ r j

}
, ∀i, j ∈ G, (5b)

s ∈ {0, 1}G, r ∈ {0, 1}G, h ∈ [0, 1]G×G . (5c)
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Compared to the nonlinear binary formulation (3), this mixed-integer linear model
has an additional n2 continuous variables and 2n2 constraints.

Glover’s Linearization. To adapt a linearization technique from Glover [4], we set
L j,k := ∑

i∈G pi, j,k for all j, k ∈ G, and the model reads:

min (1), s.t.
∑

j∈G
z j,k ≥ 1, ∀k ∈ G, (6a)

∑
i∈G pi, j,ksi ≥ z j,k

L j,kr j ≥ z j,k,

}
, ∀ j, k ∈ G, (6b)

s ∈ {0, 1}G, r ∈ {0, 1}G, z ∈ R
G×G
+ . (6c)

This model introduces n2 additional continuous variables and 2n2 additional con-
straints (compared to (3)).

Oral–Kettani’s Linearization. Oral and Kettani [8] proposed two formulations that
come with n2 additional continuous variables, but fewer constraints compared to
Glover’s formulation; namely, only n2 (not counting the trivial bound on z j,k as
constraint). The first of the two formulations is:

min (1), s.t.
∑

j∈G
(L j,kr j − z j,k) ≥ 1, ∀k ∈ G, (7a)

z j,k ≥ L j,kr j − ∑
i∈G pi, j,ksi

L j,k ≥ z j,k,

}
, ∀ j, k ∈ G, (7b)

s ∈ {0, 1}G, r ∈ {0, 1}G, z ∈ R
G×G
+ . (7c)

The second Oral–Kettani linearization is:

min (1), s.t.
∑

j∈G

(
∑

i∈G
pi, j,ksi − z j,k

)
≥ 1, ∀k ∈ G, (8a)

z j,k ≥ ∑
i∈G pi, j,ksi − L j,kr j

L j,k ≥ z j,k,

}
, ∀ j, k ∈ G, (8b)

s ∈ {0, 1}G, r ∈ {0, 1}G, z ∈ R
G×G
+ . (8c)

4 Computational Results and Conclusions

We compare the above six formulations on a test set of 22 instances. The ocean
topography data from various regions all over the world were extracted from a global
map, collected by Ryan et al. [10]. The computations were carried out on a 2014
MacBookPro with 16 GB RAM and a 2.8 GHz Intel Core i7 processor. We set a time
limit of 1,000s and default settings of the solver IBMILOGCPLEX12.7.1 otherwise.
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Table 1 Computational results

Instance n (3) (4) (5) (6) (7) (8)

BabAlMandabStrait 29 1000.01 2.03 1.02 0.85 1.76 0.53

ChoctawhatcheeBay 31 1000.01 2.5 0.8 0.53 1.9 0.49

Dardanelles 19 3.04 0.24 0.07 0.1 0.07 0.04

EnglishChannel 48 1000.35 11.32 9.44 4.1 13.24 7.5

Falklandsund 57 1005.49 66.23 296.46 65.5 36.6 59.9

GulfOfAkaba 22 39.74 0.15 0.1 0.09 0.16 0.07

GulfOfFinland 37 1000.09 582.37 4.65 1.91 12.58 2.29

GulfOfSirte 45 1002.06 295.68 70.69 16.04 48.42 9.71

KarkinytskaGulf 34 1000.01 3.5 0.33 0.69 1.95 0.38

KerchStrait 36 1000.01 1.05 0.25 0.33 0.55 0.29

LagoDeMaracaibo 48 1000.02 4.45 1.46 1.44 2.35 1.6

Lesbos 30 1000.02 1.88 0.43 0.4 1.09 0.69

MontereyPeninsular 45 1000.26 12.19 5.06 4.29 12.74 2.66

NewYork 38 1000.52 6.59 1.25 1.57 8.27 2.83

OpenSea-Biscaya 54 1002.77 22.52 151.63 24.59 22.34 30.56

Oresund 71 1000.84 33.69 20.45 40.03 37.98 16.08

Ruegen 37 1000.02 34 7.3 2.94 45.32 1.19

Smalandsfarvandet 58 1000.73 229.88 31.74 26.09 32.02 7.53

Storebaelt 40 1000.25 57.58 10.63 2.26 12.66 2.57

StraitOfGibraltar 52 1000.49 28.66 43.62 7.72 70.45 15.63

StraitOfHormuz 41 1000.02 0.97 0.58 0.99 2.64 0.5

TaedongGang 39 1000.02 6.76 2.8 1.77 4.88 3.13

SUM 20056.77 1404.24 660.76 204.23 369.97 166.17

RANK 6 5 4 2 3 1

The results can be found in Table1,with the secondOral–Kettani formulation slightly
ahead that ofGlover, andCPLEX failing to solvemost instanceswithin the time limit.
An example result appears in Fig. 1.

When facing a bilinear constraint of the type xT Ay ≤ b with binary variable
vectors x, y and an indefinite matrix A, several techniques for their linearization
were developed by researchers over the last five decades. Today, classical MILP
solvers (such as CPLEX) offer features to automatically deal with such nonlinear
constraints, lifting the burden of going to the library from the user. As our results
demonstrate, it is still worthwhile to consider the knowledge of the past, and not
to blindly rely on the solver. Since it is unclear to determine a priori which of the
method outperforms the others, it is necessary to implement and test all of them.
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Fig. 1 Left: The Monterey Peninsula area tile [10] as raw input data (365 cols, 285 rows). Right:
Optimal placement of 2 sources (red circles) and 4 receivers (blue triangles) on a 9×7 grid.Numbers
≥ 1 at each coordinate show multiplicity of coverage
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Using Mixed-Integer Programming
for the Optimal Design of Water Supply
Networks for Slums

Lea Rausch, John Friesen, Lena C. Altherr and Peter F. Pelz

1 Introduction

Currently, the UN estimates that 663 million people are still without sufficient water
supply and at least 1.8 billion people globally use a source of drinking water that is
fecally contaminated [1]. Especially, slums, which in many countries are a defining
part of urban areas, are often characterized by the lack of an appropriate water supply
[2]. We developed a multidisciplinary approach to design an optimal water supply
system for slums within a city. For this purpose, the required information on the slum
location as well as its size is taken from remote sensing and used as input data for the
decision problem. Out of different central and decentral approaches with combined
water supply by motorized vehicles as well as installed pipe systems, we find the
solution yielding minimal total costs. The technical application is detailed further
in Sect. 2 and the modeling as a mixed-integer linear problem (MILP) is given in
Sect. 3. Finally, we show optimization results for a slum cluster in Dhaka in Sect. 4.
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2 Technical Application

The presented approach leverages the location data of slums as input, which is pro-
vided by applying algorithms to identify slum areas on remote sensing data [3]. In
addition, the size of the slums derived from this data is used to calculate the daily
water need for each slum by multiplying it with an estimated population density and
the daily water need per person. The aim is to find a network describing the water
supply infrastructure for all slums within one large city [4]. Between any two slums
as well as between the waterworks and any slum, one or more different connections
can be chosen: The water can be transported via a selection of pipes with differ-
ent diameters or via a variety of motorized vehicles combined with water tanks of
different sizes. The objective is to reduce the total costs over a specified period of
time, including investment and operating costs. Additional requirements ensure the
full functionality of the water supply system, such as flow conditions and capacity
restrictions.

3 Water Supply Design via MILP

The previously described water supply network design is modeled as a MILP which
is introduced in the following.

Objective function The objective of the optimization model is to minimize the total
costs, including investment and operating costs, within a fixed term:

minimize
∑

i∈Nw

∑
j∈N

∑
k∈Ktruck

xtruck(i, j, k) · Costtruck(i, j, k)
+ ∑

k∈KP
xpipe(i, j, k) · CostP,fix(i, j, k)

+ Qcubic(i, j) · CostP,var(i, j, k)
+ ∑

i∈N
∑

k∈Ktank
xtank(i, k) · Costtank(k)

Parameters and variables The parameters of this model are given in Table 1 and the
decision variables inTable 2.All costs are given inEuro. Since thewater requirements
are examined on a day to day basis, volume flows as well as capacities are given in
liters per day. Connections from slum i to slum j are modeled as directed edge (i, j)
in the complete graph.

Constraints The volume flow is the sum of the flow via pipes and trucks:

QP(i, j) + QT (i, j) = Q(i, j) ∀i ∈ Nw, j ∈ N (1)

The capacity of a connection needs to exceed the volume flow:
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Table 1 Parameters of the mixed-integer linear problem

Parameter Description

N Set of all slums, N ⊂ N

Nw Set of slums and waterworks w, Nw = N ∪ {w}
Kpipe Set of available pipe types with different diameters

Capapipe(k) Volume flow capacity of pipes of type k ∈ Kpipe

Costpipe,fix(i, j, k) Fixed pipe costs of type k ∈ Kpipe, with length equal to distance
from slum i to slum j

Costpipe,var(i, j, k) Variable pipe cost factor of type k ∈ Kpipe

Ktruck Set of available truck types

Capatruck(k) Volume flow capacity of truck of type k ∈ Ktruck

Costtruck(i, j, k) Truck cost of type k ∈ Ktruck for distance from i to j

Nmax
truck Maximal number of trucks allowed between two slums

Ktank Set of available tank types

Capatank(k) Capacity of tank of type k ∈ Ktank

Costtank(k) Tank cost for type k ∈ Ktank

Qdaily(i) Daily water need in slum i

M Sum of daily water needs over all slums,M = ∑
i∈N Qdaily(i)

NQ3 Grid point set for linearization of cubic volume flow

Qlin(m) Volume flow at linearization grid point m ∈ NQ3

Q3
lin(m) Cubic volume flow at linearization grid point m ∈ NQ3

Bpipe(i, j, k) Binary indicator if connection on (i, j) is forbidden for pipe of type
k due to geographic barriers

Btruck(i, j, k) Binary indicator if connection on (i, j) is forbidden for truck of
type k due to geographic barriers

∑

k∈Kpipe

Capapipe(k) · xpipe(i, j, k) ≥ QP(i, j) ∀i ∈ Nw, j ∈ N (2)

∑

k∈Ktruck

Capatruck(k) · xtruck(i, j, k) ≥ QT (i, j) ∀i ∈ Nw, j ∈ N (3)

Pipes and trucks can only be chosen if connection between the slums i and j is used.
Number of trucks per edge is limited by Nmax

truck and only one pipe is allowed:

∑

k∈KT

xtruck(i, j, k) +
∑

k∈KP

xpipe(i, j, k) ≥ xuse(i, j) ∀i ∈ Nw, j ∈ N (4)

∑

k∈KP

xpipe(i, j, k) ≤ xuse(i, j) ∀i ∈ Nw, j ∈ N (5)

∑

k∈KT

xtruck(i, j, k) ≤ xuse(i, j) · Nmax
truck ∀i ∈ Nw, j ∈ N (6)
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Table 2 Decision variables of the mixed-integer linear problem

Variable Description

xuse(i, j) Binary indicator if any connection is chosen on (i, j)

xpipe(i, j, k) Binary indicator if pipe of type k is chosen on (i, j)

xtruck(i, j, k) Number of trucks of type k chosen on (i, j)

xtank(i, k) Number of tanks of type k chosen in i

Q(i, j) Total volume flow on (i, j)

QP (i, j) Volume flow in pipes on (i, j)

QT (i, j) Volume flow carried by trucks on (i, j)

Qcubic(i, j) Cubic volume flow approximated by piecewise linearization on
(i, j) with Q(i, j)3 ≈ Qcubic(i, j)

QTout (i) Volume flow carried out of i by trucks

QTinPout (i) Volume flow carried into i by trucks and out of i via pipes

QTindaily(i) Volume flow carried into i by trucks and used in slum i

QPin !Pout (i) Volume flow carried into i via pipe but not out of i via pipe

λPin !Pout (i) Binary auxiliary variable for modeling maximum relation

λQlin (i, j, k,m) Auxiliary variable ∈ [0, 1] of grid point m ∈ NQ3\{1} to linearize
cubic volume flow on (i, j) for pipe type k

zQlin (i, j, k,m) Binary auxiliary variable for grid point m ∈ NQ3 to linearize cubic
volume flow on (i, j) for pipe type k

The costs in the objective function scale cubical with the volume flow and are hence
modeled with constraints of an incremental linearization method:
∀i ∈ Nw, j ∈ N , k ∈ KP :

QP(i, j) = Qlin(1) +
|NQ3 |∑

m=2

(Qlin(m) − Qlin(m − 1))λQlin(i, j, k,m) (7)

Qcubic(i, j) = Q3
lin(1) +

|NQ3 |∑

m=2

(Q3
lin(m) − Q3

lin(m − 1))λQlin(i, j, k,m) (8)

∀i ∈ Nw, j ∈ N , k ∈ KP ,m ∈ NQ3\{1}:

λQlin(i, j, k,m) ≤ xpipe(i, j, k) (9)

λQlin(i, j, k,m) ≥ zQlin(i, j, k,m) (10)

λQlin(i, j, k,m) ≤ zQlin(i, j, k,m − 1) (11)
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A slum cannot supply itself, therefore loops are not allowed:

xuse(i, i) = 0 ∀i ∈ Nw (12)

xpipe(i, i, k) = 0 ∀i ∈ Nw, k ∈ KP (13)

xtruck(i, i, k) = 0 ∀i ∈ Nw, k ∈ KT (14)

Theflowcondition requires that the incomingvolumeflowequals the sumof outgoing
flow and daily need for each slum:

∑

j∈Nw

Q( j, i) =
∑

j∈N
Q(i, j) + Qdaily(i) ∀i ∈ Nw (15)

Geographic barriers, like rivers, prevent specific connections. These information
are inserted into the model as manual input for the individual connections. The
compliance with these requirements is modeled in the following equations:

xpipe(i, j, k) ≤ 1 − Bpipe(i, j, k) ∀i, j ∈ Nw, k ∈ KP (16)

xtruck(i, j, k) ≤ 1 − Btruck(i, j, k) ∀i, j ∈ Nw, k ∈ KT (17)

A tank is required in a slum if water is carried by trucks into the slum or out of the
slum, i.e for the following four volume flows: (I) Water delivered by a truck, (I-a)
for the daily need of the slum itself QTindaily, (I-b) to be carried onward by truck
QTinTout or (I-c) to be carried onward by pipe QTinPout , and (II) water coming into
the slum by pipe and then being carried onward by a truck (QPinTout ). To reduce the
overall tank capacity, the following prioritization logic is applied for water coming
in by pipe QPin : First continue by pipe QPin Pout , the remaining water QPin !Pout is
used for the slum itself QPindaily . Still remaining water is further transported by
truck QPinTout . This logic is represented by the following three relationships. Firstly,
QPin !Pout = QPin − QPin Pout = max{0, QPin − QPout } which is modeled by applying
a BigM-Method [5].
∀i ∈ N :

QPin !Pout (i) ≥
∑

j1∈N
QP( j1, i) −

∑

j2∈N
QP(i, j2) (18)

QPin !Pout (i) ≤
∑

j1∈N
QP( j1, i) −

∑

j2∈N
QP(i, j2) + M · λPin !Pout (i) (19)

QPin !Pout (i) ≤ M · (1 − λPin !Pout (i)) (20)

Secondly, QTindaily = max{0, Qdaily − QPin !Pout } represented by:

QTindaily(i) ≥ Qdaily(i) − QPin !Pout (i) ∀i ∈ N (21)
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Thirdly, QTin Pout = QPout − QPin Pout = max{0, QPout − QPin } which is modeled in
the following equation:

QTin Pout (i) ≥
∑

j1∈N
QP(i, j1) −

∑

j2∈N
QP( j2, i) ∀i ∈ N (22)

For the second and third equation, only the lower bounds of the maximum relation
need tobemodeled since thevariables are automatically pusheddownby theobjective
function. Finally, QTout is calculated by:

QTout (i) =
∑

j∈Nw

QT (i, j) ∀i ∈ N (23)

Based on these calculations, the tank capacity requirement in each slum, which can
be provided by a number of tanks, is given by
∀i ∈ N :

Ktank∑

k=1

xtank(i, k) · Capatank(k) ≥ QTout (i) + QTin Pout (i) + QTindaily(i) (24)

Additional constraints set all volume flow variables to zero if the corresponding edge
is not used:

QTindaily(i) ≤
∑

j∈N

∑

k∈{1,...,Ktruck}
xtruck( j, i, k) · M ∀i ∈ N (25)

QPin !Pout (i) ≤
∑

j∈N

∑

k∈{1,...,Kpipe}
xpipe( j, i, k) · M ∀i ∈ N (26)

QTin Pout (i) ≤
∑

j∈N

∑

k∈{1,...,Kpipe}
xpipe(i, j, k) · M ∀i ∈ N (27)

4 Results and Conclusion

For illustration, we applied our approach to a slum cluster in Dhaka, the capital of
Bangladesh and one of the world’s most populated cities.

The classification of slums within the city area is based on remote sensing via
quickbird satellite images with a resolution of 0.6m from the year 2010 [6]. The
optimization problem was modeled in GMPL and solved with the IBM optimization
software CPLEX. The results show the optimal supply systems for two different
instances. In the original problem without barriers in Fig. 1, a network of only truck
connections was chosen for the supply of 14 slums.
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Fig. 1 Optimization result
for a slum cluster in Dhaka,
Bangladesh, with 14 slums

Fig. 2 Optimization result
with additional consideration
of geographic barriers

In Fig. 2, additional constraints blocking specific truck connections were intro-
duced to simulate natural barriers, such as rivers. The result is a very entangled
network, which however adheres to the barrier restriction, but would be reconsid-
ered from an engineer perspective due to its complexity. Currently, the run time is
too long to solve the model for a whole city. For instance, this optimization with 14
slums took a day whereas a large city, like Sao Paulo, can have up to 2000 slums.

Therefore, two adaptions of the approach employing primal heuristics are in
development. Firstly, clustering the slums to split the master problem into various
sub-problems, which then can individually be solved with the current optimization
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model. This adaption compromises between loosing global optimality and being able
to solve larger instances. Secondly, using a minimal spanning tree for the network as
start solution for the optimization and employing specialized graph algorithms, e.g.
known from the field of large-scale logistic networks [7].
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Polyhedral 3D Models for Compressors
in Gas Networks

Tom Walther, Benjamin Hiller and René Saitenmacher

In gas networks, compressors are used to increase the pressure of the incoming gas
to a higher outflow pressure, thus counteracting the pressure loss caused by friction
in pipes. This allows for the gas to be transported over long distances. A compressor
machine (or compressor, for short) is powered by an associated compressor drive.
The technical models for compressors and drives are highly nonlinear [1, 5, 7, 8]. As
optimization models for gas networks usually involve switching compressors, this
leads to hard-to-solve MINLPs. It is thus desirable to use simpler (i.e. polyhedral)
yet accurate models for a compressor.

In this paper, we construct a polyhedral model for the operating range of a com-
pressor machine in the three-dimensional space (q, pin, pout) of mass flow rate, inlet
and outlet pressure. We will closely follow the steps as in [2] and analyse some of
the assumptions that are made therein. In contrast to the construction in [2], we are
considering technical restrictions from the drive and a non-constant compressibility
factor. Moreover, we suggest a complexity-reducing postprocessing algorithm and
provide computational results based on publicly available compressor data from the
Gaslib [3].

For an overview on gas network optimization problems and the modeling
of compressors we refer to [4, 6] and the references therein.
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1 Physical Compressor Model

For every compressor machine m ∈ M, our starting point of interest is a flow
and pressure tuple (qm, pinm , p

out
m ). An accurate modelling of a compressor machine

involves many nonlinear and nonconvex constraints as well as several physical vari-
ables and quantities [1, 5, 8]. An overview of the quantities that we consider constant
or a variable together with their units is given in Table 1.

The physical and technical capabilities ofm are given in a so-called characteristic
diagram Dm in the space of (Q, Had). The physical model of a turbo compressor
machine that we are using as a reference is given as follows [1, 7]:

z = z(pinm ; T ) (1a)

Q = qm RsT z(p
in
m )

−1 (1b)

Had = RsT z
κ

κ − 1

[(
poutm

pinm

) κ−1
κ

− 1

]
(1c)

(Q, Had) ∈ Dm (1d)

n ∈ [nmin, nmax] (1e)

Had = χ(Q, n; Aspeed) (1f)

ηad = χ(Q, n; Aeff) (1g)

P = qHadη
−1
ad (1h)

P ≤ χ(n, Tamb; Apower) (1i)

Table 1 General physical quantities and constants

Physical and model constants

Temperature T [K]
Ambient temperature Tamb [K]
Isentropic exponent κ [−]
Specific gas constant Rs [kJ/(kg · K)]
Gas- and compressor-specific physical variables

Pressure p [bar]
Mass flow rate q [kg/s]
Compressibility factor z [−]
Volumetric flow rate Q [m3/s]
Adiabatic head Had [kJ/kg]
Compressor speed n [rot./min]
Adiabatic efficiency ηad [−]
Power P [kW]
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In constraint (1a), the compressibility factor z can be computed according to dif-
ferent formulas, see Sect. 2.2. The constraints (1a), (1b) and (1c) relate the problem
variables (qm, pinm , p

out
m ) to the characteristic diagram variables (Q, Had). The con-

straints (1d) typically comprise a set of quadratic and possibly nonconvex inequal-
ities. A restriction on the available power for compression as induced by the com-
pressor drive is given by (1h) and (1i). In (1f), (1g) and (1i), χ(·, · ; A) denotes a
biquadratic function with some coefficient matrix A ∈ R

3×3.

2 Reformulated Compressor Model in (qm, pinm, p
out
m )

The physical model is highly nonlinear, making it hard to find globally optimal solu-
tions for large-scale gas network optimization problems. Moreover, in most cases,
we are not directly interested in the values of most compressor-specific quantities of
the physical model, which motivates the construction of a less complex compressor
model as in Sect. 7.3.4 in [2]. Starting with a compressor machine m ∈ M, every
point (Q, Had) of its characteristic diagram can be transformed into a (curved) ray
in the space of (qm, pinm , p

out
m ) by inverting the Eq. (1b) and (1c). There is one degree

of freedom in this transformation, denoted by p:

⎛
⎝ q

pin

pout

⎞
⎠ = g(Q, Had; p) =

⎛
⎜⎝

Qp
RsT z
p(

Had
RsT z

κ
κ−1

+ 1
) κ

κ−1
p

⎞
⎟⎠ ∈ R

3 for p ≥ 0. (2)

Practically, in order to obtain a polyhedral approximation of the operating range
in (qm, pinm , p

out
m ), we apply (2) to a set of sample points within the characteristic

diagram and on its boundary for a set of different values of p. This yields a set of
points {qk

m, p
in,k
m , pout,km }. From this set, we remove all points that violate some of the

technical bounds pinm ≥ pin,min, poutm ≤ pout,max, or qmin
m ≤ qm ≤ qmax

m .

2.1 Impact of Restricted Compressor Power

As mentioned before, the power for the compression process is provided by a com-
pressor drive. This power ist limited by an upper bound on the power that depends on
the compressor speed n and the ambient air temperature Tamb [1]. The lower the ambi-
ent temperatures, the more power can be provided. In order to account for this power
bound, we compute the required power P for every point of our set {qk

m, p
in,k
m , pout,km }

according to (1h) and discard all points that violate (1i). The convex hull Pm of the
remaining points yields the desired representation.

In Table 2, we show the impact of the power bound on our operating ranges in
the space of (qm, pinm , p

out
m ), based on a set of 5000 sampled instances on compressor
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Table 2 Percentage of instances feasible for the compressor machine but infeasible due to the
power bound of the compressor drive for different air temperatures

Compressor Cold (%) Warm (%) Hot (%)

m1 2.71 5.66 9.77

m2 1.85 3.97 5.83

m3 2.50 5.55 9.43

m4 1.86 3.98 5.90

m5 2.43 5.37 9.33

m6 1.85 3.97 5.83

(a) Sample points. (b) Convex hull. (c) Simplified convex hull.

Fig. 1 Construction of the operating range of a compressor machine

data taken from the Gaslib [3]. It can be seen that roughly 2–10% of the feasible
instances for a compressor machine are rendered infeasible by the compressor drive
restrictions. Typically, these instances are characterized by high throughput qm and
high inlet pressure pinm . Figure1a shows a set of feasible and infeasible sample points.

2.2 Impact of Variable Compressibility Factor

There exist several formulas for computing the compressibility factor z. Due to its
accuracy for the pressure range that we are considering, we take the formula of
Papay [1] as our reference:

z(p, T ) = 1 − 3.52
p

pc
e−2.26 T

Tc + 0.247

(
p

pc

)2

e−1.878 T
Tc . (3)

pc and Tc denote the pseudocritical pressure and temperature of the gas, respectively,
that are constant in our case. Since we also assume T to be constant, (3) reduces to
a quadratic equation in the pressure p.
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Table 3 Percentage of false-positive/-negative instances for different z formulas

Compressor PAPAY AGA const z = 0.9

False-pos
(%)

False-neg
(%)

False-pos
(%)

False-neg
(%)

False-pos
(%)

False-neg
(%)

m1 8.62 0.00 12.22 0.03 5.66 5.52

m2 10.30 0.00 11.56 0.00 6.30 3.29

m3 9.02 0.00 11.52 0.00 5.64 6.64

m4 9.24 0.00 11.46 0.00 5.92 3.42

m5 8.72 0.00 12.62 0.03 5.52 5.51

m6 9.18 0.00 11.62 0.02 6.26 3.13

Another formula, which is linear in p and suitable for pressure values up to 70
bar, has been proposed by the American Gas Association (AGA) [1]:

z(p, T ) = 1 + 0.257
p

pc
− 0.533

p

pc

Tc
T
. (4)

As a third and most simple alternative, used also in [2], the compressibility factor
can also be considered constant with a value around z = 0.9.

Using the different z-factor formulas for the construction of our operating ranges
leads to different polytopes in (qm, pinm , p

out
m ). There are errors in two directions:

the polytopes may contain points that are infeasible for the physical model (false-
positive; due to working with convex hulls), but they may also exclude feasible
points (false-negative; due to using (4) or a constant value for z as compared to our
reference formula (3)). Again, we have sampled 5000 instances and determined the
percentage of false-positive and false-negative feasibility outcomes for the different
z-factor computation variants. The results are shown in Table 3. It can be seen that
the polytope obtained from using a constant compressibility factor contains the least
percentage of instances that are technically infeasible. On the other hand, it also
excludes some amount of technically feasible instances, which is not the case for
AGA and Papay. Moreover, it turns out that the polyhedral approximation of the
more exact Papay formula is better than the one for the AGA formula.

2.3 Reduction of Polytope Facets

The resulting polytope becomes more precise for a large set of sampling points in
(Q, Had) and many values of p. As a downside, the convex hull representation gets
more complex, i.e., the number of its vertices and facets sharply increases, blowing
up the model formulation. Therefore, we propose Algorithm 1 to reduce the number
of polytope facets until a given volume error tolerance is reached.
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Table 4 Computational results of facet reduction algorithm

Compressor (Original) τ = 0.1 τ = 0.01 τ = 0.001

Facets Facets Time[s] Facets Time[s] Facets Time[s]

m1 256 7 5.20 9 9.71 23 128.56

m2 286 6 2.75 8 6.51 23 102.48

m3 259 6 3.37 10 12.71 16 50.96

m4 284 6 4.39 9 9.67 23 109.44

m5 261 6 3.80 9 9.60 18 74.32

m6 284 6 3.40 9 10.59 21 81.96

Tentatively trying different halfspaces is the most computationally expensive part
of the algorithm.Hence, if the number of facets of the input polytopeP is large, itmay
be advantageous to only consider a (random) subset of all facets in every iteration.
Our experience has shown that usually very few facets suffice to approximate any
given polytopeP with a volume error of only 1% in reasonable time. Some results and
computation times for our Gaslib compressors are shown in the following Table 4.

Algorithm 1: Polytope Facet Reduction(P, τ )

Input: A polytope P and a volume error tolerance τ ≥ 0.

Output: A polytope Q ⊇ P with vol(Q)
vol(P)

− 1 ≤ τ and less facets than P .

Compute vol(P).
Let F be the set of facets of P (given as halfspace inequalities).
Initialize Q to be some box around P .

while vol(Q)
vol(P)

− 1 > τ do

f ∗ := argmin
f ∈F

vol(Q ∩ f )

Q := Q ∩ f ∗

end
Return Q.

3 Conclusion

We have presented a method to construct a small yet quite accurate 3D polyhedral
model for a compressor machine that approximates the true operating range as given
by a nonlinear physical reference model. We computationally quantified the impact
of neglecting the drives power restrictions as well as the impact of the choice of
the formula for computing the compressibility factor. It turns out that the polyhedral
model approximates the true nonlinear operating range within an error of roughly
10%, which is acceptable for many applications.
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Pricing and Revenue Management



Stochastic Dynamic Multi-product
Pricing Under Competition

Rainer Schlosser

1 Introduction

In lots of markets, sellers have to deal with competition. Typically, there is limited
demand information andmarket dynamics are unknown. Tomaximize their expected
profits, sellers are required to constantly decide on prices for multiple products.
Although, in e-commerce it has become easy to observe competitors’ prices and
to adjust prices, it is challenging to estimate demand and to compute intelligent
pricing strategies. Decision-making needs to take into account competitors’ prices
as well as substitution effects between a firm’s own products. Applications can be
found in a variety of contexts that involve perishable (e.g., fashion goods, seasonal
products, event tickets) as well as durable goods (e.g., technical devices, licenses,
natural resources).

In this paper, we study competitive multi-product pricing models in a stochas-
tic dynamic framework. We focus on durable goods. Our aim is to deal with the
following assumptions: (i) limited demand information, (ii) unknown competitors’
strategies, and (iii) substitution effects in demand. To compute robust pricing strate-
gies in competitive settings, we use data-driven demand estimations and a dynamic
programming model that circumvents the curse of dimensionality.

The best way to sell products is a classical application of revenue management
theory. The problem is closely related to the field of dynamic pricing, see, e.g.,
Talluri and van Ryzin [9]. The literature on stochastic dynamic pricing strategies
that incorporate multi-product settings is limited. Such models are characterized
by mutual dependent demand intensities and hence, are much more complex than
single-product models.

The survey by Chen [3] provides an excellent overview of recent multi-product
models under competition. For the finite horizon case, monopolistic multi-product

R. Schlosser (B)
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models with fairly general demand functions have been analyzed in studies by
Gallego and van Ryzin [5] and Maglaras and Meissner [7]. In order to take the
substitutability of (horizontally or vertically differentiated) products into account, in
recent literature customer choice models are used. In case of horizontally differen-
tiated products commonly multinomial logit (e.g., [1]) or nested logit models (e.g.,
[6]) are applied.

In most existing models, the demand intensity is assumed to be known. Dynamic
pricing competition models with limited demand information are analyzed by, e.g.,
Adida and Perakis [2] or Chung et al. [4] using robust optimization and learning
approaches. For a more comprehensive review, we refer to Chen [3].

In contrast to the assumptions of most papers, in real-life applications, spe-
cific information is not observable: sales dynamics or price reactions are typically
unknown, and customers as well as sellers might not act rational. Moreover, when
dealing with dynamic pricing competition models, the most critical problem is their
high complexity and the size of the state space (curse of dimensionality). Hence,
most solution approaches are just applicable if highly stylized assumptions can be
verified and the number of competitors is small. To our knowledge, there is a lack of
publications providing applicable solutions for real-life multi-product models under
dynamic pricing competition.

The main contribution of this paper is twofold. We (i) present a data-driven
approach to measure substitution effects and to predict sales intensities, and (ii)
we derive effective pricing strategies that are even applicable when the number of
competitors is large and their strategies are unknown.

This paper is organized as follows. In Sect. 2, we describe the stochastic dynamic
multi-product model for a fairly general setting. We allow sales probabilities to
depend on our prices, on competitors’ prices as well as on time (e.g., due to seasonal
effects). In Sect. 3, we show how observable market data can be analyzed in order
to estimate sales probabilities for various market situations. In Sect. 4, we derive our
feedback pricing heuristic to be applied in competitive markets. Based on estimated
sales probabilities, we set up a dynamic model and demonstrate how to compute
powerful feedback pricing heuristics. As computation times are small, our heuristic
is able to quickly react to changing market environments. Final conclusions are
summarized in Sect. 5.

2 Model Description

We consider the situation in which a firm seeks to sell different types of goods (e.g.,
books) on a digital market platform (e.g., Amazon or eBay). We assume several
competitors for our products. In ourmodel, we include substitution effects in demand
as customers might compare prices. The number of different types of products is
denoted by J , J < ∞. We assume that there are no inventory restrictions, i.e., items
can be reproduced or reordered. If a sale takes place shipping costs c have to be paid,
c ≥ 0. A sale of one item at price a( j) leads to profit of a( j) − c, j = 1, . . . , J . Since
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in real-life applications prices cannot be adjusted arbitrarily often, we use a discrete
time model. For the length of one period, we use the discount factor δ, 0 < δ < 1.
The time horizon is assumed to be infinite.

The sales intensity of product j is denoted by λ( j), j = 1, . . . , J . Due to
customer choice, the sales intensity particularly will depend on our offer prices
a = (a(1), . . . , a(J )) and the competitors’ prices p = (p(1), . . . , p(I )) of I potential
substitutes. Moreover, we allow the sales intensity also to depend on time, e.g., the
time of the day or the weekday. We assume that the time-dependence is periodic
and has a finite cycle length of L periods. In our model, the sales intensity is a gen-
eral function of our offer prices a and the current market situation characterized by
the current competitors’ prices p. Given such a market situation p in period t , we
consider the sales intensity of product j , a( j) ≥ 0, j = 1, . . . , J , t = 0, 1, 2, . . .,

λ
( j)
t (a,p) = λ

( j)
t mod L(a,p). (1)

With loss of generality,we assume sales probabilities (for oneperiod) to bePoisson
distributed. I.e., the probability to sell exactly k items of product j in a specificmarket

situation p is given by P ( j)
t (k, a,p) := λ

( j)
t (a,p)k

k! · e−λ
( j)
t (a,p), a( j) ≥ 0, j = 1, . . . , J ,

p(i) ≥ 0, i = 1, . . . , I , k = 0, 1, 2, . . .. For each period t , a price a( j)
t has to be

chosen, j = 1, . . . , J . We call strategies (at )t admissible if they belong to the class
of Markovian feedback policies; i.e., pricing decisions a( j)

t ≥ 0 may depend on time
and the current market situation p, which contains the prices of the competitors. The
set of admissible prices is denoted by A.

By X ( j)
t we denote the random number of sales of product j in period t , j =

1, . . . , J . Depending on the chosen pricing strategy (at )t , the random accumulated
profit from time t on (discounted on time t) amounts to, t = 0, 1, 2, . . .,

Gt :=
∞∑

s=t

δs−t ·
J∑

j=1

(a( j)
s − c) · X ( j)

s . (2)

The objective is to determine a non-anticipating (Markovian) feedback pricing
policy that maximizes the expected total profit E

(
G0

∣∣p0
)
, where p0 denotes the

initial market situation in t = 0. In Sect. 4, we will solve dynamic pricing problems
that are related to (1)–(2). In the next section, we show how sales probabilities can
be estimated in competitive markets with incomplete demand information.

3 Estimation of Substitution Effects and Sales Probabilities

The goal of this section is to estimate sales probabilities from market data. In com-
petitive online markets, competitors’ prices are typically observable. The sales data,
however, is a firm’s private knowledge. The idea is to ascribe the number of realized
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sales (of our firm) within different time intervals to the relation of our offer prices
and the competitors’ prices (observed at the beginning of the corresponding inter-
vals). We assume that there is data for B time intervals and J products of our firm
as well as I different products offered by (one or more) competitors, j = 1, . . . , J ,
i = 1, . . . , I , t = 0, 1, . . . , B − 1. In our framework, the availability of a product is
indicated by a positive offer price. Data is supposed to consist of competitor prices
p(i)
t , i = 1, . . . , I , our prices a( j)

t , j = 1, . . . , J , and the realized sales y( j)
t , i.e., the

number of products sold of type j in period t , i.e., (t, t + 1).
In the following, we show how to estimate sales intensities (for specific market

situations) that can be applied in our dynamic model, cf. Sect. 2. To explain the
dependent variable y( j)

t , t = 0, . . . , B − 1, j = 1, . . . , J , for product j , we use a
simple least squares regression model (OLS model). Following the OLS model, we
aim to specify the sales intensities, j = 1, . . . , J ,

λ
( j)
t (a,p;β( j)) := x( j)

t (a,p)′β( j), (3)

where β( j) = (β
( j)
1 , . . . , β

( j)
M ) is the unknown parameter vector that is associated

to the vector x( j)
t = (x ( j)

t,1 , . . . , x ( j)
t,M ) of M explanatory variables. The regressors

x( j)
t (a,p) can be a function of time t , the prices a, and the market situation p. For

each product j the optimal coefficients β( j)∗ = (β
( j)∗
1 , . . . , β

( j)∗
M ), j = 1, . . . , J , can

be easily obtained using standard methods. Finally, the resulting intensities λ
( j)∗
t , cf.

(3), are used to estimate sales probabilities: For one period, we let P ( j)
t (·, a,p) be

Poisson distributed with rate λ
( j)
t (a,p;β( j)∗). Note, the time dependence of λ( j) can

be captured by time-dependent explanatory variables. To illustrate the approach, in
the following definition, we give simple examples of explanatory variables.

Definition 1 We define the following regressors (besides the intercept x ( j)
t,1 = 1):

x ( j)
t,2 (a,p) := a( j)

t − min
k=1,...,J,k �= j

{a(k)
t } price gap between a( j)

t and best own price

x ( j)
t,3 (a,p) := a( j)

t − min
i=1,...,I

{p(i)
t } price gap between a( j)

t and best competitor

x ( j)
t,3+k(a,p) := 1{a(k)

t >0} availability of our product k, k = 1, . . . , J

x ( j)
t,3+J+l(a,p) := 1{t mod L=l} time-effect/seasonality l, l = 0, . . . , L − 1

Our framework allows to measure substitution effects that may originate from com-
petitors’ products and our own products. Besides cross price elasticity effects also
out-of-stock substitution effects can be taken into account. The goal of the next
section is to find the best allocation of prices a( j)

t by taking all (mutual) substitution
effects of our products as well as the competitors’ products into account.
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4 Dynamic Model and Heuristic Strategy

In this section, we derive heuristic pricing strategies. We circumvent the curse of
dimensionality by using a separation approach that is based on sticky prices. Fol-
lowing the Bellman approach, the best expected future profits E(Gt |p), cf. (2), are
described by the value function Vt (p) of the stochastic control problem. The time
dependence in our model is assumed to be seasonal (daily/weekly effects) with
a given cycle length of L periods. Hence, for all t , where tmod L = k, we have
P ( j)
t (i, a,p) = P ( j)

k (i, a,p), k = 0, 1, . . . , L − 1, i = 0, 1, . . ., cf. Sect. 3. Since, we
can assume Vt (p) = Vt mod L(p) for all t , we just have to determine the values Vt (p),
t = 0, 1, . . . , L − 1, which are characterized by the associated Bellman equation,

Vt (p) = max
a∈AJ

⎧
⎨

⎩

J∑

j=1

∞∑

i=0

P ( j)
t (i, a,p) · (a( j) − c) · i + δ · V(t+1) mod L(p)

⎫
⎬

⎭ . (4)

The system (4) can be written as

Vt (p) =
L−1∑

k=0

δk · max
a∈AJ

⎧
⎨

⎩

J∑

j=1

∞∑

i=0

P ( j)
(t+k) mod L(i, a,p) · (a( j) − c) · i

⎫
⎬

⎭ + δL · Vt (p)

(5)
and from (5) we finally obtain Vt (p) in explicit form, t = 0, 1, . . . , L − 1,

Vt (p) = (
1 − δL

)−1 ·
L−1∑

k=0

δk · max
a∈AJ

⎧
⎨

⎩

J∑

j=1

∞∑

i=0

P ( j)
(t+k) mod L(i, a,p) · (a( j) − c) · i

⎫
⎬

⎭.

(6)

The associated pricing strategy a∗
t (p), t = 0, 1, . . . , L − 1, is determined by (6)

and the arg max of (4). If prices are not uniquely determined, we choose the largest
one. When the number of competitors is large, i.e., the market situation has many
dimensions the state space can grow exponentially (cf. curse of dimensionality)! The
advantage of our approach is that the value function does not need to be computed
for all states p in advance. The value function and the associated pricing policy can
be computed separately for specific market situations p (i.e., just when they occur).

As competitors’ strategies are not known (which is usually the case), it is not
possible to anticipate potential price reactions. However, by regularly adjusting our
prices we are able to react immediately if market situations change as prices can be
easily recomputed for new states. Thus, our approach makes it possible to derive
applicable pricing strategies in competitive markets with a large number of competi-
tors. Moreover, our approach can be extended to problems with (i) finite horizon or
(ii) limited supply.

The performance of our strategy is promising, cf. Schlosser et al. [8], especially
when short-term profits are maximized and competitors do not use high adjustment
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frequencies. Note, in some businesses it can be observed that the prices of many
competitors’ are kept constant over large time spans. Some suppliers do not adjust
prices at all.

5 Conclusion

We analyzed stochastic dynamic infinite horizon multi-product oligopoly models
characterized by realistic assumptions: (i) demand intensities aremutually dependent
and not explicitly known, (ii) the competitors’ offer prices can be observed, and (iii)
the competitors’ pricing strategies are unknown.

We combine private sales data with observable data of the competitors’ offers to
efficiently predict sales probabilities of multiple products in competitive markets.
Based on such market data, various explanatory variables that capture substitution
effects of our products as well as the competitors’ products can be defined. Further-
more, our model allows inclusion of time-dependent effects in the demand.

Using estimated sales probabilities, we have set up a time-dependent dynamic
model including discounting and shipping costs. We have shown how to compute
powerful feedback pricing strategies, which are even applicable if the number of
competitors’ products is large. Our solution approach is characterized by a decom-
position approach, in which only current market situation have to be considered.

The big advantage of our model is that the pricing strategy can depend on a
large number of competitors’ offers with multiple dimensions (price, quality, rating,
shipping time, etc.). Our technique to estimate substitution effects in demand and
to compute prices remains simple and is easy to implement, since the relevant state
space solely consists of time. The approach is successfully applied on a large online
marketplace, cf. Schlosser et al. [8].
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In-Line Sequencing in Automotive
Production Plants—A Simulation Study

Marcel Lehmann and Heinrich Kuhn

1 Introduction

The continuous development of the automotive industry towards higher numbers of
models, variants and equipment options cause a tremendous raise in the complexity
from a manufacturing point of view [2, 6]. Additionally, this trend is enhanced by
the recent transformation process in the automotive industry including electrifica-
tion, autonomous driving and digitalization.Many car producers deal with the arising
problem by using a stabilized production, which is present in different specifications
and known under several names such as In-Line Vehicle Sequencing (ILVS) [5] or
Pearl Necklace Concept (PNC) [3]. Core of this approach is a unaltered production
sequence, which is the baseline for the entire manufacturing process, especially for
the just in sequence (JIS) material flow. Even though the underlying principle seems
to be simple at the first glance, the planning and realization of such facilities features
a high complexity [4]. The transformation of an existing plant towards the Pearl
Necklace Concept however seems to be even more demanding since many original
equipment manufactures (OEM) are still struggling to adapt their high volume facil-
ities to this concept [7]. From the lack of possibilities to measure and evaluate the
achievable stability level of an existing production configuration arises the necessity
to simulate a stable production within the framework of the current production set-
ting. This article provides an introduction of the key aspects of the ILVS/PNC in the
first section followed by the description of the case study, the modeling approach
and a preview of the results. The last section presents the conclusion and further
prospects.
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Fig. 1 Concept of a stable production (see also [6])

2 Stabilized Order Production System

Key point of a stabilized production is a number of customer orders, which is brought
into a fixed production sequence several days before the beginning of the manufac-
turing process. The time span between the determination of the sequence and start of
the production is called frozen period [7]. Once the sequence is frozen it is commu-
nicated towards the JIS suppliers, who are expected to provide the parts in exactly
the same order [7]. The concept is visualized in Fig. 1.

Benefits. The consistent applicationof the ILVSsystem reduces the handling expenses
since thematerial can be delivered directly to the assembly line from distant suppliers
[7]. Otherwise the parts would have to be stored close to the assembly and brought
into sequence by their employees based on the realized production sequence, which
is available only a few hours before the start of the final assembly. Alternatively,
suppliers would have to produce right next to the OEM. Both of these options result
in higher logistics or production costs.

Challenges. Highly individualized cars, prototypes, quality samples, rework, down
times and unsynchronized production steps cause deterministic and stochastic lead
time extensions [7]. Therefore the original sequence changes during the production
process since some cars overtake or fall behind. This phenomenon is called scram-
bling [5].

External factors cause additional sequence scrambling. Missing parts for example
lead to detents, whichmeans a car cannot be built properly and has to be locked down
in the sequencer in front of the assembly line. Since other cars from the sequencer are
used instead in order to maintain the production volume, the sequence is scrambled.

Arising research question. In order to pursue a stable manufacturing strategy a high
and constant level of stability is required. The achievable level of stability can only
be measured if the plant is currently operating under these premises. Since this is not
the case in several existing plants the stability level has to be predicted. The model
described in the next section is designed to answer the two arising research questions:
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• What level of stability can be achieved assuming the current production control
process?

• Which parameters influence the achievable stability level?

3 Modeling Approach

In order to understand the underlying data set the real world facility is described
in the first section, followed by a short introduction to the data set. Afterwards the
modeling approach is displayed.

3.1 Real World Production System

The observed plant is a fully appointed production side containing all four shop types,
i.e., sheet-metal shop, body shop, paint shop and final assembly line. In front of the
assembly line is a facultative buffer a so called AS/RS. For the current production
system, the buffer fulfills four different functions. The first is to decouple volumes
loses from previous production stages caused by machine down times. The second is
to hold back bodies, that cannot be assembled properly, due tomissing parts. Another
aspect of this buffer is to compensate unmatched production volumes caused by
divergent shifts and production rates. The last function and most influential in terms
of sequence instability is to ensure a valid sequence. This means a sequence without
any violations of car sequencing rules. Since a completely new sequence is created
based on the available cars in the sequencer it differs heavily from the originally
planned sequence.

3.2 Data Set

In order to get representative results a bipartite data set over half a year has been
collected. The first part contains car body related production data. Since order and
body are irrevocably matched from the start of production every body equates one
customer order. Amendatory to the order data set exists another record with all detent
information.

