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Preface

The 12th edition of the International Conference on Evolutionary and Deterministic
Methods for Design, Optimization and Control with Applications to Industrial and
Societal Problems (EUROGEN 2017) was held from 13th to 15th of September
2017 at the School of Naval Engineering, jointly organized by the Spanish National
Institute for Aerospace Technology (INTA), the Technical University of Madrid
(UPM) and ISDEFE in association with ECCOMAS and ERCOFTAC. A detailed
information of the event, belonging to the series of ECCOMAS Thematic
Conferences can be found on the website http://eurogen2017.etsiae.upm.es/.

This event gathered experts from Universities, Research Institutions and
Industries developing or applying evolutionary and deterministic methods in design
optimization with emphasis on industrial and societal applications.

EUROGEN 2017 focused particularly on:

• Metaheuristics and Evolutionary Algorithms (including Evolutionary
Programming, Evolution Strategies, Genetic Algorithms, Memetic Algorithms,
Artificial Immune Systems, etc.)

• Multi-objective Evolutionary Algorithms and Constraint Handling Techniques
• Adjoint-Based and One-Shot Methods
• Hybrid Optimization Methods (Gradient-Based Methods, Combinatorial

Optimization Methods, etc.)
• High-Performance Computing and GPUs-Based Optimization Algorithms
• Goal-Oriented Optimization for Mesh and Meshless Methods
• Game Strategies
• Surrogate Models for Optimization
• Parallel and Distributed Evolutionary Algorithms (from LANs to GRID)
• Multi-disciplinary Optimization Methods
• Design Optimization Under Uncertainties
• Multi-criteria Decision-Making
• Topology Optimization

v
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Some statistics of EUROGEN 2017 Conference:

– 121 total attendants (99 registered) from 16 different countries around the world,
including:

• Six (6) plenary invited speakers:

– Prof. Juan Jose Alonso (Stanford University, USA): ‘Supersonic
Low-Boom Aircraft Design Using the Open-Source SU2 Framework’.

– Prof. Sancho Salcedo (University of Alcala, Spain) ‘Machine Learning
algorithms for prediction problems in energy applications’.

– Dr. Adel Abbas (Ex-Airbus Head of Aerodynamics research and tech-
nology, Spain) ‘Aircraft Design Optimization An integrated and mul-
tidisciplinary design chain’.

– Prof. Joaquim Martins (Univ. Michigan, USA) ‘Practical wing design
via numerical optimization—Are we there yet?’.

– Prof. Shigeru Obayashi (Tohoku University, Japan) ‘Multi-Objective
Design Exploration - Fusion of Optimization and Data Mining’.

– Prof. Johan Meyers (KU Leuven, Belgium) ‘Adjoint-based optimization
of wind-farm control in large-eddy simulations’.

• Ten (10) Mini Symposia:

– “Multi-disciplinary design optimization’. Organized by A. Riccardi,
E. Minisci and M. Vasile (University of Strathclyde).

– ‘Surrogate-assisted Optimization of Real World problems’. Organized
by D. González (AIRBUS) and E. Iuliano (CIRA).

– ‘Adjoint Methods for Optimisation, Mesh Adaptation and Uncertainty
Quantification’. Organized by J. Mueller (Queen Mary University),
K. Giannakoglou (NTUA), T. Verstraete (VKI).

– ‘Extension of fixed point PDE solvers for optimal design - Methods and
Applications’. Organized by N. Gauger and L. Kusch (TU Kaiserlautern).

– ‘Optimum design applications in structural and civil engineering’.
Organized by D. Greiner (ULPGC), J. Magalhaes-Mendes (Politécnico
do Porto) and J. Periaux (CIMNE).

– ‘Sensitivity and adjoint methods for optimization in flow stability
problems’. Organized by E. Valero, A. Martinez-Cava and A. Rueda
(UPM)

– ‘Optimization under uncertainty’. Organized by D. Quagliarella (CIRA)
and M. Vasile (University of Strathclyde).

– ‘Applications of optimization in engineering design automation’.
Organized by D. Ertner and T. Prante (V-Research), M. Affenzeller
(University of Applied Science Upper Austria), J. Johansson (Jönköping
University) and W. J. C. Verhagen (Delft University of Technology).

– ‘Strategic interaction: theoretical and computational questions of
Optimization and Game Theory’. Organized by C. de Nicola and
L. Mallozi (University of Naples Federico II)

vi Preface



– ‘Miscellaneus of applications of Evolutionary Algorithms in Energy
and Fall prediction’. Organized by A. Brunete, M. Hernando and
E. Gambao (UPM) and Diego Oliva (Tecnológico de Monterrey)

• One (1) Special Technological Session (STS) on ‘Advanced Design
Optimization and Control Challenges of new aircraft/engines configura-
tions for future subsonic, transonic and supersonic transportation’.
Organized by J. Periaux (CIMNE) and D. Redondo (Airbus).

• Registered attendants by nationalities (not including plenary speakers and
local organizing committee members): 13 Spain, 17 Germany, 10 Italy,
18 United Kingdom, 8 France, 4 Japan, 8 Belgium, 7 Austria, 3 Greece,
2 Portugal, 1 Iran, 1 Mexico, 1 Brazil, 2 Sweden, 1 Czech Republic and
2 USA.

Among the 92 presentations of the EUROGEN 2017 conference, 35 extended
papers were selected for publication in this volume after peer-review by members
of the European Scientific Programme Committee.

The Scientific Organizing Committee and the Local Organizing Committee
acknowledge the sponsorship of the following organizations through financial
support or/and assistance during the development of the event: Research projects
E-CAERO and SSEID, Center for Computational Simulation, AIRBUS, ANSYS,
NUMECA, ESTECO and Fundación Marqués de Suances.

Finally, the two Committees above are grateful to all the members of the
European Scientific Committee, the European Technical Committee and the
International Corresponding members.

Madrid, Spain Esther Andrés-Pérez
Madrid, Spain Leo M. González
Barcelona, Spain Jacques Periaux
Kaiserslautern, Germany Nicolas Gauger
Capua, Italy Domenico Quagliarella
Athens, Greece Kyriakos Giannakoglou
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Gradient Projection, Constraints
and Surface Regularization Methods
in Adjoint Shape Optimization

Pavlos P. Alexias and Eugene de Villiers

Abstract This paper deals with the treatment of various problems that are present
in adjoint-based shape optimization applications, in which a parameterization of the
surface is absent. A general implicit smoothing algorithm is used to reduce high-
frequency noise which might be present in the gradients that are calculated using
a continuous adjoint solver. The implicit smoother allows the definition of patches
on the shape that need to remain fixed during shape optimization and automatically
secures surface gradient continuity between constrained and deformable patches.
Along with the gradient smoothing, a surface mesh regularization algorithm is pre-
sented and used to support high-quality elements and mesh uniformity during each
optimization step. In the end, the capability and the effectiveness of the method are
demonstrated in various industrial test cases.

Introduction

In the context of gradient-based numerical optimization, the adjoint method is the
most cost-effectiveway to calculate the gradients of an objective functionwith respect
to the design variables. This is due to the fact that the cost of the adjoint gradi-
ent calculation is practically independent of the number of the design variables of
the optimization problem (Jameson 1988, 1995; Pironneau 1974). Design variable
independence allows the exploration of richer design spaces and consequently con-
vergence to better optimum solutions without increasing the computational cost. In
gradient-freemethods, like evolutionary algorithms (EA), the curse of dimensionality
limits optimization w.r.t. many design variables due to significant cost increases.

P. P. Alexias (B)
Engys S.R.L, Via del Follatoio 12, 34148 Trieste, Italy
e-mail: p.alexias@engys.com

E. de Villiers
Engys Ltd, Studio 20, RVPB, John Archer Way, London SW 18 3SX, UK
e-mail: e.devilliers@engys.com
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and Control With Applications to Industrial and Societal Problems, Computational
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4 P. P. Alexias and E. de Villiers

An important aspect of shape optimization applications is the selection of the
design space and, accordingly, the selection of the design variables. A rational choice
would be to keep the shape’s design parameters as design variables, but in CAD-free
applications the existence of an analytical parametrization of the surface is not avail-
able for most applications. To deal with this problem, there are two main approaches
to follow: (1) free-form deformation (FFD); in which the shape is enclosed by a hull
object (e.g. a lattice) and (2) the node-based approach; in which each surface node
of the computational mesh is considered as a design variable. In free-form defor-
mation the shape’s deformation is translated into the deformation of the hull based
on interpolation functions. There are various free form deformation techniques in
the literature which are utilized in shape optimization problems. They use several
types of parametrization basis functions to describe the hull object such as B-Splines,
NURBS (Martin et al. 2014), Radial Basis Functions (RBFs) (Kiachagias et al. 2015)
or Harmonic Coordinates (Joshi et al. 2007). A notable drawback of the FFD meth-
ods is that the optimum solution is affected strongly by the user input. A different
choice of geometry for the hull object or a different number of design parameters
may result in different solutions, which can negatively impact the effectiveness of
the method and reduce its general utility.

In the absence of parametrisation, the surface nodes of the CFDmesh can be used
as design variables. The latter approach offers the richest possible design space (for
the given spatial discetization) allowing the generation of better optimum solutions
and the implementation of high-complexity constraints. However, any numerical
noise in the adjoint derivatives, combined with the fact that each surface node is
being perturbed independently from its neighbours, can create oscillations and irreg-
ularities. To avoid reducing the smoothness of the surface and negatively impacting
the convergence of the optimization problem it is necessary to generate a smooth
representation of the gradient. In FFD methods this smoothing takes place naturally
through the given parametrization projecting the gradients from themesh surface onto
the parametric subspace. In node-based approaches the most establishedmethods are
the implicit smoothing technique (Jameson and Vassberg 2000), also also known as
Sobolev gradient smoothing, and an explicit technique which uses Gaussian filter
kernels (Stück and Rung 2011).

In the present paper, the implicit technique will be used, in a modified form,
that provides the advantages of Stück’s and Rung’s explicit technique in terms of
translating the smoothing parameters into meaningful design variables. In addition,
a mesh surface regularization algorithm will be presented and used effectively to
prevent the degeneration and the appearance of low quality elements caused by big
surface deformations. The gradients computed by the adjoint method are w.r.t. the
point normal directions of the surface, making it necessary to re-order the points in
the tangent direction to keep the mesh’s surface elements uniformity and quality. The
algorithm is based on the maximization of a mesh quality metric using analytical
derivative expressions of geometric mesh quantities.
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The Continuous Adjoint Method

Abrief overview of the continuous adjoint method (Karpouzas et al. 2016; Papoutsis-
Kiachagias and Giannakoglou 2014) will be presented in this section. Without loss
of generality, assuming a laminar flow of an incompressible fluid, the Navier-Stokes
equations can be written as,

Rp =−∂vj
∂xj

=0 (1)

Rv
i = vj

∂vi
∂xj

− ∂

∂xj

[
ν

(
∂vi
∂xj

+ ∂vj
∂xi

)]
+ ∂p

∂xi
=0 i = 1, 2, 3 (2)

where vi is the velocity in direction of the Cartesian coordinates, ν is the kinematic
viscosity and p is the static pressure field divided by the fluid density ρ.1 Definining
a general objective function that contains both surface and volume integrals as

F=
∫
S
FsdS +

∫
Ω

FΩdΩ (3)

then F is augmented by the state equations leading to

Faug =F+
∫

Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ (4)

Here, ui and q are the adjoint variables of the flow velocity and the static pressure
respectively. Note that since the Navier-Stokes equations are satisfied, it holds that
Faug = F . Next comes the differentiation of the augmented objective function using
the Green-Gauss theorem to pass from volume integrals to surface integrals. Zeroing
the partial derivatives of flow field values results in the adjoint equations and adjoint
boundary conditions:

Rq = ∂ui
∂xi

− ∂FΩ

∂p
= 0 (5)

Ru
i = −vj

∂ui
∂xj

+uj
∂vj
∂xi

− ν
∂

∂xj

(
∂ui
∂xj

+ ∂uj
∂xi

)
+ ∂q

∂xi
+ ∂FΩ

∂vi
= 0 (6)

After solving the adjoint equations, in similar way with the primal Navier-Stokes
equations, the final sensitivities values w.r.t. the design variables bn are,

G= δFaug

δbn
=−

∫
Sw

[
ν

(
∂ui
∂xj

+ ∂uj
∂xi

)
− qni

]
∂vj
∂xk

∂xk
∂bn

dS (7)

1On the aforementioned equations and onwhat follows, the Einsteins summation convention applies
for the lower-case indices, unless declared differently.
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Implicit Smoothing

The absence of a parametric description for the geometry or the existence of a low-
quality computational mesh or partially converged primal solution (Eq. 1), may result
in the intrusion of noise into the adjoint sensitivities. In the node-based framework,
the surface sensitivities are translated directly to node displacements and this will
transfer the noise from the sensitivities on the surface. This noise intrusion can
lead to impractical, non-manufacturable shapes and make our optimization problem
difficult to converge (or even diverge). It is thus necessary to create a smooth gradient
representation to cut-off any undesired oscillation.

Implicit Smoothing Equation

Based on the Sobolev gradient projection introduced by Jameson (1988), the
smoothed gradient field G is calculated from the initial gradient G through the
diffusion-like equation

G − ε ∇2G=G (8)

where ε is the smoothing coefficient which defines the smoothness of the final gra-
dient representation. This generates a free variable for the optimization problem and
thus the choice of the smoothing coefficient is case-specific. There are various sug-
gestions in the literature for an optimum choice of ε (Schmidt et al. 2008; Gherman
and Schulz 2005). In the present paper, based on the work of Stück and Rung (2011),
in which they use an equivalent explicit technique, the coefficient ε will be translated
into a maximum allowed oscillation radius on the shape’s surface. This can be done
by taking the fundamental solution of the diffusion equation of a point source (for 2
variables)

Φ(x, ε) = 1

4πε
e(−x2/4ε) (9)

where it can be noticed that the above equation is identical to the Gauss function
with a standard deviation of σ = √

2ε. This, allows the definition of a smoothing
radius equivalent to three times the standard deviation of the Gauss bell in which
every oscillation with a radius smaller than the defined will be severed.

Solving an elliptic equation implicitly will result in the spreading of sensitivity
information inside the whole computational domain. However, only 0.3% of the
information from a point source will pass outside of the 3σ smoothing radius. For all
intents and purposes the smoothing will thus be acting locally inside the predefined
radius.
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Contstraints and Continuity

Smoothing the sensitivities through the solution of a PDE allows a straight-forward
definition of constrained areas on the optimized shape. Zeroing the sensitivities on
the non-moving patches and defining a fixed value boundary condition on the edges
between deformable and constrained patches will result in having non-zero sensitiv-
ities only on the deformable patches. Even though applying a fixed value boundary
condition on the common edges will prevent the smoother from generating sensitiv-
ities on constrained patches, there is no control on the way the shape transits from a
constrained to a deformed patch. In cases where there are big sensitivity magnitudes
in the vicinity of common edges, strong discontinuities will arise. Since it is impor-
tant to maintain a smooth transition between the constrained and the deformable
patches, the sensitivities with a geodesic distance from the fixed boundaries smaller
than half of the smoothing radius are set to zero. In this way, the points close to the
transition zone to will be exactly on the Gauss bell curve maintaining C2 continuity.
The geodesic distance calculation is performed by solving the eikonal equation

|∇φ(x)|= 1

f (x)
, x ∈ Ω (10)

subject to boundary condition φ|∂Ω . Solving for φ(x) will result in the shortest time
needed to travel from the boundary ∂Ω to any point x inside Ω with a velocity f(x).
In the special case where f (x) = 1 the solution φ(x) is the shortest distance of x from
∂Ω .

The effect and the importance of securing a smooth transition is demonstrated
in Fig. 1. Smoothing is performed on a uniform displacement with superimposed
noise (Fig. 1a), while respecting a circular constraint. Solving the Eq. 8 without
transition treatment, will result on the shape depicted in Fig. 1b which does not
have a continuous surface gradient at the common edge. Figure 1c demonstrates
how a smooth transition can be achieved at the constrained boundary by zeroing the
displacement values in elements with a distance from the constraint patch smaller
than half of the smoothing radius.

Numerical Implementation

In the present paper, the code, the solvers and the applications have been developed
under the open source framework ofOPENFOAM. The sensitivity smoothing pertain
to the solution of a two-dimensional partial differential equation (PDE) in a three-
dimensional surface. In the case of a homogenous surfacemeshwith known topology,
the equation can be solved moving between the Euclidian and the curvilinear space
through covariant and contravariant functions. In the general case of unstructured
grids this method will not work without obtaining an implicit surface representation
(Bertalmio et al. 2001). In the present paper, a different approach will be followed
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(a) Unifrom distribution with additive noise.

(b) Implicit smoothing equation solution applying zero fixed value boundary
conditions on the common edges of deformable and constrained patch.

(c) Implicit smoothing equation solution with a smooth transition.

Fig. 1 Differences in the shapes when solving the implicit smoothing equation (Eq. 8) with (c) and
without (b) ensuring a smooth transition from the constrained to the deformable patch

that allows the solution of any PDE via the so called finite area approach. Themethod
is implemented in the same way as the finite volume method in OPENFOAM, with
the difference that the discretized elements are polygonal faces with individual local
coordinate systems. The surfaces curvature enters the calculations through tensor
transformations of every face centroid into a global coordinate system (Tukovic and
Jasak 2009).
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Surface Mesh Regularization

In the node-based method, the gradients of the objective function are computed w.r.t.
the normal directions of the nodes on the surface. Moving continuously towards the
normal direction, even with a smooth gradient representation, will eventually lead
to the generation of low-quality surface mesh elements, tangled faces or high non-
uniformity. To avoid this, a separate movement in the tangent direction is necessary
for the restoration of the mesh quality.

In this section a mesh optimization algorithm aimed at the maximization of an
element-wise quality metric will be presented. The goal is to calculate the new set
of surface node positions that maximize this metric, assuming that the movement
of the surface nodes in the tangent direction will not have a significant impact. The
aforementioned assumption can be rationalised in the context of iterative surface
motion, where the point locations are updated repeatedly.

The quality metric is defined for every surface element as

μ = α
Se
P2
e

(11)

where Se is the surface of the element, Pe is the perimeter and α is a normalization
factor. The goal is to reposition the vertices of the surface mesh such that the faces
will have the maximum metric value. In order to do so, it is necessary to calculate
the derivative of the metric w.r.t. the position of the points that constitute a face. An
extensive analysis of the differentiation of such kind of quality metrics goes beyond
the scope of this paper. For a detailed description on the differentiation of geometric
quantities in discrete geometry refer to Alexias and De Villiers (2016).

If a point P on the surface, is surrounded by N faces, the total derivative of that
point is the arithmetic mean of the sensitivities from all contributing faces.

δ= 1

N

N∑
n=1

dμ

dP
(12)

Having obtained the sensitivity derivatives of the objective function, an optimization
step is performed through a quasi-Newton method as

Pnew =Pold + λH−1 · δ (13)

whereH is the Hessian matrix approximation using a limited memory BFGSmethod
Nocedal (1980).

An example of the surfacemesh regularization algorithm is demonstrated in Fig. 2
on a simple surface deformation case. Applying a displacement field on a flat surface
may result in the creation of a surface mesh with distorted and anisotropic elements.
Using mesh regularisation during the deformation results in a higher quality mesh
with greater uniformity. The impact of the optimization algorithmon themesh quality
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Fig. 2 Surface mesh without (top) and with (bottom) mesh regularization after the surface dis-
placement

Fig. 3 Aspect ratio of surface mesh elements before (left) and after (right) mesh regularization

can be independently quantified by examining an alternative mesh quality metric,
like aspect ratio. Figure 3 depicts the aspect ratio before and after the regulatization.
Taking into account that the optimum aspect ratio value is one, it is clear that the
optimisation procedure significantly improves this metric, leading to a higher quality
surface mesh.
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Applications

In this section, the algorithms and the methods, presented in this paper, are combined
to achieve a fully automated optimization process with minimal user intervention.
The efficacy of the method will be demonstrated in two large-scale industrial test
cases consisting of internal and external flow respectively.

Power Losses Minimization

The first application aims at the minimization of the power losses of an air S-bend
duct. The flow is laminar with a Reynolds number of 350, having a structure com-
putational mesh comprising 700 thousand cells.

Figure 4 illustrates the duct geometry and the parts of the duct that are allowed to
moveduring the shapeoptimization.Theobjective function subject tominimization is

F =
∫
S
(p + 1

2
v2i )vinidS (14)

Following a steepest decent optimizationmethod every newposition of the surface
nodes is given by

xi = xi−1 − aG · n (15)

where G is the smoothed gradient, a is the step of the steepest decent and n is the
normal direction of each point. Figure 5 illustrates the differences between smoothed
and raw gradients when applying a smoothing radius of 1 cm. The smoothed gradi-
ents satisfy the constraints and simultaneously allow smooth transition between the
constrained and unconstrained patches.

Fig. 4 Geometry of the
S-bend duct. With red color
is the deformable surface
while the rest remains fixed



12 P. P. Alexias and E. de Villiers

Fig. 5 Comparison between the smoothed (left) and the raw (right) gradients applying a smoothing
radius of 1cm

Fig. 6 Geodesic curves on the 3D surface defining the shortest curvilinear distance of any point
from the constrained boundaries

Solving the eikonal equation will result in the calculation of the geodesic distance
curves on the 3D deformable surface. To ensure a smooth transition a zero-band zone
needs to be created and thus the points belonging to a distance smaller than half the
smoothing radius (0.5 cm in the present case) will be assigned a zero gradient value.
Figure 6 illustrates the geodesic distances on the deformable surface of the S-bend
duct.

After performing the steepest decent optimization step, the surface optimization
takes place: improving the surfacemesh quality andmaintaining themesh uniformity.
Thus, the final node locations are calculated through

xifinal = xi + δtotal (16)

where δtotal is the total displacement resulting from the mesh optimization algorithm.
Figure 7 illustrates the difference between having a smooth transition with a surface
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Fig. 7 Differences between deformed shape using smooth transition and mesh optimization (left)
and using only gradient smoothing (right)

mesh optimization and simplistic gradient smoothing. In the first case, the mesh
has improved uniformity and higher quality faces. Most importantly, there is no
“step” in the surface at the interface. This “step” typically has a negative impact
on the optimization problem as it creates inferior quality elements that hamper the
convergence of the CFD solution (Fig. 8).

Beyond the surface displacement algorithm, it is necessary to adapt the internal
mesh points for re-solving the CFD equations. For this purpose, a Laplacian equa-
tion with an inverse distance diffusion coefficient is solved combined with a mesh
optimization approach that guarantees a high-quality mesh, even during extreme
deformations.

Figure 9 displays the pressure losses reduction history as a function of the opti-
mization cycles. It can be seen that after 35 optimization steps the pressure losses
were reduced by 17.1%. It is noticeable that on every optimization cycle the mesh
quality remained exceptionally high allowing us to proceed through a series of com-
plex shapes and deformations without the need of remeshing. This contributes a lot to
the automation of the optimization procedure and the reduction of the computational
time.

Drag Force Minimization

The second application aims at the minimization of the drag force of the DrivAer
car model (Heft et al. 2012). In detail, the fast-back configuration with a smooth
underbody, with mirrors and wheels is used in this application. Only half of the
car geometry is meshed and used for the simulation, with a computational grid
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Fig. 8 Optimized sBend duct shape, achieving a 17.1% power losses reduction

Fig. 9 Pressure losses
reduction for every
optimization step

comprising around 6 million cells. The flow is turbulent and modelled with the
Spalart-Allmaras turbulencemodel with wall functions. Even though the flow around
a car does not reach a steady state solution, a time invariant CFD model is used for
the simulation. This simplifies the optimization procedure, avoiding barriers and
difficulties which arise when we are dealing with unsteady adjoint equations.

As it can be seen fromFig. 11, illustratedwith green color, only a portion of the rear
part of the car is allowed tomove during the optimization. After 8 optimization cycles
using a steepest decent method the algorithm converged to a shape with a reduction
in drag of more than 2% (Fig. 10). Figure 12 demonstrates the displacement field
(after applying the smoothing algorithm) for the first optimization cycle. It can be
seen that the highest deformation lies on a thin strip on the rear part of the trunk of
the car. Observing the Fig. 13, which compares the initial and the optimum shape, the
generation of a spoiler, by lowering the trunk, leads to an increased pressure on the
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Fig. 10 Convergence
history of the drag force for
every optimization cycle. A
reduction of more than 2%
can be observed

Fig. 11 DrivAer car
geometry. With green color
is the deformable part while
the rest has to remain fixed
during the optimization

rear part of the car contributing to the reduction of the drag force. This percentage of
drag reduction (2.1%)may seem small but is significant considering that only a small
portion of the rear car was subject to shape deformation during the optimization.

Conclusions

In this paper, a complete and fully automated framework has been developed to
deal with gradient and surface treatment problems in the context of adjoint-based
optimization. The gradients of an objective function w.r.t. the mesh surface nodes
are computed using the continuous adjoint method. Those gradients are smoothed
via an implicit solver that removes any unnecessary oscillation and noise. Using the
same smoothing framework in conjunction with geodesic distances resulted in the
proper application of constraints while keeping a desirable level of continuity. As a
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Fig. 12 Smooth displacement field during the first optimization step

Fig. 13 Initial (left) and final (right) shape after 8 optimization cycles together with the pressure
distribution. Lowering the trunk leads to an increased pressure on the rear part of the car which
contributes to the reduction of the drag force

final step, a quality based optimisation was performed on the surface. The methods
efficacy was demonstrated by achieving significant performance improvements for
both internal and external flow test cases.
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Adjoint Shape Optimisation Using
Model Boundary Representation

Marios Damigos and Eugene de Villiers

Abstract Manipulating CAD geometry using primitive components rather than the
originating software is typically a challenging prospect. The parameterization used
to define the geometry of a model is often integral to the efficiency of the design.
However, it is not always possible to access these parameters due to the closed-
source, non-standardized nature of most CAD software. A sensible choice, is to use
standard CAD files which have an open format, in order to read a model. Importing
such a file gives access to the Boundary Representation (BRep) of the model and
consequently its boundary surfaces which are usually trimmed patches. Therefore, in
order to connect Adjoint optimization to the industrial design framework (CAD) in a
generic manner, the BRep must be used as a means of changing a model’s shape. In
this study, Geometry Morphing, a method of imposing up to C1 continuity between
movingBRep patches is demonstrated and then applied to various optimization cases.

Introduction

One of the biggest challenges in modern day CFD and optimization is to establish
the missing connection with industrial design. Each CAD software has its own pro-
prietary format and parameterization, which is typically not disclosed by the vendor.
Due to the closed source nature of the most popular CAD packages, the above men-
tioned formats cannot be accessed. Consequently, one must use an alternative way
to access a model’s information. A common choice is to use standard CAD formats
such as STEP or IGES (Nowacki andDannenberg 1986) which contain the Boundary
Representation of a geometric model.
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Boundary Representation (BRep)

Boundary Representation (Stroud 2006; Mantyla 1988) is a method for representing
shapes in solid modeling. A solid is represented by the BRep format using surface
elements defining the interface between solid and non-solid volumes. The BRep
format is composed of two parts: topological data and geometry. The topology of a
BRep is created using vertices, edges, faces, shells and ultimately solids. Regarding
their underlying geometry:

1. Vertices: The underlying geometry of a vertex is simply a 3D point.
2. Edges: Edges are curves bounded by the points describing their boundary vertices.

In the general case, the geometry of an edge is only a segment of its underlying
curve, since the topological bounds of an edge and the geometrical bounds of a
curve are not strictly identical.

3. Faces: Similarly to edges, faces are described by surfaces bounded by a closed
loop of edges. Moreover, the geometry of a face is, in general, a part of its
underlying surface, since its boundary loop of edges does not coincide with the
natural bounds of the surface.

4. Shells: A shell is composed of multiple faces connected to each other and has no
particular underlying geometry.

5. Solids: A solid similarly to a shell, does not have an underlying geometry and is
practically the volume bounded by a collection of shells.

The mathematical description of curve and surface elements of a BRep model could
vary. Elementary curves or surfaces such as circular arcs, planes or cylinders for
example, could be stored explicitly. However, more complex elements are stored in
parametric form, most commonly NURBS (Piegl and Tiller 1995). The conversion
from elementary curves or surfaces to NURBS is trivial, thus the BRep geometry
will be handled as NURBS geometry for uniformity.

NURBS Curves and Surfaces

In this section the mathematical formulation of NURBS is reviewed. Initially, the
creation of raw geometry is shown and then the final formulation of trimmed patches
is analyzed (Fig. 1).

Mathematical Formulation

NURBS geometry is a generalization of B-spline geometry (Piegl and Tiller 1995).
B-splines are the result of the combination of piecewise polynomial functions called
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Fig. 1 A single NURBS
patch along with its 4 × 4
control net

basis functions. Assuming the interpolation of n control values along a parametric
direction u, the i-th basis function of degree p is defined as:

Np
i (u) = u−Ui

Ui+p−Ui
Np−1
i (u) + Ui+p+1−u

Ui+p+1−Ui+1
Np−1
i+1 (u)

N 0
i (u) =

{
1 if Ui ≤ u < Ui+1

0 otherwise

(1)

whereUi – i ∈ [1, (n + p + 1)] – are the non-decreasing knot values used to segment
the parameter space.

A NURBS curve of p degree and n control points Pi and associated weights wi is
evaluated at parameter u as:

C(u) =
∑n

i=1 N
p
i (u) · wiPi∑n

k=1 N
p
k (u) · wk

(2)

Similarly, a NURBS surface (generalization of a tensor product B-spline (Piegl
and Tiller 1995) of combined degrees p × q, controlled by a n × m control grid of
points and associated weights is evaluated at parameters u, v as:

S(u, v) =
∑n

i=1

∑m
j=1 N

p
i (u)Nq

j (v) · wi,jPi,j∑n
k=1

∑m
l=1 N

p
k (u)Nq

l (v) · wk,l
(3)
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Trimmed NURBS Patches

Trimmed NURBS patches enable the representation of a much higher variety of
shapes with less complex surfaces. The trimming procedure involves the creation
of a closed wire of two-dimensional curves lying on the u − v parametric space of
the surface. The parametric space is then trimmed along this wire and the surface
is not evaluated for u, v pairs outside the trimmed region. The number of curves,
the wire consists of, is arbitrary and thus a multi–sided patch can be created using a
single NURBS surface. It is useful if the two-dimensional curves, along with their
three-dimensional curve-on-surface counterparts are NURBS curves themselves. A
simple example of the trimming process is shown in Figs. 2.

Fig. 2 Top left: A planar surface prior to the trimming process. Top right: The same surface with a
trimming curve designed on it. Bottom: The circular disk which is a result of the trimming process
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Adjoint Based Optimization and the Continuous
Adjoint Technique

During recent years, in CFD gradient – based optimization, the Adjoint Technique
(Pironneau 1974; Jameson 1988; Thvenin and Janiga 2008) has received much atten-
tion due to the fact that the cost of computing sensitivity derivatives of an objective
function J is independent of the number of the design variables. Therefore, the
Adjoint technique in its discrete (Giles et al. 2001; Vishnampet et al. 2015), or con-
tinuous (Jameson 1988; Othmer 2008, 2007; Giannakoglou and Papadimitriou 2008;
Giannakoglou et al. 2015; Papoutsis-Kiachagias et al. 2014) form, is excellent for
large scale optimization problems. In this article the continuous Adjoint formulation
is used to calculate the sensitivity derivatives.

Primal Equations

The primal problem governed by the incompressible Reynolds - averaged Navier-
Stokes equations can be written as:

Rp = −∂ui
∂xi

= 0 (4)

Ru
i = uj

∂ui
∂xj

+ ∂p

∂xi
− ∂

∂xj

[
(ν + νt)

(∂ui
∂xj

+ ∂uj
∂xi

)]
= 0 (5)

In Eqs. 4 and 5 u denotes the components of the primal velocity and p is the primal
pressure.

Adjoint Equations

Let J be a function to be minimized by the computation of an optimal set of design
variables bn, n ∈ [1,N ]. The starting point of the continuous Adjoint formulation is
the formulation of the augmented objective function Jaug . Assuming a computational
domain Ω and its boundary S:

Jaug = J +
∫

Ω

viRu
i dΩ +

∫
Ω

qRpdΩ (6)
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In Eq. 6 vi is the i − th component of the adjoint velocity and q is the adjoint pres-
sure. It is obvious that since the primal state equations must hold, then Jaug = J .
Minimization of J , therefore becomes minimization of Jaug .

δJaug
δbn

= δJ

δbn
+

∫
Ω

vi
∂Ru

i

∂bn
dΩ +

∫
Ω

q
∂Rp

∂bn
dΩ +

∫
S
(viRu

i + qRp)nk
δxk
δbn

dS (7)

In Eq. 7, two differential operators can be seen: δ()/δbn and ∂()/∂bn. The first
operator denotes the total derivative and the second denotes the partial derivative.
For a given quantity Φ, these operators are connected through

δΦ

δbn
= ∂Φ

∂bn
+ ∂Φ

∂xk

δxk
δbn

(8)

The field Adjoint equations are then formulated so as to make Eq. 7 independent of
variations in the primal state variables. These are written as:

Rq = −∂vj
∂xj

= 0 (9)

Rv
i = vj

∂uj
∂xi

+ ∂q

∂xi
− ∂(ujvi)

∂xj
− ∂

∂xj

[
(ν + νt)

(∂vi
∂xj

+ ∂vj
∂xi

)]
= 0 (10)

The time required to solve the Adjoint equations is equivalent to the time required
to solve the primal problem. This makes apparent the strength of the Adjoint tech-
nique: the time required for the sensitivity calculation is two equivalent flow solutions
regardless of the number of variables. The formula for the calculation of the sen-
sitivity derivatives is omitted for the sake of space. The presentation of the adjoint
formulation of turbulence models is omitted as well, for the sake of simplicity.

Geometry Morphing Method

During shape optimization based on theBRep of amodel, an obvious challenge arises
related to the continuity between the trimmed patches: Shape change involves the
displacement of the control points of the underlying surfaces of the BRep patches.
The fact that neighbor patches are seldom conforming untrimmed patches, makes
the imposition of geometric continuity highly non-trivial, especially when trying to
automate the procedure. Not many solutions have been proposed for this type of
problem and the most promising was addressed by Xu et al. (2014).
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Forming the Constraint Equations

The demand that two patches touch along a certain pathline that corresponds to two
trimming curves, one on each patch, can be seen as the demand that they touch at an
adequate number of points along the pathline. For a point with parameters (u, v) on
patch 1 and (ξ, η) on patch 2, the constraint can be formulated as:

S1(u, v) = S2(ξ, η) ⇔ S1(u, v) − S2(ξ, η) = 0 (11)

Imposing the constraint in Eq. 11 for a number of (u, v) and (ξ, η) pairs along the
pathline, will make sure that the two patches touch at those points. If that number is
big enough, then it can lead to the patches to fully touch along the pathline, practically
ensuringC0 continuity.C0 continuitymaynot be enoughwhen smoothness is required
at the interface between the two patches. A way to impose C1 continuity between the
patches is to make sure that the vectors denoting the parametric derivatives of each
surface are co-planar. Given three non co-linear vectors, a way to test co-planarity
is to check if a vector can be written as a linear combination of the other two. If that
condition holds, then the three vectors are co-planar. Therefore, in order to imposeC1

continuity between the two patches, one should formulate two necessary conditions
(Fig. 3):

∂S1(u, v)
∂u

= α · ∂S2(ξ, η)

∂ξ
+ β · ∂S2(ξ, η)

∂η
(12)

∂S1(u, v)
∂v

= γ · ∂S2(ξ, η)

∂ξ
+ δ · ∂S2(ξ, η)

∂η
(13)

The coefficients α, β, γ, δ are calculated for a pair of parametric coordinates by
solving the equations:

Fig. 3 In this figure, a plain
example of how the interface
between two surfaces should
look like. A point on the
interface, should be
evaluated using either
surface mathematical
definition. At the same time,
the parametric derivatives of
both surfaces on that point,
have to be co-planar, if of
course C1 continuity is to be
preserved
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M ·
[
α

β

]
=

[
∂S1(u,v)

∂u · ∂S2(ξ,η)

∂ξ
∂S1(u,v)

∂u · ∂S2(ξ,η)

∂η

]

M ·
[
γ

δ

]
=

[
∂S1(u,v)

∂v · ∂S2(ξ,η)

∂ξ
∂S1(u,v)

∂v · ∂S2(ξ,η)

∂η

]

where

M =
[

∂S2(ξ,η)

∂ξ
· ∂S2(ξ,η)

∂ξ

∂S2(ξ,η)

∂ξ
· ∂S2(ξ,η)

∂η
∂S2(ξ,η)

∂η
· ∂S2(ξ,η)

∂ξ

∂S2(ξ,η)

∂η
· ∂S2(ξ,η)

∂η

]

TheEqs. 11–13are all depending linearly on control points of both surface patches.
Thus they can be written in matrix form. If the first control net has dimensions
n1 × m1 and the second n2 × m2 then the total number of control points is N =
n1 × m1 + n2 × m2. A matrix QN×3 is created to store the control points of all the
patches in ordered form. The first, second and third columns of Q store the x, y, z
coordinates of the control points respectively. Using this matrix, the accumulation
of all the constraints written in the form of Eqs. 11–13 can be written as:

AM×N · QN×3 = 0M×3 (14)

or
AM×N · δQN×3 = 0M×3 (15)

where A is the matrix containing the ordered linear coefficients apparent in all the
constraint equations and M is the total number of constraint equations.

Null Space of the Coefficient Matrix

Clearly the trivial solution of Eq. 15 is of no interest. The set of non-trivial solutions
to Eq. 15 or the Null Space (Meyer 2000) of matrix A is the primary focus. In order to
evaluate the vectors that belong to the Null Space of A, eigen-vector/value analysis
has to be done to the normalized constraint matrix ATA. That is because ATA has the
same Null Space as A but is much more well conditioned. Assuming an eigenvalue
λi and the corresponding eigenvector ui of ATA, it is obvious that:

if λi = 0 then ATAui = 0

Thus the vector ui belongs to the Null Space. It is easy to prove two important
properties of vectors belonging to the Null Space.

• Given a vector a, that belongs to the Null Space, and a scalar k, then the vector
b = ka will also belong to the Null Space.
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• Given two vectors a,b that belong to the Null Space, then the vector c = a + b
will also belong to the Null Space.

A matrix with N columns and rank r ≤ N will have N − r zero eigenvalues. Based
on the above, one can show that any vector that can be written as:

x =
N−r∑
i=1

ki · ui = [
u1 · · · uN−r

] ·
⎡
⎢⎣

k1
...

kN−r

⎤
⎥⎦ (16)

will satisfy
A · x = 0

In Eq. 16 the matrix containing the eigenvectors belonging to the Null Space is called
the Kernel of A or simply Kernel(A). In the same equation, the coefficients ki are
arbitrary scalars (Null Space parameters). Based on these findings, one can say that
any δQ calculated as:

δQ = Kernel(A) · δK (17)

will satisfy Eq. 15, for any (N − r) × 3 matrix of arbitrary coefficients δK . The
eigen-vectors/values of matrix ATA can be calculated through various orthogonal
decompositions. In this work, the QR-decomposition (Golub and Van Loan 1996)
is chosen because of the much better performance in sparse matrices. In case of a
larger BRep model that consists of more than two surface patches, more constraint
equations like Eq. 11–13 will have to be satisfied since continuity will have to hold
at every interface between patches. At the same time the control points of additional
patches will be stored in the matrix δQ, so even for larger models, Eq. 15 can be
formulated accordingly. The analysis shown so far assumes that matrix δQ contains
the entirety of the control points of each patch. That in practice is needless, because
not all the control points of the BRep need to be constrained in order to impose
the continuity. As a matter of fact, locality is one of the most useful properties of
NURBS geometries. Therefore, the points along a trimming edge will be influenced
by some of the control points of a patch. In practice, the matrix δQ contains only
those constrained control points.

Calculation of the Shape Derivatives

Generally in NURBS–based optimization, the shape derivatives of an objective func-
tion are the derivatives with respect to the control points. Here, a similar procedure is
followed. For the non-constrained control points, the process will be just that. How-
ever, the constrained control point derivatives will be used to calculate the derivatives
of the Null Space parameters. That can be done by using a 3-step chain-rule. Assume
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a CFD mesh and its boundary on the surface of the whole BRep model. If X is the
point field of the boundary mesh with range [1, nP], then:

X = [
X1 X2 · · · XnP

]
with Xi = (xi, yi, zi) (18)

For an objective function J , the sensitivity vectors can be calculated using an Adjoint
CFD solver:

dJ

dX
=

[
dJ
X1

dJ
X2

· · · dJ
XnP

]
(19)

A boundary mesh point Xi will belong to one of the BRep surfaces denoted by Si.
Point inversion on that surface will yield the parameters (ui, vi), such that:

Si(ui, vi) = Xi (20)

According to the locality property ofNURBS, the pointXi will have non–zero control
point derivatives for some of the control points of surfaceSi. These according toEq. 3,
will be equal to the rational coefficients of the control points. For a control pointPip,jp

of surface Si:

dXi

dPip,jp
= Np

ip(ui)N
q
jp(vi) · wip,jp∑n

k=1

∑m
l=1 N

p
k (ui)N

q
l (vi) · wk,l

= Rip,jp

If P denotes the non-constrained control points and R is the matrix with the coeffi-
cients Rip,jp, then: [

dJ/dP
dJ/dQ

]
=

( dJ

dX
· R

)T
(21)

Based on Eq. 17, one can calculate the derivatives of constrained control points with
respect to the Null Space parameters. Obviously, because of the linear dependence
of the former on the latter, one can calculate:

dQ

dK
= Kernel(A) (22)

Therefore:
dJ

dK
= dJ

dQ

dQ

dK
= dJ

dQ
· Kernel(A) (23)

After the derivatives of Eqs. 23 and 21 are calculated, an optimizer can be used to
provide a correction δK and δP; δK is then applied to Eq. 17 in order to calculate a
suitable constrained control point update δQ. Since δQ is calculated using Eq. 17, it
will satisfy the constraint Eq. 15.
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Optimization Algorithm

The analysis described previously, needs to be done once during the import of the
BRep model. The constraints are linear and therefore, no re-calculation of the con-
straint matrix is required. Since the constraint matrix is constant, so is its Kernel.
Briefly the optimization algorithm is listed below.

1. Import BRep model and optionally apply shape – fix algorithms.
2. Calculate the constraint equation matrix by applying C0 and optionally C1 con-

tinuity between patch interfaces. At the same time identify which control points
are constrained.

3. Calculate and store the Kernel of the constraint matrix using the method shown
in Sect. “Null Space of the Coefficient Matrix”.

4. Calculate the parameters of the boundary mesh points on the BRep using point
inversion techniques (Ma and Hewitt 2003). Use these parameters to calculate
the shape derivative matrix R.

5. Solve the Primal and the Adjoint flow problems and extract the sensitivities.
6. Use the sensitivities to calculate the unconstrained control point and Null Space

parameter derivatives. Using these derivatives update the shape.
7. Update themesh using the boundarymesh displacements provided by the updated

BRep and check for stopping conditions. Either stop algorithm or go to step 5.

Results

The Geometry morphing method is coupled with the continuous Adjoint technique
and is tested in two cases.

The S-Bend Climate Duct

The S-Bend duct (Fig. 4) is an air duct test case provided by VolksWagen AG. The
goal of this test case is to minimize the power (pressure) losses of the flow subject
to the deformation of the S-section of the duct. Of course, up to C1 continuity is to
be maintained at the interfaces between moveable patches and between the moving
and the non–moving part as well. The geometry is rather challenging as from the
46 NURBS trimmed patches, the 28 belong to the S-section. These 28 patches have
various complexities and the total number of control points on the S-section is 5830.
Due to the high degree of the patches almost every control point is constrained
through the Kernel of the constraint matrix. The flow analysis is done using a mesh
of 700 K cells. The flow is laminar with an inlet velocity of 0.1m/s (Re = 400). A
drop of 9.1% is achieved after 40 iterations. The convergence history can be seen in
Fig. 6 and the final shape of the S-section in Fig. 5.
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Fig. 4 Initial geometry of the S-Bend (Courtesy of VolksWagen AG)

Fig. 5 Left: The initial CAD model at the regions with concentrated sensitivities. Right: The
updated CAD model at the regions with concentrated sensitivities

Fig. 6 The convergence
history of the objective
function after 40
optimization cycles. The
drop accounts for 9.1% the
initial objective function
value



Adjoint Shape Optimisation Using Model Boundary Representation 31

The Drivaer Model

The Drivaer model is a reference vehicle model designed by TU Munich. The goal
of this test case is to minimize the drag force on the car body. The analysis is done
using a mesh of 15M cells. The velocity of the moving vehicle is set at 38.89m/s
(=140Km/h), which yields Re= 4.2E+6. The flow is turbulent and thus the Primal
problem is solved using the Spalart-Allmaras turbulence model. The flow is treated
as steady and therefore averaging over time steps is required to calculate the flow
variables and the sensitivities. Similarly to the S-Bend case, only a part of the vehicle
is allowed to move. In particular, the regions towards the rear notchback area (trunk,
spoiler, sides) (Figs. 7 and 8). The whole CADmodel consists of 1300 BRep patches.
The moveable part consists of 24 patches with a total of 5094 control points. C0 and
C1 continuity is imposed in this case as well, constraining a total of 3094 control
points. A drop in the objective function of 0.93% is noticed after five optimization
cycles. The history of the unsteady objective function along with the mean values
can be can be seen in Fig. 9.

Fig. 7 Initial geometry of the Drivaer vehicle. In orange shading is the moveable part of the
geometry for this case

Fig. 8 In the left figure, the spoiler region of the Drivaer is demonstrated. On the right side of the
vehicle the mesh before the update is shown. On the left side, the updated can be seen. In the right
figure, the same region can be seen from farther. The coloring on the right and the left side of the
vehicle matches the sensitivity map before and after the update respectively
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Fig. 9 In this figure the changes in the drag history after 5 updates can be seen. 2000 averaging
steps were done per iteration. With blue color, the exact history can be seen. With orange color, the
averaged objective values are shown. The change to the average values over the last 3 iterations is
minimal

Conclusion

The Geometry Moprhing method creates a CAD based framework for shape opti-
mization that is independent of the CAD package used to design a model. Input to
the method is a standard CAD file such as STEP or IGES. The BRep model stored in
files of such types is described by NURBS parametric elements. Therefore, the shape
optimization is performed by displacing the NURBS control points. The displaced
shape is always constrained to be described by the same NURBS patches as the
initial. Any design intent stored in the mathematical description of the NURBS, is
passed to the optimized model. Continuity is ensured during optimization by impos-
ing linear constraints with respect to control points at an adequate number of points
on trimming curve regions. The constraints are maintained by making sure that the
control point displacements always belong to the Null Space of the constraint matrix.
The method is fast and accurate as (a) the time for the method to be initialized (con-
straint matrix, Null Space, point inversion) never exceeded 30 seconds and shape
update was almost instantaneous and (b) continuity was always maintained at the
level of the imported CAD tolerances. Furthermore, the method is fully automated
to the extend that the BRep quality permits. The updated CAD model can always be
exported to a standard file, for a post processing step by any modern CAD package.
While GeometryMorphing is a reliable package independent CAD-related optimiza-
tion method, it must be noted that in the end, optimization is done via the NURBS
representation. NURBS are free form surfaces and there are always challenges when
dealing with such geometric elements. For example, concentrated sensitivities can
lead surface regions to morph into a high curvature state. Moreover, it would even be
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possible to have a richer design space in the BRep than the mesh. That is a situation
where the total number of control points of a moveable region of a model exceeds
the number of the computational mesh points. This results in a wrinkly BRep surface
as the sensitivity information is not evenly distributed along the control points.
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CAD and Adjoint Based Multipoint
Optimization of an Axial Turbine Profile

Ismael Sanchez Torreguitart, Tom Verstraete and Lasse Mueller

Abstract A computer-aided design (CAD) and adjoint based multipoint optimiza-
tion of the LS89 high pressure axial turbine vane is presented. The aim is to reduce
the entropy generation at both subsonic and transonic flow conditions by means of
employing CAD and adjoint based methods during the optimization process. The
performance metrics at design and off-design conditions are grouped into a single
objective function using equal weights. A steady state Reynolds-Averaged density
based Navier-Stokes solver and the one-equation transport Spalart-Allmaras turbu-
lence model are used to predict the losses. The entropy generation is reduced whilst
keeping the trailing edge thickness and the axial chord length as manufacturing
constraints and the exit flow angle as a flow constraint, which is enforced via the
penalty formulation. The resulting unconstrained optimization problem is solved by
a L-BFGS-B algorithm. At every optimization iteration a new profile is constructed
using B-splines and the grid is rebuilt by elliptic grid generation. The gradients used
for the optimization are obtained via a novel approach in which both the CAD kernel
and grid generation are differentiated using Algorithmic Differentiation techniques.
The sensitivities of the objective function with respect to the grid coordinates are
computed by a hand-derived adjoint solver. The off-design performance of the LS89
is significantly improved and the optimal geometry is analyzed in more detail.
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Nomenclature

c chord length
cax axial chord length
g pitch
J1 term proportional to entropy generation
J2 exit flow angle

JMP multi point pseudo cost function
ṁ mass flow

Mise isentropic Mach number
Mise,2 downstream isentropic Mach number
P01 inlet total pressure
P02 outlet (downstream) total pressure
p2 outlet (downstream) static pressure

RLE leading edge radius
RTE trailing edge radius

t throat height
t1PS , …, t4PS PS thickness
t1SS , …, t9SS SS thickness

X grid x, y, z coordinates

Greek symbols

α design vector
βin inlet angle

βout outlet angle
γ stagger angle
dJ
dα

performance sensitivity vector
dJ
dX adjoint sensitivity vector
dX
dα

grid sensitivity vector
ϕPS pressure side trailing edge wedge angle
ϕSS suction side trailing edge wedge angle

σ solidity

Introduction

The pursuit of low-cost, efficient and accurate computational methods for numerical
shape optimization in aerodynamics is critical for the aerospace industry. It enables
the designer to make significant design improvements at the early stage of the design
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chain before freezing the geometry and handing it over to manufacturing. One dis-
tinguishes between two main categories: local and global optimization algorithms.
The computational resources for the global optimization algorithms can grow expo-
nentially with the number of design variables, and hence their use in industry chain
design is sometimes restricted to small test cases and/or preliminary design. The
computational effort can be significantly reduced by using local optimization algo-
rithms, such as gradient based methods, provided that the gradients are computed
with the adjoint method, for which the cost is nearly independent of the number of
design variables (Peter and Dwight 2010).

Choosing a suitable parameterization which is used for industrial design pro-
cesses can reduce the post-processing efforts to deliver a feasible optimal shape for
manufacturing. The parameterization of the geometry can be done at either the grid
level or within the computer-aided design (CAD) environment. In the former case, a
common approach is to use the grid point coordinates as design variables (Jameson
2004), which offers a very rich design space but the connection to the CAD geometry
is lost. Since CAD is the industry adopted standard for the design of components,
an additional step is required to transform the optimal shape defined by grid points
back to smooth CAD shape, which can take significant time and it is not guaranteed
that the final approximated CAD shape will meet the design requirements and con-
straints (Braibant and Fleury 1984; Samareh 2001). Also, the use of a smoother is
mandatory to avoid the unbounded growth of high frequency oscillations, leading to
irregular shapes. This inherently reduces the rich design space, yet still allows for the
exploration of unconventional designs. To avoid previously mentioned problems, in
this work we propose to keep the CAD geometry in the optimization loop. The use of
CAD-based parameters such as stagger angle, leading and trailing edge radius, etc.,
however, requires an additional sensitivity computation step. The partial derivative
of the grid coordinates with respect to the design variables, also referred in this work
as the grid sensitivities, need to be computed as well. This could be done by using
finite differences, but the accuracy of the gradients is dependent upon the chosen
step-size for each design variable. This work aims to circumvent the accuracy issues
due to limited arithmetic precision or truncation errors of finite differences by using
Algorithmic Differentiation (AD) (Griewank and Walther 2008) for the CAD kernel
and the grid generation (Sanchez Torreguitart et al. 2016).

The well-known LS89 (Arts et al. 1990) high pressure axial turbine nozzle guide
vane was originally designed and optimized at the Von Karman Institute for Fluid
Dynamics for a subsonic isentropic outlet Mach number of 0.9, by an inverse method
(Van den Braembussche et al. 1990) based on Euler and potential flow analysis
solvers, using the difference between the calculated velocity distribution and the
required one to modify the profile geometry. A CAD and adjoint based approach
was used inMontanelli et al. (2015) to perform a single and multi-point optimization
of the LS89 to reduce the total pressure losses by constraining the outlet mass flow
whilst keeping the leading and trailing edge geometries and the profile thicknesses
fixed.Recently, substantial aerodynamic improvementswere achieved at design point
(Sanchez Torreguitart et al. 2017) by means of using a different parameterization
and possibly richer design space. As shown in Sanchez Torreguitart et al. (2017), a
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16 % reduction in total pressure loss was achieved whilst keeping the axial chord
length, trailing edge radius and exit flow angle fixed. However, the performance of
the optimal profile is deemed to deteriorate significantly at off-design conditions.
Given that a turbomachine typically operates over a range of different aerodynamic
conditions, this paper aims at optimizing the performance of the LS89 axial turbine
profile at off-design conditions. The design optimization is carried out by using a
CAD and adjoint based approach, in which a combination of forward AD and hand-
derived reverse differentiation is being used for the grid generation and the flow
solver respectively.

Methodology

Figure 1 shows a schematic view of the optimization process. In this section, some of
the individual components of the optimization flow chart will be discussed in more
detail.

In order to create the geometry in an automated fashion it is important to have a
robust parameterization. The turbine profile parameterization shown in Figs. 2a, b is
based on the description given in Pierret (1999).

Various engineering and CAD-based design parameters that are relevant to the
aerodynamic performance (e.g., solidity, stagger angle, etc.) and to themanufacturing
requirements (e.g., axial chord length, trailing edge radius) are used to define the
profile. First, a camber line is constructed with a 2nd order Bézier curve defining
its control points (PLE , Pmid , PTE), as shown in Fig. 2b. The suction side (SS) and
pressure side (PS) curves are constructed as B-spline curves by defining the position
of the control points relative to the camber line. The profile is closed by circular
arcs at the leading edge (LE) and trailing edge (TE). Equal curvature geometric
continuity (i.e., second order derivative continuity) is maintained between the SS
and PS B-splines at the leading edge by applying the appropriate normal distance of
the first control point relative to the camber line for this purpose. A total number of
22 design variables is used for the optimization process. The axial chord length and
the trailing edge radius are kept fixed as manufacturing constraints.

Original design
Create

geometry
Generate

grid
Solve
primal

Objective
evaluation

Check
objective

Solve
adjoint

Compute
sensitivities

L-BFGS-B

Optimal design

design iteration i=i+1

Fig. 1 Optimization flow chart
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Fig. 2 CAD-based parameterization of the LS89

After creating the profile geometry, a multi-block structured grid is rebuilt for
every optimization iteration. A mesh-independence study was carried out in order to
find the appropriate mesh settings, which were kept the same during the optimization
process. Authors refer to Sanchez Torreguitart et al. (2016) for details about the grid
generation.

The flow solver employs a cell-centered finite volume discretization on multi-
block structured grids. The three dimensional compressible RANS equations are
solved with an adaptation of the JT-KIRK scheme described in Xu et al. (2015),
which is an implicit Runge-Kutta time integration scheme accelerated by local time-
stepping and multigrid. The fluid is considered to be a calorically perfect gas and the
eddy-viscosity hypothesis is used to account for the effect of turbulence. Convective
fluxes are computed using the second order accurate Roe’s approximate Riemann
solver (Roe 1981) with a MUSCL-type reconstruction (Van Leer 1979). Viscous
fluxes are calculated with a central discretization scheme. The numerical dissipa-
tion of the scheme is controlled by the entropy correction by Harten and Hyman
Harten (1983). Oscillations near shocks are suppressed by a van-Albada type limiter
(Venkatakrishnan 1993). Boundary conditions are imposed weakly by utilizing the
dummy cell concept (Blazek 2001). The negative Spalart-Allmaras turbulencemodel
(Allmaras and Johnson 2012) is used for the turbulence closure problem assuming
fully turbulent flow from the inlet (Reinlet ≈ 2 × 105).

After solving the primal solver, a performance metric that is proportional to the
entropy generation J1 and the exit flow angle J2 at the outlet of the domain can be
computed for each operating condition with expressions 1 and 2 respectively.

J1 =
∫
out pρ

1−γ Vxdy

ṁout
(1)
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J2 = atan

(
Vy

Vx

)

(2)

After non-dimensionalizing them with J1,ref and J2,ref they are combined into a
pseudo cost function via the penalty term method (expression 3), which transforms
the constrained problem in an unconstrained optimization formulation.

JMP =
3∑

op=1

1

3

(
J1op
J1,ref

)

+ ω

(
J2op3
J2,ref

− 1

)2

(3)

The left term of the pseudo cost function is a weighted average of the non-
dimensional entropy generation, which is computed with equal weights for the fol-
lowing operating points (op): Mise,2 = 0.9 (op = 1), Mise,2 = 0.955 (op = 2) and
Mise,2 = 1.01 (op = 3). By grouping the performancemetrics at design and off-design
conditions into one single objective function, the multipoint objective optimization
can be treated as a single objective one. The right term of expression 3 is the penalty
term, which becomes larger the more the exit flow angle deviates from the target
value. In order to reduce the computational effort, the penalty term is computed
only for the 1.01 Mach transonic operating point, which is the most challenging
operating point when it comes to satisfy the aerodynamic constraint. We hereby
make the assumption that the flow turning atMise,2 = 1.01 is always smaller than at
Mise,2 = 0.9, which we later validate on the baseline and optimized profiles. The ω

is the penalty coefficient and was selected by trial and error.
After evaluating the cost function, it is necessary to compute the gradients. The

adjoint solver computes the gradients of the cost function J (e.g., entropy genera-
tion or exit flow angle) with respect to the grid point coordinates X (i.e., dJ/dX).
Similarly to the flow solver, the adjoint solver uses the same stabilization JT-KIRK
scheme of Xu et al. (2015). The hand derived discrete adjoint solver assumes that the
eddy viscosity does not change with geometry variations (frozen turbulence), which
is a valid approach for most engineering design applications.

Next, the performance sensitivities (dJ/dα) for each cost function J with respect
to the design variables α are computed by a scalar product of the adjoint-based
sensitivities (dJ/dX) with the grid sensitivities (dX/dα) as follows:

dJ

dα
= dJ

dX
dX
dα

. (4)

In this work, the AD tool ADOL-C is used to compute the grid sensitivities
dX/dα in one single evaluation of the primal at a relatively low cost by using the
forward vector mode approach. The dJ/dα gradients were also computed by finite
differences and compared against the ones obtained with the method described in
this study, showing a reasonably good agreement (Figs. 3a, b).
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Fig. 3 Adjoint based gradients compared to finite difference approximations

Finally, the gradients are given to the Quasi-Newton L-BFGS-B algorithm (Zhu
et al. 1997), which is available in the python SciPy package (Jones et al. 2017), and
it is used to find the new design vector.

Results

The optimizer performed a total number of 30 iterations, from which 12 of them
were line search iterations in order to find an appropriate step size. Figure 4 shows
the evolution of the non-dimensional cost functions during the optimization process
after excluding the line search iterations. The solid line represents the evolution of
the first term of the pseudo cost function (expression 3), which has been reduced by
6.4% whilst satisfying the exit flow angle aerodynamic constraint (i.e., J2op3/J2,ref �
1.0), which is indicated by the line with discrete points. The evolution of the non-
dimensional entropy generation for each operating point is also shown on Figure 4.
The optimizer was able to improve the aerodynamic performance of the profile for
each operating point, but the largest improvements were made for the operating point
with a downstream isentropic Mach number of 1.01.

Figure 5 compares the baseline and the optimal profiles and Table 1 summarizes
the main geometrical changes.

Isentropic Mach Number Comparison

Figures 6, 7 and 8 compare the isentropic Mach number distribution of the baseline
and the optimal profiles for a downstream isentropic Mach number of 0.9, 0.955 and
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Table 1 Comparison of the main geometrical changes between the baseline and optimal profiles

Acronyms Units Baseline Optimal Variation

Pressure side trailing edge wedge
angle

ϕPS (deg) 2.500 2.498 −0.0022◦

Suction side trailing edge wedge
angle

ϕSS (deg) 4.000 4.002 0.002◦

Chord c (mm) 64.310 64.254 −0.09 %

Stagger angle γ (deg) 54.925 54.890 −0.035◦

Inlet metal angle βin (deg) 0.0 0.0032 0.0032◦

Outlet metal angle βout (deg) 74.000 73.981 −0.0190◦

Leading edge radius RLE (mm) 4.126 4.097 −0.71%

Solidity σ (−) 1.118 1.114 −0.40%

Pitch g (mm) 57.500 57.683 0.32%

Pitch/chord g/c (−) 0.894 0.898 0.41%



CAD and Adjoint Based Multipoint Optimization … 43

Fig. 6 Isentropic Mach
number comparison for a
downstream Mise = 0.9
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Fig. 7 Isentropic Mach
number comparison for a
downstream Mise = 0.955
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Fig. 8 Isentropic Mach
number comparison for a
downstream Mise = 1.01
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1.01 respectively. Figure 8 shows that a shock is located approximately at X /cax =
0.95 for the baseline. The optimizer was able to reduce slightly the suction side peak
Mach number from 1.145 to 1.129 and moved the peak Mach number location from
X /cax = 0.9 to X /cax = 0.95.

Off-Design Performance

Table 2 shows themain changes in entropy generation, exit flow angle, mass flow, and
total pressure losses (P01 − P02), for the three selected operating points. The largest
aerodynamic improvements were achieved for the transonic operating point where
the total pressure loss reduction was of the order of 14.06 %. The mass flow changes
are kept within a reasonable limit and the exit flow angle is in all the three operating
points above the baseline value. Figure 9 shows the total pressure loss coefficient at
off-design conditions for the baseline, single point (Sanchez Torreguitart et al. 2017)
and multipoint optimal profiles, which is defined as the total pressure difference
between the inlet and outlet divided with the dynamic head at the outlet plane. The
single point optimal profile is the same geometry that was investigated in more detail
in Sanchez Torreguitart et al. (2017), which targets only low losses theMise,2 = 0.9
operating point, and hence does not perform as good on other operating points. At
off-design conditions, the aerodynamic improvements of the single point optimal
profile are reduced as the downstream isentropic Mach number is increased. Beyond
Mise,2 = 0.94, the performance deteriorates rapidly and the baseline would have
lower total pressure losses than the single point optimal profile. In contrast, the
multipoint optimal profile has lower total pressure losses than the baseline at off-
design conditions for the whole Mach number range analysed in the present study.
However, below Mise,2 = 0.935 the single point optimal profile would yield lower
total pressure losses.

Table 2 Changes in performance at the different operating points

Operating point Mise,2 = 0.9 (%) Mise,2 = 0.955 (%) Mise,2 = 1.01 (%)

Entropy generation
variation

−1.92 −0.96 −13.79

Exit flow angle
variation

0.05 0.16 0.17

Mass flow variation 0.12 −0.36 −0.05

Total pressure losses
variation

−1.98 −5.94 −14.06
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Fig. 9 Variation of the total
pressure loss in function of
the downstream isentropic
Mach number Variation of
the total pressure loss in
function of the downstream
isentropic Mach number
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Conclusions

This paper presents a multipoint optimization of the LS89 axial turbine vane profile
for a downstream isentropic Mach number of 0.9 (design point), 0.955 and 1.01.
The off-design performance of the LS89 was significantly improved. The largest
aerodynamic improvements were achieved at the transonic operating point where the
total pressure losses were reduced by 14% whilst keeping the exit flow angle fixed.
By keeping the CAD representation in the optimization loop, it is not necessary to
convert the optimal grid back to a smooth CAD shape. As shown in this work it is
possible to maintain manufacturing constraints fixed, like the axial chord length and
the trailing edge radius. The successful application of the CAD and adjoint based
methods presented in this study for a 2D profile will proof its merits in future 3D test
cases with richer design spaces.

References

Allmaras SR, JohnsonFT, Spalart PR (2012)Modifications and clarifications for the implementation
of the Spalart-Allmaras turbulence model. In: ICCFD7-1902, 7th international conference on
computational fluid dynamics

Arts T, Lambert De Rouvroit M, Rutherford A (1990) Aero-thermal investigation of a highly loaded
transonic linear turbine guide vane cascade.A test case for inviscid andviscousflowcomputations.
NASA STI/Recon technical report N 91, 23437

Blazek J (2001) Computational fluid dynamics: principles and applications, 2nd edn. Elsevier Sci-
ence Ltd, Amsterdam

Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech
Eng 44(3):247267

Griewank A,Walther A (2008) Evaluating: principles and techniques of algorithmic differentiation.
Siam



46 I. Sanchez Torreguitart

Harten A, Hyman JM (1983) Self-adjusting grid methods for one-dimensional hyperbolic conser-
vation laws. J Comput Phys 50(2):235269

Jameson A (2004) Efficient aerodynamic shape optimization. AIAA paper 4369:2004
Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python. https://
www.scipy.org/. Accessed 8 Feb 2017

Montanelli H, Montagnac M, Gallard F (2015) Gradient span analysis method: application to the
multipoint aerodynamic shape optimization of a turbine cascade. J. Turbomach 137(9):091006

Peter JE, Dwight RP (2010) Numerical sensitivity analysis for aerodynamic optimization: a survey
of approaches. Comput Fluids 39(3):373391

Pierret S (1999) Designing turbomachinery blades by means of the function approximation concept
based on artificial Neural Networks, Genetic Algorithms, and the Navier-Stokes equations. PhD
thesis, Von Karman Institute for Fluid Dynamics

Roe PL (1981)ApproximateRiemann solvers, parameter vectors, and difference schemes. J Comput
Phys 43:357372

Samareh JA (2001) Survey of shape parameterization techniques for high-fidelity multidisciplinary
shape optimization. AIAA J 39(5):877884

Sanchez Torreguitart I, Verstraete T, Mueller L (2016) CAD kernel and grid generation algorithmic
differentiation for turbomachinery adjoint optimization. In: 7th European congress on computa-
tional methods in applied sciences and engineering, Hersonissos, Crete, Greece, June

Sanchez Torreguitart I, Verstraete T, Mueller L (2017) Optimization of the LS89 axial turbine
profile using a cad and adjoint based approach. In: Proceedings of 12th European conference on
turbomachinery fluid dynamics & thermodynamics, ETC12, Stockholm, Sweden

Steger J, Sorenson R (1979) Automatic mesh-point clustering near a boundary in grid generation
with elliptic partial differential equations. J Comput Phys 33(3):405–410

Thompson JF, Soni BK, Weatherill NP (1998) Handbook of grid generation. CRC Press, Boca
Raton

Van den Braembussche R, Leonard O, Nekmouche L (1990) Subsonic and transonic blade design
by means of analysis codes. Computational methods for aerodynamic design (inverse) and opti-
mization, AGARD CP, p 463

Van Leer B (1979) Towards the ultimate conservative difference scheme. V. A second-order sequel
to Godunov’s method. J Comput Phys 32(1):101–136

Venkatakrishnan V (1993) On the accuracy of limiters and convergence to steady state solutions.
AIAA Paper 93-0880, Jan 1993

Xu S, Radford D, Meyer M, Müller J-D (2015) Stabilisation of discrete steady adjoint solvers. J
Comput Phys 299:175195

Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization. ACM Trans Math Softw (TOMS) 23(4):550560

https://www.scipy.org/
https://www.scipy.org/


A Comparative Study of Two Different
CAD-Based Mesh Deformation Methods
for Structural Shape Optimization

Marc Schwalbach, Tom Verstraete, Jens-Dominik Müller
and Nicolas Gauger

Abstract Thiswork introduces and compares two different CAD-basedmesh defor-
mation methods. The methods are used within an adjoint structural shape optimiza-
tion, which is part of an evolving CAD-based adjoint multidisciplinary optimiza-
tion framework for turbomachinery components. During an optimization, the CAD
geometry is updated at each design iteration, such that the structural mesh has to
be deformed appropriately. The mesh is deformed in three stages. First, the nodes
along the edges of the outer mesh are displaced to match the shape of the CAD
edges, which are given by B-spline curves. Next, the remaining outer mesh nodes
are displaced to match the shape of the CAD faces, which are given by B-spline sur-
faces. Finally, the outer mesh node deformations are used to solve for the inner node
deformations using either an inverse distance interpolation or the linear elasticity
analogy. Coupling the mesh deformation with an adjoint structural solver enables
gradient computations of structural constraints with respect to CAD design parame-
ters. To compare the robustness of the two mesh deformation methods, a CAD-based
structural shape optimization using each method was performed.
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Nomenclature

m ∈ N number of FEM mesh nodes
mi ∈ N number of inner FEM mesh nodes
mo ∈ N number of outer FEM mesh nodes
n ∈ N number of CAD design parameters

u, v ∈ R B-Spline foot points
uB ∈ R foot point of begin vertex
uMB ∈ R morphed foot point of begin vertex
uE ∈ R foot point of end vertex
uME ∈ R morphed foot point of end vertex

b ∈ R
3m load vector

u ∈ R
3m FEM mesh displacements

uinner ∈ R
3mi inner FEM mesh displacements

uouter ∈ R
3mo outer FEM mesh displacements

x ∈ R
3m FEM mesh coordinates

x̄ ∈ R
3m adjoint FEM mesh coordinates

A ∈ R
3m×3m stiffness matrix

C ∈ R
3 B-spline curve

CM ∈ R
3 morphed B-spline curve

E ∈ R Young’s modulus
P ∈ R

3 mesh point
PM ∈ R

3 morphed mesh point
S ∈ R

3 B-spline surface
SM ∈ R

3 morphed B-spline surface
VB ∈ R

3 begin vertex
VM
B ∈ R

3 morphed begin vertex
VE ∈ R

3 end vertex
VM
E ∈ R

3 morphed end vertex

ν ∈ R Poisson’s ratio
σmax ∈ R maximum von Mises stress
σ̄max ∈ R adjoint maximum von Mises stress

α ∈ R
n CAD design parameters

ᾱ ∈ R
n adjoint CAD design parameters

� ∈ R steepest descent step size

Introduction

Multidisciplinary optimizations (MDO’s) have been extensively used to optimize
turbomachinery components using gradient-free methods (Mueller et al. 2013; Ver-
straete 2008). Gradient-free methods are non-intrusive and do not require source
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code access to implement. On the other hand, they require a high number of iter-
ations to converge and are limited by the curse of dimensionality. This means that
the computational effort grows exponentially with the number of design parameters.
Gradient-based methods use gradients to converge towards a local optimum using
less iterations, but require the gradient of the cost function with respect to design
parameters.

Computing the gradient using a non-invasive approach, such as second order
finite differencing (FD), comes at a high computational cost that is proportional to
the number of design parameters. Adjoint methods (Pironneau 1974; Jameson 1988)
allow the computation of gradients at a cost proportional to the number of costs
and constraints, which is typically far less than the number of design parameters.
Algorithmic differentiation (AD) (Griewank andWalther 2008; Naumann 2012) can
be used to derive a discrete adjoint model from source code.

State of the art adjoint optimizations in turbomachinery focus on aerodynamic cost
functions and constraints (Willeke and Verstraete 2015; Luo et al. 2014; Walther and
Nadarajah 2013). Structural constraints are of high importance because the resulting
shape should not only be aerodynamically optimal, but also structurally feasible. As
a result, an adjoint structural solver has to be integrated within an MDO framework.
In this work, the von Karman Institute’s optimization framework CADO (Verstraete
2010) is used. A CAD-based optimization is strived for, which would also allow
for geometrical constraints to be imposed. For example, one may want to impose a
constraint on the shape’s curvature for manufacturing purposes. The sensitivities of
structural constraints with respect to mesh node coordinates can be computed within
this framework (Schwalbach et al. 2016), but the sensitivities with respect to CAD
design parameters are missing to perform a CAD-based optimization.

An essential component required for CAD-based gradient optimization methods
is a mesh morphing tool which adapts the mesh to the modifications of the CAD
model, while maintaining the same mesh connectivity and node count. A re-meshing
strategy would alter the mesh topology, causing the objective function to become
discontinuous.

Two CAD-based mesh deformation methods are presented in Section
“Mesh Deformation Method”. Algorithmically differentiated versions of the mesh
deformations can be used to perform an adjoint shape optimization, which will
be discussed in Section “CAD-Based Structural Shape Optimization”. The opti-
mization results are used to compare the robustness of the two methods in Section
“Optimization Results and Comparison”.

Mesh Deformation Method

While iterating through a CAD-based optimization process, the CAD design param-
eters are updated, morphing the CAD geometry. Based on the updated geometry,
the structural mesh should be deformed to compute the cost function and the sen-
sitivities of the updated design. Since the CAD geometry defines the outer skin of
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the structural mesh, it is used to compute an accurate deformation of the outer mesh
nodes.

The CAD-based mesh deformation algorithm can be broken down into three
hierarchical steps:

1. morph edge nodes
2. morph face nodes
3. morph inner nodes

The mesh deformations can be expressed as displacements u ∈ R
3m, where m is the

number of structural mesh nodes. The first two steps are identical in both methods
and are used to compute the outer mesh node displacements uouter ∈ R

3mo , wheremo

denotes the number of FEM mesh nodes on the external surface of the mesh. The
mesh deformation methods differ in the last step of morphing the inner mesh nodes.
The three steps are briefly outlined in this section.

Morph Edge Nodes

First, the edges of the mesh are morphed based on the deformation of the CAD
geometry edges, which are represented as B-spline curves C(u). The displacements
of the first and last vertex nodes of the mesh edge are identical to the first and last
points of the B-spline curve. Using this constraint, the displacements of the points
along the curve can be solved for. Solving for the displaced foot points u in parametric
CAD space, rather than fitting the mesh coordinates x to the B-spline curve C(u),
reduces the degrees of freedom to one. The constraint of requiring these mesh points
to be on the edge is then implicitly applied.

To visualize this procedure, consider the example presented in Fig. 1. After the
CAD geometry is updated, the B-spline curve C, which describes the edge, turns
into the curve CM . As a result, the begin and end vertices (VB and VE) are morphed
into VM

B and VM
E . A mesh node P now has to be morphed into PM by morphing

its parametric coordinate u into uM . This is done using the parametric coordinates

Fig. 1 Morphing of edge mesh nodes using parametric CAD space
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Fig. 2 Morphing of face mesh nodes using parametric CAD space

uB, uE of the begin and end vertices before morphing and their morphed parametric
coordinates uMB , uME :

uM = uMB + uME − uMB
uE − uB

(u − uB) (1)

A linear spring analogy is used to relax the points along the curve. Performing this
step for each edge of the CAD faces results in the displacements of the structural
mesh edge nodes.

Morph Face Nodes

After having displaced the mesh nodes along the edges, the next step is to displace
the remaining outer mesh nodes according to the CAD faces. Each CAD face is
represented by aB-spline surfaceS(u, v), whichmorphs into SM . Using the computed
edges from step 1 as boundary conditions, the inner (u, v) foot points of the displaced
CAD face are computed using an inverse distance interpolation. As with step 1, the
displaced nodes are solved in parametric (u, v) space to reduce the degrees of freedom
to two, which automatically satisfies the constraint that the displaced mesh nodes
have to remain on the CAD face. An illustration of this procedure is shown in Fig. 2.
This is done for each face of the geometry.
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Fig. 3 Structural mesh after
deformation using the
inverse distance method

Morph Inner Nodes

Method 1: Using the Inverse Distance Interpolation

The first mesh deformation method computes the inner node displacements uinner ∈
R

3mi using an inverse distance interpolation, where mi denotes the number of inner
structural mesh nodes (Verstraete 2017). The inverse distance interpolation is based
on the displacements of the outer nodes uouter ∈ R

mo , i.e. the skin of the structural
mesh, which are determined by the first two steps. An example of the resulting
deformed mesh is shown in Fig. 3.

Method 2: Using the Linear Elasticity Analogy

The second mesh deformation method uses a linear elasticity analogy to solve for
the inner node displacements uinner ∈ R

3mi . The outer node displacements uouter are
used as boundary conditions to the linear elastic problem

Au = b, (2)

where A is the stiffness matrix and b is the load vector. A structural solver based
on the finite element method (FEM) is used to solve for the mesh displacements u.
A visualization of the resulting mesh deformation is presented in Fig. 4. For now,
global material properties are used for the entire mesh, i.e. the Young’s modulus E
and Poisson’s ratio ν are constant throughout. These properties could also be defined
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Fig. 4 Structural mesh after
deformation using the linear
elasticity analogy

locally to adjust the stiffness of certain parts of the mesh. Furthermore, the adjoint
CSM solver can be recycled for the adjoint implementation of the mesh deformation.

CAD-Based Structural Shape Optimization

Previous work within this framework has enabled the computation of structural sen-
sitivities with respect to FEM mesh nodes (Schwalbach et al. 2016). The adjoint
structural solver was differentiated using CoDiPack (Albring et al. 2015). While
these gradients could be used to perform node-based optimizations, an optimization
using CAD design parameters is aspired (Schwalbach and Verstraete 2016). There
are several reasons that motivate this approach, one being that CAD design parame-
ters provide a more intuitive design space for engineers compared to computational
meshes. Additionally, important geometric constraints can be imposed directly on
an optimization, e.g. constraining the blade’s curvature for manufacturing purposes,
minimum thickness requirements, etc. CAD-free parametrizations, such as free-form
deformation, have a greater difficulty fulfilling such constraints. For gradient-based
optimizations, the structural sensitivities with respect to the CAD parameters are
required. This is achieved by closing the gap between the CAD-based mesh defor-
mation and the structural solver.

For a structural optimization, a typical cost function would be the maximum von
Mises stress σmax ∈ R. As a design space, consider the CAD parameters α ∈ R

n,
which are used as inputs into the CAD kernel to generate the CAD geometry. In
CADO, these could e.g. include the blade angle (Fig. 5) and thickness distributions
(Fig. 6). Thus, for a gradient-based optimization, the gradients

∂σmax

∂α
∈ R

n (3)
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Fig. 5 Blade angle
distribution

Fig. 6 Blade thickness
distribution
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are required. The respective adjoint model

x̄ = σ̄max
∂σmax

∂x
, (4)

can be used to compute the gradients by seeding the model with σ̄max = 1. Previous
work has enabled the calculation of the gradient

∂σmax

∂x
∈ R

m (5)

with respect to the FEM mesh nodes x ∈ R
m. Knowing that the FEM mesh x is

dependent on the CAD geometry, which is generated based on the CAD parameters
α, it can be established that

∂σmax

∂α
= ∂σmax

∂x
∂x
∂α

. (6)

The gradient (5) can be calculated using the adjoint structural solver, while the gra-
dient ∂x

∂α
can be computed by differentiating the mesh deformation in either forward

or reverse mode AD. Using reverse AD, the structural sensitivities (5) could be used
to seed the adjoint model of the mesh deformation

ᾱ = ∂x
∂α

T

x̄ = ∂x
∂α

T ∂σmax

∂x
, (7)

computing the gradient (6) with a single adjoint evaluation.
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Fig. 7 Mesh of initial radial
turbine design

Optimization Results and Comparison

A radial turbine mesh, discretized using 10-node tetrahedral elements, was used to
perform a structural optimization. The initial mesh is shown in Fig. 7, which contains
approximately 85,000 nodes. The objective of the optimization was to minimize the
maximum von Mises stress σmax, which is approximated using the p-norm

σmax =
(

m−1∑
i=0

σ
p
i

) 1
p

, (8)

using CAD parameters α as design variables. A steepest descent algorithm

αi+1 = αi − �
∂σmax

∂α
(9)

with a constant step size of � = 10−8 was used. The criterion to remesh is if the
value of the new cost function σ i+1

max is greater than 5% of the current optimum σ ∗
max

or if the cost function reduction is less than 0.01%.
The resulting optimized geometries are shown in Figs. 8 and 9 for the linear elastic

and inverse distancemethods, respectively. Both deformationmethods lead to similar
geometries, reducing the von Mises stresses in the blade fillet area, by increasing the
thickness of the back plate near the center and decreasing the thickness in the outer
radii.

A convergence comparison of two optimizations using the different mesh defor-
mation methods is shown in Fig. 10. Overall, using the linear elastic deformation



56 M. Schwalbach et al.

Fig. 8 Optimized geometry
using linear elastic mesh
deformation

Fig. 9 Optimized geometry
using inverse distance mesh
deformation

method resulted in a greater cost function reduction of 10.4%, compared to the reduc-
tion of 9.1% with the inverse distance method. The linear elastic method requires
its first remeshing at iteration 16, while the inverse distance method requires it at
iteration 6. Both remeshing occurrences were triggered by the updated cost function
being 5% greater than the current optimum.

The kink in the convergence curve (Fig. 10) of the linear elasticmethod at iteration
6–7 can be attributed to the deformation at the back plate as shown in Fig. 11a. The
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Fig. 10 Optimization convergence for inverse distance (ID) mesh deformation and linear elastic
(LE) mesh deformation

(a) Back plate at iteration 6. Design update
(iteration 7) shown as gray outline.

(b) Back plate at iteration 7. Reduced von Mises
stresses on back plate.

(c) Iteration 6. High von Mises stresses at
outer radius of back plate

(d) Iteration 7. Von Mises stresses at outer
radius of back plate significantly reduced.

Fig. 11 Evolution of radial turbine geometry using linear elastic mesh deformation method
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(d) Comparison at iteration 20

Fig. 12 Sensitivity comparisons between optimizations using the linear elastic and inverse distance
mesh deformation methods at different optimization iterations

design update effectively reduces the high von Mises stresses at the outer radius of
the back plate (Fig. 11b). As a result, one of the areas of high von Mises stresses is
removed (Fig. 11c, d), affecting the maximum von Mises stress computed using the
p-norm (8).

Why have the two optimizations converged to different designs? A comparison of
the sensitivities between the two optimizations is shown in Fig. 12. In Fig. 12a, before
any remeshing occurs, one can see that the sensitivities with respect to the design
parametersmatch upwell. At iteration 6, the first remesh is triggered for the optimizer
using the inverse distance method. Hence, at iteration 7, the two optimizations are
using differentmeshes. The resulting effect is reflected in the sensitivity discrepancies
show in Fig. 12b. The gradient with respect to design parameter 4 is much closer
to zero. At iteration 8 (Fig. 12c), the sign of this gradient actually differs for the
two optimizations, which affects the direction that the optimizer takes for this design
parameter. The difference in sign is even more apparent at iteration 20 (Fig. 12d).
Despite these discrepancies, the final geometries appear similar in shape.
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Conclusion

This work introduced two unstructured mesh deformation methods for CAD-based
adjoint optimizations. The mesh deformations take a CAD-based approach, espe-
cially for the deformation of the outer mesh nodes. This ensures an accurate confor-
mity with the updated CAD geometry. The inner mesh deformations are computed
using either an inverse distance interpolation or the linear elastic analogy with the
help of a structural solver.

The structural solver, which has adjoint capabilites, additionally enables the com-
putation of sensitivities of the structural cost function, e.g. the maximum von Mises
stress, with respect to CAD design parameters. The sensitivities can be used to per-
form a structural shape optimization based on CAD design parameters. A structural
optimization of a radial turbine has been performed using the different mesh defor-
mation methods introduced in Section “Mesh Deformation Method”.

The comparison between the two methods, discussed in Section
“Optimization Results and Comparison”, shows that remeshing can potentially lead
to different optima. The inverse distance method triggers remeshing at an earlier
stage compared to the linear elastic deformation. From this point on, the optimiz-
ers iterate towards different designs due to a sign difference in the sensitivities. As
a result, using the linear elastic deformation, the optimizer has achieved a greater
cost function reduction of 10.4%, compared to a 9.1% reduction using the inverse
distance method. Both methods have converged towards similar shapes.

Future work would involve coupling the structural and fluid disciplines, as well
as adding a vibration analysis. Specifically, coupling the adjoint chain of operations
from CAD design parameters to structural constraints with an adjoint computational
fluid dynamics (CFD) code. A CAD-based adjoint multidisciplinary optimization of
a turbomachinery component can then be carried out.
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Node-Based Adjoint Surface
Optimization of U-Bend Duct
for Pressure Loss Reduction

G. Alessi, L. Koloszar, Tom Verstraete and J. P. A. J. van Beeck

Abstract The pressure loss reduction inside the U-bends of internal cooling chan-
nels is of crucial importance to increase the performance of cooling systems of gas
turbines. The optimization technique proposed in the present work is based on the
continuous adjoint shapemethod and is implemented in theOpenFOAMopen-source
framework. The calculated gradients of the objective function are linked to a node-
based constrained morphing routine, allowing the modification of the shape towards
an optimum design with minimal pressure loss. The integration with a robust mesh
morpher solver leads to successive automatic steps towards the design improvement.
Design modifications take into account constraints and limitations related to the
chosen design. The feasibility of the design is guaranteed by the application of a
smoothing function with the aim to avoid rough external surfaces.

Introduction

Numerical tools often assist the designdevelopment. Thanks to the continuous growth
of the computational resources and the increased accuracy of numerical simulation
models, it is possible to compare different design prototypes and investigate the
influence of several parameters with the aim to improve its performance. However,
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due to the designs complexity, many different parameters are usually coupled and
their effect on the design could be difficult to assess. As a consequence, in the
past decades has been carried out a large development of computational routines
that autonomously maximize the design performance, i.e. the so-called optimization
algorithms. Nonetheless, many design optimization techniques suffer from dimen-
sionality problems, since the numerical effort significantly increases with the degrees
of freedom. Especially when costly CFD simulations are required to evaluate the per-
formance, the search for optimal shapes can only be executed effectively with limited
design freedom.Gradient based optimization techniques, however, still allow for rich
design spaces if the adjoint method is used to compute the sensitivities (Pironneau
1974), since its computational cost is independent from the number of design vari-
ables. The direction of improvement can be obtained at a fixed cost independently
of the size of the design variables space, considerably reducing the overall proce-
dure time and the computational power needed. The adjoint method is increasingly
becoming the tool of choice for gradient optimizations, whose application can be
found in different fields (Jameson 1988; Othmer 2014; Goit and Meyers 2014).

An optimization routine based on the adjoint method has been developed in this
work and has been tested with an internal aerodynamic application. The optimiza-
tion test case is linked to turbomachinery industrial applications, in particular to the
cooling system of gas turbines (Han et al. 2000). The U-bend shape is particularly
representative of the cooling system design, being the major source of thermody-
namic efficiency loss. Due to the large number of parameters that could influence
this application, the adjoint method represents an efficient approach to the problem.

The U-Bend Test Case

Cooling systems of gas turbines, in most of the cases, use air bled from the high
pressure compressor, leading to a penalty in thermodynamic efficiency. A design of
the internal cooling passages for minimal pressure losses would improve the global
efficiency of the gas turbine. The U-bends that connect consecutive passages are
amongst the largest contributors to the pressure losses in the cooling system and
deserve special attention during the design phase. Hence, its design has been con-
sidered separated from the rest of the internal cooling structure in this optimization
work. The considered design and flow configuration has received particular attention
both from research groups and industries, thus various approaches and optimiza-
tion strategies have been applied to it (Verstraete and Li 2013; Zehner et al. 2009;
Namgoong et al. 2008).

The numerical domain considered in the present work is represented by a circular
U-bend of square section (hydraulic diameter Dh = 0.075 (m)), whose geometrical
details can be found in Coletti et al. (2011). A velocity profile with a bulk velocity
of U0 = 8.4 (m/s) and a turbulence intensity of T .I. = 5% has been imposed at the
inlet (Verstraete et al. 2011). A zero pressure boundary condition is applied on the
outlet and a no-slip condition on the wall.
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(a) At z/Dh = 0.5. (b) At z/Dh = 0.03.

Fig. 1 Velocity field and streamlines in the initial 3D U-bend design

Reynolds-averagedNavier-Stokes simulations have been performed using a struc-
tured grid, assuring amaximum y+ value of 0.94. TheLaunder-Sharma low-Reynolds
k − ε turbulencemodel has been used. The velocity field obtained and its streamlines
are shown in Fig. 1, in particular: (a) at z/Dh = 0.5 and (b) at z/Dh = 0.03. The flow
accelerates approaching the bend, it reaches the maximum velocity around the inner
wall while it decelerates along the outer wall. At the symmetry plane, z/Dh = 0.5,
the flow starts to separate before the end of the bend forming a separation bubble. A
longer recirculation bubble is present at z/Dh = 0.03. The flow field characteristics
obtained are in agreement with the numerical ones in Coletti et al. (2011).

The routine has been first tested with a 2D test case to verify the reliability of the
procedure and after applied to the 3D case. The 2D geometry refers to the symmetry
plane of the 3DU-bend design, thus the flow field characteristics are similar to it with
the exception of the presence of a longer separation bubble than the one obtained in
the 3D case at z/Dh = 0.5, as shown in Fig. 2.

The aim of the study is the minimization of the total pressure loss, thus the
considered cost function J is represented by:

J = pinT − poutT =
(
p + 1

2
ρU 2

)
in

−
(
p + 1

2
ρU 2

)
out

(1)

The Adjoint Method in the Context of Shape Optimization

In the adjoint formulation two systems of equations have to be solved, the Navier-
Stokes equations and the adjoint equations. The first step of the optimization process
is to solve the Navier-Stokes equations (primal system) to obtain converged flow
variables, as shown in Section “The U-Bend Test Case”; thereafter the convergence
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Fig. 2 Velocity field and
streamlines in the initial 2D
U-bend design

Fig. 3 Optimization loop

assessment is required for the adjoint variables. By solving both systems of equations,
a surface sensitivitymap canbe extrapolated. The information contained in it suggests
how to modify the body shape in order to increase the performance. Based on this
information the geometry boundary can be modified. Eventually, as proposed in the
present work (Section “Constrained Morphing Routine for an Optimal Design”), a
mesh morphing solver can be included in the optimization routine to allow automatic
successive steps of the optimization process. A schematic loop of the optimization
routine implemented is shown in Fig. 3.
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Adjoint Equations

The problem to be considered is: minimize J satisfying the Navier-Stokes equations.
The variable J represents a general cost function, dependent on the flow variables U
and p, respectively velocity and pressure, and on the design variables.

Following the derivation in Papoutsis-Kiachagias and Giannakoglou (2016), the
adjoint equations, continuity and momentum, are:

∇ · Ua = ∂JΩ

∂p
(2)

Ua · ∇U − U · (∇ · Ua) = ∇ · (2νe f f D(Ua)) − ∇q − ∂JΩ

∂U
(3)

The boundary conditions, derived for the following specified boundaries, are listed
in Table 1.

where: U and p represent the velocity and the pressure (primal variables); Ua

and q are the adjoint velocity and the adjoint pressure (adjoint variables); νe f f is
the effective viscosity; D(Ua) represents the rate of strain tensor; the subscripts Ω

and Γ are referred, respectively, to the volume and boundary contributions of the
cost function; while the subscripts t and n are referred to the tangential and normal
component.

As highlighted by the adjoint equations and their boundary conditions, the adjoint
problem needs to be fed with information related to the cost function, making a one-
to-one relation between them. The cost function chosen for the U-bend optimization,
i.e. the total pressure loss between inlet and outlet (Eq. 1), gives a contribution only
to the boundary conditions, likewise all the cost functions that are only defined along
the boundaries. Those cost functions identify a class for which the adjoint equations
do not vary with a cost function variation.

In the present work the variation of the effective turbulent viscosity with a
design modification has been considered negligible. The so-called frozen turbulence
assumption neglects the change of turbulent quantities under geometry variations.
The use of the frozen turbulence assumption can have a significant influence on the
obtained solution (Zymaris et al. 2009). On the other hand, the use of an adjoint
turbulence model would increase the complexity of the method. Despite the possible
loss of accuracy, the use of this hypothesis leads to an overall validity of the solution
obtained.

Table 1 Adjoint boundary conditions

Inlet and walls

Uat = 0 Uan = − ∂ JΓ
∂p n · ∇q = 0

Outlet

q = UnUan + νe f f (n · (∇ ·Uan)) + ∂ JΓ
∂Un

UnUat + νe f f (n · (∇ · Uat )) + ∂ JΓ
∂Ut

= 0



66 G. Alessi et al.

Surface Sensitivity Map

The adjoint optimization method uses the information from the derivative of the
objective function with respect to the design variables in its search for the mini-
mum. The design variables chosen in the present work are represented by the normal
displacement of each surface node, β, resulting in a very rich design space.

The gradient information, also called surface sensitivity map, can be evaluated
from the solution of the primal and adjoint equations system, as in Eq. 4.

S = ∂J

∂β
= −νe f f

∂Ua

∂n
∂U
∂n

(4)

The surface sensitivity map is evaluated at the walls and expresses how much
the geometry is sensitive to the performance, i.e. how much the objective function
would change for a unit movement in the direction of the surface normal. A highly
sensitive area entails that only a very small shape modification would already result
in a large change of the objective function. The space of design variables is composed
of the normal nodes displacement, thus the modifications must be performed in the
direction normal to the surface itself. The sensitivity map obtained in the 2D U-bend
test case is shown in Fig. 4.

A positive sensitivity region has to be moved away from the fluid to increase
the performance, while a negative sensitivity value indicates that a performance
improvement would be reached by moving those regions towards the fluid. On the
other hand, modifications of a zero sensitivity map region will not influence the cost
function.

Before converting the gradient information into a design variation, a preliminary
step is needed. The surface sensitivity presents high frequency oscillations that, due
to the use of the node based approach, would result in an irregular shape if not treated
in a suitable way. Moreover, the high frequency oscillations will amplify during the
optimization phases, causing mesh distortion problems and ultimately leading to

Fig. 4 Surface sensitivity
map (2D test case)



Node-Based Adjoint Surface Optimization of U-Bend Duct … 67

(a) At the first loop iteration. (b) After 100 loop iterations.

Fig. 5 Raw and smoothed sensitivity signal along the 2D U-bend inner wall

unrealistic shapes. The attainment of a smooth sensitivity is a crucial point to obtain
a valid geometry deformation, and thus an admissible design. Hence, the use of a
filter that takes out the high order oscillations is indispensable. The choice of the
smoothing strategy requires particular attention: while it is mandatory to get rid of
the discontinuities, themain information content of the sensitivitymust be preserved.

