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1 Introduction

Malware is the designated term for any malicious software that disrupts the normal
workflow of a computer application or system. Malware can take the form of
executable code that passes itself as legitimate in order to compromise a system.
A compromised system may become vulnerable to additional cyber-attacks and this
in turn can lead to information loss or theft, denial of service and other undesired
consequences.Malware scope can range from single users to organizations or public
infrastructure.

The definition of the term is broad and it can be used to refer to any kind of
software that has a negative impact on user experience or damages assets. Common
types of malware include ransomware, viruses, spyware or other types of computer
viruses. Versions of these entities can be found in just about every known form
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Ş. Drăgan
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factor: from embedded devices to supercomputers. A system is usually contami-
nated through an infected file. The infected file can take advantage of a vulnerability
inside a legitimate application and execute malicious code. Infections can come via
hard drives, USB sticks, and optical storage devices or from the network. In the
age of the Internet, where most devices are interconnected, unchecked infections
can spread rapidly. To mitigate this risk, multi-layered defense systems have been
implemented to protect endpoints and networks. Typical applications that combat
malware consist of antivirus software, firewalls, network intrusion detection and
prevention systems (NIDPSs).

In the current environment, the attack surface for malicious applications is
very large. Lack of transparency and reaction from vendors can result in security
incidents that go unnoticed for weeks or even months. Detection and prevention
tools usually rely on matching suspected files against a database of known threats.
The security of a system can greatly depend on how often its signature database
is updated with the latest discovered threats. While organizations tend to have a
process in place for protection against attacks, the average user has to rely on his
or her provider. Lack of technical knowledge causes users to fall prey to viruses
that have been known to exist for years or decades. Even if their service provider
supplies regular security updates, users may be unwilling to adopt them due to
performance considerations (fear it may slow down their device, take too much disk
space, bandwidth, etc.) or sheer ignorance [2].

Customer and enterprise security solutions are required to process ever-
increasing amounts of data. Normal workloads include scanning files on the disk,
examining process memory, validating user input or filtering network traffic. The
growing complexity of new cyber-threats means that detection and protection tasks
need to consume more resources in order to be efficient.

The context described above drives security companies to develop performance-
efficient solutions to cope with the ever-growing amount of malicious content their
customers are exposed to. In the following sections, we will describe what makes
malware detection troublesome from a performance point of view and underline
the hotspots antimalware tools have. We will then propose a new method to speed
up detection by combining the compute capabilities found in consumer desktop
systems and laptops.

Detection of malicious code can be done statically or at runtime. Static analysis
requires a set of pattern matching operations that have to determine if a blob of
data resembles any known malware. Researchers try to populate databases with
malware signatures that will then be used to scan files. To counter this, malware
writers go to extreme lengths to obfuscate their code and bypass any known filters.
A practical way to detect a malware instance is to generate a footprint by performing
semantic rather than syntactic analysis of the code [3]. Another frequent challenge
is dealing with zero-day vulnerabilities and self-mutating malware. These kind of
attacks can be mitigated through runtime analysis (executing the code in a contained
environment and observing its behavior) or through the implementation of machine
learning algorithms. Applying such techniques in real time can take up a significant
amount of resources and generate false positives. An option would be to perform
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these investigations in a controlled environment and then generate static signatures
that can detect the new threat and its derivatives in the wild.

Once the signature has been generated, it can be used by compatible tools
to detect that type of malware. Detection could happen on a variety of devices:
embedded systems, mobile phones, desktops, cloud infrastructure, etc. For example
a vulnerability in a web browser could affect all systems that access the Internet
through it. Protection systems are thus deployed in different forms according to the
device’s available resources and its security needs. A network sensor that runs an
NIDPS would be responsible for deep packet inspection. Studies have shown that
a common performance bottleneck during this process is the necessity to perform
string matching [4, 5]. The overhead of pattern matching can cause degradation of
network performance, while relaxing the rules could allow threats to go undetected.
A host-oriented software such as an antivirus is required to perform regular scans
in order to ensure the integrity of the system. If these regular scans take too long or
strain the machine’s resources, the user might opt to perform them at longer intervals
or skip them altogether.

It is therefore important that the patterns matching process required for malware
detection be performed in an efficient manner and that it takes advantage of all the
computing resources available on the host device.