Each entry of the car data set represents one order consisting of four values. The
first one is a unique serial number to distinguish all orders. The second value is
the sequence number reflecting the position in the originally planned sequence. The
last two values are so called time stamps, consisting of the exact date and time of
a certain event during the production process. One value determines the entrance in
the AS/RS, the other represents the exit time.
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The second data record contains all relevant detent information. This information
can bematched to a car body via the car serial number. One value defines the category
of the detent e.g. logistic detent and the remaining two values define the lock down
period. During this time a car, effected by this detent, is not allowed to leave the
sequencer towards the final assembly line.

3.3 Modeling Methodology, Features and Assumptions

The underlying modeling technique is a discrete event based simulation, since this
method fits well to the specifications of a car manufacturing plant and the derived real
world data set [1]. Every event in this simulation is triggered by a real world event
taken from the data sets. The stochastic of the production process is not modeled
explicitly, but is enclosed in the input data. Therefore the sample needs a certain size
to ensure explanatory power.

Since the purpose of this model is to reveal the achievable sequence stability under
the current production and storage configurations themain difference to the realworld
setting is the sequencing logic. The conceptual model as shown in Fig. 2 consists of
the three production sides and an AS/RS. The first area containing the body and paint
shop is designed as black box, which means they are not explicitly modeled but their
effects are recognizable in the used data set. In this case the information lies in the
entrance time of the sequencer for each order. The entrance time stamp determines
the order of cars and therefore contains all the scrambling of the previous sides. This
is caused by varying lead times, down times and steering effects.

The exit times of the sequencer correspond to real world events as well. Thus,
the number of bodies, which are stored in the sequencer should be the same as
the real world system. The main difference to the existing production system is the
prioritizing logic for theAS/RS release. Instead of an assembly line oriented approach

Fig. 2 Modeling approach
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Fig. 3 Possible stability levels

the sequencer focuses on the sequence number. Every time a car body enters or leaves
the sequencer the whole content of the sequencer is sorted in an ascending order by
the sequence number. Before a body leaves the sequencer it is checked whether or
not the car with the highest priority is affected by one or more detents. Therefore, the
sequencing logic compares the current simulation time with the start and ending time
of all attached detents of the car. If the simulation time lies within a detent interval
the car is locked down. If a car is not allowed to exit the sequencer the car with the
next highest priority is checked.

4 Results

To evaluate the sequence stability accurately a measurement logic is needed. There-
fore, the difference of the sequence numbers of every car and its direct successor
were calculated. If the difference does not equal one, the car is is out of sequence.
Afterwards the whole sequence was separated into equal batches each representing
the production volume of one day. The number of cars in sequence during one pro-
duction day is divided by the everyday production volume in order to get a daily,
percentaged representation of the stability.

The results for half a year displayed in Fig. 3 show that the stability level of the
two facilities body shop and paint shop are stable except for some days (Stability
gap pre-sequencer). The drop of the stability due to detents on the other hand is
significantly stronger and also more volatile (Stability gap sequencer).

Figure4 shows, that a significant loss of stability is caused by logistic detents.
It can be seen that the logistic detents have a seasonal character with heavy impact
from time to time.
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Fig. 4 Possible stability levels without logistic detents

5 Conclusions and Prospects

This article shows that the potential stability levels of a plant can be revealed with a
discrete event based simulation and an appropriate data set. The simulation results
demonstrate that the scrambling caused by the production process and the effect
of the detents can be measured separately. The overall stability level is below the
recommended 98% [4] and volatile, which ismanly caused by the detents in this case.
To generate more insights two additional data sets will be observed with different
car types, life cycle states and additional detents. In order to gain further knowledge
a sensitivity analysis concerning the sequencer volume will be done to calculate the
stability gains through additional capacity.
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Maintenance Planning Using Condition
Monitoring Data
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1 Introduction

A main goal of the manufacturing industry is to keep machines at a high availabil-
ity level and to ensure the planned output. This is achieved through an intelligent
maintenance policy. Maintenance is also an important cost factor in manufacturing
companies [1]. Infrequent maintenance activities can increase the probability of a
machine breakdown and results in very high costs. Too frequent maintenance activi-
ties can lead to unnecessary high expenditures formaintenance.Optimalmaintenance
activities in the manufacturing industry are dependent from various influencing fac-
tors. A common approach is to group several machines, this helps reducing set-up
costs and fix costs during maintenance [6]. It is not enough to know the optimal
maintenance plan for a single machine but to group maintenance activities of several
machines on the samemaintenance time [2].Ameaningful grouping can be supported
by the information received from sensor data. This sensor values are necessary for
condition-based maintenance [5]. In practice, a challenge for condition-based main-
tenance is to combine actual sensor data with prediction methods in order to forecast
optimal maintenance activities [3, 4].

The presented decision support system, including an optimization model, deter-
mines the optimal maintenance policy for several machines. The actual condition of
the machine is determined by sensor data and a breakdown probability is calculated
for several periods. The trade-off between grouping of machines to save set-up and
fixed costs and moving away from the individual optimal time for maintenance is
considered.
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Set input parameters
Run algorithm to determine all 
possible group combinations 

of the machines

Determine all relevant 
parameters for individual 

group combinations

Determine related 
maintenance plan for optimal 

combination case

Determine minimal costs 
through running optimization 

model

Sort machines according to 
their optimal time of 

maintenance

Fig. 1 General procedure to determine the optimal maintenance activities

2 Optimizing Maintenance Activities

The main goal is to determine optimally grouped maintenance activities considering
the costs of maintenance and possible breakdowns. The general procedure is shown
in Fig. 1 and explained in detail in the following. First all input parameters are set.
The number of machines is important to build possible groups and to do further cal-
culations. We do not consider machines which do not need to be maintained in the
set time horizon. General costs which do not depend on the considered machine have
to be defined and are called maintenance costs for groups. This could be for example
general set-up costs formaintenance activities. For all machines the individual break-
down costs and the estimated probability of failure for future periods serve as input.
The probabilities of failure can either be retrieved through a function or set by values
for each period. A developed algorithm to determine all possible group combination
cases is executed then. We assume that machines with similar optimal time for main-
tenance are grouped together. The machines are sorted according to their individual
optimal maintenance time before executing the optimization model. This results in
a number of 2M−1 different possible combination cases for groups according to the
number of machines. With the help of the groups all parameters that are further used
in the optimization model can be determined. The optimization model minimizes the
costs for all possible combination cases and provides the optimal group combination
case. The decision support system shows the optimal grouping combination and the
associated maintenance periods for all groups and consequently for all machines.
Based on this, a maintenance plan for all considered machines can be created.

min

⎧
⎨

⎩

gi∑

ji=1

C ji + gi × F
∣
∣i = 1, . . . , 2M−1

⎫
⎬

⎭
(1)

C ji = min

⎧
⎨

⎩

n ji +x ji −1
∑

m=x ji

∣
∣
∣
∣Dm × pmt − F

n ji

− Vm

∣
∣
∣
∣|t = 0, . . . , T

⎫
⎬

⎭
(2)

0 ≤ pmt ≤ 1 ∀ m and t (3)

pm(t−1) ≤ pmt ∀ m and t (4)
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Sets:
i = (1, . . . , 2M−1): Considered combination case
ji = (1, . . . , gi ): Considered group in combination case i
m = (1, . . . , M): Considered machine with M : total number of machines
t = (0, . . . , T ): Considered period with T : number of periods in the future

Parameters:
C ji : Total costs of a group j in a combination case i
Dm : Downtime costs of the machine m
F : Maintenance costs per group
gi : Number of groups in a combination case i
n ji : Number of machines in a group j in a combination case i
pmt : Probability of failure for machine m in period t
Vm : Maintenance costs for machine m
x ji : Smallest machine number in a group j in a combination case i

F

n ji

+ Vm ≤ Dm ∀ ji and m (5)

Vm, F ≥ 0 ∀ m (6)

1 ≤ ji ≤ M ∀ i (7)

1 ≤ x ji ≤ M ∀ ji (8)

gi , n ji , x ji ∈ N \ {0} (9)

M, T ∈ N \ {0} (10)

The objective function (1) minimizes the costs over all possible combination
cases. The costs for each group in a combination case are summed up and the fix
costs per group are added. As a result the combination case with lowest costs is
determined. The costs for each group in a combination case is defined in (2). It
is described as the absolute value of the difference between expected downtime
costs and costs for maintenance for each machine. The maintenance costs consist
of the maintenance costs per machine and the maintenance costs per group. The
maintenance costs per group are divided by the number of machines in that group
and assigned partially to the machines. The parameters n ji and x ji are received
considering the possible group combinations. The probability of failure is important
for the model to determine the expected downtime costs. It is zero when there is a
new machine and one for a broken machine (3). It is assumed that the probabilities
of failure are already predicted through sensor data. We assume that a machine can
only degrade and the probability of failure can only be reduced while performing
maintenance activities (4). The probability of failure has to be a function over time
which is monotonically increasing. Downtime costs of a machine are always equal
or greater thanmaintenance costs of the machine (5). Maintenance costs per machine
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and group have to be positive, ensured by (6). Constraints (7) and (8) prohibit that
ji and x ji are greater than the number of machines. The number of machines and
periods as well as the number of groups in a combination, the number of machines in
a group and the smallest machine number in a group are defined as a positive integer
(9) and (10).

3 Experimental Results

The presented decision support system including the optimization model is used in a
demonstration case to optimize the maintenance activities. The general input param-
eters which are not period dependent are stated in Table1. The used probabilities of
failure for the future periods are shown in Table2.

All input parameters are fixed except the maintenance costs per group to figure
out the influence on the number of groups. Figure2 shows the results of the test case.
Herein, the optimal number of groups in dependence of the maintenance costs per
group are shown. In the case of higher maintenance costs per group the number of
the groups formed is usually reduced. The results of the system demonstrate that for
certain values the number of groups can decrease and afterwards rise again. This
is caused by two effects. First, if there are machines with similar optimal times for
maintenance the grouping has stronger effects. This can be seen in Fig. 2 where the
maintenance costs per group are low. The number of groups did not become four but
jumps from five to three. Second, the higher the number of machines in a group the
lower are the proportionate maintenance costs per group for each machine.

In the presented model it is not considered howmany periods the time for mainte-
nance for a group is away from the individually optimum. Only the costs difference
between expected breakdown costs and maintenance costs are considered for each
period. The difference in the costs depend strongly on the progress of degradation of

Table 1 Maintenance costs and downtime costs for each machine

Number of machines Periods Maintenance costs for a group

8 10 Varied

Machine Maintenance costs Downtime costs

1 600 1,000

2 1,500 5,000

3 1,200 2,000

4 800 1,600

5 450 1,150

6 1,050 1,200

7 950 2,400

8 650 8,000
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Table 2 Probability of failure for machines and periods

Period Machine

1 2 3 4 5 6 7 8

0 0.01 0.03 0.01 0.01 0.28 0.15 0.02 0.02

1 0.01 0.04 0.02 0.05 0.31 0.23 0.05 0.08

2 0.02 0.07 0.52 0.07 0.41 0.29 0.21 0.16

3 0.03 0.10 0.61 0.09 0.52 0.32 0.36 0.28

4 0.15 0.20 0.63 0.15 0.56 0.38 0.39 0.34

5 0.26 0.33 0.67 0.23 0.60 0.41 0.43 0.39

6 0.39 0.50 0.69 0.25 0.63 0.45 0.48 0.41

7 0.65 0.60 0.70 0.25 0.69 0.56 0.51 0.49

8 0.74 0.75 0.75 0.48 0.72 0.59 0.56 0.57

9 0.81 0.78 0.78 0.59 0.80 0.82 0.66 0.62

10 0.92 0.83 0.80 0.72 0.92 0.96 0.70 0.75
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Fig. 2 Different costs per group in relation to the number of groups

the machines. The fact that the absolute value is used can shift the maintenance time
of a machine forward or backward. Due to this, a wide range of group combinations
is possible.

4 Conclusions and Further Research

This paper presents a decision support system to determine the optimal maintenance
policy based on the actual condition of the machine. An optimization model is the
main part of the presented system. A trade-off between potential breakdown costs
and costs for too early or too late maintenance activities is addressed. The grouping
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of machines is a key aspect of the presented model. A demonstration case of the
developed optimization model is performed. The decision support system helps to
plan maintenance activities based on sensor data. It has to be taken into account that
sensor data can be used for the probability of failure. Reliable data is essential for
meaningful results. Influencing factors of the model are possible breakdown costs. In
practice it could be difficult to estimate these costs exactly. The experimental results
show that the grouping of machines seems reasonable. Especially when machines
with similar probabilities of failure and maintenance costs are in the production
site scale effects through grouping can occur. In a future version of the decision
support system additional influencing factors such as the production plan should be
considered to improve maintenance scheduling further. Designing an interface for
maintenance planners in a production site would contribute to an easier application in
practice. In particular, chained production lines could be represented in more detail.
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Tactical Planning of Modular Production
Networks with Reconfigurable Plants

Tristan Becker, Stefan Lier and Brigitte Werners

1 Introduction

Process industries are facing strong global competition in recent years. In order to
stay competitive, it is important to quickly react to new market developments and to
serve specialized product demands. To meet these requirements, flexible production
capacity is required. Recently, the use of modular plants has received much attention
as an answer to these new challenges. Modular plants consist of standardized process
modules, which allow for quick assembly, disassembly and relocation of production
plants. Using modular production concepts, the flexibility of the production network
is greatly increased [6]. The technical feasibility of modular plant concepts has
been proven by several projects, like the EU funded “F3-Factory” project and the
“CoPIRIDE” project [3]. Modular plants offer an increasedmanufacturing flexibility
in type, volume and location of production capacities.

The remainder of this paper is structured as follows. Section2 gives an overview
of the implications of modular production concepts on the production network. In
Sect. 3, we give a problem description and a brief overview of key aspects of our
mathematical formulation for production network planning. In Sect. 4, we illustrate
the framework of our case study and discuss results and implications dependent on
different degrees of freedom. Section5 concludes with some remarks and a perspec-
tive for future research on modular production plants.

T. Becker (B) · B. Werners
Chair of Operations Research and Accounting, Faculty of Management
and Economics, Ruhr University Bochum, Bochum, Germany
e-mail: tristan.becker@rub.de

S. Lier
Department of Engineering and Economics, University of Applied
Sciences Südwestfalen, Meschede, Germany
e-mail: Lier.Stefan@fh-swf.de

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_73

549

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_73&domain=pdf


550 T. Becker et al.

2 Tactical Production Network Flexibility Using Modular
Plants

In a production network with modular production plants, the entire network structure
can be changed in the short-term. This is due to transformable plant designs, which
are significantly more flexible compared to conventional large-scale plants [7]. A
single production module, which can be installed in an ISO transportation container,
consists of several process modules. A production module is associated with specific
production capabilities regarding type and volume of capacity. To assemble a pro-
duction module, several process modules are combined. When a production module
is disassembled, the released process modules can be reused in different production
modules. This process is called reconfiguration. It can be carried out short term at a
workshop. Module reconfigurations allow for a greater flexibility of the production
network regarding the type of commodities produced. The set of process modules
available to a company is defined in a central database, as well as the production
processes, which can be created with different combinations of process modules.
Another important degree of freedom associated with modular production plants is
their geographical flexibility. Since modular plants may be installed in ISO trans-
portation containers, they can be transported with standard transportation. Before a
modular plant can start operating at a production location, it has to be setup with
peripherals, which are made available at the decentralized production locations. A
capacity shift, which removes a plant from one location and transfers it to another,
can be carried out short-term.

Using the flexibility options associated with modular production concepts, the
structure of the entire production network can be altered short-term. Since both
reconfigurations and capacity shifts are associated with cost, it is important to care-
fully plan the future layout of the production network and anticipate transitions over
time on the basis of customer demands.

In the literature, few works consider the described types of capacity flexibility.
In a recent review on tactical manufacturing flexibility, plant relocation and recon-
figuration decisions are not recognized as tactical manufacturing flexibility options
treated by the existing literature [2].

Reference [5] presented a modification to their strategic facility location frame-
work, which allows for shifts of modules between production locations. In a recent
work by [4], modular production capacities have been considered, which aremodular
only with respect to the level of production capacity at each facility. The model does
not allow for an exchange of capacity between facilities or modular plant reconfigu-
rations. Themodular production network configuration problem has been considered
with a strategic scope and limited flexibility options by [8]. We are not aware of any
model, which considers the degrees of freedom associated with modular plants for
tactical planning of the production network.
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3 Problem Description and Model Formulation

The modular production network configuration problem [1] is modeled as an exten-
sion of the dynamic multi-commodity capacitated facility location problem. The
set of locations is denoted by I , while the set of customers is denoted by J . Each
customer demands a subset of the set of products P in every period. The customer
demands have to be satisfied by selecting the subset of locations to operate, the
amount of production modules to install at each location as well as the modules to
operate in each period. The goal is to minimize all network and production costs.
Each production location can hold a number of up to Li production modules of arbi-
trary configuration. It is assumed that the process modules necessary for assembly of
productionmodules can be acquired for the duration of the planning horizon for a fee.
Production modules can be assembled, disassembled and reconfigured only at the
modular hub. The cost for acquiring and transporting raw materials, production and
transportation of product to a customer is represented by ci jpt . In order to model the
possibilities associated with plant reconfiguration accurately, we consider individ-
ual process modules. All demand has to be met, since demands represent customer
orders on the tactical level and must be fulfilled.

Since the amount of production modules is flexible, we introduce integer vari-
ables for the available capacity at each location. The integer variable yist captures
the number of production modules of configuration s available at location i in time
period t . To make a production module available at a production location, a complex
multi-step process is involved. First, the necessary process modules for the desired
configuration have to be acquired. The amount of processmodules of typem acquired
in period t is represented by amt . Process modules are ordered to arrive at themodular
hub, where they can be assembled to the desired configuration. Module configura-
tion, which includes assembly, disassembly and reconfiguration, is represented by
the integer variable γss ′t . It indicates how many production modules change from
configuration s to s ′ in period t . After a module is built, the process modules cannot
be used for other production modules. The number of process modules required for
a production module of configuration s is defined by Wmt . The following constraint
ensures that the amount of production modules built is covered by the amount of
process modules:

∑

i∈I∪{0}

∑

s∈S
Wms yist ≤ amt ∀m ∈ M, t ∈ T (1)

The configuration s = 0 is used to represent assembly and disassembly, i. e., produc-
tion modules changing from configuration 0 to a configuration s �= 0 are assembled.
Modules changing from a configuration s �= 0 to configuration 0 are disassembled.
After assembly of a production module using the necessary process modules, it has
to be deployed to a production location to serve customers. Such a capacity shift
from location i to i ′ of production modules in configuration s in period t is repre-
sented by ηi i ′st , whereas the modular hub is represented by index i = 0. The number
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Fig. 1 The relation of the different decision variables from process module to production unit

of production modules available at the modular hub is derived by the following
constraints:

y0st − y0s(t−1) =
∑

s ′∈S∪{0}
(γs ′st − γss ′t )

∑

i ′∈I∪{0}
(ηi ′0st − η0i ′st ) s ∈ S, t ∈ T (2)

Finally, productionmodules can commence production at the target location. Figure1
depicts the relation of the decision variables from module assembly to production.

4 Case Study

To evaluate the cost advantage associated with the flexibility of modular production
concepts, we have conducted several computational experiments. We compare the
amount of network cost using modular production concepts with those of a less
flexible model. The base model is obtained by removing the possibility of capacity
shifts and plant reconfiguration from the previously presented model. Production
plants of a certain configuration can be obtained for the price of process module
acquisition, assembly and transportation to production locations at each location.
The base model allows only for capacity expansions and reductions. The modular
model additionally considers capacity shifts and reconfigurations.

Based on a real-world data set from the chemical industry, we constructed a
large amount of different test instances by varying the number of customers and
the demand development. Demand data were varied systematically with regard to
location, type and amount of demands. Our demand data consider customers all over
Europe, while a large fraction of customers is located in Germany, as is the company
which provided the data. To construct data sets with more geographical variation
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Fig. 2 Cost reduction
compared in test scenarios
with static and dynamic
customer locations

of customer locations, density-based clustering was applied. Transportation costs
for our models were estimated for truck transportation between all production and
customer locations using road distances from Google DistanceMatrix API. All test
instances were solved using Gurobi 7.0 on aWindows 10 Computer with an Intel i7
I7-6700K processor and 16 GB of RAM. It turns out that the additional flexibility
considered in our model formulation strongly increases the computational difficulty.
The solution characteristics of both model formulations are listed in Fig. 5. Linking
capacity variables across periods and the high number of integer variables render the
problem hard to solve for large instances. Strong differences in total network and
demand fulfillment costs can be identified between the base model and the modular
production formulation. Further, the individual demand patterns strongly influence
the utilization of flexibility options and consequently the costs.

Both, capacity shifts and reconfigurations, are frequently used in the modular
production model to react on dynamic changes in demand. As a result, the modular
production formulation obtains lower total network cost in all test instances. In fact,
any feasible solution for the base model can be transformed into a feasible solution
for the modular production formulation with the same cost. For our examples, an
average cost reduction of 589.51 Te can be realized by adding modular flexibility
options. The high standard deviation of 811.33 Te associated with the cost reduc-
tion, implies that the advantageousness of modular flexibility options highly depends
on the respective demand patterns and development. The cost difference between the
models is strongest in test cases with highly dynamic customer locations and type
of product demand (Figs. 2, 3). Without the possibility of reconfiguration, new mod-
ular plants are acquired in reaction to dynamic demands. With modular production
concepts, unused modules are transported back to the modular hub and can be recon-
figured for the production of different products. In regions with declining overall
customer demands, modular plants are removed and transported to more favorable
production locations regarding customer proximity (Fig. 4).



554 T. Becker et al.

Fig. 3 Cost reduction
compared in test scenarios
with static and dynamic
product demands

Fig. 4 Cost reduction
compared with regard to
different demand trends

Fig. 5 Computational
characteristics of the base
model and modular
formulation

5 Conclusion and Outlook

Prior work on tactical production network configuration has rarely considered flexi-
bility regarding location or type of production plants. This paper confirms the impor-
tance of adequate consideration of the flexibility options that go along with modular
production in tactical planning. The flexibility provided by both capacity shifts and
reconfigurations is very useful as a short-term reaction to dynamic demand changes.
In our case study with realistic data from the chemical industry, high cost reductions
were realized by utilization of modular production concepts. The implementation of
fast mounting and dismounting options for modular plants, as well as streamlined
reconfiguration processes may be critical for the further technical development of
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modular plants from amanagerial perspective. In order to solve large-scale problems
in reasonable time, future research should focus on solution methodologies for the
tactical planning of modular production networks (Fig. 5).
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A CTMDP-Based Exact Method
for RCPSP with Uncertain Activity
Durations and Rework

Xiaoming Wang, Roel Leus, Stefan Creemers, Qingxin Chen
and Ning Mao

1 Introduction

Product design and many other practical projects incorporate random rework, which
leads to a stochastic project network structure.Although a lot of research on stochastic
RCPSP has been done over the past few decades [1], only a few of them considered
activity rework or uncertain project network structure. The few existing methods
for RCPSP with random rework including priority rules [2], genetic algorithms [3],
stochastic dynamic programming (SDP) [4], etc. However, these studies not only
require some particular assumptions such as deterministic rework time [4] and max-
imum number of reworks [3], but can also only obtain approximate solutions. To the
best of our knowledge, until now there is no study that has proposed on exact method
for RCPSP with both random activity durations and rework.

In recent years, MDP-based methods have been widely applied to stochastic
RCPSP due to their inherent advantage of modeling sequential decision problems
under uncertainty [5–7]. However, the biggest challenge in applying this approach is
the curse of dimensionality that comes into play upon solving large-scale instances.
In this study,wewill explore how tomodel theRCPSPwith randomactivity durations
and rework, as well as how to efficiently solve it.
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2 Problem Definition

The basic RCPSP consists of a project and a renewable resource set R = {1, 2, . . . ,
K }. The project can be represented by an activity-on-node (AON) networkG(N , E),
where N = {0, 1, 2, . . . , n} denotes the activity set and E = {( j, i) | j, i ∈ N }
denotes the zero-lag precedence constraints between the activities. The capacity
of resource type k ∈ R is Mk . In this study, the duration of activity j ∈ N is an
exponentially distributed variable d j . During the execution of activity j ∈ N , it will
occupy r jk units of resource k ∈ R.

We further consider two types of random rework, where the first type of rework is
caused by the failed quality inspection itself and the second type of rework is results
from the discovery of error in another activity. When the second type of rework
activity was finished, it will return to the original activity to be redone. A rework
activity has the same resource requirements as the corresponding regular activity, a
constant rework probability and an exponentially distributed duration.

The decision objective of the above RCPSP is to minimize the expected project
makespan.

3 CTMDP-Based Decision Model

3.1 Modeling

We build the decision model based on CTMDP owing to the memoryless property
of exponential distribution. The CTMDP is the four-tuple given by {X, A, q(x ′ |
x, a), c(x ′ | x, a)}, each element is defined below.

The state space X . Since the rework activity may have a different mean duration
and it may not optimal to start it first, we need to transform the project network by
adding the rework activities and virtual precedence constraints. On the basis of the
transformed network, we can give a definition of the state. In previous work [5],
the state of the decision process is composed of an idle and a processing activity
set. Although this definition can also be applied to this study, we introduce a new
definition of the state x = {W, P} for RCPSP with rework, where W and P is the
waiting and processing activity set, respectively. The so-called waiting activity is an
activity that not started yet but all of its predecessor activities are finished.

The action space A. Each state x ∈ X has an action set Ax ⊂ A, where action
a ∈ Ax is a feasible combination of starting activities. Ax = ∅ is a special action
when none of waiting activity satisfies the resource constraints in state x .

The transition rates q(x ′ | x, a). 0 ≤ q(x ′ | x, a) < ∞ is the transition rate from
state x to x ′ (for x ′ �= x, x, x ′ ∈ X ) under action a ∈ Ax . The state transition will
occur once a processing activity is finished or a waiting activity is started. For the
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latter case, the systemwill immediately transfer to an intermediate state from current
state with probability one, and afterwards transfer to next state with corresponding
rate. In order to reduce the state space size to improve computational efficiency,
we will aggregate the current state and intermediate state. For a given state x ∈ X
and an action a ∈ Ax , the rate of next state transition is λx = ∑

j∈Px∪a 1/E(d j ).
Furthermore, q(x ′ | x, a) = p(x ′ | x, a)λx for x ′ �= x and

∑
x ′∈X q(x ′ | x, a) = 0,

where p(x ′ | x, a) is the state transition probability. Suppose the state transition from
x to x ′ after action a is caused by activity j ∈ Px ∪ a be finished first with inspection
result α j . Then p(x ′ | x, a) = p(α j )/(E(d j )λx ) due to the independence of these
two events.

The cost rates c(x ′ | x, a). The cost rate of transition from state x to x ′ is defined
as the corresponding transition rate according to the decision objective, namely c(x ′ |
x, a) = q(x ′ | x, a).

3.2 Equivalent DTMDP and Optimal Policy

The decision time points in the above CTMDP are random variables in [0, ∞].
From another perspective, an action can only be taken when a processing activity
is finished except the initial time. Hence, we convert the above CTMDP into an
equivalent discrete-time MDP (DTMDP) which is easier to handle.

The decision period of the equivalent DTMDP is one unit of time, the state space,
action space and transition probability is the same as it in the above CTMDP. Since
the expected project makespan is equal to the sum of mean sojourn times of all
visited transient states, we define the cost function of taking action a ∈ Ax as the
mean sojourn time of state x , namely c̃(x, a) = 1/

∑
x ′∈X,x ′ �=x q(x ′ | x, a). It is noted

that all of the self-transitions due to rework are removed under this cost function
definition. The advantage of this operation lies in reducing the number of iterations
when obtaining an optimal policy by solving the following Bellman equations.

vi+1(x) = min
a∈Ax

E{c̃(x, a) + vi (x ′ | x, a)} (1)

a∗ = arg min
a∈Ax

E{c̃(x, a) + v∗(x ′ | x, a)} (2)

3.3 Decomposition and Parallel Method

When compared to the modeling of the studied problem, the computation of an
optimal policy is much more difficult due to the state and action space explosion.
Specifically, memory consumption rather than CPU time is usually the bottleneck of
computation [5].
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m

Fig. 1 Diagram of decomposition and parallel method

According to the optimality principle of dynamic programming, the optimal
actions in a subproblem are also optimal in the original problem [8]. This indicates
that we can solve the original problem in a divide and conquer style. The advantage of
doing so lies in decomposing the large intractable state space into multiple tractable
subspaces. In addition, since the subproblems can be solved independently, we can
also exploit the advantages of parallel computing. The proposed decomposition and
parallel method started with a breadth-first-search (BFS) based state transition net-
work traversal, and trigger the parallel computing of subproblems when the real
memory consumption exceeds the predefined threshold ϑ, as illustrated in Fig. 1.

The reason why we use a BFS-based approach for state transition network traver-
sal in the master problem is to balance the computational load between subproblems.
At the time that the parallel computing is triggered, there would be a great number
of absorbing states of the master problem. The task of subproblems is to continue
exploring the decision processes from these states to the global absorbing state. Obvi-
ously, it is unreasonable to treat each of these states as the initial state of a subproblem
because it will result in too many redundant states and waste of computation time.
A rational way is to determine the number of subproblems by considering the state
space size of the original problem and the number of available computing resources.

4 Computational Experiment

The computational experiment is used to analyze the impact of activity rework on
projectmakespan and optimal actions, aswell as compare the traditional SDPwith the
proposed decomposition and parallel method. The methods have been implemented
in Visual C� and performed on a workstation with Intel Xeon CPU E5-2695 v4 and
128G RAM.
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Fig. 2 The considered project network

4.1 Experimental Data

We consider a project consisting of three concurrent projects, where each of them
has the same network structure as shown in Fig. 2.

The mean durations E(d) = (5, 3, 5, 4, 4, 3, 6, 4, 10, 3). There are two types of
renewable resources (M1 = M2 = 3). The resource requirements are randomly gen-
erated where each activity require one unit of one or two types of resource.

Let τd and τp denote the coefficient of rework duration and probability, respec-
tively. The duration of rework activity j ∈ N is E(d j )

′ = τd E(d j ) and all rework
probabilities are τp. Here, we set τd = {0.25, 0.5} and τp = {0.1, 0.2}.

4.2 Results and Analysis

We first use the traditional SDP to solve the instance and collect the expected
makespan E(MS), the number of all states N(all), states with waiting rework activ-
ities N(Re), states that is optimal to start rework activities first N(Re*), and the
computation time CT in seconds, the results are shown in Table1.

We see that both of the rework probability and rework duration have an impact on
project makespan and rework activity decisions. In contrast, rework probability has
a greater impact on project makespan, while rework duration has a greater impact
on rework activity decisions. In addition, the state space size and computation time
is significantly increased when consider random rework.

Table 1 Computational results under different rework parameter settings

τd , τp E(MS) N(all) N(Re) N(Re*) CT(s)

0, 0 51.77 667,809 – – 54.87

0.25, 0.1 53.85 2,509,373 1,311,402 125,904 322.54

0.25, 0.2 57.18 2,509,373 1,311,402 126,555 354.97

0.5, 0.1 55.27 2,509,373 1,311,402 131,136 325.26

0.5, 0.2 60.62 2,509,373 1,311,402 132,439 351.87
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Afterwards, we use the proposed decomposition and parallel method to solve the
instance under the following parameter settings: θ = {0.8 × 106, 1.0 × 106, 1.5 ×
106},m = {2, 4}, τd = 0.25, τp = 0.1. We find that although the total number of
visited states is larger than it in traditional SDP, the proposed method achieves a
shorter computation time and a smaller number of states (memory consumption) on
each computing node. For example, the CPU time of this method under the param-
eter setting θ = 1.0 × 106,m = 4 is 258.88 s, the total number of visited states is
5,570,305 and the average state space size in subproblems is 1,210,923. In addi-
tion, we also find that evenly dividing the states will result in a computational load
imbalance between subproblems.

5 Conclusions

We studied the RCPSP with uncertain activity durations and rework which rarely
studied before although it is a common practical problem. There are twomain contri-
butions of this study. The first one is the representation and simplification of complex
rework process by converting a CTMDP into an equivalent DTMDP. The second one
is a decomposition and parallel method which improve the ability to handle large
instances. However, there are still many potential works to be done in future. Next,
wewill study the theoretical analysis of optimal parameter setting, aswell as effective
action elimination procedures for the proposed method.
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Explicit Modelling of Multiple Intervals
in a Constraint Generation Procedure
for Multiprocessor Scheduling

Emil Karlsson and Elina Rönnberg

1 Introduction

A constraint generation approach for multiprocessor scheduling of tasks with mul-
tiple intervals is presented in this paper. The characteristic of multiple intervals has
been studied in different settings, for example the travelling salesman problem in [1,
4] and ship scheduling in [3]. The problem studied in this paper is a relaxation of an
industrially relevant multiprocessor scheduling problem of interest for the develop-
ment of future avionic systems, presented in [2].

The objective of this paper is to improve a model used in a constraint genera-
tion procedure presented in [2] by an explicit modelling of multiple intervals. This
enables us to improve the relaxed problem used in the constraint generation proce-
dure, with the aim of reducing the number of constraints that need to be generated.
The preliminary results that we present indicate that this explicit modelling yields
better computational performance.

2 Preliminaries

Since the focus of this paper is the explicit modelling of multiple intervals, we here
simplify the setting by addressing a relaxation of the industrial problem presented in
[2]. The relaxation is made with respect to the details of the communication network
scheduling and the resulting problem is as follows.
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The system consists of a set of nodes and executes periodically with period P ,
called a major frame. For each node there is a module called communication module
(CM) and the set of all such modules is denoted by HCM. The set of tasks assigned
to CM h is denoted by Ih , h ∈ HCM, and all tasks on a CM has the period of a major
frame.Task i needs to be granted non-preemptive execution time for the duration of its
execution requirement ei on its module h between its release time t ri and deadline t

d
i ,

i ∈ Ih , h ∈ HCM. Further, for each node there is a set of modules, called application
modules (AM). Each task on an AM has a period of P/64 and when scheduling AMs
there is a minimum idle time between each pair of tasks that need to be respected.

The CMs in the system communicate through a single communication network
(CN) where each CN-message is assigned to a discrete CN-slot in which it is trans-
mitted through the CN. Let the set of CN-messages be denoted by M and the set
of CN-slots be denoted byN . The set of tasks required to transmit and receive CN-
message m is denoted by Imsg

m . If CN-message m is assigned to CN-slot n, then task
i has to obey the release time t rin and deadline tdin for CN-slot n, i ∈ Imsg

m , n ∈ N ,
m ∈ M. There are two types of precedence relations between tasks. A dependency
restricts the duration from the start of a task to the next start of another task. A chain
specifies that certain tasks, linked by dependencies, have to execute in a given order.

A known characteristic of the instances in [2] is that the CMs have a huge number
of tasks and that a large portion of these are fixed. The constraint generation procedure
in [2] is designed to be efficient for problems with these characteristics and the
mathematical model exploits the existence of fixed tasks on the CMs. In the complete
mathematical model for the CMs, themajor frame is divided into sections in-between
fixed tasks and each non-fixed task is to be assigned to a section. To ensure that no
tasks overlap within a section, a requirement is added stating that the tasks of each
subset that canbe assigned together in the same sectiondonot overlap.The constraints
of each such subset is referred to as a sequencing formulation. Since the number of
sequencing formulations required in a complete formulation is huge and not all of
them are expected to be needed for solving the problem, this formulation lends itself
to constraint generation as follows.

A relaxed model, called the α-model, is obtained by removing the sequencing
formulations from the complete model. In a solution to the α-model, each non-
fixed task is assigned to a section. Given such a solution, a subproblem called the
β-model is obtained by restricting each non-fixed task to its assigned section and
by introducing a sequencing formulation for the subset of tasks in each section. A
solution to the β-model is either a feasible schedule or it generates at least one new
sequencing formulation to be added to theα- and theβ-model. The added sequencing
formulations are called generated sequences. For details, see [2].
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The α-model used in this paper consists of the following components.

min/max Objective function
s.t. AM-scheduling

Precedence relations
Generated sequences

CM-assignment (Constraints (1)−(3))
Relaxed CN-scheduling (Constraints (4)−(5))

The CM-assignment and the relaxed CN-scheduling components are of interest in
this paper. For details about the other components, see [2].

In order to describe the CM-assignment component, the following notation is
introduced. Let the set of sections of CM h be denoted byRh and let the set of fixed
task on CM h be denoted by Ifix

h , h ∈ HCM. Let lsecr denote the duration of section r
and let Isec

r denote the set of tasks that can be assigned to section r , r ∈ Rh , h ∈ HCM.
The set of sections that task i can be assigned to is denoted byRtask

i and the release
time and deadline of task i in section r is denoted by t rir and t

d
ir respectively, i ∈ Isec

r ,
r ∈ Rh , h ∈ HCM.

For task i , i ∈ Ih , h ∈ HCM, introduce a variable

xi = start time of task i offset its period start.

For a fixed task i , it is required that xi = t ri , i ∈ Ifix
h , h ∈ HCM. Introduce, for i ∈ Isec

r ,
r ∈ Rh , h ∈ HCM, a binary variable

αir =
{
1 if task i assigned to section r ,

0 otherwise.

The following constraints ensure that each task is assigned to one section, that the
capacity of each section is respected, and that each task obeys its release time and
deadline within its section.∑

r∈Rtask
i

αir = 1, i ∈ Ih \ Ifix
h , h ∈ HCM (1)

∑
i∈Isec

r

eiαir ≤ lsecr , r ∈ Rh, h ∈ HCM (2)

∑
r∈Rtask

i

t rirαir ≤ xi ≤
∑

r∈Rtask
i

tdirαir − ei , i ∈ Ih \ Ifix
h , h ∈ HCM (3)

The relaxed CN-scheduling component is modelled as follows. For each pair of
CN-message m and CN-slot n, m ∈ M, n ∈ N , introduce a binary variable

znm =
{
1 if CN-message m is assigned to CN-slot n,

0 otherwise.
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The following constraints ensure that each CN-message will be assigned to a CN-slot
and that the tasks involved in the sending and receiving of the CN-message obey their
release times and deadlines with respect to their assigned slot.

∑
n∈N

znm = 1, m ∈ M (4)

∑
n∈N

t rin znm ≤ xi ≤
∑
n∈N

tdin znm − ei , i ∈ Imsg
m , m ∈ M (5)

3 Explicit Modelling of Tasks with Multiple Intervals

In the pre-processed instance data it can be observed that a task on a CM can have
multiple disjoint intervals where it can execute, as illustrated in Fig. 1. By explic-
itly considering these intervals, the α-model can be improved as follows. Instead of
assigning a task to a section, it is assigned to one of its intervals. With this formu-
lation, Constraints (4)–(5) can be incorporated into the interval assignment instead
of being explicitly modelled. This also enables us to strengthen the relaxed prob-
lem by introducing capacity constraints for intervals of the major frame that are
more fine-grained than the sections. These fine-grained intervals are referred to as
segments.

The improved formulation of the α-model is as follows.

min/max Objective function
s.t. AM-scheduling

Precedence relations
Generated sequences

CM-interval assignment (Constraints (6)−(8))

In order to describe the CM-interval assignment component, the following nota-
tion is introduced. Task i has a set of multiple intervals, denoted by Qi , and task i
must execute within one of these intervals, i ∈ Ih , h ∈ HCM. Each interval q has a
release time t r-intiq and a deadline td-intiq that task i must obey if it is assigned to interval
q, q ∈ Qi , i ∈ Ih .

For each pair of a release time t r-intiq , q ∈ Qi , i ∈ Ih and a deadline td-intjq ′ , q ′ ∈ Q j ,
j ∈ Ih , create a segment, and let Rh denote the set of all such segments on CM h,
h ∈ HCM. Denote the duration of segment r by lsegr , r ∈ Rh , h ∈ HCM. Introduce the

Fig. 1 An illustration of tasks with multiple intervals
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set Iseg
r that includes all tasks that have at least one interval that is a subset of segment

r , r ∈ Rh , h ∈ HCM. Further, letQir denote the set of intervals that belong to task i
and is a subset of segment r , r ∈ Rh , i ∈ Ih , h ∈ HCM. Introduce, for interval q and
task i , q ∈ Qi , i ∈ Ih , h ∈ HCM, a binary variable

αiq =
{
1 if task i is assigned to interval q,

0 otherwise.

The following constraints ensure that each task is assigned to one of its intervals,
that each task respect the release time and deadline of its assigned interval and that
the capacity of segments are respected.

∑
q∈Qi

αiq = 1, i ∈ Ih, h ∈ HCM (6)

∑
q∈Qi

t r-intiq αiq ≤ xi ≤
∑
q∈Qi

td-intiq αiq − ei , i ∈ Ih, h ∈ HCM (7)

∑
i∈Iseg

r

∑
q∈Qir

eiαiq ≤ lsegr , r ∈ Rh, h ∈ HCM (8)

4 Results

In this section we present performance comparisons between the original model
presented in Sect. 2 and the new model introduced in Sect. 3. To further analyse the
impact of segment capacity constraints we also present results for themodel in Sect. 3
with Constraint (8) removed. The results are presented for the largest of the instances,
Instance III, introduced and thoroughly described in [2]. This instance has 7 CMs, 8
AMs, and 19919 tasks.

The tests were conducted using the scheduling tool developed in [2] with Gurobi
OptimizerVersion 7.0.2 andPython 3.6.0. The objective function for the first iteration
was the Center-task objective with different choices of Δ and for later iterations the
stabilise objective, for details see [2]. The time limit in the β-model is initially 2h and
whenever an improved integer solution is found, it is reset to 4 hours. The time-out
was set to 8 hours in the α-model, with a MIP-gap of 0.1 and the scheduling tool
was terminated after 48 hours if no valid schedule was found.

The results in Table1 show that the model in Sect. 3 finds a valid schedule within
the time limit for all choices of the objective function while the model in Sect. 2
only finds a valid schedule when Δ = 0.00. Comparing the model in Sect. 3 with
and without Constraint (8) shows that by including the constraint, the number of
iterations decreases and so does the total running time.

The results indicate that the performance of the formulation in Sect. 3 is better than
the formulation in Sect. 2, suggesting that explicit modelling of multiple intervals is
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Table 1 Comparison of models. Time limit exceeded is denoted by TLE

Measurements Instance III

Δ = 0.00 Δ = 0.05 Δ = 0.10 Δ = 0.15 Δ = 0.20 Δ = 0.25

Model in Sect. 2

Total time (m) 757 TLE TLE TLE TLE TLE

Iterations 2 TLE TLE TLE TLE TLE

Time α-model (m) 483 TLE TLE TLE TLE TLE

Time β-model (m) 260 TLE TLE TLE TLE TLE

Model in Sect. 3 without Constraint (8)

Total time (m) 725 1421 1128 TLE 850 194

Iterations 2 4 4 TLE 4 3

Time α-model (m) 449 482 482 TLE 485 136

Time β-model (m) 262 915 622 TLE 343 39

Model in Sect. 3

Total time (m) 515 1391 769 614 511 77

Iterations 1 4 2 1 1 1

Time α-model (m) 480 482 481 480 480 31

Time β-model (m) 22 866 266 121 18 33

preferred. Future research includes to strengthen the α-model further by deriving
valid inequalities based on the explicit modelling of multiple intervals.
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Multi-objective Large-Scale Staff
Allocation

Roberto Anzaldua, Christina Burt, Harry Edmonds, Karsten Lehmann
and Guangyan Song

1 Introduction: A Staff Allocation Problem

Our client has a large-scale staff allocation problem. As amultinational, the company
aims to work on jobs for 2,000 projects. Each year, our client must perform the basic
resourcing task of allocating its existing workforce of 1,000 employees to these
projects, which comprise of 10,000 jobs. Projects and employees may each have
several special requests, totalling 50,000 requests, and the problem is subject to
employee work rules and quality requirements.

There are many stakeholders within the client, each with a different perspective
on what the priorities should be.While onemight favour maximising project demand
because this relates to bottom-line revenue, another might also be concerned with
impact on employees, such as fair work allocation and less travel, or with meet-
ing policy (we will go on to show its possible to satisfy them all simultaneously).
Each of these preferences can be expressed as a soft constraint which can pull the
search direction along contradicting axes. Effectively capturing these constraints
was a big challenge. In fact, the majority of our client meetings were dedicated to
fully understanding and translating business rules such that they could be cast into
mathematical expressions. The problem is challenging, most obviously because of
its scale, such that no optimisation software can solve it. Computationally, the soft
constraints (at least 16 of them) contribute to numerical instability which challenges
even state-of-the-art solvers.

For this task we created a pilot tool for our client. This tool extracts the relevant
data with encryption, preprocesses the data, runs our proposed heuristic, delivers an
optimised schedule and then runs metrics on the output solution. The main contri-
butions of this paper include (a) a description of a real case study, including lessons
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learned; and, (b) an approach for solving large-scale allocation problems with a large
number of soft constraints.

In Sect. 2, we describe the problem in more detail, including problem definition
and base models. In Sect. 3, we broadly describe our approach, including an outline
of our algorithm. In Sect. 4, we describe practical challenges of the project, before
presenting some results in Sect. 5, followed by a discussion.

2 Problem Description and Model

The basis, or academic, version of the problem we consider is as follows.

Definition 1 (Feasible region of the Staff Allocation Problem) Given a set of jobs,
J ; a set of tuples specifying hours required per week, and preferred employee skill
level, per job, (h, w, s) ∈ W ; a set of employees, E ; a set of employee skills, Es ; the
staff allocation problem is to find a matching of employees to jobs such that a job can
only be satisfied if all hours are satisfied; employee work conditions are satisfied as
much as possible; and employee-job required skills are matched as much as possible.

The employee conditions cover both basic and complex rules about how many
hours each employee should work, such as maximum weekly allotment, maximum
13 weeks allotment, average work-hours, public holidays, leave requests, training
periods and the quantity of work that can be allocated during travel periods. The job
preferences cover the number of employees allocated per job, the preferred skills of
the employee, fixed requests for specific employees and job conflicts.

In its simplest form the optimisation version of the problem is to satisfy the hard
constraints, such that the maximum number of jobs can be satisfied. For simplicity of
prose and to better understand the structure of the problem, we disregard many of the
complex hard constraints to obtain the following academic version of the problem.

We define the main decisions as follows:

t j,e,w the proportion of work hours allocated to job j , for employee e in week w;
y j,e a binary variable indicating if employee e works on job j ;
q j a binary variable indicating if the job j will be scheduled.

Other parameters include:

Hj,w the hours required by job j in week w;
Hmax

e,w the maximum weekly working hours for employee e.

