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Abstract The development of an automatic geometry optimization tool for efficient
aerodynamic shape design, supported byComputational FluidDynamic (CFD)meth-
ods is nowadays an attractive research field, as can be observed from the increasing
number of scientific publications during the last years. Surrogate-based global opti-
mization methods have demonstrated a huge potential to reduce the actual number of
CFD runs, and therefore drastically speed-up the design process. Nevertheless, sur-
rogates need initial high fidelity data sets to be built and to reach a proper accuracy.
This work presents a study on the influence of the initial training dataset size in the
proposed approach behavior. This approach is based on the use of Support Vector
Machines (SVMs) as the surrogate model for estimating the objective function, in
combination with an Evolutionary Algorithm (EA) and an adaptive sampling tech-
nique focused on optimization called the Intelligent Estimation Search with Sequen-
tial Learning (IES-SL). Several number of training points have been fixed to check
the convergence, the accuracy and the objective function reached by the method.

Introduction

Aerodynamic shape optimization by means of automatic tools is an industrial
relevant field that has to breast several challenges. Some of these challenges are:
how to handle deformations in certain regions (such as intersections between wing
and fuselage or pylon/nacelle), how to reduce the number of CFD runs required
for performing aerodynamic design optimization or how to tackle integrated
components. Furthermore, surrogate-based optimization methods require several
barriers to be broken when applied to complex configurations, such as the called
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“curse of dimensionality”, the ability of surrogates to handle a high number of
design parameters, efficient constraints handling (Parr et al. 2010), and the proper
exploration and exploitation of the whole design space.

In the case of surrogate-based optimization (SBO) methods, the surrogate predic-
tion is also highly influenced by training set size. A huge training set with a proper
design space distribution ensures reaching a global optimum, but requires a vast com-
putational cost to be built. On the other hand, a small training set is fast to be built
but the accuracy is not enough for optimization purposes. A solution to this issue
must be found for the suitable implementation of this method in the aeronautical
industry.

In this work, Support VectorMachines (SVM) combinedwith Evolutionary Algo-
rithms (EAs) and an adaptive sampling method, called Intelligent Estimation Search
with Sequential Learning (IES-SL), is proposed. The approach is applied to the mul-
tipoint optimization of one typical test case, i.e., the transonic RAE 2822 airfoil. The
aim of this work is to provide an analysis of the training set size influence in the
behavior of the IES-SL approach proposed.

This paper is structured as follows. In Section “Literature Review”, a review
of the recent research efforts in SBO applied to aircraft design is presented.
Section “Surrogate-Based Optimization Strategy” presents the applied SBO strategy
and Section “Numerical Results” collects the study results. Finally, the conclusions
extracted from the results are summarized in Section “Conclusions”.

Literature Review

Recent Research Efforts in SBO Applied to Aircraft Design

Some recent efforts in SBO for aerodynamic shape design includes, e.g., a physics-
based surrogates applied to the drag minimization of NACA 0012 and RAE 2822
airfoils in transonic flow conditions (Leifsson et al. 2014). In this work, the geome-
tries were parameterized using PARSEC involving 5–10 design parameters. SBO
strategies were applied for the drag minimization of the NLF0416 airfoil using
10 design variables (Li et al. 2001). Variable-fidelity computational fluid dynamics
(CFD) combined with shape optimization strategy was applied to the optimization
of a transonic airfoil parameterized by the NACA 4-digit definition with three design
variables (Koziel and Leifsson 2013).
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A surrogate based on proper orthogonal decomposition (POD) applied to the
aerodynamic shape optimization of an airfoil is presented by Iuliano (Iuliano and
Quagliarella 2013). The geometry was parameterized with 16 design variables
defined with the CST method. An approach based on a combination of a genetic
algorithm and an artificial neural network is presented by Jahangirian and Shahrokhi
(2011). This approach was applied to the shape optimization of an airfoil, which was
parameterized by a modified PARSEC involving 10 design variables.

Most of the SBO applications in aerodynamic shape optimization involve two-
dimensional configurations, where the number of design variables is usually limited.
Nevertheless, some applications to three-dimensional configurations can be found
in literature. An investigation about SBO applied to a wing parameterized with 11
design variables was undertaken by Keane (2003). A multi-fidelity surrogate model
applied to a three-dimensional wing optimization was addressed by Likeng and
Zhenghong (2012). In this case, the design parameters were a combination of 12
variables using the CST method for three wing sections (root, hink and wing tip).
Lukaczyk et al. (2014), proposed amethod based on an active subspace for effectively
searching the whole design space. The method is applied to the optimization of the
ONERAM6 transonicwing, whichwas parameterizedwith 50 FFDdesign variables.
The aim was to discover a low-dimensional linear subspace of the input space that
explained the majority of the variability in the drag and lift coefficients. An SBO
application to the aerodynamic shape design of awing parameterizedwith volumetric
non-uniform rational B-splines (NURBS) was presented by current authors (Andrés-
Pérez and Iuliano 2015). Also, in (González-Juárez et al. 2015; Andrés-Pérez et al.
2016) current authors present an application study about the influence of number and
location of the design parameters in the behaviour of the IES-SL method applied to
the aerodynamic shape optimization. The selected geometries, RAE 2822 airfoil and
DPW-w1 wing, were parameterized with volumetric NURBS.

