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1 Introduction

The goal of object detection is to learn a visual model for concepts such as cars
and use this model to localize these concepts in an image. As shown in Fig. 1,
given an image, object detection aims at predicting the bounding box and the label
of each object from the defined classes in the image. This requires the ability to
robustly model invariants against illumination changes, deformations, occlusions
and other intra-class variations. Among a number of vision tasks, object detection
is one of the fastest moving areas due to its wide applications in surveillance [1, 2]
and autonomous driving [3, 4].
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Fig. 1 Bounding boxes and labels with corresponding class probabilities predicted by detectors

2 From Handcrafted Features to Deep CNNs Methods

2.1 Handcrafted Features

Before deep CNNs, convolutional neural networks [5], were introduced, the
progress on various visual recognition tasks had been considerably based on the use
of handcrafted features, such as SIFT [6] and HOG [7]. Handcrafted features can
be broadly divided into three categories:

1. Interest Point Detection. These methods use certain criteria to select pixels, edges
and corners as well-defined local texture features. Among them, Sobel, Prewitt,
Roberts, Canny and LoG (Laplacian of Gaussian) are typical edge detection
operators [8–11], while Harris, FAST (Features fromAccelerated Segment Test),
CSS (Curvature Scale Space) and DOG (Difference of Gaussian) are typical
corner detection operators [6, 12, 13]. Interest point detection methods usually
have a certain geometric invariance which can be found at a small computational
cost.

2. Methods based on local features. These methods mainly extract local features,
which are different from global features such as colour histograms, which are
ideal for dealing with partial occlusion of target objects. Commonly used local
features include Scale-Invariant Feature Transform (SIFT) [6], HOG (Histogram
of oriented gradient) [7], Haar-like [14] and Local Binary Pattern [15, 16]. Local
features are informative, unique, with strong invariance and distinguishability.
But the calculation is generally complicated, and local features are further
developed to have better representations in recent years.

3. Methods based on multi-feature combination. A combination of interest point
and local feature extraction methods can be used to handle the deficiency of
using a single feature to represent target objects. DPM (Deformable Part-based
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Model) [17] is an effective multi-feature combination model which has been
widely applied to the object detection task and has achieved good performance,
such as pedestrian detection [14, 16], face detection [15, 18] and human pose
estimation [19]. In [20], three prohibitive steps in the cascade version of DPM
were accelerated, which greatly improved the detection speed.

The characteristics of handcrafted features are largely dependent on experience
and environments, where most of the test and adjustment workloads are undertaken
by the user, which is time-consuming. In contrast, an important viewpoint in the
deep learning theory, which has drawn much attention in recent years, is that
handcrafted descriptors, as the first step in a visual system, tend to lose useful
information. Directly learning task-related feature representation from raw images
is more effective than handcrafted features [21].

For object detection tasks, handcrafted features based systems have become a
dominant paradigm in the literature before deep CNNs were introduced. If we
look at system performance on the canonical visual recognition task, PASCAL
VOC object detection [22], it is acknowledged that certain progress has been
made during 2010–2012, by building ensemble systems and employing variants
of successful methods. Recently, Convolutional Neural Networks (CNNs) [5] have
produced impressive performance improvements in many computer vision tasks
since 2012, such as image classification, object detection and image segmentation.
CNNs witnessed its frequent use in the 1990s (e.g., [5]), but then became less
used, particularly in computer vision, with the powerful impact of support vector
machines (SVMs) [23]. In 2012, Krizhevsky et al. [24] rekindled interests in CNNs
by showing substantially high image classification accuracy on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [25]. Their success resulted from
training a large CNN on 1.2 million labelled images, together with a few twists on
[5] (e.g., ‘dropout’ regularization). The significance of deep CNNs methods will be
introduced in the following section.