If a maximum of two employees may work on a job, then the staff allocation
problem can be represented by:
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max
∑

e,w, j

t j,e,w

Hj,wq j =
∑

e

t j,e,w ∀ j, w, (1)

∑

j

t j,e,w ≤ Hmax
e,w ∀ e, w, (2)

∑

e

y j,e ≤ 2 ∀ j, (3)

∑

j,w

t j,e,w ≤ y j,e
∑

w

Hj,w ∀ j, e,

t j,e,w ≥ 0, y j,e, q j ∈ {0, 1}. (4)

The objective maximises satisfied demand. The first constraint ensures that all the
hours for each job of that project are allocated to a set of employees, per week. The
second constraint places a limit on the employees weekly work hours. The third
constraint limits the number of employees per job to two. The last two constraints
ensure that the binary indicator of an employee-job pair is true if and only if there
is at least one hour of work allocated to that job. The remaining, hidden constraints
place restrictions on the sets of jobs that each employee can work, and can in many
cases be preprocessed into these sets rather than explicitly represented as constraints.

This problem has more than 16 soft constraints, ranging from preferences such
as continuity of employees in ongoing jobs, the use of alternate skill levels, target
working hours, minimising travel time and fair allocation of hours. With this many
soft constraints, there arise two challenges. The first of these is how to prioritise, or
apply weight, to each of them. To resolve this, we relied on our client to provide their
insights, and allowed them to iteratively adjust the weightings after viewing over
20 rounds of solutions. The second challenge arises from interacting and competing
constraints. One such example could be fair allocation of work and minimising long-
distance work. To minimise long-distance work, it could be preferential to allocate
two jobs to the employee that lives in the town where the project is based. However,
this can lead to an unfair allocation of work with an employee not based in that town
being allocated zero hours. These interactions are complex, and required us to sit
down with our client and prioritise each constraint in interacting sets.

3 Method: LNS Inspired Heuristics

Even though the mixed-integer programming model is simple, the scale of the prob-
lem renders a model size too large for desktop computers and is so large that even
solving the linear programming relaxation at root took longer than 2h and consumed
up to 16GB RAM. To overcome this hurdle, we developed a decomposition strategy
as follows.
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Input: i ← 0; Initial solution, sol0 ← 0; create a set of jobs, l0, ordered by
demand in decreasing order; p0 ← 0; d0 = ∑

0,nc Dc with nc = 5.
while time limit has not been reached do

Choose a subset of jobs in l starting from a specific job index, pi , until we
have enough jobs to fill demand di ;
All jobs not in subset, fix to solution soli ;
Solve → soli+1. Get new random pi+1. Add soli+1 to solution pool;
If pi > |li |, set pi = 0 and random shuffle the list;
Increase the iterator, i ;

end
This approach is guaranteed to be feasible, sincewemaintain a solution pool that at

least contains the initial feasible solution. However, there is no termination criterion,
so the solve time must be manually pre-set. Also, the approach is not guaranteed to
improve, since it is not enumerative but random.Thus, it is not guaranteed to converge
on the optimal solution. In the remaining paragraphs, we will outline solutions for
each of these issues. This approach is dependent on having a good initial solution.
Since there are no hard constraints on minimum demand satisfied and most of the
constraints are soft, not allocating any jobs at all is actually feasible. A very basic
and efficient greedy start solution orders the jobs by demand in decreasing order.
From the available employee set, we allocate employees to the jobs in turn until no
more jobs can be fulfilled.

In order to obtain convergence criteria, we must be able to guarantee that, in the
worst case, we completely enumerate all possible solutions, and in the best case, we
have a well-defined search direction that improves the solution at each iteration. We
influence the search direction by considering the residual capacity in the employee
set, as well as the set of unsatisfied jobs.We first find an upper bound on the procedure
by solving this partial problem.We then look for employee candidates to swap out of
satisfied jobs, to work for hitherto unsatisfied jobs, such that our objective function
improves. There are simple ways to identify these candidates, such as looking at
travel times and hours worked. This search direction improvement, however, does
not guarantee convergence.

In each iteration of our LNS procedure, we have an opportunity to choose the
size of the next subproblem. This is useful if the last iteration has not found an
improvement. Thus, at each iteration, it is possible that we increase the size of the
subproblem (specifically, increase di ), until we cover the entire problem. In the latter
case, we solve the full problem and convergence is guaranteed.

4 Overcoming the Hurdles of Real-World Problems

A Startup working with a multinational corporation can at times face particular
obstacles to success. It was essential to ensure our client was engaged right from
the beginning and explaining how optimisation works was critical since none of the
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clients teamhad experience in this field.Beforewe could focus on themaths,we faced
multiple hurdles such as: obtaining funding approval; vendor onboarding, procure-
ment and passing data security requirements. The multinational client is accustomed
to receiving detailed documentation from large software enterprises; Satalia on the
other hand is used to being lean on documentation. Although it was labour intensive,
we bought into the process, understanding that our client has a level of compliance
we must meet.

In the world of consulting, we do not have the luxury of stripping down a problem
to an academic version; we must solve the entirety of the real problem for our client.
We knew from the outset that the problem was mathematically hard, but it took some
time to arrive at the formal description. Since the previous scheduling method was
conducted manually, the problem was only defined tacitly and thus had no unified
definition among different stakeholders. Equally challenging was understanding all
the stakeholders needs and then calibrating the model to produce a solution that
satisfied them all. A large part of our initial work was in consulting to extract a formal
problem definition. Neither party knew exactly what logic was needed to produce the
desired quality, but we had our best estimate. Once we began to produce results that
could be analysed, the real learning began. With each new solution, it would become
apparent to our client that a constraint was missing from the problem definition, or
needed to be reworded. Sharp pivots in approach cost precious development time,
but meant our model was moulded closer and closer to reality with each iteration.

We quickly learnt that change could be minimised by ensuring we understood
the root purpose for each constraint, and delved beyond surface explanations. On
several occasions we re-developed a constraint after discovering there were unin-
tended consequences or better approaches to achieve the true intention. Since Mixed
Integer Programming technology is very rigid, once a model is formulated it is hard
to change basic decisions, such as what variables mean. This forced us to model con-
straints generically and independently so we could easily respond to change. Agility
in mindset and a mutual understanding that disruption is to be expected and should
be accommodated flexibly enabled our team to withstand this level of turbulence.

With such a large problem and so many soft constraints, just understanding
whether an output schedule was of good quality or not was hard — the scale of
the problem prevented us from obtaining a bound using linear programming. There-
fore we built multiple metrics for each constraint that analysed performance, which
enabled us to clearly communicate the solution to our client and to receive informed
feedback. These metrics were also vital for spotting data, mathematical and imple-
mentation bugs.

We overcame the hurdles outlined here, and many more, by augmenting our team
and the clients team (using Slack as a communication tool) and by ensuring our
mutual ambition of solving the problem as best we could took priority over anything
else.
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5 Results: Improvements and Impact

We implemented the project in Java8, using the Fico Xpress libraries v.8.2 to solve
subproblems. We built the model and ran the heuristic on Google Cloud, using a 4
core machine with 26GB RAM. Our client provided two case studies for the pilot
tool phase. The focus of our experiments was to refine the weighting of the soft
constraints, in order to find good quality solutions from the perspective of our client.
We ran the heuristic for 24h. Unfortunately, owing to the size of the problem we
cannot run the root relaxation to obtain a bound on the quality of our solution.
However, we can calculate the amount of demand satisfied in terms of the amount
requested, and evaluate several metrics along the axis that the soft constraints try to
capture.

Thebiggest improvement on themanual approach is clearly to save time. Insteadof
using 10 people to create a schedule in 4months (i.e. 6,400work-hours), our heuristic
automatically creates better schedules in just 24h. When looking at comparable
datasets, our heuristic satisfies 92% of demand, while our clients solution for the
same period only satisfied 80%.Our solutions also obtained higher average employee
hours than theirs, showing that our solutionsmake better use of employee availability
in order to fulfill demand. Even though we achieved better demand satisfied, we also
reduced total travel time by 15%. Their solution was less compliant with policy,
violating 3.94% of heavily weighted rules on average, while ours violated 0%. This
result is significant as it flags policy violations for review.

Our solution provides great impact, and therefore the greatest value, through the
increase in efficiency of the schedule, while also increasing all aspects covered by our
metrics. The drastic improvement in solve time also permits more experimentation
in the generation of each schedule. Rather than running the heuristic once, the client
will be able to tweak their weightings and explore alternative schedules that better
suit their needs for the period in question, allowing easy response to the turbulent
external environment.

6 Discussion

In this work, simply arriving at an accurate problem description that adequately
captures the problem from the perspective of all stakeholders has been a monumental
achievement. Beyond this, our achievements include:

• Building a stable data parser that validates data as it comes in;
• Designing a mathematically sound heuristic that results in high satisfied demand
for our client;

• Surpassing performance of the existing approach across all key metrics;
• Enabling our client to incorporate new and interesting soft constraints that they
could not have otherwise considered.
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The main impact of our work is recognisable as increased efficiency of the sched-
ule. The employees who were previously assigned to this task are now free to work
on more important and satisfying activities. By enabling our client to consider new
soft constraints, they chose to consider constraints that have social impact on their
employees, such as fair allocation of work and the minimising of travel time. This
new ability to include arbitrary soft constraints will open up yet more possibilities
for our client.



A Permutation-Based Neighborhood
for the Blocking Job-Shop Problem
with Total Tardiness Minimization

Julia Lange and Frank Werner

1 Introduction

Motivated by applications in production and logistics, the job-shop problem is one of
the well-studied models in scheduling research. The increasing complexity of real-
world production systems leads to an interest in additional constraints to classical
scheduling problems. This is why researches start to regard application-inspired
restrictions like setup times, limited buffer capacities and machine flexibility during
the last decades. Furthermore, practically relevant optimization criteria based on the
earliness and tardiness of jobs or the costs of production are taken into account.

A job-shop scheduling problem with blocking constraints describes production
systems with a lack of storage capacity. Jobs have to move directly from onemachine
to another. In case that the succeeding machine is not idle, the job will block the
machine until its processing can be continued. To increase customer satisfaction, the
minimization of the total tardiness of all jobs with regard to given due dates is the
objective. Since this corresponds to a regular optimization criterion a solution to the
problem is a schedule defined by the operation sequences on the machines.

Such a job-shop model is tackled by researchers following a variety of differ-
ent approaches. In [1], the authors present a generalized graph formulation for the
blocking job-shop problem. Based on this, a branch-and-bound-approach is applied
to a train scheduling problem with a tardiness-based objective in [2]. Following a
similar real-world application, a constructive approach based on a shifting bottle-
neck procedure for the blocking job-shop with a makespan objective is presented in
[3]. Different mixed-integer programming formulations are compared with regard to
model size and computation time in [4]. These results give evidence to the necessity
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of efficient heuristic methods to obtain good solutions in reasonable run time. In line
with this idea, several researchers present tabu search approaches for the blocking
job-shop (see [5, 6]), an iterative improvement algorithm is shown in [7] and the
problem is solved by an iterated greedy metaheuristic in [8].

Two main difficulties arise during the application of heuristics using a per-
mutation-based solution representation. While any given permutation satisfying the
technological routes corresponds to a feasible schedule for the classical job-shop
scheduling problem, such a permutation is not necessarily feasible with regard to
blocking constraints. In the following, a procedure is presented, which constructs a
feasible schedule from any given list of operations. This repair may result in neces-
sary changes of the operation sequences on the machines.

A well-known strategy in neighborhood construction is the adjacent pairwise
interchange (API) of two operations on one machine. It is also applied here to the
blocking job-shop problem, but may lead to infeasible solutions. The repairing pro-
cedure mentioned above is not directly applicable, since regaining feasibility equals
reverting the API and reconstructing the initial solution in many cases. The chal-
lenging problem is to repair the permutation while preserving the given API, which
corresponds to the problem of completing a partial solution to a feasible schedule.
Many researchers, e.g. in [5, 6] and [8], ascertain that it is not always possible to set
up a feasible schedule from a partial solution without doing any changes in the given
part. The corresponding decision problem is shown to be NP-complete in [1].

In the following, a permutation-based neighborhood for the blocking job-shop
problem with swaps regarding a total tardiness objective is presented. A procedure
to regain the feasibility of a neighbor is shown andwith this partially defined solutions
are completed to feasible schedules. The neighborhood is embedded in a simulated
annealing. Computational experiments are done on randomly generated instances
based on a single-track train scheduling problem as well as on benchmark instances.
The results are compared to those obtain by solving the corresponding MIP formu-
lations given in [4].

2 Problem Description and Representation of Schedules

The problem involves a set of jobs J = {Ji | i = 1, ..., n} having to be processed
on a set of machines M = {Mk | k = 1, ...,m}. Each job Ji consists of a set of
operations, where Oi, j describes the j-th operation of job Ji . A machine Mk ∈ M is
assigned to every operation Oi, j defining the technological route of every job Ji ∈ J .
Additionally, release dates ri and due dates di are given for each job and recirculation
is allowed. Following the three field notation, the blocking job-shop problem tackled
here can be denoted by J | ri , di , block, recr | ∑

Ti .
A solution S is a schedule,which is uniquely defined by a permutation of the opera-

tions. This permutation is expressed by list indexes lidx(Oi, j ) ∈ {0, 1, . . . , nop − 1}
of all nop operations Oi, j . With it, the operation sequences on the machines are
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defined, where midx(Oi, j ) ∈ {0, 1, . . . , Rk − 1} denote the machine indexes of the
operations with Rk indicating the number of operations on machine Mk .

With regard to the solution encoding applied in the neighborhood construction,
the permutation or list of operations refers to the operation-based representation
and the corresponding operation sequences constitute the machine-based represen-
tation. For each operation Oi, j a predecessor pred(Oi, j ) = Oi, j−1 and a succes-
sor succ(Oi, j ) = Oi, j+1 are defined by the technological route of job Ji and a
machine predecessor α(Oi, j ) and a machine successor β(Oi, j ) are derived from
the operation sequences on the machines. Both encodings are shown below for
a small instance of four jobs and three machines with the technological routes
J1 : M1 → M3, J2 : M3 → M2, J3 : M1 → M2 → M3, J4 : M2 → M1 → M2 and
O = 10, R1 = 3, R2 = 4, R3 = 3, respectively.

operation-based representation

S = O1,1 O3,1 O4,1 O3,2 O4,2 O2,1 O1,2 O2,2 O3,3 O4,3

lidx(Oi, j ) 0 1 2 3 4 5 6 7 8 9

machine-based representation

M3 O2,1 O1,2 O3,3

M2 O4,1 O3,2 O2,2 O4,3

M1 O1,1 O3,1 O4,2

midx(O1,1) = midx(O4,1) = midx(O2,1) = 0
midx(O3,1) = midx(O3,2) = midx(O1,2) = 1
midx(O4,2) = midx(O2,2) = midx(O3,3) = 2
midx(O4,3) = 3

The solution given by the operation-based representation fulfills the technological
routes but it is infeasible with regard to blocking constraints. The second operation in
the list O3,1 cannot be scheduled, since the first operation O1,1 is blocking machine
M3 until the processing of O1,2 begins onM1. Solution S is infeasible for the blocking
job-shop problem. For every pair of operations Oi, j and Oi ′, j ′ on machine Mk with
midx(Oi, j ) < midx(Oi ′, j ′) the following blocking-related index constraint has to
be fulfilled.

lidx(succ(Oi, j )) ≤ lidx(β(Oi, j )) ⇔ lidx(Oi, j+1) ≤ lidx(Oi ′, j ′)

The successor of an operation has to be scheduled at the same time or earlier than its
machine successor. This constraint is defined by an inequality here, since swaps are
allowed to be part of a feasible solution. A simultaneous movement of an operation
from machine Mk to Mk+1 and another operation from machine Mk+1 to Mk is
regarded to be possible. Considering the generalized graph representation of the
problem (see [1]), this refers to a special type of cycles in the solution, which are
defined to be feasible.

The procedure to regain feasibility is applied to all operations one by one with
increasing list indexes to ensure the blocking-related index constraints. For every
operation Oi, j in the permutation, the index constraints of the form
lidx(succ(α(Oi, j ))) ≤ lidx(Oi, j ) are set up and checked. Violated constraints are
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fulfilled by left-shifts of operations required at a lower list index. Since the procedure
is applied to the permutation from the left to the right, it is guaranteed that the list is
feasible for all list indexes less than or equal to the current index and this feasibility
cannot be destructed by the end of the repair.

In the example, the first violated blocking-related constraint is lidx(O1,2) ≤
lidx(O3,1) at list index 1. O1,2 is shifted to the left and inserted at list index 1
in the permutation. With this, the operation sequence on machine M1 changes to
O1,2 → O2,1 → O3,3. This indicates that adapting a solution to be feasible might
cause significant changes in the permutation.

In the example, swaps are appearing with operations O3,2 and O4,2 on machines
M1 and M2 and operations O2,2 and O3,3 on machines M2 and M3. In the repair-
ing procedure, these operations are defined to form swap groups (O3,2, O4,2) and
(O2,2, O3,3) with lidx(O3,2, O4,2) = 4 and lidx(O2,2, O3,3) = 6, so that the index
constraints for both pairs of operations are fulfilled with equality. The solution
S̄ = [O1,1, O1,2, O3,1, O4,1, (O3,2, O4,2), O2,1, (O2,2, O3,3), O4,3] is a feasible solu-
tion to the blocking job-shop problem. The corresponding schedule with r1 = r2 =
r3 = r4 = 0 is given in the following Gantt-chart.

M1

M2

M3

O1,1

O1,2

O3,1

O3,2

O3,3

O4,1

O4,2

O4,3

O2,1

O2,2

3 Neighborhood Construction

Neighbors are defined by reverting the order of two operations on one machine. This
approach is applied regarding the additional conditions that the operation shifted to
the lower machine index belongs to a tardy job and that there is no idle time on
the machine between the operations chosen for the API. The neighborhood is called
‘Tardy Adjacent Pairwise Interchange’ (TAPI). As an example, the operations O3,2

and O2,2 are interchanged on machine M2. This API changes the machine indexes to
midx(O2,2) = 1 and midx(O3,2) = 2. It can be transferred to the operation-based
representation by a left shift (shifting O3,2 to a list index higher than lidx(O2,2))
or a right shift (shifting O2,2 to a list index lower than lidx(O3,2)). These transfer
optionsmay lead to different neighbors, since the following repair procedure strongly
depends on particular list index relations.

Breaking up the swap groups and transferring the API to the operation-based
representation by left shift results in the neighbor N = [O1,1, O1,2, O3,1, O4,1,

O2,1, O2,2, O3,2, O4,2, O3,3, O4,3]. This permutation is infeasible with regard to the
blocking constraints, since lidx(O4,2) ≤ lidx(O2,2) is not fulfilled. The application
of the repair procedure shifts O4,2 and O3,2 to the left as a swap group, reverts the API
and constructs the same schedule S̄. Due to this, it is necessary to set O2,2 → O3,2

as a non-reversible precedence constraint for the new schedule. The technological
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routes together with the given API constitute the partial solution, which has to be
completed to a feasible schedule, while changing the operation sequences on the
machines as little as possible.

The strategy is to perform additional APIs between the operation shifted to the
left in the initial API (here O2,2) and its newmachine predecessors (here O4,1). Once
the repair procedure is going to revert the given precedence relation, the operation
is interchanged with its current machine predecessor and the repair procedure is
restarted. If the operation is already at machine index 0, additional APIs are applied
to its job predecessors (here O2,1) as well. Repair and restart are repeated until the
procedure constructs a feasible solution involving the given API. In the best case,
there is no additional API necessary, while in the worst case, all operations of one
job are shifted to machine index 0 on their machines. This approach is similar to
the job insertion technique presented in [5, 6], but it is less restricted and swaps of
operations are allowed.

In the example, operation O2,2 is shifted to the left before O4,1 on M2 and after
restarting the repair procedure N̄ = [O1,1, O1,2, O2,1, O2,2, O3,1, O4,1, (O3,2, O4,2),

O3,3, O4,3] defines the feasible neighbor of S̄.

4 Computational Experiments and Results

The neighborhood is embedded in a simulated annealing (SA) metaheuristic. The
SA algorithm is applied to solve train-scheduling-inspired instances (TS instances),
that are randomly generated following a given network structure with the number
of machines m = 11 and the number of jobs n ∈ {10, 15}. As a benchmark, the
Lawrence instances (see [9]) are solved with additional release dates and due dates
determined by the rules given in [4]. In total, there are 5 distinct instances to solve
for 10 different instance sizes (m, n).

The initial solution is determined as the best solution found by several priority
rules. A geometric cooling scheme is applied, where the starting temperature and
multiplier are chosen in accordance to the absolute measure of the mean objective
function value of the instances. The length of theMarkov chain set up per temperature
level varies dependent on the total number of operations of the instance. Thus, the
total number of iterations ranges dependent on the instance size for the TS instances
between 30000 and 60000 and for the Lawrence instances between 11000 and 64000
iterations.

In the following table, the performance of SA is compared to the MIP results
presented in [4]. The number of instances, for which the optimal (opt) or a feasible
solution is obtained by MIP, is given for each instance size. Similarly, the number
of instances, for which SA found the optimal solution or improved the MIP result
(opt/im), is stated together with the number of instances, for which SA obtained a
feasible solution with a gap less than 10% compared to the MIP result.

The SA algorithm performs well with regard to feasibility and optimality while
applying the presented neighborhood. The comparison shows that SA found optimal
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TS inst. Lawrence instances
(m, n) (11, 10) (11, 15) (5, 10) (5, 15) (5, 20) (10, 10) (10, 15) (10, 20) (10, 30) (15, 15)
total 5 5 5 5 5 5 5 5 5 5

MIP
opt 5 3 5 1 – 5 1 – – 2

feasible – 2 – 4 5 – 4 5 1 3
SA

opt/im 4 1 4 2 2 3 1 3 5 –
< 10% 1 3 1 1 3 1 1 – – –

and near-optimal solutions for the small instances and outperforms the MIP solver
for larger instance sizes, e.g. (5, 20), (10, 20) and (10, 30). The application of a
pure SA algorithm and a hybrid approach combining a heuristic method and a MIP
solver seem to be promising to increase the solution quality and the size of solvable
problems.
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Preemptive Scheduling of Jobs with a
Learning Effect on Two Parallel
Machines

Marcin Żurowski

1 Introduction

An important part of scheduling theory concerns preemptive scheduling algorithms,
while the schedule length is the most popular schedule optimality criterion. Job
preemption usually decreases the length of a schedule. In literature one can findmany
examples of scheduling problems with job preemption. The most known example
is McNaughton’s algorithm for finding an optimal preemptive schedule for jobs
with fixed processing times [1]. There is assumed the most frequently encountered
definition of job preemption, saying that any job can be preempted at any time and
resumed later without any cost. Although it is the most popular definition, there are
also known other ones such as the restricted job preemption [2] or job preemption at
integer time moments [3].

Definitions mentioned above are applied only to scheduling problems with fixed
job processing times. Recently, there is a growing interest to scheduling problems
with variable processing times, since such problems appear in many applications [4,
5]. The variable job processing times may depend on the number of already executed
jobs [6], the starting times of jobs [7] or the positions of jobs in a schedule [5]. Among
the models of position-dependent job processing times the most common is the one
with a learning effect. In this case, the processing time of each job is a product of a
fixed basic processing time of the job and the value of a non-increasing function of
the job position in a schedule.

Literature on scheduling with variable job processing times is focused on non-
preemptive cases only. To the best of our knowledge, the problems of preemptive
scheduling of jobs with variable processing times, in particular those with a learn-
ing effect, have not been considered earlier. Therefore, in this paper we consider a
scheduling problem, where a learning effect and job preemption exist together. We
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will call it problem PSLE (Preemptive Scheduling with a Learning Effect). Similarly
to [8, 9], we assume that any job can be preempted at any time without cost, but
some additional conditions must be satisfied. For this problem, we present a few of
its properties and an exact algorithm.

The remaining sections of the paper are organized as follows. In Sect. 2, we for-
mulate our problem. In Sect. 3, we introduce a new definition of job preemption. In
Sect. 4, we present basic properties of the problem. In Sect. 5, we present an exact
algorithm for this problem.

2 Problem PSLE Formulation

The problem under consideration can be formulated as follows. We are given n ≥ 3
jobs J1, J2, . . . , Jn and two parallel identicalmachinesM1, M2 available from time 0.
All jobs are independent, and the processing time of each job depends on the position
of the job in a schedule. More precisely, the processing time of job Jj scheduled
without preemption on the r th position in schedule equals p j,r = p jra , where p j

is the basic processing time of job Jj , r is the position of this job in the schedule,
and a < 0 is the learning index. We schedule the jobs on the both machines without
idle times. The basic processing time of job Jj after preemption, defined similarly, is
the sum of basic processing times of two parts of the job: the one completed before
preemption and the one after preemption. We allow the preemption of jobs but, in
view of reasons stated in the next section, only one job can be preempted in a given
schedule. Both parts of the preempted job are treated like two new independent jobs,
which cannot be executed on both machines at the same time or on the samemachine
in different time intervals. The criterion of schedule optimality is the maximum
completion time,Cmax = max{C j }, whereC j denotes the completion time of job Jj .

3 Job Preemption in Problem PSLE

In this section, we introduce a definition of job preemption in problem PSLE. We
begin with some remarks on job preemption in scheduling problems with fixed job
processing times.

In classical case [1], when job processing times are fixed, the sum of processing
times of both parts of a preempted job is equal to the processing time of the job
without preemption. However, when job processing times are variable and depend
on their positions in a schedule, the sum of the processing times of both parts of a
preempted jobmay not be equal to the processing time of the jobwithout preemption.
This is caused by the fact that the processing times of position-dependent jobs are
non-increasing functions of their positions. Hence, a sequence of preemptions of
the same job iteratively decreases the processing time of the job. Therefore, we will
apply the following definition of job preemption.
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Definition 1 A job with a variable position-dependent processing time is said to be
preemptable if one can interrupt its execution at most once at any time before its
completion and resume it later in such a way that both parts of this job cannot be
executed on both machines at the same time or at the same machine in different time
intervals, the basic processing time of this job equals the sum of the basic processing
times of both parts of the job and the processing times of parts of the preempted job
are described by functions of the same form as the processing time of the job without
preemption.

Let us notice that Definition 1 does not specify on which machine the preemption of
a job occurs or on which machine the second part of the preempted job is executed.
In the paper, we assume that preemption concerns only the job scheduled in the first
position on machine M2 and the second part of a preempted job is executed only in
the last position on machine M1.

4 Properties of the PSLE Problem

In this section, we present a few properties of problem PSLE.
We will use the following notation. By J we will denote the set of all jobs, by J i

we will denote the sequence of non-preempted jobs scheduled on the i th machine,
i = 1, 2, in the SPT order, by J i[ j] wewill denote the j th job in this sequence. Finally,

by Li
[q] = ∑|J i |

j=q pi[ j] j a we will denote the sum of processing times of all the jobs
from set J i except of jobs J i[1], . . . J

i
[q−1].

The first property follows from a single machine problem result [9].

Property 1 In any optimal schedule for problem PSLE all non-preempted jobs
assigned to machine Mi i = 1, 2, are scheduled in the SPT order with respect to
the basic processing times of the jobs.

Thenext property is a consequence ofDefinition 1 anddescribes thedivision factor
of a job, which is the ratio of the basic processing time of the first part of a preempted
job and the basic processing time of the whole job. This property relates the division
factor with total machine loads. Let us recall that the total load of a machine is the
sum of the actual processing times of all jobs assigned to the machine.

Property 2 Let job Jk be scheduled in a feasible schedule for problem PSLE as the
last one on machine M1 and let s be the position of Jk in the schedule. If total loads
of machines M1 and M2 are the same, then for the division factor xk of Jk we have

0 ≤ xk = L2[2]−L1[1]+pk
pk (sa+1) < 1.

The next property describes how much the total loads of machines differ.

Property 3 Let job Jk be scheduled in a feasible schedule for problem PSLE as the
last one, let s be the position of Jk in the schedule and let D = L2

[2] − L1
[1]. Then

D + pk ≥ 0 and D < pksa.
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The last property shows that problem PSLE is not a direct generalization of the
P2|pmtn|Cmax problem of two-machine preemptive scheduling with fixed job pro-
cessing times and the Cmax criterion. Namely, in the latter case [1], the order of jobs
assigned to a particular machine is not important. Indeed, in the case of twomachines
for a given optimal schedule σ we have

Cmax(σ ) = max

⎧
⎨

⎩
max
1≤ j≤n

{p j }, 1
2

n∑

j=1

p j

⎫
⎬

⎭
. (1)

Moreover, any rearrangement of non-preempted jobs assigned in such a schedule to
the same machine leads also to an optimal schedule, since the rearrangement does
not change the value of Cmax. Hence, there are many optimal schedules, and all of
them have the same length satisfying (1). However, if jobs have variable position-
dependent processing times, then schedules obtained by rearrangements of jobs may
have different schedule lengths.

Property 4 Consider a feasible schedule for problem PSLE. If total loads of
machines M1 and M2 are equal, then length of the schedule may be affected by
the sequences of jobs assigned to the machines.

We illustrate Property 4 by an example. Let n = 3, a = −1 and the basic process-
ing times of jobs be equal to p1 = 1, p2 = 2, p3 = 3. Figure1a shows a schedule σ1

in which machines M1 and M2 complete the processing of jobs at the same time, and
the division factor of J3 is x3 = 2

3 . Then Cmax(σ1) = 2. However, as it is shown in
Fig. 1b, if we will change the sequence of jobs on machines M1 and M2, and preempt
J2 with the division factor x2 = 5

6 , then in the new schedule, σ2, both the machines
complete the processing of jobs at the same time again but the schedule is shorter,
Cmax(σ2) = 15

6 .
The time complexity of problem PSLE is unknown, though we conjecture that

the problem is at least NP-hard in the ordinary sense.

Fig. 1 Two different
schedules with a single
preempted job
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5 Exact Algorithm for Problem PSLE

In this section, we present an exact algorithm for problem PSLE. Given on input the
basic processing times of jobs, this algorithm generates on output two sequences of
jobs and two parts of a preempted job.

Below we present a pseudocode of this algorithm. In the pseudocode we use
the following functions and procedures. Function allSubsequences generates
all subsequences of the set given as argument. Procedure setSubsequences
returns the sequence of jobs scheduled on machine M2 and the division factor of a
preempted job. FunctionsortSPT sorts a corresponding sequence of jobs in the SPT
order. Finally, function getLength returns the length of the schedule depending
on the sequences of jobs assigned on the both machines, the basic processing time
of preempted job and the value of the division factor: if xk < 0 then getLength
returns L1

[1], if xk ≥ 1 then it returns max{L1
[1] + pk ja, L2

[1]}, otherwise it returns
L1

[1] + xk pk ja , where j = |J 1| + 1.

AlgorithmSolvePSLE( n, J1, J2, . . . , Jn)
1 J̄ = sortSPT(J);
2 J 1 = J̄ ; J 2 = J̄ \ J 1

3 Cmax = L1[1]; k = 1
4 for i = 1 to n do
5 J = J̄ \ {Ji }
6 forall R ∈ allSubsequences(J ) do
7 setSubsequences(R, i , J 2, xi)
8 c = getLength(R, J 2, pi , xi)
9 if c < Cmax then

10 Cmax = c; J 1 = R; J 2 = J \ J 1; k = i
11 setSubsequences(J 1, k, J 2, xk)
12 p′

k = xk pk ; add to J̄ job J ′
k with processing time p′

k
13 p′′

k = (1 − xk)pk ; add to J̄ job J ′′
k with processing time p′′

k
14 return J 1, J 2, J ′

k , J
′′
k

Algorithm 1: Exact algorithm for problem PSLE

Algorithm1 works as follows. In line1 function sortSPT sorts all jobs. In line3
initial assignments are made. In line4 the loop for iterates through all jobs. The job
Ji is preempted. In line5 Algorithm1 determines the sequence J of non-preemptive
jobs. In line6 the loop forall iterates through the all subsequences of the sequence
J . For each such a subsequence scheduled on M1 in line7, setSubSequences
generates subsequence J 2 scheduled onM2 and the division factor xi of job Ji . Based
on the sequence of jobs scheduled on the both machines, the basic processing time of
division job pi and the division factor xi , in line8 getLength generates the length
of the schedule c. If c is less than Cmax, then in line10 we update Cmax, J 1 and the
index k of the preempted job. When both loops are completed in line11, we generate
the sequence of jobs forM2 and the division factor xk of the job Jk . Finally, algorithm
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generates the both parts, J ′
k and J ′′

k , of the preempted job in lines12 and 13. Results
of Algorithm1, i.e. J 1, J 2, J ′

k and J ′′
k , are returned in line14.

Theorem 1 Algorithm1 solves problem PSLE in time O(n22n).

Theorem 1 follows from the fact that Algorithm1 generates all feasible schedules
for problem PSLE. Functions setSubSequences and getLength have linear
complexity, provided that the values of powers ra have been calculated in advance.
The loop for in line4 is executed n times and the loop forall in line6 is executed
O(2n) times. Hence, the total running time of Algorithm1 is O(n22n).
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An Agent-Based Simulation Using
Conjoint Data: The Case of Electric
Vehicles in Germany

Markus Günther, Marvin Klein and Lars Lüpke

Agent-basedmodels are currently in wide use in innovation and technology diffusion
research, as they are able to capture the inherent complexity arising from adoption
processes and they allow the consideration of various influences of the underlying
social systems. While they are sometimes criticized as “toy models”, agent-based
models often do not reach their full potential if they lack an empirical foundation.
Therefore, we present an agent-based simulation that addresses consumers’ adoption
behavior of electric and plug-in hybrid electric vehicles in Germany using various
empirical data sources for parametrization and validation. In particular, we conducted
a focus group and a choice-based conjoint study. Additionally, our model is to our
knowledge the first that takes into account explicitly and comprehensively the supply
of home charging options.

1 Introduction

Agent-based simulation (ABS) has become increasingly popular in innovation and
technology diffusion research; it enriches traditional approaches (like those based on
differential equations or system dynamics approaches) by explicitly modelling the
diffusion process at a micro-level (for a review of agent-based models of innovation
diffusion, see, e.g., [9], and for some recent applications see [13, 16, 17, 19]). Such
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models allow in particular the consideration of heterogeneity of consumers who dif-
fer in their preferences, are geographically distributed across regions, are connected
to each other in various ways within a social system, and act as well as react based
on their limited available information. At the same time, agent-based approaches are
sometimes criticized as “toy models” [4], especially if they lack an empirical foun-
dation and therefore do not adequately capture actual behavior in real markets. Even
when they are empirically grounded, parameters are often derived from (aggregated)
sociodemographic datasets, and individual choice-behavior is therefore not taken
into account. Thus, profound parametrization as well as validation of agent-based
models often receives less attention.

We present an ABS that builds on empirical data derived primarily from a choice-
based conjoint study (CBC). CBC is a (realistic) purchase-decision simulation in
which participants repeatedly choose between productswith different attribute levels.
Our application case focuses on generation Y’s (future) adoption behavior on electric
(EV), plug-in hybrid electric (PHEV), and conventional vehicles (CV) in Germany.
Although several studies on EVs using agent-based simulation have been published
(e.g., [13, 16, 18]), they generally lack the abovementioned empirical foundation and
thus might not fully represent actual market behavior. To the best of our knowledge,
[18] is the only work using conjoint data to calibrate an ABS for EVs. However,
as they have a different focus than our study, they do not consider aspects such as
density of charging infrastructure. Ourmodel, in contrast, explicitly considers station
density, fast charging, and the capability of home charging as well as technological
progress.

The remainder of this paper is structured as follows. In Sect. 2 we illustrate the
CBC study, which we use to parametrize our agent-basedmodel (Sect. 3). The results
of our study are discussed in Sect. 4 and the paper concludes with a summary and
outlook toward future research.

2 Using a Choice-Based Conjoint Study for Parametrizing
an Agent-Based Simulation

In the process of empirical parametrization of ourABS,we first identified the relevant
product attributes through a literature review and by conducting a focus group. This
resulted in seven attributes that differ across the three vehicles (CV, EV, PHEV): (i)
engine type, (ii) price, (iii) consumption costs, (iv) station density, (v) charging time,
(vi) range, and (vii) home charging option. Interestingly, although several studies
on EVs have addressed the market potential of EVs by using discrete-choice exper-
iments (e.g., [5, 7, 18]), effects arising from the possibility of home charging have
been, so far, largely unconsidered, even though this option is a prominent beneficial
differentiation between EVs/PHEVs and CVs (e.g., [3, 10, 12]).

Based on these findings, we conducted a CBC study to address consumers’ main
adoption barriers and discover their preference structure for parameterizing our simu-
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lation. As the importance of several attributes and their levels differ massively among
vehicle types, we focus on new cars of the compact class, which is the most popular
class in terms of sales in Germany [11]. Note, as we used an alternative-specific
design, range and charging time were only displayed for EVs and the attribute home
charging option was exclusively shown for EVs and PHEVs.

Respondents were asked to choose their preferred car concept in twelve different
choice tasks. Every choice task consisted of a randomly constituted set of one EV,
one PHEV, and one CV. Additionally, we collected data on driving behavior, current
vehicle, anticipated next vehicle purchase, home charging options, and communi-
cation behavior (e.g., trust in advertising and personal communications concerning
vehicles).

The CBC study was conducted in July 2016 with the target sample group of
young German potential vehicle buyers. Following [14], we used Hierarchical Bayes
estimation to determine the individual parameters for the 552 participants. The root
likelihood (geometric mean of the predicted probabilities) of 0.72 and a percent
certainty of 0.70 indicate solid goodness of fit of the data. In-depth analysis of the
CBC data indicates high standard deviations concerning preferences and importance
of attributes, especially for engine type. This finding, inter alia, calls for a simulation
approach that is capable of capturing heterogeneity, such as an agent-based approach.

3 Agent-Based Model

Products—in our case, CV, PHEV, and EV—are characterized by various attributes
that differ not only in their performance levels (e.g., range) but also in their availability
(e.g., home charging is not available for CVs). Attributes may change over time due
to technological advances between product generations [6] or a change in station
density or price. Excepting price, the true performance of a given attribute may not
be instantly observable. However, once consumers have adopted a product, they learn
about the attribute levels through first-hand experience.

As Consumers are initially only aware of the product they own and its corre-
sponding attributes (in our case, CVs only). They learn about the other products and
form attitudes over time (i) by being exposed to marketing activities, (ii) by receiving
information on the attitudes of their peers via word of mouth, and, finally, (iii) by
first-hand experience when using the product after adoption. Note, consumers do not
trust all sources of information equally, and—as observed in our study—the biggest
impact on the perception of products (certainly) originates from first-hand experi-
ence, followed by word of mouth, and, finally, marketing activities. To exchange
information, consumers must be embedded into a social network. As we use geo-
graphic positioning of agents, we used the extended Barabási-Albert [1] network
algorithm described in [17], which anticipates a higher probability of interconnect-
edness based on geographic proximity.

Based on individual buying behavior, consumers enter the buying process and
evaluate all available products of which they are aware. Evaluation of a product
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is done using an additive utility function that takes into account the attitudes of a
consumer agent concerning each known attribute of each available product (using
individual part-worth utilities from the conjoint study) and (the obviously objective)
available price. Note, unknown product attributes are neglected in the utility esti-
mation and the benefit from home charging is only considered if consumers have
the physical ability for it. The product with the highest total utility is purchased.
We allow for repurchases but exclude a non-buying option. After adoption, con-
sumers start using the product and thus lean more about the “true” performance of
the attributes. Note that our model distinguishes all five phases of the adoption of an
innovation as described by [9].

Finally,marketing’s main purpose (mainly mass media advertising) is to inform
consumers about new products, their attributes, and their performance.

4 Simulation Results and Discussion

The model was implemented using AnyLogic 7.0.3. Parametrization was done using
data from our CBC study (for the part-worth utilities; see Sect. 2), an online survey
(for, e.g., parametrizing personal communication on the topic vehicles), census data
(for the geographical distribution of the agents), and various sources of technical
data about the vehicles. We simulate a time horizon of 15 years.

Different approaches for model validation were conducted, for instance, a cross-
model validation using the choice simulator of [15], which results in almost identical
market shares.

The first of four different scenarios on the diffusion and the development of the
market shares of EVs is the baseline scenario (Fig. 1, upper left) and shows for both
EVs and PHEVs the typical s-shaped curve of innovation diffusion. In scenario 2,
the product attributes of EVs improve due to technological progress and increasing
charging station density. Additionally, a subsidy on price is granted for the first three
years, which reflects the current situation in Germany, and marketing efforts are
increased. This subsidy initially pushes diffusion of PHEVs, but after three years,
the market share is slowly overtaken by the technologically improving EVs (Fig. 1,
upper right). In scenario 3, we substitute the price subsidy with a measure that allows
all consumer agents to have the option of home charging. This additional benefit for
EVs and PHEVs compared to CVs leads to a significant increase in market shares
for both alternative vehicles (Fig. 1, lower left). Finally, in the last scenario we also
assume technological progress without a subsidy on the initial price, but we lower
the charging time at every station to 30 min. This measure strongly accelerates the
diffusion of EVs at the expense of PHEVs, especially as the performance of EVs is
relatively close to that of CVs (Fig. 1, lower right).

Besides technological progress (e.g., in range), charging time is a critical factor
hindering the diffusion of EVs; charging station density is of less importance, as
long as a sufficient number of charging points exist. In contrast, our findings reveal
that home charging would be a substantial benefit for both PHEVs and EVs. In the
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Scenario 1: Baseline Scenario 2: Techn. progress and subsidies

Scenario 3: Techn. progress & home charging Scenario 4: Techn. progress & fast charging

Fig. 1 Market share of CVs, PHEVs, and EVs

near term, technological progresses in EV range, charging time, and charging station
density are likely to cannibalize market shares of PHEVs but not of CVs. However,
while the technological capabilities of EVs are still low, a purchase price subsidy
(like the current German one) will initially promote PHEVs—similar to what has
been observed in the Netherlands [8]. However, EVs profit later from high PHEV
market shares due to that promotional effect [5].

5 Conclusions

In this paper, we introduced an agent-based simulation approach calibrated with
empirical data derived from a CBC study in order to investigate the future market
potential of EVs in Germany. Based on our data, technological progress and the
possibility of charging at home fosters the acceptance of EVs as well as PHEVs,
whereas fast charging promotes EVs only.

One limitation is that our study focuses primarily on young potential car buyers,
which might lead to an effect similar to pro-innovation bias [2]. Currently, we do
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not consider station density as a spatial parameter but as an attribute of vehicle type,
which could be relaxed with real-world data and extended with consumers’ actual
driving, parking, and charging/refueling behavior. Moreover, we only simulate either
a fast or a regular charging network. Optimizing the charging infrastructure in terms
of locations and development of an economically efficient ratio of fast and regular
charging stations seem promising future directions for research, in which ABS based
on empirical data can be a very helpful approach.

References

1. Barabási, A.-L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random
networks. Physica A, 272(1–2), 173–187.

2. Ellen, P. S., Bearden, W. O., & Sharma, S. (1991). Resistance to technological innovations: An
examination of the role of self-efficacy and performance satisfaction. Journal of the Academy
of Marketing Science, 19(4), 297–307.

3. Frenzel, I., Jarass, J., Trommer, S., & Lenz, B. (2015). Erstnutzer von Elektrofahrzeugen in
Deutschland: Nutzerprofile, Anschaffung, Fahrzeugnutzung (First-time users of electric vehi-
cles in Germany: user profiles, acquisition, vehicle use). Berlin: Deutsches Zentrum für Luft-
und Raumfahrt e. V.

4. Garcia, R., & Jager, W. (2011). From the special issue editors: Agent-based modeling of
innovation diffusion. Journal of Product Innovation Management, 28(2), 148–151.

5. Götz, K., Sunderer, G., Birzle-Harder, B., & Deffner, J. (2012). Attraktivität und Akzeptanz
von Elektroautos. Ergebnisse aus dem Projekt OPTUM - Optimierung der Umweltentlas-
tungspotenziale von Elektrofahrzeugen (Attractiveness and acceptance of electric cars. Results
from the OPTUM project - Optimizing the environmental impact potential of electric vehi-
cles). ISOE-Studientexte, vol 18. ISOE - Institut für sozial-ökologische Forschung, Frankfurt
am Main.

6. Günther, M., & Stummer, C. (in press). Simulating the diffusion of competingmulti-generation
technologies: An agent-based model and its application to the consumer computer market in
Germany. In A. Fink, A. Fügenschuh &M.J. Geiger (Eds.), Operations Research Proceedings
2016.

7. Hidruea, M. K., Parsons, G. R., Kempton, W., & Gardner, M. P. (2011). Willingness to pay for
electric vehicles and their attributes. Resource and Energy Economics, 33(3), 686–705.

8. Kaiser, A. (2016). Warum Holland grün angemalten Spritschluckern 7000 Euro schenkt
(Why Holland pays greenly sprinkled 7,000 euros), manager magazin online. Retrieved July
14, 2017, from http://www.manager-magazin.de/politik/europa/elektromobilitaet-so-setzt-der-
elektroauto-boom-hollands-fiskus-zu-a-1072200.html.

9. Kiesling, E., Günther, M., Stummer, C., &Wakolbinger, L. M. (2012). Agent-based simulation
of innovation diffusion: a review. Central European Journal of Operations Research, 20(2),
183–230.

10. Krupa, J. S., Rizzo, D. M., Eppstein, M. J., Lanute, B. D., Galeema, D. E., Lakkaraju, K., et al.
(2014). Analysis of a consumer survey on plug-in hybrid electric vehicles. Transportation
Research Part A: Policy and Practice, 64(14), 31.

11. Kraftfahrt Bundesamt. (2016). Fahrzeugzulassungen im Juni 2016 (Vehicle registrations in
June 2016), 21/2016.

12. Morrissey, P.,Weldon, P.,&O’Mahony,M. (2016). Future standard and fast charging infrastruc-
ture planning: An analysis of electric vehicle charging behaviour. Energy Policy, 89, 257–270.

13. Noori, M., & Tatari, O. (2016). Development of an agent-based model for regional market
penetration projections of electric vehicles in the United States. Energy, 96, 215–230.

http://www.manager-magazin.de/politik/europa/elektromobilitaet-so-setzt-der-elektroauto-boom-hollands-fiskus-zu-a-1072200.html


An Agent-Based Simulation Using Conjoint Data … 601

14. Orme, B. (2000). Hierarchical Bayes: Why All the Attention? Sawtooth Software, Research
Paper.

15. Sawtooth. (2016) Lighthouse Studio v9.0. Sawtooth Software,Manual.
16. Silvia, C., &Krause, R.M. (2016). Assessing the impact of policy interventions on the adoption

of plug-in electric vehicles: An agent-based model. Energy Policy, 96, 105–118.
17. Stummer, C., Kiesling, E., Günther, M., & Vetschera, R. (2015). Innovation diffusion of repeat

purchase products in a competitive market: An agent-based simulation approach. European
Journal of Operational Research, 245(1), 157–167.