A weighted average smoothing has been used in the present work for the 2D
optimization test case. It corresponds to successive weighted interpolations of the
surface sensitivity from face centers to boundary points and vice versa, resulting in
a weighted average that takes into account a stencil of three consecutive nodes. In
particular, the smoothed sensitivity S has been evaluated as follow:

Si =
∑
j

ω j

∑
i

ωi Si (5)

where the weight ω is calculated as:

ωi = li/ lsum (6)

In Eq. 6, li is the inverse distance between face centers and boundary points and
lsum is the sum of the inverse distances. The same definition is used for ω j , where
the distance to be considered is the one from the boundary points to the face centers.

The importance of the application of a smoothing function is highlighted inFig. 5a,
b, which show the raw and smoothed sensitivity signal along the 2D U-bend inner
wall respectively after 1 and 100 iterations. The high frequency oscillations are
already present at the first iteration step and become more pronounced with the
iterations. Note how the smoothed signal still maintains the main information of the
raw sensitivity.
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A Gaussian smoothing Taubin (1995) has been used in the 3D test case, thus the
smoothed sensitivity is given by:

S = (I − λK )S (7)

where: I is the identity matrix; λ is a scale factor and it is a bounded positive number
0 < λ < 1; K = I − Ω;Ω represents the weights matrix, whose non-zero elements
correspond to the design variables neighbours and are equal to the inverse distance
between each node and its neighbour.

Although the performance of the two different smoothing strategies are compa-
rable, the Gaussian smoothing resulted to be more efficient when dealing with high
number of design variables and therefore used for the 3D optimization.

Constrained Morphing Routine for an Optimal Design

The last step of the implemented optimization process includes the modification
of the design and a link to a mesh morpher solver to allow successive automatic
steps towards the design improvement. This leads to two important issues: (1) the
design modifications need to take into account particular limitations intrinsic to the
chosen design, e.g. aerodynamic and geometrical constraints, and (2) the surface
deformations must lead to a variation of the internal grid of the fluid domain which
ensures a sufficient mesh quality to solve the RANS equations further.

Design Variation

Once the sensitivity oscillations have been ironed out, as shown in Section
“Surface Sensitivity Map”, it is possible to link their information to a design varia-
tion. In the present work the design is updated using a steepest descent algorithm, as
in Eq. 8:

xi+i = xi + αSn (8)

where xi and xi+i represent the position vector of each node before and after the
boundary movement respectively. Each node is displaced in the direction normal to
the surface, n, with a magnitude depending on the smoothed surface sensitivity, S.
An additional parameter α is included and is defined as follows:

α = ε

max‖S1‖
(9)

The role of the parameter is to normalize the sensitivity, through its maximum
value at the first iteration of the optimization loop, and to fix the maximum step size
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of the movement, through the parameter ε. In the present work, ε is kept constant, so
it has been used a steepest descent algorithm with fixed step size. Nevertheless, the
surface sensitivity decreases its magnitude as it converges to the optimum, hence the
magnitude of the nodes displacement decreases iteration by iteration and eventually
becomes null if a local minimum is reached.

The choice of the right value for the parameter α represents a key point of the
optimization process. A big value of α could be unsuitable as it could overshoot
the optimum and worsen the design straight away. On the other hand a value that is
too small would exponentially increase the computational time. The choice of the
suitable value to be assigned is left to the user, as it is highly case-dependent. The
results shown in the present work refer to a value of ε = 10−4 and of ε = 5 × 10−3,
respectively, for the 2D and 3D optimization case. A bigger initial deformation has
been imposed to the 3D case in order to minimize the number of optimization cycles
needed to reach an optimum design, being each 3D flow field evaluation much more
computationally expensive than the 2D one.

The algorithm described by Eq. 8 represents a classical steepest descent algo-
rithm and allows a huge degree of freedom in the attainment of the optimized design.
However, the majority of the designs must respect constraints, geometrical and aero-
dynamic, and the optimization is usually required in a limited region of the design.
The planar constraints and limitations present in the U-bend test case are shown in
Fig. 6. The height of the channel is allowed to change up to 0.1Dh .

The bounding box shown in Fig. 6 indicates the constraints to be satisfied and the
zones of the U-bend that can take part in the optimization process. In order to fulfil
the requirements, a constrained steepest descent algorithm has been implemented.
This has been included in a versatile optimization routine that allows to the user
the freedom to choose between unconstrained and constrained optimization. In the
latter, the definition of a bounding box is requested. Finally, it is given to the user the
possibility to choose whether to perform the optimization in a confined region or in
the whole design.

Fig. 6 Planar constraints
and limitations in the U-bend
test case
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Mesh Morphing Strategy

The last step of the optimization process is represented by a link between the boundary
movement and the mesh deformation. For the cases where the motion is solution-
dependent, it can be used ameshmorpher based on the Laplace equation in which the
prescribed boundary movement represents the boundary condition for the internal
cell motion. Details about the mesh morphing strategy can be found in Jasak and
Tukovic (2006). In the present work, a distance-based quadratic method has been
chosen, so the diffusivity in the Laplace equation is a function of the inverse square
distance from the nearest boundary. A distance-based diffusivity improves the mesh
quality near the boundaries: it redistributes themovement inside the domain allowing
bigger deformations on the center of the domain where bigger cells are present.

Nevertheless, the described strategy is not sufficient to avoid a local worsening
of the mesh quality near the moving boundaries. The solver calculates the cell dis-
placement based on a cell-centred approach and interpolates to obtain the points
movement. However, boundaries with prescribed movement maintain their imposed
value, leading to possible differences between those values and the ones of the inter-
nal points and eventually to highly distorted cells, especially for very thin layers. In
order to maintain a good mesh quality, a point interpolation method has been used
(Mesh 2018). The method allows to maintain a fixed first layer height by extending
the interpolation to the boundaries. The difference between the interpolated value on
the boundary and the desired boundary condition is then propagated into the mesh.

The main concern about the use of a mesh movement solver is its capability to
preserve the mesh quality. It is indeed of crucial importance for an automatic process
to avoid the accumulation of error due to low mesh quality. The strategy described,
together with the use of a suitable smoother and an appropriate step size for the
boundary movement, allows the fulfilment of the mesh quality criteria. The cancel-
lation of the high frequency noise in the sensitivity map is indeed fundamental in
order to avoid overlapping of boundaries. In order to ensure the correctness of the
process, thus avoiding to perform the optimization with a highly distorted mesh, a
mesh quality check has been introduced after each mesh morphing step. The addi-
tional step assures that the mesh quality criteria are satisfied at each iteration step
and decides whether to continue with successive iterations of the optimization loop
or to end the process.

Optimization Results

The application of the steps described outlines an optimization routine that should
bring to an improvement of the design with respect to the objective function taken
into account. In the present work, the optimization routine has been fed with a U-
bend shape with the aim to reduce the total pressure loss in it. In order to verify
the reliability of the procedure developed, a 2D optimization corresponding to the
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symmetry plane of the U-bend design has been performed. The satisfactory results
obtained with it, allowed to proceed with the optimization of the 3D design.

2D Optimization Test Case

The outcome of the optimization routine is illustrated in Fig. 7, which shows differ-
ent optimized shapes, their normalized velocity field and their velocity streamlines.
Figure 7a shows a rough transition from the design regions subjected to boundaries
movement and the regions that are not allowed to take part in the optimization process.
Even though an improvement in the pressure drop has been achieved (Δp = −20%),
the shape obtained cannot be considered during an industrial process because of the
highlighted discontinuity. The abrupt variation in the shape takes place over one
single cell, hence the obtained result is questionable.

In order to overcome this problem, two approaches are proposed: the assignment
of a continuity constraint for the surface sensitivity or for the boundary displace-
ment, respectively in Fig. 7b, c. The constraints allow to obtain smooth optimized
designs that could bemanufactured in an industrial process. The continuity constraint
imposed on the surface sensitivity is less demanding, so bigger design modifications
can be reached. Despite the biggest improvement is achieved imposing the constraint
on the sensitivity (Δp = −31.5%), the constraint on the displacement seems to give
results more suitable to an industrial process. Indeed fewer modifications should be
performed on the original geometry, maintaining a remarkable improvement in the
design performance (Δp = −28.5%). Obviously, the attainment of the continuity
constraints allows to reach better improvements, being the discontinuities present in
the initial optimization (Fig. 7a) a limitation to the capability of the optimizer that
remains trapped in a local minimum.

A comparison between the flow field in the original and optimized geometries,
Figs. 2 and 7 respectively, highlights the direction taken by the optimization routine
to achieve its objective. The body shape is modified in order to obtain a decrease of
the pressure drop through the reduction of the separation bubble size that takes form
after the bend. The separation region is indeed the main source of pressure loss in
the proposed design, thus its suppression represents the target of the optimization
routine. Analyses of the optimizedU-bend shapes verify the characteristics discussed
in the previous sections. A flat region is present at the top part of the bend (Fig. 7a, b),
showing that the geometrical constraints imposed have been reached and satisfied.
The external geometries are smooth, proving the effectiveness of the smoothing
strategy used on the sensitivity. The mesh morpher has been shown to be robust
enough so that the mesh quality criteria were satisfied at each iteration.

The variation of the cost function during the optimization process is shown in
Fig. 8. The three different optimizations performed reach a stable minimum, iden-
tified from the attainment of a constant value of the cost function. The introduction
of the continuity constraints clearly influences the optimization history, resulting in
a speed up of the optimization process. The preference for the application of the
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(a) No constraint in the
transitional region. 

(b) Continuity con-
straint for the sensitivity.
(Δ p=−31.5%). (Δ p=−28.5%).(Δ p=−20%).

(c) Continuity constraint for
the displacement.

Fig. 7 Optimized 2D U-bend shape: velocity field and streamlines

Fig. 8 Optimization history 2D U-bend

constraint on the displacement rather than on the sensitivity is confirmed also by the
optimization history, since a comparable final improvement is obtained halving the
computational time of the process. The optimization history of the case with a con-
tinuity constraint on the displacement converges in approximately 2000 iterations.
The high number of iterations performed does not imply the use of a computational
expensive routine. Indeed, the use of partially converged variables at each itera-
tion step considerably speeds up the process, allowing to reach the minimum in a
night-time period. A fully converged simulation was carried out at the end of the
optimization process, confirming the 28.5% improvement in the total pressure loss
and thus verifying the validity of the approach used.
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(a) xz view. (b) yz view. (c) yz section at x=0.

Fig. 9 Optimized 3D U-bend shape

3D Optimization Test Case

The optimization performed on the 2D test case highlighted the necessity to impose a
continuity constraint in the transitional region in order to avoid abrupt variations in the
design. The best result in terms of design and computational time has been attained
with the assignment of the continuity constraint on the boundary displacement, thus
it has been applied also in the 3D optimization case. The optimized U-bend design
obtained is shown in Fig. 9, in particular a xz and yz view, (a) and (b), and a section at x
= 0 (c). The section gradually enlarge in the y-direction until the constraint (Fig. 9b).
Different xz profiles are present along the y axis as illustrated in the yz section
(Fig. 9c). A smooth external shape is attained, proving once again the effectiveness
of the smoothing strategy proposed. The final design obtained would be difficult
to predict without the use of an optimization routine. A comparison between the
resulting velocity fields, Fig. 10, and the initial ones, Fig. 1, confirms the tendency
of the optimizer to modify the design with the aim to suppress the separation bubble,
as observed in the 2D optimization case. Moreover, a significant reduction of the
maximum velocity inside the geometry is obtained.

The route towards the optimumdesign is shown in Fig. 11.A stable localminimum
has been reached with an improvement on the total pressure loss of the 30%. The
initial bigger deformation applied to the 3D case in comparison to the 2D one allows
to reach the optimumdesign in approximately 25 iterations and in a night-time period
using 12 processors. The mesh morpher routine has been shown to be able to tolerate
the big deformations imposed.

Conclusions

The optimization of an internal flow application has been described in the present
work, detailing the structure of the routine developed. The U-bend test case has been
optimized with respect to the total pressure loss. The use of an adjoint optimiza-
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(a) At z/Dh = 0.5. (b) At z/Dh = 0.03.

Fig. 10 Optimized 3D U-bend: velocity field and streamlines

Fig. 11 Optimization history 3D U-bend

tion strategy allowed to efficiently approach the problem, given the high number of
design variables taken into account. The solution of the primal and adjoint problem
gives information on the modifications to perform in order to improve the design,
which has been attained trough the link to a constrained mesh morphing routine. The
optimization has been performed in a restricted area of the design and subjected to
geometrical constraints. Limitations on the regions that can be optimized are gen-
erally present, however the evaluation of an unfeasible optimization covering the
whole geometry could be of interest. Indeed, it would enlarge the design space and
it could lead to ideas for further designs and for different design strategies.
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The optimization routine allowed to obtain an improvement of the cost function of
the 28.5–30%, respectively in the 2D-3D case, through the reduction of the separation
bubble size that develops after the bend. Manufacturability of the design is assured
by a smooth external geometry.
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On the Properties of Solutions of the 2D
Adjoint Euler Equations

Carlos Lozano

Abstract We discuss the structure of the solutions to the 2D inviscid adjoint
equations on airfoils, including the behavior across shocks and sonic lines, the singu-
larities at the forward stagnation streamline and at the trailing edges and the structure
on the supersonic bubble.

Introduction

Adjoint methods are being routinely applied in optimum aerodynamic design, flow
control, as well as error estimation and mesh adaptation. The solution of the adjoint
equations links the sensitivity of a given cost function to perturbations of the flow.
In design applications, these perturbations are shape deformations, and the adjoint
solution yields the gradients of the cost function with respect to the design variables
that can be fed to a gradient-based optimization algorithm. In error control appli-
cations, the adjoint method provides an estimation of the error incurred in the cost
function caused by local errors in the discrete flow solution, which can be used as an
indicator in a mesh adaptation algorithm.

Since the pioneeringwork of Jameson on aerodynamic design optimization (Jame-
son 1988, 1995), the focus has been set on the development of adjoint-based opti-
mization methods, while very little attention has been paid to the structure of the
adjoint solutions. Moreover, in many circumstances the adjoint solutions cannot be
validated directly, and indirect validations through the sensitivities are commonplace.
The problem with this approach is that an accurate adjoint solution does not guaran-
tee accurate sensitivities and, conversely, rather accurate sensitivities can be derived
from manifestly inaccurate adjoint solutions (Lozano and Ponsin 2012).

Some work has been devoted in the past to the investigation of the properties of
adjoint solutions for the quasi-1D Euler equations as well as the 2D Euler equations
(Giles and Pierce 1997, 1998). For the former, Giles and Pierce were able to derive
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closed-form analytic adjoint solutions for a cost function consisting in the integrated
pressure along the duct using a Green’s function approach (Giles and Pierce 2001).

In thisway, it is possible to prove that for the chosen cost function, and for transonic
solutions with a shock and a choked throat, the adjoint variables are continuous with
zero gradient at the shock, where an adjoint shock boundary condition is required,
and that there is a logarithmic singularity at the choked throat.

For 2D flows some insight was gained in Giles and Pierce (1997) using the same
Green function approach, but progresswas limited by the lack of closed-form analytic
flow solutions for typical 2D cases. Anyhow, it was shown that for typical cost
functions (lift/drag) there appears to be an inverse square-root singularity along the
incoming stagnation streamline, which is clearly reflected in both numerical adjoint
solutions and adjoint-adapted meshes.

Likewise, based on numerical evidence, it was claimed that there is no singularity
at sonic lines (provided that they are not orthogonal to the flow, as is usually the
case), and that the adjoint variables are again continuous at shocks, along which an
internal adjoint boundary condition is required.

Aside from these early works, the literature is scarce in this type of theoretical
analysis. Instead, adjoint solutions are usually discussed, if at all, rather descriptively,
based on numerical solutions. In this work we attempt to reconcile both approaches.
We will start by presenting the result of a typical numerical (inviscid) 2D adjoint
solution, pointing out its most salient features, and we will try to fill in the gaps with
theoretical justification where possible and applicable.

Finally, even though the properties of adjoint solutions (especially inviscid ones)
are themselves of little practical relevance for design, which focuses on viscous
applications and pays little attention to the details of adjoint solutions, it is still
important, from a fundamental viewpoint, to characterize precisely the behavior
of inviscid adjoint solutions for both validation of numerical solvers and a deeper
understanding of the adjoint equations. Likewise, the structure of the adjoint solution
is relevant to adjoint-based mesh adaptation algorithms, as new nodes in the adapted
meshes tend to cluster at regions with large adjoint gradients or adjoint singularities.

A Typical (Inviscid) 2D Adjoint Solution

Figure 1 shows a typical (drag) adjoint solution for transonic flow past a NACA0012
airfoil with M=0.8 and α � 1.25◦. This is a shocked case which will allow us to
probe the most salient features of the adjoint solution. The numerical solution has
been obtained with DLR’s unstructured solver Tau (Schwamborn et al. 2006).

We show here a contour plot of the density adjoint. The stagnation streamline,
the sonic lines delimiting the supersonic region as well as the characteristic lines
(see Anderson 1990, Chap. 11) in the supersonic bubble of the baseline flow are
also shown. This is obviously not the analytic adjoint solution, but continuous and
discrete adjoint solutions show a very similar behavior, so the structures that we see
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Fig. 1 Contour plot of the
density adjoint for transonic
flow past a NACA0012
airfoil with M∞ � 0.8 and
α � 1.25o

are likely to be, in general, reasonable approximations to those in the exact solution.
There are various salient features worth-mentioning.

• The adjoint solution appears to be smooth at the shock and sonic lines, although
something is clearly going on around the region where the sonic lines impact the
airfoil surface (see also Fig. 2).

• The stagnation streamline is clearly visible.
• In the supersonic bubble, the characteristic line that impacts on the shock foot
(corresponding to the supersonic region of the flow with the highest influence on
the shock foot) can be clearly spotted in the adjoint map (Sartor et al. 2015).
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Fig. 2 Left: Adjoint density solution on the airfoil surface on four meshes. Right: zoom near the
trailing edge
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Additionally, Fig. 2 shows a plot of the adjoint solution on the airfoil surface on
4 sequentially finer meshes. There are three salient features in that figure:

• There is a very strong mesh dependence of the adjoint surface values, with some
regions even showing hints of lack of mesh convergence or even consistency errors
in the limit of increasing mesh resolution.

• This is particularly noticeable around the sonic points and at the shock location,
where mesh refinement reveals the formation of a shock-like layer. This struc-
ture is likely to be related to the intersection of the supersonic characteristic line
impacting the shock foot rather than to the shock discontinuity itself. This idea
can be confirmed in Fig. 10, which shows that, for the same transonic NACA0012
case with α � 0◦, both the characteristic line and the layer are missing from the
adjoint field. Notice that, at any rate, the above behaviour is, however, strongly
case dependent. Figure 10 itself shows proof of that, with the mesh dependence
restricted to the vicinity of the sonic points.

• Finally, there is a singularity at the trailing edge, where the values of the adjoint
variables at the next-to-trailing-edge nodes grow continually as themesh is refined.
We will come back to this issue in Section “Trailing Edge Singularity”.

Behavior at Shocks

The analysis of the 2D Adjoint Euler equations with shocks has been carried out in
quite some detail in Baeza et al. (2009). Here, we will just review the chief results
and build on them in order to derive a few results.

Suppose then that we have transonic inviscid flow past an airfoil profile S on a
domain � with far-field boundary S∞. Suppose also that there is an attached shock
with profile � extending from xb (shock foot) to xend (shock tip) (Fig. 3).

Let us assume that we want to compute the sensitivity derivatives of the following
cost function

Fig. 3 Scheme of shock location and conventions
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J (S) �
∫

S\xb
h(p, �nS)dS (1)

with respect to variations of the shape of S. (In (1), p is the fluid pressure, in such
a way that when h(p, �nS) � p(�nS · �d), J corresponds to the force exerted by the
fluid on the surface S measured along a direction �d). A small deformation of S,
�xS → �xS + δ�xS causes a flow perturbation δU , where U � (ρ, ρ�v, ρE)T (with
ρ, �v, E the fluid’s density, velocity and total energy, respectively) is the vector of
conservative variables. In the perturbed flow the shock structure and position will be
different, and we will assume that the new shock curve can be described in terms
of a local (small) deformation �x� → �x� + δ�x� . As a result of these perturbations
the cost function changes too, and the corresponding linearized perturbation can be
computedwith the adjoint method. Introducing adjoint statesψ � (ψ1, ψ2, ψ3, ψ4)T

and θ � (θ1, θ2, θ3, θ4)T to enforce the (Euler) flow equations ∇ · �F � 0 and the
(Rankine-Hugoniot) shock equations [ �F · �n�]� � 0 (where �F � (ρ�v, ρ�vvx + px̂ ,
ρ�vvy+pŷ, ρ�vH )T is the flux vector andH the total enthalpy) and [(·)]Σ � (·)downstr−
(·)upstr denotes the jump across the shock), linearizing the resulting cost function and
rearranging yields

δ J (S) �
∫

S\xb
∂ph(p, �nS)(δ�xS · ∇ p)dS +

∫

S\xb
∇�nS h(p, �nS) · δ�nSdS

+
∫

S\xb
h(p, �nS)

(
∂tgδSt − δSnκS

)
dS +

∫

S\xb
∂ph(p, �nS)δpdS

+

(
(�nS · �nΣ )δSn − δ�n

(�nS · �t�)
)
xb

[
h(p, �nS)

]
xb

+
∫

�\�
∇ψT · �FU δUd�

−
∫

S\xb
ψT ( �FU · �nS)δUdS −

∫

S∞
ψT ( �FU · �nS∞ )δUdS∞ −

∫

�

[ψT �FU δU ]� · �n�d�

−
∫

�

θT [ �FU δU ]� · �n�d� −
∫

�

θT [ �F · δ�n�]�d� −
∫

�

θT [(δ�x� · ∇) �F · �n�]�d� (2)

where δSn � �nS · δ�xS and δSt � �tS · δ�xS are the normal and tangent parts of
the shape deformation and κS is the local curvature of the profile, while []xb is the
jump across the shock at the shock foot. Also, δ�x� � δ�t�t� + δ�n �n� and we have
already integrated by parts the term − ∫

�\� ψT∇ · ( �FUδU )d�. We now use that

δ�n� � − (
κ�δ�t + ∂tgδ�n

) �t� , κ� is the local curvature of the shock profile, and
thatψT ( �FU · �nS)δU � ( �ϕ · �nS)δp +ρδ�v· �nS(ψ1+ �ϕ ·�v+ψ4H ),where �ϕ � (ψ2, ψ3), and
integrate by parts

∫
�

θT [ �F · �t�]�∂tgδ�nd� and − ∫
�

δ�tθ
T [∂tg �F · �n�]�d� along

�, using theRankine-Hugoniot condition [ �F ·�n�]� � 0, the identities [ �F ·�t�]xend � 0
(by continuity) and [∂tg �F · �t� + ∂n�

�F · �n�]� � [∇ · �F]� � 0 (since ∇ · �F � 0
on both sides of the shock), as well as the geometric identities ∂tg�t� � κ� �n� ,
∂tg �n� � −κ��t� . Finally, we use the perturbed non-transpiration boundary condition
δ(�v · �nS) � δ�v · �nS + (δ�xS · ∇)�v · �nS + �v · δ�nS � 0. This gives
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δ J (S) �
∫

S\xb
∂ph(p, �nS)(δ�xS · ∇ p)dS +

∫

S\xb
∇�nS h(p, �nS) · δ�nSdS

+
∫

S\xb
h(p, �nS)

(
∂tgδSt − δSnκS

)
dS +

(
(�nS · �nΣ )

(�nS · �t�) δSn

)
xb

[
h(p, �nS)

]
xb

+
∫

S\xb
ρ ((δ�xS · ∇)�v · �nS + �v · δ�nS) (ψ1 + �ϕ · �v + ψ4H )dS +

∫

�\�
∇ψT · �FU δUd�

+
∫

S\xb

(
∂ph(p, �nS) − ( �ϕ · �nS)

)
δpdS −

∫

S∞
ψT ( �FU · �nS∞ )δUdS∞

−
∫

�

(
(ψT + θT ) �FU δU

∣∣∣
down

− (ψT + θT ) �FU δU
∣∣∣
up

)
· �n�d�

−
∫

�

∂tgθ
T [ �F · �t�]�δ�nd� −

([
h(p, �nS)

]
�
+ θT [ �F · �t�]�

(�nS · �t�)

)

xb

δ�n(xb) (3)

Independence of (3) from δU and δ�x� can be achieved if the flow obeys the
Euler+Rankine-Hugoniot equations, the adjoint state obeys the adjoint equation

∇ψT · �A � 0 in �\� (4)

(where �A � �FU are the flowJacobians)with the followingwall and far-field boundary
conditions

�ϕ · �nS � ∂ph(p, �nS) on S\xb
ψT ( �FU · �nS∞ )δU � 0 on S∞ (5)

and is continuous across the shock

ψ |�up � θ � ψ |�down , (6)

where it must obey an internal shock equation

∂tgψ
T [ �F · �t�]� � �t� · ∇ψT [ �F · �t�]� �

[ρ]�vt (∂tgψ1 + H∂tgψ4) + ([p]� + [ρ]�v2t )�t� · ∂tg �ϕ � 0
(7)

along the shock, and

ψT (xb)[ �F · �t�]xb �
[
h(p, �nS)

]
xb

(�nS · �t�)xb
(8)

at the shock foot xb. In that case, the perturbed objective function can be computed
from the remaining terms of (3) as
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δ J (S) �
∫

S\xb
∂ph(p, �nS)(δ�xS · ∇ p)dS +

∫

S\xb
∇�nS h(p, �nS) · δ�nSdS

+
∫

S\xb
h(p, �nS)

(
∂tgδSt − δSnκS

)
dS

+
∫

S\xb
ρ ((δ�xS · ∇)�v · �nS + �v · δ�nS) (ψ1 + �ϕ · �v + ψ4H )dS

+ (δ�xS · �nS)xb
(�nS · �n�)xb
(�nS · �t�)xb

[
h(p, �nS)

]
xb

(9)

Equations (4)–(8) have the following main consequences:

• For non-linear cost functions, the adjoint cannot be continuous at the shock foot.
This is evident already from Eq. (5), from where it follows, taking differences on
both sides of the shock, that [ �ϕ · �nS]xb � [∂ph(p, �nS)]xb , so if h is a non-linear
function of the pressure, then [∂ph(p, �nS)]xb �� 0 and thus [ �ϕ · �nS]xb �� 0. A
numerical example of this situation can be seen in Fig. 4, where a glitch in the
momentum adjoint variables �ϕ � (ψ2, ψ3) for J � 1

2

∫
S p

2ds can be observed
at the shock location.

Using the adjoint equation

�AT · ∇ψ � �AT · �t�∂tgψ + �AT · �n�∂nψ � 0 (10)

Fig. 4 �ϕ � (ψ2, ψ3) at the
wall on meshes 1 and 2 for
J � 1

2

∫
S p2ds
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on both sides of the shock, it can be shown that the above equations entail for the
normal derivatives across the shock the following conditions:

[nx
�∂nψ2 + ny

�∂nψ3]� � 0

[∂nψ1]� + H [∂nψ4]� + vt [t x�∂nψ2 + t y�∂nψ3]� � 0

[vn∂nψ1]� � 0

[vn∂nψ4]� � 0

(11)

plus various others relating the jump in adjoint normal derivatives across the shock
to adjoint tangent derivatives. In (11), vn � �v · �n� and vt � �v · �t� are the normal and
tangent components of the flow velocity across the shock.

• For normal shocks, vt � 0 and is reduced to

t x�∂tgψ2 + t y�∂tgψ3 � 0 (12)

while the wall b.c. yields now ( �ϕ · �nS)xb � [
∂ph(p, �nS)

]
xb

/[p]xb , which is only
consistent with (5) if h is a linear function of the pressure. Using (12) and the adjoint
equation to solve for ∂nψ in terms of ∂tgψ yields, after some algebraicmanipulations,
the following result

∂nψ1 � 0

nx
�∂nψ2 + ny

�∂nψ3 � 0

∂nψ4 � 0

t x�∂nψ2 + t y�∂nψ3 � − 1
vn
(∂tgψ1 + H∂tgψ4)

−(nx
�∂tgψ2 + ny

�∂tgψ3)

(13)

on either side of the shock.Hence, the normal gradient of the adjoint variables verifies

[∂nψ1]� � 0

[∂nψ2]� � −[v−1
n ]�∂tg (ψ1 + Hψ4) t x�

[∂nψ3]� � −[v−1
n ]�∂tg (ψ1 + Hψ4) t

y
�

[∂nψ4]� � 0

(14)

across a normal shock.
What does one actually see in an actual numerical computation? Figures 5 and 6

show the behavior of an adjoint solution at a normal shock in a transonic case and at
a bow shock in a supersonic case. Adjoint variables and their normal derivatives do
appear to be continuous across all shocks. Additionally, adjoint normal derivatives
do seem to vanish across all shocks, but the evidence is not conclusive. At any rate,



On the Properties of Solutions of the 2D Adjoint Euler Equations 85

s

ψ

0 0.01 0.02 0.03

-5

0

5

10

15

ψ1

ψ4

ψ2

ψ3

s
0 0.02 0.04 0.06

-15

-10

-5

0

5

10

15

20

25

ψ1

p

ψ4

ψ2

ψ3

5

10

9

8

7

6

p×10-4ψ

s
0 0.02 0.04 0.06

-1.8

-1.78

-1.76

-1.74

-1.72

2.36

2.38

2.4

2.42

2.44

ψ2

p

ψ1

Fig. 5 Top left: Shock region and cut lines in a transonic NACA0012 case with M∞ � 0.8 and
α � 1.25o. Top right: Drag adjoint variables on 2 meshes along the red cut line within the shock
layer and perpendicular to the airfoil. smeasures distance along the line starting at the airfoil surface.
Bottom left: Drag adjoint variables on 2meshes along the blue cut line crossing the shock parallel to
the airfoil surface near the shock foot. smeasures distance along the line starting from the upstream
side of the shock. Bottom right: Drag adjoint variables on 2meshes along the green cut line crossing
the shock at right angle. s measures distance along the line starting from the upstream side of the
shock

it must be kept in mind that the shocks are under resolved and, likewise, none of the
adjoint computations discussed here enforce the shock boundary conditions.

Sonic Line

Numerical computations show no sign of singular behavior at the sonic line for 2D
cases. This result can be put on amore sound basis by considering the adjoint equation
in coordinates orthogonal (n) and tangent (s) to the sonic line.
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case with M∞ � 1.5 and α � 0o. Line 1 (top right figure) cuts the bow shock along the centerline
(thus resulting in a normal shock), while line 2 and 3 cut the bow shock at right angles away from
the centerline resulting in oblique shocks

�AT · ∇ψ � �AT · �t∂sψ + �AT · �n∂nψ � 0 (15)

Using (15) we can solve for ∂nψ in terms of ∂sψ . We also use that, near the sonic
line, M � 1 + M1n + O(n2), where Mi will in general depend on s, and assume
that the total enthalpy is constant (H � H0) throughout. When the local flow is
orthogonal to the sonic line we get from

∂nψ � −( �AT · �n)−1( �AT · �t)∂sψ � (
n−1M−1 + M0 + nM1 + · · ·) ∂sψ (16)

where the coefficient matrices Mi depend on the transverse coordinate s. Notice that
in this case the normal Jacobian �AT · �n is singular at the sonic line (the eigenvalue
�v · �n−c, where c is the soundspeed, vanishes), which is reflected in the n−1 singularity
in (16). Hence, there is a potential logarithmic singularity in the adjoint variables
across the sonic line. On the other hand, when the local flow is not orthogonal to the
sonic line, we get
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left figure

∂nψ � −( �AT · �n)−1( �AT · �t)∂sψ � (M0 + nM1 + · · ·) ∂sψ (17)

and the normal derivative of the adjoint across the sonic line is perfectly smooth
(Fig. 7).

Trailing Edge Singularity

We have seen in Fig. 2 that for the transonic NACA0012 case at M∞ � 0.8 and
α � 1.25◦, there appears to be a singularity in the adjoint variables towards the
trailing edge. The tangency condition for inviscid flows on walls entails that there
should be a stagnation point at finite-angle trailing edges, while at cusped trailing
edges this needs not be the case. Now, Euler solvers do not obey the first condition, so
one could wonder whether the observed behavior is inherent in the adjoint equations
or rather it is related to the failure of the b.c. at the trailing edge. To this end, we
examine the transonic flowwithM � 0.8 andα � 1.25◦ past a symmetric Joukowski
airfoil resembling the NACA0012 airfoil (Fig. 8).

As can be seen in Fig. 9, the adjoint solution still has a pronounced peak towards
the trailing edge that grows continually as the mesh is refined. On the other hand,
the shock region is almost uneventful. Sonic lines, however, are clearly reflected.

It appears, thus, that the trailing edge singularity does not depend on the wedge
angle. On the other hand, reducing the angle of attack does seem to reduce (and
even eliminate) the singularity, as can be seen in Fig. 10, where the surface value
of the adjoint density for a NACA0012 case with M � 0.8 and α � 0◦ on three
sequentially finermeshes is presented, clearly showing a strikingly different behavior
at the trailing edge. More intuition can be gained by comparing the patterns of the
adjoint momentum vector �ϕ � (ψ2, ψ3) for both transonic NACA0012 cases and the
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Fig. 8 Top: Symmetric
Joukowski airfoil with 12%
width (blue) against
NACA0012 (red). Bottom:
Mach contours for transonic
flow past a symmetric
Joukowski airfoil with
M∞ � 0.8 and α � 1.25◦

symmetric Joukowski airfoil. This is done in Fig. 11, where the adjoint momentum
“flow” associated with the singular behavior at the trailing edge turns around the
trailing edge, unlike the flow associated with the non-singular case that shows a
much more symmetric pattern.
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Fig. 9 Left: ψ1 contours and sonic line (red) for transonic flow past a symmetric Joukowski airfoil
with M∞ � 0.8 and α � 0. Right: ψ1 on the airfoil surface on four sequentially finer meshes
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Fig. 10 Left: Contours of density adjoint variable ψ1 for a NACA0012 airfoil with M∞ � 0.8 and
α � 0. Right: Density adjoint variable ψ1 on the airfoil surface

Supersonic Characteristic

Figure 1 shows that the supersonic characteristic impinging on the shock foot leaves
a strong footprint on the adjoint solution, which actually grows continually as the
mesh is refined (Fig. 7). This behavior is however not universal, as there seems to be
no trace of the supersonic characteristic in either the symmetric (α � 0◦) transonic
NACA0012 case (Fig. 10) or in the transonic symmetric Joukowski airfoil (Fig. 9).
Notice that in those cases, no layer appears to form at the shock location in the surface
adjoint plots, thus suggesting that such behavior is likely tied to the adjoint structure
around the supersonic characteristic.

Stagnation Streamline

The behavior at the stagnation streamline is singular as anticipated in Giles and
Pierce (1997), including the expected inverse square-root character of the singularity
(Fig. 12).

Conclusions

We have presented a number of ideas concerned with the structure of the solution of
the adjoint 2D Euler equations. These include:

• The analysis of the consequences of the adjoint shock equations. These include
continuity of adjoint variables across shocks and a number of relations for the
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Fig. 11 Pattern of the adjoint momentum vector �ϕ � (ψ2, ψ3) near the trailing edge for M∞ � 0.8
transonic NACA0012 cases with α � 1.25◦ (top left) and α � 0 (top right) and the symmetric
Joukowski airfoil with M∞ � 0.8 and α � 1.25◦ (bottom)

adjoint normal derivatives across the shock. For normal shocks, these relations
allow to prove that normal derivatives are mostly vanishing (and continuous)
across normal shocks, while for oblique shocks the situation is not clear. In all
cases, however, numerical evidence seems to support continuous, vanishing nor-
mal derivatives across all shocks.

• The analytic confirmation that no singularity occurs across sonic lines unless the
flow is locally orthogonal to the sonic line.

• A further analysis of the behavior of the (computed) inviscid adjoint solution near
the trailing edge of airfoils, including the confirmation that a singularity (which
hints at a consistency error in the limit of increasing grid resolution) is present even
for cusped trailing edges and is related to the adjoint momentum “flow” turning
around the trailing edge.
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Fig. 12 Left: ψ1 contours for transonic flow past a NACA0012 airfoil with M∞ � 0.8 and α �
1.25◦ Right:Mesh convergence plot ofψ1 along a line crossing the stagnation streamline as indicated
in the left figure. Fits to functions a +b/

√|y − y0|, which confirm the predicted inverse square-root
behavior of the singularity, are shown in red
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Finite Transformation Rigid Motion
Mesh Morpher

Athanasios G. Liatsikouras, Guillaume Pierrot,
Gabriel Fougeron and George S. Eleftheriou

Abstract In any optimization framework, a robust and reliable mesh morpher is
necessary to undertake the adaptation of the CFD mesh to the updated boundaries
at each optimization cycle. Morphing has its share of challenges, namely to main-
tain high mesh quality (avoid distorted elements and tangles) even during extreme
deformations. In this work, the Finite Transformation Rigid Motion Mesh Morpher
(FT–R3M) is presented, an improved version of the Rigid Motion Mesh Morpher
(Eleftheriou and Pierrot in Rigid motion mesh morpher: a novel approach for mesh
deformation, 2016), that eliminates the need for sub-cycling, making it more effi-
cient in terms of CPU time. FT–R3M, which bears some similarities to Chal et al.
(ACM Trans Graph 29(4):38, 2010), is a mesh–less mesh morphing tool, since it
does not require any inertial quantities, that gracefully propagates the movement of
the boundaries (surface mesh) to the internal nodes of the mesh (volume mesh), by
keeping the motion of its parts (referred to as stencils) as–rigid–as–possible. It is
an optimization–based method, which means that the interior nodes of the compu-
tational mesh are displaced to minimize a distortion metric, namely the deformation
energy. Since FT–R3M is minimizing the deformation energy between the initial
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and the final configuration, as opposed to R3M, in which the deformation energy is
minimized from each sub-cycle to another, there is a significant gain in terms of the
quality of the resulting mesh. The efficiency of the morpher proposed in this article
will be demonstrated in small and medium–size cases.

Introduction

A variety of stochastic and gradient–based methods have been devised to solve
aerodynamic shape optimization problems such as the design of airfoils or wings
for optimal drag and/or lift, ducts for minimum power losses, cars with optimal
combination of drag and lift etc. In these kind of optimization problems, it is required
to use a technique so as to deal with the necessary changes of the boundaries (surface
mesh), namely to adapt the computational mesh to the updated geometry in order to
proceed with the optimization process.

Onewell–knownmethod to handle the changes in the boundaries during optimiza-
tion, is remeshing, in which after every optimization cycle a new grid is generated.
This is a time–consuming process and especially for gradient–based methods, in
which the information needed for the shape changes is retrieved from the gradient
with respect to free design variables, the gradient consistency is lost. Moreover, for
complex geometries, manual intervention in the mesh generation will be needed,
which makes this method neither robust nor reliable. On the other hand, a promising
way to propagate the movement of a shape to the interior mesh is to make use of
a mesh deformation tool (mesh morpher). This requires to generate a mesh only
once, at the beginning of the optimization process and then, the mesh morpher will
undertake to deform this mesh at each optimization cycle. In this article, the Finite
Transformation Rigid Motion Mesh Morpher will be presented and demonstrated.

The challenge when ameshmorpher is used, is to maintain a goodmesh quality of
the deformed mesh, namely to avoid negative or distorted elements, highly skewed
cells etc, whichmay cause divergence of the CFD software, in CFD–based problems.
In literature, there is a variety of mesh deformation techniques. Most of them require
a trade–off between attained mesh quality and CPU cost. A simple and easy way,
in terms of implementation complexity, to deform a mesh is by using the Laplacian
smoothing (Hansbo 1995; Su et al. 2010), or the so–calledLaplacian coordinates. The
computation of the displacement related to the nodes of the CFD mesh requires the
solution of a linear system whose dimension scales with the number of nodes of the
mesh. This technique proves to be efficient but not very robust, since it cannot handle
mesh rotations and generally complex transformations.A rivalmesh deformation tool
is the Linear Elasticity morpher, in which the computational mesh is handled as an
elastic solid body (Lynch 1982; Stein et al. 2003). In this method, mesh deformation
is accomplished by solving the linear elasticity equations for themesh point inside the
geometric domain. Since the elasticity equations containmaterial properties (Young’s
modulus and Poisson’s ratio), these are related to the mesh characteristics. Another
popular mesh deformation method is the Spring Analogy Method (Batina 1991). In
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this approach, each edge of the mesh is ‘replaced’ by a tension spring with the spring
stiffness as the inverse of the edge length. Unfortunately, thismethod does not prevent
inverted elements and it fails when the local mesh motion exceeds significantly
the local mesh size. Many improvements have been achieved to prevent element
inversion by introducing torsional springs (Farhat et al. 1998) or semi–torsional
springs (Blom2000), but still mesh anisotropies cannot be handled. A very promising
mesh deformation technique is the mesh morpher based on Radial Basis Functions
(RBF) (Jakobsson and Amoignon 2007). Mesh morphing based on RBF is a robust
and reliable mesh deformation technique but computationally very “heavy”, as the
matrices involved in the computations are very dense.

The Rigid Motion Mesh Morpher has already been introduced (Eleftheriou and
Pierrot 2016). It has been shown that it can handlemesh rotation andmesh anisotropy
very efficiently. An improvement upon this concept, is the development of the Finite
TransformationRigidMotionMeshMorpher, that eliminates the need for sub-cycling
and keeping track of the ‘rigid–motion’ history of the stencils for all sub-cycles. It
employs, as it will be explained below, the Polar decomposition method in order to
project an estimation of the rotation matrix to the special orthogonal space SO(n)
(rotation group; group of the orthogonal matrices of determinant 1), where n is the
spatial dimensions of the problem. The basic idea of FT–R3M is to adapt/deform
the nodes, whose displacement is not prescribed, to a given displacement field of the
prescribed nodes (in most cases the prescribed nodes correspond to the boundary
nodes of the shape), by keeping parts/elements of the mesh as–rigid–as–possible,
hence keeping the deformation energy of these parts/elements, between the initial
and the final state of the shape, minimal. There is a significant gain in terms of CPU
and morphing efficiency.

Rigid Motion as a Building Block Towards Mesh Morphing

The Finite Transformation Rigid Motion Mesh Morpher is a minimization–based
approach. There is a target functional, namely the deformation energy in our context,
which has to be minimized in order to propagate the movement of the boundaries to
the internal nodes of the CFD mesh. In the subsections that follow, the rigid motion
and the total deformation energy to be minimized will be introduced.

Rigid Motion

A rigid motion (or an isometry) consists of rotations, translations (or a combination
of them) such that the distance between every pair of points/vectors is preserved. In
particular, a rigid motion is defined as a map φ : Rn → R

n that conserves the inner
product

∀ x, y ∈ R
n, 〈φ(x), φ(y)〉 = 〈 x, y 〉 (1)
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Assuming a rotation matrix R ∈ SO(n) (R · RT = In, where In is the identity matrix)
and a translation vector t ∈ R

n, a rigid motion when acting on any vector x, produces
the transformed vector φ(x) of the form

φ(x) = Rx + t (2)

The Deformation Energy

Let us denote byN the set of nodes, ∂N the boundary nodes and˜N the internal nodes.
From now on, let Xi be the initial position vector of node with index i and xi the
final one. If the boundary nodes follow a rigid body motion, we also want to a–priori
impose to the interior nodes of the mesh the same rigid body motion

(∃(R, t) ∈ SO(n) × R
n | ∀i ∈ ∂N, xi = R Xi + t) ⇒

(∀k ∈ ˜N, xk = R Xk + t) (3)

To this end, this leads to the following optimization problem: find the pair (R, t) ∈
SO(n) × R

n and xi ∈ ˜N that minimizes the ‘energy functional’ (deformation energy)
between the initial and the final state

E(R, t, x1, · · · , xn) =
∑

i∈N
||φ(Xi) − xi||2

=
∑

i∈N
||R Xi + t − xi||2 (4)

Equivalently, Eq. 4 could be written for the edges of the mesh instead of the nodes
as follows

E =
∑

(i,j)∈N
||R (Xj − Xi) − (xj − xi)||2 (5)

By minimizing expression 5, the whole mesh is handled as one body. In order to
make themethodmore flexible and robust, we group some parts/elements of themesh
into ‘stencils’. A stencil can be a collection of edges, not necessarily geometrical
edges. In our context, an edge is a pair of nodes sharing a common cell. There is
a freedom in the selection of the stencils; in the simplest case, a 1:1 ratio between
the number of stencils and the number of elements is considered. Decomposing the
final deformation energy as a weighted summation of the deformation energy of each
stencil belonging to the mesh, the final expression of the deformation energy to be
minimized can be written as

E =
∑

s∈S
ws

∑

(i,j)∈s
μs,ij||Rs(Xj − Xi) − (xj − xi)||2 (6)
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In Eq. 5, S is the stencil set, s is a stencil belonging to this and (i, j) ∈ s denotes an
edge belonging to stencil s; ws is a positive scalar weight per stencil that stresses the
importance of some stencils as higher that some others’ (e.g. in case of a boundary
layer) and, μs,ij a positive scalar weight per stencil–edge that accounts for mesh
anisotropy, by preventing the distortion of a stencil by favouring rigidity in directions
in which distortion is imminent. Over and above, by denoting as

es,ij = √
wsμs,ij

[

Rs(Xj − Xi) − (xj − xi)
]

(7)

the total deformation energy in Eq. 5 to be minimized can be rewritten as

E =
∑

s∈S

∑

(i,j)∈s
||es,ij||2 (8)

In the final expression of the deformation energy stated in Eq. 5, there is a hidden
non–linear constraint; namely, every matrix Rs (one for each stencil of the mesh)
should be a ‘real’ rotation matrix inside the orthogonal SO(n) group, which can be
expressed as

∀s ∈ S, RT
s Rs = In (9)

Finally, the Energy to be minimized can be expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

s∈S

∑

(i,j)∈s
||es,ij||2

s.t. RT
s Rs = In

(10)

Algorithm of the Morphing Framework

After having introduced the total deformation energy in Eq. 8, it is worth describing
the algorithm to be followed in order tominimize it and, obtain the new/updated posi-
tion of every internal node constituting the CFD mesh. Since the problem expressed
in Eq. 8 is non–linear, it has to be linearized and follow an iterative process to
achieve convergence. Initially, the quadratic constraint stated in Eq. 8 should be lin-
earized. After that follows the derivation of the linearized deformation energy w.r.t.
the unknowns, namely the nodal positions and a skew–symmetric matrix for each
stencil (to be explained later on) and the assembly of a linear system to be solved.
The necessary steps to be undertaken by the morpher are:

1. Solution of a linear system (to be explained later on) and computation of (x κ+1
i ,

R ∗
s ) from (x κ

i , R
κ
s ), the nodal positions and an estimation of the rotation matrix

respectively. Since this solutionwas obtained by linearizing the constraint inEq. 8,
R ∗
s will not be a rotation matrix that belongs to the orthogonal group SO(n), thus
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it has to be projected back to SO(n) in order to find the closest rotation matrix to
R ∗
s . This step is called prediction step.

2. Computation of the closest rotation matrix to R ∗
s . In this step, the position vectors

x κ+1
i are kept fixed and, the R ∗

s for every stencil are projected to the orthogo-
nal group SO(n) to obtain the closest rotation matrix R κ+1

s . This step is called
correction step.

3. Check if steady state has been achieved, namely if xi, Rs have converged. If not,
the iterative process continues returning to step 1.

Building the System of Equations

Before going to the linearization of the total deformation energy, it is worth mention-
ing a few things about the structure of the orthogonal group and its tangent space, that
will also be used during the linearization of the energy. Furthermore, in this section,
the linearized energy will be constructed, as well as the necessary steps to build the
final system to be solved whose solution is the position of each node of the mesh.

Structure of the Orthogonal Group and Its Tangent Space

To better understand the implicit quadratic constraint in Eq. 8, the structure of the
orthogonal group and its tangent space will be briefly explained. Let us denote

SO(n) = {R ∈ GL(n,R) | RTR = RRT = In} (11)

where GL(n,R) is the general linear group of degree n (the multiplication of two
invertible matrices is also an invertible matrix). In addition, let us denote as

ϕ(R) = RTR − In = 0n (12)

Sinceϕ(R) = 0n is singleton (unit set; contains exactly one element), it is also a closed
set. Moreover, ϕ(R) is continuous, hence SO(n) is a closed set. Let R ∈ SO(n) and
B ∈ GL(n,R) be given and ε ∈ R, then we have

ϕ(R + εB) = (R + εB)T (R + εB) − In

= RTR − In + ε(BTR + RTB) + ε2BTB

= ϕ(R) + ε(BTR + RTB) + ε2BTB (13)
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Hence, the Gâteaux derivative of ϕ is

dϕ(R,B) = lim
ε→0

ϕ(R + εB) − ϕ(R)

ε

= d

dε
ϕ(R + εB)

∣

∣

∣

ε=0

= BTR + RTB (14)

Since dϕ(R,B) is linear and continuous, it follows that SO(n) is a differentiable
manifold and that its tangent space at R (TRSO(n)) is the null–space of dϕ(R,B):

TRSO(n) = {dϕ(R,B) = BTR + RTB = 0n} (15)

which means that the space tangent to the orthogonal group SO(n) at R is the space
of linear transformations B such that RTB is skew–symmetric.

Linearization of the Problem

Assuming that a current guess (x κ
i ,R

κ
s ) is available and by introducing the increments

(δxi, δRs), the energy expressed in Eq. 8 (using also Eq. 7) can be rephrased as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

s∈S
ws

∑

(i,j)∈s
μs,ij

[

(Rκ
s + δRs)(Xj − Xi)

−(δxj − δxi) − (x κ
j − x κ

i )
]2

s.t. Rκ
s δR

T
s + δRsRκT

s = −δRsδRT
s

(16)

Now, the linearization of the constraints takes place at this point, by
neglecting the second order terms (assuming that δRsδRT

s = 0). Then,
introducing �s = δRsRT

s , a skew–symmetric matrix (see also Section
“Structure of the Orthogonal Group and Its Tangent Space”, Eq. 16 becomes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

s∈S
ws

∑

(i,j)∈s
μs,ij

[

(In + �s)R κ
s (Xj − Xi)

−(δxj − δxi) − (x κ
j − x κ

i )
]2

s.t. �s + �T
s = 0

(17)

Finally, since �s is antisymmetric, it implies that the product �s[R κ
s (Xj − Xi)]

can be replaced by bs × [R κ
s (Xj − Xi)]with bs a vector. By taking into consideration
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the latter and by rearranging some terms in Eq. 17 we end up with

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

s∈S
ws

∑

(i,j)∈s
μs,ij

[

bs × [R κ
s (Xj − Xi)]

−(δxj − δxi) − (x κ
j − x κ

i ) + Rk
s (Xj − Xi)

]2

s.t. �s + �T
s = 0

(18)

Once the displacement of the prescribed nodes (namely the displacement of the
nodes in the surface mesh) is known, the deformation energy in Eq. 18 is minimized
in a least squares sense, by finding the stationary points w.r.t. the corresponding
unknowns by satisfying

∂E

∂δxi
= 0 and

∂E

∂bs
= 0 (19)

Thederivation of the linearized total deformation energyw.r.t. the degrees of freedom,
namely δx and bs, as stated at Eq. 19, yields a symmetric positive definite system to
be solved of the form

Au = t (20)

where u is the vector that consists of the free variables. Using the condensation (Paz
and Leigh 2001) technique, also known as static condensation, we can eliminate bs
in terms of δxi so as to decrease the size of the system.

Projection on the Orthogonal Group

The linearization of the constraint in Eq. 16 leads to obtain a matrix R ∗
s which lies

on the tangent space of the orthogonal group SO(n). This practically means that R ∗
s

it is not a ‘real’ rotation matrix, thus R ∗
s R

∗T
s �= In. The latter makes the projection of

the estimated R ∗
s in the orthogonal group, essential.

A way to deal with such a problem, is to solve the Wahba’s problem (Wahba
1965). The latter seeks for a rotation matrix between two coordinates systems from
a set of weighted vector observations. Assuming that all xi are known, which in our
case are the nodal position vectors computed after the minimization of Eq. 18, the
rotation matrix Rs of stencil s ∈ S is computed by minimizing the stencil energy

⎧

⎪

⎪

⎨

⎪

⎪

⎩

W (R) = ∑

(i,j)∈s
μs,ij

∣

∣|Rs (Xj − Xi) − (xj − xi)|
∣

∣

2

s.t. RsRT
s = In

(21)
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According to Wahba’s problem, the minimization of Eq. 21 is related to the
orthogonal Procrustes problem, which is to find the orthogonal matrix Rs that is
closest to B, where B = ∑

k μs,ij(xj − xi)(Xj − Xi)
T , in the sense of Frobenius norm

∣

∣|Rs − B|∣∣2F = ∣

∣|Rs|
∣

∣

2
F + ∣

∣|B|∣∣2F − 2tr(Rs B
T ) (22)

Since Rs is a–priori imposed to be an orthogonal matrix, with the proviso that the
determinant is +1 (otherwise if the determinant is –1, it will still be orthogonal, but a
reflection matrix), tr(RsRT

s ) = n, where n is the dimension of the problem andmatrix
B is known, the term−2tr(Rs B) in Eq. 22 should beminimized. Hence Rs in nothing
more than the unitary polar factor of the matrix denoted as B.

In the literature there are many ways to compute the polar decomposition of a
matrix (Markley 1988; Higham 1986). Herein, an iterative method is used based on
Heron’s method for the square root of 1, which has been proved to be very efficient.

Applications

In this section, the Finite Transformation Rigid Motion Mesh Morpher, proposed
in this work, is being demonstrated and tested as a stand–alone tool to show its
efficiency in three cases, in particular in the moving boxes, in a rotating airfoil and
in a beam fixed at the wall.

Moving Boxes Case

This case deals with the movement of a box, which is placed inside a larger box.
It is a simple case, at first sight, though it can provide useful information for the
efficiency and the behaviour of the morpher proposed in this work.

The mesh in between the two boxes consists of 2400 hexahedral elements and
approximately 5000 nodes. In the first case, the inner box is rotated 80 degrees anti–
clockwise around its center and in the second one, it is translated in x–direction (by
one time its boxwidth). In both cases, the outer box is kept fixed (not deformable) and
the nodes in between the two boxes are adapted to each movement. The initial mesh
is presented in Fig. 1 whereas the deformed meshes for both cases, are presented in
Fig. 2. The purpose in the first case is to test the FT–R3M in mesh rotation whereas
in the second one, is to show how the proposed mesh morpher treats the squeezed
elements.

In order to quantify themeshquality, twoqualitymetrics are used.Table 1 tabulates
these quality metrics (maximum value of skewness and non–orthogonality metric)
for each mesh (initial and deformed). For the sake of completeness, it is worth
mentioning that the non–orthogonality metric measures the angle between the line
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Fig. 1 Initial mesh in between the two boxes

Fig. 2 Initial mesh in between the two boxes. In fig b the inner square has been rotated x degrees
around its center and in fig c it is translated over the x–axis

Table 1 Non–Orthogonality and skewness metric before and after the movement of the inner box.
Left: Quality metrics in the case of the rotation of the inner box. Right: Quality metrics in the case
of the translation of the inner box

Quality metric Max. value Quality metric Max. value

Before After Before After

Non–
Orthogonality

0◦ 66.18◦ Non–
Orthogonality

0◦ 35.87◦

Skewness 0 0.91 Skewness 0 0.51
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connecting two cell centers and the normal of their common face (the lower the
better) whereas the skewness metric measures the distance between the intersection
of the line connecting two cell centers with their common face and the center of that
face (smaller is better).

In this simple case, it is illustrated that the Finite Transformation Rigid Motion
MeshMorpher is able to handlemesh rotations and, at the same time,maintain a good
mesh quality in such extreme deformations. FT–R3M can also prevent the distortion
of an element (squeezed elements) by keeping these stencils more rigid than others
for which the distortion is not imminent.

Deformation of a 2D Airfoil

The second problem is dealing with the rotation of a 2D airfoil. The computational
mesh is appropriate for viscous flows and consists of approximately 32K nodes and
60K elements, with a boundary layer at walls (quadrilateral elements) and triangular
elements everywhere else. The airfoil is rotated anti–clockwise and FT–R3M under-
takes the CFD mesh adaptation to the rotated boundaries. Moreover, quality metrics
(in particular skewness and non–orthogonality) are used to quantify the quality of
the resulting mesh. The purpose is to demonstrate the utility of the proposed mesh
morpher in extreme deformations in an anisotropic mesh. In Fig. 3, the deformation
energy on the initial and the deformed mesh of the airfoil are presented.

In Fig. 4 a focus has been made on the leading (left) and the trailing (right) edge
of the airfoil on the resulting mesh, after 90◦ degrees of rotation for demonstration
purposes. The skewness and the non–orthogonality metrics for the initial and the
resulting mesh are tabulated in Table 2. The rotation of 90◦ degrees of the airfoil is
just before an inverted element appears. In Fig. 4 it can be observed that FT–R3M
preserves the orthogonality of the boundary layer on the deformed airfoil.

Fig. 3 Initial mesh on the airfoil (left) and the deformation energy on the deformed airfoil (right)
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Fig. 4 Focus on the leading (left) and trailing (right) edge of the rotated airfoil

Table 2 Mesh quality metrics before and after the deformation of the airfoil

Quality metric Max. value

Before After

Non–Orthogonality 56.59◦ 84.21◦

Skewness 0.88 0.90

Deformation of a Beam

The last case, in which FT–R3M is tested, deals with the deformation of a beam
with a rectangular cross section which is fixed at a wall. The aim is to apply extreme
deformations in the free cross-section and adapt the mesh in the new shape of the
beam. The initial shape and mesh of the beam is demonstrated in Fig. 5; the mesh has
been generated using CFD–GEOM and consists of approximately 195K elements
(tetrahedra) and 79K nodes.

The deformed beam is demonstrated in Figs. 6 and 7 for different displacement
fields (bending and twisting deformation respectively). In addition, the same quality
metrics that have been used in previous chapters are also used here to monitor the
quality of the deformed mesh and are tabulated in Table 3. Because of the extreme
deformation field that is applied, the non–linear iterations needed in this case are
more in number than these on the airfoil and the moving boxes cases.

In this particular case, the quality of the mesh is kept almost the same during the
deformation (Table 3). FT-R3M is capable of handling extreme deformations and at
the same time ensuring a good mesh quality.
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Fig. 5 Initial shape and mesh of the beam. The wall on the left of the figure appears only for
demonstration purposes (It has no effect in the morphing process)

Fig. 6 Bending deformation
of the beam. The free cross
section attaches the wall in
which the beam is fixed

Fig. 7 The beam has been twisted 180◦ around the axis which is parallel to its length

Table 3 Quality metrics for the bending deformation (left) and the twisting deformation (right)

Quality metric Max. value Quality metric Max. value

Before After Before After

Non–
Orthogonality

69.0912◦ 68.9014◦ Non–
Orthogonality

69.0912◦ 69.7431

Skewness 0.99047 0.99019 Skewness 0.99047 0.99037
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Conclusion

In this work, a mesh deformation tool, the Finite Transformation RigidMotionMesh
Morpher, has been developed and introduced. FT–R3M belongs to the family of
optimization–based methods, since the internal nodes of the mesh are displaced to
minimize a distortion metric. It has been demonstrated that FT–R3M can handle
intrinsically mesh anisotropies and mesh rotations even in extreme deformations and
maintains a good quality of the resulting mesh.

In this article, FT–R3M has been demonstrated as a stand–alone tool, thus as
on–going work, it will be to couple it with ESI’s in-house adjoint solver (Oriani and
Pierrot 2016). To do so, the equations that describe the morpher should be differenti-
ated so as to compute the adjoint counterpart of it and eventually to compute the grid
sensitivities. Future work may include smoothing of the surfaces, which is necessary
in an adjoint solver loop, since the adjoint sensitivity vector usually contains numer-
ical noise. Moreover, the functionality of the FT–R3M may be extended in order to
be used as static deformation tool, namely as a mesh optimization tool.
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The Unsteady Continuous Adjoint
Method Assisted by the Proper
Generalized Decomposition Method

V. S. Papageorgiou, K. D. Samouchos and Kyriakos Giannakoglou

Abstract In adjoint-based optimization for unsteady flows, the adjoint PDEs must
be integrated backwards in time and, thus, the primal field solution should be available
at each and every time-step. There are several ways to overcome the storage of the
entire unsteady flow field which becomes prohibitive in large scale simulations. The
most widely used technique is checkpointing that provides the adjoint solver with
the exact primal field by storing the computed primal solution at a small number of
time-steps and recomputing it for all other time-steps. Alternatively, approximations
to the primal solution time-series can be built and used. One of them relies upon the
use of the Proper Generalized Decomposition (PGD), as a means to approximate the
time-series of the primal solution for use during the unsteady adjoint solver and this is
where this paper is focusing on. The original contribution of this paper it that, apart
from the standard PGD method, an incremental variant, running simultaneously
with the time integration of unsteady primal equation(s) is proposed and tested.
For the purpose of demonstration, three optimization problems based on different
physical problems (unsteady heat conduction and unsteady flows around stationary
and pitching isolated airfoils) are worked out by implementing the continuous adjoint
method to both of them. The proposed incremental PGD technique is generic and can
be used in any problem, to support either continuous or discrete unsteady adjoint.

Introduction

The numerical solution of the unsteady adjoint PDEs requires the storage or recom-
putation of the time-varying primal solution at each time-step. In the literature,
strategies to overcome the full storage of the primal solution time-series have been
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proposed. The most frequently used is (binomial) checkpointing (Griewank and
Walther 2000). This may ensure the user-defined balance between storage of the
primal solution at selected time-steps and recomputations. A viable alternative is to
approximate the primal solution time-series through an (incremental) method with
low storage requirements, employed during the solution of the primal PDEs, which
are integrated forwards in time. Approximation methods can be evaluated in terms of
the accuracy of the reconstructed primal solution and its effect on the computed sensi-
tivity derivatives, as well their computational cost. Approximation methods have the
advantage of avoiding (even partial) recomputations of the unsteady primal solution,
as required by methods such as checkpointing. Among them, linear interpolation,
cubic-splines, Fourier series or data compression techniques such as the Singular
Value Decomposition (SVD) (Balzano and Wright 2013; Vezyris et al. 2016) should
be reported.

In this paper, the PGDmethod (Chinesta et al. 2014; Ammar et al. 2012; Ladevèze
2014) is used to reconstruct the primal field by reducing memory storage. The main
idea is to represent a multi-dimensional (in space and time) field as the sum of
products of 1D functions; for an unsteady 2D scalar field of u, for instance, one may
write

u(x, y, t) ∼=
M∑

μ=1

φμ(x)θμ(y)τμ(t) (1)

Assuming that a small numberM ofmodes is enough, a noticeable gain inmemory
usage is expected since scalar modes φμ, θμ and τμ (μ = 1, . . . , M) are stored
instead of the entire u(x, y, t) field.

In an unsteady simulation, if the whole time-series of the solution u(x, y, t) must
be available before processing them by the PGD, no gain in storage requirements
is expected. For this reason, an alternative method is proposed, in which once the
instantaneous primal solution becomes available at each time-step, the already com-
putedmodes are incrementally updated. This will be referred to as incremental PGD
(iPGD).

In this paper, the programmed PGD (or iPGD) library is used to reconstruct
the solution of an unsteady heat conduction and two unsteady inviscid flow prob-
lems within optimization workflows supported by the continuous adjoint method
(Papadimitriou and Giannakoglou 2007). For the heat conduction problem, a 2D
structured mesh is used and the spatial part of the space-time decomposition is
performed in the transformed domain. In the unsteady flow problem, an immersed
boundary approach [in specific, the cut-cell method (Clarke et al. 1986; Samouchos
et al. 2016)] is used. The adaptive mesh used by the cut-cell method requires extra
treatment that will be made clear in Section“Applications 2 & 3: Gradient Compu-
tation for the Unsteady Euler Equations with the Cut-Cell Method”.
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Reconstructing Already Computed Fields by PGD

Consider a 2D time-dependent field u = u(x, y, t), previously computed by any PDE
solver on a standard structured mesh. In the PGD framework, this solution can be
approximated by the sum of a relatively small number (M) of 1D functional products
(Eq. 1). All these modes are built in M successive steps. At the mth step (m ≤ M),
the corresponding 1D functions are computed so as to minimize the representation
error, which is given in discrete form by:

Em = 1

2

K∑

k=1

I∑

i=1

J∑

j=1

⎡

⎣
m∑

μ=1

φ
μ

i θ
μ

j τ
μ

k − ui, j,k

⎤

⎦
2

(2)

The problem of defining the modes is non-linear, so it has to be solved iteratively
within each of the M steps of the successive enrichment by means of an alternating
direction scheme. For themthmodes (1 ≤ m ≤ M),φm is computedfirst, considering
θm and τm to be known from the previous iterations or their initialization and so
forth. For instance to compute φm , Eq. 1, truncated by keeping only the firstm terms,
is multiplied by τm and θm and integrated along t and y. Since all the functions of
y and t are known, the 2D integrals can be computed and the final equations for
updating the modes are

φm =

∫
y

∫
t
uθmtmdt dy −

m−1∑
μ=1

φμ
∫
y

∫
t

θmθμτmτμ dt dy

∫
y

∫
t
(θm)2(τm)2dt dy

θn =
∫
x

∫
t
uφntndt dx −

n−1∑
i=1

θ i
∫
x

∫
t

φnφiτ nτ i dt dx
∫
x

∫
t
(φn)2(τ n)2dt dx

(3)

τ n =

∫
y

∫
x
uφnθndx dy −

n−1∑
i=1

τ i
∫
y

∫
x

φnφiθnθ i dx dy

∫
y

∫
x
(φn)2(θn)2dx dy

The three above equations for the mth modes are used iteratively until an appro-
priate convergence criterion bemet, before proceeding to the computation of the next
modes.

Through differentiation of Eq. 2, it can be proved that the modes computed by
Eqs. 3 minimize Em . Taking this into consideration, the incremental variant of PGD
(iPGD) can be formulated. This formulation and implementation of iPGD in unsteady
adjoint is the key originality of this paper.
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Incremental PGD Method

In order to approximate a flow field u(x, y, t) using the method developed in the pre-
vious section, the whole time-series should have been computed and stored before-
hand. This storage should definitely be avoided. This section presents a new method
(iPGD) which overcomes this drawback. The concept of the iPGD method is that,
the field reconstruction is gradually performed. During the integration of the pri-
mal PDEs, the solution field at each new time-step is used to enrich the previously
computed modes.

Consider the same 2D time-dependent field u=u(x, y, t) which, hereafter, will
be in discrete form as ui, j,k . The field approximation is still given by Eq. 1, but
modes should incrementally be updated at each time-step. Equations for updating
the modes are extracted by minimizing an error function similar to Eq. 2. Since only
the current (time-index k=K+1) solution field is available, the error function must
be decomposed as:

Em = 1

2
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i=1
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j=1
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φ
μ

i θ
μ

j τ
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+ w
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(4)

where the first term on the r.h.s. corresponds to the approximation error at the current
time-step, whereas the second one to the overall error for all the previous time-steps,
which have already been processed through the iPGD and yielded modes φ̃

μ

i , θ̃
μ

j ,
τ̃

μ

k . The contribution to the error is weighted by w which is user-defined. At each
time-step, modes (φm

i , θm
j , τm

k ) are updated and new values τm
K+1 are appended. The

unknown quantities are calculated by setting the derivatives of the error against zero,
getting

φm
i = Qi

1x/Q
i
2x , i = 1, . . . , I (5a)

θm
j = Q j

1y/Q
j
2y, j = 1, . . . , J (5b)

τm
k = Qk

1t/Q
k
2t , k = 1, . . . , K (5c)

τm
K+1 = QK+1

1T /QK+1
2t , (5d)

where
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Equations 5 are coupled and must be solved iteratively through the following
algorithm:

• Step 1: Initialize φ, θ and τ for u(x,y,t) at the initial time instant, i.e. for k=1.
This is, practically, equivalent to the PGD of a known 2D spatial field. Set k=2.

• Step 2: Compute all φm , θm and τm , m=1, . . . , M , using Eqs. 5a–5c.
• Step 3: Compute τm

k+1, using Eq. 5d.
• Step 4: Set k=k+1. Return to step 2.

It is obvious that the above algorithm approximates the various instantaneous
spatial fields with different error as it proceeds from one time-step to the next. How-
ever, this cannot be avoided since we are using a single error function E which
amalgamates all time instants; recall that the final error to be minimized in the one
corresponding to all time-steps.



114 V. S. Papageorgiou et al.

Application 1: Optimization Based on the Unsteady Heat
Conduction Equation

The first application is dealing with the optimization of the temperature (T ) profile
along the left–most straight boundary Sc of a 2D domainΩ (Fig. 2). A 100×80 struc-
tured mesh is used. Along the remaining boundaries of Ω , fixed Dirichlet conditions
are imposed on T . Temperature T (in Kelvin) along (Sc) is given by

T (ζ, t) = T̃ (ζ ) + 20 ζ(1 − ζ ) sin

(
2π t

Ta

)
(6)

where its “steady” part is

T̃ (ζ ) =β1(5ζ − 20ζ 2 + 30ζ 3 − 20ζ 4 + 5ζ 5) + β2(10ζ
2 − 30ζ 3 + 30ζ 4 − 10ζ 5)

+β3(10ζ
3 − 20ζ 4 + 10ζ 5) + β4(5ζ

4 − 5ζ 5)

+T1(−5ζ + 10ζ 2 − 10ζ 3 + 5ζ 4 − ζ 5) + T2ζ
5

This rather complicated expression results from a Bézier-based parameterization
of the unknown temperature profile. In the above formulas, 0 ≤ζ ≤ 1 is the non-
dimensional distance of any node on Sc measured from the bottom-left corner of Ω ,
and β1, β2, β4 are given by

β1 = 1

(b1 − b2)2 + 3
− 1

(b3 + 2)2 + 5
, β2 = 1

(b2 + b3)2 + 4
− 1

(b3 − 1)2 + 1
,

β4 = 1

(b3 + 1)2 + 2
− 1

(b1 − b3)2 + 5

where bq(q=1, 2, 3) are the three optimization variables. The extra variable β3

depends on the other three, its role being to ensure that the mean temperature on
the boundary Sc remains constant and equal to 450K . This leads to the constraint
β3=1800−β1−β2−β4 to bemet. The T profile inEq. 6 changes periodically in time,
with period Ta =800 s. The unsteady heat conduction equation in the transformed
(ξ, η) domain is

R = ρCp
∂T

∂t
− 1

J

∂

∂ξ i

(
k Jgi j

∂T

∂ξ j

)
= 0 (7)

where gi j is the contravariant metrics and J the Jacobian of the transformation.
The approximated temperature T , Eq. 1, in the (ξ, η) domain, takes the form

T (ξ, η, t)∼=
M∑

μ=1
φμ(ξ)θμ(η)τμ(t). In Eq. 7, k=k(T ) is the thermal diffusivity, ρ the

material density and Cp the heat capacity. Assuming that the material is aluminium,
k(T )=0.0002213 T 2−0.09592 T+211.5[W/mK ] (T in Kelvin), ρ =2.7kg/m3

and Cp =0.910 k J/kgK . The length of boundary Sc is equal to 2m. The objec-
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tive is to minimize the area and time with T > Tcrit =400K . Since this objective is
not differentiable, it was replaced by

F = 1

ΩTa

t∗+Ta∫

t∗

∫

Ω

(
1 − 1

1 + ek2(T−Tcrit )+k1

)
(aT + b)ddt (8)

where k1=3, k2=k1/(Tsa f e − Tcrit ),a=3/Tcrit ,b=1 − aTsa f e andTsa f e =450K >

Tcrit (a user defined relaxing threshold temperature). The time integral is extended
over Ta with the lower limit of integration being t∗, at which the periodic solution
has been established. The development of the continuous unsteady adjoint method
is carried out in the standard way, leading to the field adjoint equation

− ρCp
∂

∂t
− 1

J

∂

∂ξ i

(
k Jgi j

∂

∂ξ j

)
+ gi j

∂k

∂T

∂T

∂ξ i

∂

∂ξ j
= f (9)

where is the adjoint field and f results from thedifferentiation of the objective func-
tion. Equation 9 is solved by imposing time periodic conditions |t=t∗ =|t=t∗+Ta
whereas along the whole boundary S, |S,∀t = 0. Finally, the sensitivity derivatives
of F w.r.t. the design variables bq are given by

δF

δbq
=

t∗+Ta∫

t∗

∫

Sc

k
∂

∂n

δT

δbq
dS dt, q = 1, 2, 3 (10)

where δT
δbq

|Sc = δT
δβk

δβk

δbq
(k = 1, 2, 3, 4). The optimization was based on the steepest

descent method. The case ran for about 7 periods in order to ensure that the temper-
ature field becomes periodic; then, the next period was processed by the proposed
iPGD algorithm and stored for use during the integration of the unsteady adjoint
equation in reverse time. 100 time-steps per period Ta were used. For the purpose
of comparison, the same optimization was repeated twice: (a) with full storage of
the results of the primal equations and (b) using the iPGD method for storing just
the φ(ξ), θ(η) and τ(t) modes with various values of M . Of course, the full storage
could have been replaced by checkpointing with identical sensitivity derivatives. In
all cases, w=50.

The sensitivity derivatives computed with fully stored and iPGD’ed primal fields
are shown in Table 1. Reasonable deviations due to the approximation were expected
but these were harmless for the optimization itself. In Fig. 2, initial and optimized
time-averaged temperaturefields are shown.The small overheated spot formedclosed
to Sc is not contradictory since a greater part of the area is kept at lower temperature
and this yields lower values of F , Eq. 8. In Fig. 1a, the corresponding T̃ distributions
are shown. The optimization follows a slightly different path in each case (Fig. 1b), as
the adjoint solver relies upon differently approximated temperature fields. However,
all cases converge to close data-sets of the design variables by equally reducing
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Table 1 Application 1: Sensitivity derivatives corresponding to the design variable data-set b1=
0.05, b2=b3=0.01 for full storage of the primal field PGD and iPGD-based compression with
various number of modes. Non-incremental a posteriori PGD (denoted by PGD M = 20) is also
included in the plot

δF/δb1 δF/δb2 δF/δb3

Full Storage −1.3715605463E−4 4.5884641458E−6 1.359568712E−2

PGD M=20 −1.3749363010E−4 4.6796390425E−6 1.362148509E−2

iPGD M=30 −1.4020728461E−4 4.3113618801E−6 1.391765592E−2

iPGD M=25 −1.4067134121E−4 6.4219368409E−6 1.381274791E−2

iPGD M=20 −1.4357302527E−4 6.7785627830E−6 1.406576690E−2
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Fig. 1 Application 1: a Initial and optimal temperature profiles T̃ (ζ ) along Sc for full storage of the
unsteady temperature field and using iPGD with M=30. b Convergence of the objective function.
c Blow-up view of (b)

the objective function. The memory needed, even with 30 modes, is about 32.5 %
less than the full storage of the primal unsteady field. In terms of memory usage ,
we should make clear that the comparison is made against full storage, instead of
checkpointing, to avoid also accounting for the extra computational cost of the latter
due to the partial recomputation of the primal field.
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Fig. 2 Application 1: Time-averaged spatial T distribution on the left–most part of the compu-
tational domain for: a the initial T̃ profile (Eq. 8.4), with b1 = b2 = b3 = 0.01, b the optimal
one (b1 = 0.6903, b2 = −0.3743, b3 = −13.7670) as computed with full storage of T and c the
optimal solution (b1 = 0.8287, b2 = −0.5367, b3 = −14.0181) computed using the iPGD with
M=30. Either optimization terminated after 20 cycles, using the same step of steepest descent

Applications 2 & 3: Gradient Computation for the Unsteady
Euler Equations with the Cut-Cell Method

Herein, the PGD method is implemented to compute the objective function gradient
to be used during the shape optimization of an isolated airfoil parameterized using
Bézier curves, where the design variables (bq ) are their control points’ coordinates.
Gradient computation for a stationary airfoil, in which unsteadiness is introduced
by the time-varying far-field flow angle and a pitching airfoil are demonstrated. In
either case, the governing PDEs are the unsteady 2D flow Euler equations:

Ri = ∂Ui

∂t
+ ∂ fi j

∂x j
= 0, i = 1, 4, x j = x, y (11)

where
−→
U = [

ρ ρu ρv E
]T

is the vector of conservative variables and fi j are
the inviscid fluxes in the Cartesian directions, ρ the fluid density, u and v the
Cartesian velocity components, p the static pressure and E the total energy per
unit volume. The objective function is the time-averaged lift over a single period,

F = 1
Ta

Ta∫

0

∫

Sw

pnkrkdSdt , where nk , rk are the components of the unit vectors normal

to the airfoil surface and the freestream velocity, respectively.
The required derivatives of F w.r.t. bq are computed by the continuous adjoint

method. The adjoint equations are (Samouchos et al. 2016)
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− ∂i

∂t
− A jik

∂ j

∂xk
= 0 i, j = 1, 4, xk = x, y (12)

where Ai jk = ∂ fik
∂Uj

and i are the adjoint variable fields. The adjoint boundary con-
ditions are omitted in the interest of space.

When the adjoint solution becomes periodic, the sensitivity derivatives are

δF

δbq
= 1

Ta

Ta∫

0

∫

Sw

p
δ(nkrkdS)

δbq
dt +

Ta∫

0

∫

Sw

(k+1 p − i fik)
δnk
δbq

dSdt

+
Ta∫

0

∫

Sw

i

(
∂ fil
∂xl

δxk
δbq

− ∂ fik
∂xl

δxl
δbq

)
nkdSdt

+
Ta∫

0

∫

Sw

i
∂Ui

∂xl
uwn

δxl
δbq

dSdt +
Ta∫

0

∫

Sw

(iUi + p4)
δuwn
δbq

dSdt

The last two integrals are related to the normal velocity of the solid wall (uwn ) and
vanish for the stationary airfoil.

The flow solution is obtained using the cut-cellmethod (Clarke et al. 1986; Samou-
chos et al. 2016), according to which the flow simulation takes place on a Cartesian
grid, covering both the fluid and solid regions. For higher accuracy, cells cut by the
body contour along with their closest neighbours are subdivided into smaller ones
(Fig. 3). Consequently, the (i, j) data-structure, being a prerequisite for applying the
PGD, is nomore valid. It is beyond the scope of this paper to compare the accuracy of
the cut-cell method with that of CFD on body-fitted grids. Here, we are exclusively
interested in evaluating the adequacy of the (i)PGD approximations.

The integration of the flow equations is based on a cell-centered finite-volume
method with second-order accuracy in both space and time; fluxes are computed
using the Roe scheme (Roe 1981). Special treatment for cells cut by the airfoil
is needed in order to satisfy the conservation laws near solid boundaries with the
required accuracy. An extra difficulty appears, if the body is moving in time. In such
a case, the mesh is continuously adapted to the new position of the body, as follows.
Firstly, the mesh undergoes a coarsening process, where all cells close to the solid
wall are amalgamated with bigger neighbouring cells. Then, the body moves to its
new position and, starting from the already coarsened mesh, cells are split until a
certain level of refinement be met. Meshes are shown in Fig. 3.

By definition, the PGD (or iPGD) can be applied only to structured meshes.
The lack of structure of the mesh used in the cut-cell method is overcome through
a Reference/Regular (RR) mesh. After solving the unsteady Euler equations with
the cut-cell method, the corresponding flow field is transferred to the RR mesh
(Fig. 3c, d), which is as fine as the smallest cell of the cut-cell mesh (Fig. 3a, b).
After that, the iPGD algorithm is implemented to the RR mesh as explained in
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(a) (b)

(c) (d)

Fig. 3 Application 2.2: Adapted meshes, a and b, at the two extreme positions of the pitching
airfoil. Corresponding RR meshes, c and d, used for the iPGD

Section“Reconstructing Already Computed Fields by PGD”. The required transition
from the adapted cut-cell meshes to the RR one, must be quick and accurate. Using
an efficient algorithm based on quad-tree data structure, the correspondence between
the cells of the two meshes is easily accomplished. Each cell of the RR mesh takes
on the flow variables of the cut-cell mesh cell which is part of.

Application 2: Stationary Airfoil

The unsteady Euler equations are solved around a stationary airfoil. The far-field
flow conditions are M∞ = 0.3 and a∞ = Asin(ωt) [deg] with amplitude A= 3◦
and period Ta = 2π

ω
=0.015 s. The cut-cell mesh used for the simulation consists of

10500 cells; a constant time-step equal to Tα/20 is used.
While integrating the flow equations from the previous to the current time-step,

each flow field is processed by the iPGD with M=10 and w=1000. Figure 4 illus-
trates the pressure fields, at two instants corresponding to the max. and min. angle of
attack, as computed by the cut-cell method. The comparison between approximated
and exact fields is satisfactory.

After the time-integration of the flow equations, the iPGD’ed fields are made
available to the adjoint software. A comparison of the computed adjoint energy field
based on the exact and reconstructed flow solutions is presented in Fig. 5.
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Fig. 4 Application 2: Instantaneous pressure fields for a∞ =−3◦ (a) and a∞ =+3◦ (c) are quite
close each other with the corresponding fields (b) and (d) computed by the iPGD method

Havingmade both the primal and the adjoint flows available, the sensitivity deriva-
tives of F w.r.t. bq are computed. Figure 6 shows the effect on approximating the
primal solution through the iPGD method on the accuracy of sensitivity derivatives.
In the same figure, sensitivities computed by the posteriori PGD (i.e not incremental)
compression of the primal unsteady solution (fully stored just for this purpose) are
also shown. The extra deviation due to the incremental algorithm is much smaller
than the total difference between the a posteriori PGD and the reference (from full
storage) values of the derivatives, demonstrating the capabilities of the proposed
incremental algorithm. Note that the only reason we additionally ran the adjoint
based on the a posteriori PGD’ed primal solutions is for obtaining a good indication
of the best accuracy we could ideally get by the iPGD.
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Fig. 5 Application 2: Instantaneous adjoint energy fields for a∞ =−3◦ based on the flow solution
by the cut-cell method (a) and the iPGD-based approximation to the unsteady flow solution (b)

Fig. 6 Application 2:
Comparison of sensitivity
derivatives computed by the
adjoint using a full storage, b
the a posteriori PGD’ed
primal solution and c the
iPGD’ed one
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Application 3: Pitching Airfoil

In the pitching airfoil case, since themesh is changing in time, its data structure should
have also been stored at each and every time-step over and above to the unsteady flow
solution. However, the special structure of the Cartesian meshes allows minimum
data storage, overcoming the need of compressing also the time-changing mesh.
The airfoil is oscillating around the point at chord/4 with position angle that is a
sinusoidal function with amplitude (3◦) and period equal to Ta =0.015 s, split into
20 time-steps. The average number of cells used at all time-steps is about 7000. The
size of the RR mesh is 512×512. The far-field Mach number is equal to 0.3.
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Fig. 7 Application 3: Instantaneous pressure fields at the lowermost (a) and the uppermost (c)
positions of the airfoil motion are almost the samewith the corresponding fields (b and d) computed
by the iPGD method

The flow field is compressed via the iPGD algorithm using M=10 modes. In
Fig. 7 two fields are shown at the extreme instants of the period for the exact and the
reconstructed fields.

The impact of the compressed primal fields on the adjoint solution was examined
by solving the adjoint equations twice with full storage and the iPGD’ed primal data.
Results of the adjoint solver are shown in Fig. 8.

For the two aforementioned cases, the sensitivity derivatives are computed, Fig. 9.
Moreover, two extra curves for 20 and 30 modes are shown. As the number of
modes increases, the primal and adjoint fields match each other much better and
the error in the computed derivatives diminishes. Theoretically, by increasing the
number of modes, the sensitivity derivatives should tend to the “exact ones” (the
one from full storage). However, in practice they seem to stagnate since, in order
to save computational cost we end up with a reasonably low number of modes.
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Fig. 8 Application 3: Instantaneous adjoint energy fields in the lowermost (a) and the uppermost
(c) position of its motion are almost the same with the corresponding fields (b and d) computed by
the iPGD

Fig. 9 Application 3:
Comparison of the sensitivity
derivatives computed using
full storage and the iPGD’ed
primal solution with
M=10, 20, 30. The fact
that the sensitivity of the last
design variable is
approximated with the wrong
sign is minor since this
corresponds to the trailing
edge which remains still
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The saving in memory by the usage of the proposed iPGD algorithm is remarkable.
The full storage of the unsteady flow field needs an average of 7000×20=140000
values to be saved in memory whereas, even with M=30, this number drops to
30(512+512+20)=31320 with the iPGD. The reason for refraining to compare
with checkpointing is exposed at the end of Section“Application 1: Optimization
Based on the Unsteady Heat Conduction Equation”.

Conclusions

The use of the PGD within adjoint-based optimization, for time-varying problems
was presented. The role of PGD is to approximate the time-series of the solution to
the primal PDEs to support the integration of the adjoint equations, backwards in
time. For the first time in the relevant literature, at least to the authors’ knowledge,
an incremental PGD algorithm is proposed. Its distinguishing feature is that there
is no need to store the time-series of the primal solution before processing them
with the PGD. Instead, all modes are updated upon completion of a single step of the
time–integration of the primal PDEs; more precisely, all spatial modes are updated to
account for the new instantaneous primal field and a new element is appended to each
one of the growing temporal modes. With the iPGD method, storage requirements
are much lower compared to the full storage; no comparison with the checkpointing
technique has been made since, the extra computation cost of partial recomputations
of the primal solution of checkpointing should also be accounted for and compared
with the extra cost of running the iPGD algorithm. We refrained from doing so
since work on the acceleration of the iPGDmethod is in progress. The mathematical
formulation of the new iPGD method is provided. Unsteady adjoint runs supported
by the iPGD were demonstrated in unsteady heat and aerodynamic optimization
problems and proved to offer a great economy in storage requirements. Even though
all applications presented in this paper relied upon the continuous adjoint, the iPGD
can also be usedwith discrete adjoint, as it is not related to theway the adjoint problem
is formulated and solved. Another contribution of this work is the use of the iPGD
with the cut-cell method, in which case the CFD meshes dynamically adapt to the
shape boundaries. However, even in this case, it suffices to use a Reference/Regular
mesh and appropriate interpolation schemes in order to be able to apply the iPGD as
with standard meshes.
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A Two–Step Mesh Adaptation
Tool Based on RBF with Application
to Turbomachinery Optimization Loops

Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos Giannakoglou

Abstract Adapting an unstructured CFD mesh to the modified geometry, in accor-
dance with the updated value-set of design parameters at the end of each cycle, is
a must in CFD–based shape optimization loops. Mesh adaptation is a nice alterna-
tive to remeshing procedures which might become expensive and, also, hinder the
initialization of new simulations from previous results. Mesh morphing, based on
Radial Basis Functions (RBF) network, has been widely used in the past to smoothly
propagate boundary nodal displacements into the volume mesh while preserving its
validity and quality. To precisely capture even small design changes, all surface mesh
nodes must be used as interpolation nodes which, in case of large meshes for real-
world application, leads to excessive computational cost and memory requirements.
This paper introduces a cost reduction strategy for mesh adaptation, by proposing a
new two-step RBF interpolation employing the Sparse Approximate Inverse (SPAI)
preconditioner and the FastMultipoleMethod (FMM). The software is demonstrated
in the aerodynamic shape optimization of a turbomachinery row. The purpose of this
paper is not to solve the optimization problem itself; emphasis is laid on the way
the proposed method may handle large displacements and, for this reason, Evolu-
tionary Algorithms (EA) which allow great variations in the values of the design
variables were first used. Adjoint-based optimization follows; its role is to perform
the refinement of the best solution obtained by the EA-based search.

F. Gagliardi (B) · K. T. Tsiakas · K. Giannakoglou
Parallel CFD & Optimization Unit, School of Mechanical Engineering,
National Technical University of Athens (NTUA), Athens, Greece
e-mail: fl.gagliardi@gmail.com

K. T. Tsiakas
e-mail: tsiakost@gmail.com

K. Giannakoglou
e-mail: kgianna@central.ntua.gr

© Springer International Publishing AG, part of Springer Nature 2019
E. Andrés-Pérez et al. (eds.), Evolutionary and Deterministic Methods for Design Optimization
and Control With Applications to Industrial and Societal Problems, Computational
Methods in Applied Sciences 49, https://doi.org/10.1007/978-3-319-89890-2_9

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89890-2_9&domain=pdf


128 F. Gagliardi et al.

RBF-Based Mesh Displacement: Introduction
& Literature Survey

To perform an automated CFD-based aerodynamic shape optimization, a flow solver,
a shape parameterizationmethod, an optimization technique and a procedure to adapt
or regenerate the CFD mesh for each new candidate solution must be available.

The method presented in this paper focuses onto the problem of CFD mesh adap-
tation and is demonstrated in the optimization of a compressor stator. In specific,
an RBF-based mesh adaptation technique, able to smoothly propagate the displace-
ments of all surface mesh nodes to the interior of the domain has been devised and
programmed. This requirement springs from the need of adapting an existing mesh
to an updated CAD representation of the shape to be optimized. This can be used
in optimizations which employ a CAD system to build the geometry, with the CAD
parameters as design variables. In this paper, an in–house parameterization/design
software for turbomachinery bladings (Tsiakas et al. 2016) is used to generate a
NURBS-based representation of the geometry.

Obtaining a new surface mesh conforming with the changed boundaries is the
starting point for deforming the volume mesh. This paper, however, focuses only
on the adaptation of the volume mesh given the displacements of the surface mesh
nodeswhich are obtained by inverting and displacing nodes in theNURBSparametric
space, taking special care for trimmed surfaces (Tsiakas et al. 2016).

RBF-based interpolation methods are robust but may become computationally
expensive, especially for large meshes. In Section“Step 1: Predictor”, it is shown
that, by using a data-reduction algorithm, fewer nodes are used to approximate the
new shape, reducing dramatically the computational cost and memory requirements
compared to the standard formulation. However, this is expected to deteriorate the
geometrical precision of boundaries. In Section“Step 2: Corrector”, a strategy to
recover the deviation of the surfacemeshwith respect to the prescribed shape, caused
by the previously made approximation, is proposed.

The theory of RBF networks, Buhmann (2009), is briefly summarized below.
RBF networks can interpolate discrete data in the n-dimensional space. In mesh
displacement, quantities to be interpolated are the known displacements defined at
source nodes or RBF centres. An RBF deformation functionddd : IR3 → IR3 is a linear
combination of radially symmetric kernels φs(yyy) = φ(||xxxs − yyy||)1 centered at the N
source nodes xxxs ∈ IR3 and weighted by wwws ∈ IR3:

ddd(yyy) =
N∑

s=1

wwwsφs(yyy) (1)

where yyy is the target node position vector. All M (boundary and internal) mesh
nodes yyyt , t ∈ [1, . . . , M], for which Eq.1 provides their displacements ddd(yyyt ) are

1|| . . . || is the Euclidean norm.
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considered as target nodes. The N boundary mesh nodes with known displacements
δδδs ∈ IR3, s ∈ [1, . . . , N ] are used as source nodes xxxs .

Weights wwws are computed so as to exactly reproduce the imposed displacements
δδδs at source nodes; this requires the numerical solution of a linear system with an
N × N symmetric positive-definite2 coefficient matrix AAA, namely:

⎡

⎢⎣
φ1(xxx1) · · · φN (xxx1)

...
. . .

...

φ1(xxx N ) · · · φN (xxxN )

⎤

⎥⎦

⎛

⎜⎝
wwwT

1
...

wwwT
N

⎞

⎟⎠ =
⎛

⎜⎝
δδδT1
...

δδδTN

⎞

⎟⎠ (2)

The computation of weights wwws , by solving Eq.2, is the most computationally
expensive task. It shows poor scalability if implemented naively, due to both the
complexity of linear solvers and its stiffness. After solving Eq.2, the displacements
ddd(yyyt ) for all mesh nodes yyyt are computed by Eq.1 at the cost of M × N RBF kernel
evaluations. The behaviour of the RBF interpolation is highly influenced by the
chosen kernel φ (de Boer et al. 2007).

Mesh adaptation based on RBF interpolation has being standing out in the lit-
erature for their wide range of application. Selim and Koomullil (2016) discuss
advantages and disadvantages of the most widely used techniques, such as linear and
torsional springs, linear elasticity and several interpolation based methods. Based on
their work, mesh deformation based on RBF interpolation is one of the most promis-
ing approach in terms of robustness and morphed mesh quality, on condition that
its high computational cost and bad scalability can be mitigated by methods such as
greedy data reduction algorithms.

Greedy algorithms (Hon et al. 2003) start from a coarse approximation to the
deformation and iteratively refine it until the desired accuracy be reached. They
use a subset of the surface mesh nodes to describe the new shape, leaving the rest
of the nodes for error checking. These methods are more efficient than standard
RBF interpolation but they cannot reproduce exactly all surface deformations. The
iterative procedure, required to guarantee the error drop to a prescribed tolerance
is, for tight surface tolerances, time consuming. Some authors also suggested to
apply a correction step such as an explicit interpolation (Rendall and Allen 2010)
or Delaunay graph mapping (Wang et al. 2015) after the approximation step, but
locally supportedRBF interpolation appears to be a better choice from the quality and
robustness point of view (Gillebaart et al. 2016). Other methods aiming at reducing
the RBF-based interpolation cost can be found in the literature. RBF multilevel
techniques involve successive levels of nested RBF interpolations where, at each
level, the solution from the previous coarser level is interpolated (Narcowich et al.
1999; Lazzaro and Montefusco 2002; Floater and Iske 1996). In this paper, the
interpolation is practically carried out on two levels, with the advantage of being able

2Under certain conditions explained in Buhmann (2009).
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to use other cost reduction methods, which have a dominant setup time and would
be impractical to use in many levels. In Kedward et al. (2017), a multiscale RBF
interpolation which uses multiple support radii to capture deformations at different
scales is presented. The interpolation matrix is built starting from a coarse subset
of source nodes. The algorithm proceeds by iteratively adding the remaining source
nodes using a support radius such that the newly added nodes do not affect the
previous, ending up with an easier to solve linear system. In such a method, the
necessary preprocessing phase cost is dominant, and it is suggested to be performed
once before all mesh adaptations.

The Proposed Two-Step RBF Mesh Displacement Strategy

The proposed method works by hierarchically using an approximate predictor step
followed by a correction one. Both rely on RBF networks. The two steps are briefly
described as follows:

• In the first step (predictor), all mesh nodes (surface, interior) become interpolation
targets and a new coarsened set of source nodes is generated by a non-iterative
data reduction method. This method is adaptive, in the sense that the data reduc-
tion is performed by taking into account the displacement field to be interpolated
instead of just the spatial distributions ofmesh nodes. The entiremesh is displaced;
however, boundary mesh nodes do not precisely respect the known boundary dis-
placements since a reduced number of sources is used.