2.2 Deep Learning Approaches

Convolutional Neural Networks [5] is the first successful method in deep learning
approaches. The key difference between CNNs-based and conventional approaches
is that in the former, the feature representation is learned instead of being designed
by the user. These recent successes were built upon the powerful deep features
that are learned from large-scale datasets, which accompany accurate annotations
with the drawback that a large number of training samples are required for training
the classifier. Among many variants of the CNNs-based approaches, they can be
roughly divided into two streams: region proposal-based methods and proposal-free
methods.
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Fig. 2 The overview of the R-CNN detection system. (1) Input an image, (2) extracts region
proposals, (3) computes features for each proposal using a large convolutional neural network
(CNN), and then (4) classifies each region using class-specific linear SVMs

2.2.1 Region Proposal-BasedMethods

The dominant paradigm in modern object detection is the region proposal-based
method. The pioneering work Selective Search [26] consists of two stages: The
first stage generates a sparse set of candidate proposals that should contain all the
objects while filtering out the majority of negative locations and the second stage
classifies the proposals into foreground or background. R-CNN [27] upgrades the
second-stage classifier to a convolutional network yielding large gains in accuracy
and ushering in the modern era of object detection (shown in Fig. 2). R-CNN
requires high computational costs while each proposal is processed by the CNNs
separately. Fast R-CNN [28] improved efficiency by sharing computation and using
RoI (Region of Interest) pooling [29] to efficiently generate features for object
proposals. Region Proposal Networks (RPNs) integrate proposal generationwith the
second-stage classifier in a single convolution network, forming the Faster RCNN
framework [30]. R-FCN [31] further improved efficiency and accuracy by removing
fully connected layers while adopting position-sensitive score maps for the final
detection. However, one problem with the region-based methods is that in order
to process a large number of proposals, the computation in the second stage is
usually costly. To accelerate the detection process, proposal-free methods have been
proposed for real-time detection.

2.2.2 Proposal-FreeMethods

Proposal-free methods aim to eliminate the region proposal stage and directly train
a single-stage end-to-end detector. Without the region proposal stage, they have
the potential to be faster and simpler, but have trailed the accuracy of two-stage
detectors thus far. YOLO [32] used a single feed-forward convolutional network to
directly predict object classes and locations. Compared with region-based methods,
YOLO no longer requires a second per-region classification operation so that it is
extremely fast. SSD [33] improved YOLO in several aspects, including (1) using
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small convolutional filters to predict categories and anchor offsets for bounding box
locations; (2) using pyramid features for prediction at different scales; (3) using
default boxes and aspect ratios for adjusting varying object shapes. Those clever
designs save considerable amounts of computation and perform much faster than
Faster RCNN. The proposal-free detectors are usually easier to train with less
computational efforts. However, such advantage is largely overwritten when the
models are evaluated in benchmarks considering mean average precision (mAP)
for high intersection-over-union (IoU) thresholds (e.g., KITTI car) since the two-
stage methods are usually advantageous in performance. It achieved good results in
datasets for the IoU threshold of 0.5. However, the performance drops significantly
when we increase the bar for detection quality.

2.2.3 Fine-Tuning Strategy

When training supervised classifiers, we expect that there are sufficient labelled
samples available for the target classes [1]. However, this requirement seems too
demanding in some real-world applications. For example, many objects ‘in the wild’
follow a long-tailed distribution such that they do not occur frequently enough to
collect and label a large set of representative exemplars to build the corresponding
recognizers [34]. In addition, the labelling effort for many objects can be very
expensive because the expert knowledge is required, for example, fine-grained
bird recognition [35]. Under these circumstances, it is always expected to train
effective classifiers with as few labelled samples as possible. Fine-tuning is one
of the widely adopted paradigms to save efforts for labelling data in a supervised
learning. It involves learning a generic feature representation on a large dataset of
labelled images, and then specializing or fine-tuning the learned generic feature
representation for a specific task at hand. Especially, in order to achieve good
performance, most of the advanced object detection systems fine-tune classification
networks that start from generic features learned on the ImageNet dataset using
over a million labelled images and then specialize them for object detection tasks.
Other approaches [36, 37] design specific backbone network structures for object
detection, but still require pre-training the networks on the ImageNet classification
dataset.

