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Abstract The paper details a comparative analysis of different models able to
provide a fast responsewithin a surrogate-based shape optimization process. Kriging,
Radial Basis Function Network (RBFN) and Proper Orthogonal Decomposition in
combination with RBFNs (POD+RBFN) are employed as fitness function evaluators
within the framework of evolutionary algorithms (EAs). The surrogate-assisted opti-
mization consists of initializing the surrogate with space-filling samples, improving
the accuracy by adding a series of “smart” samples through specifically designed
in-fill criteria and finally optimizing on the surrogate. The test case is represented
by the large scale shape optimization of a transonic wing in viscous flow and in
multi-design point conditions. Optimization results obtained with the surrogates by
fixing the total computational budget are presented: this procedure allows to make a
fair comparison between the models and their performance during the optimization
process.

Introduction

In real–world engineering design applications, high-fidelity simulations and reliable
answers in short time are essential and fundamental requirements. Of course, they are
often conflicting, especially when fluid dynamics is among the physical disciplines
to be solved: indeed, computational fluid dynamics (CFD) simulations of complex
configurations are still time–consuming and, considering also the high number of
CFD simulations required by global optimization approaches, this strongly hampers
the usage of such methods in engineering design.

Surrogate-based optimization (SBO) may provide an interesting answer to
this issue as it relies on a fast response model to be used during optimization while
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invoking the “truth” model (i.e., the CFD simulation) to confirm the choice made by
the surrogate. Several researchers have focused their attention on such topic, both
from a theoretical (Forrester and Keane 2009; Braconnier et al. 2011; Viana et al.
2012) and application (Robinson et al. 2006; Booker et al. 1999; Mack et al. 2007)
point of view. As a consequence, a varied amount of methods exist which differ
substantially for the choice of the surrogate model (e.g., type, single or multiple), the
approach to build the surrogate (e.g., optimize the generalization error or likelihood
functions), the strategy for updating and improving the surrogate (e.g., evaluate sur-
rogate minimizers, use in-fill criteria, random choice) and the optimization method
(e.g., type, global or local or both).

The present paper proposes different choices of the surrogate model to be used
within a SBO cycle with different updating strategies. The problem at hand is the
multi-point shape optimization of a wing in viscous transonic conditions: such a
problem stems as a large-scale and real-world optimization as it involves several
design parameters and black-box CFD-based functions. As a consequence, in prin-
ciple it cannot be handled by whatever methodology and the main aim is to provide
arguments in support of the successful usage of accurate “optimal” surrogates and
global optimization techniques.

Surrogate Models

This section is devoted to introduce themathematical basis of themeta-models which
will be used for surrogate-based optimization. Kriging and Radial Basis Function
Network models work with scalar information (e.g., the objective function values)
and are able to predict the response function at each location of the design space.
On the other hand, the Proper Orthogonal Decomposition is coupled to Radial Basis
Function Network models to deal with vector quantities (e.g., the flow field) and,
thus, to inject more physics information within the surrogate training process.

Kriging

The Kriging model is built on the assumption that the training data obey a Gaussian
process with an assumed form for themean function and the covariance between data
points. A Kriging surrogate models the response of interest f (x) as a realization of
a regression model h and a stochastic process z (Martin and Simpson 2005):

f (x) = h(β, x) + z(x) (1)

h(β, x) = hβ (2)

E[z(x1), z(x2)] = σ 2
k R(θ, x1, x2) (3)
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where β are the regression coefficients and h is the regression vector. The stochastic
process z is assumed to have zero mean, process variance σ 2

k and covariance model
R(θ, x1, x2) between z(x1) and z(x2)with parameters vector θ . The covariancemodel
between function values is assumed to be only a function of the distance between
points. Given the training sites {x j } j=1,...,M , the covariance matrix is given by Ki j =
R(θ, xi , x j ). Multi-dimensional covariance is built up using a tensor product of one-
dimensional covariance functions:

R(θ, xi , x j ) =
D∏

p

Kr

(∣∣∣∣
xip − x jp

θp

∣∣∣∣

)

where D is the dimension of the problem, θp is the length scale in the p-th dimension,
xip is the p-th component of the vector xi and Kr is the one-dimensional Matern
function. The latter function is computed as:

Kr(d) = exp
(
−√

2νd
) Γ (t + 1)

Γ (2t + 1)

t∑

i=0

(t + i)!
i !(t − i)!