2 Related Work

2.1 Detection Through String Matching

Static malware detection comes down to string searches—finding known blocks of
malicious code inside data on the system or network. String matching algorithms
based on Aho-Corasick [6] and Boyer-Moore [7] have been adapted for this task.
They are used by commercial software as well as open source projects like Snort,
Suricata or ClamAV. The logic behind these implementations is to perform the
minimum number of byte comparisons on the smallest set of data possible without
compromising the accuracy of the search. The theoretical details behind these
algorithms are out of the scope of this work.

Hashing techniques can accelerate pattern matching algorithms and can poten-
tially detect viruses encrypted with simple functions such as ADD and XOR [8].

Efficient hash functions that provide few collisions over a set of characters
could be used instead of conventional string matching operations. This approximate
solution to detect threats can be useful in scenarios where the set of input characters
is reduced—for example, when scanning scripts, markup language or human-
readable text.
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2.2 Parallel Implementations

A survey performed by [9] estimated that as much as 75% of CPU time is spent
performing pattern matching in NIDPSs. High traffic throughput has motivated
researchers to look for alternative ways to offload scan tasks that would normally
run on the CPU. The GPU is an ideal candidate for this assignment because of
its SIMD architecture and high level of parallelism. Experiments with Snort [10]
have concluded that GPU string matching is efficient, but that performance can
deteriorate if memory transfers are not handled accordingly. This can make real-
time detection problematic if the GPU is used to scan packets that are few and far
between or small, individual files on the disk.

Changes to the algorithms that run on the GPU, focus on optimizing memory
accesses [11] and exploiting the large number of available compute units [12].
Favored approaches include the compression [13] of the state machine for automa-
tons and removing the failed transactions [14] (the current thread will exit after
a character mismatch rather than try to continue from another valid state). For
algorithms based on lookup tables, an optimization would be to use hashed prefixes
[15] to skip as many characters as possible from the benign input.

Some works have proposed hybrid implementations that use OpenMP together
with CUDA to perform string matching [16, 17]. Memory limitations negatively
impacted the number of signatures that could be searched in the string, but the
solutions provided significant speedups over the serial versions. To solve some of the
drawbacks caused by transferring data back and forth between the GPU and CPU,
developers have looked for alternative solutions that can perform opportunistic load
balancing [18] or shallow searches. GPU hardware vendors have advertised new
designs that promise to solve this problem by providing a unified memory model
[19]. Some of the devices available on the market that share memory between
CPU and GPU are mobile phones and other small form factors (ultrabooks, laptops,
chromebooks) with integrated graphics.

Software frameworks used for GPU programming are Compute Unified Device
Architecture (CUDA) and OpenCL. CUDA is the older and more popular technol-
ogy. It is designed to run on NVidia hardware and besides graphics, it is used for
high-performance computing in physics, medical imaging, distributed computing
and other GPGPU-related work. OpenCL is an open standard maintained by a
consortium of hardware and software vendors. It is designed to run on a greater
variety of hardware and has both proprietary and open source implementations.
OpenCL is a flexible API and can run on multicore CPUs and better map itself
to low-end platforms. CUDA and OpenCL have similar memory and programming
models. The solution described in this paper has been implemented in OpenCL.
The choice of OpenCL over CUDA is motivated by the fact that OpenCL’s role is
to enable parallel programs to run across heterogeneous hardware and, as a result, is
more widely available among users (NVidia graphics can run OpenCL applications).

The current paper explores the opportunity of using the GPU to offload compute-
intensive tasks that usually take a lot of the CPU time. The case studies described in
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this work target battery-powered devices, such as laptops or ultrabooks, that imple-
ment some form of security software. The goal is to use the extra computing power
of the GPU to improve execution times and reduce overall power consumption for
system scans or other antimalware processes.

3 Implementation

3.1 Exact Pattern Matching

The current section describes our proof of concept for parallelizing malware
detection across heterogeneous hardware. Our string matching implementation is
based on a variation of Boyer–Moore–Horspool [20] algorithm. The algorithm was
designed to search for malware signatures inside files located on the drive. We make
the assumption that for the most part our searches will not result in any detection,
regardless of the signature database size or file system. This detail will be used to
provide an additional speedup during the scanning phase.