• The second step (corrector), corrects the position of the surface mesh nodes,
through local deformations.

The first step generates a “small” but dense coefficient matrix (its rank might be by
orders of magnitude lower than the number of surface mesh nodes) while the second
generates a “big” (rank equal to the number of surface mesh nodes), though very
sparse, matrix.

Step 1: Predictor

The predictor is an RBF approximation tool based on data reduction according to
which the source nodes are coarsened by clustering. Cost reduction does not rely
only on the reduced problem size but, also, on the implementation of methods such
as the Sparse Approximate Inverse (SPAI) preconditioner (Kallischko 2007) and the
Fast Multipole Method (FMM) (Fong and Darve 2009). The predictor is divided
into three sub-steps: data reduction, training and application, which are described
below.
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Data Reduction

The objective of the data reduction phase is to find a reduced set of RBF centres
xxxr , r ∈ [1, . . . , NR] which is representative of the displacement field of the surface
mesh nodes xxxs, s ∈ [1, . . . , NS � NR]. For this purpose, an adaptive octree data
structure is employed, which recursively splits the Cartesian space. By taking into
account the surface mesh nodes xxxs density and the spatial gradient of the displace-
ments ∇δδδs the collocation of more RBF centres in areas of rapid variation of the
imposed displacements is ensured.

The centres of leaf (childless) octree boxes xxxr are used as RBF centres in the
predictor training step. The displacement δδδr of each RBF centre xxxr is the averaged
displacement of the source nodes xxxs contained in the corresponding leaf box of the
octree. Such a method does not allow the error to be estimated a priori or reduced
iteratively, but it quickly generates the reduced point clouds to approximate the
displacement field. This approach is preferred since any error in the reproduction of
the imposed displacements will be resolved in the following corrector step. Figure1
shows an example of selected RBF centres and the corresponding CFD surfacemesh.

RBF Network Training

The training process runs on the previously generated RBF centres xxxr . A global
support RBF kernel is chosen taking into account different characteristics, such as
mesh quality preservation (Rendall and Allen 2010), flop count, condition number of
the generated linear system and smoothing effect. In this step, the following kernel
is used

φ(r) = 1
r
σ

+ 1
(3)

where σ is the shape parameter regulating the width of the kernel and r the euclidean
distance between two nodes. The linear system of Eq.2, assembled with xxxr as RBF
centres, is solved by an iterative method.

A Sparse Approximate Inverse (SPAI) (Kallischko 2007) preconditioner is imple-
mented to speed-up the convergence of the iterative solver. This preconditioner is, in
general, not symmetric, and a solver for non-symmetric matrices i.e., Bi-Conjugate-
Gradient-Stabilized (BiCGStab), has to be used . The SPAI preconditioner MMM is an
approximate inverse of an approximation to AAA (Eq. 2). The method is based on the
minimization of the Frobenius norm

min
MMM

‖SSSMMM − III‖2F (4)

where III is the identity matrix and SSS is a sparse matrix formed by the largest entries
of AAA.
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The sparsity pattern of SSS is defined a priori through a sparsification strategy based
on geometric considerations (Carpentieri 2009), avoiding thresholding strategies:
for each RBF centre, all other centres in the neighborhood, from which the biggest
entries of AAA arise, are selected as entries of SSS. Thanks to the decaying RBF kernels,
the largest entries of AAA are arranged in bands and the largest entries of AAA−1 are
expected to be at the same location with the largest entries of AAA (Demko et al. 1984),
so that, for MMM , the same or a similar sparsity pattern to SSS can be employed. Figure2
shows the pattern of the large entries of an RBF training matrix AAA and its inverse
(AAA−1), for the CFD mesh of the turbomachinery case.

In Eq.4, the computation of MMM is based on a property of the Frobenius norm that
allows to split it into a sum of Euclidean norms

‖SSSMMM − III‖2F =
NR∑

i

‖SSSmmmi − eeei‖22 (5)

Fig. 1 RBF centres xxxr (red spheres) generated by the data reduction algorithm in the predictor
step (for a certain displacement of the CFD mesh on the compressor blade). Original mesh surface
nodes xxxs are displayed as black dots. More RBF centres lie in the area of high spatial gradient of
the displacements ∇δδδs . Generally, the RBF centres xxxr do not lie on the mesh surface
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Fig. 2 Pattern of the large entries in a predictor RBF training matrix AAA (left) and its inverse AAA−1

(right). Large to small entries are shown from blue to white. The matrix rank is ∼ 104 and is
originated from the turbomachinery case shown in Fig. 1

where mmmi and eeei are the i th columns of MMM and III . Each summand in Eq.5 consti-
tutes a linear system, which is solved separately from each other with Cholesky
decompositions. The rank of each linear system is noticeably reduced thanks to the
sparsity of mmmi . The number of decompositions needed is also significantly reduced
using geometric considerations: in fact, all RBF centres in the same neighborhood,
identified by an integer lattice3, will lead to the same reduced linear system which
is decomposed just once (Carpentieri 2009). This procedure overestimates the fixed
radius neighbors which leads to bigger linear systems. However, this is compensated
by the reduced number of linear systems to be solved, reduced complexity in the
neighbors search and higher quality of the preconditioner due to the greater number
of entries.

Figure3 shows the time required for the solver to converge including the setup
time for various preconditioners.

RBF Network Application

After having solved Eq.2 for the weights wwwr , the interpolated displacement field
results from Eq.1 applied at each mesh node. For large meshes the application time
can noticeably be reduced using the Fast MultipoleMethod (FMM) (Fong and Darve
2009). FMM is an algorithm for approximating sums such as those appearing in
Eq.1, with reduced complexity and controllable error. Briefly, the FMM exploits the
decay of the RBF kernel by computing interactions between mesh nodes on different

3An integer lattice is tessellation of the IR3 euclidean space in bricks. It is equivalent to a level of
an octree.
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Fig. 3 History of the residual of a full linear system (rank ∼ 4 × 104) for various combinations of
iterative solvers and SPAI preconditioners plotted as the function of normalized time. In the sake
of fairness, the setup time for the preconditioners, which appears as a delay before the solvers take
over, is considered too. Percentages in the legend refer to the density (which is equal to 1 minus the
sparsity of the matrix) of the preconditioners. The non-preconditioned CG solver does not have any
setup time but the convergence rate is badly affected by the system ill-conditioning. Two different
SPAI preconditioners were used, with different densities to show that a correlation exists between
density and quality but, of course, a denser preconditioner requires more time to be built

levels of accuracy depending on their geometric distances. This is achieved by low-
rank approximations to the displacement field in conjunction with a hierarchical
decomposition of the Cartesian space. The quality of the low-rank approximations
determines the error made by the method.

There is a trade-off between complexity and approximation error and whether this
approach becomes advantageous or not depends on the mesh size but, also, the min-
imum mesh nodal distance, which determines the maximum allowed multiplication
error. In fact, the risk is to introduce a great error (due to the prescribed tolerance)
in the interpolated displacements which could yield critical mesh elements quality.
Figure4 shows the time required to performRBF network applications for increasing
mesh sizes with and without the FMM. The FMM-based RBF network application
is cheaper for big meshes.

The implementation relies on the black–box FMM (bbFMM) (Fong and Darve
2009). It is “black-box” in the sense that the functional form of the low–rank approx-
imation is independent of the RBF kernel used since this is based on polynomial
interpolation on Chebyshev nodes.
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Fig. 4 Wall clock time for the evaluation of Eq.1 by varying the number of source and target nodes
(always in the ratio 1:10) using the bbFMM method for the RBF kernel of Eq. 3. The FMM-based
multiplications include the FMM setup time. Two interpolation orders, 5 and 7, are shown for the
bbFMM, introducing a maximum approximation error (infinity norm) smaller then 1 × 10−5 and
1 × 10−7, respectively. Measurements were performed on a computational node with two 6-core
Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz processors

Step 2: Corrector

The corrector step is based on a local RBF interpolation method. Locality is ensured
by the kernel formulation, which vanishes when the distances r of two mesh nodes is
higher than the so-called local support radius rs . The locally supported RBF kernel
used in this step is the Wendland C0 function (Wendland 1995):

φ(r) =
⎧
⎨

⎩

(
1 − r

rs

)2
if r < rs

0 if r ≥ rs
(6)

A tradeoff between the smooth propagation of the deformations in the volume
mesh, computation time and memory requirements, depending on the choice of the
support radius, is expected. Lower support radius leads to better conditioned and
sparser training matrix (see Eq.2) whereas deformation is dissipated in a smaller
portion of the interior mesh.

In the corrector, the RBF centres coincide with the surface mesh nodes with pre-
scribed displacements. Since the predictor has already displaced the surface mesh
nodes close to their target positions, the remaining surface displacements are rela-
tively small and a small local support radius can be chosen.
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The concept of fixed-radius neighbors search is used to reduce the matrix filling
time in Eq.2. An integer lattice, scaled so that the distance between lattice points
is rs , is built to map nearby to each other mesh nodes. The lattice is, then, used
to compute non-zero interactions φ(r) between close nodes instead of all pairwise
interactions.

After solving the sparse linear system, with the help of the SPAI preconditioner,
the displacement field is obtained by evaluating Eq.1 at all mesh nodes. By searching
in a fixed-radius area, the computation of null kernel values of Eq.1 is avoided.

Compressor Stator Blade Optimization Results

The two–step mesh adaptation tool is tested by performing an EA-based, followed
by an adjoint-based, optimization of the blade shape of the TU Berlin TurboLab
low–speed compressor stator (TUB 2016). Inlet conditions are provided in the form
of radial profiles, corresponding to 39.7◦ average inlet flow angle w.r.t. the axial
direction, 104 kPa average inlet total pressure and 301 K average inlet total tempera-
ture. The outlet static pressure is adjusted to impose 9.5 kg/s full-annulus mass flow
rate.

The objective is to minimize the mass-averaged deviation of the exit flow from
the axial direction, defined as

α =

⎛

⎜⎜⎜⎝

∫

SO

(
cos−1

(
Va

|VVV |
))2

ρVa dS
∫

SO

ρVa dS

⎞

⎟⎟⎟⎠

1
2

(7)

where Va is the axial component of the velocity, |VVV | the velocity magnitude, ρ the
density and SO and SI the stator outlet and inlet sections.

The in–house GPU enabled RANS solver for compressible flows (Asouti et al.
2011), employing the Spalart-Allmaras turbulence model, and its adjoint were used.
The blade is parameterized with the in-house turbomachinery row CAD software
(Tsiakas et al. 2016), with 133 design variables. The mesh is block-structured with
∼ 2.2 × 106 nodes.

In Section“Mesh Adaptation to the Displaced Boundaries”, the performance of
the mesh adaptation model is discussed. Optimization results follow in Section
“Aerodynamic Shape Optimization Results”.

Mesh Adaptation to the Displaced Boundaries

The mesh adaptation tool is tested by displacing the initial compressor stator mesh
to the improved design generated by the hybrid optimization. Figure5 shows the
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Fig. 5 EA and adjoint-based optimization of a low-subsonic compressor stator blade: reference
geometry (1st), geometry generated by the EA–based optimization (2nd) which was used to explore
the design space before switching to the adjoint-based optimization (3rd). On the right (4th), the
shapes of the three blades are superimposed

Table 1 Quality metrics for the reference and adapted block structured volume mesh (∼ 2.2 × 106

nodes) in the optimal geometry resulted from the adjoint-based optimization and shown in Fig. 5.
The sign of the Jacobian is used to check the validity of themesh. Larger orthogonality metric values
and lower normal skewness values are desirable to avoid deteriorating the CFD solution accuracy
and robustness. Max. y+ < 1 of the first nodes of the wall is required to guarantee that the mesh
near the wall is adequate for CFD simulations

Reference Adapted

Min. Jacobian >0 >0

Min. Orthogonality 0.144 0.115

Avg. Orthogonality 0.79 0.76

Max. Normal Skewness 0.856 0.885

Avg. Normal Skewness 0.21 0.24

Max. y+ 0.50 0.51

reference mesh and those resulting from the optimization runs. Table1 reports qual-
ity metrics for the reference and adapted meshes (resulting from the adjoint-based
optimization).

Table2 tabulates metrics showing the deviation (distance) of the reference and
displaced surfacemeshes at each step of themesh adaptation procedure. The first step
reduces significantly the deviation but the resulting surface mesh does not perfectly
fit to the new geometry. This is corrected during the second step.

Figure6 shows an analysis conducted in order to investigate the time and memory
requirements to perform a mesh displacement for growing mesh sizes. The predictor
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Table 2 Deviation metrics for the reference and displaced CFD surface meshes (∼ 1.20 × 105

nodes), resulting from the adjoint-based optimization, Fig. 5. The first column lists the values for
the surface mesh deviation prior to mesh adaptation. Columns labeled “1st and 2nd Step” give the
surface mesh deviation upon completion of the corresponding steps

Initial 1st Step 2nd Step

Infinity Norm 3.27 × 10−2 5.30 × 10−4 4.85 × 10−14

Euclidean Norm 3.83 1.83 × 10−2 1.51 × 10−12

Avg. Deviation 4.87 × 10−3 2.31 × 10−5 2.57 × 10−15
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Fig. 6 Computational time and max. RAMmemory requirement for mesh displacements, by vary-
ing the mesh size. The computational time is broken down in the five main steps in the bar chart:
Clustering (Section“Data Reduction”), predictor training (Section“RBF Network Training”) and
application (Section“RBF Network Application” ) as well as corrector training and application
(Section“Step 2: Corrector”). The bar chart and computational time refer to the left vertical axis,
while the peak memory curve points to the right one. Measurements are performed on a computa-
tional node with two 6-core Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz processors

application and corrector training are the most expensive ones. The former scales
linearly with mesh size, thanks to the Fast MultipoleMethod. The latter scales super-
linearly due to theBiCGStab computational complexity and increasedmatrix size and
setup time of the SPAI preconditioner. The predictor training time is almost constant
since the imposed surface mesh displacements are similar for all mesh sizes. The
corrector application phase also scales super-linearly due to the increased number
of RBF kernel evaluations, but its contribution to the total required time remains
minimal thanks to the computation strategy which is based on the integer lattice.
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Fig. 7
(
cos−1

(
Va|V|

))2
ρVa field (see Eq.7) at the stator outlet for the reference (left), best solution

from the EA (centre) and best solution from the adjoint-based optimization (right)

Aerodynamic Shape Optimization Results

The EA-based optimization was performed using the s/w EASY (Evolutionary Algo-
rithm System) (2008) developed by the NTUA group. Only the 30 most important
design variables of the geometry, reparameterized by the in-house turbomachinery
row parameterization software, were used. The adjoint-based optimization relied
upon Sequential Quadratic Programming (SQP). The turbomachinery row parame-
terization software was differentiated and coupled with the in-house GPU-enabled
continuous adjoint solver, for computing the gradients (Tsiakas et al. 2016).

The initial design shows a deviation of the exit flow from the axial direction of
5.52◦. The EA-based design space exploration was able to reduce it to 3.98◦ at the
cost of 150 CFD simulations. The adjoint-based optimization resulted to an even
better solution with α equal to 3.16◦, at the cost of 40 equivalent CFD simulations.
The deviation of the exit flow from the axial direction for the reference and optimized
blades are shown in Fig. 7.

Conclusions

An efficient mesh adaptation method, based on RBF, that uses all surface mesh nodes
to ensure an exact surface representation was presented. This is achieved by using
a correction step, to move all surface mesh nodes to their exact positions, following
an approximate step (predictor), taking care of the largest part of the displacements.
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These steps are furthermore accelerated using the SPAI preconditioner based on
geometric considerations and the Fast Multipole Method.

The reliability of the two-step strategy in cases with relatively large displace-
ments and the significant scalability, in terms of computational time and memory
requirements for large meshes, have been shown.

During the hybrid optimization of a low-subsonic compressor stator, the pro-
posed mesh adaptation method was successfully used, reducing the computational
resources (compared to a re-meshing strategy) required to improve the rowdesign and
demonstrating its flexibility in handling large and small displacements. The results
show that the proposed two-step mesh adaptation model has high efficiency and its
cost scales almost linearly with the mesh size, preserving mesh quality consistently
even in large design variations.
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Adjoint-Based Aerodynamic
Optimisation of Wing Shape Using
Non-uniform Rational B-Splines

Xingchen Zhang, Rejish Jesudasan and Jens-Dominik Müller

Abstract Numerical shape optimisation with adjoint CFD is applied using the
NURBS-based parametrisation method with continuity constraints (NSPCC) for
aerodynamically optimising three dimensional surfaces. The ONERA M6 wing is
re-parametrised with NURBS surfaces including weight adjustments to represent the
three dimensional wing accurately, resulting in fewer control points and smoother
variation of curvature. The NSPCC CAD kernel is coupled with the in-house flow
and adjoint solver STAMPS and a gradient-based optimiser to minimise the drag of
the ONERA M6 wing in transonic Euler flow conditions. Optimisation results are
presented for the B-Spline and NURBS parametrisations.

Introduction

Numerical shape optimisation has attracted widespread interest in recent years. This
ismainly driven by engineering design facing ever-increasing requirements in perfor-
mance, environmental impact and life-time cost. To satisfy these needs, large design
spaces with many degrees of freedom need to be explored systematically, which can
only be achieved through numerical optimisation.

Gradient-free optimisation methods such as Genetic Algorithms (GA) or Evolu-
tionary Algorithms (EA) are very established, especially for linear structural optimi-
sation where the computational cost of an evaluation is low. However, these methods
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require a large number of function evaluations when going beyond 50–100 design
variables, and this cost becomes prohibitive when used with expensive CFDmodels.

The convergence of gradient-based methods on the other hand suffers much less
from large design spaces and they have been adopted as the method of choice for
shape and topology optimisation with CFD. This replaces the hurdle of computa-
tional cost with the challenge to compute the gradients for all components in the
simulation chain, i.e. not only the flow solver, but also the parametrisation. Gradient
computation can be easily implemented using finite differences, however this incurs
truncation or round-off errors that can be difficult to control. Alternatives are the com-
plex step method (Squire and Trapp 1998) or algorithmic differentiation (Griewank
and Walther 2008; Naumann 2011) which can produce exact derivatives, but the
computational cost scales linearly with the number of design variables. The adjoint
method allows to compute the gradients of an objective with respect to an arbitrary
number of design variables at constant cost and has hence become the method of
choice in CFD (Pironneau 1974; Jameson 1988). However, implementing an adjoint
solver is not trivial, both the continuous approach (Jameson 1995) and the discrete
one (Giles and Duta 2003; Jones et al. 2011; Christakopoulos et al. 2011) require a
significant effort.

One of the key issues in shape optimisation is the parametrisation of the geometry,
because it will determine the design space and thus the optimisation result. Current
parametrisation methods can roughly be distinguished as CAD-free and CAD-based
ones. In the CAD-free approaches, the parametrisation has no link back to the CAD
geometry, which makes these approaches easy to implement. Examples are mesh
deformation through Radial Basis Functions (Jakobsson and Amoignon 2007), Free-
form Deformation with volume splines (Samareh 2004) and node-based approaches
(Jameson and Vassberg 2000; Stephan et al. 2008; Jaworski and Müller 2008). The
downside of these approaches is that the optimal result needs to be transcribed back
to CAD which is often cumbersome and may lose relevant features of the optimised
shape.

In CAD-basedmethods, the parametrisation of the shape is part of the CADmodel
which is kept inside the design loop. Hence, the resulting optimal shape is directly
available for further analysis or manufacturing. The main difficulty for gradient-
based optimisation is that we also need to compute derivatives of the parametric
CAD model.

The parametrisation can be defined explicitly in a parametric CAD system, as
often done to generate a family of parts in different sizes or for manual design space
exploration. While this approach has the advantage that geometric constraints such
as thicknesses or radii can be directly built into the design space, typically these
parametrisations either do not have sufficient freedom to capture relevant modes, or
require important human knowledge about the flow and incur significant user effort
to set up, which ultimately negates the benefits of numerical optimisation. Derivative
computation of the explicitly parametrisedCADmodel can then either through finite-
differencing, which incurs the typical problems of finite differences with truncation
errors and choice of step size. Robinson et al. (2009) avoid problems of robustness
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due to patch renumbering by approximating the surfaces with triangulations (STL),
which in turn has issues with projection near sharp corners.

Gradients can also be computedby applying automatic differentiation to the source
code of the CAD system, which addresses issues of accuracy and will allow use of
the efficient reverse mode (Auriemma et al. 2016). This approach still requires to
define a suitable CAD parametrisation.

Alternatively, a CAD-based parametrisation can also be defined implicitly, i.e. to
arise from the CAD model’s generic description such as the collection of NURBS
patches in the STEP or IGES standards. The positions and weights of the control
points (CP) of the NURBS patches can be used as design variables.

In this work, the QMUL in-house CAD kernel, termed NURBS-based parametri-
sation with continuity constraint (NSPCC) (Xu et al. 2014; Zhang et al. 2016) is used
to parametrise the geometry, and is integrated into the CAD-based optimisation loop.
This approach offers a number of advantages. Firstly only a subset of CAD func-
tionality is needed which can straightforwardly be implemented in light-weight stan-
dalone tools, which in turn significantly simplifies the derivative computation with
automatic differentiation tools (Xu et al. 2014). Secondly the implicit parametrisation
through control points typically produces a suitably rich design space without need
for manual setup (Jesudasan et al. 2016). On the downside, a methodology needs to
be introduced for imposition of geometric constraints, such as continuity constraints
betweenNURBSpatches or thickness, box and radii constraints. This can be achieved
effectively with a test-point methodology (Xu et al. 2014, 2015). The design space is
in most cases excessively rich, however when using the adjoint approach to evaluate
the gradients, this is not an inconvenience. Provided that the design space remains
coarser than the CFD mesh, gradient regularisation is not required, as opposed to
mesh-based parametrisations (Jameson and Vassberg 2000). However, rich design
spaces may lead to shapes with mildly oscillatory modes that are not detrimental to
the objective function, hence not penalised by the flow solver, but may be undesir-
able as they are visually unappealing or affect another discipline/behaviour that is
not modelled. This aspect is addressed in this paper.

In this paper we will present a methodology that uses as free parameters not
only the positions of the NURBS control points, but also their weights. This enables
to accurately represent shapes with coarser control lattices, resulting in smoother
changes of curvature which can be important in the design of turbo-machinery blades
or transonic wings.

The remaining part of this paper is structured as follows: Section“Adjoint
Approach” introduces the adjoint approach briefly, then Section “Parametrisation”
provides information on NURBS and also the NSPCC approach. The approxima-
tion of ONERA M6 wing using NURBS will be presented in Section “M6 Wing
Profile Approximation Using NURBS”, followed by the optimisation results in
Section “Drag Minimisation of the M6 Wing”. Finally, conclusions will be given
in Section “Conclusions”.
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Adjoint Approach

Let us consider the Navier-Stokes equations as

R(U,α) = 0, (1)

where R is the conservative residual of flow equations, U is state variables and α is
a set of design variables. Taking the derivative of (1) with respect to α, we have:

∂R
∂U

∂U
∂α

+ ∂R
∂α

= 0, (2)

which can be written as
Au = f, (3)

where A is the Jacobian ∂R
∂U , u is the perturbation field, i.e. the change of the flow

field with respect to α and f is the change in residual w.r.t. changes in shape, ∂R
∂α
.

The sensitivity of the objective function J with respect to the design variables α

can then be formulated as:

d J

dα
= ∂ J

∂α
+ ∂ J

∂U
∂U
∂α

= ∂ J

∂α
+ gT u, (4)

where gT = ∂ J
∂U . In (4), the computation of the partial derivative ∂ J

∂α
is not expensive.

Similarly, the source term f in (3) is computationally inexpensive, but depends on
the design variable αi . However, computing u involves solving a linear system solve
for each component αi of α, a cost which will become prohibitive if the number of
design variables is large.

On the other hand, the sensitivity of the objective d J
dα

can be obtained without
computing the perturbation field u with the adjoint method. Using the solution of
(3), u = A−1f, in (4) and transposing one obtains

d J

dα

T

= ∂ J

∂α

T

+ (gT A−1f)T = ∂ J

∂α

T

+ fT A−T g. (5)

The right-most matrix-vector product A−T g can be interpreted as a linear equation
similar to equation (3) for a new variable v,

AT v = g. (6)

With a solution for the adjoint variable v we can rewrite (5) as

d J

dα
= ∂ J

∂α
+ vT f. (7)
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The adjoint equivalence then states

gT u = (AT v)T u = vT Au = vT f. (8)

Since the adjoint variable v depends only on the flow field through the transposed
Jacobian AT and on the objective through g, (7) allows to compute the entire sensi-
tivity vector d J

dα
with a single system solve of (6). Hence, the cost of computing the

gradient becomes independent of the number of design variables.
Using the chain rule of calculus, the differentiation of the objective function can

be broken down into a number of steps, aligned with the computational workflow,

∂ J

∂α
= ∂ J

∂xV

∂xV
∂xs

∂xs
∂α

, (9)

with the volume grid coordinates xV , which in turn are linked to perturbations of
the surface grid coordinate xs through a mesh deformation algorithm, which in turn
are affected by modifications of the CAD parameters α. The first term on the right
hand side ∂ J/∂xV is computed by differentiating the flow solver, the second term
∂xV /∂xs by differentiating the the volume mesh smoothing, while the third term
∂xs/∂α requires a differentiation of the CAD model parametrisation.

In our work we employ Automatic Differentiation (AD) Software tools Tapenade
(Hascoët and Pascual 2004) to produce the adjoint code and assemble the routines
in a hand-written driver code to improve performance (Christakopoulos et al. 2011).

Parametrisation

Parametrisation of geometry is crucial in shape optimisation as it will affect the
design space. There are various parametrisation methods which can generally be
distinguished as CAD-free and CAD-based methods. In this work, we focus on the
CAD-based approach using boundary representation (BRep), where NURBS is the
standard way to express geometries.

NURBS Surface Patches

Non-Uniform Rational B-splines (NURBS) are widely used to describe geometries.
A NURBS patch is a 3D surface defined as (Piegl and Tiller 1997):

S(u, v) =

n∑

i=0

m∑

j=0
Ni,p(u)N j,q(v)ωi, jPi, j

n∑

i=0

m∑

j=0
Ni,p(u)N j,q(v)ωi, j

0 ≤ u, v ≤ 1, (10)
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wherePi, j are the control point coordinates,ωi, j their correspondingweights, Ni,p(u)

and N j,q(v) the p-th and q-th degree B-spline basis functions defined in the following
knot vectors:

{0, . . . , 0
︸ ︷︷ ︸

p+1

, u p+1, . . . , ui , . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

}

{0, . . . , 0
︸ ︷︷ ︸

q+1

, vq+1, . . . , v j , . . . , vs−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

}

where r = n + p + 1 and s = m + q + 1. Ni,p(u) and N j,q(v) are given by the
following expression:

Ni,0(u) =
{
1 i f ui ≤ u < ui+1

0 otherwise

Ni,k(u) = (u − ui )

ui+k − ui
Ni,k−1(u) + (ui+k+1 − u)

ui+k+1 − ui+1
Ni+1,k−1(u). (11)

NURBS hold many geometric properties, making them very suitable to describe
geometries in shape optimisation problems. Some of them are:

• Local modification. If a control point is perturbed, only a part of the geometry will
be affected.

• Generalisation. NURBS can be used to describe very wide range of geometries,
including circular and conic shapes, which the B-splines can not express exactly.

• Strong convex hull property.
• Affine invariance.

A NURBS surface can be expressed in the so-called homogeneous form:

Sω(u, v) =
n∑

i=0

m∑

j=0

Ni,p(u)N j,q(v)Pω
i, j 0 ≤ u, v ≤ 1, (12)

where Pω
i, j = (ωi, j xi, j , ωi, j yi, j , ωi, j zi, j , ωi, j ). This homogeneous form is very sim-

ilar to a B-spline surface, therefore if written in this form, most of the algorithms
for B-spline surfaces can straightforwardly be applied to NURBS. In this way, the
weights can also be used in shape optimisation problems.

NSPCC Approach

NSPCC is an in-house lightweight CAD kernel, which uses an implementation in
Fortran 90 of NURBS patches which can then be differentiated using the source-
transformation AD tool Tapenade (Hascoët and Pascual 2013). Xu et al. (2014)
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considered B-splines and used the coordinates of the control points Pi j to derive the
design variables. Zhang et al. (2016) extended NSPCC from B-splines to NURBS
and also include the weights ωi j in the design space.

The important contribution ofNSPCC toCAD-based parametrisation based on the
BRep is the formulation of geometric constraints, e.g. G0-G2 continuity at NURBS
patch interfaces. The constraint equations are formulated numerically at a sufficiently
large number of test-points (Zhang et al. 2016) and the derivatives of these equations
are computed using AD. The design space is the kernel of this matrix of constraint
derivatives and is evaluated using singular value decomposition (SVD). The design
variables are ultimately the linear combination coefficients of the SVD basis for the
kernel. Details of the NSPCC approach can be found in Xu et al. (2014, 2015).
Using the homogeneous form (12) then allows to extend the constraint framework
straightforwardly from B-Splines to NURBS.

The scale and effect of the design variables will have a significant influence on
the convergence toward the optimum. Considering e.g. a curve aligned with the x-
axis. Control point movements in the curve-normal y direction will have a much
stronger effect on the shape than movements in the tangential x-direction. Similarly,
the weights have scalings around unity, while the scaling of the coordinates entirely
depends on the measurement units used for the coordinate values. In the NSPCC
approach, the scaling strategy from Painchaud-Ouellet et al. (2006) is applied to
control points such that a variation of the scaled control points in x direction between
±1 causes around ±10% variation of the root chord length, and a variation of scaled
control points in y direction yields ±10% deformation of the maximum thickness of
root profile.

NSPCC uses the STEP file (Pratt 2001) as input and output for the geometry. The
algorithm is hence independent of any internal proprietary parametrisation inside a
particular CAD system.

M6 Wing Profile Approximation Using NURBS

The M6 wing (Schmitt and Charpin 1979) is a typical example of a geometry that
cannot be represented exactly in CAD, hence defining a CAD model for the M6
requires a trade-off between fidelity and complexity. A similar case is the approxi-
mation of a cylindrical shape with B-splines, the standard choice for approximation
in CAD systems. A low tolerance of deviation between B-spline surface and the
analytic cylindrical shape will result in a B-spline approximation with very many
control points. On the other hand, a NURBS-representation allows to match a cylin-
der exactly with 6 distinct control points for a circular section. Lépine et al. (2001)
fitted NURBS to reduce the number of control points for 2D aerofoils. In this work,
we directly approximate the 3D wing shape with NURBS in the NSPCC frame-
work. This has two major advantages. Firstly, even though the cost of computing the
derivatives is constant with the adjoint approach, the lower number of control points
will make it easier for optimiser to converge the KKT system. Secondly, and more
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importantly, the smaller number of control points will result in a smoother variation
of curvature along the profile, which is an essential quality in the design of transonic
wings and turbomachinery blades.

As a first step, we compare the approximation of datum M6 wing shape using B-
Spline and NURBS representations. The M6 wing created with 26 B-splines control
points for each section (see Fig. 3) (Gugala et al. 2014; Gugala 2017) according
to the description in Schmitt and Charpin (1979) is used as the target shape. The
wing parametrised with different numbers of NURBS control points are used as
starting point. Then the cost function of this optimisation problem is defined as the
root-mean-squared difference between initial and target geometries, i.e.:

J =
√
√
√
√ 1

N

N∑

i=1

(XI ni tiali − XTargeti )
2, (13)

where XI ni tiali and XTargeti are surface points sampled on the initial and target wing
geometry, respectively. N is the number of sample points. To improve the surface
fidelity in regions of high curvature, a cosine spacing is used which concentrates the
sampling points near the leading edge than near the trailing edge, as shown in Fig. 1.

For theM6 fitting in this study, 5000 surface points are sampled on each geometry,
100 points in the chordwise and 50 points along the spanwise direction.

The initial wing geometries with different number of NURBS control points are
driven towards the target shapebyperformingoptimisationusing theL-BFGSmethod
(Nocedal 1980; Liu and Nocedal 1989). The derivative of the objective function w.r.t.
the design variables, i.e. the 2-D coordinates of the control points in the profile plane
and their weights, are calculated using AD.

The objective function values (13) resulting from the optimisation with varying
numbers of control points is given in Fig. 2. It can be observed that the objective
value continues to drop with increased number of control points.We use the typically
accepted value of 10−4 to determine an acceptable fit.

The M6 wing described using 26 B-spline control points and 16 NURBS control
points are presented in Fig. 3. The comparison of one section is shown in Fig. 4.
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Fig. 1 Cosine spacing sample points. Left: points of one section. Right: points in parametric space
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Fig. 2 Fidelity of NURBS approximation with varying number of control points

Fig. 3 ONERA M6 wing with 26 B-spline (left) and 16 NURBS control points (right)

Fig. 4 Comparison of ONERA M6 wing root section using 26 B-spline and 16 NURBS control
points. Upper: shape of section. Lower: shape of section, control points and optimised weights
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The results clearly demonstrated that by using NURBS, the number of control
points required to describe the M6 wing with a given surface and curvature fidelity
is significantly reduced.

Drag Minimisation of the M6 Wing

In-House Solver: STAMPS

The in-house solver STAMPS (Müller et al. 2016; Gugala 2017) (Source-
Transformation Adjoint Multi-physics Solver) is used to perform flow analysis and
provide the sensitivity of the objective function w.r.t. surface mesh node positions,
∂ J/∂xV . STAMPS is a compressible flow solver using a vertex-centred Finite Vol-
ume Method (FVM). A discrete adjoint solver which is derived using the AD tool
Tapenade is also included in STAMPS to provide sensitivities (Christakopoulos et al.
2011).

Case Set Up

The optimisation of the ONERA M6 wing in the transonic regime and inviscid flow
are performed. The key case information are listed as following:

• Mesh: tetrahedron, 135204 nodes.
• Flowconditions:Ma = 0.84, Angle of attack (AoA)= 3.06◦, T∞ = 300K , p∞ =
101325Pa.

• Mesh deformation method: inverse distance weighting (IDW) (Witteveen and Bijl
2009).

• Control points at the leading and trailing edge are frozen to fix the AoA. Other
control points can move vertically and along the chordwise direction. Weights of
free control points can also change.

• Cost function: drag with lift constraints, defined as:

J = D + c ∗ (L − L∗)2, (14)

where D is the drag force, c is the penalty coefficient chosen as 0.0001, L is lift
force, and L∗ is the initial lift, which is 11104.21 N here.

The pressure contours of the baseline geometry are shown in Fig. 5. As it can be
seen, the typical ‘lambda’ shock on the top surface is very clear.
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Fig. 5 Baseline geometry pressure contours on top and bottom surface

Optimisation Results

To investigate the effect of parametrisation on optimisation results, the M6 wing
described using 26 B-splines and 16 NURBS control points for each section are used
in the optimisation. The steepest descent method with Armijo line search is utilised
as optimiser (Bartholomew-Biggs 2008).

The comparison of drag, lift, efficiency (lift/drag ratio) and objective function
during the optimisation are shown in Fig. 6. In both cases, the drag values are reduced
by over 30%. In the NURBS case, the optimised wing loses 1.64% of lift, which is
slightly better than of B-spline case (1.98%). The loss of some lift is as expected,
because the penalty part in the objective function is not very strict such that more drag
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Table 1 Final drag and lift coefficients

Drag coefficient Lift coefficient Objective function
(scaled)

B-splines 0.00850 0.2750 0.00 864

NURBS 0.00850 0.2759 0.00860

Fig. 7 Comparison of pressure contour on upper surface after optimisation

reduction can be achieved. Exact values of final drag and lift are listed in Table 1.Note
that the NURBS case optimisation has been stopped at the same number of iterations
as the B-spline case, however the gradient values of the NURBS case are still much
larger and further improvement with more design iterations can be expected.

The comparison of pressure contours on upper surface after optimisation is pre-
sented in Fig. 7, which clearly indicates that in both cases the shocks on the upper
surface are reduced significantly. This is also well illustrated in Fig. 8 where the
pressure coefficients (Cp) on both upper and lower surface at different spanwise
positions are given.

The comparison of wing profiles at different spanwise positions are given in
Fig. 8. One can see that the optimised shape of in the B-splines case has a large
curvature variation near the trailing edge. A clearer comparison of curvature is pre-
sented in Figs. 9 and 10, which show the curvature of the two wing sections and
the mean curvature (Spivak 1999) of optimised surfaces, respectively. These figures
clearly demonstrate that the optimisation using a NURBS parametrisation produces
a smoother shape. The possible reason is that, when fewer control points are used, the
possibility of producing noisy surface is reduced. As a consequence, the aerodynamic
performance is better, since in the transonic flow the aerodynamic performance is
very sensitive to the shape of geometry. It is expected that when fully converged, the
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Fig. 8 Comparison of cross section and pressure coefficient at different spanwise position

NURBS parametrisation will produce a lower drag since the much smoother varia-
tion of curvature. The smoother curvature variation will bemore important in viscous
flow, as strong changes in curvature will lead to rapid pressure changes which will
adversely affect the boundary layer.
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Fig. 10 Comparison of mean curvature of optimal wing surfaces
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Conclusions

In this paper, NURBS have been demonstrated as an appropriate parametrisation
method for wing shape optimisation. NURBS associate a weight with each control
point which is additional freedom in controlling shapes, and have hence been shown
to be capable to represent shapes accurately with fewer control points. This helps to
produce surfacewith smaller curvature variation. The optimisation results ofONERA
M6wing with both B-splines and NURBS parametrisation in transonic inviscid flow
based on adjoint method have been presented. It has been shown that the optimisation
using a NURBS-based wing parametrisation has a smoother shape with smaller
variation of curvature, which is beneficial for aerodynamic performance. This can
be important in the design of turbo-machinery blades or transonic wings.

Finally, the effectiveness of CAD-based optimisation coupling the lightweight
NSPCC approach with adjoint method has also been demonstrated.
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A Comparative Evaluation of Surrogate
Models for Transonic Wing Shape
Optimization

Emiliano Iuliano

Abstract The paper details a comparative analysis of different models able to
provide a fast responsewithin a surrogate-based shape optimization process. Kriging,
Radial Basis Function Network (RBFN) and Proper Orthogonal Decomposition in
combination with RBFNs (POD+RBFN) are employed as fitness function evaluators
within the framework of evolutionary algorithms (EAs). The surrogate-assisted opti-
mization consists of initializing the surrogate with space-filling samples, improving
the accuracy by adding a series of “smart” samples through specifically designed
in-fill criteria and finally optimizing on the surrogate. The test case is represented
by the large scale shape optimization of a transonic wing in viscous flow and in
multi-design point conditions. Optimization results obtained with the surrogates by
fixing the total computational budget are presented: this procedure allows to make a
fair comparison between the models and their performance during the optimization
process.

Introduction

In real–world engineering design applications, high-fidelity simulations and reliable
answers in short time are essential and fundamental requirements. Of course, they are
often conflicting, especially when fluid dynamics is among the physical disciplines
to be solved: indeed, computational fluid dynamics (CFD) simulations of complex
configurations are still time–consuming and, considering also the high number of
CFD simulations required by global optimization approaches, this strongly hampers
the usage of such methods in engineering design.

Surrogate-based optimization (SBO) may provide an interesting answer to
this issue as it relies on a fast response model to be used during optimization while
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invoking the “truth” model (i.e., the CFD simulation) to confirm the choice made by
the surrogate. Several researchers have focused their attention on such topic, both
from a theoretical (Forrester and Keane 2009; Braconnier et al. 2011; Viana et al.
2012) and application (Robinson et al. 2006; Booker et al. 1999; Mack et al. 2007)
point of view. As a consequence, a varied amount of methods exist which differ
substantially for the choice of the surrogate model (e.g., type, single or multiple), the
approach to build the surrogate (e.g., optimize the generalization error or likelihood
functions), the strategy for updating and improving the surrogate (e.g., evaluate sur-
rogate minimizers, use in-fill criteria, random choice) and the optimization method
(e.g., type, global or local or both).

The present paper proposes different choices of the surrogate model to be used
within a SBO cycle with different updating strategies. The problem at hand is the
multi-point shape optimization of a wing in viscous transonic conditions: such a
problem stems as a large-scale and real-world optimization as it involves several
design parameters and black-box CFD-based functions. As a consequence, in prin-
ciple it cannot be handled by whatever methodology and the main aim is to provide
arguments in support of the successful usage of accurate “optimal” surrogates and
global optimization techniques.

Surrogate Models

This section is devoted to introduce themathematical basis of themeta-models which
will be used for surrogate-based optimization. Kriging and Radial Basis Function
Network models work with scalar information (e.g., the objective function values)
and are able to predict the response function at each location of the design space.
On the other hand, the Proper Orthogonal Decomposition is coupled to Radial Basis
Function Network models to deal with vector quantities (e.g., the flow field) and,
thus, to inject more physics information within the surrogate training process.

Kriging

The Kriging model is built on the assumption that the training data obey a Gaussian
process with an assumed form for themean function and the covariance between data
points. A Kriging surrogate models the response of interest f (x) as a realization of
a regression model h and a stochastic process z (Martin and Simpson 2005):

f (x) = h(β, x) + z(x) (1)

h(β, x) = hβ (2)

E[z(x1), z(x2)] = σ 2
k R(θ, x1, x2) (3)
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where β are the regression coefficients and h is the regression vector. The stochastic
process z is assumed to have zero mean, process variance σ 2

k and covariance model
R(θ, x1, x2) between z(x1) and z(x2)with parameters vector θ . The covariancemodel
between function values is assumed to be only a function of the distance between
points. Given the training sites {x j } j=1,...,M , the covariance matrix is given by Ki j =
R(θ, xi , x j ). Multi-dimensional covariance is built up using a tensor product of one-
dimensional covariance functions:

R(θ, xi , x j ) =
D∏

p

Kr

(∣∣∣∣
xip − x jp

θp

∣∣∣∣

)

where D is the dimension of the problem, θp is the length scale in the p-th dimension,
xip is the p-th component of the vector xi and Kr is the one-dimensional Matern
function. The latter function is computed as:

Kr(d) = exp
(
−√

2νd
) Γ (t + 1)

Γ (2t + 1)

t∑

i=0

(t + i)!
i !(t − i)!

(√
8νd

)t−i

with Γ the Gamma function, ν = t + 1/2 and three possible values of the parameter
t :

Kr(d) =

⎧
⎪⎪⎨

⎪⎪⎩

exp (−d) for t = 0(
1 + √

3d
)
exp (−√

3d) for t = 1(
1 + √

5d + 5
3d

2
)
exp (−√

5d) for t = 2

Noise terms can be added along the covariancematrix diagonal in order to improve
the matrix conditioning and to obtain a regressive behavior when dealing with noisy
functions. The covariancematrix becomes Ki j = R(θ, xi , x j ) + λδi j , where theKro-
necker convention has been used and λ is the noise ratio. The response function can
be estimated at a generic location x as

f̂ (x) = Hβ̂ + kTK−1(f − Hβ̂) (4)

where H is the matrix of linear equations constructed using the regression function
and the training sites, β̂ is the generalized least square estimate of β,K is the covari-
ance matrix, k is the covariance vector between the generic design site x and the
training sites, and f = [ f1, f2, . . . , fM ]T is the vector of the M training data (which
corresponds to the given training dataset). One of the main advantages of the Kriging
model is that it provides also an estimate of the prediction variance:

ŝ2(x) = σ̂ 2
k

[
1 − kTK−1k + uT

(
HTK−1H

)−1
u
]

(5)
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where σ̂ 2
k is the estimated process variance, u = HTK−1k − h and h = [h1, h2, . . . ,

hM ]T . In the most general case, both the response prediction f̂ and the prediction
variance ŝ2 are function of the so called hyperparameters, i.e. the length scales θp,
the process variance σ̂ 2

k and the noise magnitude λ. Two methods are here used
to find the optimal values of the hyperparameters, hereinafter referred to as “Full”
and “Partial”. The optimization of the hyperparameters is performed by calling the
NLopt library (available online at http://ab-initio.mit.edu/nlopt) and implementing
a sequential global–local approach: first, the search space is globally explored by
means of the evolutionary strategy ESCH (da Silva Santos et al. 2010); then, starting
from the best solution of the ESCH algorithm, a local refinement is carried out with
a reviewed version of the Nelder-Mead simplex algorithm (Richardson and Kuester
1973).

Full Optimization

This formulation determines the regression parameters based on an optimality con-
dition and fits all other covariance parameters (length scales, process variance and
noise level) throughmaximization of the likelihood function. The likelihood formula
for a Gaussian process with a regression mean function is given by:

log p( f |x; θp) = −1

2
fTK−1(f − Hβ̂) − 1

2
log |K| − 1

2
log |A| − M − S

2
log 2π

where M is the number of training points, S is the number of terms in the regression
and the regression matrix A is defined as:

A = HTK−1H

The optimal regression parameters are given by:

β̂ = A−1HTK−1f

Partial Optimization

This formulation determines the process variance and regression parameters based on
the optimality condition and only performs optimization over the covariance length
scales θp. The likelihood formula reduces to:

log p( f |x; θp) = −M

2
log σ̂ 2

k − 1

2
log |K̂| − M

2
− M

2
log 2π

where the optimal process variance has been estimated as:

http://ab-initio.mit.edu/nlopt
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σ̂ 2
k = (f − Hβ̂)T K̂−1(f − Hβ̂)

M

and
K = σ̂ 2

k K̂

This final formula is a function of the length scales, θp, and the noise level ratio λ.
The optimization is performed only over the length scales and the noise level ratio
is fixed throughout the optimization. A typical choice is to set the noise level λ to a
small fraction of the process variance σ̂k .

Radial Basis Function Network

A Radial Basis Function is a real valued function whose value depends on the
Euclidean distance from a point called centre. A RBF network uses a linear combi-
nation of radial functions. A RBF model can be expressed as

f (x, θ1, . . . , θM , λ) =
M∑

i=1

ki (λ)r(|x − xi |, θi ) (6)

where the approximating function is represented by a sum of M RBFs r , each asso-
ciated with a different center xi , weighted by real valued weights ki (regularized
through parameter λ) and characterized by width parameters θi . Hence, an RBF net-
work can be defined as a weighted sum of translations of radially symmetric basis
function. Typical RBFs kernel r used here are:

r(d, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp (− d2

θ2 ) Gaussian√
1 + d2

θ2 Multi–quadric
1√

1+ d2

θ2

Inverse multi–quadric

( d
θ
)2 ln d

θ
Thin plate spline

1 − 30( d
θ
)2 − 10( d

θ
)3+

+45( d
θ
)4 − 6( d

θ
)5 − 60( d

θ
)3 log( d

θ
) Wendland C2 thin plate spline

Once decided the RBF kernel and supposing that the “optimal” width parameters
have been already computed in some way, the RBF network is defined only by the
weights ki . They are made function of a regularization parameter λ (also known as
ridge regression parameters in the RBF literature) to avoid overfitting and improve
the interpolation matrix conditioning. Indeed, the weights can be found by imposing
the interpolation condition (Fasshauer and Zhang 2007) on the training set which in
turn results in solving the linear system:
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Rk = f (7)

where

R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r(0, θ1) + λ . . . r(|x1 − xM |, θM)

r(|x2 − x1|, θ1) . . . r(|x2 − xM |, θM)
...

...
...

r(|xM − x1|, θ1) . . . r(0, θM) + λ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

k = [k1, k2, . . . , kM ]T are the RBF weights and f = [ f1, f2, . . . , fM ]T are the func-
tion values at the training points.

The width parameters have a significant influence both on the accuracy of the
RBF model and on the conditioning of the solution matrix. In particular, it has been
found (Gutmann 2001) that interpolation errors become high for very small and very
large values of θ , while the condition number of the coefficient matrix increases with
increasing values of θ . Therefore, they have to be “optimal” in the sense that a tuning
of the width parameters is needed to find the right trade–off between interpolation
errors and solution stability (Fasshauer and Zhang 2007). Generally speaking, two
cases can be considered:

• identical scalar widths θi = θ are used for all RBF kernels;
• different scalar width θi is used for each RBF kernel.

Here, the first option is chosen, therefore in the following a unique scalar width θ will
be considered for each RBF center. An accurate RBF model is obtained by letting
the algorithm autonomously choose the kernel function type and optimizing the
width parameters. The algorithm is based on the Leave–One–Out cross–validation
strategy to compute an error norm to be minimized; the procedure is similar to the
one described in (Tenne and Armfield 2008) and is here outlined:

1. all the aforementioned kernel functions are used for training on the current
training set;

2. the Leave–One–Out (LOO) error norm is considered as merit function to deter-
mine the best combination of RBF kernel andwidth parameter. The optimal RBF
network is thus selected by choosing the width parameter which give the lowest
LOO error norm, defined as:

εLOO(x1, x2, . . . , xM , θ, λ) =
√√√√ 1

M

M∑

j=1

[ f j − f̂− j (x j , θ, λ)]2

where f j is the value of the function at the j th training site x j and f̂− j is the RBF
prediction at x j when the model is trained without x j and f j . The computation
of the M terms f̂− j does not require to train M RBF models, indeed it can be
computed effortlessly thanks to Rippa’s formula (Rippa 1999);

3. for each kernel, the width parameter θ and regularization parameter λ are found
by solving:



A Comparative Evaluation of Surrogate Models … 167

min
θ,λ

εLOO(x1, x2, . . . , xM , θ, λ) (8)

The optimization is performed by using the same algorithms for searching the
Kriging hyperparameters.

POD + Radial Basis Function Networks

The Proper Orthogonal Decomposition (POD) is used to extract the main features
of a set of computed flow fields as a series of POD basis vectors with associated
coefficients (Iuliano 2011; Iuliano and Quagliarella 2011). Given the three spatial
coordinates (ξ, υ, ζ ) of the computational mesh points and the general snapshot
vector s, let {x j } be a set of design vectors (e.g., sampled from the design space with
aDoE technique) and {s j } the corresponding snapshot, i.e. column vectors containing
the volume grid and flow variables as obtained from a CFD solution:

s = (sgrid, sflow)T

sgrid = (ξ1, . . . , ξq , υ1, . . . , υq , ζ1, . . . , ζq)

sflow = (ρ1, . . . , ρq , ρξ ′
1, . . . , ρξ ′

q , ρυ ′
1, . . . , ρυ ′

q ,

ρζ ′
1, . . . , ρζ ′

q , p1, . . . , pq)

where q is the number of mesh nodes involved in the POD computation, ρ is the
flow density, (ξ ′, υ ′, ζ ′) are the three Cartesian velocity components and p is the
static pressure. The computational mesh has been included in the POD snapshot to
let the SVD basis catch the coupling effects between space location and state field.
Hence, once the surrogate model is built, not only a flow field can be computed, but
also an approximation of the volume mesh. Such a surrogate model would be able to
catch, although in a reduced order form, the cross effects of geometry modification
and aerodynamic flow change. As the total number of variables is eight (three mesh
variables and five flow variables), the global size of the snapshot is N = 8 × q.

Starting from the vectors s1, s2, . . . , sM obtained by CFD expensive computations
for a representative set of design sites x1, x2, . . . , xM , finding a Proper Orthogonal
Decomposition means to compute a linear basis of vectors to express any other
s j ∈ R

N with the condition that this basis is optimal in some sense. To compute the
optimal basis, we first define the snapshot deviation matrix

P = (
s1 − s̄ s2 − s̄ · · · sM − s̄

)

where the ensemble mean vector is computed as

s̄ = 1

M

M∑

j=1

s j
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The POD decomposition is obtained by taking the singular value decomposition
(SVD) of P

P = UΣVT = U

⎛

⎜⎜⎜⎝

σ1 · · · 0
...

. . .
...

0 · · · σM

0 · · · 0

⎞

⎟⎟⎟⎠VT (9)

with U ∈ R
N×N ,V ∈ R

M×M ,Σ ∈ R
N×M and the singular values σ1 ≥ σ2 ≥ . . . ≥

σM ≥ 0. The POD basis vectors, also called POD modes, are the first M column
vectors of the matrixU, while the POD coefficients αi (x j ) are obtained by projecting
the snapshots onto the POD modes:

αi (x j ) = (s j − s̄,φi ) (10)

If a fluid dynamics problem is approximatedwith a suitable number of snapshots from
which a rich set of basis vectors is available, the singular values become small rapidly
and a small number of basis vectors are adequate to reconstruct and approximate the
snapshots as they preserve the most significant ensemble energy contribution. In this
way, POD provides an efficient mean of capturing the dominant features of a multi–
degree of freedom system and representing it to the desired precision by using the
relevant set of modes. The reduced order model is derived by projecting the CFD
model onto a reduced space spanned by only some of the proper orthogonal modes or
POD eigenfunctions. This process realizes a kind of lossy data compression through
the following approximation

s j � s̄ +
M̂∑

i=1

αi (x j )φi (11)

where

M̂ ≤ M =⇒
M̂∑

i=1

σ 2
i ≥ ε

M∑

i=1

σ 2
i (12)

and ε is a predefined energy level. In fact, the truncated singular values fulfils the
relation

M∑

i=M̂+1

σ 2
i = εM̂

If the energy threshold is high, say over 99% of the total energy, then M̂ modes are
adequate to capture the principal features and approximately reconstruct the dataset.
Thus, a reduced subspace is formed which is only spanned by M̂ modes.

Equation 11 allows to get a PODapproximation of any snapshot s j belonging to the
ensemble set. Indeed, themodel does not provide an approximation of the state vector
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at design sites which are not included in the original training dataset. In other words,
the PODmodel by itself does not have a global predictive feature, i.e. over the whole
design space. As the aim is to exactly reproduce the sample data used for training and
to consistently catch the local data trends, a Radial Basis Function (RBF) network
answers to these criteria and has been chosen as POD coefficients interpolation. The
procedure to build optimal RBF models for POD modal coefficients is the same as
described in Section“Radial Basis Function Network”.

As a results, the pseudo–continuous prediction of the flow field at a generic design
site x is then expressed as:

s(x) = s̄ +
M̂∑

i=1

αi (x)φi (13)

This provides an accurate surrogate model which combines design of experiments
for sampling, CFD for training, POD for model reduction and RBF network for
global approximation. In conclusion, an explicit, global, low–order and physics–
based model linking the design vector and the state vector has been derived and will
be used as surrogate model. Examples of application and validation of the proposed
POD/RBF surrogate model have been already provided in recent papers (Iuliano
2011; Iuliano and Quagliarella 2013).

Adaptive Sampling Strategy

Supposing that a surrogatemodel has been already trained, the training set is enriched
by adding new samples, then the surrogate model is rebuilt and globally optimized.
Hence, an iterative scheme is used for surrogate-based optimization: in the previous
iteration, optimal candidates from the surrogateminimization are selected and passed
to the next iteration; in the next iteration, the new samples are evaluated via the true,
high-fidelity model and re-injected into the training set upon which the surrogate is
updated. The aim of such an iterative scheme is to increase the quality and potential
of the surrogates to be minimized, presumably driving to true optimality quickly. Of
course, as this approach relies totally on the surrogate model and its prediction, it
may drive the process towards local minima from which the surrogate model can no
longer escape.

The weak point is considering the enrichment with new samples as a purely
“exploitation” process and ignoring the “explorative” behaviour. Prior or during the
optimization on the surrogate, we need to mix the knowledge from the available
data, the surrogate prediction and an estimation of its predictive capability: we need
to have a “smarter” selection of new points. However, the strategy for updating a
surrogate model is heavily dependent on its type and scope and, in principle, has
to be tailored on it. Indeed, the addition of new samples must follow some specific
criteria that may be very different depending on the purpose of the training process.
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For instance, Latin Hypercube Sampling has been designed to satisfy space-filling
requirements and obtain a good coverage of the design space.

The present approach gives emphasis to the optimization process by proposing
sampling strategies which are able to “adapt” to the response function. Most of the
adaptive sampling approaches pursue the exploration/exploitation trade–off, where
exploration means sampling away from available data, where the prediction error is
supposedly high, while exploitation means trusting the model prediction, thus sam-
pling where the surrogate provides global minima. It is clear that a trade-off between
the two behaviors is needed: indeed, exploration is useful for global searching, but
it may lead to unveil uninteresting regions of the design space; on the other hand,
exploitation helps to improve the local accuracy around the predicted optima, but it
may result in local minima entrapment.

Here, balanced explorative in-fill criteria are designed for a generic surrogate
model and are formulated in terms of an auxiliary function which has to be maxi-
mized. The balanced criterion, hereinafter referred to as “EI-like”, has been designed
to mimic the same rationale of the Expected Improvement criterion, usually coupled
to a Kriging-based surrogate in the well-known EGO algorithm by Jones (1998).
The present approach, represents a generalization of that method as, for a generic
surrogate model, the information about the uncertainty of the surrogate is not avail-
able, while a Kriging model, being a Gaussian process, provides an estimate of the
prediction variance together with the prediction itself. The auxiliary function, also
referred to as potential of improvement, is designed to have the same form of the
Expected Improvement function.

Given x the generic design space location, f̂ (x) the surrogate response, Xn the
dataset of the training samples collected so far, FXn the corresponding values of the
true objective function, fmax and fmin the maximum and minimum values in FXn ,
the potential of improvement function (“EI-like” function) is defined as follows:

v(x, f̂ (x), Xn, FXn ) = [ fmin − f̂ (x)]Φ
[ fmin − f̂ (x)

ŝ(x)

]
+ŝ(x)φ

[ fmin − f̂ (x)
ŝ(x)

]

where ŝ(x) is an estimate of the prediction error and Φ(x) and φ(x) are respectively
the cumulative distribution and probability density functions of a standard normal
distribution. The prediction error is estimated as follows:

ŝ(x) = L(x)
minxi∈Xn ‖x − xi‖2

maxxi ,x j∈Xn

∥∥xi − x j

∥∥
2

exp
(
−γ

maxxi ,x j∈Xn

∥∥xi − x j

∥∥
2

minxi∈Xn ‖x − xi‖2
)

where L(x) is an estimate of the Lipschitz constant at x and γ is a tuning parameter.
The Lipschitz constant is defined as:

Definition 1 Given a domain D and a function f defined in D, the Lipschitz constant
is the smallest constant L > 0 in the Lipschitz condition, namely the non negative
number:
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L f,D := sup
x1,x2∈D
x1 
=x2

| f (x1) − f (x2)|
|x1 − x2|

The following algorithm has been designed to obtain an estimate of the Lipschitz
constant at each training sample:

Algorithm 1 Lipschitz constant estimation
1: compute the K-means clusters K j, j=1,r of the set Xn = {x1, . . . , xn} with r = int ( nd )

2: for all sample xi ∈ Xn do
3: Say Ki the cluster containing xi
4: for all sample x j ∈ Ki , x j 
= xi do

5: compute Li j = | f (xi )− f (x j )|
|xi−x j |

6: end for
7: Set L(xi ) = max j Li j
8: end for

Finally, in order to extend the estimation to a generic location x, it is assumed
that L(x) = L(xnn)where xnn = argminxi∈Xn

|xi − x|. The function ŝ(x)mimics the
Gaussian Process prediction error and has been designed to quickly increase with
increasing distance from an available sample. Moreover, its order of magnitude is
comparable to the actual values of the objective function. The adaptive in–fill process
is organized as follows: a huge Latin Hypercube Sampling dataset (e.g., 500 times
the dimension of the design space) is obtained and the values of the potential of
improvement is computed at each point (this requires limited computational effort
as the auxiliary function only depends on the surrogate prediction, which is fast to
obtain, and on the true objective function values at already collected points); hence,
the new sample is located where the maximum value of the auxiliary function is met:

xn+1 = argmax
x

v(x, f̂ (x), Xn, FXn )

In order to avoid the duplication of the updating samples when iterating the in–fill
process, the seed of the Latin Hypercube is changed at each iteration.

Figure1 provides an example of surrogate updating by maximization of the EI-
like criterion. The one-dimensional Schwefel function is used as test function with 5
initial training points. The trained surrogate (here, a Kriging model) does not capture
the local non-linear features of the true function, but a certain trend to predict low
values where the true optimum resides is observed (Fig. 1a). The Lipschitz-based
prediction error function and the EI-like function are reported in Fig. 1b: by taking
the maximum of the EI-like function, a new in-fill point (grey square) is obtained
and the surrogate is updated (Fig. 1c). This first iteration seem to not improve the
prediction too much: in fact, it provides information about the high non-linearity of
the true function around the optimum as the surrogate model now “knows” that the
function is rapidly changing in that region. After 10 iterations of the in-fill process,
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(a) True and surrogate functions f (x),
f̂ (x)and training dataset {Xn,FXn}

(b) Functions ŝ(x) and
v(x, f̂ (x),Xn,FXn )

(c) New in-fill point and updated
surrogate

(d) Updated surrogate with   
10 in-fill points
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Fig. 1 Example of surrogate updating by maximization of the Lipschitz in-fill criterion on the 1D
Schwefel function

the true optimum is perfectly captured as well as the whole trend of the function past
x = 250 (Fig. 1d).

Surrogate-Based Optimization

Theworkflowof the surrogate-based shape optimization (SBSO) is depicted in Fig. 2.
The method is centered on the surrogate training database which is continuously fed
and updated throughout the search and optimization process. As a first step, it is ini-
tialized with a space-filling design of experiment (e.g., a Latin Hypercube Sampling
or a Latinized Central Voronoi Tessellation): typically, according to literature results
and authors past experience, the number of initial samples (napr ) should not exceed
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Fig. 2 Workflow of surrogate–assisted optimization

one-third of the total computational budget. The evaluation of the response function
corresponding to a given sample is made as follows:

• a geometry parameterization module (CST approach, Kulfan 2008) transforms the
design vector (i.e., the training sample) into the actual component shape;

• a batch scripting procedure is launched within ANSYS ICEM CFD package to
generate the CAD surface and the volume mesh with fixed sizes and topology;

• a CFD computation is launched with the in-house ZENCFD flow solver (Catalano
and Amato 2003);

• once the simulation has converged, the objective function (usually depending on
computed aerodynamic coefficients) and the flow field snapshots are collected
according to the specification of the design problem.

As multiple training samples have to be evaluated simultaneously, the process can
be executed in parallel to speed up the simulation. Once the evaluation process
has finished, the selected surrogate model can be built as described in Section
“Surrogate Models”.

The workflow in Fig. 2 embeds two internal cycles, namely the adaptive sam-
pling and the optimization update. These iterative phases reflect two different needs:
first, providing an improved and reliable model to the optimizer; then, iterating the
optimizer to refine the optimum search. The first cycle consists of updating the
design solutions database by applying in-fill criteria (as described in Section
“Adaptive Sampling Strategy”) and providing nadpt new design candidates. The con-
dition to exit from this internal loop is based either on predefined levels of improve-
ment or on computational budget considerations.

The second cycle (database updating by optimization) allows for including nopt
sub-optimal samples suggested by sequentially optimizing the meta-model and re-
injecting the best candidate in the training database: this phase should lead to the
final exploitation of the design space region where the “true” optimum resides. The
loop terminates either when the residual of the objective function of the predicted
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optima falls below a predefined threshold or when the computational budget limit
has been reached. The total computational budget ntot is fixed a-priori and is equal
to ntot = napr + nadpt + nopt .

The optimizer consists of an hybrid algorithm implemented within the in-house
library ADGLIB (Quagliarella et al. 2004): a genetic algorithm is used for global
search and the CMA-ES (Hansen 2006) algorithm acts as a local search operator.
During the evaluation of the population, the CMA-ES algorithm is triggered with a
predefined activation probability to improve the current best solution.

Numerical Results

The public domain 3rd Drag Prediction Workshop DPW-W1 wing (Epstein et al.
2008) has been selected as the initial geometry for aerodynamic optimization. Ref-
erence data for this wing are shown in Table1. The nominal flow conditions are
prescribed at two design points:

1. Mach = 0.76, Reynolds = 5 × 106, CL ,0,1 = 0.5, CD,0,1 = 0.0241, CM,0,1 = –0.07
2. Mach = 0.78, Reynolds = 5 × 106, CL ,0,2 = 0.5, CD,0,2 = 0.0279, CM,0,2 = –0.08

where CL ,0,k , CD,0,k , CM,0,k are the lift, drag and pitching moment coefficient of the
baseline wing at the k-th design point. The objective function to be minimized is:

f (x) =
2∑

k=1

1

2

CD,k + CDM,k + CDL ,k

CL ,k

CL ,0,k

CD,0,k
(14)

CDM,k = 0.01max(0,CM,0,k − CM,k)

CDL ,k = 0.1max(0,C2
L ,0,k − C2

L ,k)

Geometric constraints are also implemented in terms of minimum value of the wing
section maximum thickness (=13.5%) and of the beam thickness constraints at two
locations along the wing airfoil chord (=12% thickness ratio at 20% wing section
chord and 5.9% thickness ratio at 75% wing section chord).

Table 1 Reference data for DPW wing

Wing area 290,322 mm2

Mean aerodynamic chord 197.55 mm

Xref for moments 154.24 mm (from root l.e.)

Semi-span length 762 mm

Aspect ratio 8.0
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Geometry Parameterization and Mesh Generation

The CST approach allows to identify and isolate the general features which similar
shapes have in common (e.g., round/sharp nose, cross section area distribution) and
separate the contribution introduced by the real shape change. This “factorisation” is
carried out through the definition of a “class” function and a “shape” function, whose
product give then the real shape. More details can be found in (Kulfan 2008). In the
present case, the wing shape is described by 36 shape variables + 1 variable tomodify
the twist angle at the wing tip. In order to build the wing shape, three locations along
the non-dimensional span length η are selected (η = 0.0, 0.5, 1.0) and, once given
the design weights, the sectional shapes at those three sections are extracted from the
analytical CST representation as a set of points; hence, the points are read in ANSYS
ICEM CFD and a sequence of parametric commands are executed through a batch
script to generate and export the computational mesh. The volume mesh is made of 8
blocks, a family of two grids is defined: the coarse and fine mesh consist respectively
of 712,448 cells and 2,959,872 cells. A sketch of the surface mesh distribution is
shown in Fig. 3. Both meshes are conceived to respect the y+ = O(1) condition, as
also shown in the figure where the contour map of y+ distribution on the wing surface
is depicted. The coarse mesh will be used for optimization studies, while the fine
mesh will provide more accurate comparisons of the aerodynamic flow for optimized
shapes at the end of the optimization process.

Optimization Results

Four different surrogate-based simulations have been carried out and detailed in
Table2. The standard EGO algorithm has been included to set a reference level.
The total computational budget is fixed at 500 CFD calls as well as the size of the
initial training set is common to all methods and equal to 216. This will allow a
fair comparison between the single method capabilities to search the design space
with equivalent computational effort.When the present surrogate-based optimization
method is used, the EI-like in-fill criterion is adopted for testing purposes.

Figure4 shows the optimization histories in terms of the progression of the min-
imum objective function value found in the training database along the iterations.
The unit value represents the level of the baseline DPW wing shape. The models
have roughly the same pattern, with the POD/RBFN model slightly outperforming
the others. The different approach between EGO and the present method is clearly
observed: EGO pushes to minimize the objective function from the beginning of
the updating phase (i.e., after the initial 216 samples evaluation) having a steady
and continuous improvement; on the other hand, the present surrogate-based method
achieves a significant contribution to the descent in the final 100 samples, where
optimization search is actively working, leaving to the intermediate 184 (adaptive)
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(a) Coarse mesh (b) Fine mesh

(c) y+on coarse mesh (d) y+on fine mesh
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Fig. 3 Surface mesh and y+ distribution on DPW wing surface

Table 2 Optimization setup

Method Surrogate In-fill
criteria

napr nadpt nopt Total CFD
calls

EGO Kriging EI 216 – 284 500

Present SBO Kriging EI-like 216 184 100 500

Present SBO RBFN EI-like 216 184 100 500

Present SBO POD/RBFN EI-like 216 184 100 500

samples the freedom to improve the surrogate quality. At the end of the process, each
of the three present SBO methods reaches better results than EGO.

Table3 propose a comparison of the aerodynamic coefficients and objective func-
tion value for all optimal candidates. The keypoint of the optimization task is the
drag reduction on DP2, where the improvement is much larger. Slight differences
are noticed on pitching moment coefficients as no optimum satisfies the constraint.
Indeed, in the minimization problem formulation (Eq.14), the pitching moment
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Fig. 4 Convergence
histories of surrogate-based
optimizations
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Table 3 Aerodynamic performances of optimal candidates

Design DP1 DP2 Obj.
value

CL ,1 CD,1 CM,1 CL ,2 CD,2 CM,2

Baseline 0.500 0.0241 –0.0813 0.500 0.0279 –0.0880 1.0

EGO opt. 0.500 0.0231 –0.0942 0.500 0.0244 –0.099 0.926

RBFN opt. 0.500 0.0231 –0.102 0.500 0.0241 –0.108 0.921

Kriging opt. 0.500 0.0232 –0.095 0.500 0.0242 –0.100 0.923

POD/RBFN opt. 0.500 0.0231 –0.086 0.500 0.0243 –0.0918 0.920

constraint has been implemented as a soft penalty (1 drag counts penalty for 0.01
variation in CM ), hence the method allows to exceed it if the gain in aerodynamic
drag is more significant. Anyway, the most interesting result is that all optimal can-
didates show very similar performances: the relative difference in aerodynamic drag
is within 1 count at DP1 and 3 counts at DP3.

Pressure contour maps for selected optimal candidates are depicted in Fig. 5. The
inboard wing loading is slightly reduced on design point 1 and a significant decrease
of the shock wave intensity is observed on the mid-outboard wing. By comparing the
optimal solutions, it is quite evident that EGO and Kriging-based optima are indeed
similar as the optimization relied on similar surrogates, even if the adaptive criterion
for adding new samples is different. ThePOD/RBFNmodel is able to perform slightly
better because it is a physics-based approach, i.e. it is fed not only with values of
the objective function but mainly with computed flow fields. This peculiar aspect
allows to inherit more information related to the nature of the governing equations
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(a)DP1 (b)DP2
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Fig. 5 Pressure coefficient contour maps

(a) Root wing section (b) Mid-wing section (c) Tip wing section

(d) Cp at root section (e) Cp at mid section (f) Cp at tip section
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Fig. 6 Sectional airfoil geometry and Cp distribution

(e.g., flow field structure, shock-wave pattern, boundary layer characteristics) when
reconstructing and predicting new solutions. Finally, Fig. 6 proposes a comparison
of the local geometry and pressure coefficient solution of the optimal candidates.
Three y–constant wing sections are selected, namely at wing root, mid–wing and tip
locations. In terms of geometry modifications with respect to the baseline shape, an
important reduction of the leading edge curvature is observable and a slight increase
of the rear airfoil curvature near the wing tip (probably to recover the lift constraint).
The twist angle at the wing tip has also been reduced for wing loading compensation.
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Conclusions

The paper proposed a surrogate-assistedmethodology suitable to aerodynamic shape
optimization. Two scalar–valued surrogates (Kriging, RBFN) and a physics-based
meta-model coupling Proper Orthogonal Decomposition and Radial Basis Functions
interpolation have been used to predict approximate values of the objective functions
throughout the optimization process. The training process has been conceived in three
stages, namely a space-filling stage to initialize the surrogate, an adaptive sampling
stage in which the model is gradually improved and a final iterative optimization
stage where a sequence of improved surrogates are optimized. In the adaptive sam-
pling phase, an in-fill criterion is designed to mimic the Expected Improvement
Function maximization by re-formulating the surrogate prediction variance through
the estimation of the Lipschitz constant.

An aerodynamic case has been proposed to test the methodology, consisting in
the shape optimization of an isolated wing from the AIAA CFD Drag Prediction
Workshops with 37 design variables and multi-point conditions. Despite the large
scale and the complexity of the case, results are fully satisfactory because of either
the obtained improvement (up to 10% on DP2) and the very limited computational
cost (only 500 CFD calls).

Such results support the conclusion that surrogate models alone may not pro-
vide the right answer within an aerodynamic shape optimization context, especially
if transonic viscous flow is considered. However, when coupled to smart adaptive
sampling techniques, they allow to catch the basic trends of the objective function
without penalizing the design space exploration: indeed, in complex design cases
with high non-linearities and multi-modal landscapes, the latter has to be carefully
balanced as it may result in unveiling promising regions as well as lead the optimizer
to waste time in searching poor solutions.
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Study of the Influence of the Initial a
Priori Training Dataset Size in the
Efficiency and Convergence of
Surrogate-Based Evolutionary
Optimization

Daniel González-Juarez and Esther Andrés-Pérez

Abstract The development of an automatic geometry optimization tool for efficient
aerodynamic shape design, supported byComputational FluidDynamic (CFD)meth-
ods is nowadays an attractive research field, as can be observed from the increasing
number of scientific publications during the last years. Surrogate-based global opti-
mization methods have demonstrated a huge potential to reduce the actual number of
CFD runs, and therefore drastically speed-up the design process. Nevertheless, sur-
rogates need initial high fidelity data sets to be built and to reach a proper accuracy.
This work presents a study on the influence of the initial training dataset size in the
proposed approach behavior. This approach is based on the use of Support Vector
Machines (SVMs) as the surrogate model for estimating the objective function, in
combination with an Evolutionary Algorithm (EA) and an adaptive sampling tech-
nique focused on optimization called the Intelligent Estimation Search with Sequen-
tial Learning (IES-SL). Several number of training points have been fixed to check
the convergence, the accuracy and the objective function reached by the method.

Introduction

Aerodynamic shape optimization by means of automatic tools is an industrial
relevant field that has to breast several challenges. Some of these challenges are:
how to handle deformations in certain regions (such as intersections between wing
and fuselage or pylon/nacelle), how to reduce the number of CFD runs required
for performing aerodynamic design optimization or how to tackle integrated
components. Furthermore, surrogate-based optimization methods require several
barriers to be broken when applied to complex configurations, such as the called
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“curse of dimensionality”, the ability of surrogates to handle a high number of
design parameters, efficient constraints handling (Parr et al. 2010), and the proper
exploration and exploitation of the whole design space.

In the case of surrogate-based optimization (SBO) methods, the surrogate predic-
tion is also highly influenced by training set size. A huge training set with a proper
design space distribution ensures reaching a global optimum, but requires a vast com-
putational cost to be built. On the other hand, a small training set is fast to be built
but the accuracy is not enough for optimization purposes. A solution to this issue
must be found for the suitable implementation of this method in the aeronautical
industry.

In this work, Support VectorMachines (SVM) combinedwith Evolutionary Algo-
rithms (EAs) and an adaptive sampling method, called Intelligent Estimation Search
with Sequential Learning (IES-SL), is proposed. The approach is applied to the mul-
tipoint optimization of one typical test case, i.e., the transonic RAE 2822 airfoil. The
aim of this work is to provide an analysis of the training set size influence in the
behavior of the IES-SL approach proposed.

This paper is structured as follows. In Section “Literature Review”, a review
of the recent research efforts in SBO applied to aircraft design is presented.
Section “Surrogate-Based Optimization Strategy” presents the applied SBO strategy
and Section “Numerical Results” collects the study results. Finally, the conclusions
extracted from the results are summarized in Section “Conclusions”.

Literature Review

Recent Research Efforts in SBO Applied to Aircraft Design

Some recent efforts in SBO for aerodynamic shape design includes, e.g., a physics-
based surrogates applied to the drag minimization of NACA 0012 and RAE 2822
airfoils in transonic flow conditions (Leifsson et al. 2014). In this work, the geome-
tries were parameterized using PARSEC involving 5–10 design parameters. SBO
strategies were applied for the drag minimization of the NLF0416 airfoil using
10 design variables (Li et al. 2001). Variable-fidelity computational fluid dynamics
(CFD) combined with shape optimization strategy was applied to the optimization
of a transonic airfoil parameterized by the NACA 4-digit definition with three design
variables (Koziel and Leifsson 2013).
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A surrogate based on proper orthogonal decomposition (POD) applied to the
aerodynamic shape optimization of an airfoil is presented by Iuliano (Iuliano and
Quagliarella 2013). The geometry was parameterized with 16 design variables
defined with the CST method. An approach based on a combination of a genetic
algorithm and an artificial neural network is presented by Jahangirian and Shahrokhi
(2011). This approach was applied to the shape optimization of an airfoil, which was
parameterized by a modified PARSEC involving 10 design variables.

Most of the SBO applications in aerodynamic shape optimization involve two-
dimensional configurations, where the number of design variables is usually limited.
Nevertheless, some applications to three-dimensional configurations can be found
in literature. An investigation about SBO applied to a wing parameterized with 11
design variables was undertaken by Keane (2003). A multi-fidelity surrogate model
applied to a three-dimensional wing optimization was addressed by Likeng and
Zhenghong (2012). In this case, the design parameters were a combination of 12
variables using the CST method for three wing sections (root, hink and wing tip).
Lukaczyk et al. (2014), proposed amethod based on an active subspace for effectively
searching the whole design space. The method is applied to the optimization of the
ONERAM6 transonicwing, whichwas parameterizedwith 50 FFDdesign variables.
The aim was to discover a low-dimensional linear subspace of the input space that
explained the majority of the variability in the drag and lift coefficients. An SBO
application to the aerodynamic shape design of awing parameterizedwith volumetric
non-uniform rational B-splines (NURBS) was presented by current authors (Andrés-
Pérez and Iuliano 2015). Also, in (González-Juárez et al. 2015; Andrés-Pérez et al.
2016) current authors present an application study about the influence of number and
location of the design parameters in the behaviour of the IES-SL method applied to
the aerodynamic shape optimization. The selected geometries, RAE 2822 airfoil and
DPW-w1 wing, were parameterized with volumetric NURBS.

This work is within the aerodynamic shape design and optimization research line
of INTA’s Fluid Dynamics Branch.

Surrogate-Based Optimization Strategy

This section introduces each of the components of the SBO approach applied in
this study: geometry parameterization through volumetric NURBS, Evolutionary
Algorithms (EAs), SupportVectorMachines forRegression (SVR) and the Intelligent
Estimation Search with Sequential Learning (IES-SL) as the strategy for adaptive
sampling focused on optimization.
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Geometry Parameterization

Parameterization is a crucial step in an aerodynamic design optimization problem.
NURBShave demonstrated to be able to accurately represent a large family of geome-
tries. In aerodynamic design, NURBS provide smooth surfaces while maintaining
some deformation locality (Mousavi et al. 2007). In addition, the optimized surface
at the end of the optimization process has the correct format to feed directly the
CAD and grid generation applications. However, the use of surface NURBS can be
impractical, because very frequently requires the additional effort to develop a surface
representation that fits the original geometry, with an appropriated arrange of control
points for the optimization. An alternative approach is to envelop the geometry in a
volumetric NURBS (Martin et al. 2013), which maintain the deformation properties
of a conventional 2-dimensional surface, but with the advantage that control points
can be set up arbitrarily.

From a mathematical point of view, NURBS surfaces are defined as the tensor
product of threeNURBS curves, defining a volumetric region, where the deformation
is governed by the movement of control points:

S(ξ, η, μ) �
∑I

i

∑J
j

∑K
k Ui,n(ξ )Vi,n(η)W (μ)Ci jk

∑I
i

∑J
j

∑K
k Ui,n(ξ )Vi,n(η)W (μ)

(1)

where C are the control points, ξ , η, and μ are the parametric coordinates, and U, V,
and W are the basis functions which are calculated using the following expression:

Ui,1(ξ ) �
{
1 if ui ≤ ξ < ui+1
0 otherwise

Ui,k(ξ ) � (ξ − ui )Ui,k−1(ξ )

ui+k−1 − ui
+
(ui+k − ξ )Ui+1,k−1(ξ )

ui+k − ui+1
(2)

The basis coefficients are calculated from the knot vectors Ū , V̄ and W̄ , and,which
are a sequence of real numbers. Basis functions are equal to zero everywhere except
for an interval delimited by the order of the NURBS, defining the area of influence of
each control point (Piegl and Tiller 1997). The most common implementation of the
control box is to employ uniform basis, which can be obtained with a knot sequence
as:
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First order is equivalent to a linear interpolation, while second and third orders
provide derivative and curvature continuity, respectively.
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Fig. 1 RAE 2822 control
box parameterization

In this work, the airfoil is parameterized with third order volumetric NURBS,
also called control box, and the design variables will be the vertical displacements
(z axis) of the 14 control points. Figure 1 depicts the selected parameterization.

To clarify, there are additional control points at the trailing and leading edge that
are kept fixed, in order to maintain the angle of attack; so these control points are not
considered as design variables.

Evolutionary Algorithm

Evolutionary algorithms (EAs) are bio-inspired methods that clone the behaviour of
natural evolution to solve complex optimization problems. The basic elements of an
EA are the solution coding, the selection operator and the crossover and mutation
operator.

In the design application to be considered in this work, each coding vector is com-
posed by a given parameterization of a geometry, i.e., z � [cp1, cp2, cp3, . . . , cpN ],
where cp is the vertical coordinates of each control point.

More details about the EA applied in this paper can be found in a previous work
from the authors (Andrés et al. 2012).
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Objective Function Approximation Using Support Vector
Machines (SVMs)

Support vector machines acts as a meta-model to predict the objective function to be
optimized, which in this case is given by the aerodynamic performance of de airfoil.

Support Vector machines for Regression are a powerful tool used on the machine
learning field, and a modelling tool for a large amount of regression problems on
engineering. The SVR can be solved as a convex optimization problem using kernel
theory to face nonlinear problems. The SVR consider not only the prediction error
but also the generalization of the model. To obtain the best performance, a search of
themost suitable combination of the kernel parameters must be carried on, usually by
using cross validation techniques over the training set. To reduce the computational
time of this process, different methods have been proposed in the literature to reduce
the search space related to these parameters. In this case, it has been applied the one
developed by Ortiz-García et al. (2009). Which has proven to require pretty short
search times.

More details about the EA applied in this paper can be found in a previous work
from the authors (Andrés et al. 2012)

Flowchart of the Proposed Approach

In this article, The Intelligent Estimation Search with Sequential Learning (IES-SL)
method is applied. This method allows performing an efficient adaptive sampling
guiding the optimization algorithm towards the most promising regions of the design
space. The flowchart of the proposed approach is depicted in Fig. 2. First, an initial set
of randomly generated (including the baseline) geometries are selected and evaluated
with CFD tool (DLR Tau code in this work). With this set, a first surrogate is built
and linked within an evolutionary algorithm. The latter will search for the minimum
of the surrogate in each of the optimization iterations, and the returned optima will
be again evaluated using the high-fidelity CFD solver, and then incorporated to the
surrogate model, which is rebuilt and more precise on each iteration. The process
will end when a certain number of CFDs budget is reached.

The aim of this work is to study the influence of the initial training size in the
precision of the surrogate and the convergence of the proposed approach.
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Fig. 2 Flowchart of the proposed approach

Table 1 Baseline airfoil features

Chord (m) 0.61

Maximum thickness-to-chord ratio 0.0121 at x/c�0.38

Maximum camber-to-chord ratio 0.0126 at x/c�0.76

Leading edge radius (m) 0.00827

Airfoil area (m2) 0.0776

Trailing edge angle 9°

Numerical Results

Baseline Geometry

The selected geometry for this study was the well-known RAE2822 airfoil features
described in Table 1. The airfoil is a rear-loaded, sub-critical geometry, designed
to exhibit a roof-top type pressure distribution at design conditions (Mach�0.66,
Cl�0.56 ESDU 1973). It has been tested in the RAE wind tunnel in 11 different
flow conditions in the range of Mach numbers from 0.676 to 0.750 and at several
Reynolds numbers (Cook et al. 1979).

A 56 k points unstructured grid was generated for this study.

Test Case Definition

The proposed approach is applied to 5 optimizations cases with 4, 8, 16, 32 and 64
initial random training points respectively. The multipoint optimization problem of
the RAE 2822 is selected. The flow conditions for both design points 1 & 2 are:
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DP1 DP2

Mach 0.734 0.754

Re 6.5 M 6.2 M

Turb. Model SA κω TNT

Table 2 OF evolution respect the initial training size

# Initial training random points Objective function (OF)

4 0.6014

8 0.6059

16 0.6021

32 0.6016

64 0.5993

The objective function selected was Min
(
CD
CL

)
with some considerations. These

are:

• Aerodynamics constraints and penalties:

1. Prescribed minimum lift coefficient: C0
l

∣
∣
k : Cl |k ≥ C0

l

∣
∣
k .

2. Prescribed minimum pitching coefficient: C0
m

∣
∣
k
: Cm |k ≥ C0

m

∣
∣
k
.

3. Drag penalty: if constraint on minimum pitching moment is not satisfied, the
penalty will be 1 drag count per 0.01 in �Cm .

• Geometric constraints

1. Limit: ±20% of the initial control points’ values.
2. Prescribed maximum thickness ratio (t/c)max : max(t/c) � (t/c)max.
3. Prescribed minimum thickness ratio (t/c)80min at x � 0.8c: (t/c)80 ≥ (t/c)80min.

4. Prescribed minimum leading edge nose radius Rle
min : Rle ≥ Rle

min.

Sensitivity Study Results

In this section, the results of the present study are presented.Three issues are analysed.
First, the influence of the initial training size in the convergence of the method. Next,
the influence in the method precision of the initial data set. Finally, the value of the
objective function reached in each case.

Regarding the first analysis, Fig. 3 shows the convergence of the IES-SL for
each test case. As can be seen, the five test cases have a huge oscillation during the
“training period”. This is the expected behaviour since the points in this data set
are generated randomly. A lower size of initial training means the optimizer requires
more iterations to reach the “optimum region”. The reason is that the initial surrogate
is more intelligent with a huge initial data set, but it requires more time to be built.
At last, the five test cases reach the same optimum region (see Table 2).
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Fig. 3 SBGO convergence versus initial data set size
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Fig. 3 (continued)

Figure 4 illustrates the accuracy of the method with respect the initial training
size. As expected, an initial surrogate with a vast number of points has an initial
accuracy higher than one with a small set of points. This is in the same line that the
convergence. Nevertheless, it requires more time to start the optimum seek.

Last, but not least, Table 2 summarizes the value of the OF reached in each case.
It can be seen that there is no influence of the initial training size in the final value
of the OF (with a reasonable budget of iterations). This is the main advantage of the
IES-SL proposed.
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Fig. 4 Approach accuracy for each initial training size
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Fig. 4 (continued)

Conclusions

The aim of this work was to provide an analysis about how the initial training size of
the surrogate affects the behaviour of the proposed IES-LS method. The following
conclusions have been extracted from the solutions:

– The optimum region reached is the same independently the training set size. A
model with higher initial data set size requires less iterations to reach de optimum
region, but it requires more computational time to be built, which is not feasible
from the industry point of view.

– In the same trend, the initial accuracy of the surrogate increases with the number
of training samples, but the drawback is the same which is exposed in the previous
point.

– As summarized in Table 2, the training set size has no influence in the OF reached
by the proposed IES-SL approach.
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In summary, the main advantage of the proposed SBO method is that it can reach
the global optimum with a small number of initial samples. This is feasible due to
sequential learning allows the surrogate to become accurate each iteration. So, there’s
an important reduction of the initial computational cost that requires a standard offline
SBO.
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Abstract This work presents a summary of the results obtained during the activities
developed within the GARTEUR AD/AG-52 group. GARTEUR stands for “Group
for Aeronautical Research and Technology in Europe” and is a multinational organi-
zation that performs high quality, collaborative, precompetitive research in the field
of aeronautics to improve technological competence of the European Aerospace
Industry. The aim of the AG52 group was to make an evaluation and assessment of
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surrogate-based global optimization methods for aerodynamic shape design of aero-
nautical configurations. The structure of the paper is as follows: Sect. “Introduction”
will introduce the state-of-the-art in surrogate-based optimization for aerodynamic
design and Sect. “Definition of Common Test Cases and Methods” will detail the
test cases selected in the AG52 group. Optimization results will be then showed in
Sect. “Optimization Results”, and conclusions will be provided in the last section.

Introduction

The AD/AG 52 has been established to explore and unveil the potential of surrogate-
based techniques in aerodynamic shape optimization. Any designer has experienced
the burden of intensive numerical optimization involving CFD or analogous expen-
sive black-box simulations. Typically, the computational load is well tolerated when
dealing with two-dimensional airfoil shape design. However, the order of magnitude
of both the number of simulations required and the CPU time for single evalua-
tion grows significantly with the increase of the dimensionality (e.g., from two-
dimensional to three-dimensional cases) and of the inherent geometric complexity
(e.g., wing-fuselage configuration, high-lift cases, wing-pylon-engine junction) of
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the problem at hand. Surrogate models are able to complement, not to replace, the
“true” function evaluation by providing a fast and adaptive response during screening
parametric analyses and numerical optimization. Building and querying a surrogate
is a way to potentially acquire new information about the problem under analysis, not
to directly solve it: indeed, any surrogate, even the smartest ones, have to face with
the prediction error and minimize it in order to be accurate. This does not hamper
the usefulness of the approach as, even in presence of errors away from the sampled
data, function trends and optimization directions can be caught to enrich the process.

The main objective of this Action Group was to make a deep evaluation and
assessment of surrogate-based global optimization methods for aerodynamic shape
optimization.

The work structure for this AG is application-driven, and it was composed of 2
tasks. First, in task 1, two common test cases were proposed and were addressed
by all partners using different methods. The objective was to make an exhaustive
comparison of promising methods and quantification of their performance in terms
of accuracy and CPU cost. Then, in task 2, more industry-relevant test cases were
provided, and the consortium have used the knowledge acquired in task 1, to solve
such test cases.

State-of-Art

Global search methods are traditionally based on stochastic optimization techniques;
most of them are population-based whereas there are few individual-based algo-
rithms. The most commonly used population-based methods are the Evolutionary
Algorithms (EAs; including Genetic Algorithms-GAs and Evolution Strategies-ES).
However, other alternatives, such as Particle Swarm Optimization (PSO) (Kennedy
and Eberhart 1995) or Bacterial Foraging Optimization (BFO) (Muller et al. 2002),
Differential Evolution (DE) (Storn and Price 1997) etc., exist. Evolutionary algo-
rithms (EAs) (Duvigneau and Visonneau 2004) are successful single- and multi-
objective constrained optimization methods that can handle any kind of objective
function and may accommodate any evaluation software as a black-box tool. Due to
the high and expensive number of required calls, EAs assisted by surrogate evaluation
models (metamodels) have been devised and, depending on the trainingmethod, they
can be classified into off-line trained metamodels (Jin et al. 2002; Buche et al. 2005;
Won and Ray 2005), or on-line trained metamodels (Giannakoglou 2002; Branke
and Schmidt 2005; Jin 2005; Szollos et al. 2009).

There are different kinds of surrogate modelling as for example Polynomial
Regression (PR), Multivariate Adaptive Regression Splines (MARS), Gaussian Pro-
cesses, Kriging (KG), Cokriging (Zhong-Hua et al. 2010), ArtificialNeuralNetworks
(ANN) (de Weerdt et al. 2005; Marinus et al. 2010), Radial Basis Functions (RBF)

H. Wang
e-mail: handing.wang@surrey.ac.uk
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(Praveen and Duvigneau 2007), Proper Orthogonal Decomposition (POD) methods
(Iuliano and Quagliarella 2013) and Support Vector Machines (SVM) (Clarke et al.
2005; Andres et al. 2011), among others. A reference for recent advances in surro-
gate based optimization techniques can be found in (Forrester and Keane 2009), and
comparison of surrogate models for turbomachinery design in (Peter and Marcelet
2007). Also, surrogate modelling has been already applied for the design optimiza-
tion of composite aircraft fuselage panels (Vankan and Maas 2010). In addition, the
use of Kriging surrogate model in combination with evolutionary algorithms has
been recently applied for the design of hypersonic vehicles (Ahmed and Qin 2010).
Furthermore, the use of Support Vector Regression algorithms (SVMr) as metamod-
els has been applied to a large variety of regression problems, in many of themmixed
with evolutionary computation algorithms (Cheng et al. 2011; Salcedo-Sanz et al.
2011; Jiang and He 2012; Iuliano and Andrés 2015).

Current research focuses on the improvement of metamodels (by using artificial
neural networks, Gaussian models, etc., or proposing metamodels variants (Younis
et al. 2008) based on not only the responses but also the gradient or responses, Krig-
ing) and/or different metamodels implementation schemes within the Metamodel-
Assisted Evolutionary algorithm (MAEA) (Lim et al. 2010). Particular attention
is required in multi-objective optimization problems, where a Pareto front of non-
dominated solutions is sought and the evolving individuals are dispersed in the design
space, or when asynchronous MAEAs (Asouti and Giannakoglou 2009; Kapsoulis
et al. 2016) are devised by overcoming the notion of generation and the corresponding
synchronization barrier.

With respect to the combination of global and local search methods within the
design optimization process, the so-called hierarchical approach has been proposed in
the literature (for instance, stochastic methods for the exhaustive search of the design
space along with gradient-based methods for the refinement of promising solutions)
(Kampolis and Giannakoglou 2011; Peter et al. 2011). Metamodel-assisted memetic
algorithms (Kapsoulis et al. 2016) are also hybrid schemes that combine the use of
global and local optimization methods (Carrier 2006; Bompard et al. 2010; Leifsson
et al. 2014).

Definition of Common Test Cases and Methods

Two test cases hadbeen selected to assess and comparemethods: theRAE2822 airfoil
and the Drag Prediction Workshop (DPW) W1 wing. The first is two-dimensional
and it has been widely studied in the aerospace community over the last decades; a
fair number of both experimental and numerical data exist as well as optimization
results collected with a variety of methodologies. Transonic viscous flow conditions
were considered for this test case.

The second test casewas taken as theDPW-W1wingwhichhas beenproposeddur-
ing the 3rd AIAA Drag Prediction Workshop (http://aaac.larc.nasa.gov/tsab/cfdlarc/
aiaa-dpw/Workshop3/workshop3.html): it is a quite simple wing geometry that can

http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/workshop3.html
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Fig. 1 RAE2822 baseline geometry

Table 1 Baseline airfoil features

Chord (m) 0.61

Maximum thickness-to-chord ratio 0.121@x/c � 0.38

Maximum camber-to-chord ratio 0.0126@x/c � 0.76

Leading edge radius (m) 0.00827

Airfoil area (m2) 0.0776

Trailing edge angle 9°

be easily handled in an optimization context. Again, experimental and numerical
data are available for comparison. Transonic viscous flow conditions were also con-
sidered.