(√
8νd

)t−i

with Γ the Gamma function, ν = t + 1/2 and three possible values of the parameter
t :

Kr(d) =

⎧
⎪⎪⎨

⎪⎪⎩

exp (−d) for t = 0(
1 + √

3d
)
exp (−√

3d) for t = 1(
1 + √

5d + 5
3d

2
)
exp (−√

5d) for t = 2

Noise terms can be added along the covariancematrix diagonal in order to improve
the matrix conditioning and to obtain a regressive behavior when dealing with noisy
functions. The covariancematrix becomes Ki j = R(θ, xi , x j ) + λδi j , where theKro-
necker convention has been used and λ is the noise ratio. The response function can
be estimated at a generic location x as

f̂ (x) = Hβ̂ + kTK−1(f − Hβ̂) (4)

where H is the matrix of linear equations constructed using the regression function
and the training sites, β̂ is the generalized least square estimate of β,K is the covari-
ance matrix, k is the covariance vector between the generic design site x and the
training sites, and f = [ f1, f2, . . . , fM ]T is the vector of the M training data (which
corresponds to the given training dataset). One of the main advantages of the Kriging
model is that it provides also an estimate of the prediction variance:

ŝ2(x) = σ̂ 2
k

[
1 − kTK−1k + uT

(
HTK−1H

)−1
u
]

(5)
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where σ̂ 2
k is the estimated process variance, u = HTK−1k − h and h = [h1, h2, . . . ,

hM ]T . In the most general case, both the response prediction f̂ and the prediction
variance ŝ2 are function of the so called hyperparameters, i.e. the length scales θp,
the process variance σ̂ 2

k and the noise magnitude λ. Two methods are here used
to find the optimal values of the hyperparameters, hereinafter referred to as “Full”
and “Partial”. The optimization of the hyperparameters is performed by calling the
NLopt library (available online at http://ab-initio.mit.edu/nlopt) and implementing
a sequential global–local approach: first, the search space is globally explored by
means of the evolutionary strategy ESCH (da Silva Santos et al. 2010); then, starting
from the best solution of the ESCH algorithm, a local refinement is carried out with
a reviewed version of the Nelder-Mead simplex algorithm (Richardson and Kuester
1973).

Full Optimization

This formulation determines the regression parameters based on an optimality con-
dition and fits all other covariance parameters (length scales, process variance and
noise level) throughmaximization of the likelihood function. The likelihood formula
for a Gaussian process with a regression mean function is given by:

log p( f |x; θp) = −1

2
fTK−1(f − Hβ̂) − 1

2
log |K| − 1

2
log |A| − M − S

2
log 2π

where M is the number of training points, S is the number of terms in the regression
and the regression matrix A is defined as:

A = HTK−1H

The optimal regression parameters are given by:

β̂ = A−1HTK−1f

Partial Optimization

This formulation determines the process variance and regression parameters based on
the optimality condition and only performs optimization over the covariance length
scales θp. The likelihood formula reduces to:

log p( f |x; θp) = −M

2
log σ̂ 2

k − 1

2
log |K̂| − M

2
− M

2
log 2π

where the optimal process variance has been estimated as:

http://ab-initio.mit.edu/nlopt
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σ̂ 2
k = (f − Hβ̂)T K̂−1(f − Hβ̂)

M

and
K = σ̂ 2

k K̂

This final formula is a function of the length scales, θp, and the noise level ratio λ.
The optimization is performed only over the length scales and the noise level ratio
is fixed throughout the optimization. A typical choice is to set the noise level λ to a
small fraction of the process variance σ̂k .

Radial Basis Function Network

A Radial Basis Function is a real valued function whose value depends on the
Euclidean distance from a point called centre. A RBF network uses a linear combi-
nation of radial functions. A RBF model can be expressed as

f (x, θ1, . . . , θM , λ) =
M∑

i=1

ki (λ)r(|x − xi |, θi ) (6)

where the approximating function is represented by a sum of M RBFs r , each asso-
ciated with a different center xi , weighted by real valued weights ki (regularized
through parameter λ) and characterized by width parameters θi . Hence, an RBF net-
work can be defined as a weighted sum of translations of radially symmetric basis
function. Typical RBFs kernel r used here are:

r(d, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp (− d2

θ2 ) Gaussian√
1 + d2

θ2 Multi–quadric
1√

1+ d2

θ2

Inverse multi–quadric

( d
θ
)2 ln d

θ
Thin plate spline

1 − 30( d
θ
)2 − 10( d

θ
)3+

+45( d
θ
)4 − 6( d

θ
)5 − 60( d

θ
)3 log( d

θ
) Wendland C2 thin plate spline

Once decided the RBF kernel and supposing that the “optimal” width parameters
have been already computed in some way, the RBF network is defined only by the
weights ki . They are made function of a regularization parameter λ (also known as
ridge regression parameters in the RBF literature) to avoid overfitting and improve
the interpolation matrix conditioning. Indeed, the weights can be found by imposing
the interpolation condition (Fasshauer and Zhang 2007) on the training set which in
turn results in solving the linear system:
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Rk = f (7)

where

R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(0, θ1) + λ . . . r(|x1 − xM |, θM)

r(|x2 − x1|, θ1) . . . r(|x2 − xM |, θM)
...

...
...

r(|xM − x1|, θ1) . . . r(0, θM) + λ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

k = [k1, k2, . . . , kM ]T are the RBF weights and f = [ f1, f2, . . . , fM ]T are the func-
tion values at the training points.

The width parameters have a significant influence both on the accuracy of the
RBF model and on the conditioning of the solution matrix. In particular, it has been
found (Gutmann 2001) that interpolation errors become high for very small and very
large values of θ , while the condition number of the coefficient matrix increases with
increasing values of θ . Therefore, they have to be “optimal” in the sense that a tuning
of the width parameters is needed to find the right trade–off between interpolation
errors and solution stability (Fasshauer and Zhang 2007). Generally speaking, two
cases can be considered:

• identical scalar widths θi = θ are used for all RBF kernels;
• different scalar width θi is used for each RBF kernel.

Here, the first option is chosen, therefore in the following a unique scalar width θ will
be considered for each RBF center. An accurate RBF model is obtained by letting
the algorithm autonomously choose the kernel function type and optimizing the
width parameters. The algorithm is based on the Leave–One–Out cross–validation
strategy to compute an error norm to be minimized; the procedure is similar to the
one described in (Tenne and Armfield 2008) and is here outlined:

1. all the aforementioned kernel functions are used for training on the current
training set;

2. the Leave–One–Out (LOO) error norm is considered as merit function to deter-
mine the best combination of RBF kernel andwidth parameter. The optimal RBF
network is thus selected by choosing the width parameter which give the lowest
LOO error norm, defined as:

εLOO(x1, x2, . . . , xM , θ, λ) =
√√√√ 1

M

M∑

j=1

[ f j − f̂− j (x j , θ, λ)]2

where f j is the value of the function at the j th training site x j and f̂− j is the RBF
prediction at x j when the model is trained without x j and f j . The computation
of the M terms f̂− j does not require to train M RBF models, indeed it can be
computed effortlessly thanks to Rippa’s formula (Rippa 1999);

3. for each kernel, the width parameter θ and regularization parameter λ are found
by solving:
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min
θ,λ

εLOO(x1, x2, . . . , xM , θ, λ) (8)

The optimization is performed by using the same algorithms for searching the
Kriging hyperparameters.

POD + Radial Basis Function Networks

The Proper Orthogonal Decomposition (POD) is used to extract the main features
of a set of computed flow fields as a series of POD basis vectors with associated
coefficients (Iuliano 2011; Iuliano and Quagliarella 2011). Given the three spatial
coordinates (ξ, υ, ζ ) of the computational mesh points and the general snapshot
vector s, let {x j } be a set of design vectors (e.g., sampled from the design space with
aDoE technique) and {s j } the corresponding snapshot, i.e. column vectors containing
the volume grid and flow variables as obtained from a CFD solution:

s = (sgrid, sflow)T

sgrid = (ξ1, . . . , ξq , υ1, . . . , υq , ζ1, . . . , ζq)

sflow = (ρ1, . . . , ρq , ρξ ′
1, . . . , ρξ ′

q , ρυ ′
1, . . . , ρυ ′

q ,

ρζ ′
1, . . . , ρζ ′

q , p1, . . . , pq)

where q is the number of mesh nodes involved in the POD computation, ρ is the
flow density, (ξ ′, υ ′, ζ ′) are the three Cartesian velocity components and p is the
static pressure. The computational mesh has been included in the POD snapshot to
let the SVD basis catch the coupling effects between space location and state field.
Hence, once the surrogate model is built, not only a flow field can be computed, but
also an approximation of the volume mesh. Such a surrogate model would be able to
catch, although in a reduced order form, the cross effects of geometry modification
and aerodynamic flow change. As the total number of variables is eight (three mesh
variables and five flow variables), the global size of the snapshot is N = 8 × q.