The static fingerprint of a piece of malware is defined as a set of instruction
blocks that make it stand out from other conventional pieces of software. Malware
signatures are available online and are updated regularly when new infections are
discovered. These instruction blocks are the patterns we have to identify among the
scanned content. Before building the lookup table we load all the signatures into
memory and sort them using the first 32 bytes of their binary code as key. The
resulting sorted structure will be used later to search for exact matches.

In the preprocessing stage, the lookup table is built with integer (4-byte) values
rather than individual bytes. The integer values represent a hash of the last key bytes.
Offsets or skip distances between input bytes are computed via hash equality and
not byte equality. The hash function is not injective and occasional collisions will
occur between signatures. This means that once a match is detected there is a chance
it could be a false positive (a byte sequence that just happens to have the same hash
as a malicious pattern). In order to mitigate this, the algorithm performs a binary
search into the sorted key structure and checks for an exact match. This process
is compute-intensive but it is only expected to be executed in exceptional cases. If
any malware signatures are detected, they will be reported to the upper levels of the
application and dealt with accordingly.

3.2 Approximate Pattern Matching

The method described above has some limitations: it requires the scan engine to
load the signatures in their fullest form in order to perform an exact match. For
simple, 32-bit hashes used for malware signature lookup we can expect to have
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regular collisions that have to be solved down the line by performing byte-to-byte
comparisons. Given the nature of the algorithm we can expect to have a match for
one out of onemillion bytes, regardless of the nature of the input. This means that we
will have to perform an extra check for roughly 1 MB of scanned content.While this
does not influence the scan speed significantly, it does impact memory consumption,
as the large signature database has to be carried around for these extra checks. This
makes deployment problematic for low-end devices because it ties down an amount
of memory proportional to the size of the signature database.

To solve this problem, the scan engine would have to fully rely on hashes for
matching incoming traffic against the malware database. This procedure is not 100%
accurate, but can provide a solution that can satisfy the current needs within a
reasonable degree of certainty. In this case, the scan engine would no longer perform
byte-level comparisons to determine if a match is a false positive or not, instead
relying on a combination of hashes and to determine the final result. Given the a
token size of 256 bytes for a malware signature, we can look for hash functions that
have a good spread and are easy to compute.

A solution would be to use the same hash function at different offsets. The
malware signature would be preprocessed and the hash values would be stored in
the process’s memory instead of the actual contents. This method would allow our
algorithm to reuse the latter computation at different stages of the detection process
and would significantly reduce the memory footprint.

f (0) = hash (offset 0, 255)

f (1) = hash (offset 1, 256) (1)

If the computed values for f (0) and f (1) match the ones loaded for a particular
signature, we can safely claim that we have match. To further reduce the possibility
of having a false positive, multiple levels of the function f can be used. The math-
ematical chance that a signature matches benign content based on this mechanism
still remains, but a careful analysis of the hash function and the type of input it is
used on (e.g., human readable text, scripts and binary code) can be used to reduce it
to almost 0. A further advantage in speed for serial implementations can be achieved
if the f (n+1) depends on f (n). This dependency can help the algorithm’s speed, but
in turn adds a constraint that can hinder the parallelization process.

An interesting candidate for a fast hash function has been identified in CLHASH
[21]. CLHASH uses the carry-less multiplication instruction CLMUL, available
on x86 architectures to compute a non-cryptographic hash. The structure of the
algorithm is based on performing multiple carry-less multiplications on chunks of
bytes obtained by XOR-ing the input data with a randomly generated key, and then
accumulating the result. The mechanism is simple enough to allow modifications—
we will use some of the elements present in CLHASH to create a candidate-function
that could be used on both the CPU and GPU. The original code of CLHASH was
based on the pclmulqdq instruction from the expanded instruction set of x86-64
architectures. This instruction performs a carry-less multiplication on two 64-bit
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integer values and stores the result in a 128-bit register. This instruction provides
significant speedup for the function on the CPU side.