Fine-tuning object detectors from the pre-trained classification models has at
least two advantages. First, there are many state-of-the-art deep models publicly
available. It is convenient to reuse them for object detection. Second, fine-tuning
can quickly generate the final model and requires much less instance-level annotated
training data than the classification task. However, there are also critical limitations
when adopting the pre-trained networks in object detection: (1) A limited structure
design space. The pre-trained network models are mostly from the ImageNet-
based classification task, which are usually very heavy—containing a huge number
of parameters. (2) Learning bias. As both the loss functions and the category
distributions between classification and detection tasks are different, this will lead to
different searching/optimization spaces. Therefore, learning may be biased towards
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a local minimum, which is not the best for the detection task. Model fine-tuning
for the detection task can alleviate this bias to some extent but not fundamentally.
(3) Domain mismatch. As known, fine-tuning can mitigate the gap due to different
target category distributions. However, it is still a severe problem when the source
domain (ImageNet) has a huge mismatch to the target domain such as depth images.

Finally, it is worth noting that some recent work attempts to train CNNs
from scratch. The proposed approach has very appealing advantages over the
existing pre-training solutions [38, 39]. In semantic segmentation, Jégou et al. [40]
demonstrated that a well-designed network structure can outperform state-of-the-
art solutions without using the pre-trained models. It extends DenseNets [39] to
fully convolutional networks by adding an up-sampling path to recover the original
resolution. Shen et al. [41] presented the Deeply Supervised Object Detector
(DSOD), a framework that can learn object detectors from scratch and contribute to
a set of design principles for training object detectors from scratch. Training CNNs
from scratch is a promising future direction due to its wide applications, though not
much work has been done in this area yet.

3 Current Research Directions

In the present section, we discuss current research directions. Current research has
been focused on three principal directions for developing better object detection
systems. The first direction relies on innovating the base architecture of the existing
networks. It has been shown that using all the examples does not always lead to an
optimal solution [42] and data selection is the key. So, another research direction
focuses on how to better exploit the data itself. The third area of research is to
use contextual reasoning, as it can be a rich source of information about an object
identity, location and scale [31].

3.1 Excellent Base Architectures

Many innovative CNN structures have been proposed [24, 38, 43, 44]. Meanwhile,
several regularization techniques have also been proposed to further enhance the
model capabilities. Krizhevsky et al. proposed a new convolution neural network
AlexNet [24], followed by a series of improved models, such as ZFNet [43],
VGG [37], GoogLeNet [44] and ResNet [38], proposed by other researchers.
Table 1 shows the performance comparison of the classical CNN model in the
image classification task of ILSVRC. The error rate in the image classification
task of ILSVRC is reduced every year. The image classification top-5 error rate is
getting lower as the base architecture becomes increasingly deeper. Although these
network architectures are designed for image classification tasks, people aim to
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Table 1 Performance
comparison of the classical
CNN model in image
classification task of ILSVRC

CNN architecture Top-5 error rate (%)

AlexNet [24] 16.4
ZFNet [43] 14.8
VGG [37] 7.3
GoogLeNet [44] 6.7
ResNet [38] 3.57
Inception-ResNet-v2 [45] 3.08

solve one of the most fundamental questions—how to create more powerful feature
representation.