RAE2822 Airfoil

The RAE 2822 airfoil (Cook et al. 1979) had been selected as the initial geometry for
aerodynamic optimizations. The airfoil contour shape is shown in Fig. 1 and Table 1
summarizes its geometrical characteristics.

The flow conditions and constraints of different design points were the inputs for
the optimization process. These flow conditions included prescribed angle of attack
(AoA), Mach number, Reynolds number as it is shown:

• DP1 (Case 9): M � 0.734, Re � 6.5 × 106, AoA � 2.65◦
• DP2 (Case 10): M � 0.754, Re � 6.2 × 106, AoA � 2.65◦

The objective function defined was to maximize lift over drag ratio at both the
design points, while maintaining some specified constraints.

The aerodynamic constraints and penalties considered were:

i. Prescribed minimum lift coefficient → C0
l

∣
∣
k : Cl |k ≥ C0

l

∣
∣
k .

ii. Prescribed minimum pitching moment coefficient → C0
m

∣
∣
k : Cm |k ≥ C0

m

∣
∣
k

where C0
l

∣
∣
k and C0

m

∣
∣
k are the lift and pitchingmoment coefficients, respectively,

of the initial geometry, for the design point k.
iii. Drag penalty: if constraint on minimum pitching moment is not satisfied, the

penalty will be 1 drag count per 0.01 in �Cm .
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Fig. 2 NURBS control box

While the geometric constraints were:

i. Prescribed maximum thickness ratio (t/c)max : max(t/c) � (t/c)max
ii. Prescribed minimum thickness ratio (t/c)80min at x � 0.8c : (t/c)80 ≥ (t/c)80min
iii. Prescribed minimum leading edge nose radius Rle

min:R
le ≥ Rle

min
The RAE2822 was parameterized by a volumetric NURBS. Figure 2 shows the

parameterization in green color, with the control points marked in red. The selected
parameterization is a 3D control box with 2 control points in direction u (fake 3D
grid), 10 in direction v and 5 in direction w.

DPWWing

The public domain DPW-W1 wing (http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/
Workshop3/workshop3.html; Epstein et al. 2008)was selected as the initial geometry
for aerodynamic optimizations. Reference quantities for this wing are displayed in
Table 2 while Fig. 3 depicts the geometry

The flow conditions and constraints of different design points were the inputs
for the optimization process. These flow conditions included prescribed cruise lift,
Mach number, Reynolds number as it is shown:

• M � 0.76,CL � 0.5, Re � 5 × 106 DP1 (main design point)
• M � 0.78,CL � 0.5, Re � 5 × 106 DP2 (high-Mach design point).

The design goal was to achieve a geometry with the minimum drag, while main-
taining some specified aerodynamics and geometric constraints.

http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/workshop3.html
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Table 2 Reference quantities for the DPW wing

Sre f (wing reference area) 290322 mm2

Cref (wing reference chord) 197.55 mm

Xref 154.24 mm (relative to the wing root leading
edge)

b/2 (semi span) 762 mm

AR (aspect ratio, AR � b2/Sre f ) 8.0

Fig. 3 Planform plot of the initial geometry (left), 3D plot of the initial geometry (right)

In this case, the aerodynamic constraints and penalties taking account were:

i. Prescribed constant lift coefficient: C0
L → CL (k) � C0

L (k).
ii. Minimum pitching moment: C0

M → CM (k) ≥ C0
M (k)

C0
L (k) and C

0
M (k) are the lift and pitching moment coefficients, respectively, of

the initial geometry, for the design point k.
iii. Drag penalty: If constraint in minimum pitching moment is not satisfied, the

penalty will be 1 drag count per 0.01 in �CM .

while the geometric constraints were:

i. Airfoils’ maximum thickness constraints: (t/c)section ≥ (t/c)0section
where (t/c)0section is the maximum thickness for the original wing sections, root,
mid-span and tip: (t/c)0root � (t/c)0mid−span � (t/c)0ti p � 13.5% . Therefore, the
maximum thickness for the optimized wing sections’ should be greater or equal
than 13.5%.

ii. Beam constraints:
First, two locations (x/c) are fixed to represent the beam constraints:

(x/c)root,1 � (x/c)mid−span,1 � (x/c)ti p,1 � 0.20

(x/c)root,2 � (x/c)mid−span,2 � (x/c)ti p,2 � 0.75
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Fig. 4 DPW geometric
constraints in
parameterization

Then, the thickness value of the original wing sections at these locations are
defined by:

(t/c)0root,1 � (t/c)0mid−span,1 � (t/c)0ti p,1 � 12%

(t/c)0root,2 � (t/c)0mid−span,2 � (t/c)0ti p,2 � 5.9%

The parameterization defined for task 2 is depicted in Fig. 4. The DPW wing was
parameterized by a 3D control boxwith 5 control points in direction u, 10 in direction
v and 5 in direction w. The parametric u direction corresponds to the y axis, the v
direction to the x axis, and the w direction to the z axis. The design variables to be
modified are the control points in the w direction.

Applied Approaches

The surrogate models employed by the partners are listed in Table 3.

Table 3 Summary of test cases in Task 1 and 2 and involved partners and methods

TC1.1 RAE2822
airfoil (RANS)

TC1.2 DPW-W1 wing
(Euler)

TC1.2 DPW-W1 wing
(RANS)

INTA/UAH SVMs SVMs SVMs

VUT ANNs – –

CIRA POD/RBF,
Kriging/EGO

– Kriging/EGO

FOI Kriging, RBF – –

ONERA Kriging – –

UNIS Ensemble – –

Airbus-M – – HOSVD
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Fig. 5 Comparison of partners’ optimized geometries and baseline RAE2822

Optimization Results

Task 1 RAE2822 RANS

Partner’s optimized shapes are depicted in Fig. 5 while Fig. 6 shows the Cp distri-
butions for DP1 and DP2. The objective function values obtained for each geometry
after the cross validation with several solvers are summarized in Table 4.

Table 4 Average value of the objective function values for RAE 2822 in viscous flow conditions
optimization

Mean OF (TAU, MSES, ZEN
3 levels)

Mean OF (only TAU and ZEN
fine)

RAE 2822 baseline 1 1

CIRA-POD 0.6223 0.6266

CIRA-EGO 0.6236

INTA/UAH 0.6243

ONERA 0.6494 0.6498

UNIS 0.6367 0.6338

VUT
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Fig. 6 Cp distribution for both DP1 and DP2 for different geometries

Task 2 DPW-W1 RANS

Partner’s optimized shapes at 25, 50 and 75% wingspan are depicted in Fig. 7 and
corresponding Cp distributions are showed in Figs. 8 and 9. The objective function
values obtained for each geometry after the cross validation with several solvers are
summarized in Table 5.
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Fig. 7 Comparison of partners’ optimized geometries and baseline DPW-w1. 25, 50 and 75%
wingspan
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Fig. 8 Comparison of Cp distributions for DP1 at 25, 50 and 75% wingspan
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Fig. 9 Comparison of Cp distributions for DP2 at 25, 50 and 75% wingspan
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Table 5 Results of cross-analysis of the optimized geometries ZEN and TAU solvers

Geometry Solver CL CD CM CL CD CM OF

DPW w1 ZEN 0.5 0.0237 −0.069 0.5 0.0264 −0.078 1

DPW w1 TAU 0.5 0.0237 −0.067 0.5 0.0267 −0.070 1

CIRA ZEN 0.5 0.0224 −0.084 0.5 0.0232 −0.089 0.91

CIRA TAU 0.5 0.0221 −0.075 0.5 0.0233 −0.079 0.91

INTA/UAH ZEN 0.5 0.0235 −0.084 0.5 0.0241 −0.091 0.96

INTA/UAH TAU 0.5 0.0231 −0.074 0.5 0.0248 −0.077 0.94

AIRBUS-M TAU 0.5 0.0231 −0.090 0.5 0.0238 −0.078 0.92

Conclusions

This paper summarized the results of theGARTEURAD/AG52 group on “Surrogate-
based global optimization methods for aerodynamic design”.

Surrogate-based global optimization has been demonstrated to be feasible for
aerodynamic design in case of high number of design variables (tested 36 on DVs).

However, the accuracy of the surrogate models strongly depends on the sampling
and the objective of the surrogate:

– If the objective is to provide general predictions, an a priori LHS sampling in
combination or not with Lola-Voronoi sampling seems to be a good option.

– If the objective is to better predict those regions of the design space where the
optimum is located, then a mixed a priori and adaptive sampling is recommended.

In case of optimization best results were achieved by the adaptive Kriging,
HOSVD-based and SVMr optimization approaches.

Interested readers can consult the complete AG52 report in www.garteur.org.
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A Response Surface Based Strategy for
Accelerated Compressor Map
Computation

Dmitrij Ivanov, Dieter Bestle and Christian Janke

Abstract The aim of the present work is to develop a strategy enabling fast
CFD-based computation of compressor maps for aero engines. The introduced pro-
cess consists of two phases. In the first phase the compressor limits due to surge and
choke are identified andapproximatedbyutilizingmethodsof support vectormachine
(SVM). These limit lines are refined within an iterative, distance-based approach.
Subsequently, in the second phase the three-dimensional shape of the compressor
map is approximated by a response surface method (RSM). The process is validated
with an application to an industrial 4.5-stage research compressor, where very good
agreement between evaluated and approximated values is obtained.

Introduction

The rapid development of computer power, design methods and process integration
allows to switch step-by-step frommanually driven to automated processes and from
low-fidelity to high-fidelity analysis. This is especially the case in aero engine design,
Keskin (2007), and compressor map computation, Janke et al. (2015), as last step of
the design process.

For a long time engine experts have been denying that compressor map compu-
tation based on 3D-CFD would be possible without human intelligence due to the
complexity of detecting surge- and choke-limits and the high sensitivity of CFD
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convergence behavior on initial flow conditions. In common industrial applications,
therefore, typically a more robust 1D-CFD analysis, a so called meanline-code, is
used to calculate compressor maps. This code calculates the flow along the mid-
line between hub and shroud and captures the influence of three-dimensional flow
phenomena by correlations only, Keskin (2007).

However, one of the authors, Janke et al. (2015), could demonstrate for an
industrial 4.5-stage compressor test rig that integration of optimization and root
search algorithms for critical flow conditions can resolve this problem. Basically
this approach follows the classical root of computing so called speed-lines for con-
stant reduced engine speeds nr = const, see Fig. 1. By changing the reduced exit
mass flow ṁr,E it moves along these speed-lines and finds the limits due to surge
and choke. Although this approach was able to compute a high-fidelity compressor
map based on the 3D-CFD inhouse code HYDRA, Lapworth (2004), without any
human interaction, the computational time of more than one week is still too high
for industrial application.

Therefore, the presented approach in this paper will be released from following
speed-lines and use more general design of experiments (DoE) strategies like Latin
hypercube sampling (LHS). It will combine response surface methods (RSM) and
support vector machine (SVM). Statistical learning methods like artificial neuronal
networks, Fei et al. (2016); Ghorbanian andGholamrezaei (2009) or SVMSodemann
et al. (2006), have shown to be beneficial for data-driven compressor map modelling,
however thiswas based on a sufficient big set of training points,whereas the presented
approach startswith a small set of points and explores the design space autonomously.
To the authors’ knowledge, this kind of approach has not been applied to compressor
map computation before.

The paper is organized as follows: After a short introduction into the physical
background of compressor map physics, the two-phase procedure for automatically
computing the map is introduced. In the first phase, the surge- and choke-limit lines
are successively determined by an iterative refinement procedure utilizing SVM

Fig. 1 Classical
representation of a
compressor map as function
of inlet mass flow, Janke
et al. (2015)

ṁr,I

ṁr,E = const.

nr = const.sur
ge

cho
ke
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with kernel trick based on a nonlinear transformation with radial basis functions.
Thereafter, the three-dimensional shapes of the compressor map functions are
approximated with RSM. Finally the whole process is validated by computing a
compressor map of an industrial 4.5-stage research compressor, Janke et al. (2015).
Since the focus of the paper is on development of a new strategy for computing
compressor maps, the meanline code is used instead of HYDRA whenever CFD
computations are mentioned in this paper. This, however, is no real restriction, actual
investigations of coupling the proposed approachwith 3D-CFDanalysis by the indus-
trial code HYDRA show promising results. The entire process is embedded into a
framework written in PYTHON.

Theoretical Background of Compressor Map Computation

The compressor map of an aero engine shows the ratio

π = pt,E
pt,I

(1)

between total pressures at the compressor inlet pt,I and outlet pt,E and the efficiency

η = π
κ−1
κ − 1

Tt,E
Tt,I

− 1
(2)

as functions of reduced compressor inlet massflow

ṁr,I = ṁI

√
Tt,I

pt,I
(3)

and reduced shaft speed

nr = n
√
Tt,I

, (4)

where κ denotes the isentropic exponent, ṁI the inlet mass flow, n the shaft speed
and Tt,• the total temperature. A classical representation of the pressure ratio π is
shown in Fig. 1, where additionally lines ṁr,E = const. are visualized. The reason is
that for CFD and rig-testing the reduced compressor exit massflow

ṁr,E = ṁE

√
Tt,E

pt,E
(5)

is used as an independent variable instead of the reduced inlet massflow.
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(a)
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Fig. 2 Three-dimensional extension of compressor map for a pressure ratio and b efficiency

Despite the fact that compressor characteristics are two-dimensional functions of
ṁr,I and nr , in common industrial applications compressormaps are represented only
as one-dimensional graphs where the pressure ratio π(ṁr,I ) is calculated along user-
defined speed-lines nr = const., Fig. 1. Every speed-line is limited by the compressor
operation limits surge and choke and the connection lines of all surge- and choke-
points are called surge- and choke-line, respectively. The knowledge of these limiting
lines is crucial for engine performance, reliability and safety assessment during flight.
If the compressor operates on a state between the evaluated speed-lines, typically a
linear interpolation is performed. This makes clear that, depending on the number
of calculated speed-lines, the accuracy of prediction of compressor characteristics
for any arbitrary operation point rises. The work presented here tries to catch the
full three-dimensional character of a compressor map. Similar to rig-testing, instead
of the reduced inlet massflow ṁr,I the reduced exit massflow ṁr,E and nr are used
as independent variables to describe the operating state resulting in x = [

ṁr,E, nr
]T

and
π = π (x) , η = η (x) , ṁr,I = ṁr,I (x) , (6)

respectively. Three-dimensional representations of π (x) and η (x), resulting from
meanline analysis of the already mentioned 4.5-stage research compressor investi-
gated by Janke et al. (2015) and shown in Fig. 2, demonstrate that they are smooth
enough to be approximated by response surfaces. In order to obtain these functions,
firstly the limits regarding choke and surge are determined and then the map charac-
teristics in between are approximated.

Separation of Classified Points with Support
Vector Machines

Surge- and choke-lines are separation curves between sample points xi in the
(ṁr,E, nr)-plane where CFD is converging on one side, and for points on the other
side the flow calculation cannot be performed either because of choke or surge,
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respectively. This may be classified as

yi =
{

+1 if CFD converges,

−1 else.
(7)

Thus, the goal is to find a classification border separating the data

{(xi, yi)| i = 1(1)N , yi ∈ {−1, 1}} (8)

according to their y-value.
Let us firstly assume that samples xi are linearly separable by a line H given by

a normal vector w⊥H and a point x0 ∈ H on the line, i.e.,

(x − x0)⊥w or wT (x − x0) = 0 ∀x ∈ H . (9)

With b := −wTx0 the separation line is given as

H : wTx + b = 0, b ∈ R, (10)

where w and b have to be selected such that

wTxi + b =
{

> 0 for yi = +1,

< 0 for yi = −1.
(11)

From Fig. 3 it is obvious that there is no unique solution for such a separation line. All
dashed and solid lines in the figure fulfill condition (11). Finding the best separation
line, i.e. best w and b, may be solved with the concept of support vector machine.

For later use, the conditions (11) may be combined in single inequality constraints

yi
(
wTxi + b

) ≥ 0, i = 1(1)N , (12)

respectively. According to Fig. 3, the signed distance of any point x to H is given as

d = ‖x − x0‖ cos (α) ≡ ‖w‖‖x − x0‖ cos(α)

‖w‖
= wT (x − x0)

‖w‖ = wTx − wTx0
‖w‖

(13)

or with b = −wTx0

d = wTx + b

‖w‖ (14)
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Fig. 3 Example of
separation of feasible (◦) and
infeasible (•) samples by
linear decision manifold w

nr

ṁr,E

x

x0

xi

H

d+

d−

d

where ‖‖ notes the Euclidean norm. The classification of a new sample point x /∈ H
is then given as

y = sign(d) ≡ sign
(
wTx + b

) ∈ {−1, 1}. (15)

With Eq.14, the geometric margin in Fig. 3 is given as

ρ = min
i: yi=1

∣∣wTxi + b
∣∣

‖w‖︸ ︷︷ ︸
d+

+ min
i: yi=−1

∣∣wTxi + b
∣∣

‖w‖︸ ︷︷ ︸
d−

. (16)

For an optimal separation, the value of b may be defined such that d+ = d− and
the normal vector w may be be normalized such that according to Vapnik (1999)

min
i: yi=1

∣∣wTxi + b
∣∣ = min

i: yi=−1

∣∣wTxi + b
∣∣ != 1. (17)

Hence, the geometric margin in Eq. (16) becomes

ρ = 1

‖w‖ + 1

‖w‖ = 2

‖w‖ , (18)

and with Eq. (17) the inequality condition (12) may be changed to

yi
(
wTxi + b

) ≥ 1 ∀ xi. (19)

Even with these restrictions, the separation line is still not unique, see different
solid separation lines with dashed geometric margins in Fig. 3. It becomes unique
by introducing an optimality criterion. According to Vapnik (1999) a dataset (8) is
optimally separated by H if the geometric margin becomes largest. This results in
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max ρ = max
2

‖w‖ ≡ min ‖w‖ ≡ min
w,b

wTw s.t. Eq. (19). (20)

The constrained optimization problemmay be solved by using Karush-Kuhn-Tucker
conditions with the Lagrange function

L(w, b,λλλ) = wTw −
N∑

i=1

λi
[
1 − yi

(
wTxi + b

)]
(21)

and Lagrange multipliers λλλ = [
λ1, . . . , λN

]
, λi ≤ 0. According to the appendix,

the primal problem (20) can be transformed into a dual problem, Schoelkopf (2001);
Vapnik (1999); Vapnik et al. (1995),

λλλ∗ = max
λλλ≤0

L(λλλ) s.t. 0 =
N∑

i=1

λiyi (22)

with

L(λλλ) = −1

4

N∑

j=1

N∑

i=1

λiλjyiyjxTi xj −
N∑

i=1

λi. (23)

This quadratic problem can be solved very efficiently. Based on Eq. (61) the opti-
mal normal vector is given by

w∗ = −1

2

N∑

i=1

λ∗
i yixi. (24)

Let us choose any point x+ ∈ {xi| yi = +1, λ∗
i �= 0} and any point x− ∈ {xi| yi =

−1, λ∗
i �= 0}where constraints (19) are active. The offset b∗ may then be determined

from Eq. (64) as

b∗ = −1

2

(
w∗T x+ + w∗T x−

)
. (25)

With these optimal solutions the classification (15) for any sample point x reads as

y(x) = sign
(
w∗T x + b∗

)

= sign

(

−1

2

N∑

i=1

λ∗
i yix

T
i x

−1

2

N∑

i=1

λiyixTi x
+ − 1

2

N∑

i=1

λ∗
i yix

T
i x

−
)

.

(26)
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In general, surge- and choke-limits are not straight, but curved lines, and thus not
linearly separable. In this case, the kernel trick may be used where the data xi are
transformed into a higher dimension D > 2 by

x̃i = ϕϕϕ(xi), ϕϕϕ : R2 → R
D, i = 1(1)N . (27)

If the dimensionD is high enough, the data x̃i become linearly separable, Schoelkopf
(2001), Vapnik (1999), Vapnik et al. (1995). Thus, there exists an optimal, separating
hyperplane (10) in the x̃-space where

λλλ∗ = max
λλλ≤0

L(λλλ) s.t. 0 =
N∑

i=1

λiyi (28)

with

L(λλλ) = −1

4

N∑

j=1

N∑

i=1

λiλjyiyjx̃
T
i x̃j −

N∑

i=1

λi (29)

and

w̃∗ = −1

2

N∑

i=1

λ∗
i yix̃i, b̃∗ = −1

2

(
w̃∗T x̃+ + w̃∗T x̃−

)
(30)

which may be easily obtained by substituting all associated quantities • as •̃
in Eqs. (23)–(25). For classification, the transformation function (27) itself is not
required, but only dot products

K(xi, xj) := x̃Ti x̃j = ϕϕϕT (xi)ϕϕϕ(xj). (31)

This is obvious in Eq. (29) for finding λλλ∗ and can also be seen in the classification
operator which analogous to Eq. (26) reads as

y(x) = sign

(

−1

2

N∑

i=1

λ∗
i yiK(xi, x)

−1

2

N∑

i=1

λ∗
i yiK(xi, x+) − 1

2

N∑

i=1

λ∗
i yiK(xi, x−)

)

.

(32)

The dot products (31) are called kernel function, and here we will use the bell-shaped
radial basis function

K(xi, xj) = exp

(
−‖xi − xj‖2

σ

)
(33)

where in numerical studies σ = 0.1 was found to perform well. For the SVM-related
tasks the PYTHON code package scikit-learn is used, Pedregosa et al. (2011).
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Estimation of Choke and Surge Limits

Let us now apply the concept to the surge line

ṁr,E = fS(nr) (34)

to be found. Based on the design point xDP = [
ṁDP

r,E, nDPr
]T

and minimum and maxi-
mum reduced shaft speeds we choose a rectangular search region

[
ṁDP

r,E − Δṁr, ṁDP
r,E

] × [
nr,min, nr,max

]
(35)

with prescribed widthΔṁr . The starting set of training points (8) is chosen to consist
of the four corner points, the mid-point and five randomly chosen points, see Fig. 4a
(ν = 1). They are evaluated with the CFD analysis and according to the outcome
and Eq. (7) they are classified either as converged by yi = 1 (white dots) or non-
converged by yi = −1 (black dots). Based on this, the separating hyperplane in the
x̃-space may be characterized by Eq. (30).

However, this is only theoretical, since the transformation function (27) is not
known. In order to describe the separation line in the original x-space, the search
space (35) is divided by a fine rectangular grid of Ng × Ng points as

xi,j = [
ṁr,E,j, nr,i

]T
, i = 1(1)Ng, j = 1(1)Ng, (36)

where here Ng = 300 is chosen. These points are then very fast characterized by
applying Eq. (32) resulting in classification numbers yi,j. For each shaft speed nr,i
the corresponding point fS(nr,i) of surge line (34) is found approximately as

fS(nr,i) = ṁr,E,k + ṁr,E,k+1

2
where k : yi,k yi,k+1 < 0, i = 1(1)Ng. (37)

The black line in Fig. 4a (ν = 1) shows these Ng = 300 limit points with a linear
interpolation in between.

In order to find the real surge line (dashed line in Fig. 4a, ν = 1), the grid points
(36) may be evaluated directly by CFD and classified correctly by Eq. (7). The line
is then found also according to Eq. (37). Obviously the surge line found by SVM
deviates very much from this real surge limit. The reason is that the SVM result
is based on an insufficient number of support points which, therefore, should be
updated iteratively.

Let us summarize the support points (8) used so far in a set

X (1) =
{
xi = [

ṁr,E,i, nr,i
]T | i = 1(1)10

}
(38)
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Fig. 4 Iterative refinement of a surge- and b choke-line based on converged (◦) and diverged (•)
CFD solutions and chosen point for refinement (�) with approximated (solid) and real (dashed)
limit curves

and the found limit points (37) of our first approximation ṁr,E = f (1)
S (nr) in a set

X
(1) =

{
xi = [

fS(nr,i), nr,i
]T | i = 1(1)Ng

}
. (39)

Then each point xi ∈ X
(1)

is a potential candidate to adequately update X (1). The
most can be gained by using the limit point with the largest normalized distance
from all support points used so far, i.e.,

X (2) : = X (1) ∪
{
xk ∈ X

(1)
}

where k = argmax
i

d(xi,X (1)),

d(x,X ) = min
xj∈X

‖x − xj‖.
(40)
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The norm used here is applied to normalized variables, i.e.,

‖Δx‖ =
√(

Δṁr,E

ṁr,E,max

)2

+
(

Δnr
nr,max

)2

. (41)

In Fig. 4a (ν = 1) the update point is marked by a black star and the resulting limit
curve f (2)

S (nr) in Fig. 4a (ν = 2) partly comes closer to the real surge line. It should
be mentioned that the scales of abscissa ṁr,E and ordinate nr in Fig. 4 differ in
magnitude. The magnitude of massflow is 101 ≤ ṁr,E ≤ 102 and that of reduced
shaft speed 102 ≤ nr ≤ 103, which is why the largest distance between points cannot
be directly seen in Fig. 4.

This update procedureX (ν) → X (ν+1) maybe continued until the rootmean square
(RMS) of changes in the limit line

RMS =
√√√√ 1

Ng

Ng∑

k=1

(
f (ν)
S (nr,k) − f (ν−1)

S (nr,k)
)2 ≤ ε (42)

falls below a tolerance, e.g. ε = 0.05. As depicted in Fig. 4a, this happens after 34
updates with a satisfying result f (35)

S (nr) ≈ fS(nr).
The same procedure is applied to the choke region

[
ṁDP

r,E, ṁDP
r,E + Δṁr

] × [
nr,min, nr,max

]
(43)

resulting in an even better result for the choke-line

ṁr,E = fC(nr) (44)

after 27 iterations.

RSM Approximations of Compressor Maps

For the approximation of the compressor map characteristics (6) all converged
points (◦) in Fig. 4 during surge- and choke-line computation may be used. However,
the space between the two limit lines (34) and (44) has a very low point density. Thus,
the space between surge- and choke-line must be seeded with additional points.

For this purpose, a Latin hypercube sampling (LHS) approach withNs points with
equal density on a unit square

ui = [ξi, ηi]
T ∈ [0, 1]2 , i = 1(1)Ns, (45)
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is performed. Then these samples are transformed into the admissible compressor
map range by

nr,i = nr,min + (
nr,max − nr,min

)
ηi, (46)

ṁr,E,i = fS
(
nr,i

) + (
fC(nr,i) − fS(nr,i)

)
ξi (47)

based on (34) and (44), see Fig. 5.
The training points for surge- and choke-line approximation (◦) and new points

from LHS (+++) are concatenated to one dataset {xi} (see Fig. 6) to create a RSM
model π̂(x) by combining a linear regression function and radial basis functions
under tension, Bouhamidi and Méhauté (2004):

π̂(x) = b0 + [b1, b2] x +
N∑

i=1

aiψ(‖x − xi‖), N ≥ 3, (48)

where
ψ(‖Δx‖) = ‖Δx‖ ln ‖Δx‖. (49)

The coefficients ai, b0, b1, b2 are found from interpolation conditions

π̂(xi) = π(xi) ∀xi (50)

Fig. 5 Transformation of
LHS samples from a unit
square into b admissible
compressor map region

ui

ṁr,E

nr

xi

(b)(a)

map f S
(n

r)

f c
(n

r)

(0,0)

(0,1)

(1,0)

(1,1)
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nr,max

nr,min

nDPr

ṁDP
r,E ṁr,E

fC(nr)fS(nr)

Fig. 6 Samples for compressor map approximation summarizing converged points (◦◦◦) of surge-
and choke-line (solid lines) computation and 16 additional points (+++) from LHS sampling

and
N∑

i=1

ai = 0,
N∑

i=1

aixi = 0. (51)

Analogously response surfaces η̂(x) and ˆ̇mr,I (x) are created for efficiency and
reduced inlet massflow.

Finally the process is validated by computing compressor map characteristics of
the 4.5-stage high-speed research compressor, Janke et al. (2015), and comparing
them with a fully evaluated dataset. In principal, a detailed comparison of RSM
models for ˆ̇mr,I (ṁr,E, nr), η̂(ṁr,E, nr) and π̂(ṁr,E, nr) should be illustrated. But to
align to the classical representation of a compressor map, only a one-dimensional
representation of π̂( ˆ̇mr,I ) for several speed-lines nr = const. is chosen.

Nine ṁr,E-values and the associated ṁr,I -values for nine speed-lines are extracted
from a directly evaluated dataset. The ṁr,E-values from the dataset are also used to
calculate the approximated values ˆ̇mr,I and π̂ from the response surface described
above. From Fig. 7 a good approximation can be observed. The representation in
Fig. 7 is suitable to easily identify approximation errors, where horizontal misalign-
ment indicates approximation errors in ˆ̇mr,I (x) and vertical misalignment indicates
approximation errors in π̂(x).

In order to check approximation quality, the entire compressor map calculation
process was performed 50 times. For each run maximum relative approximation
errors

eπ = max

∣∣∣∣
π̂(x) − π(x)

π(x)

∣∣∣∣ , eṁr,I = max

∣∣∣∣∣

ˆ̇mr,i(x) − ṁr,i(x)
ṁr,i(x)

∣∣∣∣∣
, eη = max

∣∣∣∣
η̂(x) − η(x)

η(x)

∣∣∣∣

(52)
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Fig. 7 Comparison between
RSM (×) and directly
evaluated (◦) map data as
well as evaluated (dashed)
and SVM based (solid)
surge- and choke-lines

ṁr,I , ˆ̇mr,I

Sur
ge

Ch
oke

were captured. Additionally displacements between evaluated and approximated
surge- and choke-line positions

eS = max

∣∣∣∣∣
fS(nr,j) − ṁS

r,E(nr,j)

ṁS
r,E(nr,j)

∣∣∣∣∣
, eC = max

∣∣∣∣∣
fC(nr,j) − ṁC

r,E(nr,j)

ṁC
r,E(nr,j)

∣∣∣∣∣
, j = 1(1)9,

(53)

for all nine speed-lines were determined. Statistical evaluation led to the following
mean approximation errors:

eπ = 5.7%, eṁr,I = 3.2%, eη = 17.2%, eC = 2.1%, eS < 1%. (54)

Obviously choke- and surge-lines are predicted very well. The higher approximation
errors in between are high due to the low number of support points. It could be easily
reduced by using larger number of samples, however, in view of application of the
process strategy to 3D-CFD the number of evaluations was kept at a minimum.

Conclusions and Outlook

A novel approach for fast compressor map computation based on SVM and RSM
is introduced. It turns out that approximating surge- and choke-lines based on SVM
and iterative curve refinement works very well. Also the approximation of compres-
sor characteristics by RSM could be validated. Due to the use of a 1D-CFD code,
detailed statistical investigations of the proposed strategy were performed. However,
the procedure now has to be validated with 3D-CFD.
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Appendix

In order to solve the optimization problem (20), matrices

y = [
y1 . . . yN

]T
, 1 = [1 . . . 1]T , X = [

y1x1 . . . yNxN
]

(55)

are introduced. The Langrange function (21) then simplifies to

L = wTw − λλλT
(
1 − XTw − by

)
(56)

and the Karush-Kuhn-Tucker conditions, Bestle (1994), read as

∂L

∂w
= 2w + Xλλλ = 0, (57)

∂L

∂b
= λλλTy = 0, (58)

∂L

∂λλλ
= − (

1 − XTw − by
) ≥ 0, (59)

λλλ ≤ 0, λi
[
1 − yixTi w − byi

] = 0 ∀i. (60)

Substituting

w = −1

2
Xλλλ (61)

from (57) and inserting it into (56) simplifies the Lagrange function to

L(λλλ) = 1

4
λλλTXTXλλλ − λλλT1 − 1

2
λλλTXTXλλλ ≡ −1

4
λλλTXTXλλλ − λλλT1 (62)

or Eq. (23), where the term bλλλTy vanishes due to Eq. (58). The dual problem sum-
marizes maximization of the Lagrange function w.r.t. λλλ, the condition λλλ ≤ 0 from
(60) and constraint (58). Substituting the optimal solution (22) in (61) results in the
optimal normal vector (24). The optimal offset may be found from any of the active
conditions, where λi < 0 in (60) results in

b∗ = 1

yi
− xTi w

∗ ≡ yi − xTi w
∗ (63)
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due to yi = ±1. The mean value of all Na active constraints is then

b∗ = 1

Na

(
Na∑

i=1

yi −
Na∑

i=1

xTi w
∗
)

. (64)

Alternatively only Na = 2 active training points x+, x− on opposite sides of the
separation line with y+ = +1 and y− = −1 may be used canceling the first sum in
(64) and yielding Eq. (25), Vapnik (1999).
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Surrogate-Based Shape Optimization
of the ERCOFTAC Centrifugal Pump
Impeller

Remo De Donno, Stefano Rebay and Antonio Ghidoni

Abstract Centrifugal pumps are largely used in several fields and for different
applications. Despite their wide diffusion, they are often not optimized for work-
ing at the design conditions. The aim of this paper is to investigate the potentialities
offered by surrogate-based optimization techniques in centrifugal pump impeller
shape optimization, to obtain a robust and fast algorithm for performance improve-
ment. The geometry chosen for validating the proposed method is the ERCOFTAC
centrifugal pump where accurate measurements and simulations are available in the
literature. The three-dimensional geometry of the impeller is parametrized by means
of parametric Bezier surfaces with an in-house Scilab script, which allows to export
the dictionary used by the utility blockMesh to create the mesh for the CFD simula-
tion. The surrogate-based optimization method here described maximizes the pump
hydraulic efficiency, while keeping the total pressure rise prescribed to the design
condition, in order to find the optimal impeller design. The whole optimization chain
is designed for running in HPC environment with open-source software, i.e. Open-
FOAM for CFD simulation, Dakota for the optimization and Scilab for the geometry
parametrization.

Introduction

Centrifugal pumps can be used in different applications, requiring the operation for
a wide range of pressure ratios and flow rates. The design and the performance
prediction is however not an easy task due to the high number of free geometric
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parameters to be determined, whose effect on pump performance is not trivial to
determine.

Nowadays, the coupling of CFD and shape optimization algorithms represents
a viable approach for an automatic, robust, and fast design of turbomachinery Van
den Braembussche (2006), Pasquale et al. (2013), Guo et al. (2015), Verstraete and
Alsalihi (2010), Olivero et al. (2014), Pini et al. (2014).

The aim of this study is to implement a methodology for the robust and optimal
automatic design of centrifugal pumps Kim (2018), Zhou et al. (2016), Lomakin
et al. (2017), Heo (2016) based on open-source software in HPC environment.

The centrifugal pump geometry chosen for this work is the well known ERCOF-
TAC centrifugal pump Ubaldi et al. (1996), being available the geometry definition
and the experimental results, as reported in Table 1. OpenFOAM (2018) has been
used for CFD simulations, Dakota (2018) for the optimization algorithms, and an
in-house Scilab (2018) script for the parametrization of the geometry which allows
exporting directly the dictionary for the BlockMesh utility.

An incompressible steady-state 3D Reynolds-Averaged Navier-Stokes (RANS)
approach, coupled with the RNG k − ε turbulence model has been used, allowing to
predict reasonably well the ERCOFTAC pump performance as demonstrated in Petit
et al. (2009), Peti and Nilsson (2013). A single objective genetic algorithm (SOGA)
has been applied to a surrogate model, in order to find the optimal impeller design
of the ERCOFTAC centrifugal pump for fixed operative conditions.

Table 1 Main geometric data and operating condition of the ERCOFTAC centrifugal pump

Impeller

Inlet blade diameter D1 = 240mm

Outlet diameter D2 = 420mm

Blade span b= 40mm

Number of blades zi = 7

Diffuser

Inlet vane diameter D3 = 444mm

Outlet vane diameter D4 = 664mm

Vane span b = 40mm

Number of vanes zd = 12

Operating conditions

Rotational speed n = 2000 rpm

Flow rate coefficient φ = 0.048

Total pressure rise coefficient ψ = 0.65

Reynolds number Re = 6.5 105

Inlet air reference conditions

Temperature T = 298K

Air density ρ = 1.2 kg/m3
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Method

3D-geometry Parameterization

In order to properly define the input variables for the optimization process, the
impeller of theERCOFTACcentrifugal pump is re-expressed fromdata-pointsUbaldi
et al. (1996), Peti and Nilsson (2013) to Bezier polynomials Piegl and Tiller (1997)
by means of Scilab (2018):

R(u) =
n∑

i=0

Bn,i (u)Vi , 0 ≤ u ≤ 1 (1)

where Bn,i (u) represent the Bernstein basis polynomials, u is the independent vari-
able and Vi are the control points.

Starting from the prescribed data points R(u) and choosing the Bezier polynomial
order, it is possible to compute the control points of the curve that best approximate
the given data-points Cho et al. (2012).

The hub and tip meridional curves are both defined by fourth order Bezier poly-
nomials as shown in Figure 1.

The blade profile of the ERCOFTAC impeller is two-dimensional and given by
data-points in the r-θ reference frame for the pressure side and the suction sideUbaldi
et al. (1996). The camber line is computed from the suction side and the pressure
side and then extruded along the span-direction in order to form the camber surface
of the blade.

Once the camber surface is defined, it has been transformed in a parametric
geometry by means of Bezier surface of third order in the two independent vari-
ables u and v. The choice of giving degrees of freedom in the span-direction even if
the original impeller is purely two-dimensional, is made for enabling the optimiza-
tion algorithm to twist the blade along the span-direction. The pressure side and the
suction side of the blade are obtained by adding the original thickness distribution
to the parametric camber surface.

The control points of hub, tip and camber surfaces of the blade are shown in
Table 2 and represented in Figs. 1 and 2.

Flow Computation

Previous works in the literature Petit et al. (2009), Peti and Nilsson (2013) show
that steady numerical simulation with the k − ε turbulence model is reasonably in
good agreement with the measurements, although it obviously does not predict the
unsteady features of the flow. Since an unsteady numerical simulation setupwould be
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Fig. 1 Control points and design space of the impeller hub (h) and tip (t)

Fig. 2 Control points and design space of the impeller blade
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Table 2 Control points of the original geometry. The radial and axial dimensions are r and z
respectively, while β indicates the angle between the radial dimension and the camber line Van den
Braembussche (2006)

r (mm) z (mm) β (rad)

h1 5.823 100.458 0.000

h2 15.674 36.804 0.000

h3 37.435 27.232 0.000

h4 67.098 −3.431 0.000

h5 113.630 0.000 0.000

t1 92.000 100.458 0.000

t2 92.647 38.801 0.000

t3 92.496 71.738 0.000

t4 92.814 41.709 0.000

t5 113.630 40.400 0.000

b11 128.630 0.000 0.957

b21 173.549 0.000 0.678

b31 180.023 0.000 0.541

b41 205.720 0.000 0.237

b12 128.630 10.100 0.955

b22 173.549 10.100 0.677

b32 180.023 10.100 0.540

b42 205.720 10.100 0.237

b13 128.630 30.300 0.944

b23 173.549 30.300 0.671

b33 180.023 30.300 0.535

b43 205.720 30.300 0.235

b14 128.630 40.400 0.935

b24 173.549 40.400 0.666

b34 180.023 40.400 0.530

b44 205.720 40.400 0.233

very time consuming for an optimization study and therefore would fail the objective
of this work, the steady-state setup is chosen.

The incompressible steady-state 3D Reynolds-Averaged Navier-Stokes (RANS)
equations, coupled with the RNG k − ε turbulence model are numerically solved
through the open-source CFD toolbox OpenFOAM (2018) with the high accuracy
numerical schemes available in the literature Auvinen et al. (2010). The multiple
frame of reference approach is adopted together with the frozen rotor technique and
the fluxes at the interface are transferred using the General Grid Interface (GGI)
Beaudoina and Jasak (2008), Jasak (2011), Petit et al. (2009).
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Fig. 3 Grid for the CFD
calculation

The computational grid includes the inlet, the rotor and the vaned diffuser regions
meshed separately with the OpenFOAMutility blockMesh. The grids of the inlet and
of the vaned diffuser do not change during the optimization process and therefore
are built only once. The complete grid is composed of about 4 million hexahedral
cells and the fluid domain of the initial design is shown in Figure 3, while Figure 4
shows a detail of the grid in the impeller blade region.

Tomatch the available experimental measurement conditions Ubaldi et al. (1996),
the impeller rotational speed is set to 2000 rpm and an inlet axial velocity correspond-
ing to a flow coefficient φ equal to 0.048 is prescribed, where

φ = 4Q/(U2πD2
2), (2)

Q is the flow rate, U2 is the peripheral velocity at the impeller outlet and D2 is
the diameter at the impeller outlet. The inlet and outlet boundary conditions are set
according to the simulations already performed on this case-study and available in
the literature Peti and Nilsson (2013).

The computational quantities of the CFD simulations are the efficiency η and the
total pressure rise coefficient ψ , where

ψ = 2(pt4 − pt0)/ρU
2
2 , (3)

pt4 is total pressure at the diffuser outlet and pt0 is total pressure at the suction pipe.
The mass averaged values of η and ψ calculated between inflow and outflow for the
initial design are 0.63 and 0.60, respectively.
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Fig. 4 Grid for the CFD calculation, detail of the impeller blade

Figures 5 and 6 show the comparison between the experimental measurements
Ubaldi et al. (1996) and the CFD results with grid and setup described above, in
terms of radial and tangential velocity distribution near the impeller outflow. The
average relative error in the x and y axis is lower than 30%, showing a reasonable
agreement between the steady-state numerical setup and the unsteady nature of the
flow. In fact the experimental trend of the velocity distributions is well captured by
the simulations.

Optimization Strategy

In the centrifugal pump performance, the hydraulic efficiency η and the total pressure
rise coefficient ψ have a fundamental role and therefore are chosen as optimization
objective and constraint, respectively. In particular the optimization algorithm maxi-
mizes η, while keepingψ constrained to the operative point analyzedwith a tolerance
of ±5%.

In thiswork the single objective genetic algorithmSOGA, available in the software
Dakota (2018), is applied to a surrogate model, in order to find the global optimum of
the objective functionCoello et al. (2007), Pierret andVan denBraembussche (1999).
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Fig. 5 Instantaneous distributions of the ensemble averaged radial velocity at the impeller outlet,
at midspan position. Relative position beetween impeller and diffuser blade at t/Ti=0.146 according
to Ubaldi et al. (1996)

Fig. 6 Instantaneous distributions of the ensemble averaged tangential relative velocity at the
impeller outlet, at midspan position. Relative position beetween impeller and diffuser blade at
t/Ti=0.126 according to Ubaldi et al. (1996)



Surrogate-Based Shape Optimization of the ERCOFTAC Centrifugal Pump Impeller 235

The surrogate model has been built on the results of 170 computer experiments (ten
times the input variables number), generated through the Latin Hypercube Sampling
(LHS) method.

The surrogate-based optimization strategy of this work consists in the following
steps:

• optimization problem definition (design variabls, objectives and constrained),
• computational design of experiments by means of the LHS method,
• surrogate model construction,
• surrogate model accuracy evaluation through cross validation,
• calculation of further designs if the surrogate accuracy is not satisfying,
• constrained single objective genetic algorithm on the accurate surrogate model,
• CFD simulation of the optimum design.

Two surrogates, Kriging and Artificial Neural Network, have been compared
regarding their accuracy respect to theCFDsimulations.The analysis has been carried
out on the 5% of the computer experiments, showing that the two meta-models fit
the efficiency similarly, while the total pressure rise coefficient is fitted one order
magnitude better by theKrigingmeta-model. Therefore theKriging surrogatemodel,
showing a better accuracy for the problem analyzed, has been used for this study.

The population size of the genetic algorithm has been set equal to 100 samples,
while the mutation rate and the crossover rate have been set equal to 0.1 and 0.8,
respectively.

Figures 1 and 2 show the design space of the input variables for hub, tip and blade.
In order to prevent changes in the overall size of the centrifugal pump, the initial and
final control points of hub and tip as well as the control points of leading edge and
trailing edge of the blades are not modified during the optimization process. Further-
more control point t3 shown in Fig. 1 is not taken into account for the optimization
for the sake of shape feasibility. The input variable b1-beta controls the β-coordinate
of control points b21, b22, b23 and b24 while b2-beta controls the β-coordinate of
control points b31, b32, b33 and b34. The input variables b1-r, b2-r, b3-r and b4-r
control the r-coordinates of control points b21-b31, b22-b32, b23-b33 and b24-b34
respectively. Beyond Bezier control points, also the impeller blade number is consid-
ered as input variable. A total number of 17 design variables is therefore considered
in this study, details are shown in Table 3.

Results and Discussions

The relationbetween the objective functionη and the nonlinear inequality constrained
ψ is shown in Figure 7, where the output of the computer experiments and the
evolution of the genetic algorithm applied to the surrogate model are represented.
The figure highlights also the improvement from the initial to the optimal design in
terms of pump efficiency.
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Table 3 Input variables description: original value, space domain and values of the optimal design.
The letter h indicates the hub, t indicates the tip and b indicates the blade. R, z and β indicate the
coordinate in the reference frame

Descr. Orig. Min Max Type Unit Opt.

1 h2-r 0.000 −5.000 5.000 float. mm −4.971

2 h3-r 0.000 −5.000 5.000 float. mm 1.260

3 h4-r 0.000 −5.000 5.000 float. mm −4.846

4 h2-z 0.000 −5.000 5.000 float. mm −4.961

5 h3-z 0.000 −5.000 5.000 float. mm 4.976

6 h4-z 0.000 −5.000 5.000 float. mm 1.251

7 t2-r 0.000 −5.000 5.000 float. mm 4.930

8 t4-r 0.000 −5.000 5.000 float. mm 4.902

9 t2-z 0.000 −5.000 5.000 float. mm 4.917

10 t4-z 0.000 −5.000 5.000 float. mm −1.647

11 b1-beta 0.000 −0.050 0.050 float. rad −0.035

12 b2-beta 0.000 −0.050 0.050 float. rad −0.023

13 b1-r 0.000 −5.000 5.000 float. mm −4.923

14 b2-r 0.000 −5.000 5.000 float. mm 4.978

15 b3-r 0.000 −5.000 5.000 float. mm −2.070

16 b4-r 0.000 −5.000 5.000 float. mm 4.858

17 n-blades 7 5 9 int. – 6

Fig. 7 Optimization results: SOGA applied to the Kriging surrogate model
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Fig. 8 Comparison between the starting and the optimal design. Detail of the impeller hub and tip

Figures 8 and 9 show the geometrical comparison between the starting and the
optimal design for the hub, tip and blade. It can be observed that the hub and tip
have been modified in order to increase the flow passage before the blade leading
edge, while the blade surface has been twisted along the span-direction. After the
optimization, the impeller blade curvature has been reduced and gradually increases
when moving from the impeller hub to the impeller tip as shown in Fig. 10. It is also
interesting to notice that the optimal design reduces the number of blades to 6 instead
of 7. Table 3 shows the design variables comparison between the starting and the
optimal design.

To better understand the effects of the geometry changes on the pump perfor-
mance, the static pressure coefficient Cp as well as the wall shear stress τw have been
calculated for the impeller blade and for the diffuser blade at different span positions.
The static pressure coefficient is defined as

Cp = 2(p − p0)/ρU
2
2 , (4)

where p is the static pressure of a generic point and p0 is the static pressure in the
suction pipe, while the wall shear stress is calculated as

τw = μ

(
∂u

∂y

)

y=0

, (5)
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Fig. 9 Comparison between the starting and the optimal design for the impeller blade. The black
color represents the starting design, while the red color represents the optimal design. The markers
show the Bezier surface control points

Fig. 10 Impeller shape comparison between the original and the optimal design at different sections
along the span direction
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where μ is the dynamic viscosity, u is the flow velocity parallel to the wall and y is
the distance to the wall.

The impeller geometry, even with different number of blades, is built keeping
fixed the relative position between one impeller blade and the diffuser blades, with
respect to the initial configuration. This choice allows a direct comparison of the
results for the initial and optimal geometry, Figure 11 shows the blades of impeller
and diffuser where the results are calculated.

The comparison of the static pressure coefficient shows that the optimal impeller
has an higher fluid-dynamic load at all the span positions, as shown in Figs. 12, 14
and 16, without modifying the overall behavior of the wall shear stress depicted in
Figs. 13, 15 and 17. These improvements and the decrease of the blades number, i.e.
a reduction of the wetted area, explain the better efficiency of the optimal design.

The higher fluid-dynamic load of the impeller blades in the optimal design can
be observed also in Fig. 19, where the high-velocity region at the impeller pressure
and suction side is significantly greater with respect to the original design, shown in
Fig. 18. The increase of velocity at impeller outlet and, consequently, at the diffuser
inlet explains the higher peak of the wall shear stress of the optimal design diffuser
blade shown in Fig. 20. However Fig. 20 shows that the τw distribution on the diffuser
blade slightly changes, suggesting that the overall performance of the diffuser has
not been modified during the optimization process.

Fig. 11 Blades of impeller and diffuser where the static pressure coefficient and the wall shear
stress are calculated
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Fig. 12 Cp distribution on the impeller blade at span 25% for the original and optimized configu-
ration

Fig. 13 τw distribution on the impeller blade at span 25% for the original and optimized configu-
ration



Surrogate-Based Shape Optimization of the ERCOFTAC Centrifugal Pump Impeller 241

Fig. 14 Cp distribution on the impeller blade at span 50% for the original and optimized configu-
ration

Fig. 15 τw distribution on the impeller blade at span 50% for the original and optimized configu-
ration
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Fig. 16 Cp distribution on the impeller blade at span 75% for the original and optimized configu-
ration

Fig. 17 τw distribution on the impeller blade at span 75% for the original and optimized configu-
ration
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Fig. 18 Velocity magnitude contours of the original impeller at span 50%

Conclusions

A fully automated surrogate-based optimization method has been presented for
improving the centrifugal pump impeller efficiency, entirely based on open-source
and in-house software.

The method has been tested on the ERCOFTAC centrigal pump, where the
impeller shape has been converted in Bezier polynomials from data points and 17
control points have been used as design variables for the optimization.

The Kriging surrogate model has been adopted for this work and trained on com-
puter experiments in order to connect accurately the impeller geometry with the
pump performance, predicted by computational fluid dynamics. A single objective
genetic algorithm has been set in order to maximize the pump efficiency coefficient
η, while keeping constrained the pressure rise coefficient ψ , for making the pump
working at the initial operative point.
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Fig. 19 Velocity magnitude contours of the optimal impeller at span 50%

The results of this work show an improvement of the pump efficiency about 2.63%
with respect to the initial design and, therefore, demonstrate the effectiveness of a
surrogate-based optimization strategy for improving the pump hydraulic efficiency,
while maintaining the prescribed operative condition.
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Fig. 20 τw distribution on the diffuser blade at span 50% for the original and optimized configu-
ration
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CFD Based Design Optimization
of a Cabinet Nitrogen Generator

Bárbara Arizmendi Gutiérrez, Edmondo Minisci and Greig Chisholm

Abstract The design of mechanical enclosures is evolving to be more compact and
quieter and this compromises the cooling of the internal components. Computational
Fluid Dynamics (CFD) based optimization could significantly improve the cooling
efficiency of the critical parts of the components to ensure their performance and
reliability. This work presents the CFD surrogate based optimization of the forced
cooling of two reciprocating compressors located in an enclosure from a gas gen-
erator. Due to the challenging project time constraints, the accuracy of the results
was compromised to make optimization feasible. The parameters to be optimized
were related to the position of the compressors and the cooling fans. The boundary
conditions associated to the cooling of the critical parts were derived by experimental
data. Artificial Neural Networks (ANNs) were used to construct a surrogate model
of the computational model to reduce the time and resources required. The combi-
nation of the ANN model with a multi start-gradient based algorithm optimized the
position of compressors and cooling fans to minimize the average temperature on
the critical parts. A set of new enclosure designs were found with outstanding CFD
based performance compared with the design elaborated by engineering intuition.
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Introduction

The design of mechanical enclosures is evolving to be more compact and quieter
thus decreasing in size and aperture areas. This compromises their cooling perfor-
mance, potentially causing higher temperatures in the compartment ambient air and
the internal components, and increasing hotspot temperatures in temperature sen-
sitive components and parts. Surrogate based CFD optimization could play a key
role in delivering designs that minimized the temperature of those critical parts.
For this industrial project, reliability improvements of 2 two-stages reciprocating
compressors from a gas generator were sought by reducing temperatures in their
identified critical parts which were their sleeves. The sleeves are the cylinders where
the compression process occurs and are located on the top of the compressors.

The thermal interaction between heat sources located within enclosures as well as
the selection of inappropriate cooling means causes higher temperatures in the heat
sources which might compromise the reliability of temperture sensitive components.
It is essential to ensure the cooling means can remove all the heat generated by the
sources and the adequate positioning of heat sources and cooling means (i.e. fans) if
those are needed. In this case, airflow delivered by the fans was found to be able to
remove the heat generated by the compressors in operation. There are research efforts
(Chen and Liu 2002; Soleimani et al. 2011; Madadi and Balaji 2008; Sudhakar et al.
2010; Kadiyala and Chattopadhyay 2011; Hotta and Venkateshan 2015; Dias and
Milanez 2006; Sudhakar et al. 2010) on the positioning of several heat sources within
an enclosure applied to electronics cooling by means of free and forced convection
and to the design of heat exchangers. Electronic components are decreasing in size
and consequently increasing in power density leading to higher peak temperatures.
The research in this area focuses on decreasing the peak temperatures on the heat
sources by changing their position or the heat distribution for each heat source.
Furthermore, for heat exchangers design, the positioning of thermal insulation in
tubes was investigated to obtain an even temperature profile across the inner surface
of the tubes for homogeneous heat transfer to the fluid (Sudhakar et al. 2009). Several
authors have sought the optimality, that is finding the position of the sources of heat or
the heat distribution in the sources that minimises the surface peak temperature. The
design parameters investigated in both cases are the coordinates that determine the
position of the sourceswithin the enclosure or the heat load of each source. The design
performance has been assessed experimentally, analytically and computationally by
means of CFD modelling.

Chen and Liu experimentally proved intuitive equidistant positioning placed hor-
izontally within a compartment and cooled by forced convection was not the optimal
in terms of cooling performance (Chen and Liu 2002). This justifies the invstigation
of the positioning of the components in order to find the distribution that maximises
the cooling efficiency of the heat sources.

Since the cooling of the heat sources is a fluid dynamic process, it can bemodelled
by means of CFD codes. The location of the heat sources can be parameterized and
optimised tominimise the peak temeperatures. For instance, Soleimani optimised the



CFD Based Design Optimization of a Cabinet … 249

position of two discrete heat sources placed within a vertical enclosure and cooled
by free convection (Soleimani et al. 2011). The optimization algorithm selected was
the Particle Swarm and it required 200 CFD runs to accomplish the global minimum.
This methodology could be applied because there were 2 design variables and the
model was very simple.

For more complex problems whose resolution and number of design variables
is higher, the construction of a surrogate model is mandatory be able to explore
more thoroughly the design space and find the best performing design possible. This
approach reduces the number of CFD calculations required. The preferred method
for the construction of surrogate models for this application was found to be Artifi-
cial Neural Networks (ANN’s) and the surrogate model constructed was optimised
by means of Genetic Algorithms (GA) (Madadi and Balaji 2008; Sudhakar et al.
2010; Kadiyala andChattopadhyay 2011; Hotta andVenkateshan 2015). For instance
Madadi optimised the position of 3 discrete heat sources within a 2D vertical enclo-
sure cooled by forced convection (Madadi and Balaji 2008). The identified design
parameterswere related to the position of the sources. The authors integrated anANN
with a GA to find the design that minimised the peak temperature on the surface of
the sources. The implementation of the methodology found a design that computa-
tionally reduced the peak temperature from an initial design by 22.71 °C. Although
the results seemed very promising, they were not validated experimentally.

Sudhakar optimised the heat distribution of 9 heat sources within a horizontal
cavity and cooled by means of forced convection (Sudhakar et al. 2010). In this
case, an ANN was coupled with a GA again to find the optimal distribution of heat
in the sources. The computational optimum obtained minimised the peak tempera-
ture measured on the geometrical centre of the sources surface. These results were
validated experimentally accomplishing a temperature decrease of 10.30 °C with
respect to the uniform heat distribution. All the temperatures measured over each
one of the heat sources were decreased, finding a more favourable thermal profile.
These results gave validity to the implementation of this technique in the accomplish-
ment of more effective positioning of individual and constant heat sources located
within an enclosure.

In the literature reviewed, the heat sources were treated as individual, independent
and constant. For this application, the sleeves of the compressorwere treated similarly
and their position within the enclosure was investigated to minimise their surface
temperatures. The sleeves are cooled by 2 inlet and 2 outlet axial fans which provide
a pressure rise and swirling to the airflow. The optimum position of the fans was also
investigated.

In the first part, the background of the project and a description of the design of
the cooling system are presented. Next, the methodology is introduced including the
construction of the CFD model from experimental test and the CFD surrogate based
optimization approach.Next, it is presented adescriptionof the designparameters and
cost function selected aswell as the construction of the surrogate and the optimization
algorithm implemented. Then, a description of the experimental methodology for
the validation of the results is described. Finally, the results obtained from the CFD
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based optimization and the experimental validation are reported and discussed and
the conclusions from this study and the future work are drawn.

Background of the Project

The mechanical enclosure where the 2 two-stages reciprocating compressors are
located is a part of a gas generator that consists of a large cabinet with two side
doors where all the components for the gas generation process are located. The
aforementioned mechanical enclosure is placed in the top back side of the generator.
Those compressors are cooled by two inlet axial fans which draw air from inside the
gas generator and two outlet fans that push the hot air outside the generator. Within
the compressor compartment, there are other required components as well as wiring
and tubing. Each compressor has 2 sleeves, high pressure and low pressure ones
which are cylindrical element where the compression of the ambient air takes place.

This project has been carried out as a case study to introduce an industrial partner
to CFD based optimization within the framework of the activities of a Knowledge
Transfer Partnership (KTP) between the Mechanical and Aerospace Engineering
department of the University of Strathclyde and Peak Scientific Instruments Ltd. As
such, computational resources and available timewere significantly limited therefore,
simplifications were mandatory.

Methodology

The approach started from the implementation of a simplified CFD modelling of the
enclosure, still able to predict cooling improvement trends on the sleeves requiring
a minimum amount of computational resources and wall time to meet the project
timings. First, experimental tests were conducted to understand the thermal behavior
of the compressors as it was initially unknown. Next, a CFD model was constructed
based on those tests for a qualitative representation of the cooling of the sleeves and
a surrogate model was created to predict the cooling trends. After, the position of the
compressors and fans was optimized to find a design with more efficient cooling.

Initial Experimental Tests

The crucial features of the model were the airflow delivered by the inlet cooling
fans and the thermal behavior of the sleeves. The experimental tests aimed to get a
general understanding of the system, but particularly they were focused on getting
the maximum information possible from those key features. To locate the hottest
parts of the compressors, a thermal image of the compressors was taken with a
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thermal imaging camera (FLIRR SC500). The temperatures were calibrated with
thermocouple measurements in 2 locations over the surface of the compressors.

Next, the temperatures at 8 discrete locations of the critical parts were measured
with type K thermocouples. The ambient and the inlet and outlet temperatures were
monitored. These tests provided a quantitative insight into the range of temperatures
found on the sleeves and in the compartment.

The velocity of the airflow delivered by the fans was measured at 8 discrete
locations of the inlet fans with a hot wire anemometer. For each location, 5 differ-
ent directions were sampled. The outcome was a quantification of the air velocity
magnitudes in the area right next to the inlet fans.

CFD Modelling

The geometry considered was based on the dedicated compressors compartment,
neglecting any interaction with the rest of the gas generator. Geometric details of the
compressors such as nuts, bolts and clefts were not modelled to reduce the number
of mesh cells required. The compressors heads, where the sleeves were located, were
modelled with more detail to increase the resolution on the critical areas. The fan
frames were modelled as well as the outlet fan grilles but the blades of the fans
were not included in the model although they are represented in Figs. 1 and 4 for
better visualization. All the remaining components were not represented, aiming to
reduce the wall time of the calculations. The CAD geometry considered is depicted
in Fig. 1. The inlet fans are found on the right side of the image and the outlet fans
are positioned on the left.

To get the fluid properties in any location, the Navier-Stokes three-dimensional
conservation equations for mass, momentum and energy were numerically solved
through the software package (SolidWorks Flow Simulation 2016). The turbulence

Fig. 1 Simplified CAD model of the compartment
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was modelled in every energy scale by means of a Favre-Average of the equations
for compressible flows and the turbulence model selected was the k-ε 1.

The heat sources were modelled by constant heat flux boundary conditions on the
surfaces of the compressors.Avelocity boundary conditiondependent on the pressure
was implemented on the inlet and outlet fans with additional swirling. The fan curve
and spinning velocity were obtained from the specifications of the manufacturer1.
The computational velocities delivered by the inlet cooling fans were kept within the
range of the experimental measurements. The temperature of the inlet cooling air was
assumed to be constant and it was taken from the experimental tests. The temperature
gradient across the compartment walls was set to 0, drawing a worst-case scenario.

Themesh entailed the spatial discretization of the computational domain into cube
shaped cells. The refinement consisted on quartering the mesh cell size close to solid
boundaries where large temperature or velocity gradients were expected. For this
project, the selection of the cell size of the mesh and consequently the accuracy of
the results, was compromised by the computational budget and the run time available
for optimization. The maximum computational time of the CFD model was dictated
by the allocated time and the expected required number of CFD runs for optimiza-
tion. That prohibited the selection of a fine mesh thus compromised the accuracy
of the results. But that compromise was necessary to enable the performance of the
optimization within the project timings. A mesh sensitivity study was conducted to
obtain the range of magnitudes of the error induced. Five different cell sizes were
tested with a size ratio of 1.2. The property tracked was the average temperature on
the sleeves. The calculations modelled 7 physical seconds of a transient process. The
average temperature on the sleeves was averaged over the last 2 physical seconds
to eliminate turbulent fluctuations when comparing different designs. The results
obtained are shown in the Table 1.

The mesh 3 was selected because it met the limits on the available runtime per
simulation which was 7.31 h. By selecting this mesh, the error induced was at least
of 4.29 K and this will be considered when analysing the improvements achieved by
optimization. This step was crucial to enable the optimization of the cooling of the
sleeves, even with the implementation of a surrogate approach, within the timings of

Table 1 Mesh sensitivity study

Mesh Nb of cells Computational time
(s)

Temperature (K)

1 722,364 10,604 328.72

2 1,032,537 16,508 331.74

3 1,565,154 26,325 339.78

4 2,340,485 45,811 341.89

5 3,467,445 76,079 344.07

1Product Data Sheet 9956—EBM-Papst.
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the project. This model was used as the baseline design to assess the computational
improvements obtained by the design optimization study.

CFD Surrogate Based Optimization

The cost function selected was the average temperature on all the sleeves of the
compressors but the peak temperatures were tracked as well to have an additional
criterion to select the best design. The design variables were relative to the position
of the compressors and fans within the compartment. The fan variables were related
to their distance to the sidewalls (w1, w2) and bottom wall (h1, h2). The compressor
variables were associated to their distance to the front (l) and side (m) walls and
their angle (a) with respect to the front wall. The new design was constrained to be
symmetric. There was a total of 7 design variables to be investigated to minimize the
average temperature on the critical components of the compressors. The bounds of
the parameters, which are depicted in the Table 2, were defined in such a way that
any combination of parameters produced a valid design.

The cost per evaluation of the CFD model and the number of design variables
prohibited its direct optimization. Therefore, a cheaper to evaluate surrogate model
was usedwhich significantly decreased the number of CFD runs to obtain the optimal
solution. ANNs have been successfully used in research to construct surrogate mod-
els for optimization (Madadi and Balaji 2008; Sudhakar et al. 2010; Kadiyala and
Chattopadhyay 2011; Hotta and Venkateshan 2015). The architecture of the selected
feedforward ANN consists of an input layer, a hidden layer constituted of 20 neu-
rons and an output layer with 1 neuron. The activation function of the hidden layer
neurons is a logarithmic sigmoid one and for the output layer is a linear function.

The initial weights of the nodes connections were randomly selected. The algo-
rithm selected for the training of the network was backpropagation of errors which
consisted on the weights update to minimize the network prediction error. The selec-
tion of weights was such that the fitting error converged to a predetermined threshold.
A total of 35 low correlated initial data points were used for the training of the net-
work. The networkwas required to identify designswith excellent performance rather
than accurately finding the global minimum. Accordingly, a low number of initial
data points were selected but it was crucial the samples were space filling to provide
an acceptable prediction across the whole design space.

The next step was the minimization of the average temperature on the sleeves
of the compressor. The use of global search optimization algorithms increased the

Table 2 Design parameters description and bounds

h1 (m) h2 (m) w1 (m) w2 (m) l (m) m (m) a (0)

Min 0.066 0.066 0.066 0.066 0.137 0.05 11

Max 0.257 0.257 0.235 0.235 0.161 0.148 11
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likelihood of finding the better performing configurations because it increased the
portion of the design space thatwas explored. The optimization problemhas been for-
mulated as continuous single objective and unconstrained. Based on the description
of the problem, the algorithm selected was a multi-start gradient-based. 10 starting
points were selected from the design space by a Latin Hypercube design of experi-
ments with minimization of the correlation to enlarge the portion of the design space
explored. The lowest of the 10 local minima found was selected to be the potential
global minimum.

The performance of the predicted optimal design was compared to the CFD based
calculated performance of the same design. Next, the computational performance
value was included into the database to increase the prediction resolution of the
surrogate model in that area of the design space. Then, a new surrogate model was
trained and optimized. Consequently, the surrogate based optimization process was
an iterative practice presented in the flow diagram of the whole optimization process
depicted in Fig. 2.

The optimization loop ran until the convergence criteria was met. In this case,
two convergence criteria were considered: the first one was the accomplishment of
a new design that performed significantly better than the baseline design and better
than any design from the initial set of samples. The second one was the wall time
allocated to find an optimum solution. The solution found was the optimum since it
was the best solution possible found with the constraints of computational resources
and time.

Experimental Validation

The experimental validation consists of the physical replication of theCFDmodel try-
ing to minimise the influence of external components. The behaviour of the compres-
sors in operation has been replicated. The gas generator chassis has been preserved
for both the current and optimal designs only changing themodified components. The
compressors and fans have been maintained the same for both configurations. The
validation consists of the firm attachment of 8 spaced thermocouples to the surface of
the critical parts. The position of the thermocouples over the surface of the compres-
sors have remained unchanged in both tests. In addition, the ambient temperature as
well as the compartment inlet and outlet temperatures have been monitored. As the
objective function for optimization was the average temperature of the critical parts,
the experimental average temperature has been calculated as the average temperature
on those 8 discrete locations for both current and optimised design and those have
been compared.
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Fig. 2 Flow diagram of the full design optimization process

Results and Discussion

Within the allocated time, a total of 15 optimizations were performed by following
the procedure described in the Fig. 2. The parameters obtained for each one of the
designs as well as the average andmaximum temperature on the surface of the critical
parts are depicted in the Table 3.

The performance of each of those designs is better than the baseline design in
terms of the average temperature of the sleeves (339.78 K). In this case, the per-
formance must be understood as a high likelihood of physical improvements on the
cooling performance rather than a quantification of the temperature decrease. 5 opti-
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Fig. 3 Comparison surrogate predicted and CFD calculated temperature

mal designs had a better performance than each one of the initial data points used to
construct the surrogate model. This fact justifies the investment of effort and time on
using a CFD based surrogate based optimization approach to find a better perform-
ing design. In addition, the use of a surrogate model was key to enable the design
optimization of the compressors compartment within the limited available time. The
predicted performance of the optimal designs was compared to their CFD calculated
performance. Discrepancies were found between the two which were calculated as
the absolute difference between predicted and calculated average temperature on the
sleeves. These discrepancies are presented over the number of iterations in the Fig. 3.
One can see the discrepancies were decreasing with the number of iterations. This
was caused by an increase in resolution of the surrogate model caused by the addi-
tion of the optimization samples to build the surrogate model. The results suggest in
the case of the number 14, there was not enough information from that area of the
design space and the prediction was poor. The objective of the implementation of the
optimization methodology was to find designs with a rather improved CFD perfor-
mance compared to the baseline design. Although there are discrepancies between
predicted and computed performances, those are irrelevant because the CFD based
performance of the optimal designs found was significantly improved.

The design corresponding to the 15th optimization iteration was selected for pro-
totyping and validating the approach. The maximum temperature and the individual
average and maximum temperature on each sleeve were also considered. The calcu-
lated average and maximum temperatures in each individual sleeve for baseline and
optimized designs are presented in Tables 4 and 5. One can see that the optimized
design attained lower average and maximum temperatures in every single sleeve. In
addition, except from the average temperature on the sleeve 1, the rest of the loca-
tion presented temperature improvements significantly larger than the discretization
error induced by the selection of a coarsemesh. Furthermore, the computational aver-
age on the sleeves from the optimal design selected, which is presented in Table 3,
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Table 4 Computational cooling performance on the sleeves 1 and 2

Design Sleeve 1
Av. T (K)

Sleeve 1
Max. T (K)

Sleeve 2
Av. T (K)

Sleeve 2
Max. T (K)

Baseline 325.65 406.88 349.51 453.48

Optimized 318.96 366.61 315.88 364.37

Difference 6.69 40.27 33.63 89.11

Table 5 Computational cooling performance on the sleeves 3 and 4

Design Sleeve 3
Av. T (K)

Sleeve 3
Max. T (K)

Sleeve 4
Av. T (K)

Sleeve 4
Max. T (K)

Baseline 333.85 420.23 340.66 413.48

Optimized 319.02 374.38 320.20 370.56

Difference 14.83 45.85 20.46 42.92

Fig. 4 Optimal design of the compartment

reduced the average temperature on the sleeves by 21.27 K which is greater than the
discretization error as well (4.29 K). These results suggested a very high likelihood
of physical cooling improvements.

The parameters of the selected optimal design were embedded into the drawings
of the chassis of the gas generator for prototyping. The CAD model of the optimal
design is presented in the Fig. 4.

The experimental validation was conducted as it is described in the Section
“Experimental Validation”. Assuming the ambient temperature was the same for
both experimental tests on the current and optimized design and the temperature of
the inlet cooling air was maintained as well, the experimental average temperature
on the sleeves is presented in the Table 6 and compared to the computational results
presented before.

The experimental results differ from the cooling improvements predicted by CFD
calculations. The cause of this mismatch was identified as heat generation in the
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Table 6 Experimental and computational average sleeves average temperature

Design Experimental Av. T (K) Computational Av. T (K)

Baseline 339.93 339.78

Optimized 338.23 318.51

sleeves not being constant and dependent on the overall cooling of the compressors.
This would require implementing feedback boundary conditions on the sleeves and
that would require further experimental testing to understand and quantify the cou-
pling. Since the construction of the CFD model was based in a single design, the
understanding of the behavior and the complexity of the system was limited.

Conclusions

The methodology above presented for the design optimization of fluid systems can
be defined as promising since it found a design with outstanding CFD calculated per-
formance compared to the initial design on the basis of the definition of the problem
and the objective function selected. The goal of the work was to implement a robust
design optimization strategy for deployment in an industrial design environment and
at this stage its accomplishment requires further work. The physics of the problem
selected for that purpose which was the cooling of the sleeves of the compressors,
was challenging and unexpectedly complex. The sleeves were identified to have a
dynamic rate of heat generation dependent on the cooling of the motors of the com-
pressors and the cooling was also linked to heat conduction across the walls of the
enclosure. For that reason, the modelling of the heat sources as independent and
constant may have been responsible for the divergence of the real world and the CFD
results which forecast a significant temperature decrease on the critical parts of the
compressors.

To robustly model those complex problems, it is mandatory to build a CFDmodel
based on more than one real-world designs when in this case it was constructed
based on only one design. From an industrial point of view, the time experimental
resources and computational resources required to address this problem limit the
routine application of this strategy for problems with either complex geometry or
physics. However, there is a clear opportunity for the implementation of this method-
ology in simpler problems which are better understood and more easily modelled.
The approach can deliver well performing designs on the basis of the definition of the
problem. Therefore, if the CFD model represents the reality the potential improve-
ments predicted will be realized.

Further work will be on the implementation of this strategy for the optimization
of simpler components which can be modelled and robustly validated and the time
required to obtain a solution is significantly shorter than for the optimization of the
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cooling of the compressors compartment. This will accomplish the goal of delivering
a design optimization strategy for an industrial design background.

In terms of the optimization of the cooling of the compressors compartment,
further work should be conducted on the quantification of the dynamic boundary
conditions based on further testing. It would be beneficial to test more than one to
fully understand and quantify the thermal behavior of the compressors.
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Delaunay-Based Global Optimization
in Nonconvex Domains Defined by
Hidden Constraints

Shahrouz Ryan Alimo, Pooriya Beyhaghi and Thomas R. Bewley

Abstract This paper introduces a new surrogate-based optimization algorithm to
optimize a deterministic objective function with non-computable constraint func-
tions (a.k.a. hidden constraints). Both the objective function and the feasible domain
are defined within a known rectangular domain. The objective function might be
nonconvex, computationally expensive, and without analytic expression. Moreover,
the feasible domain boundaries are not explicitly defined, but can be determined via
oracle calls (feasible or not) and learned as the algorithm proceeds. To solve this class
of optimization problems, the proposed algorithm, in each iteration, approximates
the feasible domain boundary by incorporating a Support Vector Machine (SVM)
classifier model as an approximation for the non-computable constraint function,
which characterizes the feasible domain. The uncertainty associated with this sur-
rogate is modeled using an artificially-generated uncertainty function built on the
framework of Delaunay triangulation. This work extends the Delaunay-based opti-
mization algorithm with nonconvex constraints, dubbed �-DOGS(�), and extends
this approach to estimate the feasible domain with binary oracle calls. Similarly, this
algorithm at each iteration determines aminimizer of the objective function surrogate
model with the highest probability of being feasible. We evaluate the performance of
the algorithm through the numerical experiments on a representative test problem.
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Introduction

This paper aims at solving the optimization problems of the form

minimize f (x) with x ∈ � := Lc ∩ Ls ⊆ R
n where

Lc = {x|c(x) ≤ 0 }, Ls = {x|a ≤ x ≤ b}, (1)

where f (x) : R
n → R, and � is defined with hidden constraint functions. The

only available measurements are of the sign{c(x)}. Then c(x) is treated as binary
measurement (e.g., ignoring information about the distance to the boundary feasible
region); therefore measurements indicate “feasible” and “infeasible” regions Lee
et al. (2011).

Motivation

Having a feasible domain that is not defined explicitly is common in some industrial
applications such as shape optimizationGramacy et al. (2016) and chemical reactions
Gelbart et al. (2018). In these situations, the optimums of the objective function must
be further evaluated, and the solutions can be acceptable or unacceptable. That is,
the feasible domain is only available through costly oracle calls. Nevertheless, in
working conditions, these applications need to be tuned via a limited set of adjustable
continuous parameters; for instance, in shape optimization, problems can be solved
using only a handful of adjustable parameters usually modeled with n < 10. Most of
the trial-and-error approaches (e.g) to do so could be both computationally expensive
and time consuming. Thus, there is an ever-increasing need to develop efficient
frameworks that could limit the number of adjustments needed and to automate the
work of these complex systems.

The objective of this work is to develop a new optimization method which is
designed for when the objective function is expensive to calculate. In addition, the
constraint violation comes from the same process as the objective function, but is
accessible through binary oracle calls (acceptable or unacceptable). In these settings,
the response of the simulator/system is whether a constraint is violated or not, and no
further information about the simulator is given Lee et al. (2011). Thus, the proposed
method needs to simultaneously estimate the feasible region (constraint region) and
solve the minimization problem.

Many modern optimization approaches for shape optimization of computer-aided
designs converge without derivative information and require only weak regular-
ity conditions Gramacy et al. (2016), Alimo et al. (2017), Marsden et al. (2004),
Moghadam et al. (2012). When the constraint function is hidden, a simulation dis-
plays a flag indicating whether a capacitor has been become full during the simula-
tion, but we know neither when this occurred nor the level of capacitor charge. Such
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problems are some of the most challenging optimization problems, and most of the
existing approaches rely on heuristic approaches Digabel and Wild (2015).

One of the first schemes for solving such a family of problems was introduced by
Conn et al. (1998), where they considered the trust-region subproblem. The authors
also described virtual constraints as non-computable constraints and recommend
using an extreme-barrier approach. This approach is based on restricting the solution
to inside the trust-region subproblem, and based on whether the point is feasible or
not, the trust region is adjusted. Further improvement is made by using an extreme-
barrier approach.

Regarding other approaches, Gramacy et al. (2016) developed a statistical ap-
proach based on Gaussian processes and Bayesian learning to both approximate the
unknown function and estimate the probability of meeting the constraints. In another
approach, Lee et al. (2011) forced the problem (1) into an existing statistical frame-
work by using treed Gaussian processes for response surface prediction, and random
forests for constraint violation prediction. Finally, there are some recently introduced
algorithms Picheny et al. (2016), Gelbart et al. (2018) that are based on Augmented
Lagrange, and they try to improve the performance of such schemes. However, most
of these algorithms are statistical-based methods, and they usually consider the un-
derlying signal as a realization from a random process. Moreover, most of these
algorithms are not globally convergent, and they only have the potential to search
globally.

A Delaunay-based optimization algorithm, �-DOGS, was a recently developed
derivative-free optimization algorithm. This algorithmwas extended in�-DOGS(�)
in order to solve, with remarkable efficiency, optimization problems with nonconvex
and computationally expensive objective and constraint functionsAlimo et al. (2017),
Alimo et al. (2018). This new algorithm is provably convergent under the appropriate
assumptions. This algorithm can be classified as a response surface method which
iteratively solves a subproblem based on interpolations not only of the objective
and constraint functions over existing datapoints, but also a synthetic model of the
uncertainty of these interpolants, which itself is built on the framework of a Delaunay
triangulation over existing datapoints. Unlike other response surface methods, this
algorithm can employ any well-behaved interpolation strategy.

This paper introduces a new scheme based on �-DOGS(�) that solves problems
where the feasible domain is not known and can only be approximated using a number
of oracle calls within the parameter space. That is, this work solves problems where
the constraint functions are hidden functions as (2).

The remainder of the paper is organized as follows. Section2 briefly reviews the
optimization algorithm �-DOGS(�) that was proposed for solving problems with
nonconvex and computationally expensive constraint functions. Section 3 describes
the extension of this method to solve problems with hidden constraints. Section4
illustrates the behaviour of the new method on a representative test problem. Some
conclusions are made in Sect. 5.
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Review of �-DOGS(�)

Delaunay-based optimization is a generalizable family of practical, efficient, and
provably-convergent derivative-free algorithms designed for a range of nonconvex
optimization problems with expensive function evaluations Beyhaghi et al. (2015),
Beyhaghi and Bewley (2016). This framework, dubbed �-DOGS, was extended
by an algorithm �-DOGS(�) in order to solve optimization problems with both
nonconvex and computationally expensive objective and constraint functions Alimo
et al. (2017), Alimo et al. (2018). �-DOGS(�) solves problems in the form of:

minimize f (x) with x ∈ � := Lc ∩ Ls ⊆ R
n where

Lc = {x|c�(x) ≤ 0 }, Ls = {x|a ≤ x ≤ b}, (2)

where both f (x) and c�(x) for � = 1, . . . ,m are twice differentiable and possibly non-
convex functions whichmapRn → Rwithin the search domain Ls. The optimization
problem (2) has two sets of constraints:

(a) a set of 2 n bound constraints that characterize the n-dimensional box domain
Ls = {x|a ≤ x ≤ b}, dubbed the search domain, and

(b) a set of m possibly nonlinear inequality constraints c�(x) ≤ 0 that together
characterize the possibly nonconvex domain Lc, dubbed the constraint domain.

The feasible domain is the intersection of these two domains, � := Ls ∩ Lc.
In many application based problems, we are seeking a feasible point x ∈ �

such that f (x) ≤ f0, where f0 is a target value. In this work, we assume that there
is a known target value f0, which is achievable; i.e., ∃ x ∈ Ls such that f (x) ≤
f0 and c�(x) ≤ 0 for all � = 1, . . . ,m. The c�(x) are nonlinear, computationally
expensive constraint functions. However, it is worth noting that the present algorithm
can be easily extended to problems for which a target value and constraint violation
thresholds are not available, as in Algorithm 1 of Alimo et al. (2018).

We assume that f (x) and c�(x) are computable everywhere in Ls computationally
expensive, and possibly nonconvex. For the purpose of the scheme development, we
assume that f (x) and c�(x)e twice differentiable. Also, the gradient information for
f (x), or its estimate, is usually not available. Moreover, we consider the optimization
problems with few adjustable parameters n ≤ 10. Before presenting the algorithm,
we introduce some preliminary concepts:

Definition 1 Given Sk as a set of points that includes the vertices of domain Ls at
iteration k of �-DOGS(�), we define pk(x) and gk1(x), . . . , g

k
m(x) as a set of succes-

sive interpolations for the objective and constraint functions f (x)andc1(x) . . . , cm(x),
respectively, at iteration k. Consider

Tk(x) = max
[
pk(x) − f0, g

k
1(x), . . . , g

k
m(x)

]
, (3)
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then the continuous search function is defined as

skc(x) =
{
Tk(x)/ek(x), if Tk(x) ≥ 0,

Tk(x), otherwise.
(4)

�-DOGS(�) estimates (2) with a set of surrogates, and in the situation where
there exists a target value for the objective function such that f0 ≤ f (x) and there
are m different nonconvex constraint functions defining the feasible domain, then
the algorithm iteratively evaluates the minimizer of (4). This method is an iterative
algorithm, and at each iteration, it generates a set of points to estimate the objective
functions and the feasible domain. Using the set of available datapoints, the objective
functions are approximatedwith interpolation/regressionmodels, and the uncertainty
of the interpolants is quantified using an artificially generated uncertainty model
based on the Delaunay triangulation framework. The most expensive part in this
calculation is the function evaluation process.

Algorithm1�-DOGS (�) for accurate objective and constraint function evaluations
Alimo et al. (2018).
1. Set k = 0. Take the set of initialization points S0 as all vertices of the feasible domain �

2. Calculate (or, for k > 0, update) an appropriate interpolating functions p(x), g�(x) through all
points in Sk

3. Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points in Sk
4. Find xk ∈ � as a global minimizer of s(x) subject to CS�(x) ≤ 0, for � = 1, 2, · · · ,m.
5. Calculate f (x), c�(x) at xk , and take Sk+1 = Sk ∪ xk .

In convergence analyses for �-DOGS(�), the objective and constraint functions
were assumed to be twice differentiable with the search domain Ls.

Furthermore, we can observe for �-DOGS(�), Algorithm 1, that

• if f0 ≥ f (x∗), �-DOGS (�) generates an infinite sequence of points whose limit
points are characterized by objective function values less or equal to f0, or

• if f0 < f (x∗),�-DOGS (�) generates an infinite sequence of points which is dense
everywhere in the feasible domain.

Remark 1 With existence of a target value f0 for the objective function, Algorithm
can find a point x ∈ � which is feasible and f (x) ≤ f0, if such point exists. In fact,
any limit point of S is feasible, and its objective function is less than f0. If there is
no point in which f (x) ≤ f0 and x is feasible, Algorithm will go dense everywhere
in the feasible domain �.

In the following sectionwe extend�-DOGS (�) for the caseswhere the evaluation
of the constraint function c(x) is only limited to its sign as shown in Fig. 1.

Unlike the previous work Alimo et al. (2018) for�-DOGS(�) where the function
evaluation was computable, in the next section, the constraint violation is considered
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(a) Solver outputs. (b) Hidden constraints.

Fig. 1 Function evaluation process for the problems in form of (1). a Each constraint violation is
measured only with feasible or infeasible as yi = sign{c(x(i))}. b The feasible domain is modeled
using a surrogate model g

non-computable and is only limited to anoracle call or a binarymeasurement (feasible
or unfeasible). In this problem, we are not able to measure the constraint function,
and we are limited to finding the sign of c� for � = 1, . . . ,m, and the point x(i) is
either feasible or unfeasible.

Quantifying Constraint Violation Using SVM

In this section, we extend the�-DOGS(�) algorithm to solve the optimization prob-
lem with the feasible domain that is characterized with binary oracle calls (feasible
or not). For each set of parameters the constraint violation is determined by

y(xi) =
{

−1, if xi is feasible or c(x) ≤ 0

+1, if xi is infeasible or c(x) > 0.
(5)

We assume that the information about the feasible domain boundaries are only avail-
able through function (5). In other words, since the constrains are not defined ex-
plicitly, we only can determine if a point of interest is within the feasible domain or
not. This situation is similar to the binary classification problems where the training
points (data) are divided into two classes. The final goal of a classification problem
is to predict the class of a new candidate point. In this work, we borrow that idea
and extend it to use in the optimization problem (2) to estimate the boundary of
feasibility as the algorithm proceeds.

There are a wide variety of classifiers in the machine learning literature such as
Perceptron, Artificial Neural Network (ANN), and Support Vector Machine (SVM).

Perceptron is a linear classifier that tries to find a hyperplane that separates the
labeled training data points into two classes so that points with the same label stays in
one side of the hyperplane. The Perceptron algorithm startswith an initial hyperplane.
At each iteration of the algorithm it processes a point from the training set and
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update the weight of parameters to characterize the optimal hyperplane calssifier.
The algorithm is suitable for online learning problems where the training data points
are given sequentially. In addition, computationally it is very appealing. However, it
requires a relatively large training set and the final hyperplane is not necessarily the
best hyperplane that separates the two classes Cortes and Vapnik (1995). Moreover,
since this problem is not linearly separable using Perceptron is not practical.

ANN Goodfellow et al. (2016) impose multiple-layer linear classifiers that can
classify data points using only a handful of features, but they include many unde-
termined and hidden layers. The drawback for this approach is that there are many
tuning parameters to characterize these hidden layers correctly. These tuning param-
eters are problem specific, and they require a large amount of data to train the hidden
layers of the network Bengio et al. (2015).

SVM Cortes and Vapnik (1995), Cherkassky and Ma (2004) is a linear classi-
fier, which aims at determining the maximum margin hyperplane. SVM classifier
transfers features into a higher dimensional space using appropriate kernels and then
fits a linear classifier. As a result it can also separate the data points that are not
linearly separable. Overall, the SVM classifier is computed by solving a quadratic
programming optimization problem.

At each iteration, the �-DOGS(�H ) search for a minimizer of the optimization
problem which has the highest probability of being inside the feasible domain. The
oracle calls are assumed to be computationally expensive therefor the adapted clas-
sifier should be able to estimate the boundaries using fewer samples. In this paper,
we propose a SVM-based approach to approximate the feasible domain of solutions
at each iteration of the optimization algorithm.

We assume that the boundaries of the feasible domain are twice differentiable
with a bounded Lipschitz norm. In other words, there exists an unknown underlying
function in which sign{c(x)} = sign{g(x)} for all x ∈ Ls. To be able to approximate
a wide variety of boundary functions, we consider the Radial Basis Functions (RBF)
as the kernel of the SVM. That is

g(x) =
d∑
i=1

wi φi(x) + b, (6)

where we consider b as a bias term and φ(x) as radial basis kernel functions that
denote the feature space transformation. Let yi = sign{g(xi)}, then the distance of a
point xi to the decision surface g(xi) is given by

yi g(xi)

‖w‖ = yi (wT φ(x) + b)

‖w‖ > 0.

Note that xi for i = 1, . . . ,N are evaluated points in the feature (parametric) space
at the Nth iteration. In this way, every point xi can be transformed into a d -D space
such that Xi = [φ1(xi), φ2(xi), . . . , φd (xi)].
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The optimal hyperplane is determined by solving a quadratic programming (QP)
as follows:

min
z∈Rd+1

zTL z, subject to Y . (A z) ≥ 1, where

L =
[
I 0
0 0

]
, A =

[
F 1T

1 0

]
,

Y =

⎡
⎢⎢⎢⎣

sign{c(x1)}
...

sign{c(xN )}
0

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣

w1
...

wd

b

⎤
⎥⎥⎥⎦ .

where Fi,j = φi(xj) = ϕ(|xi − xj|) and 1 = ([1, . . . , 1]T )N×1. Performance depends
on the choice of basis functions φ(x) used to leverage the evaluated dataset, and the
choice of SVM kernels are problem-dependent. We set

φi(x) = ϕ(r) , where r = |xi − x|

The most well-known RBF models are the Gaussian kernel model ϕ(r) = e−r2/σ 2
,

the polynomial model ϕ(r) = r3, and the inverse multi-quadratic kernel model
ϕ(r) = 1/

√
σ 2 + r2.

The main challenge in optimization with virtual constraints is that there are many
models of g that could successfully classify the two classes from each other, and these
approximated constraint functions could have a very different range of values from
one another. The variety in appropriate g models stems from the fact that we only
have access to the sign of c(x). As a result, the inclusion of more data points from
specific regions can sometimes lead to estimated g models deviating from the true
hidden function. To control this deviation, we scale the estimated constraint function
using the initial training data points in order to have the same range of variations as
the objective function f (x).

�-DOGS(�H)

The new algorithm is designed based on the �-DOGS(�). Since the constraints
are hidden, an approximation (6) based on the SVM is considered for the model of
constraints. The search function is defined as

sc(x) = max{p(x) − f0
rf e(x)

,
g(x)

rg e(x)
} (7)

where g(x) is modeled as (6) and rf and rg are constants tomake the constraint search
function model in the same range of variation as the objective search function.
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�-DOGS(�H ) algorithm depends upon a handful of adjustable parameters, the
selection of which affects its rate of convergence. The remainder of this section dis-
cusses heuristic strategies to tune these algorithm parameters, noting that this tuning
is an application-specific problem, and alternative strategies (based on experiment
or intuition) might lead to more rapid convergence for certain problems.

The first task encountered during the setup of the optimization problem is the
definition of the design parameters and search domain Ls. Note that the feasible
domain considered during the optimization process is characterized by simple upper
and lower bounds for each design parameter; normalizing all design parameters to
lie between 0 and 1 is often beneficial Alimo et al. (2018), Beyhaghi and Bewley
(2018).

The second challenge is to scale the objective function f (x) and the hidden con-
straint function g(x) themselves, such that the range of the normalized functions f (x)
and g(x) over the search domain Ls are the same and about unity.

If an estimate of the actual range of c(x) (the same as g(x)) is not available a prior,
we may estimate it at any given iteration using the available measurements.

Results

The test function is considered as a quadratic objective function, given by the dis-
tance from a point in the search domain Ls, and is defined over an n-dimensional
space, subject to a nonlinear inequality constraint. The feasible domain is gener-
ated using the sign of a Rastrigin function, defining a disconnected feasible domain
characterized by 2n distinct “islands” within the search domain:

min
x∈Ls

f (x) = ‖x − x0‖2 − 0.024 n, (8a)

subject to sign{c(x)} < 0, (8b)

c(x) = n

12
+ 1

10

n∑
i=1

{
4 (xi − 0.7)2 − 2 cos

(
4π (xi − 0.7)

)}
,

0 ≤ x1, x2, . . . , xn ≤ 1. (8c)

This problem has 2n local minima, including the unique global minimum where
x0 = [0.19, 0.29]T for n = 2 with f (x∗) = f (x0) = 0.

The results show that �-DOGS(�H ), the newly introduced method, has the po-
tential to identify the global minimizer of the objective function under the feasible
region. It is observed that the choice of kernel function acts as a crucial factor in
enabling the global convergence of the optimization method. Figures2 and 3 show
the results using a piece-wise linear kernel. This is an appropriate choice since the
underlying model of constraint function range will not change exponentially when
the algorithm detects a feasible region, as was the case when a cubic kernel was used.
In addition, use of a cubic kernel did not lead to global convergence.
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Fig. 2 Nonconvex problem for n = 2 with vertices as initial points. The gray region is the feasible
domain. The objective function is the distance function from the global minimizer showed by red
star x∗ = [0.19, 0.29]T
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Fig. 3 Nonconvex problem for n = 2 with {x0,i = 0.35, x0,i + 0.1 ei} where ei is the ith main
coordinate direction. The gray region is the feasible domain and the objective function is the distance
function from x∗ = [0.19, 0.29]T

Conclusions

In this work, we presented a new derivative-free algorithm for the optimization of
expensive cost functions subject to box constraints and hidden type of constraints,
in which a design point can be labeled as feasible or not feasible. We modeled
the hidden constraints with the popular classification techniques that is from the
machine learning literature. The well known techniques of SVMs are applied in a
global optimization framework.
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As a future work, we compare the results from Artificial Neural Network and
leverage deep learning techniques to quantify g(x). Furthermore, the presented opti-
mization method will be applied to an application-based problem, and we will study
the behaviour of g(x) in different problems.
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Optimized Vehicle Dynamics
Virtual Sensing Using Metaheuristic
Optimization and Unscented
Kalman Filter

Manuel Acosta and Stratis Kanarachos

Abstract This paper presents an Optimized Unscented Kalman Filter for vehicle
dynamics virtual sensing. An automated procedure to optimize the virtual sensor
parameters based on metaheuristic algorithms is presented in order to avoid the
time-consuming and complex manual tuning task. Specifically, Genetic Algorithm
Optimization (GA) and contrast-based Fruit Fly optimization (c-FOA) are applied to
minimize the estimation error in steady-state and transient driving maneuvers. The
virtual sensor is implemented in a high-fidelity vehicle dynamics simulation soft-
ware (IPG-CarMaker ®) and results demonstrate the improvement of the estimation
accuracy with respect to a preliminary filter tuning carried out using a systematic
trial and error approach.

Introduction

Active Chassis Control Systems seek to enhance the vehicle driving dynamics and
keep the vehicle under stable and controllable limits Kanarachos (2013). This task
is achieved by monitoring a number of vehicle states which are representative of
the vehicle behavior (e.g. lateral velocity, yaw rate, tire forces) Kiencke and Nielsen
(2005). As direct measurement of some of these states is still complex and expensive
Eom et al. (2014),Matsuzaki et al. (2008), virtual sensing is presented as an attractive
alternative to infer the control signals from readily-available measurements.
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Due to the nonlinear and time-varying characteristics of the vehicle dynamics,
KalmanFiltering techniques (UnscentedKalmanFilter (UKF) andExtendedKalman
Filter (EKF)) are preferred in the literature to develop the virtual sensors Doumiati
et al. (2012), Haudum et al. (2016). Despite the implementation of the Kalman Filter
Algorithms in vehicle dynamics is relatively straightforward and has been discussed
extensively, little attention has been paid to the cumbersome task of selecting the
process and measurement noise covariance matrices (Q, R) that minimize the esti-
mation error. These values are often determined empirically, following an iterative
trial and error method. The necessity of a systematic and automated tuning method-
ology for vehicle dynamics applications has been mentioned briefly in a reduced
number of works Haudum et al. (2016), Koch (2011), Gadola et al. (2014), but still,
a deep analysis regarding the optimization techniques employed for this purpose is
missing. The necessity of automating this procedure takes even more importance if
covariance-scheduling strategies are envisaged Kiencke and Nielsen (2005). As the
uncertainty associated with the vehicle behavior changes drastically with the level of
lateral excitation or the transient content of the driving maneuver, several optimized
parameters might be required and varied according to the driving situation (e.g. level
of lateral acceleration, yaw acceleration or longitudinal velocity Klier et al. (2008),
Tuononen (2009)). Regarding other engineering applications, the Kalman Filter tun-
ing has received greater attention, and numerical optimization Kaur andKaur (2016),
Kaur and Kaur (2016), Gadola et al. (2014), Gaussian optimization Scardua and da
Cruz (2016), autocovariance least-squares methods Åkesson et al. (2007), reinforce-
ment learning Goodall and El-Sheimy (2007) or metaheuristic optimization Ting
et al. (2014) have been suggested to avoid the rudimentary and time-consuming trial
and error approach.