This work is within the aerodynamic shape design and optimization research line
of INTA’s Fluid Dynamics Branch.

Surrogate-Based Optimization Strategy

This section introduces each of the components of the SBO approach applied in
this study: geometry parameterization through volumetric NURBS, Evolutionary
Algorithms (EAs), SupportVectorMachines forRegression (SVR) and the Intelligent
Estimation Search with Sequential Learning (IES-SL) as the strategy for adaptive
sampling focused on optimization.
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Geometry Parameterization

Parameterization is a crucial step in an aerodynamic design optimization problem.
NURBShave demonstrated to be able to accurately represent a large family of geome-
tries. In aerodynamic design, NURBS provide smooth surfaces while maintaining
some deformation locality (Mousavi et al. 2007). In addition, the optimized surface
at the end of the optimization process has the correct format to feed directly the
CAD and grid generation applications. However, the use of surface NURBS can be
impractical, because very frequently requires the additional effort to develop a surface
representation that fits the original geometry, with an appropriated arrange of control
points for the optimization. An alternative approach is to envelop the geometry in a
volumetric NURBS (Martin et al. 2013), which maintain the deformation properties
of a conventional 2-dimensional surface, but with the advantage that control points
can be set up arbitrarily.

From a mathematical point of view, NURBS surfaces are defined as the tensor
product of threeNURBS curves, defining a volumetric region, where the deformation
is governed by the movement of control points:
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where C are the control points, ξ , η, and μ are the parametric coordinates, and U, V,
and W are the basis functions which are calculated using the following expression:
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{
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The basis coefficients are calculated from the knot vectors Ū , V̄ and W̄ , and,which
are a sequence of real numbers. Basis functions are equal to zero everywhere except
for an interval delimited by the order of the NURBS, defining the area of influence of
each control point (Piegl and Tiller 1997). The most common implementation of the
control box is to employ uniform basis, which can be obtained with a knot sequence
as:
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First order is equivalent to a linear interpolation, while second and third orders
provide derivative and curvature continuity, respectively.
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Fig. 1 RAE 2822 control
box parameterization

In this work, the airfoil is parameterized with third order volumetric NURBS,
also called control box, and the design variables will be the vertical displacements
(z axis) of the 14 control points. Figure 1 depicts the selected parameterization.

To clarify, there are additional control points at the trailing and leading edge that
are kept fixed, in order to maintain the angle of attack; so these control points are not
considered as design variables.

Evolutionary Algorithm

Evolutionary algorithms (EAs) are bio-inspired methods that clone the behaviour of
natural evolution to solve complex optimization problems. The basic elements of an
EA are the solution coding, the selection operator and the crossover and mutation
operator.

In the design application to be considered in this work, each coding vector is com-
posed by a given parameterization of a geometry, i.e., z � [cp1, cp2, cp3, . . . , cpN ],
where cp is the vertical coordinates of each control point.

More details about the EA applied in this paper can be found in a previous work
from the authors (Andrés et al. 2012).
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Objective Function Approximation Using Support Vector
Machines (SVMs)

Support vector machines acts as a meta-model to predict the objective function to be
optimized, which in this case is given by the aerodynamic performance of de airfoil.

Support Vector machines for Regression are a powerful tool used on the machine
learning field, and a modelling tool for a large amount of regression problems on
engineering. The SVR can be solved as a convex optimization problem using kernel
theory to face nonlinear problems. The SVR consider not only the prediction error
but also the generalization of the model. To obtain the best performance, a search of
themost suitable combination of the kernel parameters must be carried on, usually by
using cross validation techniques over the training set. To reduce the computational
time of this process, different methods have been proposed in the literature to reduce
the search space related to these parameters. In this case, it has been applied the one
developed by Ortiz-García et al. (2009). Which has proven to require pretty short
search times.

More details about the EA applied in this paper can be found in a previous work
from the authors (Andrés et al. 2012)

Flowchart of the Proposed Approach

In this article, The Intelligent Estimation Search with Sequential Learning (IES-SL)
method is applied. This method allows performing an efficient adaptive sampling
guiding the optimization algorithm towards the most promising regions of the design
space. The flowchart of the proposed approach is depicted in Fig. 2. First, an initial set
of randomly generated (including the baseline) geometries are selected and evaluated
with CFD tool (DLR Tau code in this work). With this set, a first surrogate is built
and linked within an evolutionary algorithm. The latter will search for the minimum
of the surrogate in each of the optimization iterations, and the returned optima will
be again evaluated using the high-fidelity CFD solver, and then incorporated to the
surrogate model, which is rebuilt and more precise on each iteration. The process
will end when a certain number of CFDs budget is reached.

