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1 Introduction

The objective of this chapter resides in presenting a comprehensive approach for the
design and implementation of an effective computational tool to control the speed
of a Permanent-Magnet DC (PMDC) motor.

This type of motor is widely used in innumerable industrial applications due
to its rugged structure, low cost, high efficiency, and pertinent characteristics. It
does not require a separate excitation coil, hence the reduced size and lower power
consumption. The general block diagram that depicts the overall system is shown in
Fig. 1.

The speed control is achieved using a discrete PID controller with the ability
of online tuning and adjusting the parameters to a changing desired trajectory.
PID controllers are also widely used for their versatile features in monitoring the
shape of the tracking error according to desired mode of responses, steady-state
errors, and required dynamics. They are also chosen for their ease and variety of
implementation techniques and methods.

The computational tool encompasses a PIC microcontroller and a fully com-
prehensive, user-friendly, and resourceful interface designed using Visual Basic.
VB programming offers an adaptable platform known for its appealing interfacing
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Fig. 1 Block diagram of the drive

features and portability. The GUI is fashionably designed to incorporate a broad and
multipurpose portal to access, monitor, edit, and record all pertinent parameters of
the entire drive.

This chapter will be divided in nine sections. Fundamentals of the speed control
of a PDMC motor using PWM techniques are presented in the second section. The
third section discusses the general model of the PID controller and the pertinent
direct canonical forms are then presented in Sect. 4. The implementation of the PID
controller is showcased in Sect. 5. Electric circuit design and pertinent schematics
are then elaborated in Sect. 6, which also shows the platform used for simulation
and testing purposes. The piloting software and the functionality of the GUI are
overviewed in Sect. 7, followed by experimental results depicted in Sect. 8 that
underline the effectiveness of the overall framework. Finally, a conclusive summary
is presented in Sect. 9.

2 Pulse Width Modulation (PWM)

The foundation of modern mechanical systems lies in control systems that allow
designing of apparatus that would theoretically perform according to any granularity
in terms of specification requirements such as dynamic and steady-state behaviors.
Control operations can be achieved in either open-loop or closed-loop approaches;
the key difference is feedback. In open-loop configurations, the system acts
completely on the basis of input; the output has no effect on the underlying action.
Hence, no feedback is available and/or used to adjust the behavior to the desired
path or outcome. Arguably the most ingenious tool in this case is the closed-loop
outlook, which shares the most constituent components of the aforementioned open-
loop platform but with some relevant data being passed back from some point
into the control system to another preceding point. Such data is primarily used
to modify/correct the response for the actual output to closely follow a desired
reference trajectory in terms of many related criteria; hence, the system becomes
self-adjusting. Despite the fact that open-loop systems are by far simpler to design
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Fig. 2 Pulse Width Modulation for a DC motor

and entail low implementation cost, closed-loop systems offer a decisively more
resourceful framework, and somehow become mandatory when strict requirements
in terms of dynamic and steady-state operations are needed. Closed-loop speed
control systems involve speed sensors such as rotary encoders that make the actual
output available for feedback. Actual speed measurement values are constantly
compared to the desired reference value, which is set by the user and called the
set point. The difference between those values is then fed to an astutely designed
controller that would adjust the motor input (voltage or current) to ensure effective
tracking of the set point. Electronic speed controllers are of two types: linear
amplifiers and pulse width modulators (PWMs). PWM controllers present the
advantage of either driving bipolar power transistors rapidly between cutoff and
saturation or turning FETs ON and OFF. In either case, power dissipation is small.
Servo amplifiers using linear power amplification are satisfactory but produce a lot
of heat, because they function in the transistor linear region. Commercial servo
controllers can be achieved using linear amplifiers, but because of lower power
requirements, ease of design, smaller size, and lower cost, switched amplifier
designs are used [1–4].

Figure 2 depicts the principle of a PWM amplifier. A DC power supply voltage
is rapidly switched at a fixed frequency f between two values (e.g., ON and OFF).
This frequency is often in excess of 1 kHz. The high value is held during a variable
pulse width t within the fixed period T where T = 1/f.