Given those CNN models which have strong feature representation, applying
them to the target detection task results in good detection accuracy. He et al. [38]
proposed residual learning blocks with skip connections, which enable training very
deep detection networks with more than 100 layers. Huang et al. [39] proposed
DenseNets with dense layer-wise connections. Kim et al. [46] proposed PVANet for
object detection, which consists of the simplified ‘Inception’ block fromGoogleNet.
Huang et al. [47] investigated various combinations of network structures and
detection frameworks, and found that Faster R-CNN with Inception-ResNet-v2 [45]
achieved the best performance. Lin et al. [48] designed a simple one-stage object
detector called RetinaNet, named for its dense sampling of object locations in an
input image. Its design features include an efficient in-network feature pyramid and
the use of anchor boxes. Thanks to these excellent network structures, the accuracy
of the object detection task has been greatly improved. Performance comparison of
some object detection methods on public datasets can be seen in Table 2.

3.2 Hard Example Mining

Training data plays a critical role in machine learning. The data selection strategy
along the training process could significantly impact the performance of the learned
model. For detection datasets which contain an overwhelming number of easy
examples and a small number of hard examples, automatic selection of these hard
examples can make training more effective and efficient. Hard example mining is
one technique of allowing the learning system to select the most informative samples
to train the model. The underlying assumption in hard example mining is that the
samples have different information and only a small portion of the samples can
provide sufficient information for supervised learning. In fact, the information of
each sample is different; therefore, if the most representative/informative samples
are selected and labelled, even a few labelled samples can provide sufficient
knowledge to construct effective classifiers. Hard example mining has existed for at
least 20 years, which was first introduced in [49] in the mid-1990s (if not earlier) for
training face detection models. Their key idea is to perform training on a sparse set
of hard examples and prevent the vast number of easy negatives from overwhelming
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Table 2 Performance comparison of some object detection methods on public datasets

Datasets Methods mAP(%)

VOC2007 Fast R-CNN (VGG16) 70.00
Faster R-CNN (VGG16) 73.20
Faster R-CNN (VGG16)a 78.80
Faster R-CNN (ResNet) 76.40
Faster R-CNN (ResNet)a 85.60
YOLO 63.40
YOLOv2(544 × 544) 78.60
SSD300 (VGG16) 72.10
SSD500 (VGG16) 75.10
ION 79.20
HyperNet (VGG16) 76.30
R-FCN (ResNet-101) 79.50
R-FCN (ResNet-101)a 83.60
PVANET 83.80

VOC2012 Fast R-CNN (VGG16) 68.40
Faster R-CNN (VGG16) 70.40
Faster R-CNN (VGG16)a 75.90
Faster R-CNN (ResNet)a 83.80
YOLO 57.90
YOLOv2(544 × 544) 73.40
Fast R-CNN, YOLO 70.70
SSD300 (VGG16) 70.30
SSD300 (VGG16)a 79.30
SSD500 (VGG16) 73.10
SSD512 (VGG16) 78.50
SSD512 (VGG16)a 82.20
ION 76.40
OHEM, Fast R-CNN (VGG16)a 80.10
HyperNet (VGG16) 71.40
R-FCN (ResNet-101) 77.60
R-FCN (ResNet-101)a 85.00
R-FCN, ResNet Ensemblea 88.40
PVANET 82.50
Faster R-CNN, PVANETa 84.20

MSCOCO2015(@[0.5–0.95]) Fast R-CNN (VGG16) 19.70
Faster R-CNN (VGG16)a 21.90
Faster R-CNN (ResNet)a 37.40
SSD300 (VGG16) 20.80

(continued)
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Table 2 (continued)

Datasets Methods mAP(%)

SSD500 (VGG16) 24.40
ION 33.10
R-FCN (ResNet-101) 29.20
R-FCN (ResNet-101)a 31.50
YOLOv2 21.60

MSCOCO2015(@0.5) Fast R-CNN (VGG16) 35.90
Faster R-CNN (VGG16)a 42.70
Faster R-CNN (ResNet)a 59.00
SSD300 (VGG16) 38.00
SSD500 (VGG16) 43.70
ION 55.70
R-FCN (ResNet-101) 51.50
R-FCN (ResNet-101)a 53.20
YOLOv2 44.00