18. Zhang, T., Gensler, S., & Garcia, R. (2011). A study of the diffusion of alternative fuel vehi-
cles: An agent-based modeling approach. Journal of Product Innovation Management, 28(2),
152–168.

19. Zsifkovits, M., & Günther, M. (2015). Simulating resistances in innovation diffusion over
multiple generations: an agent-based approach for fuel-cell vehicles.Central European Journal
of Operations Research, 23(2), 501–522.



Hybrid Agent-Based Modeling
(HABM)—A Framework for Combining
Agent-Based Modeling and Simulation,
Discrete Event Simulation, and System
Dynamics

Joachim Block

1 Hybrid Methods in OR

Decision and policymakers in ourmodernworld are facing complex and unstructured
problems in a volatile and differentiated environment. The decision process for these
hard problems is still dominated by intuition and judgement. However, replacing
judgement and intuition with algorithms would result in much better solutions as
Kahneman et al. state [1].

Standard optimization algorithms such as linear programming fail in solving hard
problems when a certain size is exceeded. Despite impressive progress in computa-
tional power, computational space and time complexity often do not permit identify-
ing an optimal solution in an acceptable amount of time. On the other hand, heuristics
have a much lower complexity but cannot guarantee to find an optimal solution.

In order to keep a balance between efficiency and quality of the solution, hybrid
algorithms gain more and more interest within the OR community [2]. This kind
of algorithms blends different OR techniques into new algorithms. For instance, by
mixing exact mathematical methods with heuristics the conflict between accuracy
and reliability on the one hand and computational time needed on the other hand can
be resolved [3].

In addition to hybrid algorithms, hybridization spreads to simulation as well.
Simulation is still one of the most widely used quantitative approaches for deci-
sion making [4]. Similar to hybrid algorithms, hybrid simulation integrates different
simulation paradigms to exploit the individual strengths by overcoming the inherent
limitations at the same time. For instance, system dynamics (SD) handles time con-
tinuously [5] while discrete event simulation (DES) is restricted to discrete time steps
or events. On the other hand, DES, due to its micro perspective, is able to consider
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more details than highly aggregated SD. In contrast to these two paradigms, agent-
based modeling and simulation (ABMS) can cope with flexible structures. Overall
aim of hybrid simulation is to offer more realistic simulation models and, therefore,
to contribute to better decisions [6].

The scientific literature offers a growing number of publications where hybrid
simulation is applied to OR problems. However and in contrast to hybrid algorithms,
this field of research seems still to be in its infancy. Significantly, a recent review of
192 simulation models for sustainability reveals only eight hybrid models between
2000 and 2015 [7].

It is not due to a lack of programming tools why hybrid simulation is not very
commonly used. Indeed, tools such as AnyLogic® do support the implementation
of hybrid simulation models. Rather, it is the absence of an established formalism
to specify models of this kind. While the different simulation paradigms are well
elaborated the formalisms to connect and integrate two or more paradigms into
holistic models are not.

We aim to foster the use of hybrid simulation by introducing a formalism to specify
models based on ABMS, DES, and SD. Our hybrid agent-based modeling (HABM)
framework deliberately focuses on these three paradigms. Besides being capable of
explicitly handling time, they are the dominant simulation paradigms in many OR
fields such as supply chain management [8] or healthcare [9].

2 Building a Dynamic Agent World

Different ways to combine ABMS, DES, and SD into a hybrid simulation model do
exist. However, we propose to embed DES and SD into ABMS. More precisely, the
internals of an agent are modeled by DES and SD with agents forming a network
of interacting components. This approach is in line with widely found so called
low-level teamwork hybrid algorithms where teamwork exploration is extended by a
low-level exploitation algorithm. In HABM, ABMS builds the frame and both DES
and SD the guiding rules.

An agent is an entity that is embedded into and interacts with an environment. It
is capable of flexible reactive, proactive, and social behavior to satisfy its intentions
or design objectives (derived from [10]). Hence, an agent-based model consists of a
set of agents A, possibly a set of objects O , and relations R between them. All these
elements together form a world W . It is important to note that a world is not static
but changes as time evolves.

2.1 Agents and Objects

Agents and objects have observable as well as non-observable attributes and exhibit
behavior. Attributes and behavior can be both discrete and continuous. Let us think
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about reading a book. Reading a page is a continuous behavior while turning the
page can be classified as a discrete action.

The theory of hybrid systems [11] offers an established approach to specify con-
tinuous state systems that are disturbed by transitions in discrete states. This in mind,
we model an agent as a hybrid automaton with a discrete subsystem (DES) and a
continuous one (SD). Modeling agents and objects by hybrid automata enables us
among others to take use of verification tools for instance to identify critical Zeno
executions where the simulation would get locked [12].

Definition 1 An agent a ∈ A is defined as a hybrid automaton in the form

a = (id, Xdisc, Q, E,Σcd , Trans, Out,Y disc,

Guard, Reset, Xcont ,U, f, h,Y cont , s0, qω)

where

– id is the unique identifier of the agent
– Xdisc is the set of input events and ports
– Q is the finite set of discrete states
– E ⊆ Q × Q is the set of directed edges
– Σcd is the set of events caused by the internal continuous dynamics
– Trans : E → 2(Xdisc ∪ Σcd ) is the discrete state transition condition
– Out : E → Y disc is the discrete output function. An output is sent when a dis-
crete state transition takes place.

– Y disc is the set of output events and ports
– Guard : Q ×U → Σcd ∪ ∅ is the guard condition. It describes the events that
result from the internal continuous dynamics.

– Reset : E ×U → U is a reset map. This function describes the value to which
the continuous state is set in case of a discrete state transition.

– Xcont is the set of continuous input values and ports
– U = R

n is the set of continuous states
– f : U × Xcont → U which describes, through a differential equation, the contin-

uous evolution of the continuous state vector
– h : U × Xcont → Y cont is the continuous output function
– Y cont is the set of continuous output values and ports
– s0 ∈ Q ×U is the initial state and qω ∈ Q is the exit state

The discrete subsystem is defined by the structure DES = (Xdisc, Q, E, Trans,
Out,Y disc) and the continuous one by SD = (Xcont ,U, f, h, Y cont ). The integration
is as follows.When the continuous state variable exceeds a given threshold an internal
event is triggered (Guard). On the other hand, a discrete state transition (Trans)
can force the continuous state variable to perform a jump (Reset).

The definition of an objectmatches that of an agent except that a dedicated discrete
exit state qω - indicating that the agent will leave the world - does not exist. In
contrast to an agent, an object does not exhibit rational behavior and, hence, cannot
deliberately leave the world.
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2.2 Dynamic Networks of Agents and Objects

Emergent behavior of an agent-based system is mainly determined by interactions
between agents and objects and, moreover, within the agent population. However, the
relations between the different elements of an agent world are often not static. In fact,
the underlying interaction network can be highly dynamic as agents leave the world
and new ones enter and existing links vanish while new relations are established as
time passes by.

For HABM, we take a similar approach as used for describing dynamic discrete
event system specification (DEVS) networks [13]. So, a network executive χ, which
controls the structure of the network, is introduced (see Fig. 1).

Definition 2 A dynamic network of hybrid automata is a structure

Ndyn = (Xdisc
N , Xcont

N ,Y disc
N ,Y cont

N ,χ, Mχ)

where

– Xdisc
N is the network’s set of input events and ports

– Xcont
N is the network’s set of continuous input values and ports

– Y disc
N is the network’s set of output events and ports

– Y cont
N is the network’s set of continuous output values and ports

– χ is the identifier of the network executive
– Mχ is the model of the network executive

Again, themodel of the network executiveMχ consists - similar to our hybrid automa-
ton definition - of a discrete and a continuous state system for internal decisions.

Fig. 1 Example of a dynamic agent-based network with the executive χ
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In addition, this component has encoded the state of the whole network of hybrid
automata N at time t .

Definition 3 A network of hybrid automata is a structure

N = (D, {Md}, {Id}, {Zdisc
d }, {Zcont

d })

where

– D is the set of component identifiers
– {Md} is the set of hybrid automata definitions for all d ∈ D
– {Id} is the set of influencers for all d ∈ D
– {Zdisc

d } is the set of discrete input interface maps for all d ∈ D
– {Zcont

d } is the set of continuous input interface maps for all d ∈ D

As the network is an internal state of the executive it can be reconfigured. The recon-
figuration can for instance be an adjustment of the interface maps or the addition and
removal of network components. The transformation of the network is implemented
in the internal decision system. However, only discrete state transitions can force the
network specification to change from Nt to Nt+1.

Three mechanisms can initiate a structural change of the network. First of all, a
network component sends a request to the executive. Second, the internal decision
process of the network executive forces it. Finally, an external event to the network,
e.g. by the simulation user, triggers a structural change.

3 Discussion and Conclusion

We have successfully applied the HABM framework to the OR field of strategic
workforce planning in a public sector context [14]. People in such organizations
pass different grades during their professional life while performing at work. The
challenge for human resource (HR) managers is to implement sustainable HR prac-
tices and policies in order to optimize overall performance of the workforce.

In our simulation model the workforce is modeled as a set of agents, each rep-
resenting an employee. The actual grade a person is in and the promotion into a
higher grade is implemented in DES while continuous performance is realized by
SD. The underlying SD model [15] is founded on the well established AMO the-
ory where performance is a function of ability, motivation and opportunity. New
employees are hired while older ones retire. Hence, the workforce changes con-
stantly. Besides removing and inserting agents, the network executive applies HR
policies to the workforce by among others deciding which employee to promote in
case of an existing vacancy. The simulation model enables HR managers to simulate
different policies, e.g. promotion by seniority or by performance or even an increase
in training, and to study the effects on overall performance. Simulation runs show
for instance that an increase in training does not necessarily lead to a higher overall
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performance. Rather, if not flanked with other actions - for instance a higher salary
or better career opportunities - particularly well trained high potentials will quit the
organization. In the end, the opposite results: a drop in organizational performance.

HABM provides a framework for hybrid ABMS, DES, and SD models. The
graphical representation of DES and SD facilitates the critical discussion with and
the understanding by model stakeholders with a weak mathematical background.
This is important as managers should not trust a model that they do not understand.
Furthermore, HABM fosters the reuse of well validated models offered by the SD
community. However, HABM is not limited to simulation models for fields such as
strategic workforce planning or supply chain networks. Moreover, it can be used for
the specification of agent-based metaheuristics.
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The European Air Transport System:
A Methodological Perspective on System
Dynamics Modeling

Gonzalo Barbeito, Ulrike Kluge, Marcia Urban, Maximilian Moll,
Martin Zsifkovits, Kay Plötner and Stefan Pickl

1 Introduction

Due to an ever-increasing complexity in aviation related operations, modeling and
simulation became widely used tools for analyzing the underlying systems and their
associated behavior. System Dynamics (SD) is a well-known technique capable of
qualitatively assessing the system as a whole by studying the interrelations of differ-
ent internal operations and exogenous effects, and their contribution to the systems
general behavior. The semantic simplicity and clear cause-effect structures in SD, as
well as its potential for decision support, made this technique a popular choice among
modelers to represent the non-linear dynamics arising from complex transport sys-
tems [1]. This paper describes challenges and insights from the development process
of the model for theMATS project (Modeling the Air Transport System), a SD based
approach to the aviation industry. The objective of this model is to understand how
each major stakeholder in the air transport system is affected by the complex dynam-
ics involved in this industry. This paper considers the aspects required for building a
meaningful model, based not only on expert knowledge and modelers intuition, but
also aided by data science techniques to extract information from exhaustive datasets
describing the system.
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2 Literature Review

Previous SDmodels in the commercial aviation industry take a broad range of aspects
into consideration, such as the effect of policies regarding carbon footprint [2] and the
identification of business cycles [3–5] among others. In [6–8] highly comprehensive
SDmodels are introduced. These models are aimed to forecast air travel demand and
terminal capacity expansion analyzing the relation between passenger demand and
airport capacity and considering GDP and population growth as principal demand
drivers. The aggregated logic behind these works was used as the starting point of
the MATS model. However, it stands out in its holistic approach to the air transport
system.

3 Methodology

This work describes the devised solution to cope with three main challenges of the
project. The first one involved defining a clear strategy for interdisciplinary team
management, because of the complexity of the subject and the background diversity
of each member of the involved workgroups. The second task, information gath-
ering, accounted for a significant share of data collection and analysis, as well as
understanding the studied system, while becoming familiar with the dynamics gov-
erning its behavior. The third and final task was actually building the model, i.e. both
developing the structure and determining the right parameters throughout the model.

3.1 Modeling Approach: System Dynamics

Developed by Jay W. Forrester in the 1950s, this approach allows a high-level study
of complex systems over time throughmodeling and simulation of sufficiently aggre-
gated structures [9].Using a combination of simplemodeling elements (i.e.Variables,
Stocks or Levels, and Material and Information Flows), the results of this technique
are highly approachable models, ideal for the introduction of stakeholders to the
modeling process.

3.2 Team Management: The SCRUMMethodolgy

The SCRUMmethodology has been established as an agilemethod in software devel-
opment. It enables a faster and more flexible development process of new software
or products [10]. This methodology accepts the existence of uncertainty in the devel-
opment process (e.g. during aircraft conceptual design [11]) and a certain degree of
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unpredictability in the steps required to reach a final product or software. The con-
cept of roles is also of importance, with three main roles required for the workflow:
Product Owners or Stakeholders are responsible for defining the customer-centric
aspects that will add value to the product; Developers are in charge of carrying the
operative tasks that will result in the actual product; and a Scrum Master acts as
resource facilitator for the whole team [12]. This technique allows to consider not
only initial but also additional requirements, which might arise during later steps
of the process [13]. For the concrete development of the SD model and according
to the SCRUM roles, the team was divided into two sub-teams: the modelers team
acting as developers, with core competencies in SD modelling, and the input team
as a combination of aviation experts with strong data handling competences and
developers.

3.3 Data Analysis and System Understanding

Two types of information sources were required for developing the model: expert
knowledge and system data. The first one, also including modelers insight and intu-
ition, was mostly used for the structure and logic development of the model. Exper-
tise on the air transport system was provided by the Bauhaus Luftfahrt workgroup.
The downside of expert-driven modeling is the potential introduction of a certain
degree of bias, given the particular mental models that each person possesses [9]. To
overcome this, data characterizing the system was used. As a compromise between
quantity and quality, data was collected by the input team between the years 2000
and 2015, setting the monetary base on the first year collected. This particular scope
was selected for its high availability of data, and was capped to fifteen years in order
to avoid the inclusion of past, non-related dynamics.

For the European MATS model, 43 European countries were included. The coun-
try set was retrieved from the UN Report World Population Prospects: The 2015
Revision [14]. From the original list by the UN, the countries Holy See, Channel
Islands, Faroe Islands, Gibraltar, and Isle ofManwere excluded for the purpose of the
MATS model, as these are countries with proportionally small GDP and gathering
reliable data for them proved a rather challenging task.

3.4 Model Parameterization: Analysis and Sources

This section presents a short description of a fewparameters requiring amore detailed
explanation on the consulted sources and their inclusion process.

GDP Growth Rate: The gdpGrowthRate for the year 2000–2015 was calculated
using data from the World Bank. The sum of the weighted gdpGrowthRate was
implemented into the model for each year accordingly. The gdpGrowthRate for 2016
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and 2017 was retrieved from a forecast by the European Commission [15]. Years
2018 to 2050 were covered by an analysis by PWC [16]. No further information
was provided on which countries have been included in the PWC study. Due to a
lack of data, gdpGrowthRate covering all 43 countries in scope could not directly be
implemented in the model for all years 2000–2050. For this reason, especially for
forecasted data, in some cases the EU28 was taken as a proxy for all 43 countries in
scope.

TravelerConversionRate: For the travelerConversionRate, anOLS - regressionwas
conducted to test the statistical influence of GDP per capita (independent variable)
on number of trips (depended variable, taken here as a proxy for general trips). Data
on the number of trips for all 43 countries was retrieved from Eurostat [17] and
GDP per capita data for all 43 countries from the World Bank. Population data for
all 43 countries was used to calculate a new variable, trips per capita with at least
one overnight stay, as detailed in [18]. Both variables, GDP per capita and trips per
capita have been logged. Hence, the coefficient can be used as an elasticity in the
model [19].

Mode ShareAviation: ThemodeShareAviation variable disaggregates from the pas-
senger demand for all transportation modes the number of people travelling using
air transport only. This variable is calculated by taking a European Mode Share
percentage for the year 2000, 2010 and 2014 from a report by the European Com-
mission on EU transport in figures (euModeShareAviation). It is worth noting that
these numbers are for intra-EU flights on EU27 only and taken as a proxy for general
modeShareAviation [20].

4 Model Description

The model relates a variable demand to several dimensions or stakeholders within
the air transport industry, such as aircraft manufacturers, airports and airlines, in
order to qualitatively assess the impact on each one of these dimensions. All units
are in the metric system, and the currency is United States Dollars. As an example,
the Passenger Subsystem will be described in more detail and shown in Fig. 1.

Passenger Subsystem: The stronger dynamics of the model, those driving the tem-
poral evolution of the system, are handled by the Passenger subsystem, converting
the effects of internal changes into variations in the air travel demand. Passenger
demand is driven mainly by GDP growth, and calculated as a percentage of the sum
of all travelers. While there are several other factors driving passengers air transport
demand [21], GDP is the most well-known and studied of them. Moreover, testing
further demand drivers with an OLS-regression, Population and Population Growth
were also found to strongly influence the commercial air industry demand and were
included as secondary demand driver. The results are then passed to a single vari-
able forecasting the number of air passengers for a certain year. Once the passenger
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Fig. 1 Passenger Subsystem

demand is disaggregated in each transportation mode, changes in the flight ticket
price were also found to affect the demand of this particular mode. This behavior is
generated in the airline model, and integrated as a factor in the passengers subsys-
tem, externally influencing the number of air travelers over time. The final output of
this subsystem is the weighted combination of all passengers through the number of
kilometers expected to travel. This results in a new variable, measured in kilometers,
commonly known in the industry as Revenue Passenger Kilometer (RPK).

Airline Subsystem: The resulting number of air passengers as well as the resulting
RPK are linked with the airline model. An increasing number of air passengers will
have a positive impact on the number of aircraft an airline will order in a subsequent
simulation step. Threshold values for a desired load factor are included in order to
influence the decision to order a new aircraft. Furthermore, the RPK serves as an
input to calculate the airline seat load factor.
The model considers furthermore factors like the number of flights, operating costs
and ticket prices.

Airport Subsystem: The airport subsystem is in charge of keeping track of the
structural capacity variation in all airports throughout the region. This includes also
a logic for runway expansion and new airport construction. The main objective is
to provide the required terminal capacities for the number of air travelers and the
required runways for the number of requested flights.

Aircraft Manufacturer Subsystem: This subsystem was created to model the
expansion logic of the aircraft supply side considering mainly economic variables
from the manufacturer’s perspective. The manufacturer model is currently narrowed
down to the production of additional aircraft when ordered from an airline, with a
lead time of 6 months.
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5 Conclusion and Future Work

This paper presents the methodological aspects involved in the development process
of a new System Dynamics (SD) model for the air transport industry. While the inte-
gration of a team with significant background diversity presented several challenges,
the SCRUM methodology, coupled with a well-thought management strategy pro-
vided several benefits that significantly outweighed the challenges. The next step
on the project is to conduct a validation of the model, and to adapt parameters and
structure for any behavior not matching the data. The disaggregation of average
elements is also a priority on the project. One example being the introduction of a
second aircraft manufacturer, which is expected to create a market with competition.
Moreover, through a combination of variants of the model with different data and
a network system connecting them, the model will be extended to the global level
following an Operations Research based approach.
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A Galerkin Method for the Dynamic
Nash Equilibrium Problem with Shared
Constraint

Zhengyu Wang and Stefan Pickl

1 Problem Formulation

The dynamic Nash equilibrium problem with shared constraint (NEPSC) is ubiq-
uitous in engineering and economics [5]. For instance in real traffic situation, the
guidance and control of several autonomous vehicles can be perfectly modelled by
the dynamic NEPSC. Such a problem involves N agents, each of which (the ν-th
agent, ν = 1, . . . , N ) solves the optimal control problem of the form

min(yν ,uν ) ψν(yν(T ), y−ν(T )) +
∫ T

0
ϕν(t, yν(t), y−ν(t), uν(t), u−ν(t))dt

s.t. ẏν(t) = Fν(t, yν, uν) with yν(0) = y0ν ∈ Rnν

uν(t) ∈ Uν(u−ν(t)) a.e. in [0,T],

(1)

where (yν, uν) ∈ Rnν × Rmν denotes the state-control pair of the ν-th agent. The
(1) is parameterized by y−ν = (yν ′)ν ′ �=ν and u−ν = (uν ′)ν ′ �=ν , which denote the state
and control variables of all the rivals, respectively. We write y = (yν, y−ν) and y =
(yν, y−ν) when emphasizing the ν-th agent’s state/control variables. In this article
we focus on the linear-quadratic case: the dynamic Fν(t, yν, uν) = Aν yν + Bνuν +
f ν(t) is linear and the two cost functionals are quadratic:
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ψν(y) = 1
2 y

T Eν y + yT cν

ϕν(t, y, u) = 1
2u

T Mνu + 1
2 y

T K ν y + uT [Qν y + qν(t)],

where Aν ∈ Rnν×nν , Bν ∈ Rnν×mν , Qν ∈ Rm×n , f ν : [0, T ] → Rnν , qν : [0, T ] →
Rm , cν ∈ Rn , the matrices Eν, Mν ∈ Rn×n and K ν ∈ Rm×m are symmetric. Due to
the shared constraint, the ν-th agent’s control set is a set-valued mapping

Uν(u−ν) = {uν ∈ Rmν | Lνuν + lν ≤ 0, Gνu + gν ≤ 0}, (2)

where Lν ∈ Rkν×mν , lν ∈ Rkν , Gν ∈ Rrν×m , gν ∈ Rrν .
The dynamic NEPSC is a hard problem, the standard optimization techniques can

not be directly applied to it because of the coupled cost functionals. Well known is
that the Pontryagin’s minimum principle can reduce each (1) into a system consisting
of ordinary differential equations (ODE) and a minimization. In [3], by formulating
the optimality of the minimization as variational inequality (VI), and by the all-in-
one method of collecting the reduced systems into a larger one, we reformulate the
dynamic NEPSC into the following system

⎧⎨
⎩

ẏ(t) = Ay(t) + Bu(t) + f (t) with y(0) = y0

v̇(t) = −Ky(t) − AT v(t) − QT
1 u(t) with v(T ) = Ey(T ) + c

u(t) ∈ SOL
(
U (u), q(t) + Q2y(t) + BT v(t) + M(·)) with t ∈ [0, T ],

where A, E, K ∈ Rn×n , B ∈ Rn×m , Q1, Q2 ∈ Rm×n , M ∈ Rn×m , y0, c ∈ Rn , f :
[0, T ] → Rn , q : [0, T ] → Rm , these data are reconstructed from those of the (1).
Here SOL

(
U, q(t) + Q2y(t) + BT v(t) + M(·)) denotes the set of the solutions of

the quasi VI: Find u ∈ U (u) such that for fixed (t, y, v), it holds

(z − u)T [q(t) + Q2y + BT v + Mu] ≥ 0. (∀z ∈ U (u) =
N∏

ν=1

Uν(u−ν))

Solving the quasi VI requires the fixed point condition u ∈ U (u), which yields

u ∈ U = {z ∈ Rm : Lz + l ≤ 0,Gz + g ≤ 0}.

Replacing the set-valued mappingU (u) by the setU , we obtain a standard VI, which
is more readily to be treated than the quasi one. Somehow, the coupled nature of the
control set is removed by usingU enlarged from theU (u). Now the dynamic NEPSC
is reduced into the differential variational inequality (DVI) [9]

⎧⎨
⎩

ẏ(t) = Ay(t) + Bu(t) + f (t) with y(0) = y0

v̇(t) = −Ky(t) − AT v(t) − QT
1 u(t) with v(T ) = Ey(T ) + c

u(t) ∈ SOL
(
U (u), q(t) + Q2y(t) + BT v(t) + M(·)) with t ∈ [0, T ].

(3)
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The DVI reformulation offers a very powerful access to the dynamic NEPSC [8],
however, solving the DVI is still very challenging. Actually, among the few existing
methods, the time stepping method is the most popular for the DVIs [1, 9], which
applies the Euler scheme to the ODEs and solves the VI at the grid points. Such a
method was shown convergent of 1-order in the best case [2].

For contributing a remedy of such an inadequacy, we propose a VI-based Galerkin
method for solving the equilibrium solution of the dynamic NEPSC, which can have
high order convergence. This is done by reformulating the DVI as a VI posed in an
Hilbert space. Such a VI reformulation is sensible since the well-posed property of
the ODE is utilized, and it is advantageous because abundant numerical methods, like
the Newton-type methods, are available for VIs [7, 10]. The numerical performance
of the proposed method is illustrated by a two-agent zero-sum Nash equilibrium
problem.

2 Galerkin Approximation

2.1 Variational Inequality Reformulation

Denote by X = L2(0, T ; Rm) the Hilbert space of the m-dimensional vector-valued
square integrable functions equipped with the inner product 〈·, ·〉L2 . Let (3) have
a weak solution (y∗, v∗, u∗), namely, y∗ and v∗ are absolutely continuous and u∗
integrable such that theODEs in (3) are fulfilled in theweak sense of integral equation
and the VI condition is fulfilled almost everywhere in [0, T ]. Then by applying the
constant variation formula to the state equation, we obtain:

y∗(t) = et A y0 +
∫ t

0
e(t−s)ABu∗(s)ds. (4)

Again by applying this formula to the adjoint equation with the terminal value

v∗(T ) = c + Ey∗(T ) = c + E

(
eT Ay0 +

∫ T

0
e(T−s)ABu∗(s)ds

)
, (5)

we obtain

v∗(t) = e−(t−T )AT
v∗(T ) +

∫ T

t
e(s−t)AT

Qu∗(s)ds. (6)

By plugging the form of y∗(t) and v∗(t) into the VI in (3), we can see that u∗ is a
solution of the VI(Ω,Φ) posed in X : find u ∈ Ω ⊆ X such that for any w ∈ Ω

〈w − u, Φ(u)〉L2 =
∫ T

0
(w(t) − u(t))TΦ(u(t))dt ≥ 0, (7)
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where Ω = {u ∈ X : u(t) ∈ U a.e. in [0, T ]}, Φ(u(t)) = Mu(t) + Lu(t) + ĝ(t),
and where

ĝ(t) = BT e−(t−T )AT (
c + EeT Ay0

) + Ket A y0,

Lu(t) =
∫ T

0
BT e−(t−T )AT

Ee(T−s)ABu(s)ds +
∫ T

t
BT e(s−t)AT

Qu(s)ds

+
∫ t

0
Ke(t−s)ABu(s)ds.

Theorem 1 If (y∗, v∗, u∗) is a weak solution of the DVI (3), then u∗ is a solution of
the VI(Ω,Φ). Conversely, if u∗ is a solution of the VI(Ω,Φ), then (y∗, v∗, u∗) is a
weak solution of (3), and (y∗, u∗) is an equilibrium solution of the dynamic NEPSC
(1) in the weak sense, where y∗ and v∗ are given by (4)–(6).

Proof As indicated above, (y∗, v∗, u∗) is a weak solution of the DVI (3) if and only
if u∗ is a solution of the VI(Ω,Φ); and if (y∗, v∗, u∗) is a weak solution of the DVI
(3), then (y∗, u∗) is an equilibrium solution of the dynamic NEPSC (1) in the weak
sense. For the details we refer to Theorem 3.1 in [3]. �

2.2 Approximation Scheme and Convergence Analysis

Let Xh be a finite-dimensional subspace of X dependent of the stepsize of the sub-
division of the interval [0, T ]. The orthogonal projection onto the subspace Xh is
denoted by Ph : X → Xh , with ‖I − Ph‖L2 = C(h) → 0 as h ↓ 0. TakeΩh = PhΩ
as the orthogonal projection ofΩ onto Xh . Note thatΩh is convex and closed because
so is Ω and Ph is linear and bounded. Denote by PΩh the metric projection onto Ωh .
It is easy to see that limh↓0 ‖PΩh u − u‖L2 = 0 for any u ∈ Ω , since Phu ∈ Ωh and

‖PΩh u − u‖L2 ≤ ‖Phu − u‖L2 ≤ C(h)‖u‖L2 → 0. (h → 0)

Denote by Φh = PhΦ. Now we are in the position to apply the Galerkin approxima-
tion to the VI(Ω,Φ), which yields a finite-dimensional VI(Ωh, Φh): find uh ∈ Ωh

such that
〈vh − uh, Φh(uh)〉L2 ≥ 0. (∀vh ∈ Ωh)

Theorem 2 The VI(Ωh, Φh) has a unique solution if Φ is strongly monotone, and
has a solution if Φ is pseudo-monotone and if there is a u0 ∈ Ω such that

〈Mu + Lu, u − u0〉L2

‖u‖L2
→ +∞ as ‖u‖L2 → ∞, u ∈ Ω. (8)
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The VI(Ω,Φ) and its Galerkin approximation VI(Ωh, Φh) have their unique
solutions if the operator Φ is strongly monotone, which is fulfilled if, for example,
the matrix M is positive definite and T is small enough. The VI(Ω,Φ) has a solution
ifΦ is pseudo-monotone and (8) holds.Wemention thatΦ is pseudo-monotonewhen
M is positive semi-definite, since L is a compact operator. We then can establish the
following convergence results, for which the proof can be found in the supplement
material [11].

Theorem 3 Let uh be a solution of the VI(Ωh, Φh).
(1) If Φ is strongly monotone, then the VI(Ω,Φ) has a solution u and there is a
constant C ≥ 0 such that

‖uh − u‖L2 ≤ C
√‖PΩh u − u‖L2 .

(2) If Φ is monotone and {uh} is uniformly bounded for h small enough, then {uh}
has a subsequence, which weakly converges to a solution u of the VI(Ω,Φ).

3 Numerical Experience

In this section we apply the Galerkin method and the time stepping method for the
example arising from a two-agent zero-sum dynamic NEPSC [3], which generate
respectively the numerical solutions (xhg , u

h
g) and (xhe , u

h
e ), where the subscript “e”

stands for “Euler” since the time stepping method actually makes the use of implicit
Euler method to dicretize the involved ODEs. The exact solution of the problem is
always denoted by (x, u).

For realizing the Galerkin method, we take Xh as the subspace of piecewise
linear functions in X = L2(0, T ; Rm). The numerical solution uh of VI(Ωh, Φh) is
obtained by using the PATH solver [4], the approximate state yh and the approximate
costate vh are given by

yh(t) = et A y0 +
∫ t

0
e(t−s)ABuh(s)ds,

and

vh(t) = e−(t−T )AT
vh(T ) +

∫ T

t
e(s−t)AT

Quh(s)ds,

where vh(T ) = c + Eyh(T ). Given the computed uh , the two approximate states
xh = (yh, vh) are computed by utilizing the Krylov subspace approximation to eval-
uate thematrix exponential, for attaining a high precision [6]. The both two numerical
methods are coded and performed in the setting of Octave 4.0.
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Fig. 1 Errors of (xhg , uhg ) in ‖ · ‖L2 and ‖ · ‖2 at T = 3π

Here we are interested in the errors of the state and the control, in ‖ · ‖L2 and in
‖ · ‖2, namely we compute the values of

‖xhg − x‖L2 , ‖uhg − u‖L2 , ‖xhg (T ) − x(T )‖2, ‖uhg(T ) − u(T )‖2,
‖xhe − x‖L2 , ‖uhe − u‖L2 , ‖xhe (T ) − x(T )‖2, ‖uhe (T ) − u(T )‖2.

If, for example, log(‖xhg − x‖L2) is affine w.r.t. log(h), then the slope gives the order
of the state convergence in ‖ · ‖L2 . Therefore we report the logarithms of the errors
in different h. The numerical results are plotted in Fig. 1, which approximately
suggest a 2-order convergence of the Galerkin method, and show that the method
numerically outperforms the time stepping scheme with much better precision in
different magnitude of scale.

4 Conclusions and Outlook on Future Research

This paper proposes a Galerkin method for the dynamic NEPSC, offering a powerful
access to this problem. It is necessary and promising to extend our method to the
general nonlinear case where the constraints are also dependent of the state and could
be non-convex. The non-convexity of the constraints happens, i.e., in the control of
autonomous vehicles where we have to avoid their collisions.
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Generic Construction and Efficient
Evaluation of Flow Network DAEs
and Their Derivatives in the Context
of Gas Networks

Tom Streubel, Christian Strohm, Philipp Trunschke
and Caren Tischendorf

1 Introduction

The dynamic behavior of flow networks is often modeled by differential-algebraic
equations, cf. [1]. The network is considered as an oriented graph G = (N , E) with
a node set N and a hyper edge set E . A hyper edge E ∈ E is a non-empty ordered
tuple of nodes from N . Each hyper edge Ei ∈ E represents a network element such
as a junction, pipe, valve or compressor station. The element model is then given by
an element function f̃i : Rmi × Rmi × R → Rni imposing

f̃i (ẋi (t), xi (t), t) = 0. (1)

When simulating gas networks, t refers to the time and x usually contains pressures
and flows. Depending on the topology some element functions may share some of
their variables with others. If, for example, two pipes represented by Ei , E j ∈ E are
sharing the same junction, then their pressures associated to that junction are equal.

Further, it is important to mention that f̃i may not depend on all components of
ẋi . And in the case of static elements ẋi has even no influence. By taking the union x
of all needed xi , i. e. ignoring redundant variables, and incerting hyperedge functions
that describe certain xi explicitly, we obtain the whole flow network model as

f (ẋ(t), x(t), t) =
⎛
⎜⎝

f1(ẋ(t), x(t), t)
...

fm(ẋ(t), x(t), t)

⎞
⎟⎠ = 0 (2)
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with f j (ẋ(t), x(t), t) for j = 1, ...,m ≤ |E | being deduced from f̃i (ẋi (t), xi (t), t)
for i = 1, ..., |E |. Notice that the functions f j may be not smooth at certain points.
This is particularly the case when valves and limiting bounds are described (usually
by min- and max-evaluations).

Several solvers have been developed to solve DAEs of the form (2), e. g. DASPK
fromL. Petzold, ode15i (inMatlab) fromL.F. Shampine and IDAS fromSUNDIALS.
Such solvers often run more efficiently and more stable if the user provides not only
evaluations of the residual function f (y, x, t) but also evaluations of the partial
derivatives fy(y, x, t) and fx (y, x, t).

In this paper we present a concept that automatically provides functions f , fy and
fx . The user has to provide only the network graph G, the element functions f̃i and
their sparsity patterns. Thereby, the sparsity patterns of fy and fx are determined prior
to their evaluation. Previously determined values of f , fy and fx can be exploited.
The presented approach focusses on the use of automatic differentiation [2] but could
also use other variants of differentiation. For treating non-smooth functions as min()
and max() we use an approach via their abs-normal-form representation, see Sect. 3.

2 Jacobian Representation

We consider the structure of the nonlinear functions f to be differentiated for the
determination of fy and fx . Fixing x = x∗, t = t∗ and y = y∗, t = t∗, respectively,
we have to differentiate the functions

f(y) :=
⎡
⎢⎣

f1(y, x∗, t∗)
...

fm(y, x∗, t∗)

⎤
⎥⎦ , f(x) :=

⎡
⎢⎣

f1(y∗, x, t∗)
...

fm(y∗, x, t∗)

⎤
⎥⎦ (3)

in order to provide fy and fx . Sincewe are interested in an element-wise computation
of f′(y) and f′(x) the CSR format (compressed row format [3]) is a suitable choice
to represent fy and fx .

3 Treatment of Switching Elements Using
the abs-Normal-Form

In the case of switching elements, we need min/max-evaluations. Consequently, the
element functions f̃i are only piecewise differentiable (PD). In order to treat them,
we introduce the following representation of functions.

A function f is called in abs-normal-form (ANF, [4]) if there exist twice differen-
tiable functions F and G such that the function value f(x) can be computed via
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z = G(x, |z|), f(x) = F(x, |z|)

where Gw(x, w) ≡ ∂
∂w

G(x, w) is of strictly lower triangular form. The vector z rep-
resents switching variables and is uniquely determined.Moreover it can be evaluated
component-wise in a forward and explicit fashion, because of the special nilpotent
form of Gw. So z = G(x, |z|) may be understood as an explicit evaluation of z for
given input x . If a function f has an abs-normal-form representation we note f ∈ C2

abs .
Notice that all piecewise linear functions have an ANF representation [5].

A first order Taylor expansion of F and G at (x̊, ẘ) ∈ Rn+s followed by a sub-
sequent substitution ẘ = |z̊|,Δw ≡ |z̊ + Δz| − |z(x̊)|, where z̊ ≡ z(x̊) = G(x̊, |z̊|)
leads to a piecewise linear operator in ANF mapping Δx ≡ x − x̊ to f(x̊) + Δf:

(
z̊ + Δz

f(x̊) + Δf

)
=

(
G(x̊, |z̊|)
F(x̊, |z̊|)

)
+

[
Gx (x̊, |z̊|) Gw(x̊, |z̊|)
Fx (x̊, |z̊|) Fw(x̊, |z̊|)

]
·
(

x − x̊
|z̊ + Δz| − |z̊|

)
, (4)

that satisfies the approximation property f(x) = f(x̊) + Δf + O(‖x − x̊‖2). The
block matrix of the piecewise linear operator (4) can be stored in a CSR fashion
as well as the Jacobians in the differentiable case.

For standard DAE solvers we have to provide one suitable representative f′(x) for
the Bouligand subdifferential ∂Bf(x). This can be derived from equation (4)

f′(x) := J + YΣ(I − LΣ)−1Z ,

[
Z L
J Y

]
:=

[
Gx (x̊, |z̊|) Gw(x̊, |z̊|)
Fx (x̊, |z̊|) Fw(x̊, |z̊|)

]

using a suitable signature Σ , see [5].
A better way would be to exploit (4) directly in the numerical integration scheme

for the differential-algebraic equation. It is demonstrated in [6] for the implicit Trape-
zoidal method for the integration of ordinary differential equations.

Since we pursue an approach by treating flow networks generically via its ele-
ments, the ANF operators propagated from network structures appear in a more
complex form compared to (4):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
y1
z2
y2
...

zm
ym

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
b1
c2
b2
...

cm
bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• G1
w ∗ ∗

• F1
w ∗ ∗

∗ • G2
w ∗

∗ • F2
w ∗

...
...

...

∗ ∗ • Gm
w

∗ ∗ • Fm
w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
|z1|
x2
|z2|
...

xm
|zm |

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Here ∗ (typically empty or sparse) and • (typically sparse or dense) are sub-matrices
of G j

x and F j
x , respectively. The horizontal lines indicate element blocks.
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4 Network Structure Preserving Representation
and Implemention

First, for each fi , we realize the Jacobian evaluations or, if necessary, their ANF
representations by a new class, which we call partial CSR. Contrary, each ANF
representation of f is stored in a so-called complete CSR class, obtained by merging
all the corresponding partial CSRs.

These CSR classes implement slightly modified versions of the CSR format,
each comprising a data-, indices- and indptr-array as well as a shape-
attribute. Further, there is implemented a new attribute nabs containing the number
of switching variables. In contrast to the classical CSR format, the indices-array
shall be initialized as a signed array to mark all indices of nonzero entries from Gw

and Fw by signs. In doing so we can distinguish coefficients for x from those of the
absolute value of the switching vector |z|.

The relationship between both classes and their individual attributes are illustrated
in Fig. 1. Here it becomes clear that the corresponding partial CSRs are collected
in a list partialCSRs and parsed, as the only argument, to the constructor of
complete CSR. On the other hand partial CSR objects are created with the arguments
nnzPerRow, ncols and nabs. It is nnzPerRow a list containing the numbers
of variable dependencies per component of the element function f̃i . Further, ncols
is the amount of variables contributed to the whole DAE system (2).

The partial CSR object proceeds as follows: A local indptr is created as the
cumulative sum of nnzPerRow. Additional informations are derived, such as nnz
the number on non zero entries of the local CSR and nrows the number of rows of

Fig. 1 Schema to manage Jacobians and ANFs of flow networks in CSR format
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the CSR. The signature = sign(z) stores the sign-vector of switching variables
and is needed for certain evaluation routines.

The complete CSR proceeds in a different manner: Its indptr-array gets aggre-
gated from theindptr-arrays of the elemental partial CSR instances. Thereafter, the
lengths of the indices- and data-array is determined, the arrays can be allocated
and local views are provided to the partial CSRs. In this way an arbitrary num-
ber of complete CSR instances for any purpose, e. g. all arguments, can be created
dynamically.

5 Jacobians for a Gas Network Example

We tested the GasLib40 instance from the open gas network library [7]. Figure 2
shows the topology of the network and fingerprints of the Jacobians fy and fx . The
Jacobian fy is constant. The Jacobians fx is in ANF representation, due to check
valve functionality of two (modified) resistors. Their partial CSRs are displayed as
enlarged section on top of Fig. 2. The first and third row of the partial CSRs represent
the data of Gx and Gw for the determination of the two switching variables.

Fig. 2 Modified version of GasLib-40 [7], Fy and Fx are fingerprints of fy and fx , respectively.
On the top is a zoom of the fingerprints of the two partial CSRs belonging to the switching elements
of the nework (two check valve resistors)



632 T. Streubel et al.

Acknowledgements This work was supported by the German Federal Ministry of Education and
Research (BMBF) within the Research Campus MODAL (fund number 05M14ZAM) and by the
Deutsche Forschungsgemeinschaft through the Collaborative Research Centre TRR154Mathemat-
ical Modelling, Simulation and Optimization Using the Example of Gas Networks.

References

1. Jansen, L., & Tischendorf, C. (2014). A unified (P)DAE modeling approach for flow networks.
In S. Schöps, A. Bartel, M. Günther, E. J. W. ter Maten, & P. C. Müller (Eds.), Progress
in Differential-Algebraic Equations (pp. 127–151)., Differential-Algebraic Equations Forum
Berlin: Springer.

2. Griewank, A., &Walther, A. (2008). Evaluating derivatives [Second edition]. Society for indus-
trial and applied mathematics

3. Golub, H. G., & Van Loan, C. F. (2012). Matrix computations. Wiley: JHU Press.
4. Griewank, A., & Walther A. (2016). First and second order optimality conditions for piecewise

smooth objective functions. Optimization Methods and Software
5. Griewank, A., Bernt, J. -U., Radons, M., & Streubel, T. (2015). Solving piecewise linear systems

in abs-normal form. Linear Algebra and its Applications
6. Griewank, A., Hasenfelder, R., Radons, M., & Streubel, T. (2017). Integrating lipschitzian

dynamical systems using piecewise algorithmic differentiation
7. Humpola, J., Joormann, I., Oucherif, D., Pfetsch, M. E., Schewe L., Schmidt, M. & Schwarz R.

GasLib – A library of gas network instances.



On the Performance of NLP Solvers
Within Global MINLP Solvers

Benjamin Müller, Renke Kuhlmann and Stefan Vigerske

1 Introduction

We consider nonconvex mixed-integer nonlinear programs (MINLPs) of the form

min
x∈[�,u]⊆Rn

{
c�x | g j (x) ≤ 0 ∀ j ∈ M, xi ∈ Z ∀i ∈ I}

, (1)

where c ∈ R
n , M := {1, . . . ,m}, N := {1, . . . , n}, I ⊆ N , �i , ui ∈ R ∪ {±∞},

i ∈ N , and g j : [�, u] → R, j ∈ M, differentiable. MINLPs have applications in
many areas, we refer to [1] for an overview. The state-of-the-art algorithm for solv-
ing MINLPs to global ε-optimality is spatial branch-and-bound, see, e.g., [2–4].
Solvers that implement this method typically need to compute local optimal solu-
tions of nonlinear programs (NLPs). For example, primal heuristics [5] may require
the solution of an NLP sub-problem of (1) and bounding methods may require the
solution of a convex NLP relaxation [6, 7]. Two important solution methods for
NLPs are the Inter-Point Method (IPM), which has been shown to be very efficient,
and Sequential Quadratic Programming (SQP), which is said to be more robust and
has better warm-starting properties than IPM.

The goal of this paper is to investigate the impact of different NLP solvers on the
performance of anMINLP solver. For that, we consider the use of a portfolio of NLP
solvers to solve a sequence of – sometimes very similar –NLPs as they arise in various
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components of an MINLP solver. With dual components we refer to algorithms that
aim to strengthen a relaxation of the problem in each node of the spatial branch-and-
bound tree, while with primal componentswe refer to algorithms that aim on finding
an improving feasible solution. Naturally, for dual components, finding dual feasible
solutions for convexNLPs is important, while for primal components finding a primal
feasible solution of an NLP is sufficient, though the NLP might be nonconvex.

1.1 Dual Components

Often, a convex NLP relaxation of (1) is obtained by replacing constraints where
g j (x) is nonconvex over [�, u] by a convex relaxation, e.g., by using convex underes-
timators of g j (x) [6, 8, 9]. As the tightness of these underestimators depends on the
variable bounds, branching decisions in the branch-and-bound tree search can allow
to update the convex underestimators and thus improve the bound that the relaxation
provides for the corresponding node in the tree.

The dual components thatwe consider in this paper are, first, the solution of convex
nonlinear relaxations to bound the objective function c�x in a node in the branch-
and-bound tree. Thus, this component solves an NLP in potentially all nodes of the
branch-and-bound tree, each being a convex relaxation of (1) when restricted to the
variable bounds that are defining the node. Second, we consider Optimization-Based
Bounds Tightening (OBBT), where possibly tighter bounds on selected variables are
computed by minimizing and maximizing each of them over a convex relaxation of
(1). Improved variable bounds can help to tighten the relaxation that is used to bound
the optimal value of (1).

1.2 Primal Components

The NLPs that are solved by primal components are often obtained after fixing some
or all of the integer variables xi , i ∈ I, in (1) to a given value and relaxing the
integrality requirement on all non-fixed integer variables. A locally optimal (or at
least feasible) solution to this NLP can be used to update the incumbent for the
original MINLP, if all non-fixed integer variables take an integral value.