In this paper, an automated tuning methodology based on metaheuristic optimiza-
tion is proposed. An objective function composed of the longitudinal velocity, lateral
velocity, and yaw rate weighted errors is minimized using the well-known Genetic
Algorithms (GA) and a recently-developed contrast-based Fruit Fly Optimization
routine Kanarachos et al. (2017) (c-FOA). The optimized virtual sensor parameters
have been determined for two different driving situations: steady-state and tran-
sient maneuvers. This will facilitate the development of adaptive virtual sensing
strategies in future stages of this research. Moreover, the proposed algorithms have
been benchmarked against other popular optimization routines (Sequential Quadratic
Programming (SQP), Nelder-Mead, Artificial Bee Colony (ABC), Particle Swarm
Optimization (PSO) and Differential Evolution (DE)). The rest of the paper is struc-
tured as follows. In Section “Background”, the UKF algorithm and its implementa-
tion for vehicle dynamics estimation are introduced. The section is completed with
a brief insight into GA, c-FOA, and the definition of the evaluation function. The
optimization procedure is described in Section “UKF Design and Optimization”,
followed by an analysis of the results obtained with the optimized virtual sensors,
Section “Results”. Finally, a brief discussion on the performance of the virtual sensors
and further research steps are indicated in Section “Conclusions”.
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Background

Unscented Kalman Filter

UKF is a nonlinear Kalman filter employed when the problem exhibits strong non-
linearities and the linearization of the plant required by other nonlinear filters (e.g.
EKF) might worsen considerably the estimation accuracy Doumiati et al. (2012). It
has been demonstrated as a suitable approach to handle the vehicle nonlinear behav-
ior derived from the tire-road characteristics Antonov et al. (2011), Doumiati et al.
(2009). To formulate the filter, a generic nonlinear system is expressed in state-space
form,

Xk+1 = f(Xk,Uk) + wk,Yk+1 = h(Xk+1,Uk) + vk (1)

where X, Y and U are the vector of states, outputs, and inputs of the system. The
terms w, v are the process and measurement noises respectively, and are assumed to
be Gaussian, uncorrelated, and zero mean (i.e. w ≈ N (0,Q),v ≈ N (0,R)). Q and
R are referred as the filter tuning covariance matrices.

The filter relies on the Unscented Transformation (UT ), which consists on the
propagation of a small set of deterministically selected sigma-points through the sys-
tem.After this propagation, the systemnonlinearities are inferred from the statistics of
these points. The spread of the sigma-points is determined by the scaling parameter λ,
which depends on the constants α and κ , related by expression (λ = α2(L + κ) − L)
Rhudy and Gu (2013), Wan and Van DerMerwe (2000), where the length of the state
vector is denoted by L . In this paper, the plant andmeasurement noises are considered
additive, and thus the formulation of the UKF is reduced to the formulation of the
standard or unaugmented UKF Rhudy and Gu (2013). The matrix of sigma-points
is formed using the Eq. (2), where the number of rows is given by L and the number
of columns corresponds to 2L + 1,

χk =
[
X̂k|k, X̂k|k + √

ΘPk|k, X̂k|k − √
ΘPk|k

]
(2)

where P is the covariance matrix of the filter and Θ is equal to (λ + L). The matrix
square root (

√
Pk|k) is calculated using the Cholesky method, which calculates a

lower triangular matrix representative of the square root, expression (3).

√
Pk|k

√
Pk|k

T = Pk|k (3)

The propagation of the sigma points through the nonlinear system is performed using
Eq. (4).

χk+1|ki = f(χk
i ,Uk), i ∈ {0, . . . , 2L} (4)
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After that, the post-transformation mean and covariance values are calculated using
weighted averages, (5–6).

X̂k+1|k =
2L∑
i=0

ηm
i χk+1|ki (5)

Pk+1|k = Qk+

+
2L∑
i=0

ηc
i (χk+1|ki − X̂k+1|k)(χk+1|ki − X̂k+1|k)T (6)

The weights ηc
i and ηm

i are computed from Eqs. (7–9),

ηm
0 = λ

λ + L
(7)

ηc
0 = ηm

0 + 1 − α2 + β (8)

ηc
i = ηm

i = 1

2(L + λ)
, i ∈ {1, . . . , 2L} (9)

The parameter β is known as the secondary scaling parameter Rhudy and Gu (2013).
Similarly, the matrix of sigma-points is propagated through the observation function
(h) using expression (10).

ξk+1|ki = h(χk+1|ki ,Uk), i ∈ {0, . . . , 2L} (10)

The predicted output (Ŷk+1|k), output covariance matrix (Pyy
k+1) and cross-covariance

matrix (Pxy
k+1) are calculated using Eqs. (11–13).

Ŷk+1|k =
2L∑
i=0

ηm
i ξk+1|ki (11)

Pyy
k+1 = Rk+

+
2L∑
i=0

ηc
i (ξk+1|ki − Ŷk+1|k)(ξk+1|ki − Ŷk+1|k)T (12)

Pxy
k+1 =

2L∑
i=0

ηc
i (χk+1|ki − X̂k+1|k)(ξk+1|ki − Ŷk+1|k)T (13)

The covariance matrices calculated in the previous step are then used to compute the
Kalman gain (Kk+1), Eq. (14).
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Kk+1 = Pxy
k+1(P

yy
k+1)

−1 (14)

Finally, the states estimated in the first stage of the filter are corrected using the
expression (15), and the covariance matrix is updated with Eq. (16).

X̂k+1|k+1 = X̂k+1|k + Kk+1(Yk+1 − Ŷk+1|k) (15)

Pk+1|k+1 = Pk+1|k − Kk+1P
yy
k+1Kk+1

T (16)

Application to Vehicle Dynamics Estimation

In this paper the vehicle planar dynamics are approximated using a single-trackmodel
Acosta and Kanarachos (2016), Hrgetic et al. (2014). The virtual sensor is completed
with a Neural Network (NN) structure, which is aimed to estimate the axle lateral
forces required by the UKF using a data-based approach Acosta and Kanarachos
(2016). The vehicle planar dynamics Eqs. (17–19) are presented in discrete form as:

ψ̇k+1 = ψ̇k

+ Ts
Iz

((Fy f,k cos(δk) + Fx f,k sin(δk))l f − Fyr,klr ) (17)

vx,k+1 = vx,k + Tsψ̇kvy,k

+ Ts
m

(Fx f,k cos(δk) − Fy f,k sin(δk) + Fxr,k) (18)

vy,k+1 = vy,k − Tsψ̇kvx,k

+ Ts
m

(Fy f,k cos(δk) + Fx f,k sin(δk) + Fyr,k) (19)

where Ts is the discretization time employed in the first order approximation, the
vehicle mass is denoted by m and the yaw inertia by Iz . The distances from the
center of gravity to the front and rear axles are designated by l f , lr respectively.
Following the approach adopted in other works on state estimation Hrgetic et al.
(2014), Doumiati et al. (2012, 2009), the effect of the suspension dynamics on the
chassis planar motion is disregarded, and the vehicle planar dynamics are assumed
to be entirely represented by the yaw rate, longitudinal velocity, and lateral velocity
(X = {ψ̇, vx , vy}). The vector of inputsU is formed by the steering wheel angle and
the axle longitudinal forces (U = {δ, Fx f , Fxr }). For the sake of clarity, a reduced
filter structure is chosen to introduce the automated tuning problem, and it is assumed
that the axle longitudinal forces are estimated in an external block (e.g. with a mod-
ular filter structure Acosta et al. (2017)). Finally, the yaw rate and the longitudinal



280 M. Acosta and S. Kanarachos

velocity are the measured quantities (Y = {ψ̇, vx }). The axle lateral forces required
to compute Eqs. (17–19) at each time step are approximated using a data-based
approach, where the relation between these forces (Fy), the axle lateral slips (φ), and
the longitudinal acceleration (ax ) is presented in the form of a nonlinear function
Fy = fy(φ, ax ). The axle slips are obtained from the vehicle planar states using a
small-angle approximation Kanarachos (2014) Eq. (20).

φ f = δ −
(

ψ̇l f + vy
vx

)
, φr = −

(−ψ̇lr + vy
vx

)
(20)

The longitudinal accelerationwas introduced in the nonlinear function ( fy) in order to
take into account the reduction in the available lateral force during combined (braking
and cornering) efforts. NN were chosen to approximate the tire nonlinear behaviour
due to their remarkable fitting capabilities. Specifically, a one-hidden-layer structure
(1-10-1) was chosen after a sensitivity analysis and theNN were trained employing a
Backpropagation algorithm and a dataset division of 70/15/15. The training datasets
were generated in IPG CarMaker® using an experimentally validated vehicle model
and a MF6.1 Pacejka (2012) tire model. Additional details about this process can
be found in Acosta and Kanarachos (2016).

Genetic Algorithms

Genetic Algorithms (GA) are global search optimization approaches inspired by the
natural biological evolution. These operate based on the principle of survival of the
fittest individual among an initial population. The generation of better individuals
that are more adapted to the new environment is pursued during the consecutive
iterations Chipperfield et al. (2009). Depending on the problem domain, GA can
be represented using single-level binary strings, integer-coded representations, and
real-valued representations. Once the problem representation has been selected, the
population size is set and initialized using a stochastic approach. The GA routine is
then executed under the following operations:

• Selection: Individuals with higher fitness are selected and passed to the new gen-
eration based on the theory of “survival of the fittest”.

• Crossover: Off-springs are produced at each new generation using the genetic
material of their parents. After several generations, the population tends to orient
towards the minimum of the objective function.

• Mutation: A certain biological mutation is introduced in each generation in order
to maintain the diversity of the population, thus avoiding early convergence into a
local minimum.

Further details regarding GA routines are omitted due to space limitations. These
can be consulted in Chipperfield et al. (2009), Haupt and Haupt (2004).
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Fruit Fly Optimization

Fruit flies are very efficient in detecting food as they can locate it, even if this is 40
km away. Pan, inspired by fruit flies foraging behavior, proposed for the first time
a Fruit Fly Optimization Algorithm (FOA) on this basis Pan (2012). The authors
have developed an enhanced version of the original FOA algorithm consisting of the
following steps: Swarmgeneration, Fruit Fly localization, Smell concentration calcu-
lation, Best member identification, Current average location selection and Decision
delay phase. Additional details regarding this optimization routine are omitted in this
paper due to space limitations and can be consulted in Kanarachos et al. (2017).

Objective Function Formulation

In this paper, the fitness function (22) is defined as the sum of the normalized root
mean square (NRMS) errors (21) of the yaw rate (eψ̇ ), lateral velocity (evy ), and
longitudinal velocity (evx ),

e =
√∑N

k=1(X̂k − Xk)2

N

1

max(|X |) (21)

where X̂k is the vector of estimated states of the UKF at time k and Xk is the vector
of “true” states calculated in IPG CarMaker®.

f = evx + evy + eψ̇ (22)

Thus, theUKF automated tuning is formulated as an optimization problem consisting
of finding the set ofUKF parametersΩ∗ = {Q∗, R∗, α∗} (process covariance matrix
Q, measurement covariance matrix R, andUKF scaling parameter α), that minimize
the objective function f subjected to the boundary (24–25) or integer constraints
(26). These constraints depend on the problem representation (continuous or discrete
search space), beingUB, LB the upper and lower bounds imposed to the continuous
search space, and S the discrete search space.

min( f ) s.t. (23)

Ω ≤ UB (24)

Ω ≥ LB (25)

Ω ∈ S (26)
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UKF Design and Optimization

The design of the UKF is carried out following the V-model process depicted
schematically in Fig. 1. As the vehicle operates along a wide range of conditions
(e.g. motorway, aggressive cornering), the uncertainties associated with the plant
and measured signals may change considerably depending on the driving situation
Kiencke and Nielsen (2005). Thus, a unique tuning strategy could compromise the
performance of theUKF in certain circumstances Tuononen (2009). A segmentation
approach is proposed in order to isolate different driving patterns and determine the
best set of UKF parameters using metaheuristic optimization. In this paper, this pro-
cess is particularized for steady-state and transient driving maneuvers. Nevertheless,
the same methodology can be adapted and extended to handle a wider range of driv-
ing situations. The subsequent integration of each optimum tuning into an adaptive
UKF structure and its experimental validation will be pursued in the next research
steps.

The flow of the optimization performed to tune the filter at each driving condition
is depicted schematically in Fig. 2. First of all, a set of selected maneuvers represen-
tative of a driving situation (e.g. steady-state) is generated in the vehicle dynamics
simulation software IPG-CarMaker®. These runs are concatenated to form the tun-
ing dataset of the UKF. The offline optimization of the UKF is carried out in the
following manner. At each iteration step, the UKF is initialized with the set of UKF
parameters (Ω , see Section “Objective Function Formulation”) obtained in the pre-
ceding iteration. The UKF is then simulated using the filter inputs (U ) and filter
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Fig. 1 V-Model for UKF design
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measurements (Y ) taken from the tuning dataset, and the N RMS errors (e) of the
states estimated by the filter (X̂ ) are calculated. The objective function ( f ) is eval-
uated using these errors and, if the stopping criteria is fulfilled, the optimization is
finished. The vector of optimized parameters (Ω∗) is obtained and the UKF is run
online employing these values. Otherwise, the iterative process is continued until the
stopping criteria is met.

Selection of Tuning Datasets

The catalogue of maneuvers presented in Table 1 was proposed to optimize and val-
idate the UKF. These maneuvers are common standardized tests that are often exe-
cuted in proving grounds to characterize the chassis behavior. The training datasets
were formed by a reduced number of maneuvers representative of each driving situa-
tionwith the aim to limit the computational time required to perform the optimization,
and the rest of runs were used at the validation stage. The selection of the maneuvers
conforming the dataset was carried out based on the experience of the authors in
automotive testing and chassis characterization. Specifically, the maneuvers marked
with an X in the Tuning column of the Table 1 were used to optimize the UKF (tests
#1, #2 in the steady-state dataset, #6, #8, #12 in the transient dataset), while the ones
marked with an X in the Val. (validation) column were used to validate the UKF.
These maneuvers were generated in IPG-CarMaker® employing a C-segment-like
vehicle and a MF 6.1 tire model (see Acosta and Kanarachos (2016) for further
details). An additive white-gaussian noise model was employed to reproduce the
uncertainties associated with the measurement equipment RaceLogic (2015). The
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Table 1 Catalogue of Maneuvers for UKF Performance evaluation. *SS: Steady-state, TR*: Tran-
sient, SSR*: Constant Radius, DS*: Dwell sine, LC*: Lane Change, MS*: Maintain speed, CD*:
Coast down, PB*: Partial braking, HB*: Hard Braking

Test Group Tuning Val. Test Group Tuning Val.

#1 SSR-40m, Gas
80%

SS X #7 DS-90deg CD TR X

#2 SSR-100m,
Gas 50%

SS X #8 DS-90deg PB TR X

#3 SSR-100m,
Gas 80%

SS X #9 DS-90deg HB TR X

#4 SSR-80m, Gas
80%

SS X #10 ISO-LC MS TR X

#5 SSR-60m, Gas
50%

SS X #11 ADAC-LC
CD

TR X

#6 DS-150deg
CD

TR X #12
SLALOM-36m

TR X

– – – – #13
SLALOM-18m

TR X

UKF was implemented in Simulink® and the discretization time was set to 1ms.
The measured signals were acquired using a sampling frequency of 100Hz and a
zero-order hold approach.

UKF Optimization

TheUKF was optimized and compared to a base configuration obtained following an
iterative trial and error process. Two optimizations were performed, one employing
the steady-state tuning dataset ( fSS) and one using the transient tuning dataset ( fT R).
The results obtained after completing the optimizations are presented in Table 2. The
performance of the tuned UKFs under maneuvers not included in the tuning dataset
is studied in the next section.

The c-FOA routine Kanarachos et al. (2017) was implemented in Matlab and the
automated tuning sequence depicted in Fig. 2was followed. Several simulationswere
carried out varying the flies’ population size in order to study the convergence of the
algorithm.

Concerning Genetic Algorithms (GA), the ga routine from theGenetic Algorithm
Toolbox (Matlab ®) was employed to optimize the UKF. A structured GA optimiza-
tion approach was proposed in this paper. During the initial stage of the optimization,
solutions with a poor resolution are pursued. The search space is discretized and an
integer-based optimization problem is solved to locate the domain region where the
best values are likely to be. Once a potential domain region has been identified, the
UKF tuning is formulated as a real-valued constrained GA optimization problem,
where upper and lower bounds are imposed around the sub-optimal values found
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Table 2 Numerical values of the objective functions using different optimization routines

Proposed algorithms fSS fT R Other algorithms fSS fT R

Base (Trial and Error) 0.250853 0.052363 SQP 0.103432 0.047492

GA integer 0.102446 0.045409 Nelder-Mead 0.244358 0.044852

GA real-valued 0.094092 0.044696 ABC 0.226566 0.231754

c-FOA 0.116444 0.045630 PSO 0.212778 0.049918

DE 0.549621 0.222337

in the integer-based optimization. Concerning the integer-based stage, the discrete
sets S1 = {100, 10, 1, 0.1 . . . , 1e − 5} and S2 = {1, 1e − 2, 1e − 4} were selected
for the design variables (Q, R), and (α) respectively. The rest of UKF parameters
were set to their recommended values Wan and Van Der Merwe (2000). The cross-
over fraction was set to 0.8 and the scale and shrink mutation coefficients were left
as default to limit the degrees of freedom of the optimization. The same process was
repeated during the real-valued constrained optimization. Overall, the convergence
of the best individuals was found after a reduced number of generations. As can be
noticed in Table 2, the improvement achieved during the second optimization stage
(real-valued) is very small, being the integer-based optimization enough to achieve
an acceptable solution.

Theoptimizationwas repeated employingother optimization routineswith the aim
to benchmark the performance of c-FOA and GA. Specifically, Sequential Quadratic
Programming (SQP), Nelder-Mead, Artificial Bee Colony (ABC), Particle Swarm
Optimization (PSO), and Differential Evolution (DE) algorithms were compared to
GA and c-FOA. As can be noticed, only SQP was able to match the performance
exhibited by the proposed algorithms. Concerning Nelder-Mead and PSO, reduced
errors were obtained when the transient dataset was employed, but the algorithms
failed to reduce the error of the steady-state dataset. Finally, the worst performance
was exhibited by the ABC and DE optimization algorithms.

Due to space limitations, it is not possible to describe in detail the algorithms. The
results were achieved for the same number of function evaluations. The difference
between SQP and the rest algorithms was that SQP was initiated using the manual
tuning result, while the population-based ones, randomly. From a computational
point of view, population-based algorithms have the potential to run faster when
processed in parallel and thus achieve the best value faster. Furthermore, the results
indicate that possibly a smaller population size but larger number of iterations would
increase the performance of population-based algorithms.

Results

The relative improvement (27) of the optimized UKFs (SS for steady-state tuning
and T R for transient tuning) with respect to the base setup is depicted in Fig. 3.



286 M. Acosta and S. Kanarachos

0

50

100

-50

-100
#1 #2 #3 #4 #5 #6 #7 #8

Test number

Results GA

#9 #10 #11 #12 #13

Results c-FOA

0

50

100

-50

-100

Fig. 3 Relative improvement of the optimized UKFs with respect to the base configuration

The results have been computed for all the maneuvers and configurations optimized
in order to check whether a single configuration (SS or T R) is suitable for all the
driving situations and a constant covarianceUKF configuration can be implemented.

Δe = 100
eopt − ebase

ebase
(27)

Overall, the error reduction achieved with the optimized filters is remarkable, par-
ticularly in the lateral velocity error of the UKF optimized in SS conditions (up to
60% reduction on the N RMS error) during the validation in steady-state maneuvers
(#1 − #5). Concerning the transient maneuvers (#6 − #13), a consistent reduction in
the yaw rate and longitudinal velocity errors is noticeablewith the transient-optimized
UKFs. Such improvements indicate that apart from the filter structure selected during
the filter design stage (Fig. 1), the filter optimization is of crucial importance (which
is often disregarded in the literature). Finally, results suggest that a trade-off solution
would be difficult to obtain, as the yaw rate error increases considerably when the
transient-optimizedUKFs are tested in SS conditions and the lateral velocity error of
the steady-optimized UKF augments in TR tests, particularly for the GA-optimized
UKF. Fig. 4 depicts the results obtained during the validation of the optimized UKF
in steady-state maneuvers (test #4, Steady-state 80-meter constant radius maneuver).
As can be noticed, an important offset is observed in the lateral velocity with the base
configuration. In these circumstances (quasi-static driving conditions) the difference
between the front and rear axle lateral forces is minimum (yaw acceleration ≈ 0),
and the lateral velocity estimation is very sensitive to the uncertainties associated
to the tire lateral forces (e.g. camber gain due to the steering axis inclination). The
optimized UKFs outperform the base configuration, reducing drastically the lateral
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Fig. 4 Test #4, a yaw rate, b longitudinal velocity, and c lateral velocity

velocity error (Fig. 4c). The results obtained during the evaluation of the optimized
UKFs in transient situations (test #13, 18-meter slalom test) are depicted in Fig. 5. In
this case the improvement is less noticeable because the base configuration already
provides acceptable results. Nevertheless, a considerable reduction in the noise level
of the longitudinal velocity can be appreciated in Fig. 5b.

Metrics

Finally, the NRMS errors of the optimized UKFs are presented in Tables 3–4. The
errors of the base tuning have been added for comparative purposes. Inwhat concerns
the steady-state errors, these keep below the 10% band for the majority of the tests
performed. Values above this band are observed in tests (#1, #5), but these can be
accepted taking into account that the initial errors seenwith the base configuration are
significantly higher (≈ 40 and 23% respectively). Yaw rate and longitudinal velocity
errors are slightly lower for the c-FOA optimization while the GA optimization pro-
vides better lateral velocity estimates. Regarding the results obtained in the transient
tests, these are below the 10% for all the tests. In this case, negligible differences
are identified between c-FOA and GA optimizations. In addition, the improvement
seen with the optimized UKFs is less noticeable because acceptable results were
obtained with the base configuration. Nevertheless, a considerable time and effort
were required to obtain manually the filter parameters of the latter configuration,
while the optimized UKF values were generated automatically.
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Fig. 5 Test #13, a yaw rate, b longitudinal velocity, and c lateral velocity

Table 3 NRMS errors (%) in steady-state maneuvers, SS optimized UKFs and base tuning

Test Base GA c-FOA

eψ̇ evx evy eψ̇ evx evy eψ̇ evx evy
#1 3.24 0.92 40.11 3.28 0.83 21.40 2.98 0.82 20.64

#2 4.38 0.59 23.43 4.52 0.43 4.87 4.11 0.40 8.30

#3 4.56 0.60 28.32 4.70 0.44 8.97 4.29 0.42 9.45

#4 3.70 0.67 30.06 3.82 0.49 6.33 3.47 0.46 7.01

#5 3.44 0.79 23.22 3.60 0.63 14.07 3.26 0.62 19.82

Table 4 NRMS errors (%) in transient maneuvers, Transient optimized UKFs and base tuning

Test Base GA c-FOA

eψ̇ evx evy eψ̇ evx evy eψ̇ evx evy
#6 1.79 0.84 2.49 1.72 0.53 2.62 1.68 0.53 2.38

#7 2.16 0.84 2.24 1.78 0.53 1.76 1.77 0.53 2.03

#8 2.31 0.85 4.69 2.18 0.55 4.17 2.17 0.55 4.55

#9 1.10 0.93 5.91 1.31 0.65 6.00 1.31 0.64 7.38

#10 2.65 0.66 2.79 2.27 0.66 2.81 2.17 0.66 2.72

#11 2.53 0.67 2.37 2.04 0.51 1.97 1.96 0.52 2.16

#12 4.37 0.76 6.60 3.01 0.50 6.40 2.90 0.49 6.30

#13 2.83 0.85 4.45 2.41 0.56 3.93 2.30 0.56 4.13
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Conclusions

In this paper, an automated procedure to optimize an Unscented Kalman Filter for
vehicle dynamics state estimation has been proposed using a Genetic Algorithm
and Fruit Fly optimization. Results demonstrate the suitability of these optimization
approaches to enhance the performance of the Kalman Filter, particularly during
steady-state maneuvers. In addition, the tuning procedure has been achieved using
a short training dataset composed of a reduced number of driving maneuvers, thus
contributing to the overall reduction of the optimization time. The improvement
achieved with the optimized UKFs remarks the importance of the Kalman Filter
tuning, which has been often disregarded in the literature and performed manually
in an ad hoc fashion to achieve “good-enough” results. The proposed approach not
only reduced significantly the tuning time but also provided quasi-optimized solu-
tions. Moreover, authors envisage that the adoption of parallel processing tools in
the proposed optimization will increase notably the productivity of the tuning pro-
cess. Apart from that, results indicate that a trade-off tuning configuration may be
unsuitable for an accurate estimation, and a covariance-scheduling strategy could be
beneficial to reduce the estimation error during changing driving conditions.

During the following stages of this research, the complete integration of theUKF
in an adaptive manner and its experimental validation with real measurements (elim-
inating the white Gaussian noise assumption) will be pursued.
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Abstract The paper addresses the integration of optimization in the automated
design process of ascent assemblies. The goal is to automatically search for an
optimal path connecting user defined inspection points while avoiding obstacles.
As a first step towards full automation of the ascent assembly design, a discrete 2D
model abstraction is considered. This establishes a combinatorial optimization prob-
lem, which is tackled by the use of two distinct strategies: a greedy heuristic and a
genetic algorithm variant. Applying modeling approach and algorithms to multiple
test cases, partly artificial and partly based on a manufactured crane, shows that the
automated ascent assembly design tasks can successfully be enhanced with optimal
path planning.
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Introduction

The automation of engineering design processes offers great potential for improving
performance by automating tasks that can be standardized and that are frequently
repeated (Verhagen et al. 2012). To this end, the design process can be simplified and
accelerated or existing designs can be enhanced. Integrating optimization procedures
into the automated design process is supportive in both directions, e.g. by reducing
design time, time-to-market and construction costs as well as leading to improved
and potentially unexpected designs and thus, increasing the diversity of valid designs.

In this paper,we consider the automatic andoptimizeddesignof ascent assemblies.
The composition of such ascent assemblies typically involves a set of standardized,
parameterizable components (e.g. platforms and ladders of varying dimension). The
only prerequisite to ensure an optimization potential for the walkway design is a
sufficient number of degrees of freedom for positioning the path.

There is awide range of application areas, including ascent assemblies for building
facades,warehouses, and inspection purposes onmachines or vehicles.We here focus
on the industrial use case of ascent assemblies for cranes, two examples of which
are shown in Fig. 1.

In a previous project, in cooperation with Liebherr-Werk Nenzing (LWN 2017),
the design process for ascent assemblies of cranes was automated by developing
a software called Automated Crane Component Design (ACC-Design) (Frank et al.
2014).A part of this software allows the designer to create various forms of platforms,
ladders, and stairs by specifying a reduced number of necessary input parameters.
Supported byACC-Design, the engineer can then combine these components accord-
ing to the respective definitions. The complete ascent assembly design is translated
into a 3D-CAD model, which can be attached to the original crane structure. Fur-
thermore, ACC-Design generates productions drawings, bills of materials and costs
of the assembly.

The planning of a suitable path for the ascent assembly is left to the designer.
There is usually a considerable potential for optimization in the manual design, as

Fig. 1 Demonstration of ascent assembly inspection walkways (highlighted in red) for cranes: in
a an offshore crane is shown, in b a gantry of a mobile harbour crane
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it is simply impossible to take into consideration all possible combinations. Further,
manual planning reduces the likelihood that innovative design ideas will emerge.

In this paper, an optimization procedure is suggested to automate the planning of
the ascent assembly composition. Thereby, an important step towards full automa-
tion of the ascent assembly design is taken. For this purpose, the problem has to be
formalized in a way that a solver independently determines the (near) optimal con-
nection of previously specified access points (e.g. for maintenance) while avoiding
potential obstacles. The design task is thus reduced to the definition of

(I) the required access points on the crane surface, and
(II) the excluded points (obstacles) on the crane surface.

Involving optimization into the design automation process requires a suitable
problem formalization and the specification of an appropriate optimization goal (e.g.
minimize distance or cost). The way of modeling directly affects the choice of solver
and consequently the solution quality and variety. This paper provides one sugges-
tion for modeling the problem, in particular, by discretizing the design space. Based
on this representation, a suitable combinatorial optimization problem is introduced.
The optimization is then carried out using two distinct approaches: a greedy heuris-
tic and a genetic algorithm variant. The algorithms are applied to six test cases of
varying complexity, three of which are artificial ones and three of which are based
on the gantry of the crane in Fig. 1b. The paper concludes with a discussion of the
observations and gives an outlook on future research directions.

Problem Modeling and Formalization

To formalize the optimization problem, we need to define an objective function and
a suitable search space representation. As an initial goal of the optimization, we
confine ourselves to the subject of minimizing the ascent assembly length. At least
for the considered crane models, simulations suggest that the walkway length can
be directly linked to the construction costs. However, costs of combining different
types of ascent assemblies are neglected.

Considering the search space representation of the optimization problem, differ-
ent approaches of modeling will have their pros and cons. In this regard, a continuous
formulation requires the identification of multiple constraints (with respect to fea-
sible inclination angles, minimal and maximal component dimensions, exclusion of
consideration of obstacle areas, etc.). Moreover, post-processing of the continuous
optimization result by discretization might be necessary to ensure that the computed
design complies with ergonomic norms. On the other hand, a combinatorial problem
formulation comes with the need to introduce an appropriate discretization of the
crane surface.

In this paper, an abstraction to represent the ascent assembly design problem
as a combinatorial optimization problem is conducted. To this end, the problem
complexity is reduced bymaking the following assumptions:Only the lateral surfaces
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Fig. 2 a 3D representation of a simple cuboid surface; b unfolded lateral cuboid surface in
2D - the cuboid surface is separated into four segments s1 to s4 representing the respective sides.
The green dots display user specified access points while the red rectangles illustrate obstacle areas.
c The eight connecting edges of a central node to its adjacent nodes

of the abstract crane model, cf. Fig. 2a, are considered. As shown in Fig. 2b, the
surface can be unrolled to a two-dimensional rectangle. The optimization is then
performed within a two-dimensional search space defined by (x, y) ∈ (0, 1000) ×
(0, 1200) ⊂ R

2. The goal is to determine the optimal path between several user-
defined access points on this surface while avoiding previously specified obstacles.

We limit the path composition to three basic types of components, whose quan-
tities, dimensions and ordering have to be determined. These component types are:
rectangular platforms (horizontal connections), ladders (vertical connections), and
stairs (diagonal connections). Our component selection is based on the standardiza-
tion of the ascent assembly design components used by the ACC-Design software.
It ensures that our formalization approach is practicable in real-world applications.
Furthermore, each component type has minimum and maximum dimensions, indi-
vidual costs, and other specifications such as angle of inclination, railings, bails or
various levels of solidness. Regarding the latter options, we are initially limiting
ourselves to common standard components.



Optimization of Ascent Assembly Design Based … 295

Taking into account the obstacle areas usually transforms the problem into a
constrained, non-linear optimization problem regardless of the objective function.
This naturally increases the problem complexity. One way to avoid constraints and
to maintain a linear problem structure is modeling the scenario as a graph-based
combinatorial optimization problem. For this purpose, a grid is generated on the
two-dimensional surface. Such a grid is displayed in Fig. 2a, b by use of the black
dots. Each grid point resembles an optional attachment point on the crane structure.
For a realistic representation of the test case, the grid structure should ensure the
following requirements:

• The distances of adjacent points should correspond to admissible lengths of the
design parts (e.g. the length of a platform). In general, the smaller the point dis-
tances, themore combinatorial options exist in the search space. On the other hand,
very short connections may object to ergonomic requirements (e.g. ladders of size
less than one meter are not convenient for human beings).

• The maximum point distances should not exceed industrial norms (e.g. transporta-
tion length).

• The diagonal point distances should be determined according to feasible inclina-
tion angles for the staircases. It can be ensured by calculating the vertical distances
with respect to predefined horizontal distances and a suitable angle of inclination.

• Finally, the user-specified access or inspection points must be located on the grid.
If the given coordinates do not correspond to a specific grid point (unlike Fig. 2),
the software should automatically specify a grid which allows a person to reach
the desired locations without additional effort.

Thegrid points canbe regarded as the set of nodes (or vertices)V of amathematical
graph G(V, E, c). The corresponding set of edges E is then determined by the
connection possibilities between these nodes. In order to limit the number of edges
|E |, we only consider edges of adjacent vertices. Theweights c of the edges are linked
to the Euclidean distance of the respective connection. For a detailed explanation of
graphs refer to Bondy et al. (2008).

The connection possibilities of a central attachment point of the area are shown in
Fig. 2c. A central node of the graph G(V, E, c) has eight edges. The four diagonal
edges are equipped with the weights dc, referring to the length of a single diagonal
component of the ascent assembly structure. The two horizontal edges get theweights
hc, and the two vertical edges are equipped with weights vc, respectively. As the
rectangular area in Fig. 2b represents the lateral surface of a folded-up cuboid, the
nodes of the lowest level have no downward connections and consequently only
5 edges. The same applies along the upper boundary. The horizontal boundaries
are permeable, i.e. direct edges from nodes with x-coordinate 1000 (right) to nodes
with x-coordinate 0 (left) exist. In order to include the obstacles (red areas) into
the modeling of the graph, edges crossing the obstacle areas are accounted with
comparably large penalty costs pc, see Fig. 2c. This way, paths across the obstacles
are avoided within the optimization.

The prior deliberations result in the formulation of a combinatorial optimization
problem. To this end, the set of all required access points (also referred to as terminal
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nodes) is denoted by S. By interpreting the grid on the lateral surface of the crane as a
graphG(V, E, c), the objective turns into finding a connected subgraphG ′(V ′, E ′, c)
of G(V, E, c) that contains all access points of S ⊂ V ′ ⊂ V , and that minimizes the
sum of its edge weights

∑
e∈E ′ c(e).

This optimization problem is known as the Steiner Tree Problem (STP) in
graphs (Gilbert and Pollak 1968). A Steiner tree is a tree in G(V, E, c) that spans
S ⊂ V . Considering the STP, a large number of publications exist that address this
kind of optimization problem.Strategy recommendations vary fromgreedy-like algo-
rithms to the use of Evolutionary Algorithms (EAs). Among others, especially in the
context of EAs, the following publications have to be noted (Bezenšek and Robič
2014; Huy and Nghia 2008; Kapsalis et al. 1993). As a combination of the (non-
negative) shortest path (SP) and the minimal spanning tree (MST) problem, the STP
in graphs represents an NP-hard optimization problem, i.e. it cannot generally be
solved efficiently in polynomial time. Consequently, for high dimensional problems
the optimization goal is usually the computation of a sufficiently good and feasi-
ble solution in reasonable time. The present work considers two distinct approaches
which are presented in detail within the next section.

Optimization Approaches

In this section, the focus is on two possible approaches to tackle the Steiner Tree
Problemwith respect to our formalization of the ascent assembly design problem.The
first one aims at generating a reasonable solution to the STP by successive shortest
path calculation by repeatedly usingDijkstra’s algorithm (Bondy andMurty 2008). In
this sense, it represents a greedy strategy. The second approach applies a customized
Genetic Algorithm (GA) (Sivanandam and Deepa 2008) to a binary representation
of the graph. It approaches the optimizer by successively generating a population
of subgraphs G ′(V ′, E ′, c) of G(V, E, c) that represent candidate solutions of the
STP. Due to their very intuitive working principles, and due to the success of GAs on
comparable Steiner Tree problem instances, e.g. in the context of network planning
or microprocessor design (Frommer and Golden 2007), in a first attempt these two
methods are considered for proving our formalization concept.

Successive Shortest Path Generation

The first approach for finding a near optimal, feasible path between the user defined
inspection points in S is provided by the strategy in Algorithm 2. We refer to this
method as Successive Shortest Path Generation (SSPG). It successively constructs a
subgraphG ′(V ′, E ′, c)ofG(V, E, c) that represents a partial solutionof the problem.
Step-by-step, the subgraph G ′ is enlarged until it includes all required nodes of the
set S. Hence, the final subgraphG ′ ⊂ G represents a feasible solutions. However, the
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quality of the obtained solution depends on the ordering of the terminal nodes as well
as on the structure of the graphG(V, E, c). That is, it is by no means secured that the
generated solution is close to the problem’s optimum. Since the SSPG is operating
efficiently, this drawback is slightly remedied by executing #runs repeated runs of
the strategy, and re-ordering of the terminal nodes S randomly before each run. The
algorithm compares the outcome of two consecutive runs with distinct orderings
and stores the best result so far. Optionally, the user may assign an ordering of the
inspection points (with respect to their priority) in the beginning.

Letwi ∈ S, i ∈ {1, . . . , k} represent the i th terminal node in the randomlyordered
set S. The SSPG strategy than solves the Shortest Path Problem (SPP) according to
the first two access points in the set S. We refer to this operation by SPP(w1,w2).
That is, the shortest path Y from w1 to w2 in G(V, E, c) is calculated by use of
Dijkstra’s algorithm. The nodes and edges of G covered by the shortest path Y build
the first representation of the subgraph G ′(V ′, E ′, c) ⊂ G(V, E, c). The strategy
then calculates all shortest paths from G ′ to the next terminal node w3 ∈ S. The path
Y ′ which has minimal sum of weights adds its nodes to the subgraph G ′ ← G ′ ∪ Y ′.
Iterating over the number of inspection points k, Algorithm 1 provides a feasible
solution of the STP. After a random permutation of the terminal points, the procedure
is repeated. After each repetition, the length of a subgraph G ′ is compared to the
best-so-far solution Gbs f . The best current subgraph Gbs f is replaced if a shorter
path between all terminal nodes of S is identified, i.e. if

f ′ =
∑

e∈E ′
c(e) ≤

∑

e∈Ebs f

c(e) = fbs f , (1)

with Ebs f ⊂ Gbs f and E ′ ⊂ G ′.
This approach does not guarantee to result in an optimal solution, but it provides a

feasible (and reasonably good) approximation with comparably small computational
effort. Further speed up may be realized by replacing Dijkstra’s algorithm with more
advanced path planning algorithms (Klidbary et al. 2017). The final subgraph G ′

Algorithm 1 Pseudo code of SSPG.
1: Gbs f ← ∅, fbs f ← ∞
2: for j = 1, . . . , #runs do
3: Sort all k terminal nodes wi ∈ S in random order.
4: Compute Y = SPP(w1,w2).
5: Define G ′ ⊂ G: G ′ ← G ′ ∪ Y
6: for i = 3, . . . , k do
7: Y ′ ← SSP(G ′,wi ) = minv j∈G′ SPP(v j ,wi )

8: G ′ ← G ′ ∪ Y ′
9: end for
10: if f ′ ≤ fbs f then
11: Gbs f ← G ′
12: end if
13: end for
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Algorithm 2 Pseudo code of the GA variant.
1: Initialize a random population P of size λ.
2: repeat
3: Evaluate each individual in P .
4: Store the ‘best-so-far’ solution Gbs f
5: Select the mating pool MP from the population P
6: Add Gbs f to MP .
7: Build new population P ′ by
8: repeat
9: Draw two individuals from MP without replacement and
10: apply Crossover and Mutation
11: until |P ′| = λ

12: Replace prior population: P ← P ′
13: until termination return Gbs f

represents a good and intuitive candidate solution of the ascent assembly design
problem. The realized paths can be regarded as design suggestions, as comparison
benchmarks or even as input for the second approach.

Customized Genetic Algorithm Variant

EvolutionaryAlgorithms (De Jong 2006) are generic population-based heuristic opti-
mization algorithms that are inspired by biological evolution. Among EAs, GAs
represent a very popular type, especially in the context of discrete or combinatorial
optimization problems. Candidate solutions of the underlying problem usually use an
encoding (binary, integer or real values) that reflects certain characteristics about the
problem being solved. Making use of operators such as recombination (crossover)
and mutation, the initial candidate solution is iteratively evolved in the direction of
the optimizer.

This section introduces a GA that tackles the STP mentioned in Section “Prob-
lem Modeling and Formalization” representing a formalization of the ascent assem-
bly design problem. The algorithm is inspired by the GA presented in the work of
Kapsalis et al. (1993), but it has been partly modified in order to improve its perfor-
mance in the considered case. The algorithm encodes potential candidate solutions
(i.e. subgraphs of G(V, E, c) that represent not necessarily feasible ascent assembly
paths) by use of binary bit strings. Its pseudo code is displayed in Algorithm 2.

The GA evolves an initial set (or population) P of candidate solutions towards
feasible and ultimately towards (near) optimal pathways. The population size is
denoted by the parameter λ. Referring to Kapsalis et al. (1993), we use λ = 10 in our
applications. Only superior (with respect to short path length realizations) candidate
solutions inherit their information to the consecutive generation. To this end, the
fitness of the whole population has to be evaluated and the best solution found so
far is stored (Gbs f ). A selection operator determines the best individuals that may
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contribute to the mating pool MP . If Gbs f is not part of the current population, it is
added to the mating pool by default. By randomly drawing a pair of two individuals
from the mating pool without replacement, and by applying the variation opera-
tors, a new population P ′ is generated. Variation is performed by uniform crossover
and mutation. The respective steps of the GA are explained in detail in the textbfs
below. The algorithm terminates after a predefined maximal number of iterations
(generations) is exceeded or if no further progress is observed for a certain number
of generations. The best-so-far solution is returned and has to be decoded into the
graph representation.

Encoding. The GA operates on a chromosomal representation of candidate solu-
tions, i.e. subgraphs G ′(V ′, E ′, c) of G(V, E, c). It is obtained by identifying each
vertex of G with a single component in a binary vector of length |V |. Assuming that
the number of vertices is n, a binary vector y of the form

y ∈ [0, 1]n with yi =
{0, if v /∈ V ′
1, if v ∈ V ′ (2)

represents the nodes included in a candidate solutionV ′ ⊂ G ′ of theSTP. It is required
that the terminal nodes S are included in each candidate solution, i.e. S ⊂ V ′. This is
ensured by explicitly excluding those yi identified with the vertices in S. Reinserting
them after optimization reduces the search space dimension to m = |V | − |S|.

Initialization. The GA may be initialized with a completely random population
which quality will be constantly improved with the number of generations. Note that
speed-up can potentially be reached by seeding one ormultiple feasible solutions into
the initial population. These populationmembers can contribute to the composition of
subsequent candidate solutions. Consequently, the optimizer is approximated rather
quickly. Such a seeding can be realized e.g. by calculating MST representations of
the graphG(V, E,C), by adding the solution from the SSPG approach of Algorithm
1, or by seeding a manually user specified default walkway.

Evaluation. The selection of candidate solutions y is based on their quality, also
referred to as fitness. The fitness is measured by means of the length of the subgraph
G ′ associated with it. Regarding path minimization, shorter lengths correspond to
higher fitness. An individual y ∈ P is evaluated as follows: First the subgraph G ′
induced by the nodes S ∪ V ′, i.e. by the binary representation y, is generated inG. For
each component of the potentially unconnected subgraph G ′ its Minimal Spanning
Tree in G is computed by making use of Kruskal’s algorithm (Bondy and Murty
2008). The aggregation of the edge weights of all MSTs determines the length of a
candidate solution. For each of the potential t > 1 components of an unconnected
subgraph G ′, a large penalty value linearly dependent on t is added to its length. This
way, theGAwill immanently reduce theMST to the smallest possible representation.
The evaluation step can be summarized as:

len(y) =
∑

e∈MST(G ′)

c(e) + penalty · (t − 1). (3)
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Selection. As selection procedure the so-called Roulette selection is used: Each
candidate solution is assigned a selection probability according to its relative fitness
with respect to the average fitness of the current population. We then stochastically
select candidate solutions (with replacement) to form the mating pool set MP for
variation. Hence, solutions of above average quality may contribute multiple times
to the mating pool, while below average solutions may not contribute at all.

Variation. A new population of candidate solutions is created by crossover and
mutation. The breeding is performed until the offspring population reaches the same
size as the parental population. All individuals of the prior population are replaced.
The recombination of two individuals from the mating pool is performed by uniform
crossover. That is, after defining a fixed mixing ratio (e.g. CR = 0.5) between the
two parents, each bit of an offspring is determined with probability CR by the value
of the first parent and with probability (1 − CR) by the value of the second parent.

In order to prevent the population from stagnation, random mutations have to
be included into the variation step. We try to maintain sufficient genetic population
diversity by application of two mutation schemes. The first scheme simply performs
randombit flipswith a probability of 1/m for each bit. Here,m is the size of the binary
vector y after exclusion of the required terminal node components. Consequently, in
expectation one bit of the binary vector y is changed. Thismutation scheme is applied
with probability α ∈ [0, 1] as long as the population does not include candidate
solutions that are identifiedwith connected subgraphsG ′ (i.e. ascent assembly paths).

At some point, the mating pool will consist of rather similar candidate solutions.
In that situation, neither uniform crossover nor random bit flips are able to realize
adequate diversity. The solutions will rather be torn into separate components which
is most probably degrading their fitness. To this end, another mutation scheme is
applied to further maintain diversity after the strategy has evolved the population
towards connected solutions. It is especially tailored for the STP in graphs. Instead
of randomly flipping single bits in the binary representation of a candidate solutions,
it operates in the subgraph representation of y, i.e. the subgraph G̃ in G(V, E, c)
that is induced by y. First, an individual is destroyed by deleting a path between two
randomly selected and connected nodes within the subgraph. The individual is then
repaired by replacing the deleted nodes with those of the shortest path between them.
Hence, the algorithm is able to contract possible detours with higher probability. If
the subgraph G̃ is not connected in the first place, the standard mutation is performed
by the random bit flip operator.

Application of the Proposed Methods

In this section, the algorithms introduced in Section “Optimization Approaches” are
applied to six adequately modeled test cases of different complexity. The first three
test cases (TC1–TC3) represent variants of the cuboid presented in Fig. 2. Each
represents a 2D surface abstraction of a conceptual cuboid, but does not refer to a
real-world crane model. Incorporating different numbers of obstacles and varying
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Fig. 3 The 3D abstraction
of the gantry of a mobile
harbour crane, cf. Fig. 1b.
The unfolded
2D-representation of the
gantry with different entry
points is presented in Figs. 4
and 5d, f, and referred to as
test case TC4, TC5 and TC6,
respectively

inspection point positions, the three test cases require individual grid definitions. As
the number of grid points determines the dimension of the search space, this results
in different complexities.

The latter three test cases (TC4–TC6) represent an abstraction of the lateral surface
of a real-world gantry of a mobile harbour crane of LWN (see Fig. 1b) with three
different entry points. To be able to model the gantry with the 2D-representation,
two cuboids are stacked on top of each other, cf. Fig. 3. As the three representations
only differ by the user defined entry point to the ascent assembly path, they are of the
same complexity. However, the inspection point definitions already require a grid of
at least 2016 points. By exhibiting only minor specification differences, TC4 to TC6
demonstrate the potential of finding divers design solutions.

The performance results of the SSPG and the GA variant are compared in Table 1.
To this end, the table distinguishes the test cases by the minimal number of required
grid points (#nodes). Taking into account the number of executed algorithm runs
(#runs) the respective results of both strategies are presented in terms of the mean
ascent assembly length ‘mean len’ and the length of the best found solution within all
runs ‘best len’. The last column displays the time (in seconds) needed to complete all
runs. Further, illustrations of the resulting best ascent assembly paths are presented
in Figs. 4 and 5.

Considering the SSPG approach (Algorithm 1), Table 1 illustrates its performance
on the mentioned test cases. Using Dijkstra’s algorithm, it works very efficiently and
is able to provide good solutions with low computational effort. The best solutions on
the test cases TC1–TC6 that have been found by SSPG are displayed in Fig. 4. They
represent reasonable and intuitive ascent assembly design suggestions. However,
taking into account a large number of inspection points k, SSPG cannot guarantee
to find an optimal solution in reasonable time. This is due to the increasing number
of potential point orderings (k!/2).
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Fig. 4 Illustration of the unfolded lateral surfaces corresponding to the six considered test cases
(TC1 – TC6). The magenta point markers display the final ascent assembly path of minimal length
that has been found by the SSPG approach

Fig. 5 Illustration of the unfolded lateral surfaces corresponding to the six considered test cases
(TC1–TC6). The magenta point markers display the final ascent assembly path of minimal length
that has been found by the customized GA variant
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Table 1 Results of Algorithms 1 and 2 applied to six test cases presented in Figs. 4 and 5, respec-
tively. For each test case, the table summarizes the search space dimension (“number of nodes,
#nodes”), the mean and best fitness results (w.r.t. assembly length) for the specified number of
algorithm runs (#runs), as well as the necessary computational time (in seconds) for all #runs

Results of the SSPG approach, Algorithm 1 Results of the GA approach, Algorithm 2

name #nodes #runs mean len best len time name #nodes #runs mean len best len time

TC1 600 100 1665.91 1521.67 72 TC1 600 10 1604.67 1521.67 7577

TC2 1200 100 1954.52 1834.53 130 TC2 1200 10 1875.37 1838.87 12366

TC3 1920 100 1770.20 1730.32 238 TC3 1920 10 1795.99 1736.39 38836

TC4 2016 100 1640.15 1569.97 336 TC4 2016 10 101614.7 1565.69 74465

TC5 2016 100 1634.39 1569.97 337 TC5 2016 10 1678.28 1565.69 74814

TC6 2016 100 1665.12 1612.13 336 TC6 2016 10 1689.16 1603.55 75120

The results inTable 1 also substantiate that theGAvariant successfully approaches
the optimizer. For the test cases TC1 to TC3, all single runs have been stopped after
50.000 iterations. The iteration budget for the gantry test cases TC4–TC6 has been
set to 105 iterations. The best ascent assembly paths corresponding to the six test
cases are illustrated in Fig. 5. When starting from a completely random population,
the use of Algorithm 2 is considerably more time consuming. This does not come
as a surprise as the GA needs a large number of iterations for generating a first
feasible candidate solution. Additionally, it consumes more time to realize small
path changes that become relevant as the algorithm approaches the optimizer. This
is due to a decreasing probability of randomly sampling appropriate bits within a
large binary vector that still allow for further progress. The second mutation variant
is gently counteracting this process and successfully reduces the number of detours
in the ascent assembly paths. Instead of starting from a random population, the
GA might be initialized with one (or more) feasible path(s). Skipping the effort to
create feasible solutions, it is then able to realize improvements on the seeded path
rather quickly. Using a random seed path generated by SSPG, the results are briefly
presented for TC4 to TC6 in Table 2. In this situation, the GA variant (Algorithm
2) is able to approach the best kown solution from Table 1 in almost every run
within about 104 generations. Hence, a considerable computation time improvement
is observable.

Given a large search space dimension (#nodes), the GA variant alone exhibits
difficulties to find the optimal solution in reasonable time. However, it is capable to
generate comparably good ascent assembly designs from a random initialization, cf.
TC1 in Table 1 as well as Figs. 4a and 5a. The respective design observably leaves
room for improvements in TC2 and TC3. Deferring the termination, the presented
solution would still have improved over time. This is directly substantiated by taking
into account the results on the gantry test cases TC4 to TC6. In terms of the necessary
number of nodes, these test cases do not differ much from TC3. But having available
twice the number of iterations, the GA variant is able to find an improvement over
the SSPG results in all three cases. Note that the huge mean value deviation in TC4 is
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due to a single run in which no feasible solution was found by the GA, Algorithm 2.
All other nine runs resulted in a path length of 1565.69.

Both approaches are capable of finding feasible, (near) optimal ascent assembly
paths on all six test cases. Overall, the resulting solutions are on a similar quality
level. For the best found solutions further improvements are not immediately obvious.
Regarding test case TC1, the GA realizes a slightly different path of similar length.

With respect to computation time, SSPG clearly outperforms the GA variant. This
is due to the GA’s initially random population and due to the decreasing probability
of finding improvements with its variation step, even though the second mutation
operator is able to reduce the number of detours. As a result of the immanent shortest
path generation, the GA paths are controlled in the direction of the SSPG design.
However, the GA’s ability to result in new and potentially innovative designs of
comparable quality is observable in Fig. 5. On the other hand, given an equal number
of algorithm runs the mean path length realized by the GA is potentially closer to
the length of the best path. That is, a single run of the GA is expected to result in a
better solution than a single run of the SSPG which is heavily relying on selecting
the best possible ordering of the inspection points.

Moreover, the GA performance relies on the choice of problem specific strategy
parameters that tune the selection and variation behavior. A problem specific empir-
ical study on beneficial strategy parameter settings for the GA remains to be done.
On the other hand, there exist more advanced EAs that reduce the computational
effort in high dimensional scenarios. For example, parallelization approaches (Huy
and Nghia 2008) or making use of adaptive GA variants are likely to result in a speed
up. Applying such strategies to our problem formulation is a reasonable direction for
future investigations.

Discussion and Way Forward

The present paper focuses on the integration of optimization approaches into the
automated ascent assembly design task of cranes. By making use of a grid construc-
tion on the (simplified) lateral crane surface, a two-dimensional model abstraction is

Table 2 The results of Algorithm 2 using an initial path generated by SSPG. Corresponding to
test cases TC4 – TC6, the table displays the search space dimension (“number of nodes, #nodes”),
the initial path length (seed len), the mean and best fitness results (w.r.t. assembly length) for the
number of distinct algorithm runs (#runs), as well as the over-all computation time (in seconds) for
all #runs

name #nodes #runs seed len mean len best len time

TC4 2016 10 1601.04 1565.69 1565.69 3545

TC5 2016 10 1582.84 1565.69 1565.69 3534

TC6 2016 10 1632.84 1604.16 1603.55 3436
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introduced. It is then transferred into a combinatorial optimization problem, in partic-
ular the Steiner Tree Problem in graphs. We substantiate the modeling by application
of two solvers. The SSPG, Algorithm 1, relying mostly on Dijkstra’s algorithm for
shortest path generation in graphs, and a customized Genetic Algorithm variant, cf.
Algorithm 2. The results from both approaches support the claim that the modeling
approach provides reasonable ascent assembly designs.

The used graph representation omits the incorporation of constraints. Despite rep-
resenting a NP-hard problem, given a beneficial structure, reasonably good solutions
of the Steiner Tree problem can be obtained.As the stochastic nature of EAs increases
the computational effort, EAs can contribute to higher diversity in the solution set.
Providing a variety of good solutions is especially useful from the perspective of
design automation and innovative design.

A crucial task for the model abstraction is the definition of the underlying
grid structure, which must be performed with respect to industrial norms and cor-
porate definitions. While this involves initial effort, the algorithm output can be
directly used as a basis for converting it to CAD models using the existing software
ACC-Design. On the other hand, complex structures need a rather high grid granular-
ity which results in large search space dimensions. Consequently, the performance
of GA variants is impaired. Future research will have to address the use of more
advanced solving strategies. A step in that direction is done in the work of Zăvoianu
et al. (2017) where the problem formalization is transferred to a continuous search
space. The optimization problem is tackled by a multi-objective evolutionary algo-
rithm revealing good results.

Since the computational effort rises with increasing number of grid points, for
future considerations, grid points within obstacle areas should be disregarded dur-
ing the optimization process. This yields a considerably lower search space dimen-
sion and thus runtime improvements. As the results of Table 2 indicate, starting the
GA from a randomly determined (most likely infeasible) path representation should
be avoided. Instead, a feasible initialization of the path that already connects all
required access points is beneficial to gain speed. Considerations along this line, as
well as algorithmic adaptations to speed up the GA’s performance as mentioned in
Section “Application of the Proposed Methods”, appear also useful when extending
the proposed problem to less regular surfaces or even to 3D crane representations (e.g.
needed for modeling the crane in Fig. 1a). Thus, the increasing effort that comes with
a search space extension can be mitigated. Once a reasonably specification of access
points and connection components has been found, at least the combinatorial prob-
lem representation allows for a relatively simple extension to 3D. The optimization
approaches preserve their applicability. However, the (automatic) determination of
such a graph representation is likely to exhibit its own (yet unidentified) difficulties.

By developing optimization algorithms to automatically determine the path of an
ascent assembly, an important step towards full automation of the ascent assembly
design is taken. As an ultimate goal for future developments, the designer should
only need to specify the access points and obstacles in the 3D-CAD model of the
crane, from which the abstract representation is generated automatically. This will
then be handed over to the optimization algorithm, performing the planning of a
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suitable ascent assembly to reach the access points while avoiding the obstacles.
The obtained solution shall be represented and, potentially after post-processing by
the engineer, be translated into a 3D-CAD model using ACC-Design and finally be
attached to the crane model. Thus, the design task for the engineer shall be reduced
to specifying access points and obstacles, and verifying the solution.
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Abstract We describe an effective optimization strategy that is capable of
discovering innovative cost-optimal designs of complete ascent assembly structures.
Our approach relies on a continuous 2D model abstraction, an application-inspired
multi-objective formulation of the optimal design task and an efficient coevolution-
ary solver. The obtained results provide empirical support that our novel strategy is
able to deliver competitive results for the underlying general optimization challenge:
the (obstacle-avoiding) Euclidean Steiner Tree Problem.
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Introduction

In the present work we describe initial results concerning the automatic generation
of cost-optimal complete ascent assembly structures (CAA-Structures) – external
access structures for cranes (as shown in Fig. 1a), building facades, over-sized in-
dustrial machines, etc. Fig. 1b shows an example of a CAA-Structure that is itself
composed from several types of ascent assembly modules (i.e., sub-assemblies) like
rectangular or round platforms, stairs and ladders.

The task of designing individual ascent assembly modules, although important, is
rather repetitive and time consuming. In recent years, in light of strong financial and
operational incentives, there has been a consistent and successful effort to standardize
individual ascent assembly modules and to automate their design process Frank et al.
(2014). As a result, the task of automating the design of cost-optimal CAA-Structures
has itself become a feasible undertaking since it can be regarded as a search for a
3D “skeleton” that indicates which ascent assembly modules are required and where
they should be placed in ordered to ensure that the CAA-Structure provides access
with minimal costs.

In spite of the apparent simplicity suggested by a 3D “skeleton”, there is still a
large set of particularities and uncertainties associated with real-life CAA-Structure
design tasks in modern engineer-to-order environments. In order to have a relevant
but accessible formulation for analyzing and comparing various proofs of concept,
in Section“Description of Model Abstraction” we introduce a 2D model abstraction
of the optimal design task. Domain experts validated the results we obtained for
a real-life industrial design scenario (described in Section“Experimental Setup”),
thus indicating that the cost-optimal and innovative solutions obtained via the intro-
duced 2D model abstraction and the proposed optimization strategy (described in
Section“Optimization Procedure”) are a large step forward towards the final goal of
fully automating the design of cost-optimal CAA-Structures.

Fig. 1 An example of an offshore crane where different ascent assembly modules highlighted in
red (a) are combined to form a fairly complex CAA-Structure (b)
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Modelling and Formal Problem Statement

Description of Model Abstraction

A user that wishes to generate a cost-optimal CAA-Structure is expected to provide
at least three inputs: a 3D model of the solid base/support object to which the CAA-
Structure is to be attached, a set of desired points of access on this structure and
information regarding potential obstacles that are defined on the 3D solid base object.
The latter requirement is extremely relevant as obstacles indicate severe restrictions
regarding the placement of ascent assembly modules in certain areas.

For example, in Fig. 2awe illustrate a simplified design case that involves a cuboid
structure, five access points and four obstacle areas that are spread across three faces
of the cuboid.A far clearer representation of this academic automated design scenario
can be obtained by unfolding the 3D model. The result of the unfolding procedure,
shown in Fig. 2b, is a 2D design surface that is characterized by a left edge - right
edge continuity – i.e., line segments exiting the left edge at a certain height and
orientation, should enter the right edge at the same height and orientation in order
to model the circular structure of the facade. More importantly, as a result of the
unfolding, the task of finding a cost-optimal 3D “skeleton” of the ascent assembly is
transformed into that of discovering a simpler 2D design “skeleton”: a cost-optimal
2D path network layout on the 2D design surface that links all the points of interest
while avoiding the obstacle areas.

Although an obvious simplification of the 3D case, we shall see in the next section
that the resulting 2D path network layout problem is not trivial.

Formal Definition of the Path Network Layout Problem

When considering a set of n user defined access points/definition vertices
{p1, . . . , pn}, the goal of the 2D optimal path network layout problem is to discover a

(a) (b)

Fig. 2 A 3Dmodel and the corresponding 2D design plane obtained after unfolding. Access points
are marked with blue circles and obstacles are marked with red
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(graph) structure T of minimal cost that links all these points. T must obviously span
all the access points but it may also contain up to k well-placed extra points (2D ver-
tices) {s1, . . . , sk} that help minimize the total cost of T . Thus, E , the set of possible
edges that contains all the segments that can be used to construct T , is defined over the
union {p1, . . . , pn} ∪ {s1, . . . , sk}. When considering a positive cost for connecting
any two points, it is obvious that T is in fact a tree. Formally, the resulting minimal
path optimization task can be defined as: Determine k ∈ N and s1, . . . , sk ∈ R × R

in order to minimize

f1(p1, . . . , pn, s1, . . . , sk) =
∑

(i j)∈E
c(i, j)x(i j), (1)

subject to:

x(i j) ∈ {0, 1}, ∀(i j) ∈ E and
∑

(i j)∈E
xi j = (n + k) − 1 and

∑

(i j)∈E,i∈F, j∈F
xi j ≤ |F | − 1, ∀F ⊆ {p1, . . . , pn, s1, . . . , sk},

where G = ({p1, . . . , pn, s1, . . . , sk}, E) is a complete graph.
The function c(i, j) from Eq. (1) denotes the cost of linking vertices i and j .

In the case of ascent assemblies, this cost can be defined as the combined price of
individualmodules (i.e., platform, stair, and ladder segments) and of connecting them
(e.g., welding) required to construct a walkway between points i and j . While it is
expected that, in the general case, c(i, j) is proportional to the Euclidean distance
between the two vertices, in more realistic scenarios, obstacles and other penalties
do influence the cost function.

For example, when considering a slightly more realistic description of optimal
layouts for CAA-Structures, one would likely consider inside c(i, j) a large penalty
Γ(i j) for assembly modules that extend into obstacle areas when connecting vertices
i and j and another smaller penalty for assembly modules that are not placed at a
preset angle requirement – e.g., platforms should be placed at an angle of exactly 0◦
to the horizontal axis, stairs at 45◦, and ladders at 90◦. All these “feasible/preferred”
design angles should be provided as a user defined set, e.g., U = {0, 45, 90}. The
resulting angle-aware cost function could be defined as:

c(i, j) = dist (i, j)

(
1 + min B(i j)

100
z

)
+ Γ(i j) (2)

where z is a parameter (0 ≤ z ≤ 4) that controls the magnitude of the angle penalty
and B(i j) is a set that contains the absolute differences between α(i j) – the horizontal
angle of the segment (i j) – and the feasible placement angles stored in U . For
instance, given the example in the previous paragraph , B(i j) = {|α(i j) − 0|, |α(i j) −
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45|, |α(i j) − 90|}. For the set of tests we report over in the present study, dist (i, j)
marks the 2D Euclidean distance between vertices i and j .

It is noteworthy to remark that when z = 0 in Eq. (2) and one does not consider
obstacle areas and a left-right continuity of the design plane, c(i, j) is reduced to
the Euclidean distance and Eq. (1) gives the definition of the well-known Euclidean
Steiner Tree Problem (ESTP) Gilbert and Pollak (1968). Although they represent
the simplest cases of the 2D path network layout problems we aim to solve, ESTPs
are proven to be NP-hard Garey et al. (1977). Nevertheless, ESTPs have also been
intensively studied by mathematicians and computer scientists and this opens up
the possibility to compare (in part) our proposed solving strategy with other results
from literature on standard benchmarks. In the context of ESTPs, the k points that
help minimize the 2D path layout between the access points are called Steiner points
and throughout this work we shall also maintain this naming in the context of op-
timal path network layouts for CAA-Structures. Furthermore, the NP-hard nature
of ESTPs also motivates our strong preference for a metaheuristic-based solver. As
such, we would like to inform the reader that the lexicon throughout the remainder
of this work is tailored for the field of evolutionary computation De Jong (2006) –
one of the most (historically) successful global optimization paradigms for tackling
complicated optimization problems.

Finally, in the context of path network optimization tasks for ascent assemblies,
opting for a value of z = 0 in Eq. (2) would result in a problem definition that enables
the optimizer to freely explore the design space and quite possibly discover innovative
designs (i.e., innovative ways of connecting the desired access points). However, the
best results of such an “open” definition would (likely) only be interpreted as optimal
design “suggestions” as building them to specification would be unfeasible. When
opting for a larger value of the penalty parameter z and a realistic list of standard
feasible angles, good results of the more “restricted” path optimization problem are
far more likely to resemble “blueprints” of the ascent assembly.

Optimization Procedure

Solution Codification

A very important aspect of trying to solve the problem described in Section“Experi-
mental Setup” is represented by the encoding of individuals/candidate solutions. First
and foremost, a good encoding should be simple (general) in order to be compatible
with many fitness assessment strategies and in order to allow for an immediate ex-
tension to 3D scenarios. Secondly, the encoding should also be flexible as the number
of Steiner points required by each problem is unknown. Although the latter charac-
teristic seems to hint towards a variable-length encoding, we argue in favour of a
fixed-length variant in which the maximal number of the Steiner points expected to
be discovered (i.e., k∗) is preset at a sufficiently large level. For example:
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• in the case ESTPs, one can use the mathematically proven Gilbert and Pollak
(1968) upper bound k∗ = n − 2

• in the case of all the ascent assembly optimization problems presented in Sec-
tion“Experimental Setup” we experimented with several settings in the range
n ≤ k∗ ≤ 3n.

The task of “deciding” the exact number of Steiner points required for solving the
problem at hand is “passed” to the fitness assessment method described in the next
section. Apart from the extra simplicity that enables the usage of various standard ge-
netic operators, our choice for a fixed-length encoding is also motivated by the desire
to counteract potential solution bloating - a well-known and harmful phenomenon in
terms of both solution quality and convergence speed that is associated in the field
of evolutionary computation (genetic programming in particular) with combinations
of strong (evolutionary) selection pressure and variable-length encodings Langdon
and Poli (1998).

After opting for fixed-length encodings, we adopted a basic real-valued represen-
tation x = (x1, x2, . . . , x2k∗−1, x2k∗) of potential Steiner points, with the understand-
ing that, given the encoded vertex v(i,x), 1 ≤ i ≤ k∗, x2i−1 denotes the horizontal
coordinate of v(i,x) and x2i the vertical one.

The minimum and maximum ranges for xi ∈ x are set according to the design
scenario definition limits in the case of CAA-Structures and to the extreme coordinate
values of the definition points in the case of ESTPs.

Fitness Assessment

Let o1(x) denote the ability of the vertices encoded in a given candidate solution x
to minimize Eq. (1). In order to estimate o1(x), we employ a two-step process:

• Firstly, we build the union between all the k∗ vertices encoded by x and the n defini-
tion points of the optimization scenario: Sx = {v(1,x), . . . , v(k∗,x)} ∪ {p1, . . . , pn}.

• Secondly, starting with p1, we apply Prim’s algorithm Prim (1957) in order to
construct MTn,x – the partial minimum spanning tree (MST) over the set Sx that
contains all n definition points. MTn,x is a partial MST because the construction
process is interrupted once all the definition points have been added to the tree.

Any vertex encoded in x that remains unlinked by MTn,x has the property that its
placement is highly likely not to improve in any way the formation of an optimal-
cost path between all the definition points {p1, . . . , pn} – i.e., this vertex is deemed
as having a low chance of being a potential Steiner point. We mark with si,x, i ∈
{1, . . . ,m}, m ≤ k∗ the vertices encoded in x that are part of MTn,x. Compared with
the unlinked vertices, any si,x has a better chance of being useful in constructing an
optimal path between the definition points and is thus deemed a potential Steiner
point. When considering previous notations, and denoting with Φ(MTn,x) the total
cost associated with MTn,x, we have that Φ(MTn,x) = f1(p1, . . . , pn, s1,x, . . . sm,x)

where function f1 is defined in Eq. (1).
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We argue that o1(x) can be well approximated by Φ(MTn,x) because the closer
the set of potential Steiner points in x is to {s1, . . . , sk}, i.e., to the actual Steiner point
set that represents the solution to Eq. (1), the closer f1(p1, . . . , pn, si,x, . . . sm,x) is
to f1(p1, . . . , pn, s1, . . . sk).

When considering the main motivation behind the present work (i.e., optimizing
real-life industrial designs), it is highly likely that a more advanced future model
abstraction might yield secondary requirements regarding optimality. For instance,
these requirements might relate to:

1. the complexity of the overall CAA-Structure design (i.e., number of different
module types that is required),

2. ensuring different levels of ease-of-access for different definition points,
3. CAA-Structure building time given present stocks of individual ascent assembly

modules.

Such possible secondary requirements appear to be rather conflicting with the cur-
rently identified primary one (i.e., cost minimization) and modeling them via penal-
ties and rewards is expected to be extremely cumbersome. Alternatively, formalizing
them as optimization objectives in their own right would be more natural and should
yield better results from the perspective of a decision maker.

Motivated largely by the previous considerations but also by initial attempts to
optimize o1(x) on benchmark ESTPs using evolutionary algorithms that were less
successful than anticipated (showing signs of premature convergence), we defined an
artificial secondary objective o2(x). This second objective is designed to be (slightly)
conflicting with o1 and is defined as:

o2(x) = 1

n − 1

(
n∑

r=2

imprMST (r) ∗ 2si zeMST (r)

)
− 1.1m, (3)

where:

imprMST (r) = Φ(MTr,x) − Φ(MSTr ) and

si zeMST (r) = 3 − 3Φ(MSTr )

Φ(MSTn)
.

Inside Eq. (3), when considering that pr is the r th user defined access point, in an
analogous way to Φ(MTn,x), we have that:

• Φ(MSTr ) is the cost of the minimum spanning tree constructed over the set
{p1, . . . , pr }, i.e., Φ(MSTr ) = f1(p1, . . . , pr );

• Φ(MTr,x) is the total cost of the partial minimal spanning tree constructed over
the union Sx = {v(1,x), . . . , v(k∗,x)} ∪ {p1, . . . , pr }

Thismeans that o2(x) computes the average level towhich x is able to solveEq. (1) for
every incremental subset of definition points that is obtained when constructing the
minimal spanning tree over {p1, . . . , pn}. The smaller the subset the more important
it is weighted inside the average and there is a small bonus for candidate solutions
that achieve good results with a reduced number m of potential Steiner points.
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Finally we have chosen to solve a multi-objective optimization problem that aims
to simultaneously minimize both o1(x) and o2(x). Although empirically validated
by all the results presented in Section“Results”, the inclusion of o2(x) alongside
the main path minimization objective is highly counter-intuitive. The reason for this
decision is two-fold:

• o2(x) is engineered to induce both some level of niching during the evolutionary
search as well as a biasing of the multi-objective search towards robust candidate
solutions that encode potential Steiner points which are generically well placed –
i.e., able to improve the total minimal path in key locations that are common to
many sub-paths.

• Having a multi-objective formulation enables us to check whether our assumption
that Φ(MTn,x) is a good enough approximation for o1(x) also holds when faced
with a conflicting optimization objective that, to a certain extent, steers the search
towards path layouts that are not necessarily cost-optimal.

The Multi-objective Solver

In order to solve the previously introducedmulti-objective optimization (MOO)prob-
lem,weperformed a limited set of initial testswithNSGA-IIDeb et al. (2002) – a clas-
sicalmulti-objective evolutionary algorithm (MOEA)–andwithDECMO2Zăvoianu
et al. (2014). The latter is a newer hybrid and adaptive evolutionary approach spe-
cially designed for rapid convergence on a wide class of problems. DECMO2 was
designed to capitalize on previous insights Zăvoianu et al. (2013) that a cooperative
coevolutionary strategy can deliver very competitive results on a wide range ofMOO
problems. As DECMO2 exhibited a better balance between convergence speed and
final solution quality, we adopted it as our default solver. The DECMO2 evolutionary
model is presented in Algorithm 1 and its main feature is that it effectively integrates
three different MOO search space exploration paradigms.

Firstly, P , one of the two equally-sized coevolved subpopulations in DECMO2
implements a SPEA2 Zitzler et al. (2002) evolutionary model that is based on en-
vironmental selection (notation Esel ) - a selection for survival mechanism based on
Pareto dominance as a primary metric and a crowding distance in objective space as
a secondary metric. Apart from Esel , this evolutionary paradigm also relies on the
simulated binary crossover (SBX) Deb and Agrawal (1995) and polynomial muta-
tion (PM) Deb (2001) genetic operators. It is noteworthy that inside Esel , DECMO2
uses a slightly modified version of environmental selection that filters objective-wise
duplicates from the returned solution set.

Secondly, Q – the other coevolved subpopulation – implements a GDE3-like
Kukkonen and Lampinen (2005) search behaviour that focuses on exploiting the
very good performance of the differential evolution paradigm Storn and Price (1997)
on continuous optimization problems.
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Algorithm 1 The DECMO2 Zăvoianu et al. (2014) evolutionary model
1: function DECMO2(problem, asize, maxGen)
2: P, Q ← ∅
3: 〈psize, qsize, esize〉 ← COMPUTESIZES(asize)
4: A ← INITIALIZEARCHIVE(problem, asize)
5: i ← 1
6: while i ≤ asize do
7: x ← CREATEINDIVIDUAL(problem)
8: A ← INSERTINTOARCHIVE(A, x)
9: if i ≤ psize then
10: P ← P ∪ {x}
11: else
12: if i ≤ (psize + qsize) and i > psize then
13: Q ← Q ∪ {x}
14: end if
15: end if
16: i ← i + 1
17: end while
18: φP , φQ , φA, t ← 1
19: while t ≤ maxGen do
20: pbonus , qbonus ,← 0
21: abonus ← esize
22: if t ∈ {2k + 1 : k ∈ Z} then
23: pbonus , qbonus , abonus ← 0
24: if φP > φQ and φP > φA then
25: pbonus ← esize ∧ abonus ← 0
26: end if
27: if φQ > φP and φQ > φA then
28: qbonus ← esize ∧ abonus ← 0
29: end if
30: end if
31: 〈P, φP 〉 ← EVOGENSPEA2(P, psize + pbonus )
32: 〈Q, φQ〉 ← EVOGENDE(Q, qsize + qbonus )
33: φA ← EVODIRARCHIVEIND(A, abonus )
34: E ← Esel (P ∪ Q ∪ A, esize)
35: P ← Esel (P ∪ E, psize)
36: Q ← Esel (Q ∪ E, qsize)
37: t ← t + 1
38: end while
39: return Esel (P ∪ Q ∪ A, asize)
40: end function

Thirdly, the last MOO paradigm incorporated in DECMO2 comes in the form
of an archive of well-spaced elite solutions, A, that is maintained according to
a decomposition-based principle similar to the one popularized by MOEA/D-DE
Zhang et al. (2009). Even though at certain times a limited number of new individ-
uals is evolved directly from the archive, the main purpose of A is to preserve an
accurate approximation of the Pareto front.

DECMO2 is alsodesigned todynamically pivot towards the evolutionaryparadigm
that was more successful during the latest stage of the run by allowing the part of
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the algorithm that implements this paradigm to generate a total of esize = 2
9 |P| in-

dividuals more than usual. This means that during the run, a performance bonus is
awarded based on perceived current space-exploration performance.

Experimental Setup

DECMO2 Parameterization

For all the numerical experiments that we report on, we used a total population size of
asize = 400 for DECMO2 and the literature recommended parameter settings for the
coevolved subpopulations of the solver. Thus, for subpopulation P of size 180, we
used a value of 0.9 for the crossover probability and 20 for the crossover distribution
index of the SBX operator and a value of 1/|x| for the mutation probability and 20
for the mutation distribution index of the PM operator. Subpopulation Q was evolved
according to a DE/rand/1/bin strategy Storn and Price (1997) in which the control
parameter F was set at 0.5 and the crossover factorCR was set at 0.3. Spacing inside
the archive A was maintained via a weighted Tschebyscheff distance measure.

We evaluated 100.000 solution candidates during each optimization run (i.e.,
maxGen = 250) and we report on the best result out of 3 repeats for each numerical
experiment. Since the secondary objective of our MOOP is an artificial placeholder
that has no practical importancewhen assessing the overall result of the optimization,
we always only report the best discovered solution with regard to o1(x).

Benchmark Problems and Industrial Test Case

In order to demonstrate the ability of our approach, we compared the results obtained
by DECMO2 on 15 problems from a benchmark ESTP set Soukup and Chow (1973)
with those of two reference solvers: one based on a geometrically motivated heuristic
Beasley (1992) and another one that uses artificial neural networks Bhaumik (1994).

For initial insight on how our method performs on optimization scenarios that
are more representative for the ascent assembly domain, we applied DECMO2 on
4 academic test cases: the one illustrated at the beginning of this paper (A1) in
Section“Description ofModel Abstraction” and three more derivations (A2, A3, and
A4) based on the more challenging access point placement from problem no. 12 of
the ESTP benchmark set. On all these tests we used the setting z = 0 to parameterize
the cost function fromEq. (2) and thus optimize for theminimumEuclidean distance.

The most realistic cost-optimal CAA-Structure design scenario we investigated
was proposed by Liebherr-Werk Nenzing GmbH (LWN) LWN (2017) – a manufac-
turer of a wide range of products including various types of cranes.More specifically,
we investigated cost-optimal CAA-Structures that allow access to user-specified re-
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Fig. 3 A CAD model of the gantry of a Liebherr mobile harbour crane with highlighted user-
specified access points (a) expert-designed ascent assembly solution (b) and complementary 3D
and unfolded 2D model abstraction (c)

gions of interest on the gantry of a mobile harbour crane (please see Fig. 3a). Fig-
ure3b presents an expert-designed CAA-Structure attached to the gantry and we aim
to use the unfolding-based 2Dmodel abstraction from Fig. 3c (obtained by vertically
stacking two cuboids) to explore complementary optimal designs that might provide
interesting insights to LWN.

In order to provide a balance between innovative and realistic cost-optimal solu-
tions for CAA-Structures, we considered two test case variations (TC1 and TC2) in
which the ground access point is placed at different positions along the horizontal
axis and four different cost settings:

• C1— The first cost setting uses a value of z = 0 to parameterize the cost function
from Eq. (2). Given the infinite degrees of freedom, optimal designs discovered
for this setting are expected to have the smallest total path network (Euclidean)
distance and can be used as a generic structural reference when assessing more
constrained cost-optimal designs.

• C2 — The second cost setting uses a value of z = 4 and a list of preferred design
angles U = {0, 45, 90} and aims to deliver ascent assembly designs that only use
the three standard assembly components: horizontal platforms, stairs and vertical
ladders.

• C3—The third cost setting uses a softer angle-wise constraint factor of z = 1 and
a minimal list of preferred design angles U = {0, 90} and aims to deliver ascent
assembly designs that have a real-life minimal cost as they only use horizontal
platforms and vertical ladders.
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• C4— The fourth cost setting uses a value of z = 4 and a minimal list of preferred
design angles U = {0, 30, 45} and aims to deliver CAA-Structures that offer a
higher degree of access (no mandatory use of hands) by only using platform
modules and two types of staircase modules (mild and regular inclination).

Results

Performance on Artificial Problems

The comparative performance on benchmark ESTPs is presented in Table 1 and
indicates that our solving strategy based on DECMO2 and a MOOP formulation is
very competitive for ESTP instances that have a low-to-medium number of definition
(access) points.

The results for the four academic CAA-Structure design scenarios are presented
in Fig. 4 and they indicate that the DECMO2-based solving strategy is quite general
and able to both efficiently avoid obstacles as well as profit from the left edge - right
edge continuity.

Table 1 Comparative performance of DECMO2 on ESTPs. Best results are highlighted and ∗
marks problems with an unknown optimum

Problem Id.
Soukup and
Chow (1973)

n Minimum Euclidean Steiner tree

Baseline
Soukup and
Chow (1973)

Beasley
(1992)

Bhaumik
(1994)

DECMO2

1 5 1.6644 1.6644 1.6644 1.6644

2B 8 2.1387 2.1387 2.1393 2.1387

2D 12 2.2223 2.1842 2.2979 2.1842

2G∗ 7 1.5878 1.6018 1.7019 1.5594

3 6 1.6472 1.5988 1.6553 1.5988

6 9 1.2733 1.2862 1.3024 1.2733

11∗ 64 3.8513 3.8380 3.9707 3.8274

12∗ 14 1.7222 1.7222 1.7989 1.7067

15A 5 0.5130 0.5130 0.5236 0.5130

18∗ 12 1.0332 1.0421 1.0782 1.0241

19B∗ 19 2.8567 2.8408 2.9689 2.8286

26∗ 20 1.9767 2.2770 1.9785 1.9785

28∗ 16 2.3671 2.3446 2.4048 2.3309

29∗ 17 2.1974 2.1974 2.2076 2.1869

31∗ 16 1.4220 1.3999 1.4343 1.3660
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Fig. 4 Results for the four academic test cases

Results for the LWN Industrial Test Case

The best solutions discovered for the two test case variants of the Liebherr mobile
harbour crane scenario when considering the four different cost settings are plotted
in Figs. 5 and 6.

A visual inspection of the results for each test case reveals that imposing angle-
wise restrictions on the overall design of the ascent assembly can be successfully
accommodated by the DECMO2-based optimization strategy. Furthermore, while
angle-wise restrictions do influence the optimization outcome, the generic (star-
shaped) structure that characterizes the expert CAA-Structure design is confirmed
by all the cost-optimal results obtained for this somewhat simplistic test case.

As specific observations related to the discovered optimal CAA-Structure designs,
it is noteworthy that:

• The less restrictive setting z = 1 in C3 can results in designs that apart from
platforms and ladder segments also feature ramps as shown in Fig. 5c.

• The cost setting C4 seems to result in designs (e.g., Fig. 6d) that resemble more
closely the expert-designedCAA-Structure illustrated inFig. 3b.This indicates that
accounting for ease-of-access concerns should be enforced in future extensions of
the model abstraction.

• Shifting the bottom access point along the horizontal axis induces a small and
local effect when unlimited degrees of freedom are allowed (Figs. 5a and 6a) but
the effect on the overall design of assembly is larger and global when considering
angle-wise restrictions. This indicates that using a continuous problem formulation
and a limited set of domain-dependent restrictions can yield innovative optimal
design suggestions that an expert might overlook.

General Conclusions and Outlook

In the present work we have introduced an initial, practical model abstraction for the
task of automating the cost-optimal design of complete ascent assembly structures.
In order to tackle in a domain-realistic manner the 2D Path network layout problem
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(c) C3 cost setting
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(d) C4 cost setting

Fig. 5 CAA-Structure optimization results for the LWN TC1 optimization scenario using different
cost functions

that emerges from the aforementioned model abstraction, we propose an optimiza-
tion procedure based on a multi-objective problem formulation and an advanced
coevolution-based solver – DECMO2. As results obtained on benchmark and aca-
demic test cases were very encouraging, we also applied our approach on a real-life
CAA-Structure design scenario provided by an industrial partner.

The results for the real-life CAA-Structure optimization scenario also empirically
support the validity of our approach. Thus, by employing appropriate cost functions,
formalizing the CAA-Structure optimization problem on a continuous design space
facilitates the discovery of a wide range of innovative designs that provide design
engineers with valuable insight regarding the trade-offs between the best theoretical
CAA-Structure design (that requires infinite degrees of freedom and new types of
assembly modules) and the best practical CAA-Structure design that only requires
traditionally used ascent assembly modules.

In the future we plan to investigate the hybridization potential between our current
approach and a complementary design strategy Hellwig et al. (2017) that is based
on a discretization of the design surface and that delivers competitive results on
CAA-Structure optimization scenarios with strong angle-wise restrictions.
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Fig. 6 CAA-Structure optimization results for the LWN TC2 optimization scenario using different
cost functions

Since the search logic of our DECMO2-based solving strategy is very loosely
bound to the 2D model abstraction, future work will also revolve around solving the
cost-optimal design problems directly in 3D space. The reason is that the simple 2D
representation is rather restrictive for several real world applications. For example,
it is not possible to model the crane from Fig. 1a with it.
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Taking Advantage of 3D Printing
So as to Simultaneously Reduce Weight
and Mechanical Bonding Stress

Markus Schatz, Robert Schweikle, Christian Lausch,
Michael Jentsch and Werner Konrad

Abstract 3D printing is recently gaining attention, yet only few researchers address
underlying design principles such as minimal thickness to shape ratio; even though
they are essential to industrial applications. The authors outline an optimization and
verification approach considering structural aspects such as stiffness and strength
as well as producibility and structural performance. This multitude of disciplines
brought forth objectives, being diametral to each other. An example is giving by
simultaneous mass reduction by increasing the part’s strength performance. So as to
harmonize all of those objectives to an optimal compromise, topology optimization
has been used in tandem with consultations of design and structural experts. Addi-
tionally, an aerospace part, namely a 3D printed titanium insert was built and glued
into an aluminium sandwich panel with carbon fiber reinforced plastic face sheets.
This composite panel was then subjected to actual flight loads of the METimage
satellite campaign. During all mechanical and thermal tests, cracks are captured via
acoustic monitoring. Studying all test results revealed, that the approach brought
forth multiple advances such as; reduced weight, increased mass-specific effective
stiffness and lower mechanical bonding stresses, which increased overall structural
strength.

Motivation and Introduction to Mechanical Frame
of METimage

The part being optimized herein, is developedwithin theMETimage project.METim-
age is one of the key instruments of the EUMETSATPolar System satellite campaign;
being designed to optically capture meteorological data such as cloud coverage and
ground temperature. For more information on the mission and the instrument itself,
consult (Wallner et al. 2016). All detectors and mechanism of that optical camera
are accommodated in a cube as illustrated with Fig. 1.
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Fig. 1 Rendering of the optical instrumentMETimage,which laterwill bemounted on the EUMET-
SAT Polar System - Second Generation (EPS-SG)

This cube is supported by six carbon fiber reinforced polymer (CFRP) strutswhich
evidently transmit all loads. The sandwich is comprised of carbon fiber reinforced
plastic (CFRP) face sheets including stiffeners (top and bottom side), an aluminum
honeycomb core and titanium inserts. So as to verify the design of that design, a
smaller surrogate structure was developed as well. Figure2 illustrates the sandwich
structure designated to verify the METimage structural design and, moreover, proof

Fig. 2 The developed design verification structure; the panel insert bread boad (PIB). This structure
emulates the cubic sandwich structure of METimage
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the applicability of 3D printed parts; or in other words Additive Layer Manufactured
(ALM). To enable a comparison beside the 3D printed insert a conventional milled
insert is integrated as well.

Literature Review

Oneof thefirst scientists, to study themost efficient allocation ofmaterial in structures
was Michell (1904). His concepts relied on trusses and were of discrete nature:
truss yes or no. Prager (1974) and Rozvany (1976) picked up on Michells work
by finding and studying analytical solutions of topology optimization problems.
A remarkable contribution was made by Bendsøe in the 90s (Bendsøe 1989). He
and his researchers formalized topology optimization problems, where continuous
variables were introduced so as to enable efficient numerical solution finding. Such
that ultimately, a convergence to discrete structures is assured, those variables were
penalized; the well-known SIMP approach. From there on, topology optimization
became the topic ofmany researchworks as outlined byEschenauer andNiels (2001).
Since nowadays, where 3D printing is potent enough to manufacture nearing any
topology in plastic as well as in metals (aluminum, titanium and even steel), the
application of topology optimization experienced an unseen upswing in industry.

However, there are tricky spots. Sigmund and his colleagues actually revealed a
blind spot, by showing how filters, degrees of freedoms (number of finite elements)
and further numerical parameters have their imprint on topology optimization (Sig-
mund et al. 2016). They did so, by studying multiple structures with a tremendous
number of finite elements, i.e. in the big millions. One example they gave, was a tor-
sion loaded tube, where obviously a hollow axle performs best. The following Fig. 3
depicts their optimal result on the left, an axle and a sub-optimal design on the right.
The sub-optimal design was derived with conventional filters and moderate number
of elements. They underpinned therewith their statement, that topology optimization
should be carefully interpreted and that the presence of Michell structures clearly is
not a sufficient indicator for optimality. Furthermore, the strong design bias caused
by classical domain filters and finite element models with an element count of an
industry scale was proven.

Knowing this, the authors of this work, did set-up an approach, where topology
optimization results are carefully interpreted in tandem with experts from different
disciplines.

A Conventional Insert Design

A conventional design of such an insert is most frequently realized via milling. In
order to ensure accessibility of the milling head while having closed surfaces such
that the honeycomb core can be glued to the insert, this part has to be realized as
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Fig. 3 One of the findings
of Sigmund et al. (2016). On
the right side, a conventional
topology optimization result
and on the left the real
structural optimum

Fig. 4 Conventional design
of a titanium sandwich
insert. The three light blue
plates represent so called
back plates

follows. The insert itself is milled down to the outer extend defined by strength
and stiffness requirements. For covering all faces, the so called back-plates are to be
designed; light blue plates in Fig. 4. These plates are then glued to the inner structure;
dark blue in Fig. 4.

This design however brings along several drawbacks. First of all, the back-plates
translate to a direct mass increase, since they do not transmit loads nor considerably
contribute to the overall stiffness. In addition, more glueing regions are introduced,
which possibly could fail during thermal cycling, i.e. thermo-elastic incompatilities.
An even more drastic drawback, is the lack of design freedom in terms of wall
thickness owed to the milling process. This is a disadvantage because, reducing the
thickness around the edges would reduce stiffness jumps, thereby mitigating stress
peaks. This was analyzed for the most critical loading scenario, a cooling down from
55 to −20 ◦C, causing thermos-elastic deformations (TED) and stresses. This is due
to incompatibilities of the individual materials thermal coefficient of expansion. The
results of numerical analysis are given next with Fig. 5.
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Fig. 5 Stresses in adhesive layer in case of the conventional insert design, i.e. milled

Thus one limiting factor for the ultimate load, certainly is the overshoot of stresses
acting in those adhesive layers. For that sake, one major objective, among the mini-
mization of mass and costs, was the reduction of stress peaks in that area.

The Design Process

In this section, the actual design process as developed and implemented at Air-
bus Defence & Space in Immenstaad is being introduced. As outlined in Section
“Literature Review”, using FE models in concert with conventional filters, allow-
ing to be solved with industrial means, topology optimization is likely to yield one
dimensional structures. It will do so, even though shell-like structures would be supe-
rior. Honoring this, it was decided to use topology optimization just as one tool in
a sequence of process steps. This is illustrated with the following Fig. 6. A general
rational of this design process is, that aiming for a topology optimization in one shot
is not viable in current practice, but to acquire engineers expertise and rely on a
robust interpretation.

A proper design task definition is evidently of paramount importance, which is
why it marks the first step of our design process; Problem Definition. Thereafter, a
Topology Optimization was set up for identifying optimal load transmission paths.
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Prob lem
Definition

Topology
Optimization Interpretation Sizing

Detailed
Analysis

Structural Design Freedom

Degree of Detail

Fig. 6 Implemented design process

The subsequent step Interpretation addresses the translation of optimization results
into technically viable designs. The most attractive design is then sized so as to
further lift potentials. Detailed numerical analyses ensure desired design maturity
through high fidelity simulations. All those steps are discussed in detail next.

Problem Definition

Vibrations of rocket engines, acoustic excitations and separation shocks form the
design driving load spectra. A mechanical design limit load of 20kN acting on a
single support strut, was derived for use in quasi-static analysis. Not only sustaining
this load, but further efficiently transmitting this load into the composite sandwich
structure, i.e. with moderate mass expanses and space, marks the challenging objec-
tive of the following work. 3D printing in concert with topology optimization and
thorough mechanical reflecting cumulated in an attractive solution.

In the case of METimage, the actual mechanical loads are derivable with ease,
since the instrument sandwich cube is iso-statically supported by six struts as men-
tioned in Section“Motivation and Introduction toMechanical Frame ofMETimage”.
Thus it is supported by six struts, where each strut has thin fittings at the end, such
that they are able to bend almost as easy as a hinge. For that reason, struts evidently
just transmit tensional loads as depicted in Fig. 7.

Fig. 7 Underlying iso-static
strut concept of METimage
and the derivable load
transmission path
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Topology Optimization

With Fig. 8 the FE model used for conducting the topology optimization is given. As
depicted, it comprises the insert itself - clearly chosen to be the design space of the
conducted optimization - and further, the sandwich core, face sheets et cetera so as
to consider their stiffness. Tensile loading of 20kN (red arrow) marks the loading
scenario, whereby the overall stiffness was minimized. Through a variation of mass
constraints multiple optima were found. One of the found optima is illustrated with
Fig. 8.

Interpretation

As outlined above, multiple optimization runs were performed each yielding distinct
results which together did point in the same direction in terms of mechanical trans-
mission of the design limit load. For instance, it is obvious, that themain transmission
path is to be designed as illustrated via the red arrow in Fig. 9. Since a certain robust-
ness is more than desirable, the load should be smoothly distributed as highlighted
by the yellow fan of arrows. Aside, this distribution moreover mitigates stress peaks
which would arise in case of one single load transmission path.

Fig. 8 The FE model used for the topology optimization, where only the yellow part did actually
serve as design space is depicted in the back. One of the many topology optimization results. Only
elements displaying an element density above 70% are highlighted



330 M. Schatz et al.

Fig. 9 Major and minor
load transmission paths

Adding to themechanical considerations, the following issues needed to be appro-
priately addressed during this interpretation phase as well:

• Thermal incompatiblities, i.e. different coefficient of thermal expansion
• Limitations arising from 3D printing process
• Surface treatments for increased gluing performance
• Cleaness, i.e.