Starting from the vectors s1, s2, . . . , sM obtained by CFD expensive computations
for a representative set of design sites x1, x2, . . . , xM , finding a Proper Orthogonal
Decomposition means to compute a linear basis of vectors to express any other
s j ∈ R

N with the condition that this basis is optimal in some sense. To compute the
optimal basis, we first define the snapshot deviation matrix

P = (
s1 − s̄ s2 − s̄ · · · sM − s̄

)

where the ensemble mean vector is computed as

s̄ = 1

M

M∑

j=1

s j
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The POD decomposition is obtained by taking the singular value decomposition
(SVD) of P

P = UΣVT = U

⎛

⎜⎜⎜⎝

σ1 · · · 0
...

. . .
...

0 · · · σM

0 · · · 0

⎞

⎟⎟⎟⎠VT (9)

with U ∈ R
N×N ,V ∈ R

M×M ,Σ ∈ R
N×M and the singular values σ1 ≥ σ2 ≥ . . . ≥

σM ≥ 0. The POD basis vectors, also called POD modes, are the first M column
vectors of the matrixU, while the POD coefficients αi (x j ) are obtained by projecting
the snapshots onto the POD modes:

αi (x j ) = (s j − s̄,φi ) (10)

If a fluid dynamics problem is approximatedwith a suitable number of snapshots from
which a rich set of basis vectors is available, the singular values become small rapidly
and a small number of basis vectors are adequate to reconstruct and approximate the
snapshots as they preserve the most significant ensemble energy contribution. In this
way, POD provides an efficient mean of capturing the dominant features of a multi–
degree of freedom system and representing it to the desired precision by using the
relevant set of modes. The reduced order model is derived by projecting the CFD
model onto a reduced space spanned by only some of the proper orthogonal modes or
POD eigenfunctions. This process realizes a kind of lossy data compression through
the following approximation

s j � s̄ +
M̂∑

i=1

αi (x j )φi (11)

where

M̂ ≤ M =⇒
M̂∑

i=1

σ 2
i ≥ ε

M∑

i=1

σ 2
i (12)

and ε is a predefined energy level. In fact, the truncated singular values fulfils the
relation

M∑

i=M̂+1

σ 2
i = εM̂

If the energy threshold is high, say over 99% of the total energy, then M̂ modes are
adequate to capture the principal features and approximately reconstruct the dataset.
Thus, a reduced subspace is formed which is only spanned by M̂ modes.

Equation 11 allows to get a PODapproximation of any snapshot s j belonging to the
ensemble set. Indeed, themodel does not provide an approximation of the state vector
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at design sites which are not included in the original training dataset. In other words,
the PODmodel by itself does not have a global predictive feature, i.e. over the whole
design space. As the aim is to exactly reproduce the sample data used for training and
to consistently catch the local data trends, a Radial Basis Function (RBF) network
answers to these criteria and has been chosen as POD coefficients interpolation. The
procedure to build optimal RBF models for POD modal coefficients is the same as
described in Section“Radial Basis Function Network”.

As a results, the pseudo–continuous prediction of the flow field at a generic design
site x is then expressed as:

s(x) = s̄ +
M̂∑

i=1

αi (x)φi (13)

This provides an accurate surrogate model which combines design of experiments
for sampling, CFD for training, POD for model reduction and RBF network for
global approximation. In conclusion, an explicit, global, low–order and physics–
based model linking the design vector and the state vector has been derived and will
be used as surrogate model. Examples of application and validation of the proposed
POD/RBF surrogate model have been already provided in recent papers (Iuliano
2011; Iuliano and Quagliarella 2013).

Adaptive Sampling Strategy

Supposing that a surrogatemodel has been already trained, the training set is enriched
by adding new samples, then the surrogate model is rebuilt and globally optimized.
Hence, an iterative scheme is used for surrogate-based optimization: in the previous
iteration, optimal candidates from the surrogateminimization are selected and passed
to the next iteration; in the next iteration, the new samples are evaluated via the true,
high-fidelity model and re-injected into the training set upon which the surrogate is
updated. The aim of such an iterative scheme is to increase the quality and potential
of the surrogates to be minimized, presumably driving to true optimality quickly. Of
course, as this approach relies totally on the surrogate model and its prediction, it
may drive the process towards local minima from which the surrogate model can no
longer escape.