Many different strategies to find a good variable fixing have been developed. For
our experiments, we consider an algorithm that uses the solution point computed by
any primal heuristic applied to a MILP relaxation of (1) to fix all integer variables
in (1) and to provide a starting point for the NLP solver. Additionally, we consider
an NLP-diving heuristic, where first all integrality requirements are relaxed and then
iteratively the NLP is solved and, based on its solution, additional integer variables
are fixed, until either the NLP solution is feasible for the MINLP or the NLP solver
fails to find a feasible solution to the NLP. In the latter case, a backtrack strategy
may be applied to investigate an alternative for the latest variable fixing decision.
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2 Computational Results

We used a development version of SCIP1 [9] as MINLP solver. This version is based
on SCIP 4.0, but next to the already existing interface to the IPM solver Ipopt [10],
it includes new interfaces to the IPM and SQP solvers of WORHP [11] and the SQP
solver FilterSQP [12]. For our experiments, we have used SCIP with the NLP solvers
FilterSQP 20010817, Ipopt 3.12.7, WORHP-IP (IPM algorithm ofWORHP 1.10.3),
and WORHP-SQP (SQP algorithm of WORHP 1.10.3). Except for FilterSQP, all
solvers use MA97 from HSL2 to solve systems of linear equations. For all solvers,
we disabled scaled termination tolerances and used a feasibility tolerance of 10−6,
an optimality tolerance of 10−7, and equal limits on the number of NLP iterations.
We used a time limit of one hour for SCIP.

As test set we consider all instances of MINLPLib23 (as of 2017/7/10) which
can be handled by SCIP. When comparing the NLP solvers on dual components, we
additionally discarded instances where SCIP does not detect any convex nonlinear
constraint, since the convex relaxations would otherwise be linear (SCIP uses only
polyhedral relaxations for nonconvex constraints). This leaves 327 instances. Further,
when comparing on primal components, we disregard instanceswith only continuous
variables, i.e., I = ∅, since the primal components would not be applied otherwise.
This leaves 938 instances.

The experiments were conducted on a cluster of 64bit Intel Xeon X5672 CPUs at
3.2GHz with 12MB cache and 48GB main memory.

2.1 Dual and Primal Components

To ensure that all NLP solvers solve the same sequence of NLPs, we solve each NLP
that occurs in the considered components of SCIP independently by all solvers, but
pass only the result from the first solver back to SCIP. Table 1 contains aggregated
results for the consumed time and the success of each NLP solver. Per instance, we
collect the overall time spent in each solver and the number of NLPs where a feasible
or locally optimal solution has been found. Next, we compute the shifted geometric
mean over all instances with a shift value of one second. To reduce the impact of
trivial instances, we disregarded all instances where the sum of NLP solving times
was atmost one second for the virtualworst,which is the theoreticalworst performing
solver on each NLP– this leaves 607 instances for the primal and 201 instances for
the dual components.

Comparing the running time of the NLP solvers, FilterSQP is on both, the dual
and primal components, the fastest solver. Further, it is more than 3.1 times faster
than the second fastest solver, WORHP-IP, on the dual components. Interestingly,

1Solving Constraint Integer Programs, http://scip.zib.de.
2Harwell Subroutine Library, http://www.hsl.rl.ac.uk.
3MINLP Library 2, http://www.gamsworld.org/minlp/minlplib2.html.

http://scip.zib.de
http://www.hsl.rl.ac.uk
http://www.gamsworld.org/minlp/minlplib2.html
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Table 1 Aggregated results for dual and primal components

Solver Dual components Primal components

Time nfeas nopt Time nfeas nopt

Ipopt 37.0 663.4 613.4 4.4 65.5 58.5

FilterSQP 7.9 634.3 616.0 2.7 58.4 51.3

WORHP-IP 24.1 610.9 494.6 4.7 52.3 47.3

WORHP-SQP 179.2 568.3 235.9 21.7 57.7 31.7

Virtual best 3.9 814.4 766.5 1.0 78.7 73.8

WORHP-IP performs 34.9% faster than Ipopt on the dual components and 6.4%
slower on the primal components. Furthermore, the variability in performance of the
NLP solvers is quite large. Choosing the best performing solver for each NLP yields
a speed-up of at least a factor of 2.0 compared to FilterSQP.

Regarding the solution quality, Ipopt found more often than all other solvers
feasible and local optimal solutions. On dual components, Ipopt found between 4.4%
and 14.3%more feasible and up to 61.5%more local optimal solutions than the other
solvers. Even though WORHP-SQP finds many feasible points, it frequently fails to
converge to a local optimum.Again, the variabilitywith respect to the solution quality
is large. Choosing the best NLP solver increases the success rate of finding a feasible
solution by 17.7% on average, and finding a local optimal point by around 20.0%
compared to Ipopt. This indicates that a dynamic and smart choice between a portfolio
of NLP solvers could allow for a considerably better performance than deciding for
a single NLP solver in advance.

Figure 1 shows different performance profiles comparing the sum and the shifted
geometric mean of NLP solving times per instance. As already observed above,
FilterSQP outperforms all solvers when considering the sum of NLP solving times
on all NLPs. On the primal components, we see that Ipopt performs more robust
than the other solvers because its worst case ratio to the virtual best is bounded by
a factor of 100. A considerable part of the good performance of FilterSQP seems
to come from NLPs that might be infeasible. The speed-up on instances for which
at least one solver provided a certificate of infeasibility is much higher than on all
NLPs. This phenomena is more distinct on the dual components than on the primal
components.

Due to fixing integer variables heuristically, many NLPs that appear in the primal
components turn out to be infeasible. Quickly detecting their infeasibility is impor-
tant. FilterSQP seems to be the fastest solver on these NLPs, too, but WORHP-IP
performs significantly better than Ipopt. This is due to the Penalty-IP approach of
WORHP-IP, which is able to converge to infeasible stationary points quickly without
the necessity of a separate feasibility restoration phase [13].

In contradiction to the previous results, Ipopt and WORHP-IP perform better
than FilterSQP when considering the shifted geometric mean of solving times. The
performance profiles in the second column of Fig. 1 show that the difference between
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Fig. 1 Performance profiles for dual (first row) and primal components (second row). Left: sum
of NLP solving times for all NLPs per MINLP instance. Middle: shifted geometric mean of same
solving times. Right: sum of solving times for NLPs where at least one solver returned a certificate
of (local) infeasibility

the solvers is less distinct as when considering the sum of solving times. This can
be explained by the reduced impact of outliers in the shifted geometric mean. Thus,
the superior performance of FilterSQP could be caused by the absence of sometimes
expensive fallback strategies, which are implemented by the other solvers. Within
a MINLP solver, where not every NLP needs to be solved to optimality, such a
“fast fail” strategy seems to be advantageous. This presumption is reinforced by
our observation that tuning a solver to find more local optimal points decreased its
average performance considerably.

Finally, we want to emphasize that the NLPs that arise within our experiments are
typically small. This might be a disadvantage for solvers like Ipopt and WORHP,
which are designed to solve large-scale NLPs.

2.2 Overall Performance

The impact of using different NLP solvers in SCIP is summarized in Table 2. For
this comparison, we used the selection of 115 instances from MINLPLib2 that is
also used in a publicly available MINLP benchmark4 and set a gap limit of 10−3.

4H. Mittelmann MINLP Benchmark, http://plato.asu.edu/ftp/minlp.html.

http://plato.asu.edu/ftp/minlp.html
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Table 2 Aggregated results for SCIP using different NLP solvers. The entries of the time and nodes
columns are relative to the first row

Setting All All optimal

# solved Time # solved Nodes Time

SCIP + Ipopt 55 984.0s 41 108312 227.7 s

SCIP + FilterSQP 53 0.92% 41 0.93% 0.90%

SCIP + WORHP-IP 50 1.06% 41 1.06% 0.98%

SCIP + WORHP-SQP 49 1.17% 41 0.95% 1.09%

Choosing a different NLP solver has a large impact on the performance and
solvability of MINLPs. Table 2 shows that SCIP with Ipopt could solve the largest
number of instances. However, SCIP performed fastest when using FilterSQP. On
all instances the speed-up is 8% compared to using Ipopt, and on all instances that
could be solved by all settings, the speed-up is even larger, namely 10%.

Acknowledgements This work has been supported by the Research Campus MODALMathemat-
ical Optimization and Data Analysis Laboratories funded by the Federal Ministry of Education and
Research (BMBF Grant 05M14ZAM).
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Optimizing Large-Scale Linear Energy
System Problems with Block Diagonal
Structure by Using Parallel
Interior-Point Methods

Thomas Breuer, Michael Bussieck, Karl-Kiên Cao, Felix Cebulla,
Frederik Fiand, Hans Christian Gils, Ambros Gleixner, Dmitry Khabi,
Thorsten Koch, Daniel Rehfeldt and Manuel Wetzel

1 Introduction

Energy system models (ESMs) have versatile fields of application. For example they
can be utilized to gain insights into the design of future energy supply systems.
Increasing decentralization and the need for more flexibility caused by the temporal
fluctuations of solar and wind power lead to increasing spatial and temporal granu-
larity of ESMs. In consequence, state-of-the-art solvers meet their limits for certain
model instances.

A distinctive characteristic of many linear programs (LPs) arising from ESMs is
their block-diagonal structure with both linking variables and linking constraints.
This article sketches extensions of the parallel interior-point solver PIPS-IPM [6] to
handle LPs with this characteristic. The extended solver is designed to make use of
the massive parallel power of high performance computing (HPC) platforms.

Furthermore, this article introduces an interface between PIPS-IPM (including
its new extension) and energy system models implemented in GAMS. In particular,
it will be described how users can communicate the model’s problem structure to
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PIPS-IPM. Since finding a proper block structure annotation for a complex ESM
is not trivial, we will exemplify the annotation process for the ESM REMix [4].
With many ESMs implemented in GAMS, the new interface between GAMS and
PIPS-IPM makes the solver available to the energy modeling community.

2 A Specialized Parallel Interior Point Solver

When it comes to solving linear programs (LPs), the two predominant algorithmic
approaches to choose from are Simplex and interior-point, see e.g. [7]. Since interior-
pointmethods are oftenmore successful for large problems, in particular for ESM [1],
this method was chosen for the LPs at hand. Mathematically, a salient characteristic
of theseLPs is their block-diagonal structurewith both linking constraints and linking
variables, as depicted below

min cT x

s.t. T0x0 = h0 (eq0)

T1x0 + W1x1 = h1 (eq1)

T2x0 + W2x2 = h2 (eq2)

...
. . .

...

TN x0 + WN xN = hN (eqN )

F0x0 + F1x1 + F2x2 · · · FN xN = hN+1, (eqN+1)

with x = (x0, x1, ..., xN ). The linking variables are represented by the vector x0,
whereas the linking constraints are described by the matrices F0, ..., FN and the vec-
tor hN+1. The approach to solve this LP is based on the parallel interior-point solver
PIPS-IPM [6] that was originally developed for solving stochastic linear programs.
Such problems also exhibit a block-diagonal structures, although only with linking
variables and without linking constraints. In this way, PIPS-IPM in its original form
cannot handle problemswith linking constraints. In the lastmonths, the authors of this
paper have extended PIPS-IPM in order to handle LPs with both linking constraints
and linking variables.

PIPS-IPM and also its new extension make use of the Message Passing Interface
(MPI) for communication between their (parallel)MPI-processes. An important fea-
ture of PIPS-IPM is the distribution of the LP among the MPI-processes with no
process needing to store the entire problem. This allows to tackle problems that are
too large to even be stored in the main memory of a single desktop machine. The
main principle is that for each index i ∈ {0, 1, ..., N } all xi , hi , Ti , andWi (for i > 0)
need to be available in the same MPI-process—hN+1 needs to be assigned to the
MPI-process handling i = 0. Moreover, each MPI-process needs access to the cur-
rent value of x0. The distribution is in the following exemplified for the case of the
information to both i = 0 and i = 1 being assigned to the same MPI-process (in
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gray). The vectors and matrices that need to be processed together are marked in
gray, black, and bold, respectively.

min cT0 x0 + cT1 x1 + cT2 x2 + · · · cTNxN
s.t. T0x0 = h0

T1x0 + W1x1 = h1
T2x0 + W2x2 = h2

...
. . .

...

TNx0 + WNxN = hN
F0x0 + F1x1 + F2x2 · · · FNxN = hN+1

The maximum of MPI processes that can be used is N ; in the opposite border case
the whole LP is assigned to a single MPI-process

The extension of PIPS-IPM has already been successfully tested on medium-
scale ESM problems with up to a million constraints and variables and up to 90
blocks. Since the number of MPI-processes is bounded by the number of blocks, the
maximum number of MPI-processes we have used so far is also 90.

3 Communicating Block Structured GAMS Models
to PIPS-IPM

A recently implemented GAMS/PIPS-IPM interface that considers the special HPC
platformcharacteristicsmakes the solver available to a broader audience. This section
is twofold. It outlines how users can annotate their GAMS models to provide a
processable representation of the model block structure and provides insights in
some technical aspects of the GAMS/PIPS-IPM-Link.

3.1 Annotating GAMS Models to Communicate Block
Structures

Automatic detection of block structures in models is challenging [3], hence, a pro-
cessable block structure information based on the user’s deep understanding of the
model is often preferable. It is important to note that there is no unique block structure
in a model but there are many of them, depending on how rows and columns of the
corresponding matrix are permuted. For ESMs blocks may for example be formed
by regions or time steps as elaborated in Sect. 4.

GAMS provides facilities that allow complex processable model annotations [2].
The modeler can assign stages to variables via an attribute <variable name>



644 T. Breuer et al.

.stage. That functionality originates frommultistage stochastic programming and
can also be used to annotate the block structure of a model to be solved with PIPS-
IPM.Once the blockmembership for all variables is annotated, the blockmembership
of the constraints can in principle be derived from that annotation. However, manual
annotation of constraints in a similar fashion is also possible and allows to run
consistency checks on the annotation to detect potential mistakes. The annotation
assignment can be demonstrated with a simple example based on the block structure
introduced in Sect. 2. The following pseudo-annotation would assign stages to all
variables xi to indicate their block membership.

xi .stage = i ∀i ∈ {0, 1, ..., N }

Linking variables are those assigned to stage 0. Similarly, constraints could also
be annotated where stage 0 constraints are those containing only linking variables.
Constraints assigned to stages 1,..,N are those incorporating only variables from the
corresponding block plus linking variables and finally constraints assigned to stage
N + 1 are the linking ones. Note that the exemplary pseudo-annotation may seem
obvious and simple but finding a good block structure annotation for a complex
model is not trivial. The challenge is not mainly to find an annotation that is correct
in the mathematical sense but to find one where the power of PIPS-IPM is exploited
best. A desirable annotation would reveal a block structure with many independent
blocks of similar size while the set of linking variables and linking constraints is
small.

3.2 The GAMS/PIPS-IPM-Link

Currently, theGAMS/PIPS-IPM-Link implements the connection betweenmodeling
language and the solver in a two-phase process. Phase 1, the model generation, is
followed by phase 2 where PIPS-IPM pulls the previously generated model via its
callback interface and solves the problem.

So far, model generation used to be a sequential process where GAMS generates
one constraint after another. For the majority of applications this is fine as model
generation is usually fast and the time consumption is negligible compared to the
time consumed to solve the actual problem. However, some ESMs may result in
sizeable LPs where model generation time becomes relevant. Hence, it is worthwhile
to mention that the previously introduced annotation can also serve as a basis to
generate themodel in a distributed fashion. Instead of generating one largemonolithic
model, many small model blocks can be generated in parallel to exploit the power
of HPC architectures already during model generation.
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4 Structuring Energy System Models for PIPS-IPM

In order to distribute all blocks of the full-scale ESM to the computing nodes of a
HPC architecture a problem-specific model annotation has to be provided. Based
on the modeler’s knowledge about the problem at hand the number of blocks and
block structure has to be decided upon corresponding directly to the assignment of
variables to blocks.

The concurrency of supply and demand of electrical energy necessitates a bal-
ancing for every region and time step. While in theory these balancing constraints
can be solved independently, transport of energy between regions and storage of
energy require a integrated optimization of all regions and time steps. The number of
variables and constraints linked by the annotation depends strongly on these spatial
and temporal interconnections. Transport of energy between two regions is typi-
cally represented by dispatch variables leading to linking variables if their respective
regions have been assigned to different blocks. State of charge variables for energy
storages consider the state of charge in the previous time step and therefore lead to
a large number of linking constraints if each time step is represented by a single
block. Typically, ESM also comprise boundary conditions that link both regions and
time steps, e.g. by the consideration of global and annual emission limits. The high
number of linking variables and constraints lead to a trade-off between speed-up and
parallelism that needs to be studied systematically in future numerical experiments.

Figure 1 shows the non-zero entries matrix of the ESMREMix [4] on the left side
and the revealed underlying block structure after permutation of the matrix on the
right side. Linking variables and constraints are marked in dark gray while PIPS-
IPM blocks are marked in light gray. The ESM represents the electricity sector for
Germany with 21 spatial regions, 17 technologies per region and 168 time steps
respectively 7 blocks of 24 time steps in the annotated case.

Fig. 1 Non-zero entries of the ESM and permuted matrix with block structure
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5 Summary and Outlook

Large-scaleLPs emerging fromESMs that are computationally intractable for today’s
state-of-the-art LP solvers motivate the need for new solution approaches. To serve
those needs, extensions to the parallel interior point solver PIPS-IPM that exploits
the parallel power of high performance computers have been implemented. In the
future, the solver will be made available to the ESM community by a GAMS/PIPS-
IPM interface.

The integration of HPC specialists in the development process ensures consider-
ation of peculiarities of several targeted HPC platforms at an early stage of develop-
ment. PIPS-IPM is developed and tested on several target platforms like the petaflops
systems Hazel Hen at HLRS and JURECA at JSC as well as on many-core platforms
like JUQUEEN and modern Intel Xeon Phi Processors. Workflow automation tools
explicitly designed for HPC applications like JUBE [5] support the development and
execution by simplifying the usage of workflow managers like PBS and Slurm.

Initial computational experiments already show the capability of the extended
PIPS-IPM version to solve the ESM problems at hand, although so far only on
a small scale. However, the good scaling behavior and the results of the original
PIPS-IPM in solving large-scale problems [6] suggest that the approach described
in this article might ultimately lead to a solver that can tackle currently unsolvable
large-scale ESMs. Extensions to the GAMS/PIPS-IPM-Link will finally integrate
the current multi-phase workflow (see Sect. 3.2) into one seamless process to give
energy system modelers a similar workflow compared to the use of conventional LP
solvers.
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WORHP Zen: Parametric Sensitivity
Analysis for the Nonlinear Programming
Solver WORHP

Renke Kuhlmann, Sören Geffken and Christof Büskens

1 Introduction

Nonlinear optimization problems that arise in real-world applications usually depend
on parameter data. Parametric sensitivity analysis is concernedwith the effects on the
optimal solution caused by changes of these. The calculated sensitivities are of high
interest because they improve the understanding of the optimal solution and allow
the formulation of real-time capable update algorithms. Examples of applications are
therefore real-time optimal control [9] or limited computational environments like
in space [10] or automotive industry [1].

In this paper, we present WORHP Zen, a sensitivity analysis module for the non-
linear programming solver WORHP [3] that is capable of calculating sensitivity
derivatives with exploitation of special structured parameters, performing real-time
approximations of parameter perturbed optimization problems and estimating the
allowed parameter space. We consider the parameter dependent nonlinear program-
ming problem

min
x∈Rn

f (x; p) := ˜f (x; t) − r�x

s.t. c(x; p) := c̃(x; t) − q ≤ 0 (1)

with parameters p := (t, r, q) ∈ R
k+n+m and twice continuously differentiable func-

tions ˜f : Rn × R
k → R and c̃ : Rn × R

k → R
m . For a fixed p0 = (t0, r0, q0)
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problem (1) is called unperturbed and can be solved by standard nonlinear pro-
gramming techniques.

In Sect. 2 we will present the main properties of the sensitivity analysis and the
special features of WORHP Zen. Section3 provides an example application in the
field of parameter identification.

2 Sensitivity Analysis with WORHP ZEN

2.1 Sensitivity Properties

The Lagrangian function of (1) is L(x, y; p) = f (x; p) + y�c(x; p) with multipli-
ers y ∈ R

m and the first-order optimality conditions of (1) are:

∇x ˜f (x; t) + ∇x c̃(x; p) − r = 0

0 ≤ y ⊥ c̃(x; t) − q ≤ 0 (2)

The sensitivity analysis is valid only locally and requires the linear independence
constraint qualification (LICQ) and the second order sufficient condition (SOSC).We
define the active set as I(x, p) := { j | c j (x; p) = 0} and the special caseB(x, p) :=
{i ∈ {1, . . . , n} | ∃ j : c j (x; p) = xi − q j = 0}.
Definition 1 The LICQ holds for solution of (1) x∗, if the gradients ∇xci (x∗; p0)
and i ∈ I(x∗, p0) are linearly independent.

Definition 2 TheSOSCholds for p0 and (x∗, y∗) satisfying thefirst-order optimality
conditions (2), if d�∇2

xx L(x∗, y∗; p0)d > 0 for all d 
= 0 with ∇xci (x∗; p0)�d = 0
for i ∈ I(x∗, p0).

With these definitions we can present the main theorem of the sensitivity analysis,
which shows the local existence of parameter dependent functions that solve (1) for
a perturbation p. It has been introduced and proven by Fiacco [4].

Theorem 1 Let (x∗, y∗) satisfy the first-order optimality conditions (2) of the unper-
turbed problem (1), which satisfies the LICQ, the SOSC and strict complementarity,
i.e. y∗ − c(x∗; p0) > 0. Suppose, that f and c are twice continuously differentiable
w.r.t. x and that∇x f ,∇xc and c are continuously differentiable w.r.t. p in a neighbor-
hoodof p0. Then aneighborhoodof p0, P ⊂ R

k+n+m, and continuously differentiable
functions x : P → R

n, y : P → R
m exist that satisfy:

1. x(p0) = x∗ and y(p0) = y∗.
2. The active set does not change, i.e. I(x(p), p) ≡ I(x∗, p0) for p ∈ P.
3. x(p) satisfies the LICQ for all p ∈ P.
4. x(p) satisfies the SOSC together with y(p) with yi (p) > 0, i ∈ I(x(p), p) and,

thus, x(p) is a solution of (1).
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2.2 Calculation of Sensitivity Derivatives

Sensitivity derivatives of the optimal solution can be obtained by the application of
the implicit function theorem, which yields

[∇2
xx L(x∗, y∗; p0) ∇xc(x∗; p0)

Y ∗∇xc(x∗; p0)� �

] [ dx
dp

dy
dp

]

= −
[∇xpL(x∗, y∗; p0)

Y ∗∇pc(x∗; p0)

]

(3)

with Y ∗ := diag(y∗) and � := diag(c(x∗; p0)). The matrix in (3) is invertible under
the conditions of Theorem1 (see Büskens [2]) and already exists in factored form for
both optimization algorithms inWORHP, the sequential quadratic programming [3]
and the penalty-interior-point algorithm [7]. In case of the latter, the factored matrix
actually belongs to a barrier problem with a small barrier parameter μ > 0. The
calculated sensitivity derivatives therefore have an error ofO(μ) which is negligible
in practice. For a detailed study see Fiacco [5] or for an overview Pirnay et al. [9].

Further sensitivity derivatives can be provided for the objective function and the
constraints. For the constraints these are dci

dp (p0) = 0 for i ∈ I(x∗, p0) and dci
dp (p0) =

∇xci (x∗; p0)� dx
dp (p0) + ∇pci (x∗; p0) otherwise. For the objective function we have

d f
dp (p0) = ∇pL(x∗, y∗; p0) and, thus, d f

dr (r0) = −x∗ and d f
dq (q0) = −y∗. For a com-

plete overview and also second-order sensitivity derivatives of the objective function
see Büskens [2]. It is also possible to exploit quadratic perturbations in the objective
function or linear ones in the constraints (see Geffken [6]), but this is not considered
in WORHP Zen.

2.3 Storage of Sensitivity Derivatives

WORHP Zen not just provides sensitivity derivatives, but also uses them for further
calculations (see below). Therefore, the sensitivity derivatives are once calculated and
then stored, which can be a memory costly operation for large-scale problems. How-
ever, from Theorem1 (2) we know that the sensitivity matrices are sparse. Further-
more, symmetry and equivalence of sensitivity derivatives can be exploited. Table 1
gives an overview.

Table 1 Sparsity, symmetry and equivalence of sensitivity derivatives for special structured per-
turbations. Symmetry is considered for the appropriate sensitivity matrices (all i and all j). I and
B are abbreviations for I(x∗, p0) and B(x∗, p0), respectively
Sensitivity dxi

dt j
dxi
dr j

dxi
dq j

= dy j
dri

dyi
dq j

dyi
dt j

Symmetric − yes − yes −
Zero if i ∈ B i ∈ B or j ∈ B i ∈ B or j /∈ I i /∈ I or j /∈ I i /∈ I
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2.4 Real-Time Approximations

Using the sensitivity derivatives and Taylor’s theorem,WORHP Zen can provide a
real-time approximation of (2) with perturbation p by

x(p) = x∗ + dx

dp
(p − p0) + O(‖p − p0‖2)

and analogously for y(p), z(p), f (x(p); p) and c(x(p); p). Due to the error and
the nonlinearity of c, the approximation is likely to violate the constraints, i.e. for
i ∈ I(x∗, p0) we have ci (x(p); t) − qi = ε 
= 0. Büskens [2] proposes to interpret
this as a perturbation (0, 0, ε) and iteratively refine the approximation, again by
using a first order Taylor approximation. Since dx

dq is available inWORHP Zen, this
strategy can directly be applied.

2.5 Estimation of the Neighborhood P

Themain restriction of the sensitivity analysis is the limitation to a local and unknown
neighborhood P , seeTheorem1.Due to the equivalence of the active set for all p ∈ P ,
however, WORHP Zen can estimate P by calculating the maximal perturbation
without active set changes using real-time approximations (see Büskens [2]), i.e. for
a perturbation p j

P ≈ [

max{p j ∈ P̄j | p j < (p0) j },min{p j ∈ P̄j | p j > (p0) j }
]

,

P̄j := {pij | i = 1, . . . ,m} ∪ {−∞,∞},
pij := (p0) j − ci (x∗, p0)

dci
dp j

(p0)
, if i /∈ I(x∗), or pij := (p0) j − yi

dyi
dp j

(p0)
, if i ∈ I(x∗).

3 Example Application

In this example we show the application of post-optimality analysis to the parameter
identification of characteristic maps. These maps are often used by engineers to
simplify complex physical relationships within their simulations. The main goal
of this identification is to fit the parameters such that some measurement can be
reconstructed using the model (see Nelles [8]).

A characteristic map represents a function f : R2 × R
Nv → R, where the output

is computed using piecewise interpolation in two-dimensional space. It consists of Nx

nodes in x-direction and Ny nodes in y-direction with associated values v ∈ R
Nv =



WORHP Zen: Parametric Sensitivity Analysis for the Nonlinear … 653

−10
0

0.2

0.4

0

0.5

1

−10
0

0.2

0.4

0

0.5

1

−10
0

0.2

0.4

0

0.5

1

Fig. 1 Optimal solutions of the characteristic map for p ∈ {0.1, 1, 10} with increasing p from left
to right

R
Nx ·Ny . Let a measurement consisting of data points (x̄, ȳ, z̄) ∈ R

K×3 be given. The
maps can be determined using optimization techniques with the objective function

min
v∈Rv

1

K

K
∑

i=1

( f (x̄i , ȳi ; v) − z̄i )
2 + p

2|Nx ||Ny|
∑

x,y

κx (x, y; v)2 + κy(x, y; v)2,

with second order difference quotients κx and κy with an equidistant grid, i.e.
κx (x, y; v) := �x−2( f (x + �x, y; v) − 2 f (x, y; v) + f (x − �x, y; v)) and anal-
ogously in y-direction, each with a suitable scaling. The two contrary goals of
the optimization are error of the fit (first summand) and smoothness of the map
(second summand) controlled by a parameter p. The latter is of special interest
for the integration of these maps into extensive models. Another option to control
the smoothness is by using constraints. However, this has the major drawback of
the requirement to formulate absolute bounds on κx and κy , usually to be deter-
mined by trial and error (cf. [8]). In this example, let x ∈ [−10, 10] be discretized as
x̄ = −10,−9, . . . , 10 and y ∈ [0.01, 0.4] as ȳ = 0.01, 0.0533, . . . , 0.3567, 0.4 and
let z(x, y) = 1

2 (1 + tanh(xy)) with some additional random noise. Figure1 shows
the optimal solutions for varying parameters p ∈ {0.1, 1, 10}.

The strong shape of the tanh(xy) is flattened by the smoothing term if p = 10,
showing the conflict of the two objective parts. The key questions for an user are:
How should the weighting parameter p be chosen? How much can p be perturbed
for real-time updates?

In Fig. 2 the sensitivity fields dx
dp reveal the areas which are affected most by the

applied smoothing term and, thus, help to understand the influence of the parameter
p. Red regions will heighten, while blue regions will lower if p is increased. Using
this knowledge helps to choose p accordingly.

To show the estimation of the neighborhood P we use the stricter approach
for controlling the smoothness (here just in x-direction) by using the constraint
c(x, y) := �x−2 ( f (x + �x, y; v) − 2 f (x, y; v) + f (x − �x, y; v)) for all inte-
rior points x of the map. The special perturbation q is used to examine two different
cases of interest: The constraints are (1)−1 ≤ c(x, y) ≤ 1 (inactive constraints, may
become active) and (2) −0.35 ≤ c(x, y) ≤ 0.35 (active constraints, may become
inactive). The allowed perturbation is shown in Fig. 3 and reveals that the constraint
is mostly influencing the strong hyperbolic shape (y ≈ 0.4).
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Fig. 2 Sensitivity fields of the characteristic map for p ∈ {0.1, 1, 10} with increasing p from left
to right
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Fig. 3 Estimation of maximum allowed perturbation with respect to second order smoothness
condition (left: constraint (1); right: constraint (2))
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Joint Optimization of Reorder Points
in n-Level Distribution Networks Using
(R, Q)-Order Policies

Christopher Grob, Andreas Bley and Konrad Schade

1 The Distribution Network

A central question in distribution networks is how to allocate safety stock along
the different echelons and warehouses in order to fulfill the required service level
targets at minimal investment in capital. We present an optimization algorithmwhich
efficiently computes optimal reorder points taking into consideration the wait time
approximation of Kiesmüller et al. [2]. This algorithm builds on insights obtained
during the development of an algorithm for the simpler 2-level case [1].

We consider a n-level distribution network where all warehouses use an (R,Q)-
order policy. Reorder points are denoted as Ri, j , where i is the echelon, i = 1, . . . , n
and j is the index of the warehouses in the respective echelon. Accordingly, the order
quantity is denoted as Qi, j and μi, j and σi, j are the mean and standard deviation
of demand at a warehouse (i, j) per time unit. The lead time from warehouse j at
echelon i from its predecessor is Li, j = Ti, j + Wi, j , where Ti, j is the transportation
time and Wi, j is the wait time due to stock-outs at the predecessor. For i = 1 we
assume L11 = T11.

C denotes the set of all local warehouses, i.e., warehouses without successors.
Only local warehouses fulfill external customer demand and have fill rate targets
β̄i, j . The fill rate is the fraction of orders that is satisfied immediately from stock on
hand. The set of preceding warehouses of a warehouse is referred to as Pi, j .

In industrial applications it is common practice to determine reorder points such
that the investment in capital is minimized for given fill rate targets at the local ware-
houses. We therefore introduce pi, j as the price of the considered part in warehouse
(i, j). An alternative interpretation could be the cost of stocking a unit of this item
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in the location. Let βi, j (Ri, j , Rl,m) be the fill rate, given the reorder point Ri, j and
the reorder points of all predecessors (l, m). Then we have to solve the following
optimization model.

min
∑

i

∑

j

pi, j · Ri, j (1)

s.t. βi, j (Ri, j , Rl,m) ≥ β̄i, j ∀(i, j) ∈ C, (l, m) ∈ Pi, j (2)

To approximate the random wait times Wi j , we use the method by Kiesmüller
et al. [2]. Note that we assume Qi, j >> E[Di, j ] and, therefore, that the average
replenishment order size is Qi, j . This simplifies notation but can easily be relaxed
as in [2] and does not influence our subsequent analysis.

2 Optimization Algorithm

We construct an underestimating ILP for Model defined by Eqs. (1) and (2) by cre-
ating an approximate linear relationship between the reorder point of the local ware-
house and each of its predecessor. For each of the local warehouses, we introduce
an underestimating piecewise linear function which assumes that an increase of a
predecessors reorder point has maximal impact on the wait time.

The first two moments of the wait time are functions of the reorder point of the
preceding warehouse. First, we analyze how big the maximum decrease in the two
moments of the wait time is, when we increase the respective reorder point by one.
Second, we consider the effect on the local warehouses that do not have successors
and fulfill external customer demand. For (i, j) ∈ C and (l, m) ∈ Pi, j , we are able
to show that

max δ(E[Wi, j ](Rl,m)) = E[Ll,m]∑
(n,o)∈Pl,m

Qn,o
and

max δ(E[W 2
i, j ](Rl,m)) = E[(Ll,m)2]∑

(n,o)∈Pl,m
Qn,o

.

From this we can derive the largest possible decrease in mean and variance of the
effective lead time demand of a local warehouse if we increase a reorder point Rl,m

of any preceding warehouse (l, m) ∈ Pi, j as

max
ΔRl,m

δ(E[Di, j (Li, j )]) = μi, j
E[Ll,m]∑

(n,o)∈Pl,m
Qn,o

and (3)

max
ΔRl,m

δ(V ar [Di, j (Li, j )]) = σ 2
i, j E[Ll,m]/

∑

(n,o)∈Pl,m

Qn,o
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+ μ2
i, j

⎡

⎣E[(Ll,m)2]/
∑

(n,o)∈Pl,m

Qn,o − (E[Ll,m]/
∑

(n,o)∈Pl,m

Qn,o)
2

⎤

⎦ .

(4)

To determine Ll,m in Eqs. (3) and (4), we need in principle to set all reorder points of
warehouses in Pl,m and calculate the respective wait times. To avoid this, we assume,
that we always have to wait at every preceding stage, i.e., we incorporate the full
transportation time of all predecessors in Ll,m . By doing so, we overestimate the
possible impact.

For each (i, j) and (l, m) ∈ Pi, j the range of Rl,m in which thewait time of (i, j) is
influenced, assuming maximum impact, is limited and smaller than the actual range.
We calculate for all predecessors (l, m) ∈ Pi, j the upper bounds, up to which the
reorder point of the respective predecessor can influence the mean of the wait time
and therefore, implicitly, the variance. Using Eqs. (3) and (4) we obtain:

ūi, j
l,m := E[Ll,m]

∑

(n,o)∈Pl,m

Qn,o/E[Ll,m] =
∑

(n,o)∈Pl,m

Qn,o. (5)

We also assume that the lower bound for each Rl,m is 0. Rl,m then is the range [0, ūi, j
l,m].

Let Ri, j |(Li, j = L) be the reorder point needed at a local warehouse (i, j) assum-
ing Li, j = L , such that the fill rate constraint is fulfilled. We calculate a general
lower bound for all local warehouses as li, j := Ri, j |(Li, j = Ti, j ). This assumes
that the wait time caused by all preceding warehouses (l, m) ∈ Pi, j is 0. We also
calculate an upper bound by assuming the order has to wait at every stage, i.e.,
R̄i, j := Ri, j |(Li, j = ∑

(l,m)∈Pi, j
Tl,m).

For each predecessor (l, m) of a localwarehouse (i, j), we calculate the following.

1. Set the lead time Ll,m of the predecessors (l, m) to its upper bound, i.e. as the sum
of all transportation times to this predecessor, and assume all intermediate ware-
houses between (l, m) and (i, j) act as cross-docks only, i.e., full transportation
time on this path applies.

2. Calculate Ri, j assuming Rl,m = 0. Call this reorder point R̂l,m
i, j

3. Calculate the slope bi, j
l,m of the linear relationship as bi, j

l,m = (R̂l,m
i, j − li, j )/ūi, j

l,m .

4. With the above assumptions, the following function is an underestimator for Ri, j ,
given a Rl,m, (l, m) ∈ Pi, j and all Rn,o = −1, (n, o) ∈ Pi, j \ {(l, m)}:

ei, j
l,m(Rl,m) =

{
(R̂l,m

i, j − 1) − bl,m Rl,m, if ūi, j
l,m ≥ Rl,m ≥ 0

(R̂l,m
i, j − 1) − bl,mūi, j

l,m, if Rl,m > ūi, j
l,m

(6)

Step 1 ensures that we capture the highest possible slope bi, j
l,m and exclude all

effects of the intermediate warehouses except the transportation time. The function,
which supplies Ri, j under the above assumptions for a given Rl,m , approximated by
ei, j

l,m(Rl,m) is a step function. If a local reorder point is decreased by 1 right at the
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start when Rl,m is increased from 0 to 1, ei, j
l,m(Rl,m) can intersect this function. By

subtracting 1 in Eq. (6) from the y-intercept, we prevent this from happening.
Combining Eq. (6) for all (l, m) ∈ Pi, j , we get an underestimator for Ri, j given

the reorder points of all predecessors.

Ri, j ≥ R̄i, j −
∑

Pi, j

(g
i, j
l,m(Rl,m)) ∀(i, j) ∈ C, (7)

where gi, j
l,m(Rl,m) := −(ei, j

l,m(Rl,m) − R̂l,m
i, j ).

In the construction of the linear relationship between (i, j) and (l, m), we ensured
that the slope bi, j

l,m is overestimating the real decrease of Ri, j if Rl,m is increased. We
limited the range in which Rl,m influences Ri, j by assuming the wait time is always
decreased by the maximum possible value (Eq. (5)) and in a second step, calculated
an upper bound for the decrease of Ri, j caused by Rl,m and applied this upper bound
to the limited range.

Additionally, we need to impose an upper bound on the sum of the reductions of
a local reorder point caused by each preceding warehouse and all its predecessors.
This prevents the local reorder point to be reduced to an extent that implies a negative
overall wait time.

g
i, j
l,m(Rl,m) +

∑

(n,o)∈Pl,m

(gi, j
n,o(Rn,o)) ≤ b̄i, j

l,m ∀(i, j) ∈ C, (l, m) /∈ C ∪ {(1, 1)} (8)

Here b̄i, j
l,m is the maximum reduction of a local reorder point that can be achieved by

the warehouses (l, m) and (n, o) ∈ Pl,m . Defining W i, j
l,m as the set of all warehouses

that connect (i, j) and (l, m), we can calculate the maximum reduction as

b̄i, j
l,m = Ri, j |(Li, j =

∑

(n,o)∈Pi, j

Tn,o) − Ri, j |(Li, j =
∑

(n,o)∈W i, j
l,m

Tn,o). (9)

Now we can construct an ILP, that is an underestimator of the Model defined by
Eqs. (1) and (2):

min
∑

i

∑

j

pi, j · Ri, j (10)

s.t. Ri, j ≥ R̄i, j −
∑

(l,m)∈Pi, j

(g
i, j
l,m(Rl,m)) for all (i, j) ∈ C (11)

Ri, j ≥ li, j for all (i, j) ∈ C (12)

g
i, j
l,m(Rl,m) ≤ b̄i, j

l,m −
∑

(n,o)∈Pl,m

(gi, j
n,o(Rn,o)) for all (i, j) ∈ C

for all (l, m) /∈ C. (13)
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We construct an algorithm to determine optimal reorder points by iteratively
refining the linear functions and introducing new constraints.

Algorithm 1 (Optimization)

1. Construct initial ILP (Eqs. (10)–(13) as described in this section.
2. Solve ILP and obtain the solution R∗

i, j∀(i, j).
3. Based on all non-local reorder points R∗

i, j , (i, j) /∈ C, calculate the actual local

reorder points R̃i, j , (i, j) ∈ C needed to fulfill the fill rate targets of Eq. (2).
4. Compare the objective function for the solution of the ILP and the solution incor-

porating R̃i, j , (i, j) ∈ C. If the gap is sufficiently small or if the solution did not
change compared to the previous iteration, terminate the algorithm and return
the solution {R∗

i, j , (i, j) /∈ C, R̃i, j , (i, j) ∈ C}.
5. Otherwise, refine the model as described in the following and continue with Step

2.

For each local warehouse (i, j) ∈ C , we refine the function g
i, j
l,m(Rl,m) for all

(l, m) ∈ Pi, j based on the optimal solution determined in Step 2. Recall that the
function gi, j

l,m(Rl,m) gives an upper bound for the reduction of the local reorder point
Ri, j by setting a reorder point Rl,m of a predecessor to a certain value. With the
solution R∗

l,m of the ILP obtained in Step 2, we can update the function g
i, j
l,m(Rl,m).

We have to charge the reduction to the different predecessors. We assume that
Rn,o = 0, (n, o) ∈ Pl,m and that all intermediate warehouses between (i, j) and
(l, m) act as cross-docks only. Furthermore, we set the variance of the wait time
caused by R∗

l,m to 0. With these settings, we make sure that we still strictly overesti-
mate the reduction of Ri, j by an increase of Rl,m and our overallmodel is still underes-
timating the original problem. First, we recalculate the local reorder point Ri, j given
R∗

l,m for each (l, m) ∈ Pi, j . Thenwe calculate the reduction as r̄ i, j
l,m = R̂l,m

i, j − Ri, j + 1

and refine gi, j
l,m(Rl,m) by inserting the new point (R∗

l,m, r̄ i, j
l,m) using the following two

properties: If (Rl,m) increases by 1, the maximum possible decrease of Ri, j is bi, j
l,m .

If (Rl,m) decreases, a decrease of Ri, j is not possible. Finally, we have to update the
upper bound ūi, j

l,m = max(ūi, j
l,m, (R̄i, j − r̄ i, j

l,m)/bi, j
l,m + R∗

l,m).
Additionally, we can calculate the actual local reorder points Ract

i, j , (i, j) ∈ C
needed to fulfill the fill rate targets given the non-local reorder points from the
optimal solution. If we reduce the reorder points Rl,m, (l, m) ∈ Pi, j , the required
local reorder point (i, j) can not be smaller:

Ri, j ≥ Ract
i, j , if Rl,m < R∗

l,m f. a. (l, m) ∈ Pi, j . (14)

Furthermore, we can introduce constraints for all other cases, i.e., if we increase
some or many Rl,m, (l, m) ∈ Pi, j :

Ri, j ≥ Ract
i, j −

∑

(l,m)|Rl,m≥R∗
l,m

Rl,m . (15)
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Equations (14) and (15) can bemodeled in the ILP as indicator constraints or with the
help of auxiliary binary variables. Equation (15) is based on the property, that a local
reorder point can be reduced by at most by 1, if a non-local reorder point is increased
by 1. Instead of this simple relationship, we could also model a constraint using
functions gi, j

l,m(Rl,m) re-based on Ract
i, j .While thiswould imply a better approximation,

the generated ILP is more difficult to solve as we require many more auxiliary
variables and special order set constraints. By introducing Eqs. (14) and (15), our
ILP is now exact at {R∗

l,m}, much tighter in the area around this spot and we can
guarantee optimality of our algorithm. However, those constraints are expensive and
we advise on only introducing them, when refining the functions gi, j

l,m(Rl,m) does not
change the solution anymore.

3 Summary and Conclusion

In this paper we have developed an efficient optimization algorithm that is able
to determine reorder points in n-level divergent distribution networks. This algo-
rithm is, to our knowledge, the first one, that is able to determine optimal reorder
points for general n-level distribution networks using the wait time approximation by
Kiesmüller et al.

Experiences from our work with 2-level distribution networks show that fill rates
at non-local warehouses should be much lower than what is common in practice and
stock can be drastically reduced compared to prescribed fill rates.We plan to validate
this for the n-level case using real world data. Additionally, the performance of the
algorithm can be further improved.
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An Integrated Loss-Based Optimization
Model for Apple Supply Chain

P. Paam, R. Berretta and M. Heydar

1 Introduction

Food supply chain (FSC) is more complex compared to other kinds of supply chain
(SC) because of the perishable nature of foodstuff. Therefore, any drawback within
the FSC may lead to food loss. Food loss refers to “the decrease in edible food
mass throughout the part of the SC that specifically leads to edible food for human
consumption” [1]. It is a worldwide phenomenon, which affects both developed and
developing countries.

Agricultural fruit supply chain (AFSC) “constitutes the processes fromproduction
to delivery of the fruit products from farm to market” [2]. Fruit loss in AFSC is
dependent on how the products are dealt with throughout the SC processes and
can happen due to problems in different stages. This may cause the production of
unavoidable second and third-grade fruits, fruit damage across the chain or perished
fruits. A remedy for this problem is to develop planning mathematical models in
AFSC.

Few studies have previously focused on developing mixed-integer linear pro-
gramming (MILP) models for AFSC, which consider food loss. For instance, Ferrer
et al. [3] developed a model for grape harvest scheduling with the objective of total
cost minimization, including a penalty cost for grapes, harvested before or after the
optimal harvest period. Ahumada and Villalobos [4] developed a tomato SC model,
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applying a penalty cost for having tomatoes with unacceptable color. Rong et al. [5]
investigated food quality deterioration in a distribution problem for a bell pepper SC.

Only few papers considered inventory management of fruit products. For exam-
ple, Herbon et al. [6] managed inventory by tracking the age and quality of perishable
products using RFID. Muriana [7] investigated the impact of time-temperature indi-
cators on food quality changes in inventory. Recently, Paam et al. [8] conducted a
comprehensive survey on planning and optimization models in the agricultural fresh
food SC considering the concept of food loss.

The contribution of this research is developing a mathematical model for posthar-
vest handling and storage of an apple SCwith two different time periods of harvesting
and planning and quantifying apple losses based on the time gap between their harvest
and delivery.

2 Problem Statement and Mathematical Formulation

In this study, we consider a typical apple SC company in Australia, where harvested
apples are transported to the plant and assigned to three different types of storage
rooms, including conventional cold (CC), smart fresh (SF), and controlled atmo-
sphere (CA). The energy cost and shelf life of apples vary in different room types.
After being stored, apples are processed through a processing line tomeet the demand
in each time period. The line consists of various stages, with one designated to clas-
sify apples into different quality grades based on their size and color. Among these
grades, grade-1 has the best quality and gains the most profit, grade-2 has lower qual-
ity and price, and grade-3 has almost the lowest quality, which is used for producing
apple juices. Therefore, the grades of apples are not known in storage rooms and the
quantity of each grade is specified at the end of the processing line, where apples are
packed and directly transported to the market.