– Accessibility of all surfaces being processed
– Origin and kind of contaminants

• Out-gasing right after launch, e.g. trapped air in pockets

Because of all those aspects, the interpretation was realized by a sequence of
consultations with experts and meetings for making arrangements. Once all aspects
were gathered and treated, the structure was detailed by determining its final shape
and size. In terms of shape, it has been agreed, that shell like structures are superior
in terms of stiffness for a given mass and that they are not to be found via topology
optimization of industrial scale as discussed at length in Section“Literature Review”
based on the work of Sigmund et. al. (2016).

Sizing

In this phase, the imprint of individual thicknesses on the performance of the insert
was investigated. By doing so, it became obvious that the thickness distribution of
the upper and lower face of the insert mainly trigger the magnitude of the resulting
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Fig. 10 Sizing of insert.
Along the green arrows, the
thickness decreases from two
to half a millimeter

adhesive stresses. Via sizing of those faces, the stresses within the adhesive region
can be dosed. An optimum was found by allowing the thickness to run out from two
millimeters to a half millimeter thickness. The decrease was foreseen along the green
arrows as given with Fig. 10.

Detailed Analysis

So as to gain further confidence, a final detailed numerical analysis was conducted,
where especially the stresses in the adhesive region were of interest. For that sake, the
discretization degree was considerably increased and second order finite elements
were used.

The final analysis underpinned the findings, that a sizing of the insert upper and
lower faces in such a fashion, that the thickness and thereby the stiffness runs out
towards the edges, tremendously reduces adhesive stresses. In this case, the reduction
in terms of stress was 35%. Figure11 provides insight into the stress situation of the
final insert design. In contrast with themilled design as givenwith Fig. 5 the reduction
of stress by the smooth stiffness drop becomes obvious.

The derived final design has increased in weight, but is yet 10% lighter than
the conventional milled design while displaying a considerable increase in structural
performance. The latter is because of the higher effective stiffness, lower stress peaks
in adhesive regions and increased robustness in terms of load direction.
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Fig. 11 Stresses in adhesive layer of 3D printed insert. The shape was derived from multiple
optimizations

Verification Through Testing

To verify all outcomes of the analyses, a test campaign embracing all relevant flight
loads, i.e. thermal and mechanical, was set-up. In addition, acoustic monitoring was
used so as to properly compare the milled with the 3D printed insert.

Acoustic monitoring basically is the recording of sound waves, that originate
upon any crack or damage event, by microphones. If more than two microphones
are used, triangulation and simple back-calculation, then allows the determination of
cracks and damages. This is schematically given with Fig. 12, wherein the upper face
sheet and insert geometry are sketched as well as three microphones and a possible
crack event in red. The red circles illustrate the propagation of the sound wave. By
evaluating the magnitude of the acoustic emission energy a correlation to the severity
of the crack event can be made.

To ensure that the whole sandwich panel is not damaged before and during the
test, it was inspected by technical ultrasonography after each test run. Furthermore,
two X-ray scans were made, at the beginning and at the end of the test campaign.
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Fig. 12 Acoustic
monitoring set-up with three
microphones and a crack
event in red

Mechanical Testing

The most critical mechanical test, was the application of the proof load of 20kN
onto the inserts in planar direction. For realizing this test, the sandwich panel was
screwed into the test machine by using the inserts as interfaces. Prior to that, the
acoustic sensors were applied so as to enable live acoustic monitoring during the
test. Right before testing, the perfect alignment of the threaded rods simulating the
struts was checked. The overall test set-up is given with Fig. 13.

All four inserts did withstand this load without any noteworthy events. Hence,
both designs sustained the design limit load.

Thermal Test in Vacuum

Next, during thermal vacuum testing (TV), the sandwich panel had to withstand
multiple thermal cycles from +55 down to −20 ◦C in vacuum; see the following
Fig. 14 (red pressure, rest temperature sensors).

During the complete test, acoustic monitoring was set-up as discussed before (see
Fig. 12). With Fig. 15 the actual test set-up is visualized; whereby the thick white
cables are the ones transmitting the data of the acoustic microphones. Beforehand,
TV testing was regarded to be the most critical one, since cooling down by 75K
brings forth stresses as the constituent materials differ in their thermal expansions.
The live monitoring along the thermal cycling already confirmed this. Final proof
was established after evaluating the acoustic emission energies and number of events.
The latter is simply counting noises recorded over a certain threshold. The acoustic
emission energy helps to understand the severity of a single noise event. Knowing the
material and how acoustic waves propagate through that material, gives a measure
correlating magnitude and damage. Thus, in general very high acoustic emission
energies are linked to bursts of fibers and low ones to crack initializations in the resin
(inter- and intra-laminar cracks) as well as crack events in adhesive regions.
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Fig. 13 Panel insert breadboard in tensile test machine

Figures16 and 17 depict the outcome of the post-processing of the measurement
data. Colors in Fig. 16, reflect the severity of the event (emission energy), where the
bright green rectangles, however, show the microphones position.

The subsequent figure depicts the number of events for both inserts: 3D printed
(ALM) and milled (MIL). As can be seen, the ALM part has seen way fewer events.
Moreover, the average magnitude appears to be lower.

Since the load carrying capability had to be proven, the sandwich panel was
mechanically loaded before and after the TV test. The change in stiffness was less
than one percent and therewith structural integrity was successfully maintained.
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Fig. 14 Recorded temperature and pressure data of thermal vacuum test

Fig. 15 Panel insert bread board in TV chamber for thermal vacuum test



336 M. Schatz et al.

Fig. 16 Post-processed
records of the acoustic
monitoring in terms of
acoustic emission energy.
Again, the magnitude as
illustrated here correlates
with the severity of the
damage event. The light
green rectangles highlight
microphone positions

Fig. 17 Comparison of both
insert designs - conventional
and 3D printed - regarding
number of crack events

Conclusion

As outlined, by taking advantage of topology optimization and especially its inter-
pretation, a sustainable reduction of 10% in mass was realized. Even more relevant
in the context of this work, were the stress peaks in the adhesive layer on the top
and bottom face of the inserts. Those stresses were reduced by more than 30%.
Extensive numerical analyses, including topology optimization runs, gave insight on
how to distribute material most effectively and how to dose those bonding stresses,
thereby fully exploiting 3D printing. Ultimately, a test campaign did actually prove
these numerical predictions. The onset of cracks and crack events in dependency of
the applied load were revealed by taking advantage of acoustic monitoring during
testing. Microphones of that acoustic monitoring recorded less crack events with a
lower magnitude in average. This again underpinned, that the 3D printed part is to
be regarded superior in terms of load reserves owed to smaller bonding stresses.
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Next, the authors focus on the qualification of 3D printing such that parts will fly
in near future. In order to achieve that, more investigations and tests are necessary to
show how those parts respond on cyclic loading. Topics such as crack initialization
and growth (fatigue) have to be addressed as well.
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Interactive Optimization of Path
Planning for a Robot Enabled
by Virtual Commissioning

Ruth Fleisch, Doris Entner, Thorsten Prante and Reinhard Pfefferkorn

Abstract Optimized path planning contributes to reducing the non-productive time
of material handling in fully automated manufacturing. This paper presents a case
study from the machine-tool industry sector about optimization of a path planning
algorithmwith the goal tominimize the time amaterial handling gantry robot requires
to follow a feedback path, i.e. feeding a just cut part again to the saw which had just
cut it, in order to realize more and more complex cutting patterns. Particularities
of the case study configuration led to the application of an interactive optimization
approach based on the definition and manipulation of rules for smoothing of initially
planned paths and the exploration of the impacts of the rules on the time the material
handling robot requires for traversing these paths by means of visual examination as
well as by virtual commissioning. The achieved results were deployed in plants for
cutting wooden or metal panels.
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Introduction

Today’smarkets demand for customized products to fulfill increasingly client specific
requirements. For cut-to-size plants,which automatically divide panels into requested
sizes, the thereto necessary dealingwith small lot sizes or lot-size one products results
in a higher complexity of cutting patterns to enable efficient usage of the panels and
thus producing as little waste as possible. As a consequence, the complexity of cut-
to-size plant layouts increases as well, e.g. caused by feedbacks in their material
flow (Fleisch et al. 2013). At the same time, besides high throughput and overall
performance, a main requirement of operators of cut-to-size plants is a compact
and space-efficient plant layout. To successfully tackle all of these requirements and
challenges a new type of plant has been designed which implements material-flow
feedback with reduced space usage. In order to realize the feedback loop, a gantry
robot was chosen for panel transportation.

This paper reports the method and some results of minimizing the time required
by this robot tomove from start to end positions while at the same time obeying space
limitations. Thereto, the robot must be able to move along any path and simultane-
ously rotate around the vertical axis while staying within spatial boundaries. While
the finding of a valid path and aspects concerning the linking of the algorithm to the
control system are described in detail in Fleisch et al. (2016), this paper focuses on
the optimization of the path planning algorithm.

The following section describes the optimization problem and the rationales for
choosing an interactive optimization approach. Section “Gantry Robot and Integra-
tion into Plant Control System” presents the material handling robot covered in the
here presented case study and the integration of its control system into the over-
all plant control system. Section “Related Work” outlines related work, while the
path planning algorithm and aspects concerning its optimization are introduced in
Section “Path Planning and Its Optimization Hook”. This is followed by a section
about the optimization environment and procedure as well as, relating thereto, the
virtual commissioning of the robot. Section “Conclusion” concludes the paper.

Optimization Problem and Approach

In order to determine which version of the path planning algorithm performs best, the
following optimization loop was performed: The path planning algorithm generates
a solution (a smoothed geometric path obeying certain spatial limitations), which,
for evaluation, is fed into a simulation of the motion controller of the gantry robot.
This simulation performs exactly the same task as the real motion controller does
and therefore enables virtual production runs of a virtual plant with the real cutting
patterns (i.e. virtual commissioning) towards reliable and exact temporal evaluation
of the results of the respective version of the path planning algorithm. Depending on
the results of this evaluation the adaption of the path planning algorithm is performed
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or not (optimization loop). Adaption of the path planning algorithm is achieved in
terms of definition and reworking, respectively a set of rules, which controls the
smoothing of the initial result of the path planning step, i.e. a geometric path.

In other words, the objective function of the optimization problem assigns a time
value calculated by means of virtual commissioning to a set of rules for smoothing
a path. The behavior of the motion controller used for temporal evaluation of the
results of path planning towards their optimization is unknown, i.e. a black box, in
the path planning step. Hence, the optimization of a path with respect to time doesn’t
take place when planning a path during the operation of the plant, but instead is
optimized upfront during the design and development of the robot control system in
the context of overall plant (type) design and development.

The rationales for choosing an interactive approach towards fulfilling this task
are the following. First, the smoothing rules to be applied in the path planning algo-
rithm as well as their impact on the temporal behavior of the material handling
robot moving from specified start to end positions were not fully understood. Both
the determination of the right set of smoothing rules for geometrical manipulation
of generated paths and the analysis of their impact on the temporal behavior of the
robot are rather complex and partly creative tasks. Thus, in a first step, an environment
needed to be createdwhich allows knowledgeable domain experts to experiment with
and understand the relationship between smoothing rules and the to-be optimized
time variable. This forms the basis for designing in a next step a set of parameter-
ized smoothing rules which will be more easily approachable by fully automated
optimization procedures.

Second, it is as important for plant manufacturers to be able to exchange com-
ponents or fabricators which contribute to their plants as it is not uncommon for
technical systems (i.e. these components) that a new release manifests in changed
behavior. Thus, plant manufacturers ensure internal process reliability by taking pre-
cautionary measures such as decoupling optimization environments from specific
technical vendors and solutions, which in turn also works towards reusability of the
optimization environment.

The third rationale for choosing an interactive optimization approach over a fully
automated one for the described optimization task is due to the particularities of the
development of control systems based on virtual commissioning. In daily practice,
it is of utmost importance for gaining valid optimization results as to component
behavior to keepupwith the updates of each part of the overall plant system (including
even overall plant process control), their interfaces and their interaction (see Fig. 8)
during the rapidly changing design and development process of a plant component
such as a material handling gantry robot tailored for optimized performance in cut-
to-size plants employed in customer-specific manufacturing. Complementing what
was stated as to the first rationale for choosing an interactive optimization approach,
this makes it even more difficult to design a rich, realistic optimization model that
describes all relevant aspects of the optimization problem in advance to actually
performing the optimization.

These rationales led to the development of an interactive optimization environment
with, on the one hand, visual support for domain expert users to analyze the impact of
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smoothing rule set manipulation by comparing input and output of the path planning
step and, on the other hand, reliable and exact temporal metrics provided by virtual
production runs enabled by virtual commissioning.

Gantry Robot and Integration into Plant Control System

In order to realize that parts produced by sawing a panel into pieces can be fed again
to the saw for further partitioning (i.e. feedback loops), in traditional cut-to-size
plants, angular transfer conveyors allowing movements of panels in straight lines
and turning in right angles only as well as turning devices for rotating a panel have
typically been used. In new more compact and space-efficient cut-to-size plants with
feedback in the material flow panels need be moved in the form of a curve while
they are rotated at the same time. Therefore, a new material handling robot has been
developed for transporting panels, e.g., from a saw to a feedback conveyor and vice
versa (see Fig. 1).

The gantry robot picks up a panel with the aid of a suction unit and then pulls
it horizontally over a brush table from a starting to an end point within a few sec-
onds. During this movement, the robot can simultaneously rotate around the vertical
axis. To prevent collisions with other panels or plant components, spatial limitations
induced by the plant itself as well as by panels moving in it have to be met which can
vary for each piece of material to be transported. To this end, adaptive and intelligent
path planning is required to provide a fully automated and optimized transportation
system with feedbacks in the material flow.

The path planning for the robot has to be incorporated into the central hierarchical
control system of the plant. In the presented case study, it is linked to the robot
PLC, since at this level the information necessary for the input to the path planning
algorithm is available (for an overview, see Fig. 2).

The inputs to the highest layer of the control system, i.e. the process control, are
cutting patterns, according to which the panels or their parts, respectively are cut by
the saw and run through the plant. The process control controls the material flow in
the plant by sending orders to PLCs (programmable logic controllers) of the different

Fig. 1 Gantry robot
transporting a panel
outputted by a saw towards
other panels on a feedback
conveyor
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Fig. 2 Integration of the
path planning algorithm into
a hierarchical control system
at PLC level

Process control

Motion controller

Robot PLC
(programmable logic controller)Path planning

geometric path

order confirmation

status informationgeometric path

starting/end position,
sizes, limitations

cutting patterns

plant components like the saw itself, roller tracks, or the materials handling robot.
Examples of such orders for the robot PLC are “travel to the part which is just cut
and pick it up” or “transport the part from the saw to feedback conveyor and put it
down”.

According to the orders, the robot PLC controls for example the suction unit of the
robot or defines and transmits the input for the path planning algorithm, consisting
of the starting and end position as well as panel and (robot) mechanical system size
and spatial limitations. For each movement of the robot a solution path, consisting
of a list of coordinates and rotation angles, has to be calculated by the path planning.
This (smoothed) path is transferred to the robot PLCwhich passes it on to the motion
controller together with other information.

The motion controller subject to this case study does not calculate a valid,
collision-free geometric path itself, but requires one as input, on the basis of which
it performs the trajectory planning, i.e. calculating a time-parameterized curve in a
black box manner. Moreover, the motion controller controls the actuators for move-
ments in the x-y-plane and rotations as well as sends status information back to the
robot PLC.

After completing the movement of the robot from the starting to the end position,
the robot PLC confirms completion of the order to the process control.

Related Work

The related work for the presented optimization of the path planning algorithm com-
prises three areas: motion planning, virtual commissioning as well as empirical and
interactive optimization.

The problem of robot motion planning can be divided into three sub-problems:
path planning, i.e. the specification of the geometric path avoiding obstacles, trajec-
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tory planning, i.e. the specification of the time evolution along this geometric path,
andpath tracking as performedby the low-level control loops (Haschke et al. 2008). In
the following, only the relatedwork as to path planning and trajectory planning is dis-
cussed. Concerning path planning, there are several approaches like potential-field-
based techniques, combinatorial methods producing roadmaps or sampling-based
planning. The latter has been successfully applied in practice for many challenging
problems (Siciliano and Khatib 2008) and a variant of it is realized within the project
presented in this paper. Sampling-based planners rely on a collision checkingmodule
instead of explicitly representing the environment (Karaman and Frazzoli 2011) and
sample the space of all possible placements of the robot for the collision-free ones
(LaValle 2006).

Finding not only a feasible path for the robot, but also one that optimizes one
or more criteria for a given high-level task is an important issue (Luna et al. 2013).
If the optimization shall be with respect to time, trajectory planning is commonly
involved. In Wu et al. (2000), for example, first, a shortest path composed of circular
arcs and straight lines is obtained for a wheeledmobile robot and then, a time optimal
velocity profile is generated. In Haschke et al. (2008), time-optimal trajectories are
also determined based on a given geometric path. In contrast, a given geometric
path is smoothed additionally in the course of planning time-optimal trajectories in
Hauser and Ng-Thow-Hing (2010). In Ratliff et al. (2009), the requirement that the
input path for trajectory planning has to be collision-free is even dropped. Instead,
avoiding obstacles is included in planning trajectories which optimize over a variety
of dynamic and task-based criteria. Finally, Shareef and Trächtler (2016) present a
method for simultaneous path planning and trajectory optimization.

If it is sufficient to regard the path length as proxy for travel time (Richard-
son and Olson 2011), only the path planning problem itself can be considered for
optimization. Besides shortening the path (Luna et al. 2013; Campana et al. 2015),
different metrics like smoothness or obstacle clearance (Luna et al. 2013; Richard-
son and Olson 2011) or more general cost functions (Karaman and Frazzoli 2011;
Campana et al. 2015) can be applied for optimizing a geometric path. Kretschmann
(2007) presents an example of time-optimization, which uses geometrical features
of the path, in order to avoid time-consuming calculation of the travelling time. The
relationship between the geometrical parameters and the time-optimal trajectories
is elaborated with the help of simulation. Theoretical considerations presented by
Kretschmann prove that the cost function based on the geometrical parameters is a
sufficiently reliable indicator for the travelling time.

The solution approach presented in this paper follows the idea of deciding which
rules are best for smoothing the geometric paths within path planning by evaluating
the rules as to temporal behavior of the robot. This optimization procedure is enabled
by virtual commissioning of the robot, which involves the trajectory planning.

The purpose of virtual commissioning is to test manufacturing systems together
with their control programs through simulation to produce reliable and precise behav-
ioral forecasts before on-site installation and ramp-up (Hoffmannet al. 2010).Beyond
that, virtual commissioning enables optimization in relation to control systems. In
Svensson et al. (2012), for example, a simulation-based optimization method is pre-
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sented where a combination of real industrial control systems and of a virtual man-
ufacturing system is used for the simulation part. In their case study based on this
test bed, optimization was applied for tuning process parameters of an automotive
sheet-metal press line.

Empirical optimization is used in the field of code compiling, especially for library
generation, to chooseparameter values or even an algorithm froma suite of algorithms
by generating different versions of the program, running all of them on the actual
hardware and selecting the version which results in the best performance (Yotov
2003; Epshteyn 2006). This idea of evaluating multiple code versions is also applied
in the project presented in this paper, however, a part of the test system is not the real
one but virtual, i.e. the motion controller simulation.

Interactive optimization means that the user participates actively in the optimiza-
tion process. More precisely, “an interactive approach recognizes some limits to
modeling and parameter setting in a real situation, and values the user’s expertise in
the application domain that can be exploited by the optimization system” (Meignan
et al. 2015). This means, that “with an adequate interaction between an optimization
system and its users, the optimization model can be enriched to fit the real problem,
the search process can be guided for improving its efficiency, and the user can better
understand the system” (Meignan et al. 2015).

In Meignan et al. (2015), a classification of interactive optimization methods is
proposed according to the purpose of the interaction and the role of the user: In
the case of problem-oriented interaction, the user aims at modifying the optimiza-
tion problem by adjusting the existing constraints or objectives or by enriching the
problem, i.e. defining new constraints or objectives. The target of search-oriented
interaction is improving the performance of the optimization procedure. The user
can achieve this by tuning strategic parameters of the optimization procedure, by
supporting the search with information related to decision variables (guiding), or by
acting as a search procedure (assisting).

The here presented optimization approach belongs to the assisting-category, as
the user has to define, implement and rework a set of smoothing rules, that is the
next element of the solution space for which the time has to be calculated. On the
other hand, the approach belongs to the guiding-category as well, because the user
analyzes the link between the implemented set of rules and the time for executing
the path and uses this information to change the set of rules.

Path Planning and Its Optimization Hook

Before discussing the set of smoothing rules as the hook for optimizing travel time
of the material handling robot for a path computed by the path planning algorithm,
this section, first, summarizes details of the path planning algorithm and its specific
interplay with the motion controller deployed in this case study. Further information
on the latter topic can be found in Fleisch et al. (2016).
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Fig. 3 a Panel (yellow, size: 2160mm×750mm, arrowmarks the offset) and part of themechanical
system (red), their limitations (solid lines), and rotation point in starting and end position. b A
solution path for the rotation point of the robot. The rotation angles for each point are given in
degrees

Path Planning and Its Interplay with the Motion Controller

The developed path planning algorithm computes a smoothed geometric path for
every movement of the material handling robot from a starting to an end point in the
horizontal plane. Such a path avoids obstacles and contains information for simul-
taneous rotation around the vertical axis of the robot. The movement can take place
with or without material, the latter, e.g., in order to collect a panel.

The path planning algorithm comprises the following three steps: (step 1) com-
putation of a valid geometric path, (step 2) smoothing this path (see Fig. 6), and
(step 3) determining a feasible blending parameter for each position of the path (see
Fig. 4). Subsequently, the final curve to be travelled along by the robot (i.e. trajec-
tory planning) is determined by its motion controller, which calculates in a black box
manner a time-parameterized curve corresponding to the input it received from the
path planning algorithm.

Here, we first describe input and output of the path planning algorithm, followed
by the challenges related to the black box calculation of the time-parameterized curve
by the motion controller and how they influence the path planning algorithm.

Figure 3a visualizes the main input data to the path planning algorithm of a real-
world example: A panel to be transported is always rectangular and must not exit
a given area. This ensures that collisions are prevented, e.g. of the panel with other
panels in the plant or with plant components. A part of the mechanical system of the
robot is also represented as a rectangle and must stay inside its own limitations. The
admissible areas for the rectangles are simple polygons, featuring internal angles of
90° or 270°. Thus, in the case of transporting a panel, the main input parameters
for the path planning algorithm are the sizes of both rectangles, the offsets of the
rectangles relative to the rotation point of the robot, the spatial limitations, and the
starting and end position. A position is composed of the x- and y-coordinates of the
rotation point of the robot in the horizontal plane and further includes the associated
rotation angle for this point.
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Fig. 4 The respective
blending parameters are the
radii of the depicted circles.
1, 3 and 5 are linear
segments, 2 and 4 are
polynomial segments

1 2
3

4

5

The output of the path planning algorithm is a smoothed geometric path for the
rotation point of the robot from the starting to the end position such that the relevant
spatial limitations are not violated (see Fig. 3b). The geometric path is a list of posi-
tions where the number of positions must not exceed 25—this requirement is intro-
duced by the motion controller. Each position is enriched by a blending parameter
(step 3) which indicates the extent of blending of the movement along the polygonal
chain at the respective point (see Fig. 4).

The list of positions together with the blending parameter for every point is passed
onto the motion controller of the robot, where it serves as a basis for generating a
trajectory and for controlling the movement. The points of the path in the x-y-plane
are connected by linear interpolation with a polynomial blend (see Fig. 3b). Thus,
the plane curve consists of linear and polynomial segments.

If the polygonal chain is blended at a point, the rotation angles corresponding to
the transition points between the blending segment (e.g. segment 2 in Fig. 4) and
the preceding (segment 1) as well as the subsequent (segment 3) linear segment are
calculated by comparing the proportions of the path length. However, the rules of
how the rotation angle is interpolated are not available for path planning, since they
are implemented in conjunction with the trajectory planning in the motion controller.
Thus, the matching of rotation angles to the plane curve can be computed only at the
transition points of the segments. Therefore, it has to be assumed that, in theory, the
rotation to be executed along a segment can take place at any arbitrary point of that
segment. This has an effect as to collision avoidance and can result in, e.g., a higher
number of positions required for specifying a path in case of tight spatial limitations
and only little space left to route. Dealing with this effect is explained below.

For computing a valid geometric path a variant of a sampling-based planner was
implemented which samples the space of all possible placements of the robot for the
collision-free ones (Fleisch et al. 2016). The sampling is realized as an incremental
search, where the global search direction is along the medial axis of the polygonal
limitation. In the case that a panel is moved, the admissible area of the panel is
used for determining the medial axis as the material is usually more critical than the
mechanical system regarding the available space. In a step of the incremental search,
the next feasible position is found by varying the position or the step size. For the
purpose of checking the feasibility of the next position, i.e. collision detection, the
area which is covered by a rectangle rotating from the starting to the end angle of
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Fig. 5 Polygon (black)
encompassing a rotating
rectangle

rotation point of robot

the step is approximated by a surrounding polygon (see Fig. 5). This polygon must
not be outside the limitations when it is moved along the segment from the current
to the next point.

Optimization Hook: Set of Smoothing Rules

As the behavior of the motion controller concerning trajectory planning and interpo-
lation of the rotation angle is unknown, i.e. a black box, in path planning (steps 1-3),
the optimization of a path with respect to time is not possible within the path planning
step. Instead, improvements can only be based on geometrical features of the path.
Since a smoother path is assumed to be typically more time-efficient, the task to be
tackled by interactive optimization is to determine which rules for smoothing the
paths shall be implemented in order to minimize the time which the robot needs for
following the paths.

As elaborated in Section “Path Planning and Its Interplay with the Motion Con-
troller”, the path planning algorithm integrates the smoothing by first computing a
valid geometric path (step 1), then smoothing the solution (step 2) and, finally, deter-
mining a feasible blending parameter for each position (step 3). Figure 6 shows an
example of an initial valid path and, based on it, a smoothed path.

Fig. 6 Valid path before and
after smoothing (rotation
angles are not depicted)

before smoothing

after smoothing
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The input for the smoothing part of the algorithm is a valid geometric path,
which means a polygonal chain together with a rotation angle for each of its points.
Following this path ensures that both the panel and themodeled part of themechanical
system do not exit their admissible areas. The polygonal chain is iteratively smoothed
by eliminating or modifying positions based on smoothing rules while maintaining
the spatial limitations. An example for a rulewhich chooses a position for eliminating
or changing, is the selection of the most acute angle, formed by the line segments
of the polygonal chain. Further options for changing a position are for instance
translating a point to the centroid of the triangle with the chosen point and the
preceding as well as the subsequent point of the polygonal chain as vertices or
replacing a position by the center of the preceding and subsequent position (both the
center in the x-y-plane and the center of the rotation angle). Further rules are based
among other aspects on the following heuristics for smoothing a path:

• the elimination of self-intersections of the polygonal chain,
• shortening the total length of the polygonal chain,
• avoidance of short line segments of the polygonal chain,
• the reduction of the number of positions, or
• a more uniform distribution of the rotation angles along the polygonal chain.

For the determination of the best rules to be implemented, an interactive optimiz-
ing procedure is applied which includes virtual production runs.

Optimization Environment and Procedure

As illustrated just before, the optimization as to the time the material handling gantry
robot needs to follow a path is carried out by interactive definition of the smoothing
rules. One of the challenges in doing so comes from the fact that it is not necessarily
the shortest path yielding the shortest travel time since, for example, the robot has to
slow down for turning sharply in the x-y-plane and hence a longer path with obtuse
angles can be preferable to a shorter one with acute angles. Thus, the optimization
of the path planning provides a possibility to find a trade-off between the path length
and the sizes of the path angles for example.

Another illustrative examplewhich seems counter intuitive at first sight is depicted
in Fig. 7. The two shown paths are the outcome for the same input data but determined
by two different sets of smoothing rules. This example again reveals that a mere
visual examination does not suffice but the exact calculation of times by virtual
commissioning of the robot is relevant, since the latter delivers an unexpected result:
Due to the behavior of themotion controller, a straight line in the x-y-plane defined by
10 positions is inferior regarding time to a non-linear, longer path specified by only 4
positions, where both paths represent a rotation by 90° and the distance between the
starting and end point is 1.69 m. It takes the robot 8.04 s to follow the straight line
and 7.21 s to follow the non-linear path, yielding a difference of about 10%. This
illustrates that the number of positions for defining a path has a great impact on the
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Fig. 7 It takes the robot
more time to follow the first
path than to follow the
second one. Rotation angles
in degrees are depicted
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material-handling time for the robot (motion controller) at hand. The high number
of positions of the linear path is required for distributing the rotation angle along the
straight line due to the close proximity of the boundaries.

To get a first glance of the impact of the smoothing rules on the geometry of
the paths, the paths are visually examined. In addition, for the optimization, the
exact execution times for moving the panels are determined. Since this calculation
and data concerning temporal aspects such as velocity, acceleration, or jerk are not
available at the path planning level, the motion controller of the material handling
gantry robot with its trajectory planning is necessary, as the times depend on its
behavior. Consequently, the evaluation with respect to time of the implemented rules
is performed by virtual commissioning of the robot.

Virtual Commissioning of the Material Handling Robot

Apart from selecting the best rules for smoothing within the frame of path planning
and thereby optimizing thematerial handling robot with regard to its temporal behav-
ior, virtual commissioning of the robot facilitates also the general development of
the path planning algorithm, testing its integration into the control system as well as
the coordination of the interaction between the robot PLC and the motion controller.
This leads to improved quality of the algorithm and reduced commissioning time
and costs of the plant.

In order to establish a system for optimizing the path planning, an industrial
computer has been set up where the process control, the PLC and the path planning
algorithm are installed. The same computer can be used later in the real plant as
well. In contrast, a simulator of the motion controller is employed in place of the real
one. Figure 8 depicts the components of the system for virtual commissioning of the
robot.
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Fig. 8 For optimization, a
simulator of the motion
controller is used
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The challenge related to virtual commissioning of the robot is to keep up with
the updates of each component of the system, their interfaces and their interaction
during the rapidly changing design and development phase of the robot.

Details of the Implementation and of the Optimization Loop

As evaluating of the path planning algorithm in the frame of interactive optimiza-
tion should be as efficient as possible, the path planning algorithm is implemented
by using a high-level programming language instead of directly programming in
PLC code. This is more suitable for developing complex algorithms. In the present
case, the algorithm is developed in MATLAB®. MATLAB CoderTM generates C and
C++code fromMATLAB® code and, in a second step, optionally machine-readable
code in the form of a DLL (dynamic link library). In order to call high-level language
programs from the control program, another DLL is required. The generation of the
two DLLs based on the high-level programming language code of the algorithm
is automated so as to enable more efficient working with the optimization system
and that modifications of the rules in the algorithm are ready for evaluation quickly.
Figure 9 gives an overview of the interactive optimization procedure.
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The loop starts with defining the smoothing rules and programming them in
MATLAB®. This has to be accomplished by the user, whereas the two DLLs are
automatically generated on the basis of the MATLAB® code and are made avail-
able for deployment on the system for virtual commissioning. In order to obtain the
traversal times of the robot, a production run is simulated by means of the virtual
commissioning system. For this, the production list in form of cutting patterns is
loaded in the graphical user interface of the process control and the virtual produc-
tion is started. A log file is created for every path which contains the input and output
data of the path planning algorithm and data recorded by the simulator of the motion
controller. The recorded data is a list of time stamps and for each time stamp the
corresponding position of the robot (x- and y-coordinates of the rotation point and
rotation angle). With this data, the movement of the robot (with or without a panel)
following the path can be visualized. It is the same motion as in the real world or as
depicted in the graphical user interface of the process control, but with the advantage
that the spatial limitations and the solution path are illustrated. The visualization sup-
ports the analysis of the relation between the calculated times and the geometrical
features of the path and thus, facilitates definition and evaluation of the smoothing
rules. Based on the findings, the set of smoothing rules can be reworked.

The MATLAB® code of the algorithm is structured in such a way that only local
alterations are necessary for implementing new smoothing rules which keeps the
effort to a minimum and contributes to the robustness of the code. Together with the
automated generation of the DLLs, this achieves reduced amount of user input for
optimization and thus increases the efficiency of the optimization loop.

Conclusion

The trend towards customer-specificproduction, for example in the furniture industry,
has led to the development of cut-to-size plants with feedbacks in their material flow.
In order to realize feedbacks in a compact and space-efficient way as well as to
achieve the target of time-optimized panel handling, a new material handling gantry
robot has been developed. This paper presented an interactive approach to optimizing
the path planning algorithm of the robot as to its temporal behavior when traversing
planned paths. Thereto, the smoothing rules applied to initially generated paths were
used as optimization hook. As traversal times of the robot are not available in the path
planning step, a system for virtual commissioning of the robot was established. It
enables virtual production runs and thereby the temporal evaluation of the smoothing
rules in order to find the optimal ones as to their impacts on the behavior of the robot.
During the optimization loop user input is required, on the one hand, for analyzing
the relation between geometrical features of a path and the calculated time which the
robot needs to follow the path and, on the other hand, for adapting the smoothing
rules of the path planning algorithm. Virtual commissioning has the advantage that it
can be conducted already during the design and development process of thematerials
handling gantry robot and not as late as during commissioning on a customer’s site.
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Potential extensions and future work concerning path planning optimization
include the automation of the evaluation of the smoothing rules (lower box on the
left-hand side of Fig. 9) to improve and accelerate the utilization and operation of
the optimization system.
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Abstract Simulation-based optimization problems are often an inherent part in
engineering design tasks. This paper introduces one such use case, the design of
a box-type boom of a crane, which requires a time consuming structural analysis for
validation. To overcome high runtimes for optimization approaches with numerous
calls to the structural analysis tool, we here present several ways of approximating
the structural analysis results using surrogate models. Results show a strong correla-
tion between certain statics input and output parameters, and that various surrogate
modeling approaches yield similar results in terms of accuracy and impact of the
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predictors on the output. The box-type boom use case together with the surrogate
models shall serve as an industrial optimization benchmark for comparing various
algorithms on this simulation-based optimization problem.

Introduction

In competitive markets, companies often have to offer customer-specific products
to meet clients’ requirements. This frequently involves costly new or re-design of
existing products. One possibility to keep the costs at an affordable level is Engineer-
ing Design Automation (EDA). According to Hubka and Eder (1987), “Engineering
design is a process performed by humans aided by technical means through which
information in the form of requirements is converted into information in the form of
descriptions of technical systems, such that this technical system meets the require-
ments of mankind”. This process is (partly) automated in EDA.

Simulation and optimization tasks are often an inherent part of engineering design
problems, since the ways of defining and evaluating a product often become too
complex to find valid and (near) optimal solutions manually in reasonable time (Deb
2010;Roy et al. 2008).Awide range of industries have adopted optimizationmethods
within EDA, e.g. for validating and improving structural aspects (Affenzeller et al.
2015), or appropriately selecting, dimensioning and assembling components to fulfill
customer-specific needs (Zhang 2014).

The focus of this paper is a case study concerning the engineering design of a
Box-Type Boom (BTB) crane, commonly seen in maritime applications (see Fig. 1
for an example). Such cranes are a prime example for requiring re-design for almost
every ordered boom due to varying customer requirements such as boom length and
load cases.

Together with Liebherr-Werk Nenzing (2017), the automation of the BTB design
in terms of automatically generating a 3D-CAD model, production drawings and
welding plans of the boom based on case-specific input values (e.g. length, statics
parameters) was realized earlier (Frank et al. 2014). A major task left to the engineer
is the definition of the statics parameters (e.g. thicknesses of the plates), which are
chosen manually based on experience and previously designed booms. Each boom
design must be evaluated using a structural analysis tool to verify static requirements
(e.g. stress).

Fig. 1 Box-type boom crane
with indicated pivot- and
head-part as well as middle
section
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The contribution of this paper is two-fold: First, the BTB optimization
problem for automating and optimizing the manual process of defining the
statics parameters while minimizing costs is presented in Section
“Box-Type Boom Optimization Problem”. The case study shall later serve as
an industrial benchmark for comparing different optimization approaches in a
simulation-based optimization environment. In comparison to other popular design
optimization benchmark problems, such as the pressure vessel problem (Sandgren
1988) or the welded beam problem (Ragsdell and Phillips 1976), the BTB optimiza-
tion problem is based on a real-world industrial use case that requires a runtime
expensive simulation for evaluating certain constraints.

The second contribution of this paper deals with the issue of this runtime expen-
sive simulation tool for the structural analysis of the BTB (presented in Section
“SurrogateModeling for theBox-TypeBoom). Since optimization approaches poten-
tiallymake numerous calls to this structural analysis tool, surrogatemodels (Forrester
and Keane 2009; Wang and Shan 2007) are learned to replace the runtime expen-
sive evaluation in an optimization procedure. Additionally, relationships between the
input (e.g. thicknesses of plates) and output (e.g. utilization with regard to stress)
of the structural analysis tool can be investigated by analyzing the surrogate models
(presented in Section“Results).

Overall, the paper comprises to the introduction of the BTB optimization bench-
mark problem and the surrogate modeling for replacing the structural analysis tool.
Automation and optimization based on these results is out of scope of the paper and
left for future work.

Box-Type Boom Optimization Problem

A BTB consists of a pivot-, a middle and a head-section (see Fig. 1). The pivot- and
head-part are selected from a list of standardized parts; thus, the optimization of the
BTB is limited to the middle section of the boom. This middle section is further
divided into segments (3m each), each of which lies between two bulkheads or a
bulkhead and the pivot- or head-part (see Fig. 2 for a boom with 5 segments).

Boom Configuration Segment
1 . . . 5

Thickness
Bottom x1,b . . . x5,b
Side x1,s . . . x5,s
Top x1,t . . . x5,t

# Stiffeners
Bottom y1,b . . . y5,b
Side y1,s . . . y5,s

Type Stiffeners
Bottom zb
Side zs

Fig. 2 Box-type boom optimization: variables of a boom configuration
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Each segment is described by five variables: Thickness of the bottom, side (same
for both sides) and top plates as well as the number of stiffeners on the bottom and
side plates. Furthermore, there are two global variables, the type of stiffeners on the
bottom plates and on the side plates. One setting of these variables makes up a boom
configuration (see Fig. 2). Formally, with n being the number of segments, we define
xi,j, yi,k , zk with i ∈ {1, . . . n}, j ∈ {b, s, t}, k ∈ {b, s} as follows:
• xi,j – plate thickness of segment i on the bottom (j = b), side (j = s) or top (j = t)
• yi,k – number of stiffeners of segment i on the bottom (k = b) or side (k = s)
• zk – type of stiffeners on the bottom (k = b) or side (k = s)

The objective of the optimization is to find a boom configuration with mini-
mal material and welding costs while satisfying a set of constraints (see below).
The material costs include the material of the plates and the stiffeners. The weld-
ing costs result from welding the stiffeners to the plates as well as welding the
plates to form the boom. For the latter part, the plates of the segments, which
are of length 3 meters or less (for the last segment), can be combined to larger
plates of up to 10 meters. Thus, the welding costs are approximated by using
the length of the weld seam and the thicknesses of the combined plates. For x =
(x1,b, x1,s, x1,b, x2,b, x2,s, x2,b, . . . , xn,b, xn,s, xn,t), y = (y1,b, y1,s, y2,b, y2,s, . . . ,
yn,b, yn,s) and z = (zb, zs), the objective function is defined as

f (x, y, z) =
n∑

i=1

⎛

⎝
∑

j∈{b,s,t}
mcplate(xi,j) +

∑

k∈{b,s}
yi,k mcstiffener(zk)

+
∑

k∈{b,s}
yi,k wcstiffener(zk)

⎞

⎠ + wcboom(x),

(1)

with

mcplate material costs of the plate depending on the thickness xi,j of the ith

segment on the bottom, side or top, respectively;
mcstiffener material costs of the stiffener depending on the stiffener type zk on the

bottom or side, respectively;
wcstiffener welding costs of the stiffener depending on the stiffener type zk on the

bottom or side, respectively; and
wcboom welding costs of the plates depending on all thicknesses xi,j,

i ∈ {1, . . . n}, j ∈ {b, s, t}.
In order to design a functioning crane, the boom configuration has to be chosen

such that certain statics constraints as well as constraints on the plate thicknesses,
and number and type of stiffeners are fulfilled. These constraints are formally defined
within the optimization problem below:
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minimize
xi,j,yi,k ,zk

f (x, y, z)

subject to

σi,j < 1 (2)

φi,j < 1 (3)

βi,k < 1 (4)

xi,b ∈ {ρ0, . . . , ρp} ⊂ N (5)

xi,s ∈ {τ0, . . . , τq} ⊂ N (6)

xi,t ∈ {ω0, . . . , ωr} ⊂ N (7)

xi,j ≥ xi+1,j (8)

yi,b ∈ {0, 1, 2, 3} (9)

yi,s ∈ {0, 1, 2} (10)

yi,k ≥ yi+1,k (11)

zk ∈ {1, 2, 3, 4} (12)

for all i ∈ {1, . . . n}, j ∈ {b, s, t}, k ∈ {b, s}
The objective function, defined in Eq. (1), shall be minimized subject to a set

of constraints. The constraints in Eqs. (2) to (4) state that the utility constraints
with respect to stress (denoted by σ ) and fatigue (φ) on the bottom, side and top
as well as with respect to buckling (β) on the bottom and side are fulfilled for each
segment. A value larger than 1 is a violation, and the larger the value, the higher the
violation. A structural analysis tool is used to calculate these utilizations for a given
boom configuration for predefined load-cases and constraints-margins according to
the customers’ needs. In Eqs. (5) to (7) the allowed thicknesses for the plates on the
bottom, side and top, respectively, are defined as a subset of the natural numbers.
For instance, for the bottom, the thicknesses could be defined as a set of 5 values
{ρ0, ρ1, ρ2, ρ3, ρ4}. Equation (8) states that these thicknesses are non-increasing from
the pivot- to the head-part. The number of stiffeners is limited by the constraints in
Eqs. (9) and (10) to lie between 0 and 3 (bottom), and 0 and 2 (side), and is non-
increasing from the pivot- to the head-part (Eq. (11)). Finally, the four allowed types
of stiffeners (U-shaped with different dimensions) are stated in Eq. (12). For the
remainder of the paper, all constraints are considered hard constraints.

Surrogate Modeling for the Box-Type Boom

Solving optimization problems with runtime expensive solution evaluations usually
results in total execution times that are too high for practical applications.Considering
the example of a 9-segment boom, one boom configuration consists of 5 · 9 + 2 = 47
variables. Assuming five possible thicknesses for each bottom, side and top (x),
there are 5 · 3 · 9 possibilities of assigning these thicknesses (disregarding any other
constraints). Furthermore, there are 4 · 9 = 36 possibilities for stiffener arrangements
on the bottom and 3 · 9 = 27 on the side (y), and 2 · 4 = 8 choices of stiffener types
(z) (again disregarding any other constraints). Thus, there are in total more than
a million solution candidates. Evaluating only 10,000 of these candidates with the
structural analysis tool at hand (with a runtime of 5min each) would already take
about a month.
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Surrogatemodeling (Wang and Shan 2007; Forrester andKeane 2009) can be used
to make common optimization techniques feasible, by replacing expensive calcula-
tions (such as the structural analysis for the BTB) with simpler models. Typically,
machine learning (Bishop 2006) techniques, such as linear regression, support vector
regression, neural networks, Gaussian processes and symbolic regression, are used to
learn surrogate models. These methods use data of previously performed expensive
evaluations to learn a model that predicts the value of unseen evaluations.

For the box-type boom, the input variables variables of the models are the thick-
nesses (x), and the number and type of stiffeners (y and z, respectively). The output
variables are the statics constraints (eight per segment): Degree of utilization of
stress (bottom, side, top), fatigue (bottom, side, top) and buckling (bottom, side).
Continuing the 9-segment boom example, there are 8 · 9 = 72 statics constraints.
The surrogate models will be trained based on those input and output to predict the
statics constraints of boom configurations that are not yet evaluated.

Before the surrogate models are trained, the sampled data is analyzed to gain
insights in the correlations between the input and output variables (Section
“Data Analysis”). Based on this analysis, appropriate subsets of the input variables
are suggested, and ways of reducing the number of models which have to be trained
are investigated (Section “Variable Selection and Data Preprocessing”). Finally, the
modeling procedure is described (Section “Modeling Procedure”).

The data analysis and modeling was done in the open-source framework Heuristi-
cLab (HeuristicLab 2017; Wagner et al. 2014), which provides a large set of popular
heuristic and evolutionary optimization algorithms and also provides powerful tools
and algorithms for data analysis and data-based modeling. The data on which the
presented results are based on include a set of approx. 5000 samples, which were
created with HeuristicLab’s distributed computation environment.

Data Analysis

We first investigated whether there are measurable correlations between the sampled
inputs and outputs to better understand the relations between the variables of the
BTB problem and to assess which variables are important for the modeling. Because
the inputs are fixed integers, we used Spearman’s rank (Lehmnn et al. 2005) as
correlation measure, as opposed to the popular Pearson R.

Figure 3 shows the correlations between the inputs and outputs of segments 3 and
4, along which we first investigate the correlations within a single segment. Green
color indicates a positive correlation, red a negative one and white no correlation.
The highest correlation can be observed between bottom fatigue φi,b and bottom
thicknesses xi,b as well as top fatigue φi,t and top thickness xi,t within the same
segment (correlation coefficients of approx.−0.95). This reflects the fact that thicker
plates are less likely to result in a violation of the fatigue utilization. Interestingly,
side fatigue φi,s and side thickness xi,s correlate much less (about −0.25). Similar
observation can be made for stress (σ ) and thicknesses, however, to a smaller degree
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x3,b x3,s x3,t y3,b y3,s x4,b x4,s x4,t y4,b y4,s zb zs
σ3,b -0.62 -0.09 -0.14 0.15 0.00 -0.65 -0.07 -0.11 0.14 0.00 0.24 0.23
σ3,s -0.31 -0.18 -0.46 0.13 -0.07 -0.31 -0.15 -0.46 0.10 0.02 0.24 0.22
σ3,t -0.11 -0.12 -0.62 0.12 -0.08 -0.12 -0.16 -0.64 0.03 0.04 0.16 0.15
ɸ3,b -0.95 -0.18 -0.20 0.07 0.00 -0.13 0.02 0.01 0.08 0.00 0.11 0.11
ɸ3,s -0.65 -0.27 -0.55 0.09 -0.05 -0.08 0.02 -0.04 0.08 0.03 0.16 0.15
ɸ3,t -0.14 -0.21 -0.96 0.08 -0.07 0.01 -0.07 -0.14 0.00 0.05 0.06 0.05
β3,b -0.66 -0.05 -0.01 -0.48 0.00 -0.34 -0.01 -0.03 0.09 -0.01 0.14 0.13
β3,s -0.30 -0.69 0.01 0.02 -0.36 -0.29 -0.11 0.05 0.11 0.02 0.11 0.06
σ4,b -0.18 0.09 -0.07 0.16 -0.01 -0.67 -0.09 -0.12 0.15 -0.01 0.22 0.23
σ4,s -0.14 0.02 -0.13 0.11 -0.07 -0.35 -0.16 -0.49 0.11 0.02 0.24 0.24
σ4,t -0.08 0.04 -0.13 0.07 -0.07 -0.14 -0.12 -0.67 0.02 0.03 0.17 0.18
ɸ4,b -0.13 0.06 -0.04 0.11 0.00 -0.95 -0.20 -0.22 0.08 0.00 0.12 0.13
ɸ4,s -0.08 0.03 -0.11 0.09 -0.04 -0.66 -0.25 -0.58 0.06 0.03 0.15 0.15
ɸ4,t 0.02 0.04 -0.16 0.04 -0.06 -0.16 -0.25 -0.96 -0.05 0.03 0.07 0.05
β4,b -0.13 0.11 -0.06 0.12 -0.01 -0.66 -0.04 -0.11 -0.45 -0.01 0.11 0.12
β4,s -0.06 -0.02 -0.05 0.04 -0.01 -0.34 -0.68 0.01 0.05 -0.36 0.02 -0.03

Fig. 3 Correlation matrix of the inputs (columns) and outputs (rows) for segments 3 and 4
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Fig. 4 Correlation matrix between the inputs (columns) and the outputs (rows) of the BTB. The
order of the inputs and outputs per segment is the same as in Fig. 3

(correlations up to −0.67). While buckling (β) also correlates with the thicknesses,
the more interesting observation is the correlation with the number of stiffeners (y).
The latter is in accordance with the fact that the stiffeners are mostly used to avoid
buckling. The stiffener types z only correlate to a small degree with the outputs.

Another aspect that can be observed in Fig. 3 is that the outputs of a segment
generally correlate to the inputs of that same segment, but also to the inputs of
the next segment to a smaller degree, e.g. the stress of segment 3 correlates with
the thicknesses of segment 4 (up to −0.65). The inputs of the previous segment,
however, have only very small correlation coefficients to the current segment (up to
−0.18). Those aspects can be observed globally over all segments, as shown by the
correlation matrix in Fig. 4. The reddish block diagonal shows the high correlations
between inputs and outputs of the same segments. The lighter reddish blocks just
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Table 1 Inputs and outputs for data analysis and surrogate modeling grouped by segments

right to themain diagonal are the correlations between the next and current segments.
These observations help in selecting (and thus minimizing) the relevant variables for
training surrogate models, as discussed in more detail in the following section.

Lastly,weobserved that the outputs are highly correlatingwith each other (data not
shown in the paper), e.g. buckling bottom correlates with stress bottom. This offers
the opportunity that surrogate models are trained not only based on the “regular
inputs” (thicknesses and stiffeners), but also based on other statics constraints. For
example modeling the stress with fatigue as additionally allowed input.

Variable Selection and Data Preprocessing

We first discuss the selection of an appropriate set of input variables to train the sur-
rogate model. Generally, the more selected inputs, the higher the probability that all
relevant information is available to generate a model that approximates the structural
analysiswell (i.e. has a high accuracy). However, including toomany variablesmakes
the training of the model more difficult and the chance is higher that certain variables
are redundant or irrelevant (i.e. carry no or very little additional information). Thus,
selecting a small set of relevant variables is an important task.

Grouping the thickness and stiffener variables per segment i, we define xi =
(xi,b, xi,s, xi,t) and yi = (yi,b, yi,s). Similarly, for the statics utilization constraints,
we define for stress σ i = (σi,b, σi,s, σi,t), fatigue φi = (φi,b, φi,s, φi,t) and buckling
β i = (βi,b, βi,s). These inputs and outputs are listed in Table 1, where each row
correspond to one sample that was evaluated with the structural analysis tool.

Based on the results of Section “Data Analysis”, we define which input variables
are selected for training the 8nmodels (one per output variable per segment). Besides
the option of using all inputs to model an output of a specific segment, the analysis of
the correlation matrix of the inputs and outputs reveals that especially the variables
of the current segment i as well as the next segment i + 1 are good candidates to be
used as inputs. Thus, we have the following options for selecting the input variables:

• variables from all segments plus the global variables: 5n + 2 selected inputs, e.g.
for a 9-segment boom 47 selected inputs
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Table 2 A single sample (corresponding to one row in Table 1) is aligned into multiple data rows

• variables of the current segment i plus the global variables: 5 + 2 = 7 selected
inputs

• variables of the current segment i and the next segment i + 1 plus the global
variables: 2 · 5 + 2 = 12 selected inputs (Note that for the last segment there are
only 5 + 2 = 7 inputs, because there is no next segment)

Due to the structure of the BTB-problem, not only the inputs can be reduced,
but also the number of models that need to be trained. In the elaborations above,
8n models were used (for each segment i, one model for each statics constraint).
One option to reduce the number of models would be to create only one model that
predicts the overall violation of the statics constraints, e.g. in form of the sum of
all values larger than one. However, such a model would be difficult to train and
to interpret because information is lost due to the aggregation. Instead, we opted
for creating a single model per statics constraint that can predict the output for all
segments, i.e. one model for fatigue bottom instead of one fatigue bottom model per
segment. Thus, only 8 models need to be trained. To still be able to capture potential
differences among the segments, the segment number is used as an additional input
variable.

To facilitate training one model per output, the data is restructured to yield the
structure shown in Table 2. In essence, the data is aligned per segment so that each
new row contains outputs of a single segment. By splitting the data this way, a single
evaluation of a boom with n segments yields n data rows of 5 + 2 inputs and 8
outputs. Optionally, the inputs of adjacent segments can be included (potentially
5n + 2 inputs). Including the input of the next segment (as shown in Table 2), we
obtain n − 1 data rows of 2 · 5 + 2 input variables (for all segments except the last
one) and one data row of 5 + 2 input variables (for the last segment).

This segment-based data-splitting has two advantages: First, we only need to
create a total of 8 models, one for each statics utilization, instead of 8n models.
Second, we obtain more training data from a single evaluation. Thus, splitting the
data by segments should speed up and simplify the modeling process.
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However, when the inputs of the next segment are included, the last segment must
be handled differently, because there is no next segment. We use a “dummy next
segment”, where the thicknesses, number of stiffeners and stiffener types are set to
zero.

Modeling Procedure

The selection of the modeling procedure is a central task, influenced by several
factors. In order to be able to discuss surrogate models with domain experts and
to potentially gain valuable insights in the connection between the input and out-
put variables, we use white-box models in the form of mathematical expressions
describing the relations between these variables. Obtaining such expressions also
enables simplifying (e.g. by deleting expressions with no/low impact) and fine-
tuning (e.g. optimizing the numeric constants computationally (Kommenda et al.
2013)) in a post-processing step. One simple white-box model is linear regression,
which is, however, too restricted because we expect non-linear relations. Thus, Sym-
bolic Regression (SR) was chosen as an extension of linear regression. We generate
SR models using genetic programming (Koza 1992), and ALPS (Hornby 2006) and
OSGA (Affenzeller and Wagner 2005) in combination with constant optimization
(Kommenda et al. 2013). In online surrogate-assisted optimization (Forrester and
Keane 2009; Wang and Shan 2007), (computationally cheap) black-box modeling
techniques (e.g. random forests) can be used instead.

To group themodels of each constraint, we introduce the notationσ = (σb, σs, σt),
where σb, σs and σt denote the utilization with regard to stress on the bottom, side
and top, respectively. Similarly, φ = (φb, φs, φt) and β = (βb, βs) are defined.

Initially, we trained models for the 8 constraints σ , φ and β using the
segment-based data-splitting approach with the segment number, the current
and next segment as well as the global variables as input (cf. Section
“Variable Selection and Data Preprocessing” and Table 2). We then extended the
set of input variables to also allow other statics constraints as inputs, as suggested
in the latter part of the data analysis in Section “Data Analysis”. Interestingly, only
fatigue could be modeled well without other statics constraints as input variables;
the accuracy of the models for stress and buckling was significantly lower without
the extended set of input variables. Thus, we allowed the fatigue as extended input
for modeling the stress. For modeling buckling we allowed fatigue and stress. Thus,
we obtain the following models

φ̂ = f (i, xi, yi, xi+1, yi+1, z) , (13)

σ̂ = f (i, xi, yi, xi+1, yi+1, z,φ) and (14)

β̂ = f (i, xi, yi, xi+1, yi+1, z,φ, σ ) , (15)
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where φ̂, σ̂ and β̂ are the estimated values of σ , φ and β, respectively, i, xi, yi, xi+1,

yi+1, z the regular inputs and φ, σ the statics constraints as extended inputs.
After modeling, the statics constraints that are used as extended inputs – which are

not present when estimating a novel boom configuration – must be estimated using
the other models. This implies that circular dependencies among the models are
not allowed. To distinguish between the models above (where the statics constraints
are used from the training dataset) and the model where the statics constraints are
estimated, we introduce the model variants

σ̂ ∗ = f
(
i, xi, yi, xi+1, yi+1, z, φ̂

)
and (16)

β̂
∗ = f

(
i, xi, yi, xi+1, yi+1, z, φ̂, σ̂ ∗) , (17)

where the estimated values of the statics constraints are used instead. In thosemodels,
the model errors accumulate, meaning that the overall model accuracy will be lower
than in the models using the original values from the dataset.

As an additional step for models that use extended inputs, we incorporate the
models of these extended inputs into the outer model. In other words, for a model â
that use other statics constraints b as extended input variables, we incorporated the
models b̂ directly into the model â by replacing each occurrence of these variable b
by its model b̂. For example, the stress model σ̂ ∗ actually includes the whole expres-
sion of the fatigue model φ̂. This makes the handling of models simpler (the models
are independent of each other), and enables fine-tuning (simplifying and constant
optimization) of the whole model. After fine-tuning this larger model, the accu-
racy can be higher than when simply executing the models sequentially and passing
the results to the dependent models. In the following results (Section“Results), the
models marked with ∗ are the combined ones with fine-tuning applied.

Results

In this section, we present and discuss the modeling results for the 8 utilization
constraints: bottom/side/top stress (σ ), bottom/side/top fatigue (φ) and bottom/side
buckling (β). First, we present an overview of all models and discuss the accuracy of
the models and the impact of the input variables. Second, we discuss a single model
(fatigue bottom) in detail, to show how the model can be used to gain insight into
the general behavior of the BTB.

Models Overview

In this section, an overview of the results of all models is presented. Table 3 contains
the models’ length in terms of number of nodes and the model’s accuracy in terms
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Table 3 Accuracy of the model in terms of Pearson R2 and Mean Absolute Error (MAE)

of the Pearson’s R2 and mean absolute error. All models fit the data well, with the
models for fatigue and stress generally having a very high accuracy, and models
for buckling having a lower though still high accuracy. The high accuracies for all
models indicate that, even though the underlying calculations of the statics analysis
tool are complex, these constraints can indeed be approximated well with simple
models.

Table 4 contains the variable impacts for all models. The impact of a variable
describes how much the accuracy of a model (i.e. the Pearson R2) would decrease
if this variable is not available (similar to node-impacts in Affenzeller et al. (2014)).
To simulate the lack of a variable, the values of that variable are shuffled to break
their relation to the target variable. A positive impact means that the quality of the
model would decrease without the variable and vice versa for negative values. For
example, a variable impact of 0.8 means that the model’s accuracy would be reduced
by 0.8 (in terms of R2), indicating that this variable is quite important.

For all models, the segment number i has a very high impact, indicating that the
constraints behave differently per segment. For final models with dependent models
already incorporated (marked with ∗), the thicknesses always have a high impact,
which is not surprising considering that thicker plates should result in more robust
booms. The stiffener types are hardly used by any model, indicating that it is not
important which type is used. The number of stiffeners of the next segment is not
used by any model, thus it is not included in the table.

Interestingly, themodels for fatigue only use the thicknesses of the current segment
plus the segment number and still yield the highest accuracy. This indicates that the
fatigue is influenced very directly and only by the thicknesses of the plates.

The models for the stress use the thicknesses of the current and the next segment,
i.e. the stress constraints could bemore likely to be violated if the subsequent segment
is very heavy due to the subsequent plates’ thickness. Another interesting aspect is
that the models for stress that are still using fatigue as input (σ̂ ) do not use the
thicknesses of the current segment, instead they depend heavily on the fatigue.
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Table 4 Variable impacts of the inputs on the models. No entry means that the variable was not
used in the model. Crossed out variables were not available as an input

The buckling models are the only models that use the number of stiffeners, which
supports our current understanding of the BTB that the stiffeners are only required to
counter buckling. Interestingly, buckling bottom and side also depend on the stress
bottom in both cases. Summarizing, buckling is mainly dependent on the thickness
bottom/top and the number of stiffeners; and indirectly dependent on the thicknesses
of the next segment via the stress.

Modeling Fatigue Bottom

We demonstrate how the models can be used to learn interesting aspects about the
BTB, using the following simplified model of fatigue bottom:

φ̂b = c(i) + exp
(−0.094288xi,t

)
1.9923 − 1.1311

1.5519xi,b + 0.79312xi,s + 2.0162
+ 0.017964 (18)

c = (7.7098, 7.7719, 7.8131, 7.8282, 7.7843, 7.6066, 7.1214, 5.8482, 2.6857)

Themain impacts in themodel for fatigue bottom inEq. (18) are the terms covering
the segment-dependent vector c(i) and the bottom thickness 1.5519xi,b. These high
impacts are also in line with the impact factors in Table 4.
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Instead of using the segment number i directly as an integer, a vector c is used
where each entry corresponds to one segment. The values for segments 1 to 7 are
significantly higher, which indicates that those segments are more likely to violate
the constraint (assuming the other variables are fixed). The thickness bottom and
side are both in the denominator, meaning that they are inverse proportional to the
fatigue. The thickness top is included in the model within the term exp(−x), also
meaning that it is decreasing with higher values. Both facts combined imply that
higher thicknesses reduce the likelihood that the fatigue constraint is violated. The
models for fatigue side and top (not discussed in detail here) behave similarly.

The models for the other constraints are not discussed here in detail. All models
can be found online at http://dev.heuristiclab.com/AdditionalMaterial.

Summary and Discussion of the Results

The results show that the structural analysis of the BTB has large potential for apply-
ing surrogate modeling. This suggests that, after further investigation and discussion
with domain experts, the expensive simulations – which are currently used to deter-
mine the utilization of stress, fatigue and buckling – could be replaced bymuch faster
models. Additionally, valuable information can be obtained by analyzing the models
in more detail, as demonstrated with the simplified model for fatigue bottom.

As a next step, to solve theBTBoptimization problem, the createdmodels could be
used in optimization approaches that potentially require a large number of solution
evaluations because the mathematical expressions of the surrogate models can be
evaluated within microseconds.When accounting for the overall runtime to solve the
BTB problem, however, the efforts spent to sample the data and learn the surrogate
model must also be accounted for. Currently, the most calculation intensive part is
creating the samples for training the model, which can take several days up to a
few weeks, depending on the computational resources. Modeling (including data
preprocessing and model postprocessing) can be done within a few days.

One drawback of the presented models is that they might not be generally appli-
cable for all customer requirements, because the sampled data were based on one
boom with a fixed length and a fixed set of load-cases. For other settings, sampling
and modeling would have to be redone. However, the general behavior of the models
(e.g. in terms of thicker plates being inverse proportional to violations in the utiliza-
tions) are expected to be similar. In that case, potentially less samples are required
and the existing models are just adapted, i.e. their numeric constants recalculated to
fit the new data.

http://dev.heuristiclab.com/AdditionalMaterial
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Conclusion

The paper presents the industrial use case of a box-type boom crane as potential
benchmark for comparing optimization approaches. The BTB optimization problem
is easy to understand and relatively simple to specify, with the exception of the struc-
tural analysis. For the goal of providing this use case to other researchers, future
attempts include providing the implementation of the problem using the learned sur-
rogatemodels aswell as developing a simplified open-source version of the structural
analysis tool.

As the second contribution of the paper, surrogatemodeling for the runtime expen-
sive structural analysis is presented, with the intention of replacing this expensive
evaluation in optimization algorithms with the simpler surrogate model. Due to the
structure of the BTB problem, in particular due to the segment-based partitioning,
several strategies for surrogate modeling are possible, ranging from only selecting
certain input variables (e.g. only variables of the current segment) to splitting the data
based on the segments for reducing the number of outputs. Generally, the models
capture the statics constraints very well in terms of their accuracy, suggesting that
the expensive structural analysis tool can indeed be substituted by much simpler and
faster models. Future directions with regard to surrogate modeling are to train more
complex surrogatemodels that consider different load-cases and other characteristics
of a boom as input data in order to be able to generalize the model for several booms.

The main avenue of continuing this work is to apply and compare different opti-
mization methods, such as heuristic approaches, single solution-based algorithms as
well as population-based optimization approaches, on the BTB problem. The goal
is to investigate which optimization approaches are most promising for this kind of
industrial use case.
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Knowledge Objects Enable
Mass-Individualization

Joel Johansson and Fredrik Elgh

Abstract Mass customization and product individualization are driving factors
behind design automation, which in turn are enabled through the formalization and
automation of engineering work. The goal is to offer customers optimized solutions
to their needs timely and as profitable as possible. The path to achieve such a remark-
able goal can be very winding and tricky for many companies, or even non-existing
at the moment being. To succeed requires three essential parts: formally represented
product knowledge, facilities to automatically apply the product knowledge, and
optimization algorithms. This paper shows how these three parts can be supported
in engineer-to-order businesses through the concept of knowledge objects. Knowl-
edge Objects are human readable descriptions of formalized knowledge bundled
with corresponding computer routines for the automation of that knowledge. One
case example is given at the end of the paper to demonstrate the use of knowledge
objects.

Introduction

Mass-customization (Hvam et al. 2008) is one of the most important competitive
strategies in the current economy (Blecker andAbdelkafi 2006) and has been steadily
growing for about three decades (Fogliatto et al. 2012; Silveira et al. 2001; Pine and
Davis 1999). The reason for this rapid growth and its adoption by manufacturing
industries is the great potential to improve customer value. The idea is to strive for
a broad offer of products and at the same time ensure production efficiency.
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Individualized products (also referred to as custom-engineered or one-of-a-kind
products) include products that do not let them self be modularized into pre-defined
modules. This is often due to the early customer decoupling point (Rudberg and
Wikner 2004) which requires an engineer-to-order (ETO) approach instead of the
common configure-to-order approach. This means that engineering has to be done in
development, quotation preparation and order processing for every customer enquiry
and order. The ETOprocess which allows products to be individually adapted to large
variations in customers’ specifications can be more or less formalized but includes
similar engineering tasks for every customer enquiry and order (tasks may be added
or cancelled from time to time).

The intentionwith the research presented in this paper is to enable ETObusinesses
to move towards fully automated ETO processes. In long terms it will enable ETO
businesses to apply optimization algorithms to parts of or to the entire automated
process making mass-individualization a reality; with the goal to offer customers
individually optimized solutions to their specific needs timely and as profitable as
possible.

To succeed with mass-individualization requires three essential parts namely for-
mally represented product knowledge (further on referred to as formalized product
knowledge), facilities to automatically apply the formalized product knowledge, and
optimization algorithms.

To enable optimization algorithms to be applied to parts of, or to the entire, ETO
process requires not only the development of optimization routines but also the
automation of ETO sub-processes which are executed to evaluate the cost functions.
To automate the ETO sub-processes requires the capturing and formalization of the
engineeringwork in the ETO sub-processes. The optimization of ETOproducts are in
otherwords resting on design automation, that in turn rests on formalized engineering
knowledge.

Automated ETO sub-processes need to be executable by computers to be auto-
mated but they also need to be readable and comprehensible by humans to be main-
tained as market, technology and legacy change. A class of objects called Knowl-
edge Objects was proposed by the authors of this paper (Elgh and Cederfeldt 2007;
Johansson 2011; Elgh and Johansson 2014). In this work, Knowledge Objects are
human readable descriptions of formalized knowledge bundled with correspond-
ing computer routines for the automation of that knowledge (see Definition 1 in
Section “Knowledge Objects”). This paper propose Knowledge Objects as funda-
mental building blocks for ETO processes to be formalized, automated and targeted
for optimization algorithms.

These three parts: formalized product knowledge, design automation, and opti-
mization are indeed their own research fields and much can be said about them.
These fields are summarized in Section “Frame of Reference”. Then the con-
cept of knowledge objects is introduced in Section “Knowledge Objects”. To
demonstrate the use of knowledge objects a case example is described in Section
“Case Example: Automated Weldability Analysis”.
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Frame of Reference

To enable product individualization where broad aspects of the product are taken into
consideration requires a sound foundation of formalized product knowledge, design
automation and optimization. Much can be said about these three topics. However,
this section very shortly briefs the reader regarding them.

Formalized Product Knowledge

Engineering design problems are solved through iterations between synthesis and
analysis phases.Design proposals developed through creative processes are evaluated
based on requirements. During new product development processes much of the
trial and error loops occur as a part of the learning of how to solve the problems
connected with the product. The knowledge developed during these trials is referred
to as product knowledge (Kennedy et al. 2008). When the product matures a base
of tested solutions will emerge, a base that is reviewed on customer demanding the
product for a different set of requirements. When such a base of solutions exists
the synthesis phase gradually turns into a search for existing solutions that can be
combined to solve new problems. Also, when the product matures the way of testing
the product to requirements is formalized and can sometimes be skipped based on an
inductive way of reasoning, i.e. based on experience it can be concluded that the new
solutionwill fit. In themostmature state of an engineer-to-order product the processes
for developing a new variant are well defined and based on user requirements that is
configured so that the product knowledge can be utilized in synthesis and analysis
phases to great extent.

There are methods and tools to capture and structure the product knowledge. One
method for knowledgemodelling, applicable in the domain of design automation sys-
tems, is the Systems Modelling Language (SysML) (Friedenthal et al. 2012). Com-
monKADS is a method to document and manage engineering knowledge (Schreiber
and Akkermans 2000). It acts as a baseline for system development and research
projects.

Product Variant Master is an operational tool to model and visualize a product
family (Hvam et al. 2008). In general, a product family can be modelled in Product
Variant Master as a Part-of structure which shows the components included in the
product, and a Kind-of structure that shows the variants available.

Design Automation

Engineering problems are typically ill-structured (Simon 1973) because they lack
well-definedways of testing any suggested solution, the states of the problem are hard
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to represent and the knowledge of the problems is hard to capture and represent. This
fundamental properties of engineering problems has compelled the use of artificial
intelligence in engineering design.

Knowledge based engineering (KBE) is a method to synthesize design proposals
and has been defined as a technology based on the use of dedicated software able to
capture and systematically reuse product and process engineering knowledge, with
the final goal of reducing time and costs of product development by means of the
following: Automation of repetitive and non-creative design tasks, and support of
multidisciplinary design optimization in all the phases of the design process (Rocca
andTooren 2012). TraditionallyKBE is based on knowledge-based-system from arti-
ficial intelligence where production rules are the fundamental carrier of the captured
knowledge.

Case Based Reasoning (CBR) is another method to synthesize design proposals
based on digitally stored experiences (referred to as cases) and reusing them in
new situations (new cases). The method is based on four main operations: retrieve,
evaluate (also referred to as reuse), revise, and retain (Agnar and Plaza 1994; Zhu
et al. 2015). One advantage with CBR is that knowledge acquisition in CBR consist
of a simple process of collecting examples and when comparing to KBE a way to
short-cut a work-labor intensive process of developing formal knowledge.

In literature many examples can be found of how design automation has been
applied to many parts of the product development process ranging from design syn-
thesis through design evaluation and to production planning.

Optimization

Inmathematics, optimization is the discipline concernedwithfinding inputs of a func-
tion that minimize or maximize the function value. The selection of values for design
variables may be subjected to constraints (Pardalos and Resende 2002). Optimiza-
tion in product development means finding the best solution among many feasible
solutions (i.e. optimal solutions for the customers needs that can be produced with
profit). Feasible solutions are those that satisfy all the constraints in the optimization
problem. The best solution could minimize the cost of a process or maximizing the
efficiency of a system (Arora 2015).

There exist a multitude of optimization algorithms but all optimization problems
can mathematically be defined in a standardized way as presented by Arora (2015):
Find an n-vector x = (x1, x2, ..., xn) of design variables to minimize a cost function

f (x) = f (x1, x2, ..., xn) (1)

subject to the p equality constraints

h j (x) = h j (x1, x2, ..., xn) = 0; j = 1 to p (2)
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and the m inequality constraints

gi (x) = gi (x1, x2, ..., xn) ≤ 0; i = 1 to m (3)

Through design automation, design proposals are generated and analysed and
evaluated based on performance and production requirements. Finite-Element-
Method is a widely used method for the evaluation which compared to data-base
queries in CBR and rule firing in KBE is very computational expensive, i.e. generat-
ing design proposals takes fractions of the time necessary to evaluate them. This has
led to the development of surrogate modelling or meta-modelling. Surrogate mod-
elling (Jin et al. 2001; Forrester and Keane 2009) includes development of response
surfaces basedondesignof experiments. The response surfaces are subsequently used
as cost functions in optimization algorithms. The design variables in product devel-
opment are typically continuous and discrete mixed together, which is hard to many
optimisation algorithms. Another difficulty with optimization on ETO-processes is
that f as product structures change, also the cost function changes. However, opti-
mization has proven successful on many sub-processes of the ETO-process.

Knowledge Objects

In product development knowledge dictates what to do and what not to do in differ-
ent situations. The knowledge that engineers use in product development processes
appears in different kinds. In this context knowledge includes facts, rules and condi-
tions. To enable mass-individualization it is necessary to automate the engineering
activities included in the process of going from customer enquiry and order to design
proposal further on to design analysis and evaluation and finally production release.
That process, the ETO process, will include different activities from time to time and
will change over long terms as new technologies emerge andmarket needs and legacy
change. This requires the ETO process not only to be automated so that computers
can execute the activities in a very flexible way but it also has to be described and
represented so that humans can read and understand the process in order maintain it
over long time. To achieve that it is here proposed to use knowledge objects as the
fundamental base.

Definition 1 Knowledge Objects are bundles of human comprehensible knowledge
representations and computer routines for the automated application of the repre-
sented knowledge.

A knowledge object with surroundings is visualized in Fig. 1. The knowledge object
consists of an automation compartment and a description compartment.1 The inten-
tion with the content within the automation compartment is mainly to be machine

1Note that the knowledge representations not necessarily need to be physically stored within the
knowledge object. The description compartment may consist of references to the representations
as well. The user will get the feeling that description and automation compartments form a whole.
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Knowledge Object

Input Output

Opera ng system 2

Applica on 1 Applica on 2

Opera ng system 1

Applica on 1 Applica on 2

Discipline 1 Discipline 2

Automa on

Descrip on

Fig. 1 A schematic view of a knowledge object and its surroundings

readable, even if it to some extent is interpreted by humans, this is illustrated by the
arc labelled Machine Readable. Similarly, the intent of the description part is to be
read and understood by humans even if managed by computers, this is illustrated by
the arc labelled Human Readable. There exist some representation methods that are
human readable and machine readable at the same time. Spread sheets can be exam-
ples of that. In the context of product development, the description compartment of
a knowledge object consists of human comprehensible descriptions of:

• the piece of product knowledge represented by the knowledge object for one or
several disciplines;

• where and when the piece of product knowledge is applicable;
• the computer routines in the automation compartment.

Descriptions of different knowledge objects may be interconnected enabling nav-
igation of formalized knowledge for the product, this is illustrated by the two arrows
labelled Connections in Fig. 1. Descriptions may also have internal connections so
that it is possible to navigate the content (this is not illustrated in Fig. 1) The automa-
tion compartment of a knowledge object includes computer code for the automated
application of the knowledge represented by the knowledge object for one or sev-
eral operating systems and targeted software applications. Figure 1 indicates that the
automation routines take inputs and produce outputs. These computer routines are
used to automate the engineering activities in the ETO-process while the descrip-
tions enable its maintenance. This section contains four subsections describing how
formalized product knowledge can be represented by knowledge objects’ description
compartments, how the knowledge can be automatically applied through knowledge
objects, how systems of knowledge objects are constituted and how optimization can
be supported by knowledge objects and systems of knowledge objects.
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Formalized Product Knowledge

A CAD-model is not itself knowledge. Nor is a snippet of programming code or
an equation knowledge themselves. They are the result of human creativity and are
representations of the result of applying human knowledge. In the context of product
development these results define theproduct andwe refer to themasdesigndefinitions
further on (see Definition 4). CAD-models define what something is looking like and
computer programming code and equations define how something is to be done, and
are the result of applying engineering creativity through the product development
process. However, more must be added to make a complete representation of product
knowledge. That something includes descriptions about how to make use of the
resulting design definitions, why these results are the way they are, what assumptions
and simplificationswere donewhen producing them,who produced them,whenwere
they produced, why were they produced, and when are they valid. Available formats
for making these descriptions includes text, mathematical expressions, diagrams,
pictures, videos, audio, and three dimensional models.

The concepts of design descriptions were introduced by Elgh (2011) as a way to
document product families of mass-individualized products. In that paper it is stated
that:

The main focus of the Design Definition is the construction and the function of a process
output object whereas the main focus of the Design Rationale is the argumentation and sup-
porting descriptions unfolding and justifying the object design. Both the Design Definition
and the Design Rationale provides essential meta-knowledge about the process output object
and together they constitute the foundation for the Design Description.

This leads us to the following three definitions:

Definition 2 Design Definitions define what the product is and how it is manufac-
tured.

Definition 3 Design Rationales include information regarding the purpose of the
design, the reasons behind the design decisions and rejected design alternatives.

Definition 4 Design Descriptions are compositions of design definitions and design
rationales that are representing the same piece of product knowledge.

The content of Design Definitions includes, by example, explanations of the over-
all product, its building blocks at different levels (e.g. product, assemblies, com-
ponents, features and geometrical entities), relations between building blocks (e.g.
functional structure and assembly sequence), parameters (input, internal and output),
rules and tables describing the design space (Elgh 2011).

The content of design rationale includes information and links concerning aspects
such as calculations, analyses, field test, underlying principles for design, assump-
tions, constraints, context, valid ranges of parameters and aspects for validity of rules,
together with statements regarding what to consider when changing, ideas not yet
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implemented and workarounds. A general object model to represent design ratio-
nales was developed by Elgh (2011) and further refined by Poorkiany et al. (2016)
and is adapted as a means to represent design rationale within knowledge objects.

The description should include a categorization of the represented knowledge
defining what discipline it belongs to. Ownership should also be assigned to user
roles so that right person may be contacted.

It is important to describe the computer routines that automates the application
of the formalized knowledge. Such description should include what platform the
routines target. If the routines automate software through APIs it should contain
information regarding valid versions of the API. Input and output parameters on the
low level function calls should be described with explanations and valid ranges of
the values. Any naming convention of the parameters should be attached. If named
algorithms are used, these names should be stated with references to literature. Sim-
plifications and known bugs should be listed. It can sometimes be useful to add a
precision value to allow knowledge-bases to contain overloaded knowledge objects
(Johansson 2007).

Design Automation

Knowledge change over time and a knowledge-base needs to be flexible so that
pieces of knowledge can be easily added, updated, or deleted without disrupting the
operation of the system. To make a system flexible in that sense, all parts of the
system should be autonomous. Hence, to make the knowledge base flexible, all the
chunks of knowledgemust be as autonomous as possible. A procedural programming
approach is not practical in this case, since changing the knowledge base wouldmean
changing, compiling, and subsequently distributing the programming code. Instead,
a declarative way of implementing the knowledge-base has proven to be fruitful.

In a declarative system, the knowledge-base is separated from the functions that
make use of the knowledge-base. Consequently, changing the knowledge-base in a
declarative system can be performed in a plug-and-play manner. Since the knowl-
edge that engineers usewhendesigningproducts anddevelopingproduction tooling is
highly connected to various tasks and concepts, the use of object-oriented knowledge
bases has proven to be successful. Object-oriented programming offers the possibil-
ity to develop highly flexible software. The main idea with objects in object oriented
programming is to store related data and functions together. A class of objects called
knowledge objects was proposed by the authors of this paper (Elgh and Cederfeldt
2007; Johansson 2011; Elgh and Johansson 2014). The focus in previous works with
knowledge objects has been on the automation part which contains a list of input
parameters, a list of output parameters, and amethod for processing input parameters
to output parameters. It has been said that other fields may be added to a knowledge
object, for example constraints, owner, categories, precision, and comments. How-
ever, these additional fields now belong to the description compartment rather than
the automation compartment of the knowledge object.
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When implementing knowledge objects, they should be defined in a way that
makes them autonomous and the methods used to process information should prefer-
ably be in external software applications. The benefits of developing knowledge
objects that are autonomous using common wide-spread applications as methods
are two-fold: the knowledge can be used manually without the design automation
system, and it is easy to find people skilled enough to use the very same knowledge
the design automation system does - it makes the knowledge more human-readable
and the synchronization of the description part easier. However, it is often necessary
to standardize the way the process information is added in the selected applications
and make the information richer than is normally seen. A spread sheet with only
data and formulas in the cells does not make a complete knowledge object, only the
automation part. Filling it with comments and instructions explaining the content
would complete the knowledge object.

Systems of Knowledge Objects

Figure 2 shows a diagram with all components needed to form a complete system
based on knowledge objects. AKnowledge Domain is a set of Knowledge Objects
and GlobalParameters. Each knowledge object has two sets LocalParameter one
for inputs and one for outputs.GlobalParameter and LocalParameter both inherit
the classParameter and aremapped in a one-to-many relation so that oneGlobalPa-
rameter can have several representations on a local level as LocalParameter. This
arrangement makes the implemented system flexible to changes, enabling the plug
and play of knowledge objects. Each knowledge object is also associated with an
ExecutionMethod which automates a piece of software to transforms the specified
inputs into outputs.

The execution of the knowledge objectswithin the knowledge domain is scheduled
by an InferenceEngine. The inference engine arranges the automated knowledge in
the knowledge objects in an executable order based on the input and output param-
eters of the automation part of the knowledge objects2. This can be done prior to
execution or dynamically during the execution of the system. Two main types of
search-based inference engines exist: forward and backward-chaining. A forward-
chaining (also called data-driven)mechanism uses the information initially presented
to execute all applicable knowledge objects. The method has two steps. The infer-
ence engine searches for knowledge objects with all input parameters known, and
applicable in the current state. It then selects one of the found knowledge objects
to execute the execution method defined in that knowledge object to retrieve out-
put parameters using the input parameters. When the method has run, the stock of
known parameters is updated, and a new search for executable knowledge objects is
initiated. The process proceeds until no more knowledge objects can be executed. A

2A human reader of the knowledge base may also follow these paths of automation because they
make sense.
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backward-chaining (also called goal-driven) inference mechanism instead is initial-
ized by asking for desired output values. It then searches for what knowledge objects
have to be executed to find the desired output values. The knowledge objects are
the fired to retrieve the outputs. Backward-chaining has not been implemented for
Knowledge Objects.

It is also possible to navigate the knowledge base through the links between the
describing part of the knowledge objects. An Explainer class can be added to the
knowledge domain that manages description part of knowledge objects to enhance
the navigation of the represented product knowledge during and after execution of
the system.

Knowledge objects can be arranged in systems with different levels. This is
achievedby encapsulatingKnowledgeDomains asKnowledgeObjects.Having sys-
tems of knowledge objects in this way makes it possible to model the knowledge to
match the structure of the product that is targeted for mass-individualization so that
sub-processes of the ETO process target sub-levels of the product structure.

Optimization

An optimization algorithm exposes design variables, cost functions and constraints
(see Section “Optimization”). In order to facilitate functions for optimization based
on knowledge objects a Loop class was added to theKnowledge Domain, see Fig. 2.
The Loop class is a superclass that can be specialized as any optimization algorithm.
This is indicated in Fig. 2 by the two inheriting classesExhaustive Search andOpti-
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Fig. 2 Design automation system based on knowledge objects



Knowledge Objects Enable Mass-Individualization 381

mizationLoop. A Loop object contains a list of Knowledge Objects which implic-
itly yields a list of involved input, intermediate and output Parameters, which are
the design variables (see Section “Optimization”). The list of knowledge object also
implicitly defines a set of constrains that have to be considered by the loop. A Loop
object also contains fields to support the optimization algorithm such as schedul-
ing test designs, iteration counter, facilities to store data for each iteration and to
check the status of the contained knowledge objects and the loop itself, whether it
is executable or not. Two specialized loop classes have been developed and tested
on knowledge objects, exhaustive search which is based on factorial studies and
the Complex algorithm (Box 1965; Guin 1968) which is a non-gradient based opti-
mization algorithm where search direction is constructed on n-1 worst designs in a
population and has been applied to a variety of engineering problems. The Complex
algorithm is suitable for design problems as it is robust when the design parameters
are a mixture of discrete and continuous domains.

The cost function of the optimization algorithm is constituted by the automation
part of the knowledge objects included in theLoop andmaximisation orminimisation
targets can be applied to any of the output parameters from the loop. It is possible to
put equality or in-equality constrains on any of the design parameters in the loop.

Since simulations may be computationally expensive and time-consuming, each
optimization run could entail hours of computation time to find a set of optimal
solution. It is thus important that the number of cost function evaluations required
to find the optimal solution is as low as possible. Especially multi-objective opti-
mization of engineering problems using complex method or evolutionary algorithms
require many evaluations of each objective within the design space, leading to a
large number of simulations runs. Meta-model based multi objective optimization is
most commonly used, where the optimization algorithm is applied on one or several
meta-models representing the actual simulations. The basic idea of meta-modelling
is to create a simplified approximation function of the real model (simulations) in
some sampling points within the design space. Meta-models can be developed for
each KnowledgeObject or globally for a Loop object.

Case Example: Automated Weldability Analysis

Real cases of mass-individualized products based on optimization are yet to be seen.
However,many companiesmove towards automation of engineering processes and in
this sectionwewill look at one case example that demonstrates the description and the
looping facilities of knowledge objects. The example system implements knowledge
objects based on the software Howtomation Suite (Johansson 2015) which is based
on theMicrosoft .net platform and implements knowledge objects as described in this
article. The knowledge objects for weldability analysis were developed by Pabolu
et al. (2016) and was applied to jet-engine components, see Fig. 3 for an example.

Rules for evaluating weldability were extracted from various sources such as sci-
entific literature, welding handbooks, weld equipment operation manuals, industrial
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Fig. 3 Illustrative CAD-model of part from the case company. To the left the parameter tree from
the CAD-system is visible with named paramters (Pabolu et al. 2016)

standards or best practices. Usually the available rules were documented in the form
of PDF-documents. Each of the captured rules was then described and automated
in spread sheets in Microsoft Excel 3. Spread sheet is a suitable format to represent
product knowledge as knowledge objects as the human readable description of the
knowledge is put close to the automation routines (the formulas in the work-sheet).
The layout of the spread sheetswas standardized so that each has a description section
and an automation section. The description section contains information regarding
the purpose of the formulas in the automation section and also hyperlinks to under-
layin PDF-documents for further references. Each of the spread sheets was then
wrapped as KnowledgeObjects. There are in total 17 knowledge objects and 58
parameters in the knowledge domain for weldability analysis, see Table1 for a com-
plete list of automated tasks and Fig. 4 for a graphical overview of the knowledge
domain as it looks in the Howtomation Suite.

Theweldability of eachdesign from thedesignof experiments is evaluated through
the knowledge objects which are executed in an order dynamically determined by
the inference engine. As an example: if the material is not suitable to weld or if the
thickness is out of feasible range, then the result becomes “not OK” for the thick-
ness feasibility check. The reason will be put in an output spread sheet, which is

3In the case example all Knowledge Objects are targeting Spread Sheets. However, Knowledge
Objects can target CAD-models, databases, constraint solvers, FEM-simulations, or practically any
software. The case example was selected to demonstrate the looping functionality.
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Table 1 Knowledge objects in the weldability analysis system

Task Inputs Outputs

Retrieve parameter values from CAD-model 0 14

Check feasibility for combination of materials 2 3

Check feasibility for weld position 2 3

Check the weld method compatibility with weld type 2 3

Check weather weld method can do single sided and/or double sided welds 2 3

Check whether the weld gun is fit to make the weld in vertical direction 2 3

Check whether the weld gun is fit to make the weld in angular direction 2 3

Estimate the reachability of the weld gun to the weld location 2 3

Estimate the reachability of the weld gun to the weld location 2 3

Check whether the plate thickens is feasible for the weld method 4 3

Check whether the weld will be thick enough 4 3

Check the compatibility of plate thicknesses and weld method 4 3

Check the weld size compatibility with weld method 4 3

Cancel welding method if turns are to tight 4 3

Calculate welding cost 4 1

Summarize all results in spread sheet and put out weldability index 43 1

Fig. 4 Screen shot from the Howtomation Suite of the knowledge domain for weldability analysis

also wrapped as a Knowledge Object. The reasons for failure can be: ‘Material is
infeasible for weld’ or ‘The plate thickness is out of the feasible range’ which is
also indicated in the output spread sheet. If the thickness is feasible then a difficulty-
value is calculated based on the captured knowledge. After the analysis of the eval-
uation rules, the results, reasons and the difficulty levels, which are based on given
inputs are transferred to the output spread sheet. The output spread sheet consists of
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weldability index, cost calculation and a sustainability value for each design from
design of experiments. These are further summarised in to a single summary sheet
in a defined format which consists of weldability index, weld cost, weld feasibility,
energy consumption and the environmental impact based on each weld joint. In case
of manufacturing conflicts between the design andwelding, a negative welding index
value indicates infeasibility.

The weldability analysis knowledge domain contains one Loop object of the type
ExhaustiveSearch. The loop contains 16 of the 17 knowledge objects having 3
input, 53 intermediate and 2 output parameters. The input parameters includes Weld
Method, Weld Position, and Weld Length. Output parameters includes Weldability
Index and Welding Cost. The knowledge object not included in the loop is a knowl-
edge object with no input parameters which makes it an initialization object, i.e. it
will execute first (listed first in Table1). That knowledge object connects to a running
instance of CATIA and retrieves current welding positions and welding lengths of
the active CATIA-model. That information is retrieved from parameters calculated
within the CAD-system and is subsequently submitted to other knowledge object in
the knowledge domain.

When executing the system (from CATIA) the information in specially named
parameters in the CAD-model will be retrieved. Subsequently the exhaustive search
will start to loop through all possible variations of welding methods for each weld in
the component. For each iteration a new rowwith all important results, such as weld-
ability index and welding cost for the component, will be written in an output Excel
spread sheet. The combinationwith the best welding indexwill be selected. However,
this may be the most costly welding method and engineers can take other decisions
based on data filtering functions in Excel. In future multi-objective optimization will
be applied to also automate this last step.

Conclusions

This paper shows that Knowledge Objects enable mass-individualization as they
provide a foundation for three important keys for engineer-to-order companies. First,
they enable capturing of corporate knowledge regarding products and their related
processes as Descriptions. Second, they carry computer routines for the automation
of the captured knowledge bundled together with the descriptions. Finally, through
the general looping functionality they support optimization of synthesis and analysis
phases in product development includingmanufacturability assessments. These three
parts together makes it possible for engineer-to-order companies to offer customers
optimized solutions timely and with high profit. That is mass-individualization.



Knowledge Objects Enable Mass-Individualization 385

Future work includes development of working methods and tools so that engi-
neering knowledge can be captured, represented and managed as knowledge objects
throughout the entire product development process. Future work also includes the
application of meta-modelling and more sophisticated optimization algorithms to
knowledge objects.
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Free-Form Optimization of A Shell
Structure with Curvature Constraint

Masatoshi Shimoda and Kenichi Ikeya

Abstract We present a free-form optimization method for designing the optimal
shape of a shell structure with curvature constraint. Compliance is minimized under
the volume and the state equation constraints. In addition, a target mean curvature of
the surface is considered as the equality constraint in order to control the free-form
of the shell. It is assumed that a shell is arbitrarily varied in the out-of-plane direc-
tion to the surface to create the optimal free-form. A parameter-free, or a node-based
shape optimization problem is formulated in a distributed-parameter system based on
the variational method. The distribution of the discrete mean curvature is calculated
by the area strain obtained from the material derivative formula. The shape gradi-
ent function for this problem is theoretically derived using the Lagrange multiplier
method and the adjoint variable method, and is applied to the H1 gradient method
for shells. With the proposed method, the optimal free-form of a shell structure with
curvature constraint can be efficiently determined. The validity and effectiveness
of the method is verified through the numerical examples and the influence of the
curvature constraint is demonstrated.

Introduction

In engineering designs, shell structures are abundantly used, since they are thin
and light and hold large applied loads effectively. Especially, from view points of

M. Shimoda (B)
Department of Advanced Science and Technology,
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku-ku, Nagoya, Japan
e-mail: shimoda@toyota-ti.ac.jp

K. Ikeya
Graduate School of Advanced Science and Technology, Toyota Technological Institute, 2-12-1
Hisakata, Tenpaku-ku, Nagoya, Japan

© Springer International Publishing AG, part of Springer Nature 2019
E. Andrés-Pérez et al. (eds.), Evolutionary and Deterministic Methods for Design Optimization
and Control With Applications to Industrial and Societal Problems, Computational
Methods in Applied Sciences 49, https://doi.org/10.1007/978-3-319-89890-2_25

387

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89890-2_25&domain=pdf


388 M. Shimoda and K. Ikeya

weight reduction, structural performances, manufacturability and designability, the
curvature design of the surface is highly important and the optimization technique
become a strong tool for it.

In the previous works concerning the shape optimization of shell structures many
parametric methods were presented (Belegundu and Rajan 1988; Ramm et al. 1993;
Uysal et al. 2007), where the shell surface was parameterized in advance and the
shape parameters are optimized by using an optimization method such as a mathe-
matical programing, an evolutionary method. This is troublesome for designers and
an inevitable process in general parametric shape optimization method. In addition,
the optimal shape obtained is strongly influenced by the parameterization.On the con-
trary, papers concerning a non-parametric, or a node-based method are vastly fewer
(Leiva 2010). As one of the non-parametric shape optimization methods, we have
developed the free-form optimization method (Shimoda and Yang 2014) with the
H1 gradient method (Azegami 1994) for designing a natural and optimal shell form,
which is based on the classical variational method and modern numerical optimiza-
tion method.With this method the optimal shell structure with smooth and arbitrarily
free-formed surface can be obtained without any shape parameterization. In our pre-
vious works we applied this method to stiffness (Shimoda and Yang 2014), buckling
(Shimoda et al. 2016) and natural vibration (Shi et al. 2017) problems. However, the
curvature constraint has not been considered in spite of its importance or effectivity.
In other methods for shells, there has seldom study the curvature constraint of shell
structures. Discrete curvature, or approximate curvature of a discretized surface of
Finite Element model has a very important role for the curvature constraint of shell
structures. Many methods have been proposed so far to calculate discrete curvature
in the research fields of differential geometry, CAD, CG and so on (Eigensatz et al.
2008; Cazals and pouget 2005; Grinspun et al. 2006; Mesmoudi et al. 2010; Zhang
et al. 2008). For example, Meyer et al. proposed a discrete method for discrete mean
curvature vector by using the Voronoi region area (Meyer et al. 2002). Lui et al.
proposed a method using the conformal parameterization (Lui et al. 2008).