The resulting asymmetric waveform has a duty cycle defined as the ratio between
the ON time and the period of the waveform, usually specified as a percentage:

Duty cycle = t

T
× 100 (1)

As the duty cycle is changed (by the controller), the average current through the
motor changes, causing changes in speed and torque at the output. It is primarily the
duty cycle, and not the value of the power supply voltage, that is used to control the
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speed of the motor. The block diagram of a PWM speed feedback control system
for a DC motor is shown in Fig. 3. A voltage tachometer produces an output linearly
related to the motor speed. This is compared to the desired speed set point (another
voltage that can be manually set or computer controlled). The error and the motor
current are sensed by a pulse-width-modulation regulator that produces a width-
modulated square wave as an output. This signal is amplified to a level appropriate
to drive the motor.

In a PWM motor controller, the armature voltage switches rapidly, and the
current through the motor is affected by the motor inductance and resistance. Since
the switching speed is high, the resulting current through the motor has a small
fluctuation around an average value. As the duty cycle grows larger, the average
current grows larger and the motor speed increases.

3 PID Controller

The proportional integral derivative or the PID is one of the most commonly used
controllers nowadays. The control signal is generated from three terms: a term that
is proportional to the error, a term that is integral to the error, and a term that is
derivative of the error [5–8]. The sum of these three terms will serve as control
signal for the PWM block. The PID controller can be modeled by the block diagram
shown in Fig. 4.

The components of a PID system are:

• Proportional term KP depends on the present error. This term defines the speed
of change in the output.

• Integral term Ki is the accumulation of past errors. It aids in reachingwith a faster
response the steady state and eliminates the residual steady-state error that results
from the pure use of a proportional controller.

• Derivative term Kd is the prediction of future errors. This term of control is used
to decrease the magnitude of the overshoot.
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Fig. 4 PID block diagram

Analyzing the block diagram, we obtain the following equation:

u(t) = Kpe(t)+Ki

∫ t

0
e(t)dt +Kd

de(t)

dt
(2)

where Ki = Kp

Ti
and Kd = KpTd; therefore, we can write the transfer function of a

continuous-time PID as

U(s)

E(s)
= Kp + Kp

Tis
+KpTds (3)

The discrete form of PID controller can also be derived by finding the z-transform
of equation (3).

Therefore, we obtain:

U(z)

E(z)
= Kp

[
1+ T

Ti
(
1− z−1

) + Td

(
1− z−1

)
T

]
(4)

Then

u(kT ) = u (KT − T )+Kp [e(kT )− e (kT − T )]

+ KpTd

T
[e(kT )− 2e (kT − T )− e (kT − 2T )]

(5)

The PID controller is accurately tuned using the Ziegler–Nichols approach
[9–13]. The closed-loop tuning algorithm based on plant closed-loop tests is as
follows:

1. Disable any derivative and integral action in the controller and leave only the
proportional action.

2. Carry out a set-point step test and observe the system response.
3. Repeat the set-point test with increased (or decreased) controller gain until a

stable oscillation is achieved; this gain is called the ultimate gain Ku.
4. Read the period of the steady oscillation and let this be Tu.
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Table 1 Effect of PID parameters on the tracking error

Parameter Rise time Overshoot Settling time Steady-state error Stability

Kp Decrease Increase Small change Decrease Degrade
Ki Decrease Increase Increase Eliminate Degrade
Kd Minor change Decrease Decrease No effect in theory Improve if small

Fig. 5 Ziegler–Nichols closed loop

5. Calculate the controller parameters according to the following formulas:
KP = 0.45Ku, Ti = Tu/1.2 in case of PI controller, and KP = 0.6Ku, Ti = Tu/2,
Td = Tu/8 in the case of the PID controller.

Table 1 summarizes the effect of changing the parameters of the PID controller
(Fig. 5).