In the proposed model, we define two separate time periods, which are harvesting
and planning time periods. Harvesting periods are a subset of planning periods.
Apples are assigned to the storage rooms during harvesting periods and depleted
from rooms and sold to the market during planning periods. In our problem, the time
interval is defined as one week. We assume that the planning horizon is 46 weeks, in
which the first 16 weeks are harvesting periods.

In our model, apple losses happen when apples are kept more than their shelf life
in the storage rooms. Each storage roommust be only of one type and its optimal type
is decided by the model. We also assume that all parameters such as the quantity of
shipped apples to the plant, the demand of each apple grade, percentages of different
grades of apples at the grading stage and costs are known. Finally, it is assumed that
apple losses are kept inside the storage rooms until the end of the planning period
and processed apples with no demand at the end of the line are discarded without
incurring any cost.

The indices and sets, parameters, and decision variables of the developed MILP
model are as follows:
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2.1 Indices and Sets

t ∈ T : planning periods (week), where T = {1, …, 46}; h ∈ H ⊆ T : harvesting
periods (week), where H = {1, …, 16}; s ∈ S: type of storage rooms, where S = {1,
2, 3}; n ∈ N : number of storage rooms, where N = {1, …, 39}; and g ∈ G: quality
grades, where G = {1, 2, 3}.

2.2 Parameters

qoph : quantity of input apples to the plant in harvesting period h (kg/week); mxp:
maximum capacity of the processing line (kg/week); mxsn: maximum capacity of
storage room number n (kg); sls : shelf life of apples in storage room type s (week);
dmgt : demand of apple grade g in period t (kg/week); pggt : percentage of apple
grade g at grading stage in period t (%); pct : processing cost of one unit of apple
($/kg); ict : inventory cost of one unit of apple ($/kg); ects : energy cost of storage
room type s ($/week); kctg: packing cost of one unit of apple grade g ($/kg); and
lcts : penalty cost for one unit of apple loss in storage room type s ($/kg).

2.3 Decision Variables

qinnsh : quantity of input apples to storage room number n of type s in harvesting
period h; qounsht : quantity of output apples from storage room number n of type s to
the processing line harvested in period h in period t; qpmght : quantity of apple grade
g at the end of the processing line harvested in period h in period t; qlossns : quantity
of apple losses in storage room number n of type s; invnsht : inventory level of apples
in storage room number n of type s harvested in period h at the end of period t; xnst :
equal to 1, if storage room number n of type s is on in period t, 0 otherwise; and yns :
equal to 1, if storage number n is of type s, 0 otherwise.

2.4 Mixed-Integer Linear Programming Model

OBJ � Min

⎡
⎢⎢⎣

∑
n

∑
s

∑
h

∑
t
pct × qounsht+

∑
n

∑
s

∑
h

∑
t
ict × invnsht

+
∑
n

∑
s

∑
t
ects × xnst+

∑
g

∑
s

∑
t
kctg × qpmght+

∑
n

∑
s
lcts × qlossns

⎤
⎥⎥⎦ (1)

Subject to:

qoph �
∑
n

∑
s

qinnsh ∀h ∈ H (2)
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invnsht � qinnsh − qounsht ∀n ∈ N , s ∈ S, h ∈ H, t ∈ T where h � t (3)

invnsht � invnsh,t−1 − qounsht ∀n ∈ N , s ∈ S, h ∈ H, t ∈ T where h < t (4)
∑
n

∑
s

∑
h

qounsht ≥
∑
h

qpmght/pggt ∀t ∈ T, g � 1 where h ≤ t (5)

∑
n

∑
s

∑
h

qounsht ≥
∑
h

∑
g

qpmght ∀t ∈ T where h ≤ t (6)

∑
n

∑
s

∑
h

qounsht ≤ mxp ∀t ∈ T where h ≤ t (7)

qinns,h�t +
t−1∑
h�1

invnsh,t−1 ≤ mxsn × xnst ∀n ∈ N , s ∈ S, t ∈ H, invnsh,t�0 � 0 (8)

∑
h

invnsh,t−1 ≤ mxsn × xnst ∀n ∈ N , s ∈ S, t ∈ T − H where h ≤ t (9)

∑
h

qpmght ≥ dmgt ∀t ∈ T, g ∈ G where h ≤ t (10)

∑
s

yns ≤ 1 ∀n ∈ N (11)

∑
t

xnst ≤ T × yns ∀n ∈ N , s ∈ S (12)

qlossns �
∑
h

∑
t

invnsht ∀n ∈ N , s ∈ S where t − h � sls + 1 (13)

∑
h

∑
t

qounsht � 0 ∀n ∈ N , s ∈ S where h + sls + 1 ≤ t (14)

qinnsh, qounsht , qpmght , qlossns , invnsht ≥ 0 ∀n ∈ N , s ∈ S, g ∈ G, h ∈ H, t ∈ T (15)

xnst , yns ∈ {0, 1} ∀n ∈ N , s ∈ S, t ∈ T (16)

In the above formulation, the objective function (1) minimizes the total costs,
including processing costs, inventory costs, the energy cost of different types of
storage rooms, packing costs of different grades of apples, and penalty cost for apple
losses.

Constraint (2) states that all apples shipped from orchards to the plant should be
assigned to storage rooms. Constraints (3) and (4) are inventory balance where h = t
and h < t, respectively. In the former, there is an input to the storage rooms without
any inventory from the previous period, while in the latter, it is the other way around.
Constraints (5) and (6) state that in each planning period, the amount of apple coming
out of the storage rooms should be the maximum amount between two values: the
quantity of grade-1 apples at the end of the processing line divided by its percentage
and the sum of all apple grades combined at the end of the line. So, these two
constraints guarantee that grade-1 (the most profitable grade) and total demand are
satisfied. Constraint (7) is the capacity constraint of the processing line. Constraints
(8) and (9) are the capacity constraints of storage rooms during and after harvesting
periods, respectively. These two constraints also ensure that if a storage room is off in
a period, there should not be any assignment or inventory from the previous period to
that room. Constraint (10) guarantees that, in each period, the demand for each grade
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is satisfied from the processing line. Constraint (11) determines the type of storage
rooms. Constraints (12) guarantees that if a storage room is of one type and is on in
period t, its type cannot change anymore. Constraint (13) states that in each period
those apples stayingmore than their shelf life in a storage room are considered as loss.
Constraint (14) ensures that if apples are kept more than their shelf life in a storage
room, they are not used anymore to satisfy the demand. Constraints (15) and (16)
are the non-negativity and binary constraints on the decision variables, respectively.

3 Computational Implementation and Results

To solve the model, we used python programming language and Gurobi optimization
solver 7.0 [9], and to evaluate the performance of it, we used a real-world instance of
the Australian apple company. We assessed the results using four key performance
measures: (1) total output of the storage rooms, (2) total loss, (3) fresh end stock (=end
stock—total losses), and (4) objective function value (OFV). Besides, to analyze the
behavior of the model, we defined four different scenarios (modifying the real data).
Scenario (1): increasing the processing cost, Scenario (2): increasing the penalty cost
of apple losses, Scenario (3): the shelf life in all types of storage room increased by
2 weeks, and Scenario (4): the shelf life in all types of storage room decreased by
2 weeks.

Table 1 shows the results of mentioned key performance measures for the real-
world instance and the scenarioswith the optimality gap of 0.04% in 900 s. In scenario
1, the processing cost is increased in a way to have the least amount of output from
storage rooms to the line (9716988.57 kg), so total loss increments and consequently,
total cost increases. In scenario 2, the total output increases by raising the penalty
cost of apple losses so that total loss reaches to zero. However, we do not witness
any improvement in the OFV. In scenario 3, there is no apple loss, when the shelf
life of all three storage types is increased by 2 weeks. So, there are more fresh apples
in storage rooms at the end of the planning horizon (2521883.36 kg). Accordingly,
unlike scenario 2, this time the OFV decreases as a result of loss reduction. Finally,
in scenario 4, both total loss and total cost increment, as shelf life falls by 2 weeks.
Moreover, optimal types of storage rooms are 14,15 and 10 for CC, SF and CA,
respectively. It is interesting to note that when apple loss exists, it only happens
in CA rooms. So, the total loss value is so dependent on the apples’ shelf life in
this room. We can conclude that the OFV decreases by increasing the shelf life
(decreasing apple loss) in CA storage room.

4 Conclusion

In this paper, we developed a mixed-integer linear programming (MILP) model for
inventory management of apple SC in Australia with the aim of minimizing total
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Table 1 The results of the key performance measures

Instance Total rooms’
output (kg)

Total loss (kg) Fresh end stock
(kg)

OFV ($)

Real instance 11580757.5 446409 1030033.5 18385339.4

Scenario 1 9716988.57 2310177.92 1030033.5 20752686.42

Scenario 2 12027166.5 0 1030033.5 18400032.06

Scenario 3 10535316.63 0 2521883.36 18252587.67

Scenario 4 11578060.57 1332905.92 146233.48 18506269.64

cost, while satisfying the demand of different apple grades. The model determines
the type of storage rooms and quantifies apple losses of each type according to
the time gap between their harvest and delivery with an associated penalty cost in
the objective function. We solved the model using Gurobi optimization solver 7.0,
evaluated the performance of the model using a real-world instance, and tested its
behavior by analyzing different scenarios. The results indicated that the total cost
decreases by incrementing the shelf life of apples (decreasing apple loss) in CA
storage rooms. This outcome may aid policy makers on investment decisions for
regional development.

As future study, developing stochastic mathematical models or integrated ones
for AFSC such as, harvest-inventory or inventory-transportation can be considered.
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Simulating Fresh Food Supply Chains
by Integrating Product Quality

Magdalena Leithner and Christian Fikar

1 Introduction

Supply chain management has gained importance to strengthen competitiveness in
the fresh fruit sector [21]. Efficiently planned inventory management, transportation
and distribution are indispensable for the profitability of food supply chains [18].
Nevertheless, food logistics is challenged by thin margins, various uncertainties as
well as changing qualities and quantities influenced by harvest-times and unpre-
dictable weather conditions [3, 6, 9, 18].

In Europe, nearly one third of produced fresh fruits and vegetables (FFVs) gets
lost along postharvest handling [10]. Furthermore, the quality of FFVs decreases
over time, resulting in limited shelf lives [13]. Temperature has the greatest impact on
postharvest life due to its effect on the biological reaction rates andmicrobial growth.
These specific requirements and process characteristics complicate the integration
of decision support systems [16]. Operational research methods present powerful
tools to handle the complexity of food logistics [4]. Consequently, when modelling
FFV supply chains, approaches which integrate the specific characteristics of fresh
produces are required to reduce food losses and maintain high product qualities
[6, 18].

Most modelling approaches applied to improve food supply chains, however, do
not consider changes in product quality and interdependencies between quality and
chain design [21]. Simulation techniques are able to incorporate such uncertainties
and allow the integration of food quality models to enable holistic approaches [11,
21]. In this work, commonly applied stock rotation schemes and distribution strate-
gies are jointly investigated within a regional FFV supply chain. Strawberries, due
to their high perishability, act as a sample setting. Consequently, the contribution
of this work is twofold: (i) it embeds a generic keeping quality model in a discrete
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event simulation to provide guidance on integrating product quality within food sup-
ply chain simulations and (ii) analyzes the impacts of stock rotation and distribution
strategies on operations.

2 Related Literature

In a literature review of food aspects in logistics research, [6] note that food products
have unique characteristics creating special demands which challenge food sup-
ply chain actors. [18] analyzed literature dealing with operational research models
applied to the fresh fruit supply chain. The authors note that variousworks use simula-
tionmethods to improve fresh fruit logistics, however, linear programming is the pre-
dominant modeling technique. [4] focus on reviewing operations research methods
which are able to handle uncertainties in food supply chains. Three main operations
research techniques are discussed, namely, stochastic, robust, and simulation-based
programming. Furthermore, they categorize simulation-based works into three main
functional areas (i) in-field, irrigation, harvest and transportation activities, (ii) prices
and profits, and (iii) food supply chain coordination and (re)design. Two types of
uncertainties are predominately taken into account, supply (e.g., weather, resource
availability) and market uncertainties (e.g., prices, costs, demand fluctuation).

In [21], food quality models and sustainability indicators are embedded in a dis-
crete event simulation environment, investigating a global pineapple supply chain.
To calculate the effects of temperature on the quality of FFVs, [20] developed the
generic keeping quality model. Therefore, the keeping quality describes the time
until a commodity becomes unacceptable and is inversely proportional to the sum of
reaction rates which decrease product quality. The limit of acceptance, i.e. the end
of keeping quality, depends on the product quality, its intrinsic characteristics like
visual appearance, firmness and fungal decay as well as on consumers’ perceptions.
At constant environmental conditions, known initial quality and a defined quality
limit, the same attribute always hits the acceptance limit first. The impacts of tem-
perature on product quality are described by applying the Arrhenius law to calculate
the reaction rate at specified temperatures.

3 Method

In this work, a generic food quality model is integrated in a discrete event simulation
modeling a regional FFV supply chain consisting of local producers, a central ware-
house and retailers. Various entities (e.g., perishable products, producers, trucks,
warehouses, retailers) are modeled in detail, which follow and build various pro-
cess steps. Along the supply chain varying temperatures are assumed, i.e. at harvest,
storage, transport and in the warehouse. Figure1 provides an overview of the imple-
mented process flow. After harvest, a perishable good is shipped either directly or
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Fig. 1 Fresh fruit supply storage and distribution process

indirectly (via a warehouse) from the place of harvest to several retail stores where
goods are in demand. The quality of these products is calculated individually and
updated after each process step according to storage temperatures and durations.
At different stages of the supply chain, FFVs, that are unacceptable, are removed
from the process and counted as food losses. At random times during the simulation,
based on a Poisson-distributed arrival rate, customers request products. If goods are
available, the inventory is adjusted. Otherwise, the customer request is counted as
lost sales. At reorder points, derived from a desired service level and expected lead
times based on [5], an replenishment order is generated. This order is, depending
on the simulation setting, either fulfilled directly by a producer or via the central
warehouse.
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Three different strategies are compared on how to fulfill incoming replenishment
orders, (i) serving orders in accordance to the arrival time, i.e. the order placed first
is assigned first, (ii) by distance to the retailer’s location, i.e. the order is served by
the location resulting in the lowest travel distance, or (iii) randomly. Additionally,
three stock rotation schemes are implemented to model product selection, ‘first in,
first out’ (FIFO), ‘last in, first out’ (LIFO) and ‘least shelf life, first out’ (LSFO).
Generated food losses along the various stages of the supply chain aswell as achieved
service levels and travel durations are calculated and reported to the user after each
simulation run.

The model is implemented with the simulation software AnyLogic 8.1.0 [2]. Data
from the OpenStreetMap [15] are used to generate transportation routes and travel
durations. The simulationmodels twoweeks of harvest, with demand equal to supply
and an additional day of warm-up phase to initiate the simulation. Average results
are reported, based on 100 replications for each setting.

4 Computational Experiments: Strawberry Supply Chain
in Lower Austria

Lower Austria is an important strawberry production area in Austria, responsible
for nearly half of the nationwide strawberry crops [1, 19]. Strawberries (Fragaria
ananassa) are one of the most widely consumed fruits [12]. Even under perfect stor-
age conditions, the strawberry fruit can only be stored andmaintain its desired quality
for five to seven days [14]. The wrong postharvest temperatures rapidly induce qual-
ity changes. Since Botrytis infection (spoilage) is one of the first visible attributes
the consumer can assess, it mainly limits the keeping quality of strawberries [8].
As the presence or absence of spoilage is the main criterion concerning spoilage,
the keeping quality of strawberries can be described as a batch keeping quality. It
gives the percentage of strawberries affected by spoilage within one batch, hence,
the quality limit can be defined as the time until the first strawberry in one batch is
visibly infected [8]. Therefore, according to Arrhenius law, the spoilage rate depend-
ing on temperature is calculated. Considering different temperature conditions and
assuming zero order kinetics, the quality losses as well as the remaining shelf lives
are calculated. The initial quality of the strawberry batches, the quality limit as well
as the spoilage rate constant refer to the used parameters in [8, 17].

To simulate the strawberry supply chain in Lower Austria, data from the GLOB-
ALG.A.P. database [7] are used to refer to major strawberry producers. The retail
stores as well as the warehouse refer to the supply chain of a major Austrian grocery
chain. A focus on the largest cities of Lower Austria is set. This results in a problem
size consisting of ten producers, a central warehouse and 23 retail locations. The
production rate of strawberries is calculated according to the production output of
2013 [19]. At each producer one chilled truck is available for shipments, whereas
the warehouse operates four chilled trucks.
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Table 1 Impact of distribution strategy on service level, travel duration and food losses (indirect
deliveries)

Output Service level (%) Travel duration (h) Food losses (items)

Delivery

Firstorder 86 919 2164

Nearestretailer 92 894 1013

RANDOM 85 921 2292

5 Results and Discussion

Regarding indirect deliveries, the results, shown in Table1, indicate that regional
deliveries, i.e., the nearest retailers get delivered first, positively influence travel
duration, the amount of food losses and customer service levels of the stores. Nev-
ertheless, distant retailers are poorly served in such settings. Four warehouse trucks
reduce food losses under LSFO and FIFO to zero whereas high amounts of food
losses occur under LIFO. If less trucks are available, the LSFO approach produces
significantly less food losses than the FIFO approach. Direct deliveries enable high
service levels and zero food losses irrespective of the chosen delivery strategy. The
travel durations are higher using the first order and the random strategy both with
direct and indirect deliveries. In general, indirect deliveries have longer transport
routes than direct deliveries, resulting in longer travel durations. The results support
the findings of [10] that longer transport routes negatively influence product quality.
Therefore, the assignment of low quality products to shorter routes to, further, reduce
food losses is recommended.

6 Conclusions

The work shows that the integration of food quality and losses in food supply chain
simulations provides the opportunity to improve operations. Applying the LSFO
approach can reduce food losses. In addition, regional supply chains reduce travel
distances aswell as food losses and improve product availability. Futurework focuses
on the integration of optimization methods within the simulation framework and on
expending the product range to consider interactions among various FFVs.
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Window Fill Rate with Compound
Arrival and Assembly Time

Michael Dreyfuss and Yahel Giat

1 Introduction

Exchangeable-item repair systems are systems to which customers bring a failed
item and exchange it for a serviceable item.

In this paper, the service measure that we consider is a generalization of the fill
rate. The fill rate is defined as the fraction of customers who are served upon arrival.
In many cases, however, the service contract allows for a certain period of time until
service is rendered. Moreover, even absent contractual agreement, customers will
tolerate a certain wait and therefore there is no loss to the firm if a customer waits
less than the tolerable wait. The window fill rate incorporates this tolerable wait and
is defined as the probability that the customer is served within the tolerable wait.

Formulas for the window fill rate are developed in [1] where it is assumed that
item assembly and disassembly (i.e., removal and installation) is instantaneous. The
goal of this paper is to extend these results and develop the window fill rate formula
for the case of nonzero assembly and disassembly times. The main result of the
analysis is that a Δ increase in the assembly and disassembly time is equivalent to a
Δ decrease in the tolerable wait.

Our paper contributes to the research of exchangeable-item repair systems origi-
nated by Sherbrook’s METRIC model [2] that develops an approximate evaluation
of the number of backorders in a multi-echelon system and describes a greedy algo-
rithm to solve the spares allocation problem. This body of research is presented in
books such as [3, 4] and recently reviewed in [5]. Except for the fact that we limit the
system to a single location, we assume the standard METRIC assumptions, which
include compound arrival, ample repair servers, that components fail according to
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a Poisson process with a constant arrival rate and a continuous (S − 1, S) review
policy.

Many METRIC-based papers focus on the number of back-orders performance
measure (e.g., [6–8]) or the fill rate performancemeasure (e.g., [9, 10]). Our use of the
windowfill rate, i.e., the probability of a randomcustomer to be servedwithin a certain
time window, is premised on customers tolerating a certain wait. This assumption
lies at the intersection of inventory and customer service models. While the concept
of a tolerable wait is rarely considered in inventory models, it is recurrent in the
service industry and is associate with terms such as “expectation” [11], “reasonable
duration” [12], “maximal tolerable wait” [13] and “wait acceptability” [14]. From
a service-oriented approach, the customer’s attitude to wait is mainly subjective
and has cognitive and affective aspects [14]. From a logistics point of view this
wait is more objective and usually stated in the service contract. Indeed, researchers
have observed that most inventory models fail “to capture the time-based aspects of
service agreements as they are actually written” [15, p. 744]. Our paper fills this void
by incorporating the tolerable wait into the optimization criterion.

2 The Model

Customers arrive with failed items. Upon arrival, the items are removed and sent to
repair. Once an item is repaired it is added to the station’s stock. To reduce customer
waiting time, the network keeps a number of spare items. Customers are served
according to a first-come, first-serve policy (FCFS). Let Bi , (i = 1, 2, . . .) denote
the number of items brought by customer i . We assume that customer arrival follows
a Poisson process with parameter λ and that Bi are i.i.d. with a common probability
distribution PB(·) and that the sequence Bi is independent of the customer arrivals
and item repair processes. Partial service is not allowed and therefore, the customers
leave the system only once they received Bi serviceable items. We assume that there
are ample repair servers and that the servers’ repair time is i.i.d. The combination
of these assumptions is that repair commences once the item is removed and that
repair times are independent. Let R(t) denote the cumulative probability for repair
to be completed by time t , and let item removal and installation times be t1 and t2,
respectively. The total assembly and disassembly time, t1 + t2, is assumed to be no
more than the tolerable wait.

In what follows, we develop the window fill rate, i.e., the probability that a cus-
tomer’s demand is satisfied within time t . We first formulate the nonstationary win-
dow fill rate and then we take the limits to obtain the stationary window fill rate.

Consider Jane, a customer arriving at time s and let FNS(s, n, t) denote the non
stationary probability for her to leave the system by time s + t . The FCFS assumption
dictates that all the demand of the customers that arrived before Janemust be supplied
before her. Since, in addition, it takes t2 to install Jane’s item, FNS(s, n, t) is equal
to the probability that by time s+t−t2 she must be at the head of the queue with
an operable item ready for her. We distinguish between items that were brought by
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customers who arrived during [0, s) (“pre-Jane”) and items brought by customers
who arrived during (s, s+t−t2) (“post-Jane”) and define the following variables:

• Wi (i = 1, 2, . . . , NW (s)) is the number of items brought by the i’th pre-Jane
customer that were repaired by date s+t−t2.

• Xi (i = 1, 2, . . . , NX (s)) is the number of items brought by the i’th pre-Jane
customer that were not repaired by date s+t−t2.

• Z(s, t) is the number of items brought by Jane that were not repaired by date
s+t−t2.

• Yi (i = 1, 2, . . . , NY (t)) is the number of items brought by the i’th post-Jane
customer and that were repaired by date s+t−t2.

FNS(s, n, t) is the probability that the supply of operable items is greater than the
demand as follows:

FNS(s, n, t) = Pr
[ NW (s)∑

i=1

Wi +
NY (s)∑
i=1

Yi +BJane−Z(s,t)+n ≥
NW (s)∑
i=1

Wi +
NX (s)∑
i=1

Xi +BJane

]
.

(1)

In (1), the supply (left side of the inequality) comprises the n spares plus the items that
were repaired by date s+t−t2. The demand (right side of the inequality) comprises
the items needed to serve the customers that arrived before Jane plus the BJane items
needed by Jane. Cancelling terms and reversing the inequality, we have:

FNS(s, n, t) = Pr
[ NX (s)∑

i=1

Xi −
NY (t)∑
i=1

Yi + Z(s, t) ≤ n
]
. (2)

The ample servers and the assumptions about the item arrivals distribution guarantee
that X := ∑NX (s)

i=1 Xi , Y := ∑NY (t)
i=1 Yi , Z(s, t) are independent. Further, Y and X

are Compound Poisson. To find the probability Pr [Z(s, t) = j] we condition on the
number of items that Jane brought, b, and compute the probability that j of these have
not been repaired by time s+t−t2. Since it takes t1 to remove the item, the repair
begins at s + t1. Thus, the probability that j items have not been repaired is given by
Bin

(
j, b, 1 − R

(
s+t−t2 − (s+t1)

))
where Bin(i, j, p) := ( j

i

)
pi (1 − p) j−i is the

binomial probability mass function. Thus,

Pr [Z(s, t) = j] =
∞∑
b= j

PB(b)Bin
(
j, b, R̄(t̂)

)
. (3)

where t̂ := t−t1−t2 and R̄(·) = 1 − R(·).
Conditioning on Z(s, t) and using (3), the probability (2) is given by
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Pr
[
X − Y + Z(s, t) ≤ n

]

=
∞∑
j=0

( ∞∑
b=max{ j,1}

PB(b)Bin
(
j, b, R̄(t̂)

) · Pr [X − Y + j ≤ n]
)

=
∞∑
b=1

(
PB(b) ·

b∑
j=0

Bin
(
j, b, R̄(t̂)

) · Pr [X − Y + j) ≤ n]
)

=
∞∑
b=1

(
PB(b)·

b∑
j=0

(
Bin

(
j,b,R̄(t̂)

)·
∞∑
y=0

(
Pr [Y = y]

n− j+y∑
x=0

Pr [X = x]
)))

, (4)

where the third row is obtained by changing the order of the summations and the
fourth row is given by conditioning on Y .

At this point we investigate the distribution of the components of X and Y . To
find the probability Pr [Xi = j] we first consider a customer that arrived at the time
interval du in [0, s). Notice that for a Poisson arrival the probability for this is du/s.
Next, we condition on the number of items brought by the customer, b, and this
is multiplied by the probability that exactly j of the b items are not repaired by
s + t − t2. The item begins repair at u + t1 and the probability of the item not to be
repaired between [u + t1, s + t − t2) is 1 − R(s+ t̂−u) and therefore the probability
that j of the b items are not repaired Bin

(
j, b, R̄(s+ t̂−u)

)
. Thus,

Pr [Xi = j] =
∫ s

u=0

∞∑
b=1

(
PB(b)Bin

(
j, b, R̄(s+ t̂−u)

))du
s

=
∫ s+t̂

v=t̂

∞∑
b=1

(
PB(b)Bin

(
j, b, R̄(v)

))dv
s

. (5)

For the probability Pr [Yi = j]weconsider a customer that arrived at the time interval
du in [s + t1, s + t − t2), which happens with probability du/t̂ . Next, we condition
on the number of items brought by the customer, b, and this is multiplied by the
probability that exactly j of the b items are repaired by s + t − t2, which is given by
Bin

(
j, b, R(s+ t̂−u)

)
since the item begins repair at u + t1. Thus,

Pr [Yi = j] =
∫ s+t̂

u=s

∞∑
b=1

(
PB(b)Bin

(
j, b, R(s+ t̂−u)

))du
t̂

=
∫ t̂

v=0

∞∑
b=1

(
PB(b)Bin

(
j, b, R(v)

))dv
t̂

. (6)

Let A(t) := ∑N (t)
i=1 Ai be a Compound Poisson with customer arrival rate λ. By [16,

pp 36–7, Eq.1.48] the distribution of A(t) is given by
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Pr [A(t) = 0] = exp−λt Pr [Ai>0], Pr [A(t) = j] = λt

j

j−1∑
k=0

(j−k)Pr [Ai = j−k]Pr [A(t) = k].

(7)

By (5) and (7), we have that

Pr [X = 0] = exp−λsPr [Xi>0] = exp−λs
∑∞

j=1

∫ s+t̂
v=t̂

∑∞
b=1 PB (b)Bin( j,b,R̄(v)) dv

s

= exp−λ
∫ s+t̂
v=t̂

∑∞
b=1 PB (b)(1−Bin(0,b,R̄(v)))dv,

Pr [X = j] = λs

j

j−1∑
k=0

( j − k)Pr [Xi = j − k]Pr [X = k]

= λ

j

j−1∑
k=0

( j−k)

s+t̂∫

v=t̂

∞∑
b=1

PB(b)Bin
(
j−k, b, R̄(v)

)
dvPr [X =k]. (8)

Similarly, using (6) and (7) we have that

Pr [Y = 0] = exp−λt Pr [Yi>0] = exp
−λ

∑∞
j=1

∫ t̂
v=0

∑∞
b=1

(
PB (b)Bin

(
j,b,R(v)

))
dv

= exp
−λ

∫ t̂
v=0

∑∞
b=1

(
PB (b)

(
1−Bin(0,b,R(v))

))
dv

,

Pr [Y = j] = λt̂

j

j−1∑
k=0

( j − k)Pr [Yi = j − k]Pr [Y = k]

= λ

j

j−1∑
k=0

( j−k)

t̂∫

v=0

∞∑
b=1

(
PB(b)Bin

(
j−k, b, R(v)

))
dvPr [Y = k]. (9)

To summarize, the nonstationary window fill rate F(s, t, n) is given by (4), (8) and
(9). The (stationary) window fill rate, F(t, n), is obtained by letting s → ∞ in the
integral limits of (8).

3 Discussion and Conclusions

The consequence of (4), (8) and (9) is that instead of considering positive assembly
times, we can adjust the tolerable wait by subtracting from it the assembly times.
Therefore, all the results of [1] for the Compound Poisson case are valid and the
algorithm they present for optimizing a system of multiple locations applies also
when assembly times are nonzero.
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Fig. 1 The window fill rate versus for different values of assembly times

We illustrate the functional form of the window fill rate for the following case.
Customer arrival rate is λ = 2. Each customer arrives with exactly three items
(Pr [Bi = 3] = 1) and repair time is R ∼ N (3, 0.32). The tolerable wait is t = 1
and we examine three values for the assembly times, t1 + t2 = 0, 0.3, 0.6, which
results with three cases of adjusted waiting times t̂ = 1, 0.7, 0.4. In Fig. 1, we plot
the window fill rate for each case as a function of the number of spares in the station.
We can see that when there are too few spares or sufficiently many spares the win-
dow fill rate is insensitive to the tolerable wait. For intermediate values, however, the
window fill rate is sensitive to the assembly times. For example, when there are 15
spares in the station increasing the assembly times from 0 to 0.3 to 0.6, decreases
the window fill rate from 59 to 47 to 36%, respectively.

In our model, we assume that the assembly times are deterministic. This assump-
tion is reasonable when the item-installment and item-removal procedures are rel-
atively simple and done as a matter of routine. With certain complex systems, this
assumption may not be true and one would have to assume that assembly times are
stochastic. We leave this for future research.
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Demand-Driven Line Planning
with Selfish Routing

Malte Renken, Amin Ahmadi, Ralf Borndörfer, Güvenç Şahin
and Thomas Schlechte

1 Introduction

A common characteristic of most urban transportation systems is the variation in
demand during different times of the day and different days of the week. This char-
acteristic is even more notable in bus rapid transit (BRT) systems as such systems
typically serve the bulk of the demand, exerting a trunk function for the whole trans-
portation system of a region/area. The demand varies heavily during the day, with
morning and evening peaks if it is a weekday while timings of morning and evening
peaks may change for the weekends. In addition to fluctuations with respect to time,
the demand is typically highly asymmetric with respect to its distribution on the
line. Such systems, again typically, cover a central line of a highly populated city. In
particularly densely populated cities of such countries, (the population is young and
the workforce moves from usually outer regions of the cities to the central parts, i.e.,)
the movement of population is typically in reverse directions for morning peaks vs.
evening peaks. As a result, the system-wide transportation demand exerts significant
changes in both time and space.
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Traditional line planning is mostly concerned with a static demand and addresses
the case of fluctuating demand by constructing a base service, which is augmented
in peak hours, or vice versa, i.e., constructing a peak service which is decremented
during non-peak hours. In BRT systems with demand sensitivity in both space and
time, a demand-driven approach in line planning would be more viable. As a result,
line plans are more susceptible to infrastructure capacity and fleet capacity. In this
respect, an analytical demand-driven approach should consider the effects of such
limitations on the level of demand satisfaction in the system.

In traditional mathematical programming formulations of line planning problems,
the relation between capacities and the demand are roughly reflected/considered.
There is usually a predetermined frequency requirement rather a demand amount to
be satisfied ([1]). We use mathematical formulations where origin-destination (OD)
demand between pairs of stations to be satisfied in a finite length planning horizon is
explicitly represented as in [2]. In order to investigate the accuracy of demand-driven
line planning approaches, we consider a simplistic underlying network structure: a
line network. On a line network, each pair of stations is connected via a single
path. The alternative mathematical formulations differ from each other with respect
to the way demand is represented: an arc-based model where the OD demand is
transformed into arc demands without considering the passenger routes explicitly
and an OD-based model where the demand is represented in its original form. First,
we aim to test the accuracy of the solutions provided by alternative formulations. To
this end, we simulate the optimal line plan solutions to observe the differences in
basic matrices. In the simulation, we consider passengers with a selfish route choice
behavior that is expected to result in a Braess-like paradox.

2 The Braess-Like Paradox with Selfish Routing

The passenger load on lines may significantly change based on the route choice
behavior of passengers. The route choice behavior is indeed a very complex problem
when there are uncertainties involved; yet, it can be simplified in favor of selecting a
certain criterion such as minimizing the number of connections or travel time. When
the transport system is sensitive to capacities, the route choice behavior of passengers
may play an important role in service levels. We observe a Braess-like paradox with
respect to the simple criterion of minimizing connections when the capacity of a
system is increased by adding lines.

In order to illustrate our observation, we consider a network consisting of stations
1–5 along a single path with three lines denoted A, B and C as shown in Fig. 1a and
OD demands as in Fig. 1b. Each line has a passenger capacity of N .

We compare two different line plans:

• Line plan {A, B}, consists of line A and line B. Naturally, N passengers from 1
to 3 take line A. Therefore, all passengers from 2 to 4 must use line B. Finally, N
passengers from 3 to 5 take line A.
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1 2 3 4 5

A
B

C

(a) set of lines

O\D 1 2 3 4 5

1 N

2 N

3 N

(b) demand as OD matrix

Fig. 1 Alternative line plans and corresponding OD demand matrix

Table 1 Comparison of line plan {A, B} and line plan {A, B,C}
Line plan Fixed cost Operational cost Direct travelers Travelers with

transfer at station 4

{A, B} 2 · f X 3 · N 0

{A, B,C} 3 · f X + c1,2 + c2,3 2 · N + N
2

N
2

• Line plan {A, B,C}, is likely to change the situation. Passengers from 1 to 3 now
have the opportunity to choose between line A and lineC . Under a selfish behavior
assumption, each passenger takes the first non-full line to come. Supposing that
both lines work with the same frequency, this leads to a split of N passengers
between A and C : on average N/2 passengers on each line. Hence, line A is not
full at station 2. Again, passengers taking the first non-full line causes roughly
N/2 of the demand from 2 to 4 to take line A instead of B. All vehicles on line
A are, then, full while traveling from station 2 to station 3 where N/2 passengers
hop off. In consequence, only about N/2 seats are empty on line A at station 3, so
only N/2 of the passengers waiting at station 3 to go to station 5 can take line A.
The rest N/2 is forced to take line B from 3 to 4, and connect to line A at station
4 when the passengers traveling from 2 to 4 empty their seats.

We observe that introducing a new line to increase the passenger capacity may
lead to aworse situationwith respect tominimal number of connections due to selfish
behavior of passengers. All passengers could be handled via direct connections with
line plan {A, B}. On the contrary, line plan {A, B,C} leads to passengers transfers
in station 4. Table 1 summarizes the comparison between the two line plans.

3 Alternative Formulations for Demand-Driven Line
Planning

We consider an underlying traffic network represented by a directed graph G =
(N , A) where N denotes the stations and A denotes the set of traffic links between
the stations. For a finite length planning horizon, OD demand is specified as dsq for
each (s, q) pair of stations with s, q ∈ N . When the paths along which passengers
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travel are known in advance (as is the case for a network with tree structure), OD
demand can be transformed into arc demand as denoted by da , a ∈ A.

To formulate the line planning problem, we consider a given line set L; c f
l and

col denote the fixed costs of line l and the operational costs of assigning a vehicle to
line l, respectively. In a line plan, at most V vehicles can be used while at most M
vehicles can be assigned to any line. A passenger route is defined not only by the
physical path on the traffic network but also by each line used to traverse the traffic
link along that path. For an OD-pair (s, q), Rsq denotes the set of routes from s to
q. The set of all routes is denoted by R = ⋃

s,q Rsq .

In an arc-based demand coveragemodel (DCMA) as described inBorndörfer et al.
[3], passenger routes are not considered explicitly. Therefore, two decision variables
are sufficient in the integer programming formulation of the problem: xl ∈ {0, 1}
taking the value of 1 if line l ∈ L is selected, and an integer variable vl ∈ N denoting
the number of vehicles assigned to line l.However, in anOD-basedmodel (DCMOD),
an additional decision variable zr ∈ N is used to denote the number of passengers
taking route r . We obtain the following integer programming problem formulation
where grla is an indicator denoting the traversal of arc a by line l on route r and ρ(r)
is some penalty function that characterizes how attractive the route is for passengers.

min
∑

l∈L
c f
l xl +

∑

l∈L
col vl +

∑

r∈R

zrρ(r) (DCMOD)

subject to
∑

r∈Rsq

zr ≥ dsq ∀(s, q) ∈ D

∑

r∈R

zr g
r
la ≤ κvl ∀l ∈ L , a ∈ A

Mxl − vl ≥ 0 ∀l ∈ L

∑

l∈L
vv ≤ V

xl ∈ {0, 1}, vl ∈ N ∀l ∈ L

zr ∈ N ∀r ∈ R

It is clear that DCMOD is larger in terms of number of decision variables when
compared to DCMA. On the other hand, DCMOD , when solved to optimality, pro-
vides a more accurate solution with respect to demand satisfaction and with respect
to minimal number of connections/transfers. To illustrate how DCMOD can be ad-
vantageous in comparison to DCMA, we consider the example in Fig. 2.

In the example, the arc demands are the same for demand set 1 and demand
set 2; the arc capacities provided by line plan {A1, B1} and line plan {A2, B2} are
equivalent. As a matter of fact, according to DCMA either line plan is optimal for
both demand sets. In contrast, only line plan {A1, B1} is optimal for demand set 1
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Fig. 2 Optimal solution examples for two demand sets

with the OD-based demand model, DCMOD and {A2, B2} for demand set 2 because
they allow all passengers to arrive their destination by a direct connection. Using line
plan {A1, B1} for demand set 2 forces the passenger of OD pair (2, 4) to take line B1

first (as A1 is full) and then to transfer to A1 at station 3. Using line plan {A2, B2}
for demand set 1 does not provide a direct connection for the OD pair (1, 4).

4 Computational Results

When the simultaneous effect of ignoring passenger routes on demand satisfaction
level and the selfish route choice behavior resulting in a Braess-like paradox is
considered, the impact on the outcomes of seemingly optimal line plans might be
complicated. In order to test both effects, we run simulations for a real-life system,
the Istanbul Metrobüs, which is a BRT system with high fluctuations in demand
during the day. We compare the performance of the optimal solutions from DCMA

model against two versions of the DCMOD model. In version I, ρ is set to zero while
in version II routes are penalized according to the number of necessary transfers. We
calculate both passenger travel times and number of transfers under the assumption
that the schedule can be implemented. We select three different time periods of one
hour length that are significantly different from each other in terms of the demand
characteristics. In the simulation, each one-hour solution is tested for 10 consecutive
periods to approximate a continuously run schedule. Most importantly, we assume
a selfish route choice behavior and lines arriving in a random order, thus inducing
unwanted transfers. The results are shown in Table 2.

Overall, the three models show similar results although the set of optimal lines
maydiffer fromeach other.As expected, non-zero penalty affects the ratio of transfers
to passengers with negligible increase in operational costs. In terms of average travel
times,OD-basedmodel results in small savingswhich are lostwhen transfer penalty is
introduced. To conclude, however, the impact ofmodel choice can only be observed in
the number of transfers and when using an appropriate penalty function. Simulation
results show that optimal line plan solutions may fall short in response to time-
sensitive demand. This observation shall stimulate new ideas and approaches to
improve the accuracy of mathematical models in demand-sensitive line planning.
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Table 2 Results of computational experiments

Instance Model Operational costs
(km)

Average travel time
(min)

Transfers per
passenger

08h–09h DCMA 5597.3 37.1 0.19

DCMOD I 5657.9 35.4 0.19

DCMOD II 5732.0 36.4 0.08

14h–15h DCMA 2263.9 37.5 0.18

DCMOD I 2284.6 37.3 0.19

DCMOD II 2309.3 37.9 0.04

18h–19h DCMA 6868.2 39.5 0.24

DCMOD I 6886.8 38.3 0.28

DCMOD II 6983.7 40.6 0.08
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Scheduling of Electric Vehicles
in the Police Fleet

Kerstin Schmidt, Felix Saucke and Thomas S. Spengler

1 Introduction

As a pioneer and role model in society, the police integrate electric vehicles into
their fleets. These vehicles reduce environmental pollution and have lower energy
costs compared to conventional vehicles. Moreover, the electric vehicles are nearly
noiseless, leading to advantages for some operation strategies at the police. However,
the challenges related to the use of electric vehicles are small distance ranges, long
charging times, as well as limited availability of the charging infrastructure, resulting
in a limited availability of the vehicles.

The operation tasks of the police vehicles vary from schedulable and time-flexible
fiscal runs (e.g. courier services) and schedulable but nearly time-fixed operations in
the criminal investigation service (e.g. execution of observations, crime scene work)
to non-schedulable and time-fixed operations in service and patrol duty (e.g. road
traffic accidents, robbery). Until now, the use of electric vehicles in the police fleet
is mainly limited to fiscal runs. To further increase the number of electric vehicles
in their fleet, the police aim for using electric vehicles within the criminal investi-
gation service (CIS) as well. Operations of CIS are usually characterized by known
starting and residence times of each operation as well as the associated travel time.
Since operations are nearly time-fix, delays are to be avoided. Thus, the scheduled
operations need to be assigned to the fleet of electric vehicles, which are available
as pool vehicles at the police station.
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Due to the mentioned challenges of battery driven vehicles, it is not trivial to
substitute conventional vehicles by electric vehicles in operation tasks with high
demands on the availability of the vehicles such as CIS. We address this issue by
developing decision support for fleet operation with electric vehicles at the police.
Our contribution is organized as follows: After reviewing the literature in Sect. 2,
an extension of the Electric Vehicle Scheduling Problem (E-VSP) for the CIS at the
police is presented in Sect. 3. In Sect. 4, an illustrative example is used to gain further
insights. Our contribution ends with a conclusion and an outlook in Sect. 5.

2 Literature Review

The scheduling of electric vehicles in fleets is a fairly new but growing field of
research. Areas of application can be found in passenger transportation services
such as taxi and bus, as well as in postal and nursing services [4, 10, 11]. In the
E-VSP a set of timetabled trips is assigned to a set of electric vehicles with lim-
ited driving ranges based at different depots under various objective functions (e.g.
minimize total costs with regard to the travel distance/time or number of vehicles,
maximize utilization of the vehicles) [1, 5, 8, 9, 11]. The E-VSP is based on the
well-known Vehicle Scheduling Problem (VSP). Classical VSP variants consider
conventional vehicles without allowing recharging [3]. Extensions of the E-VSP can
be distinguished with regard to the consideration of time windows (none, fixed, or
flexible) and the assumed charging mode (full vs. partial charging). Classic E-VSP
do not consider time windows and allow only full charging during a tour [8]. The
E-VSP presented by Schneider et al. considers fixed time windows and full charg-
ing [6]. Wen et al. are the first to consider partial charging in an E-VSP. Here, the
charging time depends on the amount of energy to be charged [11]. Furthermore,
they assume fixed time windows for depots and charging stations. To the best of
our knowledge, flexible time windows and thus the consideration of delays in the
objective function, as presented in Tas et al. [7] for conventional vehicles, have not
been taken into account in the literature on E-VSP yet. Since operations of CIS at
the police are nearly time-fixed and delays are to be avoided, a new E-VSP with full
charging and flexible time windows is presented in the following section (referred
to as E-FlexVSP).

3 Problem Statement and Optimization Model

In this section, an extension of the E-VSP for the police, taking into account the
special requirements of the CIS, is developed. We consider one police station D and
a set of R charging stations. A set of homogenous electric vehicles V is assigned to
the police station to conduct a set of police operations T in the planning horizon of
one shift. The E-FlexVSP is defined on a directed, closed graph G = (S, A), where
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S = (D, R, T ) represents the set of nodes and A the set of edges. Each operation
i ∈ T has a scheduled starting time zi and residence time li . We assume that each
operation i is visited exactly once by exactly one vehicle k ∈ V . If an operation i
starts with a delay, each minute of delay wk

i is penalized with penalty cost rate p.
Each vehicle k has a maximum state of charge (SoC) of ykD = Q [in driving minutes]
and starts and ends in D. We assume that the vehicles are fully charged when they
leave D. The travel time [in driving minutes] from node i to j [i , j ∈ S] is defined
as ti j and the cost rate for one minute of driving is given by c. We assume that the
cost rate c corresponds to the energy costs. Due to the short planning horizon, no
fixed costs are considered. The charging time [in driving minutes] at charging station
j ∈ R of a vehicle k coming from node i ∈ {T, D} is defined as gkj,i and is assumed
to be a linear function of the travel time. Furthermore, we assume that any number
of vehicles can be charged in parallel at the charging station, but each vehicle may
be recharged at most once during the planning horizon.

The objective function of our E-FlexVSP is given in (1). The objective is to
minimize the total cost Z , which consists of the cost of travel and the cost of delay.
The decisions to be taken are which vehicle k is assigned to which operation i . To
this end, the binary decision variable xki j is set to 1, if vehicle k drives from node i
to j .

min Z =
∑

k∈V

∑

i, j∈S
c · ti j · xki j +

∑

k∈V

∑

i∈T
p · wk

i (1)

The constraints of our E-FlexVSP can be divided into three categories: Route
constraints, which involve typical vehicle scheduling constraints, time constraints
for all nodes, and charging constraints, which include constraints regarding the SoC
of the electric vehicles. The constraints are described in the following:

The route constraints include the starting condition for all nodes i ∈ {T, D},
the flow conservation constraint for all nodes i ∈ S, and, to eliminate subtours, the
Miller–Tucker–Zemlin condition for all nodes i ∈ {T, R} [2].