The weak point is considering the enrichment with new samples as a purely
“exploitation” process and ignoring the “explorative” behaviour. Prior or during the
optimization on the surrogate, we need to mix the knowledge from the available
data, the surrogate prediction and an estimation of its predictive capability: we need
to have a “smarter” selection of new points. However, the strategy for updating a
surrogate model is heavily dependent on its type and scope and, in principle, has
to be tailored on it. Indeed, the addition of new samples must follow some specific
criteria that may be very different depending on the purpose of the training process.
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For instance, Latin Hypercube Sampling has been designed to satisfy space-filling
requirements and obtain a good coverage of the design space.

The present approach gives emphasis to the optimization process by proposing
sampling strategies which are able to “adapt” to the response function. Most of the
adaptive sampling approaches pursue the exploration/exploitation trade–off, where
exploration means sampling away from available data, where the prediction error is
supposedly high, while exploitation means trusting the model prediction, thus sam-
pling where the surrogate provides global minima. It is clear that a trade-off between
the two behaviors is needed: indeed, exploration is useful for global searching, but
it may lead to unveil uninteresting regions of the design space; on the other hand,
exploitation helps to improve the local accuracy around the predicted optima, but it
may result in local minima entrapment.

Here, balanced explorative in-fill criteria are designed for a generic surrogate
model and are formulated in terms of an auxiliary function which has to be maxi-
mized. The balanced criterion, hereinafter referred to as “EI-like”, has been designed
to mimic the same rationale of the Expected Improvement criterion, usually coupled
to a Kriging-based surrogate in the well-known EGO algorithm by Jones (1998).
The present approach, represents a generalization of that method as, for a generic
surrogate model, the information about the uncertainty of the surrogate is not avail-
able, while a Kriging model, being a Gaussian process, provides an estimate of the
prediction variance together with the prediction itself. The auxiliary function, also
referred to as potential of improvement, is designed to have the same form of the
Expected Improvement function.

Given x the generic design space location, f̂ (x) the surrogate response, Xn the
dataset of the training samples collected so far, FXn the corresponding values of the
true objective function, fmax and fmin the maximum and minimum values in FXn ,
the potential of improvement function (“EI-like” function) is defined as follows:

v(x, f̂ (x), Xn, FXn ) = [ fmin − f̂ (x)]Φ
[ fmin − f̂ (x)

ŝ(x)

]
+ŝ(x)φ

[ fmin − f̂ (x)
ŝ(x)

]

where ŝ(x) is an estimate of the prediction error and Φ(x) and φ(x) are respectively
the cumulative distribution and probability density functions of a standard normal
distribution. The prediction error is estimated as follows:

ŝ(x) = L(x)
minxi∈Xn ‖x − xi‖2

maxxi ,x j∈Xn

∥∥xi − x j

∥∥
2

exp
(
−γ

maxxi ,x j∈Xn

∥∥xi − x j

∥∥
2

minxi∈Xn ‖x − xi‖2
)

where L(x) is an estimate of the Lipschitz constant at x and γ is a tuning parameter.
The Lipschitz constant is defined as:

Definition 1 Given a domain D and a function f defined in D, the Lipschitz constant
is the smallest constant L > 0 in the Lipschitz condition, namely the non negative
number:
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L f,D := sup
x1,x2∈D
x1 
=x2

| f (x1) − f (x2)|
|x1 − x2|

The following algorithm has been designed to obtain an estimate of the Lipschitz
constant at each training sample:

Algorithm 1 Lipschitz constant estimation
1: compute the K-means clusters K j, j=1,r of the set Xn = {x1, . . . , xn} with r = int ( nd )

2: for all sample xi ∈ Xn do
3: Say Ki the cluster containing xi
4: for all sample x j ∈ Ki , x j 
= xi do

5: compute Li j = | f (xi )− f (x j )|
|xi−x j |

6: end for
7: Set L(xi ) = max j Li j
8: end for

Finally, in order to extend the estimation to a generic location x, it is assumed
that L(x) = L(xnn)where xnn = argminxi∈Xn

|xi − x|. The function ŝ(x)mimics the
Gaussian Process prediction error and has been designed to quickly increase with
increasing distance from an available sample. Moreover, its order of magnitude is
comparable to the actual values of the objective function. The adaptive in–fill process
is organized as follows: a huge Latin Hypercube Sampling dataset (e.g., 500 times
the dimension of the design space) is obtained and the values of the potential of
improvement is computed at each point (this requires limited computational effort
as the auxiliary function only depends on the surrogate prediction, which is fast to
obtain, and on the true objective function values at already collected points); hence,
the new sample is located where the maximum value of the auxiliary function is met:

xn+1 = argmax
x

v(x, f̂ (x), Xn, FXn )

In order to avoid the duplication of the updating samples when iterating the in–fill
process, the seed of the Latin Hypercube is changed at each iteration.