For VOC2007 dataset, the training set is the union of VOC2007 trainval and VOC2012 trainval,
the testing set is VOC2007 test; for VOC2012, the training set is the union of VOC2007 trainval,
VOC2007 test and VOC2012 trainval, the testing set is VOC2012 test
aIndicates using the union of MS COCO dataset and PASCAL dataset as training set; @ [0.5–0.95]
means AP (averaged precision over IoU thresholds between 0.5 and 0.95) defined in COCO metric

the detector during the training. This strategy leads to an iterative training algorithm
that alternates between updating the detection model given the current set of
examples, and then using the updated model to find new false positives to add to
the training set. The process typically commences with a training set consisting of
all the object examples and a small, random set of background examples.

Hard example mining has seen widespread use in object detection research. Hard
example mining algorithms are commonly used when optimizing SVMs [17, 26,
27]. In this case, the training algorithm maintains a working set of examples and
alternates between training an SVM on the working set, and updating the working
set by removing some examples and adding others according to a specific rule [17].
The rule removes easy examples since they provide little information to update the
current model. Conversely, the rule adds hard examples which can provide sufficient
information to accelerate the network training. Applying this rule leads to a global
SVM solution. Hard example mining has also been applied to a number of models
including shallow neural networks [50], boosted decision trees [51] and deep CNNs
[52–55]. In this kind, an algorithm usually starts with a dataset of positive examples
and a random set of negative examples. The machine learning model is then trained
on that dataset and subsequently applied to a larger dataset to harvest false positives.
The false positives are then added to the training set and then the model is trained
again.
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3.3 Contextual Reasoning

Context is known to play an important role in visual recognition [56]. Using
contextual reasoning, proxy tasks for reasoning and other top-down mechanisms
can improve image representation for object detection. Sermanet et al. [57] used
two contextual regions centred on each object for pedestrian detection. In [58], in
addition to specific features, features from the entire image are used to improve
region classification. He et al. [29] implemented context in a more implicit way
by aggregating CNN features prior to classification using different sizes’ pooling
regions. More recently, [59] proposed to use ten contextual regions around each
object with different crops. Shrivastava and Gupta [60] used segmentation as a way
to contextually prime object detectors and provide feedback to initial layers. Bell et
al. [61] used a skip network architecture and the features extracted from multiple
layers of representation in conjunction with contextual reasoning. Other approaches
include using top-down features for incorporating context and finer details [62, 63],
which leads to improved detection results.

4 Open Problems and Future Directions

In the following, we outline the problems that we believe have not been addressed,
or addressed only partially in the literature, and may become interesting and relevant
research directions.

4.1 Scale Invariance

To handle different variations, such as occlusion and deformations, current CNNs-
based classifiers and detectors usually use a data-driven strategy—collect large-
scale datasets which have object instances under different conditions. For example,
the COCO dataset [64] has more than 10K examples of cars under different occlu-
sions and deformations. We hope that these examples capture all possible variations
of a visual concept and the classifier can then effectively model invariances. For
CNN-based object detectors, the variance in pose and appearance can be handled
by the capacity of convolutional neural networks. However, the CNN does not
inherently hold scale invariance.

In academic research, two techniques are introduced to address this problem: (1)
Simple multi-scale testing on image pyramids can be used to avoid the problem
and achieve good accuracy [27, 28, 30, 31]. However, multi-scale testing leads to
heavy computational costs. (2) The second way is to fit a CNN model to multiple
scales [33, 61, 65]. They either construct a stronger network structure by combining
features from different depths of a network or directly predict objects at different



Object Detection Based on CNNs: Current and Future Directions 27

depths of a network. These attempts have been, to some extent, successful under
this kind of problem, but they may also lead to an increase in model size and
computation. So, further improvement is still required.