The Ziegler–Nichols rules are then applied to obtain initial controller design
followed by design iteration and refinement. By using the Ziegler–Nichols formulas
we have:

KP = 0.6,KU = 53.13,KI = 1.2,KU/TU = 1280.2, andKD = 0.6,KU TU/8= 55.
Those parameters yielded a settling time of about 2.4 s and a percentage overshoot
of approximately 60%.

The Ziegler method based on assumed forms of the process presents decisive
advantages for it allows achieving a speed control of the motor without prior
knowledge of its parameters. This method shall procure the system with the required
constants a0, a1, a2, b1, b2 that will be used as preset values for the compensator.
The physical meaning of these constants and their relationship to the PID parameters
are explained in the following section.
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4 Direct Canonical Forms

The strategy of a numerical control structure begins with a precise model of the
process to be controlled. Then a control algorithm is developed, which will ensure
the required system response. The loop is closed by using a digital computer
as the controller. The computer implements the control procedure in order to
obtain the desired response. Different approaches do have dissimilar computational
efficiencies, dissimilar sensitivities to parameter errors, and dissimilar programming
techniques are needed in each case. As such, various approaches are available for
implementation. To name a few, cascaded structures, parallel structures, second-
order structures, and direct structures could be used for building the controller.
In fact, two different types of direct structures can be considered: the direct
noncanonical structure and the direct canonical structure [14–17].

The direct canonical structure is selected since it presents significant advantages
over other structures such as memory size and efficiency as it requires a smaller
number of memory locations and the number of delay elements is fixed.

In direct structure, the coefficients aj and bj appear as multipliers. By considering
that b0=1, for the discrete compensator, therefore, we can express

D(z) = U(z)

E(z)
=

∑n
j=0 aj z

−j

1+ ∑n
j=0 bj z

−j
(6)

Let us introduce now a new variable R(z) such that

U(z)

R(z)

R(z)

E(z)
=

∑n
j=0 aj z

−j

∑n
j=0 bj z

−j
(7)

or

U(z)

R(z)
=

n∑
j=0

aj z
−j and

E(z)

R(z)
=

n∑
j=0

bj z
−j (8)

Assume that the transfer function of a digital controller is

R(z) = E(z)−
n∑

j=1

bj z
−jR(z) (9)

And U(z) =
n∑

j=0

aj z
−jR(z) (10)
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The equations above can be written in time domain

rk = ek −
n∑

j=1

bjrk−j (11)

uk =
n∑

j=0

aj rk−j (12)

Those equations define the direct form, and the block diagram of implementation
is shown in Fig. 6. The controller is made up of delays, adders, and multipliers.

5 Controller Implementation

The z-transform of the PID controller was derived before, and is reproduced here
for convenience:

D(z) = Kp + KpT

Ti
(
1− z−1

) + KpTd
(
1− z−1

)
T

(13)

An alternative implementation of the PID would be to find a second-order
transfer function for D(z) and then use the direct structure to implement it. The
equation can be written as

D(z) =
Kp

(
1− z−1

) + KpT

Ti
+

(
KpTd
T

) (
1− z−1

)2
1− z−1 (14)
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Therefore,

D(z) =
Kp + KpT

Ti
+ KpTd

T
−

(
Kp + 2KpTd

T

)
z−1 + z−2

(
KpTd/T

)
1− z−1 , (15)

which is of the form a0+a1z
−1+a2z

−2

1+b1z
−1+b2z

−2 ,where

a0=Kp

(
1+ T

Ti
+ Td

T

)
, a1= −Kp

(
1+ 2Td

T

)
, a2= KpTd

T
, b1 = − 1, b2= 0.

(16)

Figure 7 shows the PID implementation as direct canonical structure.
Considering again the velocity form of PID, and replacing the kT simply by

subscript k, we can write

uk = uk−1 +
[
Kp + KpT

Ti
+ KpTd

T

]
ek −

[
Kp + 2KpTd

T

]
ek−1 + KPTd

T
ek−2

(17)

Alternatively, we can write (17) in a simpler form as

uk = uk−1 + aek + bek−1 + cek−2 (18)
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where

a = Kp + KpT

Ti
+ KpTd

T
, b = −

[
Kp + 2KpTd

T

]
, c = KpTd

T
(19)

By taking the z-transform we obtain

D(z) = U(z)

E(z)
= a + bz−1 + cz−2

1− z−1 (20)

Notice that if only proportional plus integral (PI) action is required, the derivative
constant Td can be set to zero and the PI equation becomes D(z) = U(z)

E(z)
=

a1+bz−1

1−z−1 with a = Kp + KpT

Ti
and b = Kp.