Figure1 provides an example of surrogate updating by maximization of the EI-
like criterion. The one-dimensional Schwefel function is used as test function with 5
initial training points. The trained surrogate (here, a Kriging model) does not capture
the local non-linear features of the true function, but a certain trend to predict low
values where the true optimum resides is observed (Fig. 1a). The Lipschitz-based
prediction error function and the EI-like function are reported in Fig. 1b: by taking
the maximum of the EI-like function, a new in-fill point (grey square) is obtained
and the surrogate is updated (Fig. 1c). This first iteration seem to not improve the
prediction too much: in fact, it provides information about the high non-linearity of
the true function around the optimum as the surrogate model now “knows” that the
function is rapidly changing in that region. After 10 iterations of the in-fill process,
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(a) True and surrogate functions f (x),
f̂ (x)and training dataset {Xn,FXn}

(b) Functions ŝ(x) and
v(x, f̂ (x),Xn,FXn )

(c) New in-fill point and updated
surrogate

(d) Updated surrogate with   
10 in-fill points
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Fig. 1 Example of surrogate updating by maximization of the Lipschitz in-fill criterion on the 1D
Schwefel function

the true optimum is perfectly captured as well as the whole trend of the function past
x = 250 (Fig. 1d).

Surrogate-Based Optimization

Theworkflowof the surrogate-based shape optimization (SBSO) is depicted in Fig. 2.
The method is centered on the surrogate training database which is continuously fed
and updated throughout the search and optimization process. As a first step, it is ini-
tialized with a space-filling design of experiment (e.g., a Latin Hypercube Sampling
or a Latinized Central Voronoi Tessellation): typically, according to literature results
and authors past experience, the number of initial samples (napr ) should not exceed
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Fig. 2 Workflow of surrogate–assisted optimization

one-third of the total computational budget. The evaluation of the response function
corresponding to a given sample is made as follows:

• a geometry parameterization module (CST approach, Kulfan 2008) transforms the
design vector (i.e., the training sample) into the actual component shape;

• a batch scripting procedure is launched within ANSYS ICEM CFD package to
generate the CAD surface and the volume mesh with fixed sizes and topology;

• a CFD computation is launched with the in-house ZENCFD flow solver (Catalano
and Amato 2003);

• once the simulation has converged, the objective function (usually depending on
computed aerodynamic coefficients) and the flow field snapshots are collected
according to the specification of the design problem.

As multiple training samples have to be evaluated simultaneously, the process can
be executed in parallel to speed up the simulation. Once the evaluation process
has finished, the selected surrogate model can be built as described in Section
“Surrogate Models”.

The workflow in Fig. 2 embeds two internal cycles, namely the adaptive sam-
pling and the optimization update. These iterative phases reflect two different needs:
first, providing an improved and reliable model to the optimizer; then, iterating the
optimizer to refine the optimum search. The first cycle consists of updating the
design solutions database by applying in-fill criteria (as described in Section
“Adaptive Sampling Strategy”) and providing nadpt new design candidates. The con-
dition to exit from this internal loop is based either on predefined levels of improve-
ment or on computational budget considerations.

The second cycle (database updating by optimization) allows for including nopt
sub-optimal samples suggested by sequentially optimizing the meta-model and re-
injecting the best candidate in the training database: this phase should lead to the
final exploitation of the design space region where the “true” optimum resides. The
loop terminates either when the residual of the objective function of the predicted
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optima falls below a predefined threshold or when the computational budget limit
has been reached. The total computational budget ntot is fixed a-priori and is equal
to ntot = napr + nadpt + nopt .

The optimizer consists of an hybrid algorithm implemented within the in-house
library ADGLIB (Quagliarella et al. 2004): a genetic algorithm is used for global
search and the CMA-ES (Hansen 2006) algorithm acts as a local search operator.
During the evaluation of the population, the CMA-ES algorithm is triggered with a
predefined activation probability to improve the current best solution.