The time constraints include the arrival times at all nodes i ∈ S. Starting and
residence time at the police station are set to zero. Furthermore, we assume that the
arrival time aki of vehicle k at each operation node i ∈ T must be greater than or
equal to the scheduled starting time zi . The arrival time akj,i of vehicle k at node
j ∈ {T, R}, coming from node i ∈ {D, T }, results from adding the travel time ti j
and the residence time li to the arrival time aki at the previous node i (2), with M
sufficiently big. Respectively, the arrival time akh of vehicle k at node h ∈ T , coming
from the charging station j ∈ R, is given in (3). Here, in contrast to (2) the charging
time gkj,i instead of the residence time li has to be taken into account. A minute of
delay wk

i is defined as the difference between arrival time aki and scheduled starting
time zi .

akj,i ≥ aki + ti j + li − M(1 − xki j ) ∀ j ∈ {T, R}; i ∈ {T, D}; k ∈ V ; i �= j (2)

akh ≥ akj,i + t jh + gkj,i − M(1 − xkjh) ∀h ∈ T ; j ∈ R; i ∈ {T, D}; k ∈ V ; h �= i
(3)
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The charging constraints include the constraints regarding the SoC ykj of the
electric vehicles. The SoC ykj of vehicle k in node j ∈ T results from the SoC yki
at the previous node i ∈ S minus the travel time ti j (4). Furthermore, the SoC yki of
vehicle k in node i ∈ {T, D}, needs to be higher than or equal to the travel time ti j to
the following node j ∈ {T, D} plus the minimum travel time b j from all following
nodes j to the nearest charging station (5). The charging time gkj,i of vehicle k at
charging station j ∈ R depends on the maximum SoC Q, the available SoC yki of
vehicle k at the previous node i , and the travel time ti j (6). Note that the charging
time gkj,i cannot exceed the maximum SoC Q. In addition, constraints 4–6 only hold
if xki j = 1.

ykj = yki − ti j ∀ j ∈ T ; i ∈ S; k ∈ V ; i �= j (4)

yki ≥ b j + ti j ∀i, j ∈ {T, D}; k ∈ V ; i �= j (5)

gkj,i = Q − (yki − ti j ) ∀i ∈ {T, D}; j ∈ R; k ∈ V (6)

All constraints of the presented E-FlexVSP with full charging and flexible time
windows can be formulated as linear constraints. Therefore, the resulting model can
be categorized as a mixed-integer linear problem. However, the model is difficult to
solve since it is an extension of the NP-hard VSP.

4 Illustrative Example

In this section, an illustrative example is used to gain further insights into the E-
FlexVSP. For this purpose, the optimization model is implemented in AIMMS and
solved with CPLEX 12.7 on a 2.5 GHz CPU with 8 GB RAM.

We consider one police station D and one charging station R. Two homogenous
electric vehicles are assigned to the police station. The vehicles have an average dis-
tance range of 200km (e.g. Volkswagen e-Golf). Since police vehicles are equipped
with technical equipment such as siren or emergency lights, the distance range is
reduced to approximately 75%. We assume that the vehicles drive with an average
speed of 60 km/h. Thus, the maximum SoC of a vehicle equates to ykD = Q = 150
driving minutes. Seven operations need to be assigned to the vehicles during the
planning horizon of one shift. The scheduled starting time zi and residence time li of
each operation i ∈ T as well as the corresponding travel time ti j between all nodes
{i , j} ∈ S are given in Table 1.

The analysis has two objectives. First, we take a closer look on how the criticality
of the operations, i.e. the importance of starting the operations in time, influences
the results. Second, we analyse the influence of the maximum SoC on the travel cost
and delay time.

Criticality of operations. Within the first analysis we set the number of vehicles
to 2, the cost rate c for one driving minute to 1 and vary the penalty cost rate p for
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Table 1 Travel times between the nodes and scheduled starting, residence time [min]

D 1 2 3 4 5 6 7 R zi li

D – 30 35 50 20 30 60 35 5 – –

1 30 – 30 50 25 35 40 50 35 9:00 40

2 35 30 – 45 50 60 25 55 40 9:40 30

3 50 50 45 – 25 65 20 30 50 10:40 20

4 20 25 50 25 – 20 60 45 25 11:20 45

5 30 35 60 65 20 – 75 40 25 12:50 10

6 60 40 25 20 60 75 – 45 60 13:50 60

7 35 50 55 30 45 40 45 – 35 14:40 30

R 5 35 40 50 25 25 60 35 – – –

Table 2 First analysis: Vehicle |V | = 2, c = 1, Q = 150

p Z Total travel time Total delay time

0 250 250 1055

1 475 295 180

10 1405 405 100

Table 3 Second analysis: c = 1, p = 10

Q Z Total travel time Total delay time

120 4540 340 420

175 460 310 15

250 340 340 0

one minute of delay. The values for p as well as the results are given in Table 2.
The analysis shows that the total cost as well as total travel time increase with an
increasing cost rate p. The opposite holds for the total time of delay. Thus, the more
critical the operations, i.e. the higher the penalty cost rate for one minute of delay,
the higher the acceptance of taking into account longer travel times. Therefore, it is
important to consider the penalty costs for delays in the objective function.

Maximum state of charge. Within the second analysis we set the cost rate c
for one driving minute to 1, the penalty cost rate p for one minute of delay to 10
and vary the maximum SoC Q. The results are given in Table 3. In comparison
to Q = 150 min, the second analysis shows that the total cost decreases with an
increasing maximum SoC. The opposite holds for the total delay time. Thus, the
maximum SoC has a significant impact on operational scheduling of the police
vehicles, i.e. the compliance with the scheduled starting times of the operations.
It is therefore of great importance to determine the maximum SoC in the police fleet.
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5 Conclusion and Outlook

In this contribution, we present an E-FlexVSP for the CIS at the police. The charac-
teristics of the underlying decision situation are described and transferred into a new
extension of the E-VSP with full charging and flexible time windows. Furthermore,
the application of the model is illustrated in an example. We show that it is important
to include penalty costs for delays in the objective function and that the maximum
SoC has a crucial influence on the reliability of the police fleet.

Future research will address the following directions. First, the presented E-
FlexVSPwill be extended to be able to depictmore realistic settings. For this purpose,
more than one police station as well as constraints for partial charging, and uncer-
tainties with regard to the operations will be included into our model. Second, since
our model is difficult to solve, a suitable solution procedure will be developed. Third,
the approach will be applied to a case study in order to verify and outline its potential
for the CIS at the police.
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Location Planning of Charging Stations
for Electric City Buses Considering
Battery Ageing Effects

Brita Rohrbeck, Kilian Berthold and Felix Hettich

1 Introduction

There are different technical approaches electric buses can be configured and charged
by [1]: Buses could be charged over-night-in the bus depot exclusively, their batter-
ies may be swapped [2], or buses can operate based on opportunity charging during
the daily service at defined charging points. Opportunity charging comes with the
advantage that smaller batteries can be used which have lower vehicle costs, less
weight and less technical ageing-effects can be used. On the other hand, a charging
infrastructure along the circuit has to be introduced. This circuit structure however
makes bus traffic easier to plan than for individual electric vehicles. The main chal-
lenge here is to connect logically physically identical stops. This makes the problem
more complex than other location problems, and few literature exists. [3, 4] sug-
gest different approaches, the latter with a more technical background. [5] propose
a model based on car park sites in order to determine optimal charging locations for
individual electric vehicles.

In our paper, we developed a multi-period mixed integer model for one bus line
with several buses. We also consider the ageing of batteries with time and the possi-
bility to exchange batteries after some periods.

In the next section we explain the Charging Stations Location Problem with Bat-
tery Ageing (CSLP-BA) and our model in detail. Section3 focusses on computational
tests and evaluation. Finally, we give an outlook on future research.
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2 Problem Formulation

The formulation of the CSLP-BA is an enhancement by battery ageing of the for-
mulation in [6]. The two main challenges lie in depicting the battery ageing and in
connecting logically bus stops that are physically identical. This connection requires
that if a charging station is built at location i in a certain circuit, then there also exists
a charging station in every other circuit. By contrast, the state of charge of a bus may
vary. Therefore, we introduce the set C = {0, 1, . . . ,C,C + 1} of circuits. Here,
c = 1, . . . ,C stand for the actual circuits a bus drives during one day. c = 0 stands
for the outbound trip from the depot to thefirst bus stop and c = C + 1 for the inbound
path from the terminus back to the depot after the last circuit. T = {1, . . . , T } are the
considered time periods. LetN subsume all potential charging stations, comprising
the respectiveC replications of the bus stops of the circuit route (N circ) as well as the
nodesN out andN in from and back to the depot. Hence,N = N out ∪ N circ ∪ N in ,
see Fig. 1.

To model the CSLP-BA different decisions have to be taken. The decision that is
later implemented in practice is the location decision, i.e. whether and if so when
charging station is built. Hence, we introduce the decision variables yit ,

yit =
{
1 a charging station in node i ∈ N in period t ∈ T is opened,

0 otherwise.

Also for the buses resp. their batteries decisions have to be taken: When shall an
aged battery be substituted. To depict this, we introduce zintrobt , zusebt and zoutbt ,

zintrobt =
{
1 battery b ∈ B is put into operation in period t ∈ T ,

0 otherwise,

SDepot SDepot+1 SStart−1 SStart

SStart+1 STurn−1

STurn

STurn+1STerm−1

STermSTerm+1

=

N out

N circ

N in

Fig. 1 The route of a bus as graph
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zusebt =
{
1 battery b ∈ B is in operation in period t ∈ T ,

0 otherwise,

zoutbt =
{
1 battery b ∈ B is taken out of operation in period t ∈ T ,

0 otherwise.

On the buses’ side we also have to keep track of their batteries’ content. The decision
variables eicbt shall designate the amount of energy stored in battery b when its bus
leaves node i ∈ N in circuit c ∈ C during period t ∈ T . Additionally, to adapt the
batteries’ capacities with their ageing process, we need the two decision variables

E
soh
bt and E

lim
bt for battery b ∈ B and period t ∈ T .

The aim is to find a costminimal configuration for the location of charging stations
and the exchange of batteries. If a charging station is built in node i in period t ,
fixed costs f chari t arise. In case one node refers to ai physically identical locations,
the fixed costs for the station still occur once and have to be discounted: Hence,
the installation costs amount to

∑
t∈T

∑
i∈N

1
ai

· f chari t · yit . In addition, fixed costs

f batt emerge, when a new battery b is taken into operation:
∑

t∈T
∑

b∈B f batt · zintrobt .
Therefore, the objective is

min
∑
t∈T

∑
i∈N

1

ai
· f chari t · yit +

∑
t∈T

∑
b∈B

f batt · zintrobt

To assure the buses’ service several constraints have to be considered: As each
bus starts in the depot, we assume a charging station is installed in t = 1.

ySDepot ,1 = 1 (1)

Accordingly, a bus could leave the depot in the morning with a full battery. The

energy level is only bounded by its capacity E
lim
bt :

eicbt ≤ E
lim
bt ∀ (i, c) ∈ N1, b ∈ B, t ∈ T (2)

withN1 = (
N out × {0}) ∪ (

N circ × {1, ...,C}) ∪ (
N in × {C + 1}). This capacity

however depends on two factors: The state of health (SOH) reflects the ageing of the
battery. With every period that a battery is in use, its initial capacity Eintro

b is reduced
by a factor α:

E
soh
bt = Eintro

b − α ·
t∑

τ=1

(t − τ ) · zintrobτ ∀ b ∈ B, t ∈ T (3)

Accordingly, the bound E
lim
bt for the stored energy can be at most E

soh
bt :

E
lim
bt ≤ E

soh
bt ∀ b ∈ B, t ∈ T (4)
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However, to avert accelerated battery ageing, batteries are not used to full capacity.
Instead, the energy level is to fluctuate between E and E , in practice between 20 and

80% [7]. Hence, E
lim
bt is also bounded by E for a battery in use:

E
lim
bt ≤ E · zusebt ∀ b ∈ B, t ∈ T (5)

Note that this results in a piecewise linear battery ageing function which is what is
effectively applied in practice by our reference instance [8].

Like stated before, the energy level of a battery must not fall below a value E ,
neither. The value eicbt of stored energy of a battery b has here also to cover the
energy uic needed to reach the succeeding node to i in circuit c in period t :

eicbt − uic · zusebt ≥ E · zusebt ∀ (i, c) ∈ N2, b ∈ B, t ∈ T (6)

with N2 = (
N out × {0}) ∪ (

(N circ \ {STerm}) × {1, ...,C}) ∪ (
N in ∪ {STerm}

×{C + 1}). The amount stored in a battery in node i depends on if and how much a
bus can charge electricity, but also on the state of charge at a previous point. At each
node i in circuit c in period t the stored energy eicbt of battery b is hence determined
by the energy level in node i − 1, ei−1,c,b,t , reduced by the energy needed to get to
node i , ui−1,c, and augmented by the energy xicbt charged in i . xicbt however does not
have to be defined, but shall only help here for understanding. We have to assure that
the charged energy xicbt is ≥ 0, hence we reformulate the explained energy balance
equation towards:

eicbt − ei−1,c,b,t + ui−1,c · zusebt ≥ 0 ∀ (i, c) ∈ N3, b ∈ B, t ∈ T (7)

eSStart ,1,b,t − eSStart−1,0,b,t + uSStart−1,0 · zusebt ≥ 0 ∀ b ∈ B, t ∈ T (8)

withN3 = (
(N out \ {SDepot }) × {0}) ∪ (

(N circ \ {SStart }) × {1, ...,C}) ∪ (N in ×
{C + 1}). The chargeable energy in node i during circuit c is however also delimited
by sic—or 0 if no charging station is opened in i before period t , i.e.

∑t
τ=1 yiτ = 0:

eicbt − ei−1,c,b,t + ui−1,c · zusebt ≤ sic ·
t∑

τ=1

yiτ ∀ (i, c) ∈ N3, b ∈ B, t ∈ T (9)

eSStart ,1,b,t − eSStart−1,0,b,t + uSStart−1,0 · zuseb,t ≤ sStart,1 ·
t∑

τ=1

yStart,τ (10)

∀ b ∈ B, t ∈ T

The next two constraints assure the right energy level after the transition to a new
circuit and the inbound trip, respectively.
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eSStart ,c+1,b,t = eSTerm ,c,b,t ∀ b ∈ B, c ∈ {1, ...,C}, t ∈ T (11)

eSTerm ,C+1,b,t = eSTerm ,C,b,t ∀ b ∈ B, t ∈ T (12)

To ensure that the location decisions for two physically identical nodes are equal,
their decision variables yit must be identical. The set I subsumes all these pairs of
nodes. State of two location variables must be identical if they belong to physically
identical locations:

yi1,t = yi2,t ∀ (i1|i2) ∈ I, t ∈ T (13)

Furthermore, a charging station can be opened at most once:∑
t∈T

yit ≤ 1 ∀ i ∈ N (14)

For the proper configuration of the batteries’ decision variables, their interdepen-
dency must be considered:

zusebt =
t∑

τ=1

zintrobτ −
t∑

τ=1

zoutbτ ∀ b ∈ B, t ∈ T (15)

To assure that there are always a number of β buses circulating if the bus line requires
this, in every period (at least) β batteries must be operating:

∑
b∈B

zusebt ≥ β ∀ t ∈ T (16)

Finally, the following domain constraints are needed:

zintrobt , zusebt , zoutbt ∈ {0, 1} ∀ b ∈ B, t ∈ T (17)

yit ∈ {0, 1} ∀ i ∈ N , t ∈ T (18)

eicbt , xicbt ≥ 0 ∀ (i, c) ∈ N1, b ∈ B, t ∈ T (19)

E
soh
bt , E

lim
bt ≥ 0 ∀ b ∈ B, t ∈ T (20)

3 Computational Results

We tested our model using the data of bus line 63 in the city of Mannheim, Germany.
The circuit of line 63 is 9km long and takes 40 min for its 23 bus stops (way and
return). Two buses do service at 20-min intervals. We measured waiting times, pas-
senger numbers and deduced realistic values for energy consumption and chargeable
energy. Characteristics of the batteries and the charging stations are taken from the
public project description of the PRIMOVE Mannheim Project [9]. For the battery



706 B. Rohrbeck et al.

ageing we assumed a factor α of 1.71 kWh/year. This results from the usual practice
to replace batteries when their state of health falls below 80%, which is on average
after seven years [7].

We ran our tests on a 64-bit Windows 7 Enterprise PC with a 2.6GHz Intel(R)
Xeon(R) processor and 48GB RAM. To solve our models we used IBM ILOG
CPLEX optimization studio 12.6.1. We tested different instances varying in traffic,
external factors like temperature and driving behaviour. Solving the basic instance
and average values for traffic and auxiliary consumers took 10:14h. Eight charging
stations shall be installed, whereas inMannheim only six are built. Furthermore, over
a horizon of twenty years, still the same locations are optimal, and it is cost-efficient
to exchange batteries once, i.e. after ten years. This result first shows that it is not
necessarily economically reasonable to replace batteries as soon as the producer
recommends, i.e. when their SOH falls below 80%. Hence, as long as the usable
capacity shrinks just somewhat, this does not make the configuration infeasible. On
the other hand, the two extra charging stations do not result from the longer usage
of the batteries. Indeed, we get the same configuration if we neglect battery ageing
[6]. The smaller number of charging stations in practice with 22% smaller cost does
not seem to prove our model right. However, the solution implemented inMannheim
turned out to be insufficient. By changes in timetables, reducing the usage of the
heating unit, accepting delays and exploiting more the batteries’ capacities, that
solution was made feasible, but for the future also more expensive.

Since we intend to extend our model to a whole network, we further improved it

with regard to run times. Just by introducing an extra decision variable ŷi t =
t∑

τ=1
yiτ ,

adding this constraint to the model and substituting it in the model in Constraints (9)
and (14) we could reduce the calculation time tremendously. By adding further valid
inequalities run times went down to 1:08h.

4 Conclusion and Outlook

Our model depicts the path and energy course over multiple periods of a single bus
line with battery ageing. It results in an optimal solution within reasonable time. We
currently test different, very promising reformulations with regard to significantly
reduced run times. Additionally, we analyse additional technological configurations
for batteries and stations that are realistic for near future. The next step is then to
incorporate our one bus linewithin a bus network. For further research, the timetables
of the bus lines or their routes may questioned. Even more synergy effects could be
achieve if other municipal electric vehicle could be incorporated into the network
[10].
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On the Benefit of Preprocessing
and Heuristics for Periodic Timetabling

Christian Liebchen

1 Introduction

The timetable is the essence of the service offered by any provider of public trans-
port (Jonathan Tyler, [12]).

Indeed, the timetable marks the interface between service design (including network
and line planning) and operations planning (vehicle and crew scheduling). In partic-
ular in the context of (European) railways, there are several companies involved in
the process of timetable design: many railway undertakings (or, train operating com-
panies) and at least one infrastructure manager. Accordingly, there are more than just
one optimization models that fit the different tasks of the various companies, see [1].

The task of a railway undertaking which operates a dense network with an essen-
tially regular line-based service is to define the departure and arrival times of the
lines at any of their stations. Since 1989 [11] this is often modeled as Periodic Event
Scheduling Problem (PESP). This model covers many relevant requirements on a
timetable: safety distances (in the same direction, or in opposite directions on sin-
gle tracks), vehicle waiting times (correlating to the number of vehicles required to
operate the timetable), passenger waiting times (within trains, or at stations during
transfers), and many more, see [8].

In particular the latter immediately affect the quality that the (potential) passen-
gers perceive. This is a major motivation to further improve optimization methods
aiming to minimize slack times. Already one decade ago, for several networks their
timetables had been designed using mathematical optimization techniques [4, 7].

C. Liebchen (B)
Technische Hochschule Wildau, Ingenieur- und Naturwissenschaften,
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2 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) is defined for a directed graph D =
(V, A). The nodes i ∈ V represent the events (i.e., arrival or departure of a directed
traffic line at some station), which are recurring periodically every T time unites,
e.g. every 60min. The constraints are given along the arcs using lower and upper
time bounds �a and ua , respectively:

(π j − πi − �a) mod T ≤ ua − �a, ∀a = (i, j) ∈ A. (1)

In addition, we assume a weight wa for each arc to be given, which reflects the
penalty that is applied to any time unit of slack. In the case of a transfer arc a, wa

might represent the expected number of passengers who desire to use this activity.
In the remainder, for some spanning tree F in D, we are considering the following

integer linear optimization problem:

min
∑

a∈A waxa
s.t. xa = π j − πi + T pa ∀a = (i, j) ∈ A

�a ≤ xa ≤ ua ∀a ∈ A
pa = 0 for all a ∈ F
pa ∈ Z

In the notation of [6, Chap. 9], this particular problem formulation might have
been called PESP-IP-π-x-tree.

3 The PESPlib Collection of Instances

We are aware of only one public collection of PESP-instances: the PESPlib [3].1

As of Apr 30th, 2017, there has been one instance, for which three international
research groups2 provided solutions: the so-called R1L1-instance. Let us collect
some properties of R1L1:

• It belongs to the railway instances of PESPlib and according to [3] the larger
instance R4L4 is “approximately the size of the German long-distance railway
network”

• In the first 3,554 arcs, every second arc a has [�a, ua]T = [1, 5]60, presumably
modeling dwell activities alternating with drive activities

• This interpretation is supported by symmetric trip times for the two opposite direc-
tions (e.g. events 409–452 and 453–496, or 1141–1166 and 1167–1192)

1See http://num.math.uni-goettingen.de/~m.goerigk/pesplib/.
2Uni Göttingen, TU Dresden, ETH Zürich.

http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
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Fig. 1 Distribution of the
weights of the free arcs
(transfers)

• The remaining arcs are all free arcs a with [�a, ua]T = [3, 62]60, presumably mod-
eling transfer activities (except for the last three fixed arcs), because none of these
is connecting the endpoints of the two directions of the two above-mentioned lines
and thus unlikely to model turnarounds.

• When eliminating all the free arcs from R1L1, then the instance does no longer
contain any cycles.

Altogether this suggests that for this particular instance the modeling focus had
been put on drive, dwell, and transfer activities, while rather neglecting turnaround
activities of the trains, headway or single track requirements as they are present in
the German long-distance railway network.

Periodic timetabling is easy when applied to cycle-free constraint graphs. On the
one hand, the R1L1 instance is too complex for standard MIP solvers to end with
an optimum solution. On the other hand, each cycle in R1L1 contains at least one
free arc (transfers). Hence, to make this instance better accessible to MIP solvers, we
will have to simplify it moderately and thus take a closer look at the distribution of
the weights of the free arcs (transfers), presumably being the only linkages between
different lines.

Figure 1 illustrates that the distribution of the weights roughly follows the typical
80-20-Pareto rule. In particular, when omitting 77.5% of the free arcs (directed
transfers), herebywe are ignoring just 25%of the totalweight (number of transferring
passengers).

To summarize this investigation, it seems to be promising to simplify PESPlib’s
R1L1-instance using some simple standard preprocessing and heuristics and then
provide it to some standard MIP solver.

4 Preprocessing and Heuristics for PESP Instances

As a heuristic, we are thus proposing to temporarily ignore the free arcs with smallest
weight until their weights sum up to some given percentage of the sum W of the
weightswa of all the free arcs a, i.e., where ua − �a ≥ T − 1. This had been proposed
earlier in [5, Chap. 4.2.2] and [10, Chap. 7.4.1].
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In addition, we propose to apply graph contractions to the constraint graph as they
have been proposed for example in [6, Chap. 14]. In particular, we are contracting
nodes with degree one as well as fixed arcs a (i.e. where ua = �a). Observe that doing
so, there is still a bijection between equivalence classes of optimum solutions of the
initial network and of the reduced network.

Moreover, we are contracting nodes with exactly one incoming arc a and one
outgoing arc b. There, we are able to preserve the set of feasible solutions, too.
Yet, with respect to the objective function, there is a (slight) imprecision, because
along the modified arc, for the first units of slack there should apply min{wa, wb},
whereas max{wa, wb} had to apply to the last units of slack. Obviously, this could
not be expressed in any linear objective function on the modified arc in the reduced
network. In our experiments, we heuristically select min{wa, wb} as the weight of
the modified arc. For an example illustrating how these contraction steps apply to
R1L1, please refer to Fig. 2 in [2].

5 Computational Results

As a general setting, we start by simplifying the PESP constraint graph with the tech-
niques sketched in Sect. 4, i.e., heuristically ignoring light free arcs, and contractions.
The MIP formulation for this simplified instance in then stated as given in Sect. 2.
We solve this MIP using CPLEX 12.7.0.0 on an Intel Core i5 2.2GHz 8GB RAM
(3503 Passmark CPU Mark, Q4/2014), setting the tree memory limit to 2GB.

In our main series of computations, we add the well-established valid inequalities
due to Odijk [9] as valid inequalities on the integer variables pa that correspond to
non-tree arcs a ∈ A \ F . Then we vary the ignore ratio: The more free arcs that we
ignore, the smaller the resulting constrains graphs get (cf. columns nodes and arcs in
Table 1), and the better the solution behavior of CPLEX on the simplified network.
Yet, when reinterpreting the solution that had been computed for the simplified net-
work back in the initial network, the loss in information translates to worse objective
values (cf. column R1L1 objective).

Let us shortly discuss two points: First, notice that the achieved quality is not
just due to general improvements that were obtained within the latest versions of
CPLEX. This can be seen by solving the lp-file of the 30%-row with the 2012
version of CPLEX (12.3). There, after 900s3 an objective value of only 35,903,663
is obtained – compared to the 2016 PESPlib benchmark for R1L1 of 37,338,904.

Second, one could ask whether contractions are useful at all in a preprocess-
ing step, because MIP solvers are known for powerful general problem reduction
techniques. To this end, observe that the actual R1L1-instance has 3,664 nodes and
6,385 arcs, among which 646 are fixed and 2,827 are free. By only ignoring free
arcs such that their weights sum up to 25% of the total free weight W and without

3Unfortunately, this computation had only been possible on a different machine: Intel Xeon 3.7GHz
16GB RAM (9492 Passmark CPU Mark, Q2/2013).
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Table 1 Objective values found by applying different ignore ratios for the free arcs

Ignore (%) Nodes Arcs Odijk Time CPLEX gap
(%)

R1L1 objec-
tive

10 772 1,828 Yes 900 6.89 37,918,546

20 572 1,230 Yes 900 5.69 35,433,189

30 438 862 Yes 900 4.73 36,213,298

40 346 610 Yes 900 3.36 36,720,735

50 257 406 Yes 900 1.77 40,814,013

60 189 251 Yes 900 0.75 41,843,259

70 129 136 Yes 900 0.00 46,010,226

25 501 1,029 No 3,600 4.22 33,711,523

contracting any arc, CPLEX reports a reducedMIP size of 718 rows, 2,844 columns,
5,240 nonzeros, and 535 general integers. Comparing these values to the ones that
are obtained, when contractions have been applied, too (708 rows, 1,737 column,
3,923 nonzeros, and 535 general integers), could not seem tomake any big difference.
Yet, and most important, the larger MIP sizes induce a (much) worse R1L1-solution
after one hour of computation time: 38,531,957 versus 33,711,523.

We close by mentioning that on PESPlib’s largest railway instance (R4L4,
8,384 nodes and 17,754 arcs), with the very same combination of ignoring (here:
40%) and contractingwewere able to come upwith another benchmark solution after
one hour of computation time,4 improving the previous benchmark (47,283,768)
down to only 43,234,156.

Notice that during the refereeing process of this volume, in a collaboration with
Marc Goerigk [2], we achieved further improvements by iterating the method pro-
posed in this paper with the modulo network simplex method.

6 Conclusions and Acknowledgement

Simple preprocessing andheuristics enabled a standardMIP solver to findnewbench-
mark solutions for the smallest and largest railway instances of the PESPlib, R1L1
and R4L4. Hence, these techniques should always be considered when practically
solving PESP instances.

Yet, we are aware of the very specific structure of these particular instances. In
the case of instances whose cycles do not always contain free arcs, and thus arbitrary
variable vectors are (much) more likely to be infeasible, we are convinced, that a
much deeper insightwill be required to come upwith excellent solutions for instances
of the size of R1L1 or even R4L4.

4For this instance, we set the MIP emphasis to “finding hidden feasible solutions”.
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The author thanks Michel Le (IBM) and Ralf Borndörfer for recently providing
him with the CPLEX version of the year 2012 (12.3).
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Structure-Based Decomposition
for Pattern-Detection for Railway
Timetables

Stanley Schade, Thomas Schlechte and Jakob Witzig

1 Introduction

The timetable is the starting point of a rotation planner. The objective is to assign job
sequences to the available railway vehicles, such that every trip of the timetable is
covered. In [4] the timetable is split up into distinct parts that each consist of repeating
patterns during the planning process. This leads to the pattern detection problem,
which was modeled using a mixed integer program. In this paper we investigate
alternative solution strategies for this model in comparison to solving the model
using a generic MIP solver.

In Sect. 2 we give an outline what the pattern detection problem is and how it
arises. Subsequently, we present two greedy heuristics and a dual reduction that
divides the problem into components that can be enumerated. In Sect. 4 we evaluate
the run-time and accuracy of the presented algorithms.
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2 Pattern-Detection

With regard to timetable patterns, it is only relevant whether two days of the timetable
are equal with respect to the trips that are operated on these days. Hence, a number
can be assigned to each day, such that these numbers for two days are equal if and only
if the trips to be operated agree. Note that the timetable has a weekly structure. Thus,
generally two days are only compared if they correspond to the same weekday, e.g.
two consecutive Mondays. As a result, we define a timetable to be a finite sequence
of integers. The length of this finite sequence has to be a multiple of seven. Any
subsequence of seven consecutive days of a timetable is a pattern. Because of the
cyclic structure of patterns, we agree to start with the day that corresponds to Sunday,
then Monday, Tuesday and so on if we write them down. An example of a timetable
is T = (1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2). Let us assume that the
first day of T is a Sunday. Then, it contains the patterns A = (1, 1, 1, 1, 1, 2, 2),
B = (2, 1, 1, 1, 1, 2, 2) and C = (2, 1, 1, 1, 1, 1, 2). The pattern A matches the first
14 days of T , B matches days 8–20 and C matches the last seven days. If a pattern
matches at least 8 consecutive days of a timetable, we say that it covers these days.
Hence, A also covers the first 14 days of T and B also covers the days 8 to 20, but
C does not cover any part of T . A more formal definition of the cover relation can
be found in [4], but is left out here due to space constraints. More information on
cyclic rotation planning with a period of one week can be found in [1]. During the
planning process, the timetable for a year is developed gradually to include more
and more details. A part of the timetable that is covered by a pattern has a weekly
periodic structure. Therefore, one can also use a rotation plan with such a structure
for this part. We aim to identify a few patterns that cover as much of the timetable as
possible. For each of these patterns a rotation plan needs to be developed. The pattern
detection, thus, is a useful tool in early planning stages. Determining patterns that
cover parts of a timetable can be done by simple linear preprocessing. In practice,
one aims to select only a few relevant patterns that cover as much of the timetable as
possible, since each pattern corresponds to a rotation plan that needs to be developed.
Parts of the timetable usually also lack a periodic structure and are not covered by
patterns, e.g., extended holiday periods like Christmas. The following mixed integer
program to identify relevant patterns was presented in [4].

min−
n∑

i=1

xi + 8
m∑

j

yi (1)

s.t. xi −
∑

j : j covers i

y j ≤ 0 ∀i = 1, . . . , n (2)

xi ∈ [0, 1] ∀i = 1, . . . , n

y j ∈ {0, 1} ∀ j = 1, . . . ,m
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Let n be the number of days and m the number of patterns. Setting the binary
variable y j to 1 means that pattern j is selected. In an optimal solution a day i is
covered if and only if xi = 1. In this case the constraint (2) ensures the existence of
a pattern j that covers i .

3 Structure-Based Propagation

In this section, we present two structure-based procedures for solving the pattern
detection problem presented in the previous section. One procedure aims to decom-
pose the search space into independent components, such that the resulting compo-
nents are (hopefully) easier to solve. The other procedure is a greedy heuristic.

In the following, we denote set of patterns j covering a day i by C(i). Analogous,
the set of days i that are covered by a pattern j is denoted by C−1( j). Moreover, the
set of days i that are covered by a unique pattern j is denoted by

U( j) := {i = 1, . . . , n : j ∈ C(i) and |C(i)| = 1}.

We call a pattern j a long pattern if and only if |U( j)| ≥ 9.
Due to the fact that choosing a pattern that covers at most seven days will lead to

a deterioration of the objective value, every y j with |C−1( j)| ≤ 7 can be fixed to 0.
In fact, such patterns are ruled out by the preprocessing.

Decomposition by Days The special structure of the objective function of (1) allows
us to determine patterns that will be part of at least one optimal solution. Selecting
a long pattern always leads to an improvement of the objective function value by
at least 1, because they cover at least 9 days that are covered by no other pattern.
Usually, reductions guaranteeing that at least one optimal solution is preserved are
called dual reductions, e.g., propagation with the objective function. On the other
hand, a reduction that preserves all optimal solutions is called primal. In our case,
we use a dual argument, i.e., the objective function, but we can guarantee that all
optimal solution will be preserved.

Two patterns are called overlapping if and only if they mutually cover at least one
day of a timetable. Consider a pattern j that has no overlap with any other pattern.
Clearly, whether we set y j to 0 or 1 does not influence the other patterns. If j overlaps
with a pattern k, the objective function value may be improved by setting y j or yk to
1. But it can be possible that the objective value does not improve if both variables are
set to 1 at the same time. Let us call two patterns j and k connected if they overlap or
they are both connected to a third pattern l. In our decomposition approach we aim to
split the search space into smaller pieces that are (hopefully) easier to solve, e.g., by
complete enumeration or a MIP solver. To decompose an instance, we first remove
all long patterns as depicted in Fig. 1. In the computational experiments, we used
an enumeration approach and never had to enumerate more than 400 solutions with
this strategy. But potentially, an instance could contain patterns that cover several
different parts of the year and foil the decomposition. In this case using a MIP solver
would be superior with regard to performance.
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x1 · · · x28

Fig. 1 Structure-based decomposition. Long pattern 1 covers 9 days exclusively (left). This pattern
will be part of at least one optimal solution. The search space decomposes into two independent
parts (right) after removing pattern 1, all days in C−1(1), and all days covered by 1 that are in C−1(2)
and C−1(3)

HeuristicA simpler approach is to score patterns and to greedily choose the patterns
with the highest score one after another. We use the length of a pattern or the number
of days that are uniquely covered as its score. To generalize this, we can use a
scoring function φY(α,β) = (α · |C−1( j)| + β · |U( j)|) j∈Y . The heuristic looks for
a pattern j with highest score, such that setting y j to 1 leads to an improvement of the
objective value. If no such pattern can be found, the heuristic terminates. Otherwise,
the days covered by j are removed from the timetable. Thus, the scores of the patterns
that overlap with j need to be recalculated. To avoid unnecessary update steps, it
is reasonable to select all long patterns beforehand. The full heuristic is given as
pseudocode in Algorithm 1.

Algorithm 1 Structure-Based Propagation Procedure
1: (x, y) ← (0, 0) � initialize zero solution
2: X ← {1, . . . , n}, Y ← {1, . . . ,m} � initialize index set of days and patterns

3: for all j ∈ {1, . . . ,m} with |U( j)| ≥ 9 do � apply trivial fixings
4: y j ← 1; Y ← Y \ j
5: for all i ∈ C−1( j) do
6: xi ← 1; X ← X \ i
7: for all k ∈ Y with i ∈ C−1(k) do
8: C−1(k) ← C−1(k) \ i
9: while X �= ∅ do
10: s ← φY (α,β) � get current scores
11: Get a permutation π such that sπ j ≥ sπ j+1 for all j ∈ Y
12: success ← f alse
13: for j = 1, . . . , |Y| do � find pattern to fix with highest scores
14: if |C−1(π−1

j )| ≥ 9 then

15: yπ−1
j

← 1; Y ← Y \ π−1
j ; success ← true

16: for all i ∈ C−1(π−1
j ) do

17: xi ← 1; X ← X \ i
18: for all k ∈ Y with i ∈ C−1(k) do
19: C−1(k) ← C−1(k) \ i
20: break
21: if !success then � stop if no pattern was chosen
22: break

23: return (x, y)
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Note that the heuristic may lead to suboptimal solutions. Say, we use the length
of patterns as score, i.e., α = 1,β = 0. We have three patterns 1, 2 and 3 of lengths
10, 11 and 10, respectively. They are arranged in a similar way as the patterns in
Fig. 1 with 1 and 2 having an overlap of 3 days and 2 and 3 having an overlap of 2
days. In this case the heuristic would first select 2, because it is the longest pattern,
and set y2 to 1. However, it can easily be checked that we have y1 = y3 = 1 and
y2 = 0 for the optimal solution. A similar example can also be constructed for the
case α = 0,β = 1.

4 Computational Results

The decomposition procedure presented in Sect. 3 is used to decompose the problems
into smaller pieces, which are solved by a complete enumeration afterwards. In the
following we will refer to this by Enumerate. The heuristic (cf. Algorithm 1) runs
with the scoring function φY and parameters (1, 0) and (0, 1).

A test set of 22 real-world instances provided by DB Fernverkehr AG is used.
The number of patterns is shown in Table 1. All instances cover a time horizon
of 364 days. All procedures were implemented in Python. The experiments were
performed on a Dell Precision Tower 3620 with 3.50 GHz and 32 GBmain memory.

In Table 1 we use Enumerate as a base line, for which we give the optimal
objective value and running times in ms. For the heuristics, we instead give the opti-
mality gap1 and factors w.r.t. the base line. In [4] the arisingMIP (1) was solved using
the academic non-commercial mixed integer programming solver SCIP [3] and the
according python interfacePySCIPOpt [2]. However, all pattern detection problems
as described in this article have a time horizon of one year and even for the largest
instance the number of arising patterns cannot exceed 52. Such instances are not
challenging for a sophisticated MIP solver and, therefore, we omit the SCIP running
times in Table 1. Surprisingly, the heuristics determine the optimal solution in all
cases, but one. However, as demonstrated in Sect. 3, examples where they do not find
an optimal solution are easy to construct. In contrast to that Enumerate guarantees
optimality and is still competitive with respect to the running time. Enumerate
could even be further improved by solving the independent subproblems in parallel.

5 Conclusion

In this paper we presented an enumerative decomposition method and a heuristic for
solving the pattern detection problem that arises in the context of railway rotation
planning. It is a pity that the real-world instances are not challenging for a generic

1Gap to optimality: |primalbound − dualbound/min{|primalbound|, |dualbound|}| if both bounds
have same sign, or infinity, if they have opposite sign.
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Table 1 Detailed computational results on 22 real-world instances

Instance Enumerate φY (1, 0) φY (0, 1)
Name m ObjVal Time Gap (%) TimeQ Gap (%) TimeQ

DB1 23 −201 0.57 0.00 0.60 0.00 0.59

DB2 20 −230 0.53 0.00 0.49 0.00 0.49

DB3 29 −187 0.69 0.00 0.81 0.00 0.81

DB4 26 −205 0.61 0.00 0.66 0.00 0.66

DB5 21 −311 1.27 0.00 0.18 0.00 0.17

DB6 25 −256 1.54 0.00 0.19 0.00 0.19

DB7 18 −295 0.94 0.00 0.20 0.00 0.19

DB8 9 −322 0.44 0.00 0.36 0.00 0.35

DB9 28 −116 0.72 0.00 0.91 0.00 0.91

DB10 18 −281 0.59 0.00 0.35 0.00 0.35

DB11 15 −301 0.64 0.00 0.24 0.00 0.24

DB12 11 −323 0.80 0.00 0.15 0.00 0.19

DB13 16 −312 0.52 0.00 0.27 0.00 0.26

DB14 23 −225 4.84 0.00 0.07 1.24 0.09

DB15 24 −117 0.86 0.00 0.46 0.00 0.47

DB16 11 −318 1.34 0.00 0.16 0.00 0.16

DB17 10 −330 0.48 0.00 0.28 0.00 0.28

DB18 21 −215 0.57 0.00 0.45 0.00 0.45

DB19 12 −329 0.77 0.00 0.17 0.00 0.17

DB20 10 −339 2.36 0.00 0.07 0.00 0.07

DB21 16 −250 0.49 0.00 0.42 0.00 0.41

DB22 20 −282 1.01 0.00 0.23 0.00 0.23

MIP solver. However, all presented methods perform quite good and it is funny that
there is only one “bad” instance where the heuristic did not find an optimal solution.
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Timetable Sparsification by Rolling
Stock Rotation Optimization

Ralf Borndörfer, Matthias Breuer, Boris Grimm, Markus Reuther,
Stanley Schade and Thomas Schlechte

1 Facing Capacity Limitations

Planning rolling stock rotations in industrial railway applications is a long-term pro-
cess that starts with a coarse plan and gains accuracy the closer the day of operation
comes. This process is affected by all kinds of unusual events such as natural disas-
ters (floods or snow), technical problems (track or fleet breakdowns), or man-made
impediments (strikes). For example, during autumn2014 and spring2015,Germany’s
largest union of train drivers called for not less than nine strikes of varying intensities.
In Germany it is possible that different unions for the same class of employees exist
such that only a subset of such a class is actually on strike where the other part is
still working. Consequently, a strike of a single union is a heavy decrease of capac-
ity than a complete lock down of the railway system. Such events have widespread
repercussions on the operation of a railway system: The timetable, the rolling stock
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rotations, the maintenance plans, and the crew schedules for the personnel in trains
and maintenance facilities all have to be changed.

Finding new or revised rolling stock rotations, i.e., cyclic tours of rolling stock
vehicles covering parts of the timetable, after disruptions is a well studied topic in
the literature on railway optimization, see [1] for an overview.

In this paperwe consider a different,more integrated approachwhich, to the best of
our knowledge, has not been described in the literature before. The idea is to compute
revised rolling stock rotations in order to “sparsify” a given undisturbed timetable.
The goal is to construct rolling stock rotations that have minimum operational costs
while using the limited capacities, in case of a strike the train drivers, as efficient
as possible. The balance between these two objectives is controlled by an Analytic
Hierarchy Process (AHP) that was developed in cooperation with our industrial
partner DB Fernverkehr AG. The AHP can be seen as a key performance indicator
(KPI) of the trips in the railway network, which is widely used in economy and
operations research. References [2, 3] are examples for applications ofKPIs in airline
tail assignment. Using the train drivers as efficiently as possible directly leads to a
decrease of deadhead trips and deadhead kilometers, since drivers for these kind of
movements could not be used for passenger trips.

The paper is organized as follows. The next section deals with the evaluation pro-
cess of the trips via the Analytic Hierarchy Process (AHP). The main contribution
of this paper, the concept to sparsify the timetable according to ensure optimal rota-
tions via mixed integer programming is part of Sect. 3. In Sect. 4 the performance
of the algorithm is demonstrated via a case study for the strike period in May 2015
in Germany. Finally, we summarize the results in Sect. 5.

2 Defining Priorities by an Analytic Hierarchy Process

Before tackling the problem how to construct optimized rolling stock rotations, we
deal with a subproblem of our optimization procedure. Recall that we want to choose
the subset of trips to be operated from all trips of the timetable. Hence, some kind of
criterion or evaluation of the trips is necessary to choose the right ones. The idea is
to guide the sparsification of the timetable by a prioritization of each trip in terms of
certain criteria. Afterwards optimal rolling stock rotations are constructed that cover
(,i.e., collect) as many trips as possible taking the trip priorities into account.

We use the Analytic Hierarchy Process (AHP) by [4] in order to compute trip
priorities as described in [5]. The AHP involves several steps. First, criteria that
describe different aspects of a trip are identified. Then weights for the importance
of one criterion over every other are defined. This information is used to construct a
weighting of the criteria that is used to prioritize the trips. In [5] a set of such criteria
including weights for their pairwise comparison was defined as well as a sequential
approach. The results were reviewed by our industrial partner DB Fernverkehr AG.

The input criteria for the AHP are defined as follows: The passenger capacity of
the planned railway vehicle for the operation of the trip; the line coverage ratio of
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stops of the trips and stops of the line the trip belongs to; the median of the number
of lines that pass each stop of the trip called network importance; and the median of
the number of transfer opportunities at each stop in an time interval after the stop.

These four criteria have the big advantage that they are completely independent
from other data sources. Furthermore, it is possible to deduce them directly from
existing timetable and network data. The final priority of the trip is then given by
pt ∈ Q+ for all trips t ∈ T .

3 Trip Collecting Rolling Stock Rotation Optimization

In this section we consider the Rolling Stock Rotation Problem (RSRP) and extend
a hypergraph-based integer programming formulation to our setting. We focus on
the main modeling ideas and refer the reader to the paper [6] for technical details
including the treatment of maintenance and capacity constraints.

We consider a cyclic planning horizon of one standard week. The set of timetabled
passenger trips is denoted by T . Let V be a set of nodes representing timetabled
departures and arrivals of vehicles operating passenger trips of T . Trips that could
be operated with two or more vehicles have the appropriate number of arrival and
departure nodes. Let further A ⊆ V × V be a set of directed standard arcs, and
H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is a set of standard arcs and
includes always an equal number of tail and head nodes, i.e., arrival and departure
nodes. A hyperarc h ∈ H covers t ∈ T if each standard arc a ∈ h represents an
arc between the departure and arrival of t . Each of the standard arcs a represents a
vehicle that is required to operate t .We define the set of all hyperarcs that cover t ∈ T
by H(t) ⊆ H . By defining hyperarcs appropriately, vehicle composition rules and
regularity aspects can be directly handled by themodel. Hyperarcs that contain arrival
and departure nodes of different trips are used to model deadhead trips between the
operation of two (or more if couplings are involved) trips. The RSRP hypergraph is
denoted byG = (V, A, H).We define sets of hyperarcs coming into and going out of
v ∈ V in the RSRP hypergraph G as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and
H(v)out := {h ∈ H | ∃ a ∈ h : a = (v,w)}, respectively. Let finally k ∈ N denote a
capacity and δt the respective capacity consumption of a trip t ∈ T , e.g., a maximum
number of trips allowed to be included in the sparsified timetable, amaximumnumber
of aggregated kilometers, or hours of length of the included trips. This number results
from the estimate how many employees might be not on strike and thus could drive
a train. The Trip Collecting Rolling Stock Rotation Problem (TCRSRP) is to find a
cost minimal set of hyperarcs H0 ⊆ H such that the capacity k is not exceeded by
the trips t ∈ T covered by a hyperarc h ∈ H0 and

⋃
h∈H0

h ⊆ A is a set of rotations,
i.e., a packing of cycles (each node is covered at most once).