The second-order module is shown in Fig. 8. This module serves as our final
model of the discrete controller. It ensures an enhanced response in presence of
disturbances.

Where

Q(z) = a0 + a1z
−1 + a2z

−2

1+ b1z−1 + b2z−2
(21)

The difference equations describing such a module are

rk = ek − b1rk−1 − b2rk−2 (22)

uk = a0rk + a1rk−1 + a2rk−2 (23)
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If we let

M1 = −b1rk−1 − b2rk−2andM2 = a1rk−1 + a2rk−2 (24)

Then these equations for the second-order module become

rk = ek +M1 (25)

uk = a0rk +M2 (26)

6 Circuit Design and Schematics

In this section, we shall discuss the electric circuit implementation of the system
using a bottom-up approach. The function of each component will be analyzed,
then the overall operation is summarized. Figure 9 depicts the complete schematics
of the drive.

In order to minimize the number of wires needed, we implemented a voltage
regulator module, shown in Fig. 10, which controls various components. Along
with the 30 V power supply, a 5 V DC source is needed in order to supply the
PIC16F877A as well as PIC12F675. Moreover, a 12 V voltage source is required to
supply the power MOSFET transistor.

The PIC16F877A has 40 pins and five ports. It uses reduced instruction set RISC
(35-instruction set); it can support four different types of oscillators—the crystal

Fig. 9 Circuit of DC motor control using PID
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Fig. 10 Voltage regulator module

Fig. 11 Crystal oscillator

oscillator 770(XT) was adopted. Figure 11 shows the choice of the capacitors of
13 pF each in order to generate a frequency of 4 MHz, and since most instructions
require four cycles, the operating frequency of the PIC is 1 MHz. Moreover, it has
three different timers and can accommodate up to 15 different sources of interrupts.
Only three interrupts are required: INTERRUPT_TIMER0, INTERRUPT_RC, and
INTERRUPT_RB0. These three interrupt service routines are assigned to Timer0,
USART (universal asynchronous transmitter receiver), and pin RB0, respectively.

INTERRUPT_TIMER0 subroutine is set each 100 ms, the flag TO1F will be set
and thus, the interrupt service routine is called. This routine will read the actual
speed of the motor and will place it in a variable called ACTUAL_SPEED.

To measure the speed of the motor, a rotary encoder was used; each round per
second (or rps) will generate 400 pulses. The rotary encoder is connected to the
input of the PIC12F675 (GP2) as per Fig. 12. By doing so, all pulses are saved
and no data is lost. The microcontroller divides the number of pulses obtained from
the rotary encoder by 40, that is, the number of pulses is now 400/40. Thus, each
one round from the motor’s shaft is now equivalent to 10 pulses. This relationship
summarizes the measuring procedure of the speed as a linear relationship for the
calculation of the equivalent number of pulses for x number of physical pulses.

To make sure that we tackled the issue of speed measuring (all pulses are
counted) let us consider a high-speed scenario. The rated speed of the motor is
3300 rpm, which will generate (3300 × 400)/60 or 22,000 pulses/s. This number
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Fig. 12 PIC12F675 module

will be divided by 40 and thus, if the motor is running at its maximum speed
(3300 rpm or 55 rps) the total number of pulses generated will be 550 pulses
per second. However, the PIC16F877A is an 8-bit microcontroller and hence,
could not accommodate the entire range of numbers issued by the pulse counter.
Consequently, an interrupt timer0 is set at each 100 ms and hence, instead of reading
550 pulses per second at rated speed, only 55 pulses per 100 ms will be read.
Because this is the maximum number of pulses that can be generated; therefore,
if the motor is running at any other given speed, the number of pulses will all be
saved without any loss since an 8-bit register can save up to 28 − 1 or 255.