In the present work, we consider the mean curvature of the shell surface as the
constraint condition for controlling the free-form of the shell. We use the compliance
as the objective functional to evaluate the stiffness of the shell. The design variable
is a shape variation function distributed on the shell surface, which is arbitrarily
varied in the normal direction to the surface. The compliance minimization problem
is formulated in a distributed-parameter system based on the variational method.
The sensitivity function, or the shape gradient function with respect to the shape
variation and the optimal conditions for this problem are theoretically derived using
the Lagrange multiplier method, material derivative method (Choi and Kim 2005)
and the adjoint variable method (Choi and Kim 2005). The derived shape gradient
functions are applied to the H1 gradient method for shells (Shimoda and Yang 2014).
The area strain method (Shimoda and Yang 2014) employed to calculate a discrete
mean curvature on the finite element mesh is also introduced. The proposed method
is applied to a shell structure with the curvature constraint, and the influence of the
difference of the curvature constraint is investigated.
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Governing Equation for a Shell

As shown inFig. 1,we consider a shell having an initial boundeddomain� ⊂ R
3 with

the boundary ∂�, mid-surface A with the boundary ∂A, side surface S and thickness
t. It is assumed for simplicity that a shell structure occupying a bounded domain is a
set of infinitesimal flat surfaces, and the Mindlin-Reissner plate theory is employed
concerning plate bending. Using the sign convention in Fig. 1, the displacement vec-
tor u � {ui }i�1,2,3 of the mid-surface of the shell expressed by the local coordinates
is considered by dividing it into the displacements in the in-plane direction {u0α}α�1,2

and in the out-of-plane direction u3 (� w). The weak form of the state equation with
respect to (u0, w, θ) ∈ U can be expressed as Eq. (1) (Shimoda and Yang 2014).

a((u0, w, θ ), (ū0, w̄, θ̄ )) � l((ū0, w̄, θ̄ )),∀(ū0, w̄, θ̄ ) ∈ U (1)

where {θα}α�1,2 expresses the rotational angle vector of the mid-surface of the shell.
The energy bilinear form a(· , ·) and the linear form l(·) for the state variables are
respectively defined as:

a((u0, w, θ ), (ū0, w̄, θ )) �
∫

Ω

{
Eαβγ δ(u0α,β − x3θα,β )(ū0γ,δ − x3θ̄γ,δ)

+ES
αβ(w,α − θα)(w̄,β − θ̄β)

}
dΩ (2)

l((ū0, w̄, θ̄ )) �
∫

Ad

( fα ū0α − mαθ̄α + q w̄) d A

+
∫

A

t(bα ū0α + b3w̄)d A +
∫

∂Ag

(Nα ū0αds − Mαθ̄α + Q w̄)ds (3)

where (−) denotes a variation. In this paper, the subscripts of the Greek letters are
expressed as α � 1, 2, and the tensor subscript notation uses Einstein’s summa-
tion convention and a partial differential notation for the spatial coordinates (·),i �
∂(·)/∂xi . Loads defined as q, f � { fa}α�1,2, m � {mα}α�1,2, N � {Nα}α�1,2,
Q, M � {Mα}α�1,2 and hb � {hbi }i�1,2,3 denote an out-of-plane force, an in-

Fig. 1 Shell as a set of infinitesimal flat surface
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plane forces, an out-of-plane moments, an in-plane forces, a shearing force, a bend-
ing moments and a body force, respectively. In addition,

{
Eαβγ δ

}
α,β,γ,δ�1,2 and{

ES
αβ

}
α,β�1,2

express an elastic tensor including the bending and themembrane com-

ponents, and an elastic tensor with respect to the shearing component, respectively.
It should be noted that U in Eq. (1) is given by:

U � {
(u01, u02, w, θ1, θ2) ∈ (H 1(x ∈ A))5 |satisfying

the given Dirichlet conditions on each subboundary} (4)

where H 1 is the Sobolev space of order 1.

Free-Form Optimization Problem

Formulation of Free-Form Optimization Problem with
Curvature Constraint

In this study, with the aim ofmaximizing the stiffness of a shell structure, compliance
l(u0, w, θ) is used as an index of structural stiffness. Letting the curvature, the volume
and the state equation in Eq. (1) be the constraint conditions and the compliance the
objective functional to be minimized, a distributed-parameter shape optimization
problem to determine the optimal shape variation, or the optimal design velocity
field V can be formulated as:

Given A (5)

Find As (or V ) (6)

that minimizes l(u0, w, θ) (7)

subject to Eq. (1),

M

⎛
⎝≡

∫

S

A dS

⎞
⎠ ≤ M

∧

, (8)

and
∫

A

(|κ(x)| − κ̂
)
d A � 0, x ∈ A (9)

where M and M
∧

denote the volume and its constraint value, respectively. κ and κ̂

denote the mean curvature and its target value, respectively.
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Derivation of Shape Gradient Function

Letting
(
ū0, w̄, θ̄

)
, � and �κ denote the Lagrange multipliers for the state equa-

tion, the volume constraint and the curvature constraint, respectively, the Lagrange
functional L associated with this problem can be expressed as:

L � l(u0, w, θ) − a
(
(u0, w, θ),

(
ū0, w̄, θ̄

))
+ l

(
ū0, w̄, θ̄

)

+ �
(
m − M

∧)
+ Λκ

∫

A

(|κ(x)| − κ̂
)
d A (10)

Using the design velocity field V to represent the amount of domain variation and
assuming that the loaded surface or boundary is not varied, the material derivative
(Azegami 1994;Choi andKim2005) L̇ of theLagrange functionalL can be expressed
as:

L̇ � l
(
u′
0, w

′, θ ′) − a
((
u′
0, w

′, θ ′), (ū0, w̄, θ̄
)) − a

(
(u0, w, θ),

(
ū′
0, w

′, θ̄ ′))

+ l
(
ū′
0, w̄

′, θ̄ ′)
+ �′(M − M

∧

) + �′
κ

∫

A

(|κ(x)| − κ̂
)
d A + 〈Gn, V 〉 (11)

where (·)′ expresses the shape derivative (Choi and Kim 2005).
The optimality conditions of the Lagrange functional L with respect to the state

variables (u0, w, θ ), the adjoint variables (ū0 , w̄, θ̄ ), � and �κ are expressed as
shown below.

a((u0, w, θ ), (ū′
0, w̄

′, θ̄ ′
)) � l((ū′

0, w̄
′, θ̄ ′

)), ∀(u′
0, w̄

′, θ̄ ′
) ∈ U (12)

a((u′
0, w

′, θ ′), (ū′
0, w̄, θ̄ )) � l(u′

0, w
′, θ ′), ∀(u′

0, w
′, θ ′) ∈ U (13)

�(M − M
∧

)� 0, M − M
∧

≤ 0, � ≥ 0 (14)∫

A

(|κ(x)| − κa)d A � 0 (15)

The state equation (Eq. 12) for (u0, w, θ ) and the adjoint equation (Eq. 13) for
(ū0 , w̄, θ̄ ) can be solved with a standard commercial FEA code. By considering
the self-adjoint relationships (ū0, w̄, θ̄ ) � (u0, w, θ ) obtained from Eqs. (12) and
(13) and by substituting (u0, w, θ ) and � and �κ determined by these optimality
conditions into Eq. (11), the material derivative L̇ can be expressed as the dot product
of the shape gradient function Gn (=G) and the design velocity field V as shown in
the following equation.

L̇ � 〈Gn, V 〉 (16)
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〈Gn, V 〉 �
∫

A

GAVn d A +
∫

A

GCVn d A (17)

where the shape gradient density functions (or the shape sensitivity function)GA and
Gc for this problem are derived as

GA � −
{
Cαβγ δ

(
u0α,β − t

2
θα,β

)(
ū0γ,δ − t

2
θ̄γ,δ

)

−Cαβγ δ

(
u0α,β +

t

2
θα,β

)(
ū0γ,δ +

t

2
θ̄γ,δ

)}
+ 2�tκ(x) (18)

GC � �κ

{
∂|κ(x)|

∂n
+ 2

(|κ(x)| − κ̂
)
κ(x)

}
(19)

The first and second terms of GA are the shape gradient density functions for
the compliance and the volume constraint, respectively. The shape gradient density
function Gc is for the curvature constraint.

Calculation of Discrete Mean Curvature

The shape gradient density functions include the mean curvature κ of the shell sur-
face. When we calculate Eq. (12) by FEM, we have to approximately calculate the
mean curvature at all nodes. In several methods for the approximate curvature of
a discretized surface, or a discrete curvature, we employ the method based on the
area strain (called area strain method) by Shimoda and Yang (2014), since it has the
common theoretical background (or the material derivative method). In the method
employed, the discrete mean curvature κ on the finite element model is calculated by
the area strain of a small area around the node by the small variation in the normal
direction to the elements, which is based on the material derivative formula.

For a given functional J and a distributed function ψ shown in Eq. (20), the
material derivative formula is expressed by Eq. (21) (Shimoda and Yang 2014; Choi
and Kim 2005).

J �
∫

A

ψ d A (20)

J̇ �
∫

A

{
ψ ′ +

(
ψ,i ni + 2ψκ

)
Vn

}
d A (21)

When the distributed function ψ � 1, J expresses a surface area A. The material
derivative Ȧ becomes
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Fig. 2 Schematic of calculation of discrete mean curvature using the area strain

Ȧ � 2
∫

�

κVn d� � 2κVn � �A

�s
(22)

Then,

κ � �A

2�sVn A
(23)

By giving a small variation in the normal direction to the surface �sVn , κ can
be calculated. �A/A expresses the area strain. Applying Eq. (23) to FE model as
shown in Fig. 2, the discrete mean curvature can be calculated.

In order to validate the area strain method employed, discrete mean curvatures
were evaluated for a discretized sphere with a radius R�1 as shown in Fig. 3. Table 1
shows the comparison of accuracy with Meyer’s method (Meyer et al. 2002), where
all nodes are evaluated. The mean and maximum absolute errors to the theoretical
values of the employed method are only 0.03 and 0.01%, respectively. Meyer’s
method also shows good agreement.

Fig. 3 Discretized sphere model for evaluation of discrete mean curvatures
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Table 1 Comparison of accuracy of discrete curvature calculations

Mean absolute error Max. absolute error

Mayer Employed Mayer Employed

1.32×10−4 3.18×10−4 1.32×10−4 1.32×10−4

Calculation of Shape Gradient Density Function

The shape gradient density function GA of Eq. (18) can be easily calculated by the
stress and strain on the top and the bottom surface of the shell. Calculating ∂|κ(x)|/∂n
in GC of Eq. (19), we assume that local small surface is approximated by the sphere
function. Then, ∂|κ(x)|/∂n is expressed as Eq. (24).

d|κ|
dn

�
{

κ2 (κ ≥ 0)

−κ2 (κ < 0)

}
(24)

where the following relationships are introduced.

κ � 1

2
(
1

r
+
1

r
),

dκ

dr
� −κ2 (25)

n �
{

r (κ ≥ 0)

−r (κ < 0)
(26)

where r and r are the radius and the unit radius vector of the approximated local
surface, respectively as shown in Fig. 4. n is the unit normal vector to the shell
surface.

Using these relationships, the shape gradient density functionGC for the curvature
constraint is simply expressed as

GC �
⎧⎨
⎩

κ2 +
(
κ − κ̂

)
κ � 2κ2 − κ̂κ (κ ≥ 0)

−κ2 +
(−κ − κ̂

)
κ � −(2κ2 + κ̂κ) (κ < 0)

(27)

Fig. 4 Schematic of
curvature variation for
convex or concave shell
surface
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The shape gradient density functions calculated are applied to the H1 gradient
method for shells to determine the optimal design velocity field V .

H1 Gradient Method for Shells

The free-form optimization method for shells consists of main three processes; (1)
Derivation of shape gradient function, (2) Numerical calculation of shape gradient
function, (3) The H1 gradient method for determining the optimal shape variation, or
the optimal velocity field. The H1 gradient method is a gradient method in a Hilbert
space, which was originally proposed by Azegami in 1994. Shimoda et al. extended
it for designing free-form shells (Shimoda and Yang 2014). It is a non-parametric or
a node-based shape optimization method that can treat all nodes as design variables
and does not require any design parameterization.

The H1 gradient method for shells is briefly introduced as follows. When the
optimality conditions of Eqs. (12)–(15) are satisfied, the perturbation expansion of
the Lagrange functional L can be written as

�L = 〈Gn,�s(V ,θ)〉 + O
(|�s|2) (28)

where �s is a small positive value.
Considering the design velocities V � {Vi }i = 1,2,3 as a combination of the in-

plane velocities {V 0α}α�1,2 and the out-of-plane velocity V3, the following equation
is introduced as the governing equation for V = (V01,V02,V3).

a
(
(V 0α, V3, θ ), (ū0, w̄, θ̄ )

)
+ α

〈
(V ·n)n, (ū0, w̄, θ̄ )

〉
� −〈

Gn, (ū0, w̄, θ̄ )
〉
, (V 0α ,V3, θ ) ∈C�, ∀(ū0, w̄, θ̄ ) ∈ C� (29)

C� �
{
(V1, V2, V3, θ1, θ2) ∈ (

H 1(S)
)5 ∣∣∣satisfying the given

Dirichlet condition for shape variation on ∂A} (30)

where α is a positive constant, C� is the kinematically admissible function space.
Considering the arbitrariness of (ū0, w̄, θ̄ ) in Eq. (29), we substitute Eq. (29) into

Eq. (28), and obtain

�L ∼� 〈Gn,�s(V , θ)〉 � −{aL ((V ,θ ),�s(V ,θ)) + α〈(V · n)n,�s(V ,θ )〉} (31)

Taking into account the positive-definiteness of the bilinear form on the left side
of Eq. (29), which is

a((V ,θ ),�s(V ,θ )) + α〈(V · n)n,�s(V ,θ )〉 > 0 (32)

and α>0, and �s>0, the following relationship is obtained:
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Fig. 5 Schematic of the H1

gradient method for shells

�L < 0 (33)

This relationship guarantees that the Lagrange functional is definitely reduced in
a piecewise convex design space by updating the form of shell by the design velocity
field V determined from Eq. (29).

Here, let us consider this gradient method based on Eq. (29) from the point of
view of structural analysis. In this method, the negative shape gradient function
−Gn (=−G) is applied as a distributed force to a fictitious-linear elastic shell in the
normal direction to the design surface under a Robin boundary condition, i.e., an
elastic support condition with a distributed spring constant α. The shape gradient
function is not used directly while replaced by a distributed force to vary the shape. α
is employed to control the influence range of the shape gradient function, and to avoid
rigidmotion of the shape variation. This approachmakes it possible both to reduce the
objective function and tomaintain surface smoothness, i.e.,mesh regularity (Azegami
et al. 1997), simultaneously, which is the most distinctive feature of the H1 gradient
method for shells. The design velocity field V is calculated as the displacement
field obtained from this linear elastic analysis (called velocity analysis) and is used
to update the shape. The shape design constraint condition is arbitrarily set by the
boundary conditions in the velocity analysis. The H1 gradient method for shells is
schematized in Fig. 5. This analysis can be also solved with a standard commercial
FEM code. We use MSC/NASTRAN in this research.

The optimization process of the developed system is schematized in Fig. 6. We
have developed our optimization system on Windows platform. The C programs on
it have been developed using the C compiler. The C programs and FEM commercial
code are integrated and controlled by the batch commands of Windows OS. In the
optimization process, firstly, the stiffness analysis is done by a commercial FEMcode
and the outputs of the analysis are utilized to calculate the sensitivity of Eq. (18).
After that, the velocity analysis with compliance sensitivity (or the first term of GA)
is implemented to determine the design velocity field V , and the shape is updated
using V . Next, the curvature sensitivity of GC is calculated. The velocity analysis is
implemented with GC , and the shape is re-updated. Then, the curvature constraint
is judged and repeated if it is not satisfied. Next (option), the volume constraint is
judged. If it is not satisfied, the volume sensitivity (or the second term of GA) is
calculated. The velocity analysis is implemented with it, and the shape is re-updated.
Then, the curvature constraint is re-judged. This process is repeated until the objective
function is converged.
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Fig. 6 Free-form optimization process of the developed system

Calculated Results

The proposed method was applied to T-joint model. The initial shape and the
problem definition are illustrated in Fig. 7. In the stiffness analysis shown in Fig. 7a,
the left and right side edges of T-joint were simply supported. A distributed force was
applied at the top edges. In the velocity analysis shown in Fig. 7b, it was assumed
that the right and left side edges, the top and bottom surfaces were simply sup-
ported. The volume constraint was set as 1.0 times the initial value. The material
constants were used as E � 210000 Pa and ν � 0.3. The obtained shape with the
curvature constraint is shown in Fig. 8. The target curvature value κ̂ was set as 0.2
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(a) B.C. for stiffness analysis (b) B.C. for velocity analysis 

Fig. 7 Initial structure and boundary conditions of T joint model

Fig. 8 Obtained shape of
T-joint model with curvature
constraint (isotropic material
κ̂ � 0.2 ∗ Max. mean
curvature of the initial shape)

times the maximummean curvature of the initial shape. The bottom of the pillar was
expanded and the upper part was shrunk while maintaining the surface smoothness.
Figure 9 shows the iteration convergence history of the volume and the compliance.
The compliance decreased by around 56.5% at 47 iterations and converged steadily
while satisfying the volume constraint. The curvature constraint was also satisfied
actively, which was omitted in the graph because all values were zero. For compar-
ison, the obtained shape without the curvature constraint is shown in Fig. 10a and
superposed in b. The obtained shape has large curvatures by the free variation for
minimizing the compliance, and is clearly different from Fig. 8. Figure 11 shows
the iteration convergence history without the curvature constraint. The compliance
decreased by around 62%. Figure 12 shows the obtained shape with another cur-
vature constraint, of which the target curvature value κ̂ was set as 0.1 times the
maximum mean curvature of the initial shape. The curvature distribution was sup-
pressed small while maintaining the surface smoothness. In this case, the compliance
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Fig. 9 Iteration histories of T-jointmodel with curvature constraint (κ̂ � 0.2∗Max.mean curvature
of the initial shape)

(a) Optimal shape (without curvature const.) (b) Superposing (red: with curvature const., 
green: without curvature const.)

Fig. 10 Comparison of optimal shapes (κ̂ � 0.2 ∗ Max. mean curvature of the initial shape)

and the volume respectively decreased by around 20 and 10% because of the more
strict curvature constraint. It was confirmed that the compliance reduction become
smaller by imposing the curvature constraint, as was expected. From these results,
validity of the proposed method was verified.

Conclusion

This paper proposed a non-parametric free-form optimization method of shell struc-
tures with curvature constraint. The shape gradient function was derived using the
material derivative method and the adjoint variable method. The discrete mean cur-
vature was evaluated by the area strain based on the material derivative formula.
Design examples were demonstrated to verify the effectiveness and practical utility
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Fig. 11 Iteration histories of T-joint model without curvature constraint

(a) Optimal shape (without curvature const.) (b) Superposing (red: with curvature const., 
green: without curvature const.)

Fig. 12 Comparison of optimal shapes (=0.1*Max. mean curvature of the initial shape)

of this method. The proposed method makes it possible to obtain the smooth and
natural optimal form without shape design parameterization, while satisfying the
volume and curvature constraints and reducing the objective functional.

In our future work, we will apply the proposed method to the practical design
problems of car bodies, architectures and other problems with aesthetic evaluation
function. Also, we will combine the curvature constraint method with other objective
functions such as maximum stress, buckling load, vibration eigenvalue and so on.
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Application of Game Theory
and Evolutionary Algorithm
to the Regional Turboprop Aircraft
Wing Optimization

Pierluigi Della Vecchia, Luca Stingo, Fabrizio Nicolosi,
Agostino De Marco, Elia Daniele and Egidio D’Amato

Abstract Nash equilibrium and evolutionary algorithm are used to optimize a wing
of a regional turboprop aircraft, with the aim to compare different optimization
strategies in the aircraft design field. Since the aircraft design field is very complex
in terms of number of involved variables and space of analysis, it is not possible to
perform an optimization process accounting for all possible parameters. This leads to
the need to reduce the number of the variables to the most significant ones. A multi-
objective optimization approach is here performed, paying attention to the variables
which mainly influence the objective functions. Results of Nash-Genetic algorithm
are compared against those of both a typical Pareto front and a scalarization, showing
that the proposed approach locates almost all solutions on the Pareto front, while the
scalarization results are confined only in a zone of this front. The optimization elapsed
time for a single optimization point is less than 32% of an entire Pareto front, but the
designer must initially choose the players’ cards assignment.

Introduction

Nowadays multi-objective optimization problems are usually solved via Pareto
Genetic Algorothms (GAs), to find awide range of solutions for a given problem, dis-
tributing the solutions over the entire Pareto front. A comprehensive overview of GA
applied in multi-objective optimization can be found in Fonseca and Fleming (1995).
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Classical GA approaches are cooperative, based on Pareto ranking, using both
sharing and mating restrictions to ensure diversity. An alternative approach to solve
multi-objective problem is based on John Nash theory (Nash 1950, 1951), this time
non-cooperative one, where players aim at solving multiple objective optimization
problems originating from Game Theory and Economics. According to this theory,
for a given optimization problemwithGobjectives, aNash strategy consists in having
G players, each of them wants to improve his benefit, based on his criterion, with
all the other criteria fixed by the other players. When no player can further improve
his benefit, it means that the system has reached a point of equilibrium, called Nash
Equilibrium. In the present paper, the Nash strategy is coupled to genetic algorithms,
to reduce the computational time and allow a more physic-based association among
variables and objective functions.

The Nash GAs (NGA) was introduced by Sefrioui and Periaux (2000), who
showed a GA based on the concept of a non-cooperative multiple objective algo-
rithm. They brought together genetic algorithms and Nash strategy to make the GA
builds the Nash Equilibrium. In their work, they tested algorithm on different ana-
lytic functions and on nozzle optimization, comparing results with GA and single
objective weighted strategy, highlighting that NGA was the most robust, less time-
consuming approach as it always converges towards a point of the global. Due to its
valuable performance,NGAalgorithmhas been extensively employed in recent years
on several fields of engineering and science, mainly, in aeronautical and structural
engineering. Particularly, the use of NGA has been demonstrated as acceleration tool
increasing convergence speed and/or quality of solutions in computational mechan-
ics application (Periaux et al. 2015). Recently, NGA has been also applied in single
objective reconstruction inverse design problem in structural engineering, with suc-
cessful speed-up of structural optimization search (Greiner et al. 2016), showing ad
advantage greater when the problem size increases.

Mallozzi et al. (2016) presented a wing two-objective optimization problem is
approached by a cooperative model, just minimizing the sum of the weight and the
drag, as well by a non-cooperative model by means of the Nash equilibrium concept.

The authors have been also implemented and tested their own NGA algorithm [as
shown in D’Amato et al. (2012a, b)]. This algorithm has been successfully applied to
multi-objective airfoil optimization (DellaVecchia et al. 2014) and embedded into the
Multidisciplinary Design Optimization framework of the AGILE European project
(Della Vecchia et al. 2017; Lefebvre et al. 2017). The present paper aims to provide a
comparison ofNGAwithParetoGAand a single objectiveweighted function, applied
to regional turboprop aircraft wing optimization. The structure of the work is as
follows: Section “The NGAAlgorithm” describes the NGA implemented algorithm,
Section “Applications: Wing Optimization” shows two different applications with 2
and 3 players (objective functions) respectively. Finally, conclusions are addressed.
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The NGA Algorithm

The regional turboprop aircraft wing optimization problem is here approached by
means of game theory solutions, in particular, the Nash equilibrium solution concept,
for which no player has anything to gain by unilaterally changing his strategy (Basar
and Olsder 1995). Reducing the general multi-player formulation to a two-player
situation, the mathematical expression for the Nash equilibrium problem N is:

⎧
⎪⎪⎨

⎪⎪⎩

find
(_
x1,

_
x2

) ∈ X1 × X2 such that

f1
(−
x1,

−
x2

)
= min

x1∈X1
f1

(
x1,

−
x2

)
,

f2
(−
x1,

−
x2

)
= min

x2∈X2
f2

(−
x1, x2

)
(1)

where (x1, x2) ∈ X1 × X2 are the players’ variables or strategies, defined in their
own strategy domains X1, X2, while f1, f2 are the players’ objective functions. In the
specific case object of this research, the players’ variables are in their self a vari-
ables’ set, as x1 = [ξ1, . . . , ξn], x2 = [η1, . . . , ηm] of dimension n, m depending on
the variables partition introduced by the optimization problem decomposition, the
latter being case specific. The genetic algorithm (GA) is an adaptive heuristic search
method based on the principles of genetics and natural selection. Its name sets the
roots in the analogy with living organisms in nature, being a GA capable of driving
the evolution of a population (in conjunction with game theory, of players) under
specified selection rules aiming to maximize their fitness w.r.t. the environment (i.e.
an objective function under operating conditions and constraints). A GA structure
could be regarded as a composition of the following pieces: (i) a finite set of n-
dimensional array, i.e. the population or players, usually encoded as a string of bits
named genotype; (ii) an adaptive function, called fitness, that estimates the good-
ness of the solution, indicating the individuals to let reproduce; (iii) semi random
genetic operators such as selection, crossover and mutation that operate on individu-
als, changing their associated fitness. The constraints are implemented by means of
penalty functions, decreasing the individuals’ fitness. The solution quality, enhanced
by a large population, is also the bane of a GA in simple problems (Haupt and Haupt
2004), leading in general to higher computational time. However, its wide usage is
justified by several advantages, among which:

– The use of continuous or discrete variables.
– The trend of the objective function and its derivatives can be unknown.
– It deals with problems with many variables.
– It offers an intrinsic parallelization of the algorithm.
– It delivers satisfactory results in problems with extremely complex objective func-
tions hypersurfaces (i.e. with many local minima).

– It performs properly with numerically and/or experimentally generated data.
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These features favor theGA in caseswhere the traditional optimization approaches
fail. The algorithm for a two player Nash equilibrium game (D’Amato et al. 2012a, b)
is here described for simplicity.

Let U, V be players’ strategy sets (both are metric spaces). Let f1, f2 be two real
valued functions defined on U × V representing the players’ objective functions.
The used algorithm is based on the Nash adjustment process (Fudenberg and Tirole
1991), where players take turns setting their outputs, and the chosen output of each
player (in U) is his best response to the output previously chosen by his opponents
(in V). The converged steady state value of this process is a Nash equilibrium of the
game. Let s = u, v be the pair representing the potential solution for a 2 person Nash
problem. Then u denotes the subset of variables handled by the player 1, belonging
to U, and optimized under the objective function f1. Similarly, v indicates the subset
of variables handled by the player 2, belonging to V, and optimized under a different
objective function f2. As stated in the Nash equilibrium definition (Nash 1951), the
player 1 optimizes pair s with respect to f1 by modifying u while v is fixed by the
player 2; symmetrically, the player 2 optimizes pair s w.r.t. the f2 by modifying v,
while u is fixed by the player 1. This procedure can be implemented numerically
considering uk−1 and vk−1 be the best values found by players 1 and 2, respectively,
at step (or generation) k − 1. At next step, k, the player 1 optimizes uk using vk−1

to evaluate the pair s = uk , vk−1. At the same time, the player 2 optimizes vk using
uk−1 to evaluate the pair s = uk−1, vk . The algorithm is structured in several phases,
see also Fig. 1:

1. Generation of two different random populations, one for each player, at the first
step. Player 1’s optimization task is performed by acting on the first population
and vice versa.

2. The sorting of the individuals among their respective population, is based on the
evaluation of a fitness function typical of GAs. The results of thematches between
each individual of population 1 with all individuals of population 2 (scoring 1 or
−1, respectively, for a win or loss, and 0 for a draw) are stored, see Eq. (2).

⎧
⎨

⎩
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(
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A similar procedure is need for the player 2, as expressed in Eq. (3).
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)
,fitness2 = 0

(3)

The individuals having an equal fitness value are sorted by f1 for player 1 and f2
for player 2.
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Fig. 1 In this figure the
Nash Genetic Algorithm
structure is shown. The
sequence is composed by five
steps, from the generation of
random populations, one for
each player, to achieving the
Nash equilibrium, through
the evaluation of a fitness
function based on GAs
approach and mutation
operations among the
individuals of each
population. The detailed
description is presented in
the text
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3. A mating pool for parent individuals is established, and crossover and mutation
operations are performed on each player population. This new, evolved, popula-
tion is sorted again, as described in phase 2.

4. At the end of the k − th step, the player 1 delivers his best value, uk , to player
2 who will use it at step k + 1 to assign a unique value for the first part of his
pair, i.e. the one depending on player 1, while the second part is that derived from
crossover and mutation operations. Conversely, player 2 delivers his best value,
vk , to player 1 who will use it at step k + 1, assigning a unique value for the
second part of the pair, i.e. the one depending on player 2.

5. A Nash equilibrium is found when a maximum number of steps is reached, by
repeating the phases 2-4. This algorithmic structure is similar to some of those
used in literatures (Deb et al. 2000), with a major emphasis on fitness function
consistency (Wang et al. 2002; Della Vecchia et al. 2014).

Applications: Wing Optimization

This section shows two different applications of NGA algorithm with two play-
ers (see Section “Two Players – CDw Versus Ww”) and three players (see Section
“Three Players – CDw Versus Ww Versus CLmax”) involved, respectively. The idea to
apply NGA equilibrium solutions to aircraft design applications has a main driver.
It avoids a more arbitrary and less physically based variables association among
the different objective functions, using instead a more engineering reliable variables
assignment based on well-known parameter association.

Two Players – CDw Versus Ww

The first application deals with a two players NGA, �, to a turboprop wing optimiza-
tion [see Eq. (4)]. The objective functions or pay-offs are: the wing drag coefficient,
CDw, computed with simple equivalent flat plate method and parabolic drag approx-
imation; the wing weight, Ww, according to the methodology proposed by Raymer
(2002). Five design variables have been used in this application, as shown in Eq. (4),
including the wing aspect ratio AR, the mean wing thickness t/c, the wing area Sw,
the leading edge swept back angle �LE , and the taper ratio λ. These variables are
assigned among the two players in all possible combinations, leading to 30 games
among the players.
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� = 〈players : 2;
AR : {11.45 − 13.26},

t

c
: {0.14 − 0.18},

Sw : {55.27 − 70.1},
�LE : {0 − 3},

λ : {0.45 − 0.64};
CDw,Ww〉 . (4)

In order to consider the effect on the overall aircraft weight the following con-
siderations have been done: (I) the aircraft weight is calculated as shown in Eq. (5),
summing up the operative empty weight WOE , the payload WPayload and the fuel
WFuel ; (II) the wing weight, which affects the overall aircraft weight, is evaluated
thanks to Eq. (8), where Wdg and NZ represent the design gross weight and the
ultimate load factor respectively; (III) WOE and WFuel are calculated according to
Eqs. (6) and (7), respectively, whereWOE_ref andWwing_initial are the initial reference
weights; (IV) based on the aircraft cruise lift coefficient CL, computed for each wing
during the optimization process as the cruise lift coefficient, the aircraft drag coef-
ficient is computed through Eq. (9), where the AR and the Oswald factor e vary for
each wing. Equations (10) and (11) represent, respectively, the objective functions:
Fobj_1 considers the Prandtl-Glauert compressibility correction (Mcorr); Fobj_2 is the
non-dimensional weight objective function.

WAC = Wpayload + WOE + WFuel, (5)

WOE = WOE_ref + Fobj_2 · Wwing_initial, (6)
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2
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CDw = CD0w + C2
L

πARe
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Fobj_1 = CD0w + C2
L

πARe
· Mcorr, (10)

Fobj_2 = Ww

Wwing_initial
. (11)
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Formally, the game is stated as shown in Eq. (4). The 2 players could play with the
5 cards (AR, t/c, Sw, �LE , λ) alternatively assigned to the both players, and player
1 wants to optimize the wing drag coefficient [see Eq. (10)] and player 2 the wing
weight [see Eq. (11)]. TheNGAoptimization results are comparedwith the reference
wing value, as shown in Fig. 2, where three solution points are marked with different
shapes and colors.

The orange square and the red triangle represent two different Nash equilibrium
points: the first one (game 3) represents the best point for the player 1 which min-
imizes wing drag coefficient with an increment in the wing weight. Vice versa the
second point (game 23) minimizes the wing weight with an increment in the drag
coefficient. The light blue triangle (game 30) represents one of the configurations
chosen characterized by drag coefficient and wing weight values lower than the ref-
erence one. Table2 summarizes the results of the NGAoptimization, while in Figs. 3,
4 and 5 the three best wings planform compared with the reference planform (in red)
are shown. The main characteristics of the reference wing are available in Table1.
The wing of the game 3 is characterized by a higher AR with respect to the wing
reference value, which leads to a lower wing drag coefficient, while a lower value of
the mean wing thickness percentage leads to a higher wing weight with respect to
the reference one.

0.0195 0.02 0.0205 0.021 0.0215 0.022

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Fig. 2 NGA optimization results. The orange square (game 3) represents the best point for the
player 1 which minimizes wing drag coefficient with an increment in the wing weight and the red
triangle (game 23) represents the best point for the player 2 which minimizes the wing weight
with an increment in the drag coefficient. The light blue triangle (game 30) represents one of the
configurations chosen characterized by drag coefficient and wing weight values lower than the
reference one
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Fig. 3 In this figure a
comparison between the
wing plaform of Game 3
(blue line) and reference
wing (red line) is shown. The
wing configuration of Game
3 is characterized by a lower
wing drag coefficient value
and an higher wing weight
value w.r.t. the reference
wing. That is due to an
higher aspect ratio value and
a lower thickness ratio value
than the reference wing
respectively
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Wing planform of Game 3

Variables assigned to Player 1 (CDw): AR Sw λ t/c
Variables assigned to Player 2 (Ww): ΛLE

Wing CD = 0.0192
Wing weight = 1.2 initial estimate

Fig. 4 In this figure a
comparison between the
wing plaform of Game 23
(blue line) and reference
wing (red line) is shown. The
wing configuration of Game
23 is characterized by an
higher wing drag coefficient
value and a lower wing
weight value w.r.t. the
reference wing. That is due
to a lower aspect ratio value
and an higher thickness ratio
value than the reference
wing respectively
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Wing CD = 0.0215
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The opposite reasons lead to the results obtained for the game 23. The wing of the
game 30 has characteristics like the wing in game 23 but lower values of the mean
thickness percentage and of the taper ratio allowing a low drag coefficient with a
slightly higher wing weight.

The detailed results are reported in Table2. The NGA optimization has been also
compared with a GA scalarization and a multi-objective GA (Pareto front). In the
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Fig. 5 In this figure a
comparison between the
wing plaform of Game 30
(blue line) and reference
wing (red line) is shown. The
wing configuration of Game
30 is characterized by a
lower wing drag coefficient
value and an higher wing
weight value w.r.t. the
reference wing. That is due
to a combination of multiple
factors such as a lower value
of the taper ratio and the
sweep leading edge angle
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Table 1 Reference wing characteristics

b
(m)

Croot
(m)

�LE
(deg)

λ t/c Sw (m2) MTOW (kg)

Reference wing 27 2.57 2.80 0.62 0.173 61 22215.1

CDw - wing weight @ CL = 0.50 0.0209 (-) - 1048 (kg)

WOE(kg) Wwing(kg) WFuel(kg) WPayload (kg)

Mass breakdown 11917 1048 3098.1 7200

Table 2 Results of NGA application to the turboprop wing

AR �LE
(deg)

b (m) λ t/c Sw (m2) MTOW
(kg)

Game 3 13.26 0.75 29.63 0.64 0.14 66.21 21934.25

CDw - wing weight 0.0192 (-) - 1257.6 (kg)

Game 23 11.45 3 25.18 0.64 0.18 55.40 21867.97

CDw - wing weight 0.0215 (-) - 943.2 (kg)

Game 30 11.45 0.46 25.29 0.45 0.14 55.85 21465.11

CDw - wing weight 0.0204 (-) - 1027.0 (kg)

Mass breakdown WOE(kg) Wwing(kg) WFuel(kg) WPayload (kg)

Game 3 12126.60 1257.60 2607.65 7200

Game 23 11812.20 943.20 2855.77 7200

Game 30 11896.00 1027.00 2369.11 7200
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Fig. 6 The results
comparison among the three
optimization approaches is
presented. The NGA
results(blue filled circle) are
characterized by a good
spread in the feasible zone of
the Pareto front (red filled
circle) , while the GA
scalarization points (black
empty circle) are only
located in the lower area of
the feasible zone. The
scalarization approach
locates almost all the results
in a bounded zone, reducing
mainly the wing weight
respect wing drag coefficient 0.019 0.0195 0.02 0.0205 0.021 0.0215 0.022
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scalarization optimization, GA algorithm has been chosen and the objective function
is simply defined as an average weighted function, as shown in Eq. (12).

Fobj = Fobj_1 · kCDw · sCDw + Fobj_2 · kw (12)

where:

– kw, is the weight which represents the importance of the wing weight in the opti-
mization process.

– kCD, is the weight which represents the importance of the wing drag coefficient in
the optimization process.

– sCDw, is the scale factor useful to keep the same order of magnitude between the
objective functions.

The values for the weights range from 0 to 1 for the two objective functions. In
Fig. 6 the comparison between the results of the three approaches is shown, remarking
a good agreement. TheNGA results are characterized by a good spread in the feasible
zone of the Pareto front (convexity of the Pareto front), while the GA scalarization
points are only located in the lower area of the feasible zone.

Three Players – CDw Versus Ww Versus CLmax

Starting from the two players’ optimization, a third player was involved to also
consider the aircraft performance in terms of maximumwing lift coefficient. For this
reason, another equation has been added [see Eq. (13)] and, consequently, the NGA
was modified according Eq. (14).
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Fobj_3 = CLmaxw (13)

� = 〈players : 3;
AR : {11.45 − 13.26},

t

c
: {0.14 − 0.18},

Sw : {55.27 − 70.1},
�LE : {0 − 3},

λ : {0.45 − 0.64};
CDw,Ww,CLmaxw〉 . (14)

It must be noticed that the maximum wing lift coefficient, calculated using the
Nasa-Blackwell method (Blackwell Jr. 1969), is referred to the equivalent wing.
For the three players’ optimization, the algorithm scans 60 possible solutions, more
than the two players’ optimization application, selecting only those for which the
values of the objective functions are simultaneously better than the reference’s wing
weight and drag coefficient and greater thanmaximum lift coefficient. Between them
the algorithm will choose the wing characterized by the maximum lift coefficient.
Among all the solutions proposed by the algorithm the better compromise could be
achieved assigning the leading-edge sweep angle and wing aspect ratio cards to the
drag player, thickness ratio and wing area cards to the weight player, and the wing
taper ratio card to the maximum wing lift coefficient player. This solution is shown
in Fig. 7. The solution proposed is characterized by three players’ values improved
with respect to the wing reference ones. In particular, the wing drag coefficient is
reduced of about 1 drag count and the wing weight of about 4%, while the maximum
lift coefficient is increased of about 0.07. In Table 3 the solution proposed has been
compared to the reference wing.

The application proposed in this section has been also compared with the Pareto
front and the Genetic Algorithm by modifying Eq. (12) in Eq. (15)

Fobj = Fobj_1 · kCDw · sCDw + Fobj_2 · kw − Fobj_3 · kCL (15)

where kCL is a weight which represent the importance of the wing maximum lift
coefficient in the optimization process. The comparison between all the results per-
formed by the NGA and those calculated by GA and Pareto front algorithm is shown
in Figs. 8, 9 and 10. Since there are three objective functions which vary simulta-
neously the final results should be represented on a 3-axis graph but, to show the
comparisons as well as possible, three cutting planes are presented in the figures
above mentioned, focusing the attention on two pay-off functions at once. The NGA
better solution (the orange square in the three figures, referred to the wing planforms
shown in Fig. 7) always lies on the Pareto front, leading to comparable results among
different approaches.
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Fig. 7 The comparison
between the wing planform
of Game 25 (blue line), the
three players’ optimization
better compromise, and the
reference wing planform (red
line) is shown. This
compromise could be
achieved assigning the
leading-edge sweep angle
and wing aspect ratio cards
to the drag player, thickness
ratio and wing area cards to
the weight player, and the
wing taper ratio card to the
maximum wing lift
coefficient player
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Wing planform of Game 25

Variables assigned to Player 1 (CDw):  AR ΛLE

Variables assigned to Player 2 (Ww): Sw t/c 
Variables assigned to Player 3 (Ww): λ
Wing CD = 0.0208
Wing weight = 0.957 initial estimate
Wing CLmax = 1.58 equivalent wing

Table 3 Comparison between the reference wing and the best solution of NGA application with 3
players

AR �LE
(deg)

b (m) λ t/c Sw (m2) MTOW (kg)

Reference wing 12 2.80 27 0.62 0.173 61 22215

CDw−Ww−CLmax 0.0209 (-) - 1048 (kg) - 1.516 (-)

Game 25 13.26 3 27.07 0.45 0.18 55.28 21924

CDw−Ww−CLmax 0.0208 (-) - 1003 (kg) - 1.580 (-)

Mass breakdown WOE(kg) Wwing(kg) WFuel(kg) WPayload (kg)

Reference wing 11917 1048 3098 7200

Game 25 11872 1003 2853 7200

Conclusion

The goal of this application is to show that the Nash game theory coupledwith typical
genetic evolutionary algorithm, NGA, is a viable approach to use in the optimiza-
tion field in order to: firstly, allow a more realistic association among variables and
objective functions; secondly reduce the computational time. Moreover, the reduced
distance between NGA solution points and the Pareto front attests the reasonableness
and the feasibility of the results obtained. Finally, a verification of the computational
time between the Pareto front, a single game of the NGA, and the GA scalarization
approach has been performed on a laptop equippedwith a single CPU (2.0 GHz). The
elapsed time for a single NGA solution point for the 2 players application is equal
to 5.14 s, for a single scalarization GA solution point is 5.91 s, and for the Pareto
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Fig. 8 The figure shows the comparison among the three optimization approaches allowing to
focus the attention on two pay-off functions: Ww and CDw . The Pareto front (red filled circle) is
characterized by a more disorderly trend than the one shown in Fig. 6 because of this comparison
regards just two players for an optimization process which involves three players. The comparison
remarks a good agreement between the approaches. Again the scalarization approach, empty circle,
locates almost all the results in a bounded zone
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Fig. 9 The figure shows the comparison among the three optimization approaches allowing to
focus the attention on two pay-off functions: CLmax − CDw . The Pareto front (red filled circle) is
characterized by disorderly trend as in Fig. 8 but by a different convexity. This difference is due to the
presence of the CLmax objective function which must be maximize and the CDw objective function
which must be minimize. The comparison remarks a good agreement between the approaches
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Fig. 10 The figure shows
the comparison among the
three optimization
approaches allowing to focus
the attention on two pay-off
functions: CLmax − Ww . The
Pareto front (red filled circle)
is characterized by
disorderly trend as in Fig. 8
but by a different convexity.
This difference is due to the
presence of the CLmax
objective function which
must be maximize and the
Ww objective function which
must be minimize. The
comparison remarks a good
agreement between the
approaches
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front is 7.57 s. The larger the number of variables or objective functions, the larger
the computational time that is saved. In this case correctly design based assignment
of the NGA variables to the players leads to a reduction higher than 30% in terms
of computational time. As future outlook is foreseen the introduction of a higher
fidelity models, like those of computational fluid dynamics (either panel based or
grid resolved) and structural mechanics, to predict with a larger degree of accuracy
the figures listed in Eqs. 5–11, and surrogate-based optimization strategy, to reduce
evaluation function time. Moreover, the simplified models behind Eqs. 5–11 could
still be applied, and extended by means of the inclusion of term-specific uncertainty
factors affecting each of the figures building up the objective functions used in this
optimization application. The approach is in principle easily exstensible to a higher
number of players, paying attention to the cards’ assignement. Further comparisons
with other multi-objective optimization approaches could be investigated.
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Industrial Application of Genetic
Algorithms to Cost Reduction
of a Wind Turbine Equipped
with a Tuned Mass Damper
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and Gabriel Bugeda

Abstract Design optimization has already become an important tool in industry.
The benefits are clear, but several drawbacks are still present, being the main one
the computational cost. The numerical simulation involved in the solution of each
evaluation is usually costly, but time and computational resources are limited. Time
is key in industry. The present communication focuses on themethodology applied to
optimize the installation and design of a TunedMass Damper. It is a structural device
installed within the tower of a wind turbine aimed to stabilize the oscillations and
reduce the tensions and the fatigue loads. The paper describes the decision process
to define the optimization problem, as well as the issues and solutions applied to deal
with a huge computational cost.
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Introduction

During the last few decades the Wind Energy industry has grown fast and engineers
have designed wind turbines of increasing size, while seeking lower values of cost of
energy (CoE). The sector started its industrialization in the late seventies and eighties
and soon scaled the initial 50kW, �15m rotors to 600kW, �50m in the nineties,
3MW,�100m in the 2000s and currently reaching 8MW,�150mEuropean (2012),
Global (2016). Alongside the said rotor upscale, the most convenient onshore sites
were taken up and modern Wind Farm developers and contractors started exploring
more remote sites. Finally, during the last decade, offshore wind resources reached
competitive figures of CoE in the North Sea and some smaller sites around the world.
The higher and more steady offshore winds at shallow waters allowed for taking
advantage of bigger rotors of an already mature technology. Offshore wind turbines
present, nevertheless, particularly complex challenges in the domain of the struc-
ture dynamics additionally to the already severe wind loading. These heavy, slender
structures, built on uneven seabed, have low natural frequencies that fall well within
the excitation range of wave loads. In order to damp oscillations out and therefore
reduce stress in the structure, some sort of absorbers are sometimes used, allowing
for significant overall cost reductions. An especially interesting kind of absorber is
the so called TunedMass Damper (TMD), composed of a massive oscillator tuned at
the target frequency and a damper system to remove the energy from the resonator.
The effectiveness of TMDs highly depends on its location and mass but it may have
limitations due to integration issues. The present paper describes the optimization
strategy and outcomes of a pre-design study of an industrial 6MW class offshore
wind turbine structure equipped with a TMD tuned at the first bending moment of
the tower with a view to reduce overall structure weight and reach more competitive
CoE figures. The focus is put on the strategies followed to overcome the extremely
high computational time. It is directly related to the huge number of simulations
accounted for the fatigue analysis for a big number of individuals dealt in a multi-
objective genetic algorithms optimization scheme. The comparison of several avail-
able tools is presented. The first of them was the company’s in-house optimization
suite which includes gradient-based methods, plus a generic evolutionary algorithms
implementation, based on NSGA-II Goldberg (1989), Deb et al. (2002), and SPEA2
Zitzler and Thiele (1998, 1999), Zitzler et al. (2001). The second tool was RMOP,
CIMNE’s in-house optimization platform, which implements genetic algorithmwith
Nash and Hybrid games Lee et al. (2009, 2010a, b, 2011a, b, c, d, 2012a, b), Periaux
et al. (2009). The implementation of the GA algorithm in RMOP is quite standard.
It was initially inspired on NSGAII, implementing additional functionality not only
from the point of view of the evolutionary techniques, but also from the point of
view of usability and user interface and the set-up of the internal parameters. To
mention some of the implementations, standard techniques like SBX (Simulated
Binary Cross-over) or tournament selection, were jointly added with I/O techniques
and libraries to manage the definition of each individual evaluation. The key point in
RMOP is the implementation of Game strategies, more specifically Nash Games, to
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enhance the convergence and accuracy of the solution. This implementation leads to
an hybrid definition; the Pareto optimality criteria is enriched with the information
from the Nash players, so the optimization analysis benefits from the two of them
Pareto and Nash.

Selection of Optimization Strategy

There are different optimization algorithms available in the company’s in-house suite.
In order to choose the most effective one, a comparison is conducted. This task is
motivated due to the preliminary results obtained during the initial tests and dis-
cussion with company’s engineers, which suggested that there are significant differ-
ences between differentMulti-Objective Genetic Algorithms (MOGA) implemented
within the suite, as well as the initial reservations against RMOP. The comparison
is performed using mathematical test cases commonly used for this purposes. The
advantages of using these cases, among others, are that are easily implemented, fast
to evaluate and designed for this purpose. A preliminary TMD test case is also pre-
sented. It corresponds to a very simplified representation of the TMD, but the main
aimwhen analyzing this particular test case is to anticipate potential issues both from
the implementation viewpoint and from the results viewpoint. The studied MOGAs
are the 3 available in the suite, plus RMOP:

• Evolution: it is a generic implementation of an evolutionary algorithm. It is quite
a simple implementation with a limited control over the setup parameters of the
algorithm.

• NSGA2: it is a well known algorithms developed by Prof. Deb et al. (2001b). Its
applicability and high performance have been documented widely.

• SPEA2: it is a well known evolutionary algorithm developed by Zitzler and Thiele
(1998).

• RMOP: Genetic algorithms with game theory. It is an in-house CIMNE develop-
ment which combines some basic evolutionary algorithms strategies with Nash
games for improved convergence and accuracy. It is possible thanks to the combi-
nation of Pareto optimality criteria with Nash Games as previously described.

The selected test cases are:

• KUR; a mathematical test case with 3 design variables and 2 objective functions.
Its complexity comes from the definition of the functions.

• TNK mathematical test case with 2 design variables, 2 objective functions and 2
constraints, it is a first step into a restricted search space.

• CPT3 mathematical test case with 2 design variables, 2 objective functions and
1 constraint, its complexity is a combination between the objective functions and
the restricted search space.

• OSY mathematical test case with 6 design variables, 2 objective functions and 6
constraints, which defines a very restricted search space.
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• ZDT2; amathematical test case with 30 design variables and 2 objective functions.
Part of its complexity comes from the number of design variables.

• LZ09-F1 mathematical test case with 1 objective function and a variable number
of design variables. This characteristicsmakes it interesting for constantly increase
the problem complexity.

• TMD test case, a multi-objective and multi-disciplinary structural problem based
on the real-world case of designing a wind turbine.

Formore details about themathematical test cases, please refer toDeb et al. (2001a, b,
2002), Chafekar et al. (2003), Deb and Goel (2002).

Comparison of the Mathematical Test Cases Results

For a fair comparison, a common set-up were defined for all the algorithms and all
the mathematical test cases. This common set-up defines a population size equal to 4
times the number of design variables, and a number of maximum evaluations equal
to hundred times the population size. The crossover probability was defined equal
to 0.9 and the mutation probability equal to 0.1. Figures1, 2, 3, 4, 5 and 6 show
a comparison between the results obtained by each algorithm. Figures 1, 3 and 5
show the convergence history of the objective functions for each test case. In all the
three cases, RMOP and NSGA2 are the ones converging the faster and lower. On the
other hand, Figs. 2, 4 and 6 show the Pareto fronts for each of the three cases. It is
clear that the number of evaluations is not enough to fully capture the front shapes
with enough accuracy, but, due to the fact that the aim of the analysis was to detect
which algorithms performs the better with a restricted number of evaluations, then
the objective was fully fulfilled.

In an overall performance analysis of the results, RMOP presents a better average
performance. Evolution algorithm shows poor performance in all tests done, both
in the convergence of the fitness functions and in the capture of the Pareto Front.
NSGA2 shows results compatible with RMOP results in most of the problems and
in most of the Pareto front regions. However, RMOP better captures the Pareto Front
in all the cases. SPEA2 shows results compatible with RMOP results in some of the
problems and in most of the Pareto front regions. The general performance is lower
than RMOP. In some test cases (TNK and OSY mainly), Pareto front regions are not
well populated when using NSGA2 and SPEA2. It is clear that this phenomena is a
direct consequence of the imposed limitation on the number of evaluations and the
size of the population. It was an expected drawback which was accepted for the sake
of saving time. In case the company’s proprietary software would be a requirement,
NSGA2method should be themost appropriate selection. In case company’s software
can be coupled with the RMOP optimization algorithm, then this configuration is the
best choice.
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Fig. 1 KUR test case convergence

Fig. 2 KUR Pareto front

Industrial Application: TMD Optimization

The industrial application is based on a real case, a set of wind turbine, nacelle,
tower and mono-pile which the company is designing and manufacturing for an
Atlantic offshore site. The addition of a TMD is under study. The wind turbine
design including rotor, nacelle and tower is fixed, so the analysis will not modify
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Fig. 3 OSY test case convergence

Fig. 4 OSY test case Pareto front

any of their parameters. The main aims of the work is to optimize the mono-pile and
the TMD. Two are the principal objective functions; the first of them is the structural
performance of the structure when using or not the TMD, and according to the mass
and dumping parameters, while the second one is the overall cost including themono-
pile and theTMD.The performance is split into three objective functions representing
the behavior under ultimate and fatigue loads. To define the performance function,



Industrial Application of Genetic Algorithms to Cost Reduction … 425

Fig. 5 TNK test case convergence

Fig. 6 TNK test case Pareto front

the objective functions that reflect performance in Ultimate and Fatigue loads must
be defined:

FOFLS− f a = wF
1 · MF

x,1 + wF
2 · MF

x,2 + wF
3 · MF
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+wF

4 · MF
x,4
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+wU

4 · MU
xy,4

(1)
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Being

• FOFLS− f a: fore-aft FLS performance objective function,
• FOFLS−ss : side-to-side FLS performance objective function,
• FOULS: fore-aft FLS performance objective function,
• Mx,i : moment in fore-aft direction at point i,
• My,i : moment in side-to-side direction at point i,
• Mxy,i : modulus of resultant moment

where i represents the points: 1 for the Tower bottom, 2 for the Tower lower inter-
mediate, 3 for the Tower upper intermediate, and 4 for the Tower top. Variables wU

i
and wF

i are weights to take into account the more relevance of the moments when
closer to the bottom of the tower:

wU
i = 1

1+a·i
wF
i = 1

1+a′ ·i
(2)

Parameters a and a′ are chosen according to structural criteria. For this case, in
order to obtain a linear cost function and under agreement with the engineers of the
company, they are chosen constants and equal to 0.1. Finally, objective functions in
Ultimate and Fatigue results in:

FOFLS− f a = MF
x,1

1.1 + MF
x,2

1.2 + MF
x,3

1.3 + MF
x,4

1.4

FOFLS−ss = MF
y,1
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y,2

1.2 + MF
y,3

1.3 + MF
y,4

1.4

FOULS = MU
xy,1

1.1 + MU
xy,2

1.2 + MU
xy,3

1.3 + MU
xy,4

1.4

(3)

The functions will beminimized in order tomaximize the performance of the system.
The cost is the main objective function, because the benefits of the company is

directly related to themanufacturing and installation cost (CAPEX cost) of the TMD.
It can be calculated according a complete cost function, or just considering the cost
of the TMD (its mass as the main contributor to the cost).

FOCOST = 74600 + 1.415 · T MDmass+
+11700 + 29000i f T MDmaxEx < 0.5
74600 + 1.415 · T MDmass+
+44000 · T MDmaxEx + 11700+
+29000i f T MDmaxEx > 0.5

(4)

Due to the cost of computing a single individual, several strategies have been
implemented to reduce the overall computational cost. These strategies include on
one hand stopping the calculation if the individual is not fulfilling the restrictions,
and on the other hand a careful selection of the load cases to be calculated, just to
mention two of them. Although applying these simplifications, the evaluation work
flow is quite complex involving several solvers and checkpoints.
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Three different models based on three different loads’ computation approaches
have been studied. Based on accuracy reasons and on the possibility of customization
of the tool, a FE based flexible Multibody model of a wind turbine, substructure and
tuned mass damper built in SAMCEF was considered in the first place. This option
was early discarded for the full optimization procedure due to the high CPU times,
which were unfordable when considering the industrial cost limitation. This limita-
tion is related, amongst others, to the limited number of software licenses available,
which is not a technical issue, but an industrial issue. From the technical point of
view, the license issue was limiting the parallelization of the individual evaluations.
Its use was reduced to periodic verification purposes only. GH Bladed was chosen as
an alternative. The CPU time per thread is similar to that of SAMCEF but the avail-
able licenses at the company allowed for multiple simulations running in parallel in
different threads, which significantly speed up the overall optimization procedure.
While SAMCEF is a FE solver that features mechanism modeling Siemens LMS
Samtech (2012), Bladed is a Wind Turbine dedicated multi-body simulation (MBS)
software that models mechanisms with kinematic laws and features elasticity by
modal condensation of its main structures Bossanyi (2010). This approach has an
impact on accuracy of the results, mostly due to poor modeling of TMD nonlinear
region, that is overcome with periodic verification with a higher standard approach.
A third option is finally considered which stretches the latter approach. An ad-hoc
solver is developed to compute loads of a simplified model of WT, substructure and
nonlinear TMD.While the motion of the TMD remains in the linear region a fast and
exact recursive closed form solution is used Betran and Breuker (2014) and it swaps
to Newton family solvers, HHT, when nonlinearities must be accounted for. This
approach totally solves the problem of threads used in parallel and the CPU cost per
load case is significantly reduced. The use of the SAMCEF model for verification
guarantees accuracy of overall procedure. Finally, the selected procedure was a mix
between the use of Bladed and the ad-hoc solver, which was implemented within
MATLAB. Bladed was used to perform a Campbel analysis of the individual, which
first determine its feasibility, and early discard those leading to a poor design.

Figure 7 describes the individual evaluation workflow. Step by step can be
described as:

1. START: Start node for the individual evaluation.

Fig. 7 Evaluation workflow
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2. getTempDir: Scripting Process (Java). Sets the local variable TempDir with the
path of the current evaluation folder. It changes for each individual evaluation
of the optimization.

3. Init: Scripting Process (Python). Sets initial values for several variables. The
relation of initiated variables.

4. Copy Essential Files: File Copy Process. Copy the files needed for the evalua-
tion to the temporary folder, whichmust be located in the optimization directory:
(a) Excel file (DLCs.xlsx) containing the dynamic load cases to evaluated. (b)
Bladed Campbelmodel file (DTBLADED.MODEL). (c) BinaryMatlab file con-
taining information about the files and folders name (Names.mat).

5. Eval.DVs: File Creation Process. Creates a file containing the value of each
design variable. The file format is ASCII with one line containing:TMDmass,
TMDfreq, TMDdamp, TMDnode.

6. subsBladedFile: Execution Process. Runs executable file subsBladedInFile.exe.
It combines the files DTBLADED.MODEL with Eval.DVs to generate
DTBLADED.IN.

7. Dir BladedRun: Directory Creation Process. Creates the directory BladedRun
inside the TempDir directory so Bladed can run in it.

8. Dtbladed.exe: Execution Process. Runs executable file dtbladed.exe to perform
the Campbel analysis. The call does not take parameters, it is: BladedFolder
dtbladed.exe.

9. evalBladedCampbel: Scripting Process (Python). Reads Campbel results from
file BladedRun/modalResultsFileName and evaluates the 3P dynamic criteria.
It also sets the Penalty output variable to 1 if the file does not exist or to 2 if the
dynamic criteria is not met.

10. Cond evalBladedCampbel: Condition. Decision point that checks if the evalua-
tion of the Campbel analysis is satisfactory (ValEvalBladedCampbel == 0) and
the runs the node evalMatlab.exe or it skips further evaluations and goes directly
to the node Delete TempDir.

11. evalMatlab.exe: Execution Process. Runs evalMatlab.exe. It calculates the
dynamic load cases transformation for the current TMD, the performance objec-
tive functions, among others. Call is: ToolsFolder/evalMatlab.exe TMDmaxEx-
cursionRestr ApplyExcursionBreak.

12. ReadConstraint: Parameter Reader. Reads Eval.constraint file previouslywritten
by evalMatlab.exe which contains the value of TMDExcursionRestr.

13. Calc TMDmaxExcursion: Calculator Process. Calculates the value of the max-
imum escursion: TMDmaxExcursion=TMDmaxExcursionRestr TMDExcur-
sionRestr.

14. Eval TMDmaxExcursionRestr. Condition. Decision point for maximum excur-
sion criteria.

15. Read Performance FOs: Parameter Reader. Reads Eval.2to4i ndividual file
which contains the values of the objective functions from 2 to 4. The file format
is ASCII with one line containing: FO(FLS − f a), FO(FLS − ss), FOU LS.

16. TMD cost FO calc: Scripting Process (Python). Calculates TMD cost objective
function. See [1] for details on the function.
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17. ErasePenalty: Calculator Process. Sets local variable Penalty value to 0, indicat-
ing that the evaluation is correct and have not been applied any penalty during
the process.

18. Delete TempDir: Scripting Process (Python). If the evaluation has been launched
from an optimization process deletes TempDir folder, if it has been launched for
a single evaluation it does not erase the TempDir.

19. FINISH: Finish node for the individual evaluation. MarcaPenalty3: Calculator
Process. Sets local variable Penalty value to 3, indicating that the evaluation has
been stopped during the maximum excursion check.

20. MarcaPenalty3: Calculator Process. Sets local variable Penalty value to 3, indi-
cating that the evaluation has been stopped during themaximumexcursion check.

An initial definition of the optimization problem had 8 design variables, 4 to
define the basic substructure geometry and 4 to define the TMD characteristics. The
variation of substructure geometry has a direct impact on the driving substructure
cost and on the dynamic behavior of the whole system. The variation of the TMD
characteristics contribute for each individual to reduce the dynamic response and has
a secondary contribution to the cost. Finally, a selection of 4 design variables was
made to simplify the problem, all of them related to TMD. This selection includes
the mass, the frequency, the damping coefficient and the station where to install
it. Objective functions has been described in (3) and (4). Both the search space
and the solution space are multi-dimensional, which means the Pareto front is no
longer a 2D line, nor a 3D surface. The analysis of the solution is done on the
projection of this multi-dimensional space into 2D plots. Figures 12, 13 and 14
show an example of how the solutions are plotted, taking couples of the 4 objective
functions. Additionally, Figs. 15 and 16 show the Pareto Front plotting 3 of the
objective functions, one of them as a color scale. Figures 8, 9, 10, and 11 are the
convergence history of each objective function. No major issues can be extracted
from these plots, more than compare how fast each function is converging. Figure 8

Fig. 8 Cost objective function convergence
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Fig. 9 Fatigue loads (front-aft) objective function convergence

Fig. 10 Fatigue loads (side to side) convergence

shows the cost objective function convergence, which until the end of the analysis
does not present a significant improvement. Figure 9 shows a gradual improvement
of the Fatigue loads (front aft). Figure 10 shows also a constant improvement of the
function, anyway, the last 200 evaluations do not provide further improvement. It
shows two regions, the first half with a gradual improvement, and the second half
where the improvement is less significant. Figure 11, regarding the ultimate loads,
does not show improvement much improvement during the optimization. Although
the scale of the y axis has been normalized, to fulfill with the NDA signed with
the company, all the functions show a good improvement along the optimization
analysis, compared to initial values. Later, when analyzing the Pareto Front plots, a
comparison with the baseline design will be provided.
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Fig. 11 Ultimate loads objective function convergence

Fig. 12 Cost versus fatigue loads (front-aft)

The plots for the Pareto Front show the results usingBladed plusMATLAB imple-
mentation. In all of them an improvement respect to the baseline design is obtained.
There are a lot of Pareto individuals improving the values for the baseline, demon-
strating the performance of the optimizer RMOP as expected. The computational
cost associated to this analysis is reduced applying a preliminary selection of the
load cases for each individual, without penalizing the accuracy and feasibility of the
design. Figure 12 shows the cost versus the Fatigue loads. As shown in the graph
both functions are opposed; to improve one function the other must get worse. This
is not always the case, as happens with the two functions related to fatigue loads.
Individuals that belong to the Pareto Front are marked in green. As a remark, the
plots presented are a projection of the four dimensional objective functions space;
this yields to a Pareto Front representation that has individuals that may appear as
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Fig. 13 Cost versus fatigue loads (side to side)

dominated, but are not. Those individuals appear as non-dominated in other pro-
jections. TMD cost in front of PF Fatigue side-side is shown in Fig. 13. These two
functions are opposed too. TMD cost in front of PF Ultimate is shown in Figure 14.
The two functions are opposed, but the more expensive TMDs is, the PF Ultimate
almost constant is. the Pareto Front of the two Fatigue loads (front aft and side to
side) is not shown because the two functions present a strong correlation, so any
improvement on one of the two also means improving the other one. Two additional
Pareto Front plots, including 3 objective functions, are presented. Figures15 and 16
do not shown the dominated points to simplify and make themmore understandable.
In the second one, the region where the ultimate loads keep constant while the cost
or the fatigue loads increase is also there, as seen previously in Fig. 14. In the Pareto
front plots, some individuals have beenmarked as “selected”. Those individuals have
been used by the company to evaluate the overall performance of the optimization
and to compare the the four objective functions values with the baseline design. All
the selected points are located near the influence area of the baseline, although they
improve the baseline values. It is true that in some cases, it is not possible to simulta-
neously improve all the functions, but improvements of about 10 to 20% are possible.
Table 1, describes the error of the selected individuals compared to the baseline. The
individuals improving all the objective functions show lower improvement, while
those with larger improvements in some functions showmore variability on the error
along the four objective functions.

It has beenmentioned that several strategies have been evaluated in order to reduce
the computational cost associated to the analysis. The most relevant ones have been:

• Parallelize: it is the first one thing about, but one should bear in mind that the
solver can be also parallelized. The use of smart strategy, defining how many
cores is using each individual evaluation and how many are available, is of great
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Fig. 14 Cost versus ultimate loads

Fig. 15 Cost versus fatigue loads (side to side) vs ULS

Fig. 16 Fatigue loads (side to side) versus ultimate loads versus cost
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Table 1 Relative error compared to baseline

Cost FLS-fa FLS-ss ULS

−24.00 −0.55 19.03 1.18

−0.13 −0.29 −4.58 −2.31

−2.52 −0.14 −0.004 −1.25

19.54 −0.80 −23.49 −2.31

−7.56 0.09 7.15 0.04

−0.90 −0.23 −2.35 −1.84

−6.04 −0.04 3.83 −0.42

importance. This is the first and more important startegy because it can be applied
whatever analysis and solver you are going to use.

• Individual evaluation: in some cases it is not possible to interact with the individual
evaluation, so its cost cannot be reduced. But it was not the case of the actual anal-
ysis. The standard procedure of the company, when validating a design includes
a long list of load cases to be evaluated. Initial, the company was requesting to
apply the same list to each individual on the evaluation, leading to an unfordable
cost. a careful analysis determine that the relevant load cases can be restricted to
only a 5%, then the computational cost has been extremely reduced.

• Constraints: one can use the constraints as restrictions, so defining a go-no go
criteria. If any individual does not fulfill a constraint, the individual is penalized
and the evaluation is stopped. This strategy is easy to implement if your evaluation
workflow is split into several steps, otherwise it can be difficult or no sense to
apply because the cost reduction is not relevant.

An important point must be highlighted in regards the restrictions applied to
the individuals. There have been 137 individuals that do not meet the maximum
excursion for the TMD displacement (set at 1.5m), with a maximum excursion of
2.1m. Another remark is that any individual has been penalized for the dynamic
check, evaluated with the Campbel analysis and the 3P criteria. This should be
analyzed further to evaluate the reason that any individual has not met the constraint;
maybe is not set correctly or maybe there is some error in the implementation. If
it is confirmed that the restriction was satisfactorily setup, then the use of Bladed,
to perform the Campbel analysis should be removed, simplifying the workflow and
reducing the computational cost of each individual evaluation.

Conclusions and Further Work

Industrial applications differ from academic problems on many ways. Although aca-
demic and mathematical test case can reach a high complexity level, the multi-
disciplinary involved in industrial problems, added to the complexity of the design
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process by itself conform the key issues. This communication is aimed to describe
how the authors deal with this complexity, and how closely working with the engi-
neers in the company face and partially solve this problem. The paper is also aimed
to demonstrate the capabilities of RMOP in comparison to industrial suites. The
results from both the mathematical test cases and the industrial application show
how RMOP performs better, even without using additional functionalities like Nash
Games. From the point of view of the industrial application, the results lead to a rele-
vant reduction of the cost, as well as the loads. The Pareto hyper-surface is defining a
large number of Pareto individuals which are improving the 4 objective functions in
comparison with the baseline design. Significant improvements have been obtained
when improving. Although those individuals with spectacular improvements on one
function do not show consistent improvements for all the four objective functions,
there are many individuals improving the four functions within the range of 1–5%,
which is more than interesting. From the point of view of the company, the cost of
the TMD was the most important objective function, so it was used to identify and
select those individuals andmore promising configurations. Furtherwork is two-fold.
On one hand an on-going implementation of a most simplified solver in MATLAB,
which can lead to a simplified solver, with a reduced computational cost but with an
appropriate accuracy level. On the other hand, CIMNE is working on the continuous
improvement of RMOP. It focus on the implementation of hierarchical evaluation
strategies within the platform. Each of the two will mean a significant improvement
on the calculation time and on the efficient use of the available solver to get a fast
scan of the search space and an accurate optimal solution.
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Optimization Under Uncertainty



Aerodynamic Shape Optimization
by Considering Geometrical
Imperfections Using Polynomial Chaos
Expansion and Evolutionary Algorithms

Athanasios G. Liatsikouras, Varvara G. Asouti,
Kyriakos Giannakoglou and Guillaume Pierrot

Abstract Uncertainties, in the form of either non–predictable shape imperfections
(manufacturing uncertainties) or flow conditions which are not fixed (environmen-
tal uncertainties) are involved in all aerodynamic shape optimization problems. In
this paper, a workflow for performing aerodynamic shape optimization under uncer-
tainties, by taking manufacturing uncertainties into account is proposed. The uncer-
tainty quantification (UQ) for the objective function is carried out based on the
non–intrusive Polynomial Chaos Expansion (niPCE) method which relies upon the
CFD software as a black–box tool. PCE is combined with an evolutionary algo-
rithm optimization platform. CAD–free techniques are used to control the shape and
simultaneously generate shape imperfections; next to this, a morphing/smoothing
tool adapts the CFD mesh to any new shape. In the cases presented in this paper, all
CFD evaluations are performed in the OpenFOAM environment.

Introduction

A variety of stochastic and gradient–based optimization methods have been devel-
oped to cope with shape optimization problems in aerodynamics. Most of the rele-
vant algorithms minimize (or maximize) an objective function (to be denoted as F)
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assuming that the flow conditions are fixed and/or the exact geometry can be man-
ufactured. However, this is not the case in real–world applications where the flow
conditions may vary and/or the manufactured shape may deviate from the CAD
model. This led to the development of algorithms for shape optimization under uncer-
tainties related to flow conditions and/or manufacturing imperfections. In the latter,
the objective function to be optimized can be expressed as F̂ = F̂(c,b, F) to denote
the dependency of F̂ on the stochastically varying environmental variables c ∈ R

M ,
the design vector b ∈ R

N and the performance metric F .
Associated with any design under uncertainties is the process of Uncertainty

Quantification (UQ) which quantifies the effect of the uncertain variables on the
performance (F). In large–scale problems,Monte–CarloAsmussen andGlyn (2007),
Morokoff and Caflisch (1995) methods are prohibitively expensive UQ techniques.

A viable alternative is the Polynomial Chaos Expansion (PCE) Xiu and Karni-
adakis (2002), Eldred and Burkardt (2009). There are two ways to implement the
PCE. In the intrusive PCE, every uncertainty affecting the flowmodel is introduced in
the governing equations, new PDEs are derived and numerically solved. In the non-
intrusive PCE (niPCE), the evaluation software is used as a black–box to compute the
objective function values for some data–sets (determined by the Gauss integration
formulas) of the uncertain variables.

In this work, the niPCEmethod is used together with an evolutionary algorithm to
create a workflow for shape optimization under uncertainties. CAD–free approaches
are utilized for shape deformations and a mesh morphing/smoothing tool, namely
the Rigid Motion Mesh Morpher (R3M) Eleftheriou and Pierrot (2014), for the
adaptation of the CFD mesh to the changed boundaries.

It is R3M and its corresponding smoother that generate the geometrical imper-
fections this paper is dealing with. Three applications are demonstrated, based on
which the way of introducing geometrical imperfections is investigated. The first
case deals with the optimization under geometrical imperfections of an S–bend duct,
the second with a 2D manifold and the last with a two–element airfoil.

Design–Optimization Under Uncertainties

An Evolutionary Algorithm (EA), assisted by surrogate evaluation models or
metamodels, is used for the optimization under uncertainties. In fact, this is the
Metamodel–Assisted EA (MAEA) of the general purpose optimization platform
EASY (Evolutionary Algorithms SYstem http://velos0.ltt.mech.ntua.gr/EASY)
which can handle single- or multi-objective, constrained or unconstrained problems.
EASY handles three populations, namely μ parents, λ offspring and the elite set
and applies evolution operators in conformity with binary or real encoding of the
design vector (b). For each offspring, the uncertainty of the function of interest F
(such as drag, lift, losses, etc.) should be quantified. Since UQ using niPCE involves
many calls to the CFD tool, a MAEA that uses low–cost surrogate evaluation models
(radial basis functions networks) is the rightmethod to reduce the computational cost.

http://velos0.ltt.mech.ntua.gr/EASY
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Fig. 1 Workflow for CFD–based shape optimization under manufacturing uncertainties leading to
geometrical imperfections. The background optimization tool is a (μ, λ) EA, with μ parents and λ

offspring in each generation

Local metamodels are on–line trained for each and every new individual generated
during the evolution. For all but the first generations, metamodels (RBF networks in
whatever follows) are used to pre–evaluate the offspring population by, practically,
interpolating the objective function values of some of the previously evaluated indi-
viduals and indicate the most promising members to undergo CFD–based evaluation
Karakasis and Giannakoglou (2006).

The optimization workflow in the case with manufacturing uncertainties is pre-
sented in Fig. 1. Topics such as the UQ using the niPCE, shape parameterization and
mesh morphing are discussed below, in detail.

UQ Using Non-intrusive PCE

Let F(ξ) be a functionwhere ξ is a stochastic variable andw(ξ) its probability density
function (normal distribution). According to the PCE theory Xiu and Karniadakis
(2002), F can be approximated by a linear combination of afinite subset of orthogonal
polynomials Ψi (ξ) (of degree i ; normalized Hermite polynomials)
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F(ξ) ≈
q∑

i=0

αiΨi (ξ) (1)

with q being the chaos order, truncating Eq. 1 . The first two statistical moments of
F , i.e. its mean value and variance, can be written as

μF =
∫

F(ξ)w(ξ)dξ = α0, σ 2
F =

∫ (
F(ξ) − μF

)2
w(ξ)dξ =

√√√√
q∑

i=1

α2
i (2)

The PCE coefficients (αi , i ∈ [0, q]) result from the following integrations

αi =
∞∫

−∞
nF(ξ)Ψi (ξ)w(ξ)dξ (3)

computed using Gauss Quadrature (GQ) Golub and Welsch (1969). To do so, the
evaluation of the problem specific function is needed at a predefined number of the
so–called Gaussian nodes.

After having computed the statistical moments of F through evaluations at the
Gaussian nodes, the appropriate objective function(s) to be maximized or minimized
can be computed. Either a multi–objective optimization problem, by seeking the
Pareto front on the (μF , σF ) plane, or a single–objective one, by concatenating the
statistical moments into a single function, can be used. In this work, the objective
function (F̂) to be minimized is defined as

F̂ = μF + κσF (4)

where κ is a user–defined (possibly signed) weight.

Shape Parameterization and Mesh Morphing

In this paper, without loss in generality, shape parameterization is based either on
Radial Basis Functions (RBFs) or cages associated with a coarse mesh that control
the CFD one through properly computed Harmonic Coordinates (HC) at the nodes of
the latter. The coordinates of either the RBF centers or the HC cage knots constitute
the design vector b ∈R

N .

Radial Basis Function Model

K RBF centers are initially selected; these can either be a subset of the surface nodes
or any set of points around the shape. In the applications shown in this paper, the
RBF centers do not necessarily coincide with the surface nodes. The displacement
Δr of any surface node, initially being at position r, is given by
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Δr =
K∑

i=1

wiφ(||rc,i − r||) (5)

where rc,i is the initial position vector of the i–th RBF center, φ is the RBF activation
function andwi are as manyweights as the RBF centers, for each Cartesian direction.
To compute the weights, Eq. 5 is applied at the K RBF centers (separately for each
Cartesian coordinate) and the resulting linear systems are numerically solved.

The HC Two–Cage Model

Harmonic coordinates (HC), initially proposed for character articulation Joshi et al.
(2007), use a topologically flexible structure called “cage” to control deformations of
2Dor 3Ddomains.AnHC–based technique thatmay control both shapedeformations
and adapt the CFD mesh to the new geometry has been proposed in Kapsoulis et al.
(2016) by adopting a two–cage control mechanism. The two–cage model allows
smooth adaptation of the CFD mesh by avoiding mesh quality degradation due to
large boundary displacements. The cages are filled with a very coarse unstructured
mesh and, by applying appropriate conditions and solving asmany Laplace equations
as the number of the (internal) cage control knots, the nodal HC values are computed.
The HC are interpolated from the cage coarse mesh to the CFD mesh and, then,
any CFD mesh deformation can be explicitly defined by the cage control knots
displacements.

Rigid Motion Mesh Morpher

Though the RBF networks or the HC control cages could also undertake the adap-
tation of the CFD mesh to the updated geometry, CFD mesh adaptation is herein
controlled by a separate mesh morpher and corresponding smoother (R3M: Rigid
MotionMeshMorpher Eleftheriou and Pierrot 2014). The reason is that the aforesaid
smoother can also be used to generate shape variations by mimicking manufacturing
imperfections. The R3M morpher is capable of displacing the internal mesh nodes
byminimizing a given distortionmetric by favouring rigidity in the critical directions
of imminent distortion, being thus able to handle mesh anisotropies.

The computational mesh, including boundary nodes, is split into a number of
overlapping stencils to be kept as rigid as possible. Let ui,s be the ideal displace-
ment of node i belonging to stencil ’s’; this stands for the displacement of the node
assuming a rigid motion of the stencil it belongs to (translation and rotation, without
any change in shape and size). Within the optimization loop, such an ideal situation
is not possible since the displacements of the boundary nodes are determined by the
value–set of design variables controlled by the EAwhich do not necessarily conform
with the desired rigidity. To use R3M only for adapting the CFD mesh to the new
boundary which is not affected by uncertainties, it suffices to minimize
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E1 =
∑

s

ws

∑

i∈s
μis(ui −uis)

2 (6)

where ui is the displacement of each CFD mesh node, ws is a weight determining
the importance of each stencil and μis a weight associated with node i of stencil
s, μis accounts for mesh anisotropy, by favoring rigidity in directions of imminent
distortion. In 3D, if Nn is the number of the inner CFD mesh nodes, Eq. 6 has 3Nn

unknowns and E1 can be minimized in the least squares sense.
Over and above to mesh morphing, the same tool (R3M) can additionally be

used to smooth the boundary. To do so, all boundary nodes belonging to patches
controlled by the optimization algorithm are considered as “handles”. The position
of these handles determines the shape of the boundary based on “spring theory”.
In fact, each handle is connected with its underlying node with an ideal spring,
the stiffness of which is controlled by a scalar coefficient λ̃. High λ̃ values cause
smaller deviation from the wall shape, compared to the deterministic geometry,
Fig. 2. The final positions of boundary and internal mesh nodes are, then, computed
by minimizing

E=E1 + λ̃
∑

j∈H
(u j −Vt

j )
2 (7)

where Vt
j are the displacements corresponding to the deterministic geometry and H

the set of handles.
For the needs of this paper, the smoother (last term on the r.h.s. of Eq. 7) is used

to create the stochastic variations in the boundary shape, by making the assumption
that the uncertainty in the λ̃ value determines shape imperfections. Thus, for the
known Vt

j field (deterministic geometry resulting all from the EA–based search) the
minimization of E (Eq. 7) provides a new CFD mesh with boundary different from
the deterministic one, which is affected by the stochastically varying λ̃.

Fig. 2 Example of the effect
of the λ̃ coefficient on mesh
deformation (2D). For the
displacements computed
from the RBF model (red
continuous line), the
minimization of E (Eq. 7)
determines the final nodal
displacements (by
considering imperfections)
depending on the λ̃ values
(blue/pink dashed lines for
high/low values,
respectively)

λ~1
λ~2

Initial Deterministic Geometry
New Deterministic Geometry

Initial position of RBF centers
New position of RBF centers
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Applications

Optimization of an S–Bend Duct

This case deals with the shape optimization of an S–bend duct by considering geo-
metrical imperfections. The optimization aims at minimizing F̂ , given by Eq. 4,
where F stands for the total pressure losses between the duct inlet and outlet,

F =
∫
(p + 1

2ρu
2)u · ndS∫

u · ndS (8)

by deforming only the central curved part of the duct which is marked in red (Fig. 3).
In Eq. 8, u is the velocity vector, p is the pressure and n is the outward unit normal
vector at the boundaries of the flow domain.

The baseline 3DCFDmesh has been generated using CFD-GEOMCFDResearch
Corporation (1993) and consists of hexahedra close to the walls, a zone of prisms
and tetrahedra everywhere else. The flow is laminar with the flow Reynolds number
being equal to Re = 550. Uncertainty in λ̃ resulting in shape variations is assumed.
In specific, λ̃ follows a normal distributionwithmean valueμλ̃ = 0.017 and standard
deviation σλ̃ = 0.005.

For each candidate solution generated during the optimization, UQ should be
performed in order to obtain the mean value and standard deviation of F . The central
curved part of the duct, which is free to deform, is controlled using an RBF model

Fig. 3 S–bend duct. Left: Baseline geometry. Grey parts are kept fixed whereas the boundary
marked in red is free to deform. Right: Computed mean value and standard deviation of total
pressure losses (F) computed with the niPCEmethod for chaos order q = 2 and 3 for the optimized
geometry.All tabulated quantities are normalized using the objective function of the baselinewithout
uncertainties (Fref = 137.84 Pa ) as reference. Slight differences on the μF values depend on the
integration using different Gaussian nodes (different GQ degree)
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with K = 24 RBF centers. The coordinates of the latter (as in Eq. 5) are selected as
design variables for the optimization workflow using EASY. An (8, 12) MAEA, with
μ = 8 parents and λ = 12 offspring, was used for the optimization; the termination
criterion was set to 200 UQs. Metamodels were activated after the first 25 of them.

Optimization with chaos order equal to 2 was performed. This was a reasonable
selection since, as shown in Fig. 3, the UQ using either q = 2 or q = 3 yields quite
similar results; thus, q = 2, at the cost of 3 CFD runs per UQ, was selected. The
optimized geometry yields an objective function (F̂) value 9.6% lower than that of
the baseline. The effect of the λ̃ value in the optimized S–bend geometry for chaos
order q = 2 is shown in Fig. 4.

It is also worth comparing the results of the optimization of the S–bend duct under
geometrical uncertainties with those resulting from a run without uncertainties. For
this reason, the optimization without uncertainties has been performed, followed by
the UQ on the optimized geometry for q = 2 and 3. Figure 5 presents the conver-
gence histories of the optimizations with and without uncertainties. In Table 1, the
mean value and the standard deviation of F computed for the optimized geometry
(obtained from the run without considering uncertainties) are tabulated. The opti-
mized geometry yields an objective function F̂ value which is by 10.4% lower than
the baseline. All results have been normalized with the total pressure losses of the
baseline geometry (Fref = 137.84Pa).

Comparing tables in Fig. 3 (optimization under uncertainties) and Table 1 (UQ in
the optimized geometry without uncertainties), some differences can be noticed. The

Fig. 4 S–bend duct. Effect of λ̃ to the optimized S–bend geometry for the three Gaussian nodes
used for UQ with chaos order q = 2. Differences in the volume of the second and third geometry
w.r.t. the first, caused by the variation in λ̃, are 0.22 and 0.47% respectively
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Fig. 5 S–bend duct. Convergence histories of the optimization with and without uncertainties

Table 1 S–bend duct. Mean value and standard deviation of total pressure losses computed with
the niPCE method for q = 2 and q = 3 for the optimized geometry obtained from the run without
considering uncertainties

Quantity q = 2 q = 3

μF/Fref 0.8961 0.8960

σF/Fref 0.0024 0.0025

Fig. 6 S–bend duct case. Total pressure field in the optimized geometry resulted from the opti-
mization with (top) and without (bottom) considering uncertainties

mean value of F in the latter run is lower than in the former whereas the standard
deviation of F is three times higher. In Fig. 6, the total pressure field in the optimized
geometries is presented. In the geometry generated by the optimization with uncer-
tainties, the groove on the one side of the duct is smaller, which is probably the main
reason for which this shape has lower standard deviation than the one generated from
the optimization without uncertainties.
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Optimization of a 2D Manifold

The second problem deals with the shape optimization of a 2D manifold with one
inlet and three outlets, for minimum F̂ given by Eq. 4, with F being the total pressure
losses across the duct (as in Eq. 8).

The baseline CFD mesh has approximately 140K nodes and 70K elements. An
inlet velocity ofUin = 0.3m/s leads to a laminar flow at Re = 1300. A single uncer-
tainty in the coefficient λ̃ of the morpher is assumed, causing uncertainties in the
manifold shape. It is assumed that λ̃ follows a normal distribution with mean value
μλ̃ = 0.3 and standard deviation σλ̃ = 0.13.

The baseline manifold shape, extruded in the third dimension for demonstration
purposes, is shown in Fig. 7. Areas marked in red are free to deform. The velocity
field in this geometry can be seen in Fig. 8 (left).

The manifold is parameterized using an HC control cage with 45 knots; 28 knots
out of them are allowed to vary in both directions summing up to 56 design vari-
ables in total (Fig. 8; right). A (8, 12) MAEA was used and the metamodels were
activated after the first 30 UQs. In the subsequent generations, all individuals were
pre–evaluated on the metamodels and the top two of them in each generation were
selected for CFD re–evaluations. After 300 UQs, a reduction in F̂ by ∼4% was
achieved.

The effect of chaos order on the optimization of the manifold duct is provided in
Table 2. Chaos order equal to 2 appears to be a good compromise in terms of accuracy
and computational cost. With a single uncertain variable, namely the λ̃ coefficient of
themorpher and q = 2, three CFD evaluations per UQ are needed. The effect of the λ̃

value on the optimized geometry is presented in Fig. 10 and the convergence history
in Fig. 9. All results are normalized with the total pressure losses of the baseline

Fig. 7 Manifold case. Baseline geometry plotted in 3D for demonstration purposes. Deformable
boundaries are marked in red
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Fig. 8 Manifold case. Left: Velocity field in the baseline geometry; recirculation areas near the
boundaries are themain reason for total pressure losses. Right: Baseline geometry (marked in black)
and HC cage marked in red. Design variables correspond to the coordinates of the red nodes

Table 2 Manifold case. Mean value and standard deviation of F , for q = 2 and 3, for the optimized
geometry. Differences on μF depend on the integration with different Gaussian nodes

Quantity q = 2 q = 3

μF/Fref 0.9673 0.9674

σF/Fref 0.000889 0.000887

Fig. 9 Manifold case.
Convergence history of the
optimization under
uncertainties for q = 2. A
reduction in F̂ by
approximately 4% was
achieved
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geometry. Though only a small part of the manifold was free to deform, an important
reduction of the F̂ was achieved.

Optimization of the Flap of a Two–Element Airfoil

The last case deals with the shape optimization of the flap of a two–element air-
foil (Fig. 11, left), without changing the shape of the main body for maximum F̂
(given by Eq. 4 with k = −1). The performance metric F used herein is the lift
coefficient CL . The baseline CFD mesh consists of approximately 90K nodes and
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Shape 1
Shape 2
Shape 3

Fig. 10 Manifold case. Effect of the λ̃ value to the manifold for the three Gaussian nodes used
for the UQ with q = 2. Close–up view at the deformable and the difference between the three
geometries can be observed

Table 3 Two–element airfoil. Mean values and standard deviations of the uncertain variables.
Normal distribution for all of them is assumed

Uncertain variable μ σ

λ̃ 0.10 0.03

Δx/chord f lap 0.0067 0.0033

Δy/chord f lap −0.0033 0.0023

Fig. 11 Two–element airfoil. Left: Baseline geometry of the main body and flap. Right: Mean
value and standard deviation of F for q = 2. The lift coefficient for the baseline geometry without
considering uncertainties is CL = 2.5465

155K elements. The flow is incompressible and turbulent with freestream Mach
number M∞ =0.147, Reynolds number based on the chord Rec =4.23 · 106 and
zero freestream flow angle. The Spalart–Allmaras turbulence model Spalart and All-
maras (1994) is used. In this case, three uncertain variables, that all follow normal
distributions, were assumed. Uncertain variables are the λ̃ coefficient of the morpher
and the flap positioning (Δx , Δy) w.r.t. the airfoil main body. The mean value and
standard deviation of the uncertain variables are tabulated in Table 3.

The outcome of the UQ for q = 2 is demonstrated in Fig. 11 along with the main
body of the airfoil, which is kept fixed, and the baseline geometry of the flap. The
UQ with three variables and q = 2 requires 27 CFD runs to compute the mean value
and standard deviation of the lift coefficient.
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The flap is parameterized using HC cages. The control cage consists of 17 knots
summing up to 34 design variables. Themain body of the airfoil is kept fixedwhereas
the flap is allowed to deform. For the flap, the leading and trailing edges are not
allowed to move. An increase in F̂ by ∼2% was achieved leading to μF = 2.6001
and σF = 9.27 · 10−3.

It can be noticed that the mean value of the lift coefficient of the optimized geom-
etry is higher than that of in the baseline geometry whereas the standard deviation
is lower. Thus, the optimized geometry (Fig. 13) operates more efficiently in a range
of operating points. In Fig. 12, the Mach number for the baseline and the optimized
shape is demonstrated. In the optimized geometry, theMachnumber along the suction
side is higher which is the reason of the increased lift coefficient.

The importance of using the low–cost surrogate models that EASY implements,
is crucial in this case since for each candidate solution the UQ requires 27 CFD runs.

Fig. 12 Two–element airfoil. Mach number contours around the baseline (left) and the optimized
(right) flap geometry. The optimized geometry has been evaluated for themean value of all uncertain
variables

Fig. 13 Two–element
airfoil. Close-up view on the
flap (baseline in blue;
optimized in red). The
curvature of the mean
camber line is increasing, to
maximize the lift coefficient



452 A. G. Liatsikouras et al.

Closure

This paper presented a way to implement geometrical (manufacturing) imperfections
during the aerodynamic shape optimization under uncertainties. This is done through
the RigidMotionMeshMorpher (R3M) and its corresponding smoother. Uncertainty
quantification was based on the non-intrusive PCE and the optimization was carried
out by ametamodel–assisted EA. The use ofmetamodels was beneficial since it led to
a reduced number of flow solutions which, in the case of UQ (with several uncertain
variables), involves several calls to the CFD s/w. All these tools have been put in the
form of an automated workflow for performing optimization under manufacturing
uncertainties. Three applications in internal and external aerodynamics have been
presented, with up to three uncertain variables related to the shapes themselves.
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Multiobjective Optimisation of Aircraft
Trajectories Under Wind Uncertainty
Using GPU Parallelism and Genetic
Algorithms

Daniel González-Arribas, Manuel Sanjurjo-Rivo
and Manuel Soler

Abstract The future Air Traffic Management (ATM) system will feature
trajectory-centric procedures that give airspace users greater flexibility in trajec-
tory planning. However, uncertainty generates major challenges for the successful
implementation of the future ATM paradigm, with meteorological uncertainty repre-
senting one of the most impactful sources. In this work, we address optimized flight
planning taking into account wind uncertainty, which we model with meteorological
Ensemble Prediction System forecasts. We develop and implement a Parallel Prob-
abilistic Trajectory Prediction system on a GPGPU framework in order to simulate
multiple flight plans under multiple meteorological scenarios in parallel. We then
use it to solve multiobjective flight planning problems with the NSGA-II genetic
algorithm, which we also partially parallelize. Results prove that the combined plat-
form has high computational performance and is able to efficiently compute tradeoffs
between fuel burn, flight duration and trajectory predictability within a few seconds,
therefore constituting a useful tool for pre-tactical flight planning.

Introduction

The current Air Traffic Management (ATM) system has significant limitations and
sources of inefficiency, which has led the European Union (through SESAR1), the
US (through NextGen2), Japan and other countries to develop and implement a new

1http://www.sesarju.eu/vision
2https://www.faa.gov/nextgen/
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ATMparadigm in order to attain improvements in airspace capacity, safety, efficiency
and environmental impact. The rigid airspace structures of today will be replaced
by a trajectory-centric concept (called Trajectory-Based Operations or TBO) where
airspace users will choose their trajectories with greater freedom. Flight plans will be
produced in a collaborative and layered process that ensures that the airline business
interests are met while respecting capacity or environmental constraints.

Meteorology has a significant influence in both flight efficiency and airspace per-
formance; it is, therefore, essential to take weather forecasts into account when build-
ing flight plans. Methods for finding optimal trajectories using wind forecasts can
be grouped in analytical optimal control-based techniques (Jardin and Bryson 2001,
2012; Sridhar et al. 2011;Marchidan and Bakolas 2016), dynamic programming-like
methods (Girardet et al. 2014), and direct methods for numerical optimal control
(Bonami et al. 2013; Soler et al. 2015; González Arribas 2016; González-Arribas
2017). With the exception of our previous work (González Arribas 2016; González-
Arribas 2017), there has been little consideration of uncertainty and its impact on the
predictability of the trajectorywithin a flight planning context (with some exceptions,
such as Cheung 2015).

Understanding and managing uncertainty, nevertheless, is essential for increasing
ATMpredictability,which is in turn necessary in order to realize the full benefits of the
TBO concept (see Cook and Rivas 2016, Chap. 4). Meteorological uncertainty is one
of the main sources of trajectory uncertainty; therefore, it is becoming increasingly
critical to consider it in a flight planning context.

In a Numerical Weather Prediction (NWP) context, meteorological uncertainty
arises naturally from incomplete knowledge of the state of the atmosphere, model er-
ror in physical parametrizations, computational limitations and nonlinear, sometimes
chaotic, dynamics. In response to this challenge, NWP researchers and practitioners
developed the Ensemble Prediction System (EPS) concept. An EPS is composed by
10 to 100 individual forecasts, called “ensemble members”, each one running with
strategically perturbed initial conditions or parameters, thus providing a probabilistic
estimation of the future state of the atmosphere. They have become a fundamental
tool for NWP centers. See Bauer et al. (2015) for more details.

EPS forecasts are starting to be employed by the ATM research community
(Steiner et al. 2010; Cheung et al. 2014; Cheung 2015); following this trend, our
previous work in González Arribas (2016) and González-Arribas (2017) used them
for flight planning purposes with a methodology based on optimal control and direct
collocation. However, while this methodology is effective and relatively fast, it can
only generate one solution at a time. Exploring the trade-offs between fuel efficiency,
flight duration and predictability, which demand the computation of multiple solu-
tions, is a slower task. In addition, the calculated trajectories are locally optimal,
which does not necessarily imply global optimality. Finally, a good initial guess is
needed in order to achieve good performance.