The aim of this work is to study the influence of the initial training size in the
precision of the surrogate and the convergence of the proposed approach.
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Fig. 2 Flowchart of the proposed approach

Table 1 Baseline airfoil features

Chord (m) 0.61

Maximum thickness-to-chord ratio 0.0121 at x/c�0.38

Maximum camber-to-chord ratio 0.0126 at x/c�0.76

Leading edge radius (m) 0.00827

Airfoil area (m2) 0.0776

Trailing edge angle 9°

Numerical Results

Baseline Geometry

The selected geometry for this study was the well-known RAE2822 airfoil features
described in Table 1. The airfoil is a rear-loaded, sub-critical geometry, designed
to exhibit a roof-top type pressure distribution at design conditions (Mach�0.66,
Cl�0.56 ESDU 1973). It has been tested in the RAE wind tunnel in 11 different
flow conditions in the range of Mach numbers from 0.676 to 0.750 and at several
Reynolds numbers (Cook et al. 1979).

A 56 k points unstructured grid was generated for this study.

Test Case Definition

The proposed approach is applied to 5 optimizations cases with 4, 8, 16, 32 and 64
initial random training points respectively. The multipoint optimization problem of
the RAE 2822 is selected. The flow conditions for both design points 1 & 2 are:
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DP1 DP2

Mach 0.734 0.754

Re 6.5 M 6.2 M

Turb. Model SA κω TNT

Table 2 OF evolution respect the initial training size

# Initial training random points Objective function (OF)

4 0.6014

8 0.6059

16 0.6021

32 0.6016

64 0.5993

The objective function selected was Min
(
CD
CL

)
with some considerations. These

are:

• Aerodynamics constraints and penalties:

1. Prescribed minimum lift coefficient: C0
l

∣
∣
k : Cl |k ≥ C0

l

∣
∣
k .

2. Prescribed minimum pitching coefficient: C0
m

∣
∣
k
: Cm |k ≥ C0

m

∣
∣
k
.

3. Drag penalty: if constraint on minimum pitching moment is not satisfied, the
penalty will be 1 drag count per 0.01 in �Cm .

• Geometric constraints

1. Limit: ±20% of the initial control points’ values.
2. Prescribed maximum thickness ratio (t/c)max : max(t/c) � (t/c)max.
3. Prescribed minimum thickness ratio (t/c)80min at x � 0.8c: (t/c)80 ≥ (t/c)80min.

4. Prescribed minimum leading edge nose radius Rle
min : Rle ≥ Rle

min.

Sensitivity Study Results

In this section, the results of the present study are presented.Three issues are analysed.
First, the influence of the initial training size in the convergence of the method. Next,
the influence in the method precision of the initial data set. Finally, the value of the
objective function reached in each case.

Regarding the first analysis, Fig. 3 shows the convergence of the IES-SL for
each test case. As can be seen, the five test cases have a huge oscillation during the
“training period”. This is the expected behaviour since the points in this data set
are generated randomly. A lower size of initial training means the optimizer requires
more iterations to reach the “optimum region”. The reason is that the initial surrogate
is more intelligent with a huge initial data set, but it requires more time to be built.
At last, the five test cases reach the same optimum region (see Table 2).
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Fig. 3 SBGO convergence versus initial data set size
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Fig. 3 (continued)

Figure 4 illustrates the accuracy of the method with respect the initial training
size. As expected, an initial surrogate with a vast number of points has an initial
accuracy higher than one with a small set of points. This is in the same line that the
convergence. Nevertheless, it requires more time to start the optimum seek.

Last, but not least, Table 2 summarizes the value of the OF reached in each case.
It can be seen that there is no influence of the initial training size in the final value
of the OF (with a reasonable budget of iterations). This is the main advantage of the
IES-SL proposed.
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Fig. 4 Approach accuracy for each initial training size
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Fig. 4 (continued)

Conclusions

The aim of this work was to provide an analysis about how the initial training size of
the surrogate affects the behaviour of the proposed IES-LS method. The following
conclusions have been extracted from the solutions:

– The optimum region reached is the same independently the training set size. A
model with higher initial data set size requires less iterations to reach de optimum
region, but it requires more computational time to be built, which is not feasible
from the industry point of view.

– In the same trend, the initial accuracy of the surrogate increases with the number
of training samples, but the drawback is the same which is exposed in the previous
point.

– As summarized in Table 2, the training set size has no influence in the OF reached
by the proposed IES-SL approach.
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In summary, the main advantage of the proposed SBO method is that it can reach
the global optimum with a small number of initial samples. This is feasible due to
sequential learning allows the surrogate to become accurate each iteration. So, there’s
an important reduction of the initial computational cost that requires a standard offline
SBO.
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