3.3 OpenCL Parallelization for Exact Pattern Matching

The scan process involves parsing a large amount of input data, one byte at a time
and identifying possible matches, as described above. Our OpenCL parallelization
efforts focused on offloading this part of the code to the GPU. After the lookup-
search is done in parallel, the results are transferred to the CPU for the binary search
to complete the match and take necessary actions. This process is done one file at
a time. Some of the related work presented [15] in the previous section suggests
concatenating a significant amount of data before sending it to the GPU in order to
minimize the penalty incurred from frequent memory transfers. While this approach
may seem sound, it is not practical for most real-life scenarios. A user may decide
to incrementally scan his hard drive, a few files at a time, or may simply not possess
the available resources to load large amounts of data (GBs) into memory. Files most
susceptible to infection are generally small in size [22]. For this reason, the focus of
our implementation is to achieve equal or better speedups when using small amounts
of data.

The most straightforward approach is to split the amount of data evenly across
all available GPU threads. Each thread would receive a chunk of bytes and will
have to report which of them are valid offsets for future analysis. To reduce the
amount of computation on the CPU we first attempted to compute the candidate
key for the next-stage binary search. Experimental results showed the penalty for
repeatedly accessing GPU global memory to be significant. To reduce the number
of memory accesses we also reduced the amount of computation and only outputted
a corresponding bit value for each processed byte. Input data would be padded to
64 bytes and each GPU work item would be responsible to compute the output for
a fixed chunk of 64 bytes. The output bits would be added to a 64-bit unsigned long
mask and copied back to CPU memory. Each thread would only have to access the
global memory that contained input bytes and lookup tables (which would only be
transferred to the GPU once—after the signature preprocessing stage). The CPU
would then iterate through the bitmasks received from the GPU and process any
nonzero values. Boyer-Moore table lookups would ensure that each GPU thread
will actually process less than 64 bytes, as most of them are expected to be skipped.
Further parallelization can be done on the CPU side by using multithread libraries
such as Pthread. Each Pthread would have a corresponding OpenCL context and
handle its own content. This would allow for multiple files to be scanned in parallel,
but would duplicate the amount of memory required on the GPU side, as lookup
tables would not be shareable across contexts (Fig. 1).

The function responsible for preprocessing or filtering the input buffer should
be chosen carefully. Some types of operations are known to cause significant
performance penalties when used on the GPU (e.g., branching instructions).
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Fig. 1 Malware scan workflow

The current work presents a solution that scans one file at a time and uses on a
single CPU thread with a single OpenCL context in which multiple work items are
executed.

4 Results

4.1 Test Setup

The implementation was tested on a 64-bit ultrabook with Intel
®
CoreTMi7-6600U

with integrated HD Graphics 520. This form factor can run Windows operating
systems as well as Linux-based distributions, such as Ubuntu and ChromeOS, or
Android. The integrated GPU has 24 compute units clocked at 1050 MHz. The
machine does not have dedicated graphics memory, but instead uses a part of the
main memory. Level 3 cache is shared between CPU and GPU. This setup is ideal
for testing the performance of our hybrid detection framework. Similar devices are
available on the market and used for business or leisure.

The malware database used for the tests contained approximately 20,000 signa-
tures. The test files consisted of Windows system files, Linux root file system, and
randomly generated input, along with some selected malware samples. In case a file
was too large, a fixed-sized buffer was created in order to scan only X amount of
data at a time.
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4.2 Performance

Performance tests were categorized into two groups. The first group involved
repeated scans using variable buffer sizes. This test will determine the speedup
between the hybrid implementation and the CPU-only one. The sizes of the scanned
files will range from a couple of bytes to several GBs in size. This method of
evaluation will help us find the ideal buffer size that provides the best performance
on our device.

Figure 2 shows OpenCL is not very efficient in scanning small buffers. Upon
closer examination it was found that for a 1 KB buffer only 2% of computation time
was spent on the GPU (either executing code or performing memory transfers).
The rest of the time (about 0.3 ms) was spent in OpenCL library calls: sending
commands to the execution queue, scheduling, waiting for other events, etc. To
reduce part of this penalty memory transfers were performed by mapping GPU
buffers into host address space and performing read and write (memcpy) operations
on the CPU. As the size of the scanned buffer grows, the hybrid performance
improves compared with the CPU-only. The point where hybrid performance
surpasses the CPU is around a 4 MB buffer (the test machine has a 4 MB L3
SmartCache [23]). In Fig. 3 (as the buffer grows), GPU-time reaches around 96%
of the total hybrid computation and speedup values increase from 1.12x to 2.57x in
favor of the GPU+CPU solution.