Using a binary decision variable for each hyperarc and a slack variable for each
trip, the TCRSRP can be stated as an integer program as follows:
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min
∑

h∈H
chxh +

∑

t∈T
pt st , (1)

∑

t∈T

∑

h∈H(t)

δt xh ≤ k, (2)

∑

h∈H(t)

xh = 1 − st ∀ t ∈ H, (3)

∑

h∈H(v)in

xh −
∑

h∈H(v)out

xh = 0 ∀ v ∈ V, (4)

xh ∈ {0, 1} ∀ h ∈ H, (5)

st ∈ Q+ ∀ t ∈ T . (6)

The objective function of model (1) minimizes a sum consisting of the total
cost of the chosen hyperarcs and the priorities of the uncovered trips. For each trip
t ∈ T the covering constraints (3) assign one hyperarc of H(t) or a slack variable
to t . Inequality (2) stipulate the capacity consumption of operated trips. (4) are flow
conservation constraints for each node v ∈ V that induce a set of cycles of arcs of
A. Finally, (5) and (6) state the domains of the decision variables.

The RSRP, and therefore also the TCRSRP, is NP-hard, even if constraints (3)
are trivially fulfilled, i.e., |H(t)| = 1 for all trips t ∈ T , see [7].

4 A Case Study at DBF: Strike Period 2015

Theproposedmodelwas implemented in our algorithmic framework ROTOR (see [6])
that is integrated in the IT environment of DB Fernverkehr AG. The implementation
makes use of the commercial mixed integer programming solver Gurobi 6.5 as
an internal LP solver to support a customized column generation and branch and
bound procedure. The computations are stopped a after optimality is proved, a fixed
number of branching nodes is reached or the LP-IP gap is below 1%.

Our implementation is tested on real-world instances provided by our industrial
partner. There are four instances related to the 2014–2015 strike each representing a
different fleet of ICE trains, i.e., ice1, ice2, ice3, and iceT . Each fleet has different
sizes, vehicle characteristics, and different underlying networks which cover wide
parts of Germany. To compare our solution approach we run ROTOR without the
trip cancelling approach on instances that contain a limited number of trips of the
normal DBF timetable. This list of trips was created by planners of DBFwith a rough
guess which drivers are on strike to offer a maximum customer friendly timetable
as possible. Although this list is the result of the planning at DBF there were some
changesmade before really operating the trips during that period. Reasons for that are
a larger number of employees on strike than expected or fine tuning of the rotations
by adding additional passenger trips to reduce deadhead kilometres. Nevertheless,
these rotations are very close to the operated ones and therefore a most appropriate
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Table 1 iceDB : Instance with ≈50% manually cancelled trips by planners of DBF

Name |T | |H | (×106)
∑

δt
(km)

Dh
(km)

Cost
(×10x )

Gap
(%)

CPU (s)
∑

pt

ice1DB 379 0.9 296094 8777 1.74 0.14 70 1.82

ice2DB 456 4.8 165906 13506 1.00 0.04 622 2.42

ice3DB 335 1.6 186653 6279 1.42 0.11 489 2.41

iceT DB 232 1.9 131899 9370 0.69 0.47 441 1.16

Table 2 Instances with AHP priorities and integrated trip cancelling no vehicle cost

Name |T | |H | (×106)
∑

δt
(km)

Dh
(km)

Cost
(×10x )

Gap
(%)

CPU (s)
∑

pt

ice1 700 1.4 299154 2314 1.71 0.21 519 2.15

ice2 973 5.2 155219 6470 0.95 1.21 5381 2.46

ice3 922 3.4 166250 3676 1.03 1.00 494 2.22

iceT 915 3.1 132798 4413 0.64 1.00 2116 1.32

candidate to compare to. Table 1 shows the main characteristics of the solution
process and its outcome. The first three columns show the instance name,respectively
fleet, the number of trips, and hyperarcs that were required to model all possible train
movements, couplings, and deadhead trips in the hypergraph model. Columns four
and five give the sum of the trip and deadhead trip distance of all used vehicles of
the solution. Since the costs are confidential column Cost shows only a factor of
the operational cost of the computed solution. The next two columns Gap and CPU
present the LP-IP gap and the run time of the optimization process. The last column
gives the sum of the pt values for all trips included in the solution.

Table 2 shows the results of the optimization runs with integrated timetable sparsi-
fication. We applied a capacity limit for each instance, respectively fleet, equal to the
aggregated trip length of all trips included in the corresponding instance with man-
ually canceled trips. Hence, optimized rotations of both approaches have an amount
of comparable working hours of the train drivers. Again, columns four and five give
the sum of the operated trips and deadhead trips kilometres of all used vehicle of
the solution. The aggregated deadhead trip length of the optimized solutions save
between ≈41 and ≈74% of the aggregated deadhead km. Also the operational costs
of the optimized solutions decrease which is a consequence of the decreased number
of deadhead kilometres. Comparing the last columns of the two tables shows that the
approach with the included trip cancelling leads to better values for the sum of the
pt values over the trips contained in the solution. Note that the solutions found in the
ice· case are most likely not in the solution space of the ice·DB instances, whereas
solutions of the ice·DB instances are potential solutions for the ice· instances. The
reason for that is the preselection of trips in the ice·DB case. In [5] it was shown that
a preselection via the ordering computed with the AHP but without integration into
the MIP approach is not sufficient.
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5 Conclusion

Wepresented the integration of a timetable sparsificationmethod into amixed integer
programming approach to solve the TCRSRP. The timetable sparsification is guided
by a fast and from external data independent evaluation of the trips. The proposed
approach leads to promising results for situations with an heavily decreased offer of
passenger railway trips, like strike periods.
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Traffic Management Heuristics
for Bidirectional Segments
on Double-Track Railway Lines

Norman Weik, Stephan Zieger and Nils Nießen

1 Introduction

Temporary closures of one track on double track railway lines pose a severe, yet rel-
atively frequent event on Europe’s dense and heavily loaded railway networks. They
may arise from train or infrastructure malfunctions or maintenance requirements.
Traffic management on the remaining bidirectional track, including determining the
admissible traffic load and the train sequence through the bottleneck is a demanding
task for dispatchers.

The present work aims to investigate heuristic traffic management strategies for
this situation based on a polling system perspective. A polling system corresponds to
a queuing system where a single server serves multiple queues. The order in which
the server visits (polls) the different queues is given by the polling table, whereas the
time spent at a given queue is determined by the polling policy. When changing from
one queue to another a switchover time, where the server does not perform service
may be inserted. In addition, the server may need to set up upon arrival at a queue.

In transportation, polling systems have been widely used to analyze waiting times
at traffic signals [3], where setup and switchover times are small. The railway case,
however, is more closely related to construction zones or underground transport
systems, for which approximations of the mean waiting times have been derived in
[6] assuming fix service times and switching intervals.

We subsequently take a more general perspective based on polling models with
arbitrary switchover and service times and ki -limited service policy. This class of
models does not satisfy the branching property, rendering the solution difficult. Our
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work is based on previous work by Borst et al. [1], where the authors discuss approxi-
mation approaches for finding the set of control parameters k1, . . . , kN thatminimizes
the expected waiting time. More recently, van Vuuren et al. [7] have presented an
iterative approach to determine the queue length distributions for ki -limited policy.
The N -queue polling system is modeled by single queues with server vacations,
where vacation times are matched to conditional interarrival times. Vacation, service
and arrival intervals are approximated by phase-type distributions and the resulting
QBD model is solved using psa [7].

The present work bridges the gap between theory and railway applications. While
queueing models have found widespread applications in railway capacity analysis,
the use of polling models is new in this context. The contribution of the present paper
includes three aspects: First, we compare analytical results based on the Fuhrmann-
Wang approximation [4] with simulation results for realistic train programs. In a
second stepwe discuss howpriorities, which are typical for railways, affect the results
obtained in the previous case. Finally, we analyze the performance of the heuristic,
where line orientation is changed according to the optimal control parameters in the
polling model.

2 Model

2.1 Polling Model

We subsequently model the bidirectional line segment as a polling system with a
single server and two queues. Service times correspond to headway times between
successive trains. The two queues are served according to a ki -limited policy, i.e. the
server serves at most ki trains at a queue and switches to the other queue if the
current queue runs empty. The vastly different train separation times between trains
of same and opposing directions are modeled using switchover times. Setup times
upon arrival at a new queue are not considered. Arrivals are assumed Markovian –
modeling the fact that information is scarce in case of heavily perturbed operations.
For service and switchover times general independent distributions are admitted.

Notation: For queue i , we denote traffic load by ρi , the means of service and
switchover times by βi and si and arrival rates by λi . The second moments of service

and switchover times are denoted by β
(2)
i and s(2)

i , respectively. The total switchover
time and traffic load in the system is given by s = ∑

si and ρ = ∑
ρi .

Stability: For ki -limited polling models a necessary and sufficient stability criterion
reads ρ + s · maxi

ρi

βi ki
< 1 [3]. This already enforces a lower bound on the control

parameter ki : ki ≥ s · ρi

βi (1−ρ)
∀i .
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2.2 Waiting Times

In [1], Borst et al. compare various approximation formulae for the expected waiting
times in ki -limited polling models. As k-limited systems do not satisfy the branching
theorem, no exact formulae for the waiting times are known. We subsequently adopt
Approximation (4) in [1], which has been shown to perform best [1]. It has been
derived by Fuhrmann and Wang [4] from the pseudo-conservation law for the work
as an upper bound on waiting times in k-limited polling systems. While it does
not yield a closed formula for the optimal set k, the latter can easily be obtained
numerically for a small number of queues.

3 Problem Definition

The traffic management goals are to minimize overall delays while limiting the
maximal waiting time for passengers. The quality of service for passengers is ensured
by limiting the interarrival time to a given queue, s.t. the time interval between two
succeeding trains in the same direction is bounded. In the following we discuss two
problems arising in this context.

3.1 Problem 1

Determine the set of control parameters ki that minimizes the expectation of the
overall waiting times under the constraint that the interarrival time in case of overload
is bounded by some C > 0 on average:

ki · βi + s ≤ C. (1)

This problem is a variant of the constrained optimization problem in [1].

3.2 Problem 2

Determine the fairest set of control parameters ki , i.e. choose k such that the max-
imum expected interarrival time maxi E[Ii ] is minimized, subject to waiting time
constraints E[Wi ] < K for all queues i and some K > 0.

3.3 Input Data

The input data is derived from typical train operating concepts on mixed service
railway lines in Europe. For the bidirectional segment different lengths between 3
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Table 1 Excerpt of results for asymmetric load in Scenario 2

ρ = 0.58, s = 1.19, ρ = 0.68, s = 3.78, ρ = 0.73, s = 5.99,

β = (2.5, 3.69), β = (3.01, 6.79), β = (3.46, 9.45),

s(2) = 1.54, s(2) = 16.29, s(2) = 40.41,

β(2) = (6.25, 13.78) β(2) = (10.16, 48.20) β(2) = (14.90, 94.93)

ksimu
kapprox

(11,7)
(11,7)

(8,3)
(8,3)

(6,2)
(6,2)

and 15 km and trains with velocities between 80 and 230 km/h are considered, which
gives rise to different service and switchover times in the model.

For the service times of trains traveling in the same direction two profoundly dif-
ferent scenarios can be distinguished. In Scenario 1, the remaining track is equipped
with signaling, and hence multiple block segments, in both directions. In this case,
the polling system can be assumed to be symmetric as minimum headways in both
direction are approximately equivalent. Scenario 2 corresponds to vastly different
service times at queue 1 and 2, which occurs if the remaining track is not equipped
with signaling in the irregular direction, such that it can only be used one train at a
time in this direction.

4 Results

We subsequently present numerical results for the symmetric case (Scenario 1) and
the asymmetric case (Scenario 2). In Sect. 4.1 the results based on the Fuhrmann-
Wang Approximation are compared to simulation results of polling-based train oper-
ations. If both queues run empty in the simulation the server continues at the queue
with the next possible service.

In Sect. 4.2 the effects of train priorities are discussed and in Sect. 4.3 the per-
formance of the polling heuristic with optimal k in Problem 1 is compared to the
solution for the train scheduling problem.

4.1 Fuhrmann-Wang Approximation for Waiting Times

Problem 1: The solution of Problem 1 in the symmetric scenario can be given
analytically. As both the simulated and the approximated waiting time are decreasing

in the control parameter k [1], the solution corresponds to k =
⌊
C−s

β

⌋
.

For Scenario 2 we consider input parameters resulting from different lengths of
the single-track segment as well as different train velocities. An excerpt of the results
with C = 30 min is presented in Table 1.
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Table 2 Optimal set of parameters in symmetric and asymmetric scenario. Comparison of simu-
lation and approximate results. In Scenario 2, the scheduled traffic load ρ increases to ρact due to
the disruption-caused change of service times

ρ 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Scenario
1

Small
var.

ksimu
kapprox

1
1

1
2

2
2

2
2

2
3

3
3

3
4

4
5

5
6

7
9

High
var.

ksimu
kapprox

1
2

2
2

2
2

2
3

3
3

3
4

4
5

5
7

6
9

9
15

Scenario
2

Small
var.

ρact
ksimu
kapprox

0.45
(1,1)
(1,1)

0.52
(1,1)
(1,1)

0.58
(1,1)
(1,1)

0.64
(1,2)
(2,2)

0.70
(2,2)
(2,2)

0.76
(3,3)
(3,4)

0.81
(4,5)
(5,6)

Infeasible

High
var.

ρact
ksimu
kapprox

0.48
(1,1)
(1,1)

0.55
(1,1)
(1,2)

0.61
(1,2)
(2,2)

0.68
(2,2)
(2,3)

0.74
(3,4)
(4,4)

0.79
(4,6)
(6,8)

Our results suggest that for the asymmetric scenario with different βi the opti-
mal strategy corresponds to taking the highest admissible ki that satisfies the con-
straints. In [1], it was shown for the unconstrained problem that

∑
j ρ j E[Wj ] is

non-increasing in ki . The experiments we conducted seem to indicate that this strat-
egy is also close to minimizing the constrained waiting times.

Problem 2: For Problem 2, the results for K = 30 min, which is a typical train
frequency in railway operations, are depicted in Table 2. For both scenarios results
with a homogeneous and a heterogeneous traffic mix are shown. The first one is
based on a segment of 8 km and train speed differences of max. 60 km/h, the second
one to a 15 km segment and very distinct speed differences of up to 130 km/h. The
variation coefficients of service and switchover times are (vB = 0.2, vS = 0.14) and
(vB = 0.53, vS = 0.25).

It seems that while the results of the Fuhrmann-Wang Approximation [4] are
reasonably good for intermediate and low traffic load the approximated results deviate
for large ρ. This suggests that the bound obtained from the approximation might
not be as tight in the regime of high load and small switchover and service times
variation. For this regime, only limited results have been presented in [1] as the
analysis is numerically costly due to the large state space.

4.2 On the Effects of Train Priorities on the Control Strategy

In practice, railway dispatchers often employ a priority strategy, where faster pas-
senger trains are given precedence over slower trains. It is unclear, how this affects
the waiting times of trains. It is assumed that

• amongst waiting trains high-priority train are given preference over low-priority
trains of the same direction.

• high-priority trains waiting at a queue which currently does not receive service do
not enforce early switchovers from the other queue.
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Table 3 Comparison avg. waiting times polling-heuristic and optimization approach

ρ 0.53 0.56 0.58 0.61 0.64

TW,sched 7.81 8.59 9.40 10.13 10.84

TW,heuristic 10.22 9.24 11.07 13.38 12.86

TW,heuristic (lt) 11.99 12.51 13.06 13.78 15.13

Our simulation results for this type of system show thatwaiting times tend to decrease
if priorities are considered. This can probably be explained by the grouping of trains
with similar velocities leading to globally smaller service times. The effect is more
pronounced the higher the system load and variation of service times. For typical
mixed-service operations with 20% priority trains, ρ ≤ 0.6 and E[Wi ] ≤ 30 min the
size of the effect is found to be in the range of 2 − 9%.

4.3 Comparison Polling Heuristic and Scheduling Solution

The performance of the polling heuristic with optimal k in Problem 1 is analyzed in
a case study by comparing the results to the optimal scheduling solution for a line
segment. The time frame includes 17 trains in each direction and arrival intervals are
rescaled to account for different ρ. Average service and switchover times are 3 min
and 8 min, respectively, and ki is taken to be 5 for all queues. For the optimization
Castillo et al. [2] has been adopted and solved with Gurobi [5]. The objective is to
minimize the sum of differences of actual starting time and release time of trains.
Train priorities are modeled by increasing the weight in the objective function by
10%. In the polling simulation both the performance for the schedule time frame as
well as the long turn average (lt) obtained by periodically repeating the schedule are
calculated.

For the same schedule structure and different ρ, Table 3 shows that the polling
heuristic performs roughly 10–30% worse than the optimal solution. However, for
the time frame of ca. 3 h the heuristic results exhibit huge variation as they depend on
switching decisions. Monotonicity of waiting times is restored in longer time frames
as TW,heuristic (lt) shows. Still, even for the relatively short schedule, the optimization
for ρ > 0.6 takes more than 12 h, whereas the polling simulation including long turn
average can be calculated within seconds.

5 Conclusion

We have adapted k-limited polling models for analysis and control of single-track
line segments of railway lines. The polling-based heuristic provides a fast and easy
way to determine maximum admissible traffic load and efficient traffic management.
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For the case study considered, the results imply that the quality of the solution is
roughly 10–30% above the optimal solution, hence it can only be considered a rough
estimate for the sequencing problem if information is scarce.
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Traffic Speed Prediction with Neural
Networks

Umut Can Çakmak, Mehmet Serkan Apaydın and Bülent Çatay

1 Introduction

Road transport has various hazardous and threatening impacts on the environment
and human life such as resource consumption, pollution, emission, congestion, and
noise. Growing concerns in modern societies about these issues and the quality of
life in cities call attention to new methods and approaches in traffic management,
transportation planning, and route optimization for both commercial and individual
drivers. Many of these methods depend on the estimation of travel time, traffic speed
and volume. Recent advancements inGlobal Positioning Systems (GPS), Geographi-
cal Information Systems (GIS), image processing, and sensor technologies enable the
real-time collection of these massive data, which can be effectively used to improve
the accuracy of the prediction methods.

Early studies mainly collected their data from highway sensors, and GPS data was
not common until 2011 [5]. The acquired data usually consists of speed, congestion
classification, journey time, and volume. The research on the analysis of the col-
lected data can be categorized as discrete and continuous. Discrete analyses include
binary ormulticlass classificationmethodswhile continuous analysesmainly employ
function approximation and time series analysis.
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It has been observed that the accuracy of the predictions improve as the number
of segments in a route increases [6]. Reference [2] reports around 90% classification
accuracy for short-term predictions (up to 5min) on the highway; however, the results
deteriorate in the urban setting. Reference [7] achieves an average of mean absolute
deviations (MAD) value of 6.60 km/h for 1-step ahead and 12.47 km/h for 5-step
ahead prediction over 20 segments.

In this study, we employ a feedforward neural network (FFNN) to perform a con-
tinuous prediction. We are mainly motivated by the work of [7] on irregular data.
Our aim is to perform accurate predictions over a relatively longer horizon instead
of a fixed point in the future. The remainder of the paper is organized as follows:
Sect. 2 introduces the methodology including data collection and cleaning, predic-
tion methods and machine learning concepts. Section 3 presents the experimental
setup while Sect. 4 reports and discusses the results. Finally, Sect. 5 concludes with
suggestions for future research.

2 Methodology

2.1 Data Collection and Cleaning

The historical speed data is obtained from Başarsoft Information Technologies Inc.
It includes floating car speeds collected on Istanbul road network with 1-min time
intervals over a 5-month horizon from Oct. 2016 to Feb. 2017.

Since the raw data needed cleaning, we firstly linearly interpolated the missing
data and reduced the high speed values to the legal speed limit. Secondly, we used a
systematic interpolation technique to smooth out the erratic jumps in observations.
For instance, the speed on a particular road segment may change by up to 80 km/h
from one minute to the next, which is unrealistic and may be due to data collected
from different vehicles en-route or from different road segments nearby. Briefly, our
method smoothes the erratic observations by removing the speeds that vary by more
than z standard deviations in a given segment, where z is gradually reduced until
speed variations are realistic.

2.2 Prediction Methods

In this section, we briefly describe different time-series forecasting methods, where
st represents the observed speed at time t while ft+k represents the prediction of the
speed at time t + k.

Naïve Naïve method is the simplest forecasting technique where the prediction is
equal to the recently observed speed. This method may perform well for short-term
predictions.
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ft+1 = st (1)

Weighted Moving Average (WMA) The method makes a prediction by taking the
weighted moving average of the last n observations as follows:

ft+1 = wt st + wt−1st−1 + wt−2st−2 + · · · + wt−(n−1)st−(n−1) (2)

wherewi is theweight associatedwith the observation at time iwith
∑t

t−(n−1) wi = 1
and 0 ≤ wi ≤ 1. The benefit of weighted moving average is that it can be tuned to
give the most relevant past data more importance [4].

Simple Exponential Smoothing (SES) This method is similar to the weighted mov-
ing averagewhere aweight is associatedwith themost recent observation and another
weight is given to the last forecast. This recursive relationship makes the process take
into account the whole set of past observations. The formulation is as follows:

ft+1 = αst + (1 − α) ft (3)

where α is the smoothing constant and 0 ≤ α ≤ 1 [3].

Triple (Winters) Exponential Smoothing This method is developed to handle trend
and seasonality simultaneously and it can also be used when the data shows season-
ality but no trend. We use this technique because we observe microseasons over the
course of five months such as the rush hours of weekdays.

Lt = α
st

St−M
+ (1 − α)(Lt−1 + Tt−1) (4)

Tt = β(Lt − Lt−1) + (1 − β)Tt−1 (5)

St = γ
st
Lt

+ (1 − γ)St−M (6)

ft+k = (Lt + kTt )St+k−M (7)

where Li is known as Level or Smoothed Observation at time i and Ti is known as
the Trend or Trend Factor at time i and β is the trend smoothing constant which is
similar to α and 0 ≤ β ≤ 1 [3]. Here, Si is the Seasonal Index at time i and γ is the
seasonality smoothing constant and 0 ≤ γ ≤ 1 [3]. M is the number of seasons. In
our case, the seasons consist of 1-min. time intervals and we have 1440 seasons in a
day throughout the entire horizon.
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2.3 Machine Learning

Feedforward Neural Networks (FFNN)/Multilayer Perceptrons (MLP) A sim-
ple, single layer perceptron has an output unit yi and input units xi along with an
extra bias unit, a set of weights that connect the inputs and the bias unit to the output
[1]. A bias unit is an input unit of x0 = 1. It acts, as can be seen from (8), as the
constant in a linear equation.

y =
d∑

j=1

w j x j + w0x0 (8)

where d is the number of input neurons excluding the bias unit. A multilayer
perceptron has the advantage of handling nonlinear functions [1]. The multilayer
perceptrons have at least one hidden layer in addition to input and output layers. To
train these networks, input and target data are required. In this work, target data is
Cleaned data, and input data is the forecasts obtained by the methods in Sect. 2.2.
Training starts with an initial set of weights and progresses forward over the system
to yield an output value. Our network is trained with forward and backpropagation.

3 Experimental Setup

3.1 Route Selection

We performed our analysis on two different routes in Istanbul (see Fig. 1). The first
is an urban route with many intersections that covers 324 segments over a distance of
21.49 km, with mean and median segment lengths of 0.07 and 0.05 km, respectively.
The second route is a freeway starting from the European side of the city and crossing
theBosphorus Strait through the FSMBridge. It covers 63 segments over a distance of
22.75 km, with mean and median segment lengths of 0.36 and 0.25 km, respectively.

3.2 Single Segment Approach (Multi-step Ahead Forecast)
(SS-M Network)

Our network (see Fig. 2) has 30 input neurons for each prediction method with 50
hidden neurons in the single hidden layer and 30 output neurons. Each neuron in the
input and output layers inputs and outputs a k-step ahead prediction, respectively.
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(a) Route1 (b) Route2

Fig. 1 Routes examined

Fig. 2 Single segment approach (multi-step ahead forecast) with N predictive methods (for this
work: Naïve, weighted moving average, simple exp. smoothing and winters) (SS-M network)

4 Computational Results

The experiments were carried on a workstation with a 64-bitWindows 7 Professional
operating system, a memory of 128 GB, and a 40-core Intel Xeon CPU E5-2640 v4
@ 2.40 GHz processor. We have implemented the FFNN using Keras with Theano
and Python 2.7.

We tested NMS (Naïve-Weighted Moving Average-Simple Exponential Smooth-
ing) and NMSW (NMS-Winters) combinations through 30 epochs and a batch size
of 1000 with adaptive moment estimation (Adam) optimizer. To prevent overfitting,
we also employed a 10% Dropout. We used the following parameters for our predic-
tion methods that are input to the FFNN: Weighted moving average method takes a
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Table 1 30-min Test Results by NMS and NMSW predictive methods on SS-M (Proposed Single
Segment Multi-step Ahead Forecast Network) and individual predictive methods (Naïve, Weighted
Moving Average (WMA), Simple Exponential Smoothing (SES), Winters)

Route Avg. Seg.
Len. (km)

MAD (km/h) Avg. Train Time (s)

Naive WMA SES Winters NMS NMSW NMS NMSW

1 0.059 0.583 0.595 0.594 0.596 0.470 0.480 738 669

2 0.285 7.867 7.901 7.784 7.749 6.467 6.431 698 647

3-step horizonwith threeweights: 0.25, 0.50, and 0.25, simple exponential smoothing
method takes α = 0.50, and Winters method takes α = 0.45, γ = 0.20; thus, only
considers seasonality without any trend. In the literature, it is common to assign the
parameters intuitively. The first 4.5 months of the dataset were allocated to training
while the remaining 15 days were used for testing.

The experimental test results for 30-min prediction horizon are reported in Table 1.
Route 1 results are coming from 16 segments spanning 0.95 kmwhile Route 2 results
are of 16 segments spanning 4.55 km. In line with [6], we observe that the accuracy
of the predictions enhance when the route is split into more segments. This is evident
in the fact that the segments of Route 1 return lower error values than those of Route
2. It seems surprising that there is not a significant advantage of employing NMSW
over NMS; however, it is worth noting that 30-min-ahead is a relatively short horizon
to observe the real effect of seasonality in the prediction.

5 Conclusion

Here we employed FFNN to predict the traffic speed over a 30-min horizon using his-
torical speed data collected in 1-min time intervals. Even though our method requires
significant computation effort, its performance is comparable to that of [7], overper-
forming it on longer term predictions. While their results achieve 12.47 km/h MAD
for 5-step ahead prediction over 20 segments, our results for the 16 segments return
an average of 0.47–6.43 km/h MAD. To improve our current methods, employing
Winters prediction over a longer horizon that reflects seasonal characteristics bet-
ter than 30-min horizons also seems promising. As further future work, we plan to
use recurrent neural networks and also take seasonality into consideration to further
improve the prediction accuracy. Random forest regression is also a simple method
we can use to combine the individual prediction methods.

Acknowledgements Wewould like to thankBaşarsoft InformationTechnologies Inc. for providing
historical floating car data.
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Delivering on Delivery: Optimisation
and the Future of Vehicle Routing

Christina Burt, Paul Hart, Desislava Petrova and Adam West

1 Introduction

The growth of online shopping has inevitably led to an increase in the number of
products being delivered directly to customers homes or workplaces, presenting
retailerswith both a challenge tomeet customers expectations, but also anopportunity
to differentiate their service from their competitors. However, delivering items to
individual addresses compared to bulk deliveries to a store is very expensive, and
while customers generally accept that free delivery is increasingly unlikely, their view
of a reasonable charge rarely covers the retailers costs.Added to this customers expect
to be able to choose when their delivery will arrive, and also to be kept informed on
its progress. Retailers are increasingly looking at ways to offer this level of service
to its customers, but also to minimise their cost in the last mile element of delivery.

Satalia has developed Satalia Delivery - a SaaS solution that uses optimisation
and machine learning to calculate the optimal schedule, and routes of any given
fleet of vehicles. The solution allows organisations to offer a delivery slot of any
duration to their customer at the online checkout, and deploys the latest algorithmic
technology to calculate the most efficient schedule, and routes (i.e. which orders
should be delivered by which vehicles and in what sequence).

Implementation

The first implementation of this solution was for a large UK furniture retailer who
deliver their products directly to customers using their own fleet of 300+ vehicles
based at multiple depots. Previously, the retailer could only inform customers of the
day their deliverywas expected, but could not give customers a specific time of day, or
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even which part of the day their delivery may arrive. Customers were not happy with
this offering as it would require them to wait at home all day for their delivery (often
having to take time off from work) with no indication of when it would arrive. Now,
Satalia delivery allows retailers to offer a choice of 3-h time windows and while
introducing this type of constraint would normally mean a decrease in efficiency,
the retailer was actually able to increase the number of orders delivered without
increasing their fleet size. In addition, because the fleets capacity and commitment is
nowknownat the timeof offering a delivery slot, there is no danger of overcommitting
and promising deliveries that cannot be fulfilled.

This is an interesting problem to solve as the heart of the challenge is the infamous
‘travelling salesman problem (TSP), an NP-Hard problem that has long challenged
academics. As with so many other areas, while advances are made in academia, the
commercial world often continues to use ageing systems with algorithms signifi-
cantly less efficient than have been created recently. As a University College London
(UCL) spin-out, Satalia are a company born out of academia and are passionate about
bridging the gap between the academic and corporate worlds. It was this approach
that made Satalia Delivery an interesting and ultimately successful project.

Why the Problem is Hard

Vehicle routing is a combinatorially layeredproblem,where each layermaybe a cause
for a potential inefficiency. Multiple vans have to deliver to multiple destinations.
Each van has limited capacity, and may only be suitable for certain routes. Each
route has its own restrictions, and may be limited by live events such as unforeseen
traffic or accidents. Drivers have certain shifts, and certain preferences as to when
they take breaks. Expectations are rising, and customers are increasingly demanding
delivery time windows — meaning the accuracy of a schedule has to be far greater
than ever before. A vehicle routing system must account for all of these constraints,
and produce a schedule that selects the right van, on the right route, for the right
delivery, at the right time. To maximise capacity, and to offer customers a reliable,
flexible customer experience, schedules must be optimised, and re-optimised in real
time.

Approach

Satalia are keen to work closely with clients to fully understand the intricacies of
their problem and this was evident when implementing the solution for the furniture
retailer. This ensures a solution can be crafted that not only solves the problem,
but has a positive impact to all involved. This meant spending time with admin
teams, drivers and management to fully understand the current processes and their
frustrations with their existing systems. It quickly became apparent that there were
many tedious jobs required every day such as re-keying information from one ageing
disconnected system to another. Operators were also expected to create and update
drivers schedules without the aid of information technology. Unsurprisingly, given
the complexity of the task, results were far from optimal.

In this paper we will share details on how this solution was developed, and fur-
ther discuss the positive impact of our solution on the client. We will also describe
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the democratisation of efficient vehicle routing, and provide insights into how this
will reduce environmental impact, and improve the customer experience, without
increasing the costs of those who adopt it.

2 Case Study

One of the UKs leading furniture manufacturer and retailers reviewed their systems
to ensure they can continue to lead the market in offering excellent service for all
interactions with customers. The retailer had grown rapidly and moved from a ware-
house and branch delivery approach to an efficient CDC fulfilment model matching
their new multi-channel operation.

The company had invested in the process of customer ordering and seen increases
in customer satisfaction, but they recognised the need to match new expectations
for home delivery. While customers were very complimentary about the delivery
drivers, they were frustrated at not being given a time slot when they booked their
delivery; after all who wants to wait in all day for a delivery? But for the retailer
this wasnt simply a delivery but a premium installation white gloves service to the
exact room required. This meant the time needed at each delivery was going to
differ greatly depending on many factors, particularly the number of staircases to
navigate, the proximity of parking spaces and the number of items to deliver. This
made guaranteeing timeslots, particularly days in advance, impossible using their
existing systems.

While satisfying the customer was paramount, it couldn’t be achieved by compro-
mising efficiency or increasing costs. Efficiency meant using as few vans as possible
to reduce their need for expensive contractor vehicles. It also meant having routes
that minimised fuel spend, as well as conforming to other constraints such as the
vehicle weight and volumetric limits, shift patterns, loading times and driver breaks.

The retailer quickly recognised Satalia had the expertise to provide a cutting edge
solution that offered timeslots without compromising on efficiency. In fact it became
clear that this solution could provide improvements to many other processes, such
as inter-branch transfers and service visits to maximise the efficiency of their fleet.
Satalia and the retailer worked closely together to craft a system that was simple to
use for operators, yet solved an incredibly complex problem by utilising the latest
algorithmic technology.

It is important to Satalia that they improve the experience of the people that use
their products and this reflects in how they work with clients. Satalia spent time
with the retailer to customise the UI — presenting only relevant information to
users — ensuring the best possible user experience (see Fig. 1 for an illustration).

The retailer now has a system that is intuitive to use, maximises their fleets effi-
ciency and can handle all their transport scheduling. Best of all, customers get a
delivery time window that is reliable and available at the time of booking. We have
feedback that the system is a pleasure to use, empowers operators and is simple to
maintain given Satalia are hosting solution in the Cloud.
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Fig. 1 A screenshot of our delivery interface

3 Our Approach

While the core solution for Satalia Delivery is to provide a discreet solution hosted as
a Software as a Service, we recognise that often clients need more support to achieve
the results they want. Satalia also provides consultancy, particularly in optimisation
and data science, as well as creating products. Therefore clients have the option of
a light-touch engagement whereby they submit data to our apis, and our solution
will return information, or they can partner with us,allowing us to understand their
business processes and thus recommend improvements. We ensure that we account
for any limitations, either with budget, regulations or resources so that we never
recommend actions that are impossible for the client to achieve.

An example of how we engaged with the furniture retailer was to establish their
measures of performance. The leading measure was the average number of orders
delivered per trip.Whilst we can use industry data to establish travel times, it was less
clear how long a delivery would actually take: we call this the service time though
it is sometimes called the dwell time or time at door, depending on the industry.
Since furniture can be heavy and cumbersome, the service time for each order could
be considerable, in fact the total service time was similar to the total driving time,
therefore it is critical for the schedule to be as accurate as possible with this measure.
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Our Operations Research approach to solving the core problem involved leverag-
ing exact, deterministic approaches (for which there exist efficient algorithms) into a
dynamic, online optimisation and repair heuristic. Our heuristic was initialised with
a full solution to the routing problem as it was known at a certain date. From this time
onwards, new customers can be inserted into the solution and the order of customers
is refined. Both of these steps utilise mixed-integer programming technology. The
full details of this approach our outlined in [1, 2]. Our computational results showwe
can compute both the insertion and repair steps in milliseconds, making the approach
suitable for online optimisation.

A Satalia data scientist used the data collected from vehicle telematics devices
along with data on product details for each order. Those were matched in order to
engineer an additional feature containing information about the number of items
delivered per order. The final data set was split into training and testing set to which
three different machine learning models were applied. The models were then trained
and their accuracy was compared using the remaining data for testing. The most
accurate and time efficient model was then chosen for the time at door predictions.
The results were then implemented into the overall system to enable better optimi-
sation of the delivery schedules. This logic could then be built into the system and
represents an example of the customisations available for Satalia Delivery. Addi-
tionally custom business intelligence reporting dashboards have been crafted for the
client to empower employees to make informed operational decisions, such as that
illustrated in Fig. 2.

Companies, understandably need to be convinced that a solution will provide
them with benefits before they are willing to commit to an investment, and for
that reason, they often want to see a demonstration of the solution. This typically
involves significant consultation and data collection between the client and vendor,
which is both costly and time consuming for both parties. To prove the capability
of Satalia Delivery to future clients, Satalia has built a free to use, single web page

Fig. 2 We provide automated Gantt charts for our client to analyse
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demonstration, so that anyone can create schedules using their own data or example
data. It walks the users through setting up vehicles, loading orders and seeing the
optimisation happening live, before producing a usable schedule. This solution is
usable without any licence or fees, and is suitable for smaller clients (as we put a
limit of 10 vehicles) to use without further investment but is primarily intended to
show the capability of the full solution. A mobile app is also available that displays
the optimised schedules and corresponding routes to the drivers of the vehicles.
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Improving on Time Performance
at Deutsche Bahn

Christoph Klingenberg

1 Plan Actual Comparisons

For every scheduled operation, be it airline, railway or bus network one can analyze
the distribution of actual driving times for a given segment (from A to B) and a given
period—say one year—and compare this distribution with the scheduled driving
time. All events to the right of the scheduled time are delays. The question arises
for the next planning period: where should the new scheduled time from A to B be
located in the distribution?

For each segment and train number the distribution of actual driving times has 2
characteristics:

• Difference between average of actual driving times (M) and the planned driving
time (P): here the plan must be adjusted to P=M+x, where x will be related to the
cost of delay, see below.

• Standard deviation σ of the distribution of actual driving times: this can be reduced
through improved process stability and higher reliability of the asset base. This
improvement constitutes “one half” of the punctuality improvement, but we will
focus in this presentation only on the planning aspects.

Usually operators apply static rules of how the planned times are calculated (based
on physical parameters of the rolling stock and the infrastructure [7], but these rules
have 3 major shortcomings:

• They are not linked to the on-time performance goals (since they only represent
one half of the improvement lever besides operational measures like improved
technical stability of the rolling stock)
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• The static supplements (margins) for infrastructure bottlenecks due to construction
work and general delays are not dynamic and not verified through simulation

• They are not related to the economics of running into delays.

The central proposition of this presentation covers the third point and reads: the
ratio of the cost of one minute delay over the cost of one minute scheduled operation
determines the new scheduled time. If for example the cost of running a train per
minute is 25e and the cost of one minute delay is 100e (including compensation for
delayed passengers and revenue loss due to bad reputation), then the new schedule
should leave one quarter of the train rides from A to B delayed and three quarters
should arrive early.

So once this cost ratio is determined, one can start a mechanistic approach to
planning driving times for a segment (between A and B) and the same for stops.
Since planners only have limited capacity to make schedule adjustments one must
focus on those segments and stops where the effect is most promising.

In the example of long distance trains at Deutsche Bahn, there are over 1,000 seg-
ments connecting more than 300 stations with 240,000 train rides—at any given time
150 trains run simultaneously. This yields more than 2 mill plan-actual comparisons
for segments and for stops.

The most promising segments are found through sorting by the ratio M/σ (Aver-
age of the difference of scheduled time and actual times/standard deviation of the
actual times). If this quotient is high, say greater than one, a schedule adjustment is
mandatory andwill yield a significant on time performance improvement. If this ratio
is small, especially because the standard deviation is high, the cause for bad on time
performance lies in the erratic nature of delays. This should be dealt with through
improvements of the reliability of the operations and not so much by adjusting the
plan.

In the case of Deutsche Bahn with an on-time performance of 76% in 2014 (in
the 5.59-minute threshold) a theoretical potential from adjusting the plan of 16 PP
can be derived. This potential is realized by adjusting driving times between stops to
(Average+ standard deviation) for all segments and thus improving punctuality by 10
PP. This adjustment would add 10% to the overall driving time. Applying the same
reasoning to stop times, that is, adjusting stop times to (Average+ standard deviation)
yields another 6 PP punctuality improvement, thereby extending stop times by 45%.

This increase in driving time and stop time may seem prohibitive at first glance,
but travel time differences in the 10% range are irrelevant for customer choice. The
improvement in quality and in connection stability is much more important. The
increase in stop times looks even more prohibitive, but bear in mind that usually stop
times are 2 min, so the proposal is to extend most of these to 3 min.

There are three important aspect of linking robustness to cost figures (including
opportunity costs for lower revenue due to disgruntled passengers over continuing
delays):

• The often-quoted antithesis of nominal and robust scheduling options is solved,
so there no longer exists the option of constructing either a “cost-optimal, but
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delay-prone schedule” or a “robust, but cost-intensive schedule, see Cacchiani
and Toth [3].

• The distribution of actual driving or stopping times becomes the primary tool to
work with making static calculations of shortest possible physical driving times
plus supplements obsolete. In fact, the author believes that thinking in categories
like supplements and buffers leads planners to stay in an artificial framework
(“the planner’s world”) instead of confronting themselves with the real world and
the sometimes devastating effect of a non-robust schedule (which still may be
perfectly planned according to the rules).

• The question of delay propagation comes down to the folding of distributions
and needs no extra optimization step. So, if the segments and stops are planned
according to the cost optimum, delay propagation is sufficiently dampened, see
Chen and Schonfeld [4] and also Goverde [5], p. 236.

2 Practical Aspects of Implementing Plan Changes

In our case there are 11,000 combinations of train numbers and segments and roughly
the same number of combinations of train numbers and stops. Changes to driving
times and stop times are usually onlymade in case of traction or infrastructure change,
which make up less than 5% of all segments. For every plan adjustment, a new path
(time-distance diagram) must be constructed that avoids any conflicts with other
paths, especially with regional passenger traffic and network cargo traffic. But even
if this would be constructible, the sheer work volume to make some 10,000 changes
is not feasible (absent automatic path planning systems). So instead of adjusting the
segments and stops in a stand-alone fashion, one must look at train lines. Not only
does one recognize certain delay patterns much easier, but one can also differentiate
between the first segment of a long-distance train, which should better be planned
correctly, because it will influence all the others downstream, and the last segment,
where (almost) no ripple-on effects take place.

In addition, one can also make trade-offs between segments and adjacent stops to
stabilize the train line.

By applying this to lines we could achieve for some of the worst performing train
lines improvements of 16 PP in on time performance. However, some adjustments
could not completely be implemented due to infrastructure overload at critical points,
compare [1].

To go beyond line optimization, you must look at the network or at least at the
connection points of the major long distance lines. The connection patterns with
other long distance trains and especially regional trains is the biggest constraint to
planning flexibility. So, in many cases the adjustment of a segment or a stop could
not be realized due to connections. The fact that those connections had an insufficient
degree of realization does not help in arguing for this case—see below.
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3 Transfers—Passenger Connections

Comparison of plan to actuals is not limited to segments and stops, but can also
be done for passenger connections. In an open system like railways you cannot
automatically track individual passengers (this will change to some extent when seat
self-check-in is rolled out), so you must use the actual arrival time of the inbound
train and actual departure time of the outbound train (and the distance between the
actual tracks) to calculate connection success rates. The first and simplestmeasure for
connectionswith low success rates is simply not to offer themanymore as connections
on through tickets. Low success rates happen particularly often on connections where
the inbound train is an international train. Connections with medium realization
can be improved by schedule changes or by switching tracks with shorter walking
distance between trains, preferably from the same platform. Since connections are
integral for the passenger journey, it is essential to switch views at some point from
train punctuality to passenger punctuality.

Connection success rate is not only determined by system on time performance,
but feeds itself back into the system, since waiting for connecting passenger is among
the top 10 delay reasons. So, passenger connections constitute a positively reinforcing
feedback loop.

4 Turnarounds and Maintenance Stops

These events are special cases of stops and canbe treated similarly. Theonly challenge
is that they are planned completely independent of the timetable and thus need special
attention. In contrast to stops along a train line the cost for a planned minute only
consists of capital costs for the rolling stock and infrastructure cost (or, alternatively
the opportunity costs of not offering a revenue train service,which amounts to roughly
the same figure), which is below 5e per minute, whereas a minute delay is 100e.
Thus, the planned length for a turnaround should be at least in the 95% quantile of
actual turnaround times.

Maintenance stops are calculated on the duration of a planned maintenance pro-
gram allowing for some unplanned work. In this case the stability of the operations
is not only determined by the amount of time allotted to maintenance work, but
also—and much more importantly—by the size of the rolling stock reserves. This is
because often trains and wagons are pulled from maintenance to cover for trains that
cannot operate due to failure. The total number of reserve trains should be sized so
that at least 95% of all failures can be covered without delay.
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5 Network Optimization

So far, the plan adjustments have been made on an incremental basis. Even if you do
this plan adjustment for everymajor line in the long-distance network, you always fall
victim to the restrictions of passenger connections within the long-distance system or
to the regional traffic system. So, if you would like to extend driving time fromA to B
youmust sacrifice connections either at A or at B. Even between stops there are many
obstacles due to heavy loads on the infrastructure, especially with trains running on
different speeds making the construction of paths even more cumbersome.

Let us for the current purpose ignore the infrastructure utilization and focus on
passenger connections. There are some indications that the long-distance network
optimization can be achieved by applyingmetaheuristicmethods. The objective func-
tion should be minimal travel times including the connections. Boundary conditions
is that driving and stop times should be at least (median+standard deviation).

As a starting point for themetaheuristic algorithm one could try and take the actual
driving times of some arbitrarily chosen day (preferably without heavy weather) and
develop this further. This initial schedule would have the advantage over the real
schedule that at least on one day in the whole year it was 100% on time, which in
real life never happened with any real schedule.

In addition to the cost figures for a planned minute of train operations (around
25e) and for a minute delay (around 100e) we need a cost figure for one minute
of passenger delay. Though this (opportunity) cost varies a lot from price sensitive
leisure traveler to time sensitive business traveler I would use 10 cts per passenger
minute as a proxy for optimization. This cost figure is necessary for calculation the
trade-off between establishing a passenger connection through delaying a train or
not.

This is still work in progress and it is too early to predict the feasibility and the
outcome of a metaheuristic optimization [6].

6 Implications for the Infrastructure Operator

Since from a customer perspective an hourly or half-hourly service seems to be the
most use friendly timetable design (despite ubiquitous smartphone use with real-
time schedules) it is fundamental to first construct an “ideal timetable” based on an
“ideal infrastructure”. Since an hourly timetable is very “digital”, the construction is
rather simple [2]: stations are either multiples of hours apart or driving times must
be adjusted to fit this hourly schedule. Infrastructure expansion and enhancement
projects are then evaluated and timed to enable hourly (or half-hourly) connections
between the major cities. Not only infrastructure expansion projects, but also every
infrastructure maintenance project (for example to maintain track quality) must be
planned to fit this hourly schedule. This could mean for example, that major track
improvements can only be done at night. So again, we are left with trade-off decisions
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that can only be answered through operations research methods. Whereas the “ideal
timetable” can be constructed on paper without IT support, all the intermediate
steps and especially the various stages of the infrastructure during maintenance and
construction call for trade-off decisions that need IT support and sophisticated OR
methods.

7 Future Work and the Role of Operations Research in
Improving on Time Performance

On time performance is the result of a huge number of conscious and unconscious
trade-off decisions. Most disturbance factors initiate a downward spiral in on time
performance. It falls mostly to the planners to achieve robustness and thus to prevent
this downward spiral. Since the extra cost of robustness can be calculated it is nec-
essary to use OR to find the optimal point on the trade-off curve. This is not to say
that planning is largely automatic or robotic, but there are many inputs needed from
management to steer efforts and to reflect their expectations of market developments,
customer expectations and competitor reactions. In the case of Deutsche Bahn this
initiated a fundamental shift in the mindset of the planners.
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