Numerical Results

The public domain 3rd Drag Prediction Workshop DPW-W1 wing (Epstein et al.
2008) has been selected as the initial geometry for aerodynamic optimization. Ref-
erence data for this wing are shown in Table1. The nominal flow conditions are
prescribed at two design points:

1. Mach = 0.76, Reynolds = 5 × 106, CL ,0,1 = 0.5, CD,0,1 = 0.0241, CM,0,1 = –0.07
2. Mach = 0.78, Reynolds = 5 × 106, CL ,0,2 = 0.5, CD,0,2 = 0.0279, CM,0,2 = –0.08

where CL ,0,k , CD,0,k , CM,0,k are the lift, drag and pitching moment coefficient of the
baseline wing at the k-th design point. The objective function to be minimized is:

f (x) =
2∑

k=1

1

2

CD,k + CDM,k + CDL ,k

CL ,k

CL ,0,k

CD,0,k
(14)

CDM,k = 0.01max(0,CM,0,k − CM,k)

CDL ,k = 0.1max(0,C2
L ,0,k − C2

L ,k)

Geometric constraints are also implemented in terms of minimum value of the wing
section maximum thickness (=13.5%) and of the beam thickness constraints at two
locations along the wing airfoil chord (=12% thickness ratio at 20% wing section
chord and 5.9% thickness ratio at 75% wing section chord).

Table 1 Reference data for DPW wing

Wing area 290,322 mm2

Mean aerodynamic chord 197.55 mm

Xref for moments 154.24 mm (from root l.e.)

Semi-span length 762 mm

Aspect ratio 8.0
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Geometry Parameterization and Mesh Generation

The CST approach allows to identify and isolate the general features which similar
shapes have in common (e.g., round/sharp nose, cross section area distribution) and
separate the contribution introduced by the real shape change. This “factorisation” is
carried out through the definition of a “class” function and a “shape” function, whose
product give then the real shape. More details can be found in (Kulfan 2008). In the
present case, the wing shape is described by 36 shape variables + 1 variable tomodify
the twist angle at the wing tip. In order to build the wing shape, three locations along
the non-dimensional span length η are selected (η = 0.0, 0.5, 1.0) and, once given
the design weights, the sectional shapes at those three sections are extracted from the
analytical CST representation as a set of points; hence, the points are read in ANSYS
ICEM CFD and a sequence of parametric commands are executed through a batch
script to generate and export the computational mesh. The volume mesh is made of 8
blocks, a family of two grids is defined: the coarse and fine mesh consist respectively
of 712,448 cells and 2,959,872 cells. A sketch of the surface mesh distribution is
shown in Fig. 3. Both meshes are conceived to respect the y+ = O(1) condition, as
also shown in the figure where the contour map of y+ distribution on the wing surface
is depicted. The coarse mesh will be used for optimization studies, while the fine
mesh will provide more accurate comparisons of the aerodynamic flow for optimized
shapes at the end of the optimization process.

Optimization Results

Four different surrogate-based simulations have been carried out and detailed in
Table2. The standard EGO algorithm has been included to set a reference level.
The total computational budget is fixed at 500 CFD calls as well as the size of the
initial training set is common to all methods and equal to 216. This will allow a
fair comparison between the single method capabilities to search the design space
with equivalent computational effort.When the present surrogate-based optimization
method is used, the EI-like in-fill criterion is adopted for testing purposes.

Figure4 shows the optimization histories in terms of the progression of the min-
imum objective function value found in the training database along the iterations.
The unit value represents the level of the baseline DPW wing shape. The models
have roughly the same pattern, with the POD/RBFN model slightly outperforming
the others. The different approach between EGO and the present method is clearly
observed: EGO pushes to minimize the objective function from the beginning of
the updating phase (i.e., after the initial 216 samples evaluation) having a steady
and continuous improvement; on the other hand, the present surrogate-based method
achieves a significant contribution to the descent in the final 100 samples, where
optimization search is actively working, leaving to the intermediate 184 (adaptive)
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(a) Coarse mesh (b) Fine mesh

(c) y+on coarse mesh (d) y+on fine mesh
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Fig. 3 Surface mesh and y+ distribution on DPW wing surface

Table 2 Optimization setup

Method Surrogate In-fill
criteria

napr nadpt nopt Total CFD
calls

EGO Kriging EI 216 – 284 500

Present SBO Kriging EI-like 216 184 100 500

Present SBO RBFN EI-like 216 184 100 500

Present SBO POD/RBFN EI-like 216 184 100 500

samples the freedom to improve the surrogate quality. At the end of the process, each
of the three present SBO methods reaches better results than EGO.