Figure 13 shows a Totem Pole driver circuit configuration chosen over the H-
Bridge driver due to its high abilities for fast switching as well as for having a low
cost and being easily implementable.

Figure 14 is a standard rectifier circuit that is simulated using National Instru-
ments Multisim.

Figure 15 shows the 3D models of the PCB circuit generated using Proteus.
Figure 16 shows the actual image of the PCB with the components installed in it.
All of the above-detailed circuits were tested throughout simulation to check

the readiness of the framework and its compliance to the system’s specification
requirements before any experiment is carried out. This step is crucial in order to
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Fig. 13 The drive motor module

Fig. 14 Power supply module

Fig. 15 PCB layout
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Fig. 16 PCB with components installed (top view)

prevent any possible damage to the motor and/or the electric components. The next
step is to develop the pilot software to be used for the control scheme. A resourceful
GUI is presented in the following section that offers a versatile and effective tool, as
will be shown.

7 Software Design

In this section, the main pilot software is presented. It is developed in Visual Basic
6, which is an integrated development environment (IDE) that was developed by
Microsoft. A Graphical User Interface was developed to entail the user a friendly
yet versatile and effective tool for parameter calibration and control. The GUI is
depicted in Fig. 17. It is divided into several parts: the controller port interface
with the main computer, the compensator parameters, and the display properties,
as showcased in Figs. 18 and 19.

To obtain the most optimum response in terms of overshoot as well as settling
time, a “Preset” button is available to set the values of a0, a1, a2, b1, b2 to 1.3, 0.5,
0.2, 0.1, and 0.6, respectively. In fact, these values were obtained after extensive
PID tuning.

Figure 20 below showcased a closed look at the compensator structure.
Figure 21 depicts where the online pertinent parameters are calculated and

displayed. It also exhibits the capacity of saving results and data in excel files with
all relevant parameters for offline analysis.
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Fig. 17 Comprehensive GUI interface
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Fig. 18 Display properties and compensator parameters
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A “Start” button is 

available to initiate the 

system.

The calculated results will 

be shown

Fig. 19 Compensator options and tuning

Fig. 20 Discrete compensator

8 Experimental Results

Several experimental tests were carried out that demonstrated the effectiveness of
the overall framework in terms of the dynamic and steady-state behavior of the
system. Typical situations are presented below. The first one involves a speed control
with no load disturbances. Figure 22 shows the motor’s response to a step in speed
set at 30 rps. The behavior is quite satisfactory and overshoot is noted as previewed
by the compensator’s parameters.

The second typical situation involves the application of a sudden load or
disturbance at different instants. Figure 23 clearly shows that the compensator was
able to handle the speed control by keeping track of the desired speed after slight
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Fig. 21 Online computation of related parameters; saving results

Fig. 22 Speed control (no load applied)
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Fig. 23 Speed control with load disturbance

Fig. 24 Speed control (heavy load)

deviation and oscillations. In fact, new PWM values were generated in order to
adjust the speed; those values are shown online via the GUI and then saved with the
related speed curves.

Figure 24 shows a heavier load was applied to the shafts of the motor. The motor
would still run at the desired speed. However, since the applied load was heavy (the
shafts were almost about to stop as per the above graph), greater oscillations are
observed but the motor did not halt and the average speed was maintained.
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9 Conclusion

In this chapter, we developed a comprehensive design of a hardware and software
framework for PWM/Discrete PID-based speed control of a Permanent-Magnet
DC Motor without prior knowledge of the motor’s parameters. Ziegler–Nichols
approach associated with Direct Canonical Forms theory allowed tuning a discrete
PID compensator to achieve speed control that is robust to load torque disturbances
and able to meet requirements in terms of steady-state error, time response, and
percent overshoot. Simulation and experimental results showcased the effectiveness
of the design that is low cost and somehow simple to implement.
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