4.2 High Localization Accuracy

In many real-world applications, robustly detecting objects with high localization
accuracy, namely to predict the bounding box location with high Intersection over
Union (IoU) is crucial to the quality of service. For instance, in vision-based robotic
arm applications, the process of generating robust and accurate operations in picking
up an object is highly dependent on the object localization accuracy. In advanced
driver assistance systems (ADAS), accurately localizing cars and pedestrians is also
closely related to the safety of the autonomous actions.

R-CNN and its variants challenge the problem using a classification approach,
and they employ regression as a post-processing stage to refine the localization
of the proposed bounding boxes. Najibi et al. [66] modelled object detection as
finding a path from a fixed grid to boxes tightly surrounding the objects, and
slacked the regression process to several iterations for the reason that one step
regression cannot handle the nonlinearity of the coordinates of bounding boxes.
Gidaris et al. [67] proposed a novel object localization methodology that is based on
assigning probabilities related to the localization task. Those probabilities provide
useful information regarding the location of the object inside the search region
and they can be exploited in order to infer its boundaries with high accuracy.
Further improvements are required considering its importance in many practical
applications.

4.3 Long-Tail Distribution

The ImageNet image classification dataset is a well-compiled dataset, in which
objects of different classes have similar numbers of samples. In real applications,
however, we will experience the long-tail distributions, where a small number of
object classes appear very often but the others appear rarely. For object detection,
some object classes such as persons have much more samples than the other object
classes like sheep for both PASCAL VOC [22] and ImageNet [68] object detection
datasets, as shown in Fig. 3. For deeply learned features, however, the feature
learning will be dominated by the object classes with a large number of samples
and the features are not good for object classes with fewer samples in the long tail.
Therefore, the extreme class imbalance encountered during the training of detectors
cannot learn discriminative features well for each category. Besides, the existence
of many background samples makes the feature representation capture less intra-
category variance and more inter-category variance (i.e., mostly between the object
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Fig. 3 The number of samples in y-axis sorted in decreasing order for different classes in x-axis
on different datasets

category and background), causing many false positives between ambiguous object
categories (e.g., classify horses as cows).

Long-tailed distributions of data have been studied in object detection [69], scene
parsing [70], and zero-shot learning [71]. Ouyang et al. [69] investigated the factors
that influence the performance in fine-tuning for object detection with long-tailed
distributions of samples. Their analysis and empirical results indicate that classes
with more samples will pose a great impact on feature learning. It is better to make
the sample number more uniform across classes. In [70], much better super-pixel
classification results were achieved by expanding the poor classes’ samples. Bengio
et al. [72] pointed out that poor classes can be beneficial for knowledge learned
from semantically similar but richer classes. While in practice, other than learning
the transfer features from richer classes, previous work mainly selects or simply
replicates some of the data to avoid the potential long-tailed distribution problem.
In [69], even if only 40% of positive samples are left out for feature learning,
detection performance will improve slightly if the samples are uniform. The issue:
To simply abandon part of the data, information contained in these identities may
also be omitted. While some sampling heuristics may be applied, they are inefficient
as the training procedure is still dominated by richer classes and there is room for
further improvement.

5 Conclusion

Object detection is a key ability for most computers and robot vision systems.
Although great progress has been observed in the last few years, we still notice
that object detection has not been used much in many real-time applications where
it could be of great help. Taking into account the speed of the object detection
methods, while keeping the detection accuracy has gradually become the current
research trend. Region-based methods have achieved good detection accuracy,
but cannot satisfy the efficiency requirement in many practical applications. R-
FCN is more computationally efficient than Faster R-CNN and well balanced in
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detection accuracy and speed. Although proposal-free methods (such as YOLO) can
achieve real-time performance, detection accuracy is a concern when compared to
region-based methods. SSD improves YOLO by taking into account both detection
accuracy and real-time requirements. Finally, we need object detection systems for
robots that will explore areas that have not been seen by humans, such as deep sea
or other planets, and the detection systems will have to learn new object classes
as and when they progressively encounter more objects. In such cases, a real-time
open-world learning ability will be critical.
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