Table3 propose a comparison of the aerodynamic coefficients and objective func-
tion value for all optimal candidates. The keypoint of the optimization task is the
drag reduction on DP2, where the improvement is much larger. Slight differences
are noticed on pitching moment coefficients as no optimum satisfies the constraint.
Indeed, in the minimization problem formulation (Eq.14), the pitching moment
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Fig. 4 Convergence
histories of surrogate-based
optimizations
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Table 3 Aerodynamic performances of optimal candidates

Design DP1 DP2 Obj.
value

CL ,1 CD,1 CM,1 CL ,2 CD,2 CM,2

Baseline 0.500 0.0241 –0.0813 0.500 0.0279 –0.0880 1.0

EGO opt. 0.500 0.0231 –0.0942 0.500 0.0244 –0.099 0.926

RBFN opt. 0.500 0.0231 –0.102 0.500 0.0241 –0.108 0.921

Kriging opt. 0.500 0.0232 –0.095 0.500 0.0242 –0.100 0.923

POD/RBFN opt. 0.500 0.0231 –0.086 0.500 0.0243 –0.0918 0.920

constraint has been implemented as a soft penalty (1 drag counts penalty for 0.01
variation in CM ), hence the method allows to exceed it if the gain in aerodynamic
drag is more significant. Anyway, the most interesting result is that all optimal can-
didates show very similar performances: the relative difference in aerodynamic drag
is within 1 count at DP1 and 3 counts at DP3.

Pressure contour maps for selected optimal candidates are depicted in Fig. 5. The
inboard wing loading is slightly reduced on design point 1 and a significant decrease
of the shock wave intensity is observed on the mid-outboard wing. By comparing the
optimal solutions, it is quite evident that EGO and Kriging-based optima are indeed
similar as the optimization relied on similar surrogates, even if the adaptive criterion
for adding new samples is different. ThePOD/RBFNmodel is able to perform slightly
better because it is a physics-based approach, i.e. it is fed not only with values of
the objective function but mainly with computed flow fields. This peculiar aspect
allows to inherit more information related to the nature of the governing equations
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(a)DP1 (b)DP2
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Fig. 5 Pressure coefficient contour maps

(a) Root wing section (b) Mid-wing section (c) Tip wing section

(d) Cp at root section (e) Cp at mid section (f) Cp at tip section
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Fig. 6 Sectional airfoil geometry and Cp distribution

(e.g., flow field structure, shock-wave pattern, boundary layer characteristics) when
reconstructing and predicting new solutions. Finally, Fig. 6 proposes a comparison
of the local geometry and pressure coefficient solution of the optimal candidates.
Three y–constant wing sections are selected, namely at wing root, mid–wing and tip
locations. In terms of geometry modifications with respect to the baseline shape, an
important reduction of the leading edge curvature is observable and a slight increase
of the rear airfoil curvature near the wing tip (probably to recover the lift constraint).
The twist angle at the wing tip has also been reduced for wing loading compensation.
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Conclusions

The paper proposed a surrogate-assistedmethodology suitable to aerodynamic shape
optimization. Two scalar–valued surrogates (Kriging, RBFN) and a physics-based
meta-model coupling Proper Orthogonal Decomposition and Radial Basis Functions
interpolation have been used to predict approximate values of the objective functions
throughout the optimization process. The training process has been conceived in three
stages, namely a space-filling stage to initialize the surrogate, an adaptive sampling
stage in which the model is gradually improved and a final iterative optimization
stage where a sequence of improved surrogates are optimized. In the adaptive sam-
pling phase, an in-fill criterion is designed to mimic the Expected Improvement
Function maximization by re-formulating the surrogate prediction variance through
the estimation of the Lipschitz constant.

An aerodynamic case has been proposed to test the methodology, consisting in
the shape optimization of an isolated wing from the AIAA CFD Drag Prediction
Workshops with 37 design variables and multi-point conditions. Despite the large
scale and the complexity of the case, results are fully satisfactory because of either
the obtained improvement (up to 10% on DP2) and the very limited computational
cost (only 500 CFD calls).

Such results support the conclusion that surrogate models alone may not pro-
vide the right answer within an aerodynamic shape optimization context, especially
if transonic viscous flow is considered. However, when coupled to smart adaptive
sampling techniques, they allow to catch the basic trends of the objective function
without penalizing the design space exploration: indeed, in complex design cases
with high non-linearities and multi-modal landscapes, the latter has to be carefully
balanced as it may result in unveiling promising regions as well as lead the optimizer
to waste time in searching poor solutions.
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