Fig. 2 Hybrid pattern matching performance on small buffers
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Fig. 3 Hybrid pattern matching performance on large buffers

Table 1 Test summary Hybrid CPU-Only

Duration (s) 22.4 40.7
Avg. CPU Power (W) 4.68 6.5
Avg. GPU Power (W) 4.23 0.1
Total Energy (W * s) 199.58 268.62

The second group of tests focused on power consumption and overall efficiency.
Tools like GPU-Z1 and Intel

®
Power Gadget2 were used to measure the power

consumption and other metrics while scanning. We set the buffer size to 16 MB
and measured the power consumption of the CPU and GPU:

The hybrid implementation is almost twice as fast and consumes 25% less power
while running the benchmark (Table 1):

The test was performed while the device’s power plan was set to high perfor-
mance: CPU frequency was 3200 MHz for the duration of the test.

4.3 Experiments with Other Hash Functions

To create a more complex hash function, suitable for both the GPU kernel and the
CPU, we experimented with some elements from CLHASH: we selected a scenario
in which the scanned input consists of a stream of human-readable text and we
generated hashes from the malware database to be used instead of byte-per-byte
comparisons. For each 256-byte signature we would create two 64-bit hashes at

1https://www.techpowerup.com/gpuz/
2https://software.intel.com/en-us/articles/intel-power-gadget-20

https://www.techpowerup.com/gpuz
https://software.intel.com/en-us/articles/intel-power-gadget-20
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Fig. 4 Comparison of power consumption between hybrid and CPU-only

64-byte intervals and store them sorted in the memory. We would then process the
input text and perform 64-bit lookups in order to determine if we have a match or
not. CLMUL instructions are not available from OpenCL on the GPU. To mitigate
this disadvantage, we created software versions of the hash functions and compared
the results with the previous detection mechanism and the SSE3 version of the hash
function.

Figure 4 shows that in spite of the parallelization efforts, the carry-less hash
function performs poorly without dedicated hardware support. Nevertheless, the
performance is still a good 10% better than the best CPU-only pattern matching
scheme. With future dedicated instructions that can perform carry-less multiplica-
tion on the GPU, there is the potential of achieving better results in terms of speed.

From a memory point of view, this scheme brings a significant reduction in the
size of the memory used by the scan engine. With the original pattern matching
framework, the process would have to store 256 bytes plus the size of the lookup
table key for each of the malware signatures. Using an approach based exclusively
on hashes can bring down memory by almost 75%.

5 Conclusion

The results presented in Fig. 5 suggest the hybrid solution offers a significant
advantage in power and performance over a CPU-only implementation. However,
these advantages disappear if the application has to scan small files (less than 1 MB
in size). Based on these experimental results we could introduce a logic inside the
application to take different code paths according to the amount of data available.
For the selected test platform, the impact on battery power seems to favor this hybrid
approach. If the application has to handle large amounts of data, a bigger internal
GPU scan buffer would provide incremental benefits.

3Streaming SIMD Extensions.
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Fig. 5 Speed processing speed for hash-based implementations

Contextual scenarios can benefit more from frameworks that use a combination
of hash values rather than classical pattern matching. The parallelization of such
frameworks might not yield significant performance improvements compared to
an optimized CPU-only version, but there is a promise for future improvement as
hardware and software evolve.

The current proof of concept represents a step closer toward the creation of new
security solutions that harness all the existing computing resources available on
a machine. The concept of “security through total computing” looks to promote
the implementation of heterogeneous software products that enhance the level of
security of the average user, without compromising user experience.

Our conclusion is that efficient usage of an integrated GPU can speed up string
matching operations for antimalware software on battery-based devices. The unified
memory model provided by the test hardware reduced the overhead incurred by
repeated memory transfers between CPU and GPU, but also created a penalty
for multiple accesses of GPU global memory inside the kernel code and made
usage of local memory impractical. OpenCL provides a versatile framework for
offloading intensive computation performed in network and host intrusion detection
systems in environments that have, otherwise, limited resources. Future work will
include deployment and measurement on platforms that have dedicated GPUs and
further comparisons with CUDA-based implementations and other string matching
algorithms.
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