Therefore, there is still a need for a fast and scalable trajectory optimization system
for solving flight planning problems with uncertainty. The goal of this paper is to
identify and build a methodology that tackles the computational challenges posed
by this type of problem.
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The current work introduces a Parallel Probabilistic Trajectory Predictor (PPTP)
system that can propagate multiple flight plans under different meteorological sce-
narios in parallel through General-purpose computing on Graphics Processing Units
(GPGPU). It is shown that the current capabilities of graphics processing hardware
are well-suited for the solution of uncertain problems that can be described by a
discrete set of scenarios. We pair the PPTP with a genetic algorithm, NSGA-II (Deb
et al. 2002), in order to create a system that can generate a solution portfolio where a
user can select an optimized flight plan that best matches her preferences regarding
fuel burn, flight duration and trajectory predictability.

This paper is structured as follows. We start by describing the PPTP in Section
“Parallel Probabilistic Trajectory Predictor”; then, we describe the multiobjective
optimization methodology in Section “Flight Plan Optimization”. We then apply the
complete system to a case study in Section “Results” in order to study the perfor-
mance of the system. Finally, we summarize our findings and discuss future work in
Section “Conclusions”.

Parallel Probabilistic Trajectory Predictor

In this section, we describe theGPU-based Parallel Probabilistic Trajectory Predictor
(PPTP) platform that will be employed in this study. This tool can be used for efficient
simulation of en-route flight plans under multiple meteorological scenarios.

Modeling

Since the impact of wind uncertainty is cumulative and the cruise phase constitutes
most of a medium-haul or long-haul flight, we consider the cruise phase of a com-
mercial flight. We also consider a constant flight level for demonstration purposes,
but we plan to incorporate variable flight levels in the future.

We model the Earth as an ellipsoid (as in the WGS-84 model), denoting the radii
of curvature of ellipsoidmeridian and prime vertical by RM and RN respectively. The
meteorological parameters (wind (wx ,wy), temperature T , and geopotential height
z) are drawn from an EPS forecast by interpolating the two closest pressure levels
to the corresponding flight level3. Density is computed at each point with the aid of
the ideal gas law:

ρ = P

RsT

where Rs = 287.058 J/(Kg·K) is the specific gas constant of the air and P is the
pressure corresponding to the specific flight level.

3Note that a flight level corresponds to barometric altitude, i.e. a constant pressure level
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We will employ a 3-DoF point-mass model of the aircraft, as it is widely done
in ATM research. We neglect turn dynamics; in smooth long-range trajectories, the
bank angle is very small and removing turn dynamics does not significantly degrade
accuracy. We denote latitude by φ, longitude by λ, the true airspeed by v and the
aircraftmass bym. These four variables constitute the state variables of the dynamical
system under the specified assumptions, and they evolve according to the differential
equation:

d

dt

⎡
⎢⎢⎣

φ

λ

v
m

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(RN + z)−1(v cos(χ) + wx (φ, λ, t))
(RM + z)−1 cos−1(φ)(v sin(χ) + wy(φ, λ, t))

(Tr − D(m, v))/m
−η(v, T )Tr

⎤
⎥⎥⎦ (1)

where Tr denotes the thrust force, χ denotes the heading angle (measured with
respect to the geographic North), D represents the drag force and η represents the
thrust-specific fuel consumption. The drag is computed as a function of the lift L
according to the constant-altitude assumption L = mg. Both the aerodynamic forces
D and L and the fuel consumption η are computed according to the BADA 4Aircraft
Performance Model described in Gallo et al. (2006).

It is also useful to introduce the ground speed vG and the course ψ , which are re-
lated to the wind, the true airspeed and the heading angle by (see Fig. 1 for illustration
of Eq. 3):

vG cosψ = v cos(χ) + wx (φ, λ, t)

vG sinψ = v sin(χ) + wy(φ, λ, t)
(2)

Note that the course (and not the heading) is what determines the direction of
the movement of the aircraft, and thus it is the variable that is controlled in order to
follow a flight plan. Given a value of the wind (wx ,wy), an airspeed value v and a
course ψ , the ground speed can be computed with the following formulas:

walongtrack = wy cosψ + wx sinψ

wcrosswind = −wy sinψ + wx cosψ

vproj =
√
v2 − w2

crosswind

vG = vproj + walongtrack

(3)

Fig. 1 Relationship between
airspeed, groundspeed, wind,
heading and course
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Fig. 2 Geographical
coordinate system employed
for the encoding of the flight
path

Flight Plan Encoding

At a constant flight level, a free routing flight plan is composed by a lateral path and
an airspeed profile. Here, we describe here the scheme by which we encode both
parts of the flight plan; later on, these encoding variables will also serve as decision
variables of the optimization problem.

In order to describe the lateral path, we introduce a coordinate system where
the position is defined by the value of the (r, q) coordinates. Fig. 2 illustrates the
concept behind this coordinate system. Let r0 ∈ R

3 be the position on the unitary
sphere defined by the latitude and longitude of the point of origin (and r f analogously
by the destination point). We define the following unitary vectors:

r̂ax = r0 × (r f − r0)

||r0 × (r f − r0)||

q̂ax = r f − r0
||r f − r0||

Let θ be the angle such that the origin is translated to the destination by a rotation
around r̂ax of angle θ . Then, we can describe any position on the sphere by the
following rotations:

1. A rotation of the origin around r̂ax by an angle of θ(1 + r)/2, where r is a scalar
coordinate.

2. A rotation of the obtained point around q̂ax by an angle of q, where q is a scalar
coordinate.

These rotations can be efficiently computed with a simplified version of Ro-
drigues’ rotation formula4. Thus, r goes from -1 to 1 as the aircraft moves from the

4According to the Rodrigues’ rotation formula, a rotation of vector v by an angle θ around unit
vector k can be computed as:

vrot = v cos θ + (k × v) sin θ + k(k · v)(1 − cos θ)

The last term vanishes if v and k are orthogonal, as it is the case in our application.
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Fig. 3 Example lateral paths

origin to the destination while q describes the deviation from the orthodromic path
in a perpendicular direction. We define a valid latheral path as a smooth function
q(r) ∈ C∞([−1, 1]) such that q(−1) = q(1) = 0 (i.e. vanishes in the boundaries, in
order for the path to reach the origin and destination). Given a degree of the expansion
nec and a vector l ∈ R

nec , we can build one such function by the expansion:

ql(r) =
nec−1∑
k=0

lk cos
(π

2
(k + (k + 1)r)

)
(4)

Thus, given an origin and destination defining the coordinate system, the ex-
pansion coefficients lk completely determine a lateral path and we use them to
encode the lateral path information. Figure 3 displays some lateral paths built
from randomly-generated vectors l. In practice, we will restrict their values so that
||ql(r)||∞ = max

r∈[−1,1] |ql(r)| ≤ π/2. Once we have built a path, we will discretize it

into nnodes points and compute the associated values of the longitude and latitude;
we assume that the aircraft will then fly a loxodromic (constant course) path between
each pair of points.

We use a simpler scheme for the encoding of the airspeed profile. We subdivide
the nnodes into nts segments of constant airspeed, with the airspeed transitioning
between segments at a rate that is consistent with thrust limitations. The airspeed
profile is then represented by a vector of coefficients ṽ ∈ R

nts ṽ j ∈ {vmin, vmax}, j ∈
{0, . . . , nts − 1}, where vmin and vmax are derived from the flight envelope of the
aircraft. Some randomly generated examples of airspeed profiles can be seen in
Fig. 4.
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Fig. 4 Example airspeed
profiles

Implementation

We implement the PPTP in the CUDA platform (NVIDIA Corporation 2010), which
allows the usage of NVIDIA Graphics Processing Units (GPU) for general-purpose
computation. A programmer can use CUDA to partition a computational problem
into tasks that can be executed in parallel for automatic scalability.

A CUDA program is called a kernel. A kernel is executed in parallel threads,
which are grouped into blocks. When launching the kernel, the programmer needs
to specify a grid, which defines the number and configuration of the blocks. At this
point, the blocks are distributed to the Streaming Multiprocessors (SM) of the GPU,
which partition the blocks into groups of 32 threads calledwarps and starts executing
them in its CUDA cores (the individual computing units that form a SM).

In order tomaximize efficiency, the programmer needs to ensure that the device has
maximum utilization (by generating enough tasks to keep all the CUDA cores busy,
while preventing branching that would keep some threads inactive) and optimize
device memory accesses (for example, by ensuring that threads access contiguous
memory addresses and the access is strided in order to minimize the number of
required memory loads).

The PPTP is based on PyCUDA (Klöckner et al. 2012). When the problem is
initialized, PPTP reads the CUDA source files and formats them with the specific
parameters of the aircraft and the problem using a templating engine in a meta-
programming fashion. PPTP then searches and loads the required weather forecasts
from a disk cache; if it does not find them, PPTP fetches them from theTIGGEdataset
(Buizza 2015) using the ECMWF5 API. Finally, it initializes the GPU, transfers the
weather data to the GPU memory, initializes the arrays and compiles the formatted
source code.

At this stage, PPTP is ready for simulation, which is composed by two parts: a
preprocessing step and a main loop. Each simulation takes n f p flights plans (which
we will denote with the subindex i) and will run each flight plan for every weather

5European Centre for Medium-Range Weather Forecasts
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scenario j ∈ {0, . . . , N − 1}. Note that the weather scenario j corresponds to the
j-th member of the EPS forecast. Both the preprocessing step and the main loop are
performed in parallel, with a block per flight plan; however, a block in the prepro-
cessing step contains a thread per path point, while a block in the main loop contains
a thread per weather scenario.

In the preprocessing step, PPTP computes the latitude-longitude paths from the
expansion coefficients li associated to the flight plan i and discretizes it into nnodes
latitude-longitude path points or nodes, which define nnodes − 1 segments. Then, it
computes the loxodromic distances between nodes aswell as the course of the aircraft
between the nodes. Finally, it generates the airspeed profiles from the airspeed vectors
ṽi . In the main loop, two differential equations are integrated in the node grid. In the
first, we use distance flown s as the independent variable and we integrate flyover
time ti, j (s), which represents the time at which the aircraft is at position s along the
route in the i-th flight plan and the j-th weather scenario:

dti, j
dsi

= 1

vG,i, j
(5)

The second differential equation describes the evolution of the mass:

dmi, j

dti, j
= −η(vi , T )Trreqi, j (m) (6)

where Trreqi, j is the thrust that is required in order to match the airspeed profile. Both
equations are integrated with Heun’s method:

y′(t) = f (t, y(t))
ỹi+1 = yi + h f (ti , yi )

yi+1 = yi + h
2 [ f (ti , yi ) + f (ti+1, ỹi+1)]

(7)

where the step size h is determined by the spacing between grid nodes. While both
equations are integrated in lockstep, the time evolution (independent of mass) is
integrated first, resulting in a more accurate integration of the mass.

The weather variables (wind for the calculation of the groundspeed, temperature
for the fuel burn and aerodynamic calculations) are implemented as “texture fetch
operations”, using the texture units on theGPU for economic access and interpolation
of the meteorological variables.

All the computations inside the GPU are performed in single-precision (32-bit)
floating point arithmetic, which makes the computations faster than under double-
precision (64-bit) floating point numbers. The accuracy of the solution is not heavily
damagedby the usage of 32-bit arithmetic sincewedon’t rely on numerically unstable
or ill-conditioned operations.
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Flight Plan Optimization

Optimization Objectives

Once the PPTP simulates a set of flight plans, it stores fuel burn 
m = m f − m0

and flight duration 
t = t f − t0 for each flight plan and ensemble member. It then
computes, for each flight plan i , the average fuel burn, average flight time and the
spread in arrival times:


̄mi = 1

N

N∑
k=1


mi, j


̄t i = 1

N

N∑
k=1


ti, j

wi = max
j


ti, j − min
j


ti, j

(8)

where the subindex i, j denotes the value of a variable for the flight plan i and the
ensemble member j . The spread in arrival times wi is the difference between the
earliest and the latest time of arrival under flight plan i and is used to characterize
the predictability of the trajectory. These three metrics can be used to define a mul-
tiobjective optimization problem: finding the flight plans (l, ṽ) that minimize 
̄m,

̄t and w.

Solution Approach

We choose to solve the problem with the NSGA-II algorithm (Deb et al. 2002),
a widely-employed elitist multiobjective genetic algorithm. Each iteration in the
NSGA-II main loop is composed by the following procedures:

1. Non-dominated sort: the individuals of the population are placed in ordered fronts
such that an individual in a front is dominated by individuals in the previous front
(except for the first front, which contains the individuals that are not dominated
in all objectives by any other individual). This is the main selection criterion in
NSGA-II.

2. Crowdingdistance computation: ameasure of the density of solutions surrounding
a particular individual in the population is calculated. This provides the secondary
selection rule in NSGA-II, employed for individuals that belong to the same front.

3. Selection of the parent population: the best half of the population according to
the described selection criteria is elected as potential parents.

4. Generation of the offspring population: a binary tournament selection with the
described selection rule is employed to select parents from the pool of potential
parents. The offspring are generated by using simulated binary crossover and
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polynomial mutation. Finally, the new generation is comprised by the parents
and the offspring.

We implement the non-dimensional sort and the generation of the offspring pop-
ulation in CUDA. The remaining procedures are implement at the CPU side. For the
non-dimensional sort, we compute the domination matrix S and the vector n that
accounts for the amount of individuals that dominate a given individual in parallel;
when filling each front, we update the vector n in parallel as well.

Results

Description of the Case Study

We consider a scenario based in the one described in González Arribas (2016). An
A3306 flies from the vertical of New York to the vertical of Lisbon at flight level
FL380 with initial mass 200000 Kg. We employ a 50-member EPS forecast with
6-hours lead time produced by the ECMWF and hosted at the TIGGE dataset (Buizza
2015). The computational parameters are reproduced in Table 1, and the parameters
of the NSGA-II algorithm are set to their default values in Deb et al. (2002).

Computational Performance

With the specified computational parameters, simulating a generation takes an aver-
age of 9.4 ms, which implies that the raw throughput of the PPTP is 106 generations
per second, 11,000 flight plans per second or around 550,000 trajectories per second.
The NSGA-II algorithm adds an overhead of around 1.4 ms per generation, which
reduces throughput when using the complete algorithm to around 91 generations per
second.

Optimization Results

In first place, we run the algorithm considering only average flight time and fuel burn
as objectives. Figure 5 illustrates the optimized flight paths; it can be observed that the
Eastbound trajectory takes advantage of the jet streamwhile theWestbound trajectory
avoids it. Figure 6 displays the Pareto front after several generations, showing that
the front has almost converged at 800 generations (~9 sec of computation time, which

6We consider an A330-231, with BADA 4 code A330-321
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Table 1 Parameter values

Parameter Value Description

nec 6 # of lateral path expansion coeffs.

nts 8 # of constant airspeed legs

nnodes 128 # of nodes

n f p 104 # of flight plans per generation

N 50 # of ensemble members

100◦W

80◦W

60◦W 40◦W 20◦W

30◦N

40◦N

50◦N

60◦N 60◦N

207

210

213

216

219

222

225

228

231

T
em

pe
ra
tu
re
(K

)

Fig. 5 Routes from origin to destination (solid black) and back (dashed black)

Fig. 6 Tradeoff between
objectives 
̄m and 
̄t
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Fig. 7 Tradeoff between
objectives 
̄m and 
̄t

Fig. 8 Tradeoff objectives

̄t and w

could be reduced to a fraction of that with a coarser grid and additional optimization),
since it overlaps with the front at 20000 generations.

In second place, we add a predictability objective by considering the spread in
the arrivals. Figures 7, 8, and 9 illustrate the objective values of the population after
2, 20, 200, 800, and 2000 iterations. It can be seen that some sections of the 3D
Pareto front (such as the 
̄m - 
̄t front) are already close to convergence after 200
iterations (~2 sec).

Conclusions

We have presented a scalable trajectory simulator under uncertainty that meets the
necessary performance requirements for fast flight plan optimization under uncer-
tainty and shown that modeling uncertainty through discrete scenarios (as it is done
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Fig. 9 Tradeoff objectives

̄m and w

in EPS forecasts) leads to problems that can be efficiently addressed throughGPGPU
techniques.

Our future work on this system will feature its extension to full 4D trajectory
optimization problems by adding a vertical profile with variable altitude. We will
incorporate other genetic and evolutionary algorithms in order to compare their per-
formance. Finally, additional uncertainty sources (such as uncertainty in initial mass
or uncertainty in aerodynamic parameters) will be considered.
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Abstract The design of sailing boats appendages requires taking in consideration a
large amount of design variables and diverse sailing conditions. The operative con-
ditions of dagger boards depend on the equilibrium of the forces and moments acting
on the system. This equilibrium has to be considered when designing modern fast
foiling catamarans, where the appendages accomplish both the tasks of lifting up the
boat and to make possible the upwind sailing by balancing the sail side force. In this
scenario, the foil performing in all conditions has to be defined as a trade-off among
contrasting needs. The multi-objective optimization, combined with experienced
aerodynamic design, is the most efficient strategy to face these design challenges.
The development of an optimization environment has been considered in this work
to design the foils for an A-Class catamaran. This study, in particular, focuses on the
geometric parameterization strategy combined with a mesh morphing method based
on Radial Basis Functions, and managed through the workflow integration within
the optimization environment.
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Introduction

“Foiling” (term used to describe a sailing condition in which the boat is lifted up from
the water by lifting surfaces) is not a new idea in the sailing world [the first known
sailing hydrofoil was produced in 1938 by Robert Rowe Gilruth and Carl William
Price (Sheahan 2013)] but, as it often occurred formany innovative solutions, the effi-
cient exploitation of its potentialities was related to the technological improvements
in materials, manufacturing processes, design capability, etc. The foiling solutions
adopted in the last America’s Cup class catamarans (called AC72) gave a strong
impulse to the evolution of smaller multihull classes. The A-Class catamaran has
benefited from these experiences and have shown significant innovations in the last
few years due to its large diffusion and open rules.

The A-Class, born in the late 50s, is a small high-tech catamaran that is consid-
ered the fastest single-handed racing dingy in the world. The rules are very simple.
They mainly constrain the minimum weight (75 kg), the hulls length (18 ft) and
the sail surface (150 ft2). In 2009 new rules were added with the intention of pre-
venting foiling for A-Cats. Given that the concept of hydrofoiling prohibition was
ambiguous and difficult to define, an indirect approach was chosen. The idea was to
introduce a set of constraints aimed to limit the surfaces suitable for sustaining the
boat so to return unfavourable a flying configuration compared to a traditional one.
The constraints were defined assuming a reference vertical force coefficient that, in
absence of previous experience, was evaluated from the operative conditions of the
Moth class foils (the estimated lift coefficient was 0.4). Such assumption showed
to be conservative and allowed the development of very favourable flying config-
urations. The rules, therefore, make the foil dimensioning a strongly constrained
design problem for which efficient implementation of multi-objective optimizations
might represent the key strategy to design configurations able to broaden the range
of sailing conditions in which flying boats are faster than conventional ones.

Novel solutions were traditionally tested, in A-Cats, with empirical trial and
error approach. The improvement and the availability of engineering numerical tools
(CFD, FEM, MDO…), combined to the increase of the computational resources
power, contribute today to reduce the costs of advanced engineering methodologies
(which in the recent past were limited to research contests or to high technologi-
cal fields as the aerospace). Highly specialized engineering services are then now
beginning to be compatible with the requirements of relatively limited markets as
the sports dinghies. For this reason, a joint project including the university or Rome
“Tor Vergata”, the aerospace engineering consulting firm Design Methods and the
software vendors RBF Morph1 and ESTECO, has been developed to setup a pilot
study to demonstrate capabilities and the potentialities of combining cutting edge
mesh morphing technologies and optimization design environments by developing
a highly constrained multi-objective optimization procedure.

The implementation of strongly constrained geometric parameterization often
suggests adopting a parametric CAD system coupled to a numerical domain regen-

1www.rbf-morph.com.

http://www.rbf-morph.com


Multi-objective Optimization of A-Class Catamaran Foils … 469

eration procedure. In this paper, we want to demonstrate the efficiency of the mesh
morphing approach based on Radial Basis Functions (using RBF Morph).

The optimization procedure consists in combining two-phases CFD simulations
of the foils, using the ANSYS Fluent solver, with the meshmorphing tool RBFMorph
within the ESTECO modeFRONTIER optimization workflow. The design variables
control the foil planform and the front shape subjected to geometrical constraints. The
objective functions are defined to improve the performances in upwind (navigation
against the wind) and downwind (navigation with the wind) sailing conditions at two
values of boat speed.

Shape Parameterization by Mesh Morphing

The geometric parametrization based on mesh morphing consists in implement-
ing shape modifiers, amplified by parameters that constitute the problem variables,
directly on the computational domain. New geometric configurations are obtained
imposing the displacement of a set of mesh regions (e.g. walls, boundaries or dis-
crete points within the volume) by using algorithms able to smoothly propagate the
prescribed displacement to the surrounding volume. The performances of the mor-
phing action (in terms of quality of the morphed mesh and computational resources
requirements) depend on the algorithm adopted to perform the smoothing of the
grid. Among the several algorithms available in literature, Radial Basis Functions
are recognized to be one of the best mathematical framework to deal with the mesh
morphing problem (Jakobsson and Amoignon 2007).

The first commercial mesh morphing software based on Radial Basis Functions
was RBF Morph. The tool was born as an add-on of the ANSYS Fluent CFD code,
fully integrated in the solving process, and was launched to themarket in 2009 (Bian-
colini et al. 2009). Its efficiency was successfully demonstrated on several industrial
engineering problems (shape optimization, ice accretion, static and dynamic FSI
analyses) (Cella et al. 2016) including application with sails (Viola et al. 2015) and
structural problems (Biancolini 2014). Today RBFMorph is also suitable as a stand-
alone tool to be coupled with any solver.

Several advantages are related to the RBF mesh morphing approach:

• there is no need to regenerate the grid;
• the robustness of the procedure is preserved;
• its meshless nature allows to support any kind of mesh typology;
• the smoothing process can be highly parallelizable;
• the morphing action can be integrated in any solver.

The latter feature offers the very valuable capability to update the computational
domain “on the fly” during the progress of the computation.

The main disadvantages of RBF mesh morphing methods are the requirement of
a “back to CAD” procedure, some limitation in the model displacement amplitude,
due to the distortion occurring after extreme morphing, and the high computational
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cost related to the solution of the RBF system that, if large computational domains
are involved, imposes the implementation on HPC environments.

Radial Basis Functions

Radial Basis Functions (RBF) are powerful mathematical functions able to interpo-
late, giving the exact values in the original points, functions defined at discrete points
only (source points). The interpolation quality and its behaviour depends on the cho-
sen RBFs. A linear system (of order equal to the number of source points introduced)
needs to be solved for coefficients calculation. Once the unknown coefficients are
calculated, the motion of an arbitrary point inside or outside the domain is expressed
as the summation of the radial contribution of each source point (if the point falls
inside the influence domain). An interpolation function composed by a radial basis
and a polynomial is defined as follows:

s(x) �
N∑

i�1

γiφ(‖x − xi‖) + h(x) (1)

The minimal degree of polynomial h depends on the choice of the basis function.
A unique interpolant exists if the basis function is a conditionally positive definite
function. If the basis functions are conditionally positive definite of order m � 2, a
linear polynomial can be used:

h(x) � η + η1x + η2y + η3z (2)

The values for the coefficients γ of RBF and the coefficients η of the linear
polynomial can be obtained by solving the system

(
M P

PT 0

)(
γ

η

)
�

(
g

0

)
(3)

where g are the known values at the source points. M is the interpolation matrix
defined calculating all the radial interactions between source points

Mi j � φ
(∥∥xki − xk j

∥∥)
1 ≤ i j ≤ N (4)

and P is the constraint matrix
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The radial basis is a meshless method suitable for parallel implementation. In
fact, once the solution is known and shared in the memory of each node of the
cluster, each partition has the ability to smooth its nodes without taking care of what
happens outside because the smoother is a global point function and the continuity
at interfaces is implicitly guaranteed.

RBF Morph Setup

RBF Morph allows to extract and control points from surfaces and edges, to put
points on primitive shapes (boxes, spheres and cylinders) or to specify them directly
by individual coordinates and displacements. Primitive shapes can be combined in
a Boolean fashion limiting the action of the morpher itself. The shape information
coming from an individual RBF setup are generated interactively with the help of
the GUI and are used subsequently in batch commands that allow to combine many
shape modifications in a non-linear fashion (non-linearity occurs when rotation axis
are present in the RBF setup). The displacement of the prescribed set of source points
can be amplified according to parameters that constitutes the parametric space of the
model shape.

The definition and the execution of a morphing action is completed by the follow-
ing steps: setup, fitting and smoothing. The setup consists in the manual definition,
from the program GUI, of the domain boundaries within which the morphing action
is limited to, in the selection of the source points where fixed and moving mesh
regions are imposed, and in the definition of the required movements of the points
used to drive the shape deformation. During the fitting process, the RBF system,
derived from the problem setup, is solved and stored into a file ready to be ampli-
fied. This operation has to be performed only once for every RBF problem. Stored
RBF solutions are very light (in terms of files dimension) compared to storing all
the created morphed mesh. The smoothing action (surfaces and volumes morphing
according to arbitrary amplification factors) is first performed applying the prescribed
displacement to the grid surfaces and then smoothly propagating the deformation to
the surrounding domain volume. It can be performed combining several RBF solu-
tions, each one defined by a proper amplification factor, to constitute the parametric
configuration of the computational domain. Figure 1 reports an example (in this case
applied to the sail) of and RBF problem setup.
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Fig. 1 Fixed (red) and
moving (green) source points
of an RBF setup

Fig. 2 Forces acting on the
boat

Foils Design Problem Description

The operative conditions of sailing boats appendages depend on the equilibrium of
the forces and moments acting on the system (Larsson and Eliansson 1997). The
speed is related to the performances of sails and to the characteristics of the boat
with a complex interaction whose estimation require to model the several aspects of
the physics involved. For this reason the design of any components should be, in gen-
eral, approached within so-called VPP (Velocity Prediction Program) environments
(Claughton et al. 1998) (Fig. 2).

To define the design conditions of the A-Cat foils, some simplifications has been,
however, adopted in this work. The vertical force equilibrium is mainly dominated
by the weight of the boat and the crew. Themodulus of the other components, derived
from the 6DoF equilibrium, varies in a range that is, in general, smaller than the range
of possible crew weight. It is then considered acceptable for the foils to assume a
fixed target vertical component of the lift. Similar assumptions are accepted for the
side force since it is mainly limited by the maximum righting moment generated by
the helmsman at the trapeze (for a fixed known height of the sail centre of effort
hh). The task is to identify the shape of the foils that, while respecting the imposed
constraints and generating the required lifting force components, minimize the drag
(Stroligo 2015).
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Geometric Constraints Definition

A-Class rules state that all foils must be inserted from the top of the hull (to prevent
the adoption of T -foils) and that the minimum distance between the tips must always
be larger than 1.5 m (to limit the span of surfaces contributing to the vertical lift). The
maximum beam of the boat, including appendages in all positions, must be lower
than 2.3 m. In order to insert the foils, furthermore, a minimum value of the angle δ,
assuming L-shaped foils, is required (Fig. 3). Finally, structural requirements impose
a minimum value of the foil thickness.

Setup of Numerical Model

A two-objective optimization procedure was setup within themodeFRONTIER soft-
ware environment. The objectives are defined by the minimization of the boat hydro-
dynamic drag, excluding the rudders, in upwind and downwind sailing conditions.
In downwind sailing the boat is expected to be fully lifted up from the water by
the foils. Configurations that are not able to generate sufficient lift are rejected. In
upwind sailing, the boat is expected to be only partially sustained by the foils.

CFD Configuration

A steady incompressible analysis, using a volume of fluid (VOF) technique to model
the two-phases (air and water), was setup for the downwind analysis. The boat was
assumed to sail at a heeling angle (angle ϕ of Fig. 2) of five degree and at a speed of
15 knots. The sinkage was iteratively trimmed to define the attitude that generates

Fig. 3 Scheme of foils
constraints
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the target vertical force. No cavitation model was activated.2 The total displacement
was assumed equal to 170 kg (empty boat weight plus crew). Considering around
30% of this value to be generated by the T -foils of the two rudders, the main foils
were then assumed to contribute with the generation of 120 kg to the sustainment
of the boat. The operative leeway angle (angle β of Fig. 2) should be defined from
the global equilibrium of forces and moments acting on the boat. In was, however,
here considered acceptable to keep it fixed to 3°. The proper estimation of its value
would have, in fact, significantly increased the computational burden since it requires
to introduce an additional degree of freedom. The balance between the additional
computational cost required and the impact this simplification is expected to have
on the optimization trend fully justifies, in our view, this choice.

The analysis in upwind sailing was performed at a speed of 10 knots and at a
fixed attitude maintaining the computational domain unchanged (also in this case
it was assumed five degrees as heeling angle). One hull is flying while the other
one is floating and contributing to the sustainment. A single phase CFD analysis
was setup assuming the top inviscid wall boundary of the domain (which, in order to
partially account for hull/foil junction interference effects, includes a shape similar to
the immersed hull) to represent the water free surface considered as planar (Fig. 4).
This simplification forces to neglect effects as ventilation or hull boundary layer
interference introducing uncertainties on the solution. It is, however, considered
acceptable, for the optimization purpose, since the aim to estimate the drag difference
between candidate solutions is prevalent on the necessity of an accurate definition of
the absolute value of drag. The missing drag component of the hull is recovered by
an analytical formulation developed by a comparison with a matrix of CFD solutions
obtained on the isolated demihull at several attitudes and displacements [a description
of the formulation adopted is reported in (Cella et al. 2016)]. The lift fraction obtained
subtracting the lift generated by the foils from the boat operative displacement is used
to feed the hull analytical dragmodel, whose output is added to the foils drag fraction
to generate the objective function.

The accurate evaluation of the leeway angle is considered to be important in
upwind sailing and adjusted by changing the inflow direction on the far field bound-
aries. Its operative value is estimated performing two preliminary analyses at two
angles and then linearly extrapolating the final leeway angle at which the candidate
geometry generates the required target side force. If the target side force is not gen-
erated at the expected angle, the selected configuration is rejected because it does
not perform in the linear region of the aerodynamic lift polar. The target side force
(in our case defined equal to 70 kg) was estimated from the equilibrium of moments
around the sailing direction assuming a value for the height of the sailing centre of
effort (distance hh of Fig. 2) of 4 m.

Computational domain

A multi-block structured hexahedral mesh was generated modelling a domain
extended up to ten meters upstream and downstream the foils. It is ten meters wide

2The cavitation critical CP, at the selected downwind speed, is around −3 (Hoerner 1965). Such
value is not expected to be reached in the design conditions (especially if laminar airfoils are
adopted).
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Fig. 4 Detail of the computational domain (medium mesh)

Fig. 5 Surface cells
clustering for the three levels
of grid

Fig. 6 Solution sensitivity
to the grid dimension

and five meters deep. The top of the domain coincides with the water level in upwind
conditions. Three levels of grid were generated (Fig. 5) with the aim to evaluate the
sensitivity of the solution on the grid dimension. The size of coarse, medium and
fine meshes were approximatively 1, 7.5 and 25 million of cells.

Figure 6 reports the solutions obtained, on the baseline geometry, with the three
meshes in downwind configuration (VOF analysis trimming the sinkage to maintain
the vertical lift component unchanged). The difference between the drag obtained
with the coarse grid and the drag obtained adopting the fine mesh is in the order of
5%while the adoption the medium grid leaded to a difference limited to half percent.
The coarse mesh was the one used in the optimization procedure.

Implementation of Shape Parameterization

The reference geometry is made by two straight segments smoothly blended in the
junction region. The connection with the hulls is located at the external side and both
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Fig. 7 Foils front shape
modifiers

inner and outer segments are oriented inboard. This configuration is assumed to offer
flying stability advantages (which are not accounted by the optimization criterion)
with respect to an inner segment bent outboard (as the sketch in Fig. 3) (Caughey
2011). The location of the hull/foils junction is then not a design variable.

The foils segments are generated by a straight untwisted extrusion of the well-
knownNACA63-412 laminar airfoil.3 The inner section is assumed to have a constant
chord while the outer is tapered.

The variables of design were:

1. total foil draft;
2. outer segment cant angle (angle δ of Fig. 3);
3. angle of the inner segment respect to vertical;
4. inner segment chord (keeping the absolute foil thickness unchanged);
5. outer segment taper ratio;
6. foils sweep angle.

The last parameter is not exactly a shape parameter. It is a trim that has a direct effect
on the horizontal angle of incidence of the foils. Its morphing action is implemented
as a rotation of the foils along an axis perpendicular to the boat symmetry plane and
passing near the hull/foil junction.

Seven shape modifiers have been setup: four to control lengths and angles of the
foil segments (Fig. 7), one to set the chord of the inner segment, one for the taper
ratio of the outer segment and one to control the foils sweep angle. The amplification
factors of the RBF solutions are defined combining the design input variables in
order to fulfil the constraints imposed by the class rules (e.g. when the cant angle
δ is modified, the outer segment is scaled according to an amplification factor that
recover the limits reported in Fig. 3). The morphing actions are applied in sequence
and limited to a volume surrounding the foils region.

Integration in the Optimization Environment

The multi-objective design software modeFRONTIER allows to integrate different
computational codes (any commercial or in-house tools) into a common design envi-

3The airfoil design is not included in this phase. The foils are analyzed by fully turbulent RANS
analyses with the view to demand the verification of the laminar stability and the proper operating
range of the airfoil to a following design stage.
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Fig. 8 Pareto solution of the
final two-objectives
optimization

Fig. 9 Flow separation in the hull/foil junction

ronment. It allows the automatic execution of a series of designs proposed by a
selected optimization algorithm (including Evolutionary Algorithms, Game Strate-
gies, Gradient-based Methodologies, Response Surfaces, Adaptive and Automatic
methodologies), up to the specified objectives are satisfied. In this modular environ-
ment, each component of the optimization process, including input variables, input
files, scripts or direct interfaces to run the software, output files, output variables and
objectives, is defined as a node to be connected with the other components (Vernengo
2014). The complete logic flow from parameterization to performance evaluation is
defined by the user who can select among several available optimization algorithms,
according to the defined objectives. Statistical and visualization tools, can then be
used for an efficient decision making, allowing the designer to select the optimal
configuration of the system (Clarich et al. 2013; Bonci et al. 2015).

The workflow implemented for the optimization of the A-Class foils followed the
scheme reported in Fig. 10 in appendix. The starting reference geometry is updated
each cycle, by the morphing procedure described above, according to the design
variables selected by the decisionmaking criterion. The candidate evaluation process
is managed by a script procedure written in Scheme language. The analyses at the
two sailing conditions are performed in sequence. The upwind analysis is run if the
downwind analysis is successful.
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Fig. 10 Free surface in downwind sailing by baseline (left) and optimum (right)

The downwind analysis begins at the maximum sinkage (hull flying around 15 cm
from the water surface). If the lift generated is higher than target, the computation
progresses trimming the sinkage up to the vertical equilibrium, otherwise the design
is rejected. In upwind conditions, as stated, three computations are run to select the



Multi-objective Optimization of A-Class Catamaran Foils … 479

leeway angle that generates the required side force. If the final solution do not lay in
the linear aerodynamic polar region, the candidate is rejected.

A two-objectives optimization was performed adopting the MOGA-II, a propri-
etary version of the Multi-Objective Genetic Algorithm (Quagliarella et al. 1996).
The two defined objective functions were the minimization of the total drag at the
two sailing conditions. The evaluation of the hull drag fraction in upwind condition
was included in the modeFRONTIER environment by a node that, after the foils
CFD analyses, executes the analytical hull drag model developed in form of a Scilab
function.

Solutions

The time elapsed to complete the evaluation of one valid design, using the coarse
mesh, ranged between 15 and 20 min on a workstation equipped with 20 CPU (2
processors Intel Xeon E5-2680 2.8 GHz with 10 cores each). The time required for
the morphing action was less than 2 min. More than 400 evaluations were performed
in three days. Among them about 40% of design candidates were rejected because of
failure in the minimum lift requirement criterion. The solution obtained is reported
in Fig. 8.

The green point on the Pareto front is the optimum solution which is considered
the best compromising design. The red circle refers to the starting baseline geometry
which was built roughly referring to existing designs. The estimated drag reduction
in upwind sailing is 7% (hull plus foils) while in downwind is 7.9%.

Post Design Verification

The selected optimumwas verified using the finemesh adopted for the grid sensitivity
evaluation. The RBF solutions were applied to the fine baseline grid (the method
is meshless) to obtain the fine mesh of the optimum geometry. The analysis also
allowed to verify if the evaluation of the improvement is confirmed. The results of
this verification are summarized in Table 1 for both downwind and upwind sailing
conditions.

The improvement was overestimated by only 0.24% in downwind sailing. This
data alone should confirm the coarse grid, despite the lower absolute accuracy it
involves, to be suitable to correctly drive the optimization process toward the opti-
mum. The improvement in upwind condition was, conversely, significantly overesti-
mate. The total drag computed adopting the fine grid is, furthermore, slightly higher
that the drag estimated adopting the coarse mesh. The reason of this behaviour has to
be ascribed to a large separation observed in the hull/foil junction, on both baseline
and optimized geometries, that the coarse mesh is not able to capture (Fig. 9). The
direction toward the optimum, and the validity of the optimization solution, should
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Table 1 Foils drag solutions in downwind conditions

Mesh Baseline (kg) Optimized (kg) Drag reduction
(%)

Downwind Coarse 14.7 13.54 7.89

Fine 13.99 12.92 7.65

Upwind Coarse 16.55 15.4 6.96

Fine 16.85 16.5 2.08

Fig. 11 Flowchart of the optimization procedure

not be significantly affected but a finer grid in the foil root region would provide a
more accurate configuration. Figure 11 in appendix report the visualization of the
free surfaces generated by the baseline and the optimized solutions in downwind
conditions.

Conclusions

A design procedure, based on multi-objective optimization, has been presented. The
core of the method is the parameterization of the geometry implemented by a mesh
morphing technique based on Radial Basis Functions. A pilot study has been setup
to prove the capability of the RBF parametrization approach to face complex and
strongly constrained design problems. The foils of an A-Class catamaran have been
optimized at two sailing conditions. A multi-objective optimization, using genetic
algorithms, was setup within the modeFRONTIER environment. The analysis of
candidates was implemented by a script procedure used to:

• drive the morphing of the numerical domain, according to the variables of design,
by the RBF Morph tool;

• run in sequence the computations at the two sailing conditions trimming the atti-
tudes to generate the required side force (in upwind sailing conditions) and vertical
lift component (in downwind sailing);
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• extract the information required to compute the objective functions.

The script is executed within the ANSYS Fluent CFD solver. The target of design was
the minimization of drag in the two operating conditions. During upwind sailing, the
boat is not supposed to fly. The total drag was, in this condition, integrated adding the
drag component of the hull estimated by an analytical model (rudders are excluded)
and integrated in the process by a node in modeFRONTIER that execute a function
in the Scilab environment.

The optimization process led to a Pareto front on which a compromising design,
that improved the performance by 7% in upwind conditions and by 7.9% in down-
wind, has been selected. Since the main objective of the work was to demonstrate
the efficiency of the proposed approach for design, a very light mesh (less than
one million of hexahedral cells) was used in the optimization workflow. A post
design verification of the selected optimum, adopting a very fine mesh, confirmed
the improvement in downwind sailing conditions (the difference in the estimation
of improvement was limited to 0.24%). In upwind sailing, a large separation in the
hull/foil junction region, affected the solution verification. The coarse mesh was not
able to capture the phenomenon leading to significantly resize the estimated improve-
ment but confirming the numerical configuration validity in indicating the optimum
direction.

The work demonstrated the RBF mesh morphing approach to be a very good
option to face complex constrained parametrization problems. It does not require to
define a parametric CAD model and offers several advantages: no re-mesh required,
high robustness, high parallelizability, meshless properties. The possibility to com-
bine several RBF solutions and to define each amplification factor according to any
formulation able to account for external constraints offer large flexibility in setting up
complex parameterizations. The high parallelizable feature, furthermore, extend the
potentialities of the method by providing the possibility, within HPC environments,
to setup optimization configurations that involve large computational domains.
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Abstract Most engineering problems contain a large number of input random
variables, and thus their polynomial chaos expansion (PCE) suffers from the curse
of dimensionality. This issue can be tackled if the polynomial chaos representation
is sparse. In the present paper a novel methodology is presented based on combina-
tion of �1-minimization and multifidelity methods. The proposed method employ the
�1-minimization method to recover important coefficients of PCE using low-fidelity
computations. The developedmethod is applied on a stochastic CFD problem and the
results are presented. The transonic RAE2822 airfoil with combined operational and
geometrical uncertainties is considered as a test case to examine the performance of
the proposed methodology. It is shown that the new method can reproduce accurate
results with much lower computational cost than the classical full Polynomial Choas
(PC), and �1-minimization methods. It is observed that the present method is almost
15–20 times faster than the full PC method and 3–4 times faster than the classical
�1-minimization method.
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Introduction

Almost all of engineering applications contain different uncertainties such as, uncer-
tainties in physical properties, randomness in boundary and operating conditions
and geometrical uncertainties due to the manufacturing tolerances. In recent years,
The uncertainty quantification (UQ) techniques have received a lot of attentions due
to the fast growing of computational resources. In the literature, various methods
have been proposed for UQ. The Monte Carlo (MC) approach (Fishman 1996) is
the oldest method used for UQ. More recently the polynomial chaos (PC) approach
has been developed and widely used due to its efficiency. The method is based on
spectral representation of the stochastic system output as a linear combination of
orthonormal multivariate polynomials. Ghanem and Spanos (1938) have developed
this method for Hermite polynomials based on homogeneous chaos theory ofWiener
Wiener (1938). In recent years, Several attempts have been made to develop efficient
methods to reduce the size of stochastic problem, namely reduced basis methods
(Nair and Keane 2002), adaptive methods (Lucor and Karniadakis 2004; Wan and
Karniadakis 2005), sparse methods (Doostan and Owhadi 2011) and multifidelity
methods (Ng and Eldred 2012a). All of these efforts have been made to tackle the
curse of dimensionality and reduce the computational cost of UQ. They all showed
that the developed method can reproduce a comparable accuracy to the classical PC
method with a lower cost.

Recently, the �1-minimization technique has been shown to be very efficient to
reduce the size of stochastic space when the solution (PCE coefficients) is sparse
(Doostan and Owhadi 2011).

Another approach to reduce the computational cost of uncertainty quantification
is using the multifidelity methods. The multifidelity approaches aim at managing the
trade-off between fidelity and expense on computations and try to achieve accurate
statistics using combination of “low-fidelity” and “high-fidelity” computations. In
order to obtain the low-fidelity model evaluations, one can simplify the physics,
use a coarser discretization or employ reduced-order models. Such methods have
been initially developed to reduce the cost of optimization processes. Ng and Eldred
(2012a) extended the multifidelity approach for non-intrusive polynomial chaos and
stochastic collocation using sparse grids.

To address this issue, in the present paper a novel methodology is presented
based on combination of �1-minimization and multifidelity methods. The proposed
method employ the �1-minimizationmethod to recover important coefficients of PCE
using low-fidelity computations. If the solution is sparse the number of remained PC
coefficients will be substantially lower than the full PC expansion. After that the
multifidelity method is employed to correct a subset of recovered coefficients. The
multifidelity �1-minimization method is then successfully applied on two different
test cases and it was shown that the the proposed method converges more rapidly
than the classical �1-minimization method.
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Polynomial Chaos Expansion

Suppose y = U (ξ) is a physical or mathematical model, where ξ = {ξ1, ξ2, . . . , ξd}
∈ R

d is the set of input variables and y is themodel response or the quantity of interest
(QoI). If the input vector ξ is uncertain, with joint probability density function f (ξ),
then model response y is also stochastic. Using homogeneous chaos theory (Wiener
1938), it has been shown in Soize andGhanem (2004) that if input stochastic variables
ξ are independent, the model response can be represented as a series of orthogonal
polynomial basis. The polynomial chaos representation of the random field of order
p for d random variables ξ ≡ {ξi }di=1 can be written as:

u(x; ξ) =
P∑

i=0

ui (x)ψ i (ξ), (1)

where the number of terms in the summation is:

P + 1 =
(
p + d

d

)
= (p + d)!

p!d! . (2)

The ui ’s are unknown coefficients and the ψ i (ξ)’s are multivariate polynomials
orthogonal with respect to joint probability density function f (ξ):

〈ψ i (ξ),ψ j (ξ)〉 = 〈ψ i (ξ),ψ i (ξ)〉δi j , (3)

where 〈., .〉 represents the inner product in Hilbert space. The input random variables
ξ ≡ {ξi }di=1 are assumed to be independent, so that the probability density function
can be expressed as:

f (ξ) =
d∏

i=1

fi (ξi ), (4)

where fi (ξi ) is the PDF of ξi . Each basis function ψ i (ξ) is constructed using tensor
product of univariate polynomials. In order to achieve exponential convergence, the
basis of the PCE should be a set of polynomials that are orthogonal with respect to
the PDF of the uncertain input parameters.

Calculation of PCE Coefficients

Because the orthogonal basis is chosen, if the coefficients (uα’s) are known, so
the polynomial chaos expansion of the response is known. Thus, the problem is
actually finding the coefficients. In the current study, the regression method has
been used to compute the response expansion coefficients. The regression-based
NIPC method starts with Eq. (1). First, one should draw a set of space filling N
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realizations of input stochastic vector Ξ = {ξ (1), ξ (2), . . . , ξ (N )} and evaluate the
quantity of interest for each realization Y = {y(1), y(2), . . . , y(N )}T , where y(i) =
U (ξ (i)). Number of realizations are commonly more than the number of unknowns
for numerical stability. Following Hosder et al. (2006), N = 2(P + 1) vectors may
be chosen in the stochastic space and the stochastic function is evaluated at these
sampling points using the deterministic solver. The coefficients can then be obtained
from the solution of the following over-determined linear system,

Ψ u = Y , (5)

using the least-square approach,

u = (
Ψ TΨ

)−1
Ψ TY . (6)

In the current study, the Sobol’ quasi-random sequence (Sobol’ 1967) is used to
generate the sample points. The Sobol’ sequence is a base-2 digital sequence that
fills space in a highly uniform manner. Due to the orthogonality of the basis, the
mean and variance of the QoI read:

μ(x) = 〈U (x; ξ)〉 = u0(x), (7)

σ 2(x) = Var

(
P∑

i=0

ui (x)ψ i (ξ)

)
=

P∑

i=1

u2i (x)〈ψ iψ i 〉. (8)

Hence if the PC basis is orthonormal, the variance will be easily calculated by sum-
ming squares of PCE coefficients except the first coefficient.

�1-Minimization for Sparse PC

If the original signal u (PCE coefficients) is sparse and having obtained the mea-
surement vector Y , the sparse signal can be recovered by solving the optimization
problem of the form

û = argmin
u

‖u‖0 subject to Ψ u = Y , (9)

where quasi-norm ‖u‖0 is the number of non-zero terms in the signal u.
It can be shown that the solution of the optimization problem (9) is not unique and

is NP-hard to compute (Muthukrishnan 2005). Therefore, it is preferred to translate
this problem into a computationally tractable problem by replacing ‖ · ‖0 with its
convex approximation ‖ · ‖1 and minimizing the ‖u‖1 (Davenport et al. 2011), i.e.,

û = argmin
u

‖u‖1 subject to Ψ u = Y , (10)
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The pth-order polynomial chaos representation of signal Y is not necessarily
complete or exact (noisy signal). Therefore, a truncation error should be considered
and the �1-norm minimization of noisy signal becomes

û = argmin
u

‖u‖1 subject to ‖Ψ u − Y ‖2 � ε. (11)

A large number of powerful algorithms have been proposed specifically for solv-
ing the �1-minimization problem. All of these methods can be classified into two
categories, namely Basis Pursuit (BP) and greedy algorithms. The advantages and
disadvantages of these two categories are not a concern in this paper (see Needell
2009 for more information). In the present paper the greedy algorithm Orthogonal
Matching Pursuit (OMP) is employed for sparse recovery.

Orthogonal Matching Pursuit

Among numerous greedy algorithms the Orthogonal Matching Pursuit (OMP) (Pati
et al. 1993; Davis et al. 1997) is used in the current study due to its low computational
cost and fast speed during the cross-validation procedure. If the under-determined
linear system (5) is given, OMP selects the most dominant basis and then the coef-
ficients are finally computed using the least-square approach. The OMP evaluates
the relative importance of each base by projection of response vector onto the base
using the inner product to find the contribution of each base to the results:

|〈ψα,Y 〉|
‖ψα‖2 = 1

‖ψα‖2
∫

�

Y ψα(ξ) f (ξ)dξ , (12)

where f (ξ) is the joint probability density function of Gram-Schmidt basis. Note
that, the inner product in (12) is divided by norm of base to cancel the effect of base
length. In each iteration of OMP the integral in Eq. (12) is evaluated numerically.

Like most of greedy algorithms, OMP consists of two important steps in each
iteration: basis selection and coefficient update.OMP initializeswith a residual output
vector r(0) = Y . In each step the most correlated base with the current residual is
found. The contribution of chosen base is subtracted from output vector (or current
residual) to compute a new residual. This procedure is repeated until the residual
criterion is satisfied (For more details please see Salehi et al. 2017).

Multifidelity Polynomial Chaos

Assume yhigh is the response (or QoI) of a system obtained by a expensive high-
fidelity (accurate) modeling, yhigh = Uhigh(ξ), and ylow is the response of the same
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system evaluated with a inexpensive low-fidelity modeling, ylow = Ulow(ξ). The
main idea behind the multifidelity polynomial chaos is to correct the low-fidelity
responses in order to match the high-fidelity model values using a correction term
C (Ng and Eldred 2012b). Having obtained the polynomial chaos expansion of high
and low-fidelity responses, the stochastic expansion of additive correction reads

C(ξ) = Uhigh(ξ) − Ulow(ξ), (13)

so
yhigh ≡ Uhigh(ξ) = Ulow(ξ) + C(ξ)

=
∑

0�|α|�p

uα,lowψα(ξ) +
∑

0�|α|�p

uα,cψα(ξ), (14)

where uα,low and uα,c are PCE coefficients of low-fidelity and correction expansions
respectively. The important rule is that the number of high-fidelity model evaluations
should be less than low-fidelity evaluations (in most cases by order of magnitudes).
Hence the indices of correction expansion must be a subset of low-fidelity expansion
indices. For example, considering the total order rule for truncating the expansion,
to construct a pth order multifidelity expansion, one can use a pth order low-fidelity
expansion combined with qth order (q < p) correction expansion,

Umulti(ξ) =
∑

0�|α|�q

(uα,low + uα,c)ψα(ξ) +
∑

q<|α|�p

uα,lowψα(ξ). (15)

In this way the low-order terms of PC expansion, which usually contains most of
information, are corrected while the low-fidelity computations are used only for
high-order terms.

Multifidelity �1-Minimization

As demonstrated above, the multifidelity polynomial chaos introduces an efficient
UQ method where the strong coefficients are corrected through high-fidelity com-
putations and weak coefficients are computed with low-fidelity evaluations. A
disadvantage of method is that before obtaining the solution of stochastic prob-
lem, no information on the values of PCE coefficients are available. Hence, in
order to use the multifidelity method one needs to make decision on which coef-
ficients should be corrected via high-fidelity computations. As mentioned in Section
“Multifidelity Polynomial Chaos”, using the total order rule for truncation, one could
correct the coefficients corresponding to the low-order basis in the PC expansion
assuming that the PCE coefficients always decay with increasing order. However,
this assumption does not always leads to an accurate multifidelity PC expansion. For
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example consider sparse PC expansions where limited number of strong coefficients
are available in the expansion that may correspond to the low or high-order basis.

As discussed earlier, the �1-minimization method can efficiently recover the
important coefficients in the sparse polynomial chaos expansions. Here the main
idea behind the multifidelity �1-minimization method is to first obtain information
about the strengths of coefficients in PC expansion using low-fidelity computations.
If the solution is sparse the number of remained PCE coefficients will be substantially
lower than the full PC expansion. After finding the important indices a criterion is
needed to decide which coefficients need to be corrected via high-fidelity computa-
tions. The criterion can be defined based on the energy of the coefficients. It means
among all coefficients correct those with higher energy than a fraction of average
energy, i.e.

Ihigh =
⎧
⎨

⎩i : ∣∣uαi

∣∣ ≥ β

√∑n
j=1 u

2
α j

n

⎫
⎬

⎭ (16)

where β is the threshold parameter specifying howmany terms needs to be corrected
using high-fidelity computations. The threshold parameter β can vary in the range
of 0 ≤ β ≤ βmax, where βmax is defined as

βmax = n
∣∣uα,max

∣∣
√∑n

j=1 u
2
α j

, (17)

and uα,max is norm of strongest coefficient. Decreasing β results in higher number of
indices to be corrected, requiringmore high-fidelity calculations and higher accuracy
in the multifidelity PC expansion. In contrast, increasing β parameter decreases
the subset size of high-fidelity indices and total cost of multifidelity computations.
When β = 0, all of coefficients (from the strongest to the weakest one) will be
corrected, while with β = βmax, only the strongest coefficient is corrected. Note
that the accuracy of low-fidelity computations are important to obtain an accurate
multifidelity expansion. In fact, the low fidelity computations are not supposed to
yield a precise QoI, but they should capture the trends well.

Results and Discussion

The performance of developed method is examined using the stochastic transonic
flowaroundRAE2822 airfoil. Complexflow features, such as compressibility effects,
boundary layer and normal shock wave formation make this flow a challenging
test case for examining the performance of UQ methods. For this reason, in the
literature, many researchers have used the RAE2822 as an uncertainty quantification
test case (Witteveen et al. 2009; Salehi et al. 2017). The detailed geometry and
flow configuration of the RAE2822 test case is described in Cook et al. (1977).



490 S. Salehi et al.

Fig. 1 Effect of mesh refinement on the numerical results

The off-design nominal flow conditions correspond to free-stream Mach number
of M = 0.734, angle of attack of α = 2.79◦, and Reynolds number of Re = 6.5 ×
106. The 2D compressible RANS equations are solved using the Spalart-Allmaras
turbulence model. The second-order upwind scheme is used for discretization of the
convective terms in all transport equations. First, the effect of mesh refinement is
studied using five different grids (from the coarse mesh with 7.5 × 102 cells to the
fine mesh with 1.7 × 105 cells). Figure 1a compares the airfoil pressure coefficients
for different grids. In this figure, the numerical results are also compared with the
experimental data of Cook et al. (1977). It is observed that, the 7.5 × 102 cells
mesh is not able to reproduce the correct Cp distribution on the suction side of the
airfoil, specially around the shock wave. On the other hand computation using finer
meshes predicts almost the same trend with slight differences around sharp pressure
changes across the shock region. It is noted that the predicted pressure coefficient
distributions on 4.6 × 104 and 1.7 × 105 grids are identical. In addition, Fig. 1b
shows mesh refinement affects drag and lift coefficients. Here it is also seen that
the 4.6 × 104 cells mesh is fine enough to produce correct drag and lift coefficients.
Hence the 4.6 × 104 cells mesh is chosen for the high-fidelity evaluations in the UQ
analysis.

In the present study the uncertainties are imposed on operational conditions as
well as airfoil geometry, to create a test case with high-dimensional stochastic space.
The Mach number and angle of attack of far field flow are considered random as the
operational uncertainties with means similar to the off-design nominal conditions
(i.e. M = 0.734 and α = 2.79◦) and standard deviations σM = 0.005 and σα = 0.1◦.
The geometrical uncertainties due to the manufacturing errors are modeled as a
stochastic process perturbation in the surface normal direction. The stochastic process
is assumed to have a zero mean and a covariance function of form:

R(s1, s2) = σ 2e−|s1−s2|/ l , (18)
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Fig. 2 s coordinate and unit normal vectors of RAE2822 airfoil

where s1 and s2 are positions along airfoil and l is the correlation length. The s
coordinate (depicted in Fig. 2) is zero at the trailing edge, increases along the lower
surface toward the leading edge and along the upper surface from leading edge toward
the trailing edge. For RAE2822 airfoil 0 ≤ s ≤ 2.032. Using the Karhunen-Loève
(KL) expansion, the geometrical uncertainties on airfoil surface can be described as:

X (s; ξ) = X(s) +
m∑

n=1

√
λnφn(s)ξn · n(s), (19)

where X(s) is the mean (nominal) airfoil coordinates at locations s, n is the unit
normal vector of airfoil surface, λn and φn are eigenvalues and eigenfunctions of
covariance kernel and m is number of terms in the truncated expansion. For corre-
lation length l = 0.2 and standard deviation σ = 0.002 the analytical eigenvalues
and eigenfunctions are displayed in Fig. 3. In this figure, the decay rate of eigenval-
ues is mild due to the average correlation lengths (l = 0.2). Thus, many terms are
needed in the truncated KL expansion. The eigenfunctions, φn(s), corresponding to
the first five terms of KL expansion show that with the increase in index n, the modes
frequency increase. Using the criterion:

∑m
n=1 λn∑
n λn

≥ 0.95, (20)

the first 20 eigenvalues and eigenfunctions are needed in the KL expansion, which
implies that 20 randomvariables are used to define uncertainty in the airfoil geometry.

Considering operational and geometrical uncertainties, a total of 22 random vari-
ables (d = 22) are present in the analysis.All randomvariables are set to be uniformly
distributed on stochastic space [−1, 1]d . The UQ analyses are carried out using
a second order Legendre polynomials basis. In addition an over-sampled full PC
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Fig. 3 Eigenvalues and eigenfunctions of covariance kernel for l = 0.2 and σ = 0.002

analysis with polynomials order p = 3 is carried out using 4600 CFD simulations as
a reference solution. The errors are computed with respect to this reference solution.

At this point another mesh should be chosen for the low-fidelity analysis. It was
observed that the mesh with 7.5 × 102 cells is not able to capture the exact Cp

distribution. As shown in Fig. 1a, although computation on the coarsest mesh with
7.5 × 102 grid cells does not yield entirely correct Cp’s, predictions on 3.0 × 103

mesh yield acceptable Cp distribution. Also, the drag and lift coefficients of this
mesh are in good agreement with the fine mesh (Fig. 1b). From another prospective,
a low-order UQ analysis could help to select the low-fidelity analysis mesh. In the
present study, full PC UQ analysis were performed for all grids with p = 1, using
46 CFD samples. Figure 4 indicates that the first ten PCE coefficients of stagnation
point and normal shock pressure coefficient obtained with 7.5 × 102 cells mesh are
much different with other grids and finer grids can produce similar PCE coefficients.
Similar trends were also observed for the pressure coefficient at other points, as well
as drag and lift coefficients. Therefore, this analysis also shows that the 3.0 × 103

cells mesh is fine enough to be used for the low-fidelity computations. It should be
noted that the convergence criteria of 10−5 and 10−4 are employed for the high-
fidelity and low-fidelity CFD computations respectively.

The effectiveness of developedmethod is assessed by comparing convergence rate
to the classical �1-minimization and full PCmethods. The errors inmean and variance
of drag and lift coefficients of RAE2822 airfoil calculated with different methods
are compared in Fig. 5. While the full PC analysis shows a slow convergence, the
�1-minimization and multifidelity �1-minimization methods converges rapidly. The
developed multifidelity �1-minimization has the fastest convergence rate and thus
for a specific error needs smallest number of high-fidelity model evaluations. For
example it can be seen that for a relative error of 0.1% for mean of CD , the full PC
needsmore than 500 high-fidelity CFD samples and the �1-minimization reaches this
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Fig. 4 First ten PCE coefficients of Cp of a stagnation point and b shock region, obtained with
different grids using first order full PC UQ analysis

Fig. 5 Convergence of mean and variance of drag and lift coefficients for β = 0.25
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error with Nh = 100, while the developed method needs only 20 samples. In this test
case it was observed that the low-fidelitymodels are 20 times faster than high-fidelity.
Assuming t is the required time for high-fidelity computations (fine grid), the total
computational time for the developed method is 276t/20 + 20t ≈ 34. Therefore the
developed method is almost 15 times and 3 times more efficient than the full PC and
�1-minimization methods, respectively.

Figure 6 presents the PCE coefficients of multifidelity �1-minimization method
recovered with 50 high-fidelity samples and β = 0.25. The coefficients are also
compared to the reference coefficients (full PC with 552 samples). It should be
reminded that the circles (blue and grays) show the reference PCE coefficients,
while the multifidelity �1-minimization coefficients are shown with the squares and
triangles. It is observed that for both drag and lift coefficients, corrected coefficients
(squares) are very similar to the reference coefficients and the multifidelity method

Fig. 6 Recovered PCE coefficients with Nh = 50
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Fig. 7 Cp statistics
computed with over-sampled
full PC (reference solution)

has successfully corrected the low-fidelity PCE coefficients. In addition, it is clear
that the coefficients with lower energy, that are calculated through inexpensive low-
fidelity computations are slightly different with reference coefficients.

Figure 7 displays themean and±2σ bounds ofCp distribution on the pressure and
suction surfaces of airfoil using over-sampled full PC. This is again considered as the
reference solution. In addition, �1-minimization and multifidelity �1-minimization
results ofCp distribution with different number of high-fidelity samples are shown in
Fig. 8. The comparison reveals that increasing number of samples improves both the
Cp statistics returned by �1-minimization andmultifidelity �1-minimization schemes.
Furthermore, the developed method requires less samples than �1-minimization to
predict acceptable distributions. In addition, it is observed that an acceptable mean
distribution can be obtained with the developed method using 10 samples. However,
to achieve an accurate standard deviation distribution one needs to produce at least
20 samples, which is much less than other methods employed. This is due to the
importance of high order terms contributions in the variance of output. One can
see that the classical �1-minimization cannot predict an accurate standard deviation
distribution even with 50 samples.

Conclusion

In the present paper an efficient PCE methodology was introduced for efficient
uncertainty quantification of sparse stochastic problems. The proposed method com-
bines the advantages of �1-minimization and multifidelity methods. The method first
recovers the important modes of PCE using the �1-minimization technique using
low-fidelity computations. The low-fidelity computations are not supposed to yield
precise QoI’s, but they should be accurate enough to reflect the physical trends well.
The multifidelity PCE method is then utilized to correct a subset of recovered coeffi-
cients using high-fidelity computations. The performance of the method is examined
using the transonic flow around RAE2822 airfoil under operational and geometri-
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Fig. 8 Comparison of Cp statistics computed with �1-minimization and multifidelity �1-
minimization methods

cal uncertainties. It was found that the developed method is more effective than the
�1-minimization and for the same accuracy the method needs lower number of high-
fidelity samples. For the investigated test cases in this paper, it was observed that the
present method is almost 15–20 times faster than the full PC method and 3–4 times
faster than the classical �1-minimization method.
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Evolving Neural Networks to Optimize
Material Usage in Blow Molded
Containers

Roman Denysiuk, Fernando M. Duarte, João P. Nunes
and António Gaspar-Cunha

Abstract In industry, there is a growing interest to optimize the use of raw mate-
rial in blow molded products. Commonly, the material in blow molded containers
is optimized by dividing the container into different sections and minimizing the
wall thickness of each section. The definition of discrete sections is limited by the
shape of the container and can lead to suboptimal solutions. This study suggests
determining the optimal thickness distribution for blowmolded containers as a func-
tion of geometry. The proposed methodology relies on the use of neural networks
and finite element analysis. Neural networks are stochastically evolved considering
multiple objectives related to the optimization of material usage, such as cost and
quality. Numerical simulations based on finite element analysis are used to evaluate
the performance of the container with a thickness profile determined by feeding the
coordinates of mesh elements in finite element model into the neural network. The
proposed methodology was applied to the design of industrial bottle. The obtained
results suggested the validity and usefulness of this methodology by revealing its
ability to identify the most critical regions for the application of material.

Introduction

Blow molding is an important industrial processes for manufacturing hollow plas-
tic parts. The production of jars, bottles and similar containers are among its main
applications. Such products are widely used all over the world to contain liquids from
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drinks for human consumption to cosmetics and oil. In blowmolding, a moltenmate-
rial is placed into amold and inflated with gas whose pressure pushes thematerial out
to match the mold. The costs of rawmaterials compose a significant share of the total
costs of blow molded products. Thus, reducing costs and increasing competitiveness
for manufacturing companies can be effectively achieved byminimizing the material
use. This requires a trade-off between the costs of production and quality criteria, as
reducing the amount of material can deteriorate important product properties.

The conventional trial-and-error approach is tedious and inefficient to optimize
product development. It can lead to a significant waste of time and energy whereas
the results are highly dependent on expert experience. Computer Aided Engineering
(CAE) has become increasingly popular to support engineering tasks. Computer
simulations and optimization can help to reduce the number of empirical trials, thus
saving time and money. Numerical approaches such as Finite Element Methods
(FEMs) and optimization techniques are promising and have a long history of use in
blow molding design.

When optimizing blowmolding, twomajor problems can be identified. The one is
to determine awall thickness distribution of thefinal container. The other is concerned
with finding a shape of the preform and setting appropriate process parameters to
produce a container with a desired thickness distribution. Optimization of thickness
distribution is typically addressed by dividing the preform or container into distinct
sections and optimizing the thickness of each section. In Laroche et al. (1999),
the optimal preform thickness distribution was sought that yields a given uniform
part thickness. In Gauvin et al. (2003), two approaches were presented, with the
optimization aiming at finding a thickness distribution that minimizes the weight
and satisfies mechanical constraints.

The other problem arising in blow molding is concerned with a process optimiza-
tion aiming at finding the optimal operating conditions that minimize the weight
and respect the thickness distribution found by the performance optimization. In
Thibault et al. (2007), an approach to optimize the stretch blow molding process
was presented, aiming at establishing the optimal preform geometry (thickness and
shape) and optimal operating conditions to produce a container with a target thick-
ness distribution. In the above studies, optimizationwas performed by gradient-based
search methods. These methods have good theoretical properties and fast conver-
gence. However, gradient-based methods are essentially local search techniques and
their performance highly depends on the initial point.

Evolutionary algorithms (EAs) allow to overcome limitations associated with
traditional optimization methods. EAs attempt to perform global search without
using gradient information. In Huang and Huang (2007), genetic algorithm (GA)
was used to find the optimal thickness distribution for preform. In Yang et al. (2014),
particle swarm optimization was used to adjust parameters of a neural network in
order to fit experimentally collected data and to obtain the appropriate lamp settings.
The preform geometry was optimized in Biglione et al. (2016) to obtain a target wall
thickness distribution. In Hopmann et al. (2015), this also included the optimization
of process parameters.
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A common feature that limits the applicability of the discussed approaches is
that a container being optimized is divided into a number of sections, assuming a
uniform thickness within each section. A proper division can be not straightforward
as it greatly depends on the geometry of container. Poor results can be obtained if
sections are inadequately defined. Also, such approach can lead to discontinuities in
junctions between sections.

The specific contributions of this paper are the application of a regression model
to find the optimal thickness distribution as a function of the container’s geometry
and solving the problem using multiobjective neuroevolutionary algorithm.

Problem Formulation

This study aims at developing a methodology for the optimization of material usage
in blow molded containers, which is also a major concern for industry due to the
influence of the costs of raw materials on the total production costs. The particular
industrial bottle whose design is herein addressed has a diameter of 395 mm and
a height of 625 mm. The material is plastic with the mass density of 1.15 × 10−9

g/cm3 and Poisson’s ration of 0.4. The bottle is set to experience a blowing pressure.
The ratio between the pressure and Young’s modulus is 0.0014. The minimum and
maximum allowable values of wall thickness are 0.1 and 2mm, respectively. Figure 1
shows the geometry model of the bottle used in this study.

The problem consists in determining the optimal wall thickness distribution. This
problem involves several criteria that must be considered, such as the cost of utilized

Fig. 1 Geometry model of
the bottle
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material and the product quality. In order to capture possible trade-offs between these
criteria, the problem is posed as a multiobjective optimization problem. The mass of
the container and the stress are two objectives ( f1 and f2) to be minimized. These
objectives are estimated by computer simulations performed by Abaqus, the finite
element analysis software.

Neuroevolutionary Thickness Optimization

This section describes the proposed methodology to design blow molded containers
with an optimized wall thickness distribution. The main idea consists in treating the
wall thickness as a function of container’s geometry. The realization of this ideal
relies on capabilities of neural networks. Neural networks are used to convert the
coordinates along the wall into the thickness values. This can also be viewed as
a regression model. Though, it is important to point out the distinction between a
traditional regression that makes use of data points with known input and target
variables and the proposed methodology where only input variables are available.
In turn, this hinders the application of traditional gradient-based methods to learn
the parameters of’ the neural network. To overcome this issue, neuroevolution is
used. Neuroevolution refers to the use of evolutionary algorithms to evolve neural
networks. It provides the potential to evolve both the topology and parameters of
neural networks. The outline of the proposed neuroevolution is given by Algorithm
1.

First, a population of neural networks is randomly generated in the initialization
procedure. Each individual in the population is represented by two chromosomes. The
first is defined by a binary string that determines the network topology by indicating
which neurons are used in the hidden layer. The second is given by a real-valued
string that encodes all weights and biases in the neural network.

Each time a new individual is generated it is sent for evaluation. The evaluation
procedure comprises decoding the individual’s genotype into the neural network,
calculating the thickness profile of the bottle and computing the objective values
reflecting its performance.

Figure 2 graphically illustrates the idea behind the calculation of the thickness
profile. The coordinates of eachmesh element in finite element model are fed into the
neural network. The output is the thickness at the corresponding location. Processing
this way all the mesh elements gives a thickness profile of the bottle. The resulting
finite element model with the calculated thickness profile is submitted to perform
computer simulation, whose subsequent output is read to extract the values of the
mass and stress.

The population of neural networks is evolved for a predefined number of gener-
ations using a steady-state variant of evolutionary process (lines 2–6 in Algorithm
1). This means a single offspring is produced in each generation. Selection aims at
selecting parents for producing offspring. This study uses a simple uniform selection
where each population member has an equal chance to be selected.



Evolving Neural Networks to Optimize Material Usage … 505

Input 
layer

Hidden 
layer

Output 
layer

x

y

z

t

Finite element model Artificial neural network

Fig. 2 Thickness calculation

Algorithm 1 Neuroevolution

1: initialization()

2: repeat

3: selection()

4: variation()

5: replacement()

6: until the stopping criterion is met

Evolutionary operators are applied to parents in order to produce offspring in the
variation procedure. Variation plays a crucial role in the exploration of the search
space. Multichromosomal representation used in this study allows the application of
operators that proved effective in the exploration of binary and continuous search
spaces. Herein, a simple bit-flip mutation is performed on the binary string. A par-
ticular attention is given to a continuous variation operator, as most of the genome is
represented by a real-valued chromosome encoding all weights and biases, which are
central to the expressiveness of the neural network. Different continuous variation
operators are investigated in the experimental study.

Replacement aims at forming a population of the next generation relying on
the concept of the survival of the fittest from natural evolution. As the proposed
neuroevolution is designed to deal withmultiple objectives, replacement must ensure
the convergence and diversity of population. These two requirements are known
to be somewhat conflicting in nature. The adopted replacement strategy relies on
the concept of the Pareto dominance to provide convergence and the hypervolume
measure to ensure diversity. First, the population is sorted using the nondominated
sorting procedure to find individuals in the last nondominated front. Then among the
found individuals the one with the least volume of exclusively dominated objective
space is removed (Beumea et al. 2007).
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The result of the above described process is expected to be a set of neural networks,
where each neural network gives the design of the container providing a specific
trade-off between its mass and mechanical properties.

Computational Experiments

Experimental Setup

Neuroevolutionary algorithm developed for optimizing a wall thickness distribution
was investigated with different variation operators, taking advantage of multichro-
mosomal representation. For real-coded genetic algorithm (GA) operator, simulated
binary crossover (SBX) and polynomial mutation (PM) were used. Evolution strat-
egy (ES) operator was used with a non-isotropic mutation. Differential evolution
(DE) operator with rand/1/bin variant and PM was employed. Covariance matrix
adaptation (CMA) operator was used with a step size adaptation rule relying on a
population-based notion of success.

The numerical simulations based on finite element analysis were carried out by
Abaqus 6.13-4 provided in a network licensing format. A high computational time
required for each simulation and a limited number of analysis jobs allowed to be run
simultaneously on a network restricted considerably optimization runs. Thus, five
independent runs were performed by each neuroevolutionary variant. The population
size of 50 was used and the number of available evaluations was 100. The other
parameter settings are shown in Table 1. The results were quantitatively assessed
using the hypervolume measure (Zitzler and Thiele 1998).

Table 1 Parameter settings (n—is a chromosome length)

Operator Parameters

SBX pc � 1, ηc � 20

PM pm � 1/n, ηm � 20

ES τ0 � 1/
√
2n, τ1 � 1/

√
2
√
n, σ 0 � √

1/(3n)

DE CR � 1, F � 0.5

CMA

d � 1 + n/2, ptargetsucc � 1/
(
5 +

√
1/2

)
,

cp � ptargetsucc /
(
2 + ptargetsucc

)
, cc � 2/(n + 2),

ccov � 2/
(
n2 + 6

)
, pthresh � 0.44
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Results

Table 2 shows the final results of statistical runs with respect to the hypervolume.
The last row of the table refers to the hypervolume for all nondominated solutions
obtained by combining results of the five runs. The results indicate that GA is the
worst performing operator. It can be because crossover treat genes independently
when producing offspring. This causes a disruptive effect on the linkage between
genes. Although ES does not explicitly accounts for relations between genes, its
slightly better performance can be explained by the self-adaption mechanism that
learns mutation strength for each gene. Both DE and CMA mechanisms allow for
the adaptation to fitness landscape. CMAworks better for extreme runs, whereas DE
gives the bestmedian value and the hypervolume for the approximation set composed
by the results of all runs. This can be because CMAhas a larger number of parameters
that require proper settings.

Since the hypervolume values presented in Table 2 differ slightly, it can mislead-
ingly appear that the results obtained by different variants are quite similar. However,
such seemingly small differences with respect to the hypervolume can be significant
in practical terms. It can be understood when comparing the results of GA and DE
variants, whose Pareto front approximations are shown in Fig. 3. Solutions forming
both approximations lie sufficiently close to each other, being the most distant in the
vicinity of the knee points.

However, the knee point region of the Pareto front is particularly interesting from
an engineering perspective. When comparing the results with respect to the hyper-
volume DE variant gives an improvement of 1.71% relative to GA.Whereas in terms
of the knee solutions the reduction by 32.34% of the material usage is achieved,
which is significant for industry.

Visualization of the obtained Pareto optimal solutions leads to several important
observations. In particular, there is a part of the Pareto optimal region where the
material usage can be significantly reduced from the maxim value of 2.032 kg to
approximately 0.2 kg with relatively a small degradation in mechanical properties.
This can be the most interesting part from a practical perspective. However, a further
reduction in thematerial results in a significant degradation ofmechanical properties.
Although such solutions are appealing from an economic point of view, they may be
unacceptable as important quality criteria can be not met. Thus, these results further
highlight the importance of proper tools to support product development.

Table 2 Results for statistical runs of different operators

Hypervolume GA ES DE CMA

Min. 0.9687 0.9713 0.9805 0.9882

Median 0.9701 0.9723 0.9897 0.9893

Max. 0.9746 0.975 0.9902 0.9905

Total 0.9749 0.976 0.9918 0.9916
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Fig. 3 Nondominated
solutions

Fig. 4 Nondominated
solutions near the knee
points

Figure 4 shows the Pareto optimal solutions in the vicinity of the knee points. For
both approximations, four different solutions are highlighted. For these solutions and
solutions S1 and S6 that refer to the corners of the Pareto fronts, Fig. 5 depicts the
wall thickness of bottle along the vertical axis from top to down. Corner solutions S1
and S6 represent extreme scenarios withminimum andmaximum values of thickness
along the entire bottle. On the other hand, solutions S2–S5 show intermediate sce-
narios representing different trade-offs between the use of material and mechanical
properties. The difference can be observed between the thickness distributions of
solutions given by GA and DE. The former offers larger values starting from the top.
Whereas the latter yields values close to the minimum for the most positions and
only increases thickness in the bottom of bottle. This way, neuroevolution identifies
the most critical regions for applying material. It is also noteworthy that GA provides
a valid design of the bottle. The comparison is for illustration purpose and to stress
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Fig. 5 Thickness distribution from top to bottom of the bottle

the importance of the neuroevolutionary design. Overall, these results demonstrate
the ability of the proposed methodology to determine the material distribution for
the bottle given its geometry, characteristics and design criteria to meet.
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Conclusions

In blow molding industry, the product competitiveness can be effectively increased
by reducing the costs of raw materials. This study suggested a methodology to opti-
mize the material usage in blow molded products. This methodology aims at deter-
mining the optimal distribution of material as a function of the product geometry.
Motivated by the universal approximation property, this function is approximated
by neural network. The structure and parameters of the network are determined by
neuroevolution. The search is performed addressing multiple objectives, minimizing
the usage of material and the degradation of mechanical properties. This leads to a set
of Pareto optimal networks representing different trade-offs between the objectives,
which allows to obtain a valuable information about design alternatives and enables
a posteriori decision making.

The application of the proposed methodology is demonstrated in a case study
addressing the design of industrial bottle. Finite element analysis software was
employed to simulate the response of the particular design to a static pressure. Differ-
ent variants of neuroevolutionary algorithm were investigated. The obtained results
indicate the importance of using proper search strategies and the ability of neuroevo-
lution to optimize the thickness distribution under given conditions. Generality is a
major advantage of the proposed methodology, as its applicability is independent of
the bottle geometry.

In future, the developed methodology will be applied to optimize the preform and
operating conditions.
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Coupled Subsystem Optimization
for Preliminary Core Engine Design

Simon Extra, Michael Lockan, Dieter Bestle and Peter Flassig

Abstract In this paper we present an approach for preliminary aero engine design
with the overall goal to improve the core engine with regards to efficiency and
emissions. This is achieved through the usage of a cascaded multi-criterion global
optimization strategy, where the overall optimization is performed on the basis of
decoupled black box sub-optimization of components. Such an approach has the
advantage to cut down the number of design variables for each optimization problem
involved and to use legacy code for components.

Introduction

Due to the high complexity of aero engines and ever rising requirements regard-
ing efficiency and emissions, the application of optimization methods represents
a reasonable way to further increase engine performance. The system complexity,
however, typically prohibits an all-at-once approach because of the high number of
design variables and dependencies between the subsystems. Here, a solution to this
is presented in the style of collaborative optimization which coordinates the interac-
tion of subsystem optimization processes. This allows an optimization of the whole
core enginewhile employing dedicated, subsystem-specific tools for each component
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analysis.Afirst step towards collaborative optimizationwasmadebySobieszczanski-
Sobieski (1989) resulting in Concurrent Subspace Optimization (CSSO). It is based
on the Global Sensitivity Equations (GSE) by Adelman and Haftka (1986) which
allow to approximate the influence of a local parameter change on the global system
behavior. Thereby it is possible to firstly optimize the subsystems with regards to
local and shared design variableswhile still observing the global coupling values. The
system coordination is performed in a subsequent step which is required to match all
shared design variables, because they may change during subsystem optimizations.

The CSSO method was extended to employ response surfaces by Sellar et al.
(1996) improving convergence for complex systems. A method without the use of
a system coordination step was presented by Sobieszczanski-Sobieski et al. (1998).
Using the BLISS (Bi-Level Integrated System Synthesis) method, the shared vari-
ables between subsystems are prescribed and kept constant during subsystem opti-
mization, which is why no coordination step is needed.

Finally Sobieszczanski-Sobieski et al. (2003) proposed a strategy without the
need for global sensitivity equations, as they are rather expensive to calculate. This
concept, namedBLISS-2000, prescribes the couplingparameters aswell as the shared
design variables for all subsystem optimizations during the process. The subsystem
responses are used as a subsystem objective and weighted in a sum, where the weight
is prescribed by the system optimizer as a design variable. However, each system
analysis requires optimization of all subsystems, and thus the number of global
calculation steps is rather limited.

In this paper, a strategy similar to BLISS-2000 is used due to the fact that all
coupling parameters can be kept constant during subsystem optimization and no
sensitivities need to be calculated. As the application is quite specific in contrast
to the universal BLISS-2000 algorithm, some modifications can be made. More
precisely, the output of each subsystem is prescribed as a fixed constraint by the
global optimizer and has to be fulfilled as a local constraint or used as an input value.
This strategy also allows for using legacy code in the subsystem processes, which is
very useful in the context of engine design presented in this paper.

Core Engine Optimization

The core engine of an aero engine typically consists of compressor (C), combustor (B)
and turbine (T). The objectives of its global optimization are improved engine effi-
ciency as well as reduced emissions. The global efficiency may be defined as product
of the three component efficiencies, i.e.,

η (p) = ηC (p) ηB (p) ηT (p) (1)

depending on the overall design vector p. Emissions are expressed by the emis-
sion index EI which is defined by the ICAO (2011) as mass of NOx, CO and
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UHC (unburned hydrocarbon) in grams generated per kilogram of burned fuel, and
reads as

EI (p) = mNOx + mCO + mUHC

mFuel
. (2)

The emission index is mainly determined by the performance of the combustion
chamber, but the overall configuration of the core engine influences the result as
well. This is due to the fact that the performance of the combustor is influenced by
the arrangement of the Joule cycle.

The global optimization problem for the whole, coupled core engine process may
be defined as

min
p∈P

[−η

EI

]
s.t. P = {

p ∈ R
d

∣∣ h(p) ≤ 0,pl ≤ p ≤ pu
}

(3)

where the design vector p of dimension d summarizes the local component design
parameters pC ,pB,pT as well as some globally shared design variables pS:

p = [
pT
C ,pT

B,pT
T ,pT

S

]T
. (4)

Also the constraint vector h summarises the constraints for each subprocess as

h = [
hT
C ,hT

B,hT
T

]T
. (5)

Figure1 shows all subprocesses as currently employed in the design of a core
engine, as well as the couplings. Each of these subprocesses returns a part of the
objectives (1), (2) and constraints (5). Further it returns some coupling states yi | j
which are functions of the shared design variables pS , the respective local design
variables as well as coupling variables defined by other components, respectively.
The dependencies for compressor, combustor and turbine may be formalized as

yC =
[
hT
C , ηC , yTC |B, yTC |T

]T = fC
(
pC ,pS, yB|C , yT |C

)
,

yB =
[
hT
B, ηB, EI , yTB|C , yTB|T

]T = f B
(
pB,pS, yC |B, yT |B

)
,

yT =
[
hT
T , ηT , yTT |C , yTT |B

]T = fT
(
pT ,pS, yC |T , yB|T

)
.

(6)

As we can see from these equations, the coupled problem for the optimization of a
core engine is highly complex due to the dependencies among the components and
the amount of variables involved, where an improved configuration cannot reliably
be found. This leads to the idea of decomposition, i.e., to use decoupled component
optimization problems, which facilitates the use of legacy code for the subprocesses
and reduces the amount of design variables for optimization. A global optimizer then
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Fig. 1 Scheme of a
three-component,
non-hierarchic, coupled core
engine design problem

has to enforce the synchronization of subprocess results via prescribing values for
all pS and yi | j to be fulfilled in subsystem optimization tasks.

Tasks of the Global Optimization Process

In this section the subprocesses used in the decoupled core engine optimization as
well as the global synchronisation problem are presented. Let

s =
[
ỹTC |B, ỹTC |T , ỹTB|C , ỹTB|T , ỹTT |C , ỹTT |B,pT

S

]T
(7)

summarize all coupling vectors for the global optimization problemand shared design
variables pS . All prescribed interface couplings are marked with a tilde (•̃). In the
current state-of-the-art approach, decoupled subsystem optimization processes are
used with fixed interface vectors which represents a muchmoremanageable problem
compared to the all-at-once approach in Eq. (3). Each fixed interface vector is defined
by a previously executed, lower fidelity calculation performed in a preceding step
of the design workflow. Whilst this allows for an independent optimization of each
component by a specialized group of experts, the interface vectors do not inevitably
represent the optimal coupling configuration for the optimized subsystems. There-
fore, they need to be adapted in an overall system optimization (11), (12), however,
they may be considered as given in the component optimization subprocesses.
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Compressor Subprocess

The optimization subproblem for the compressor depends on global variables, local
design variables and local constraints. Only the local design variables pC are changed
to improve the component-specific objective, i.e., tomaximize compressor efficiency
ηC , to fulfil component-specific constraints hC ≤ 0 and to come up to the prescribed
values (7) with its output states yC |B and yC |T . A tolerance εC is provided for these
coupling constraints due to the fact that the local optimization may not be able to
really converge to arbitrary prescribed values, but it enforces the algorithm to match
results with some precision:

min
pC∈PC

(−ηC) s.t.

PC = {
pC ∈ R

dC
∣∣ hC (pC) ≤ 0,

∥∥yC |B(pC) − ỹC |B
∥∥ ≤ εC , (8)∥∥yC |T (pC) − ỹC |T

∥∥ ≤ εC , plC ≤ pC ≤ puC
}

.

The values for the input coupling states aswell as the shared design variables are fixed
in this context, i.e., ỹB|C , ỹT |C ,pS = const. The optimization subprocess returns an
optimal compressor efficiency η∗

C subject to the local variables for the given global
configuration as prescribed by the shared design variables and coupling variables.
In contrast to Eq. (6) there is no return of the output coupling values, as they are
prescribed by the global optimizer and are used as local inequality constraints.

Combustor Subprocess

The optimization problem for the combustor subprocess is defined analogously as

min
pB∈PB

(
wEI − (1 − w)ηB

)
s.t.

PB = {
pB ∈ R

dB
∣∣ hB (pB) ≤ 0,

∥∥yB|C(pB) − ỹB|C
∥∥ ≤ εB, (9)∥∥yB|T (pB) − ỹB|T

∥∥ ≤ εB,plB ≤ pB ≤ puB
}

.

Here we have two optimization goals which are combined by a weighted sum
approach. The weighting factor w is prescribed for the local combustor optimization
process, but may be handled as a design variable by the global optimization process.
The local design vector pB is varied to meet the local constraints hB ≤ 0 as well as
the prescribed output coupling parameters ỹB|C and ỹB|T . The input coupling param-
eters, shared design variables and w are held constant as ỹC |B, ỹT |B,pS,w = const.
during local optimization. The return values are determined by the weighted objec-
tive of the combustor subprocess, and the optimal values of η∗

B and E∗
I are used in the

overall optimization problem for the global improvement of efficiency and emission
index.
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Turbine Subprocess

The turbine subsystem optimization process is again a single-objective optimization
maximizing the turbine efficiency:

min
pT ∈PT

(−ηT ) s.t.

PT = {
pT ∈ R

dT
∣∣ hT (pT ) ≤ 0,

∥∥yT |C(pT ) − ỹT |C
∥∥ ≤ εT , (10)∥∥yT |B(pT ) − ỹT |B

∥∥ ≤ εT ,plT ≤ pT ≤ puT
}

where the local problem is optimized subject to fixed coupling vectors from com-
pressor and combustor as well as a constant shared design vector pS prescribed by
the global optimizer, i.e., ỹC |T , ỹB|T ,pS = const. The return of the optimization
process is the optimal turbine efficiency η∗

T achieved through changes of the local
design variables pT to fulfil local constraints hT ≤ 0 subject to global constraints.

System Optimization Process

The decoupled component optimization as presented above severely limits the
amount of improvement of the design goals (1), (2) due to fixed interface states.
To change this, a global system optimizer for the whole core engine is introduced
which can be scaled to any number of subsystems. It is applied to a reduced subsys-
tem in the next section. The optimizer improves the core engine performance through
variations of both interface couplings and shared design variables, whilst allowing
the subsystem optimizations to find their own optima with respect to the prescribed
values. This enables global improvement whilst still keeping the advantages of a
decoupled process, i.e., the reduced number of actually considered design variables
compared to an all-at-once strategy. Each step of the global optimization involves
the same amount of calculations as the core engine optimization discussed at the
beginning of this section. The optimal configuration of the core engine can be found
through an unconstrained, multi-objective global optimization maximizing the core
engine efficiency and minimizing the emission index as defined in Eqs. (1) and (2),
respectively:

min
sw∈S

[−η∗
E∗

I

]
s.t. S = {

sw ∈ R
dS

∣∣ sw,l ≤ sw ≤ sw,u
}

(11)

where the global efficiency is

η∗ = η∗
Cη∗

Bη∗
T , (12)
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and the global parameter vector sw = [
sT ,w

]T
contains the global coupling and

shared design variable vector s as well as the weighting factor w used in the combus-
tor subprocess (9). This is a deviation from the BLISS-2000 strategy as no weight is
applied on the single objective compressor subprocess, which is permissible because
any improvement in compressor efficiency always contributes to an improvement in
overall efficiency. In contrast to (3), no component design parameters are observed
here, only global variables are influenced by the global optimizer. Both optimization
objectives are built up from results of subsystem optimizations denoted by the aster-
isk (•∗). The complexity of the optimization problem in Eq. (11) shows the need for
an efficient global optimization strategy. The use of a general purposemulti-objective
genetic algorithm would require a very high amount of subsystem optimizations and
thus lead to a very long computation time. To circumvent these problems, two mea-
sures are taken: firstly, Eq. (11) is transferred into a scalar, weighted sum problem
with a fixed weight wS to find specific Pareto-optimal tradeoffs according to pre-
defined priorities, and secondly an efficient response surface algorithm is used to
solve this problem as outlined in the following section.

Solution Concept and Application Example

In order to investigate a proper solution concept in reasonable time, the optimization
problem (8)–(12) is stripped down to two components only. These are the compressor
with design problem (8) and the combustor with design problem (9), whereas the
turbine remains unchanged, i.e., pT = const. Also the considered couplings are
restricted according to Fig. 2. We assume no upstream influence ỹB|C = [ ] from
combustor to compressor and ỹT |B = [ ] from turbineon combustor, and theupstream
coupling from turbine on combustor by provided turbine power PT is assumed to be
prescribed, i.e.,

yT |C = [PT ] := ỹT |C = const. (13)

Fig. 2 Application example yC|T = [nHP ]

yT |C = [PT ]

yC|B = [p30, T30, M30, αex]
T yB|T = [p40, Tt40, M40]

T

C B T



520 S. Extra et al.

Downstream compressor-combustor coupling

yC |B = [p30, T30, M30, αex ]
T (14)

by static pressure p30, temperature T30, Mach number M30 and compressor flow exit
angle αex in the radial plane is assumed. The downstream coupling from combustor
to turbine is prescribed as

yB|T = [p40, Tt40, M40]
T := ỹB|T = const. (15)

summarizing the static pressure p40, the total temperature Tt40 and Mach number
M40. The coupling

yC |T = [nHP ] := ỹC |T = const. (16)

from compressor on turbine by high pressure shaft speed nHP is also prescribed.
For optimization, the local compressor design variable pC and combustor design
variables pB are modified. Further the shared design parameters

pS = [
lC , h p, rp

]T
(17)

summarizing compressor length lC as well as mean height h p and mean radius rp of
the gas path at compressor exit are adapted. The compressor length is a shared design
variable, since we assume a prescribed total length of the whole core engine where
an elongated compressor will reduce the axial length of combustor and turbine. In
this application only the length of compressor and combustor will be varied. The
geometric design parameters h p and rp are shared between compressor exit and
combustor inlet.

Figure 3 shows a scheme of the coupled optimization (8)–(12). Due to the simpli-
fications, the turbine is considered only as a constant representation of the reference
design providing the turbine efficiency η∗

T according to the prescribed coupling and
shared design variables. The global optimizer minimizes the emission index E∗

I pro-
vided by the combustor sub-optimization and maximises the overall efficiency η∗
where η∗

C and η∗
B result from compressor and combustor optimization, respectively.

For simplicity, both criteria are summarized in a weighted sum wsE∗
I − (1 − ws)η∗

with a preselected weight 0 ≤ ws ≤ 1 kept constant during optimization. This results
in the global optimization problem

min
sw∈S f s.t. S = {

sw ∈ R
8

∣∣ sw,l ≤ sw ≤ sw,u
}

(18)

with
f = wsE∗

I − (1 − ws)η∗ (19)
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Fig. 3 Optimization scheme
for application example

for the global variable vector

sw =
[
ỹTC |B,pT

S ,w
]T

(20)

summarizing goals ỹC |B for the coupling (14), shared design variables (17) and the
weight w prescribed for the combustor subprocess. The coupling towards the turbine
ỹB|T is kept constant.

According to Eq. (8) and Figs. 2 and 3, the compressor optimization subproblem
for the application test case is defined as a single objective design problem

min
pC∈PC

(−ηC) s.t. PC = {
pC ∈ R

57 | hC(pC) ≤ 0,plC ≤ pC ≤ puC ,

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

p30 (pC)

T30 (pC)

M30 (pC)

αex (pC)

⎤
⎥⎥⎦ − ỹC |B

∥∥∥∥∥∥∥∥
≤ εC ,

∥∥nHP (pC) − ỹC |T
∥∥ ≤ εC

}
. (21)

The coupling vector ỹC |B as prescribed by the global optimizer enforces the down-
stream coupling towards the combustor. The coupling from the turbine is realized
by directly providing the prescribed turbine power PT as ỹT |C to the compressor,
where this constraint would be usually enforced in the turbine optimization process.
Mechanical losses are not considered at this stage. The coupling of compressor and
turbine ỹC |T represented by high pressure shaft speed nHP is also enforced as a
constraint.

The compressor design process used here is based on a component design pro-
cess developed by Pöhlmann (2015). It uses a fully parameterized compressor gas
path which is analysed by a throughflow solver. The design is then optimized
using a CMA-ES (Covariance Matrix Adaptation - Evolution Strategy), optimizer



522 S. Extra et al.

Hansen (2006), without surrogateswith regards to local objectives and boundary con-
ditions. The design variables pC involve quantities determining the annulus shape
and flow behaviour.

The current wall clock time for a compressor subsystem optimization is about
six hours. This is due to the complex nature of the subsystem optimization problem,
where about 6000 iterations are required for a converged solution. The runtime of
this subsystem optimization process, therefore, drives the global computation time
according to the number of global iterations. This gives a strong incentive to improve
the runtime of all subprocesses as well as to reduce the number of iterations required
by the global optimizer.

The subsystem optimization problem for the combustor subprocess is derived
from Eq. (9) as

min
pB∈PB

(
wEI − (1 − w)ηB

)
s.t. PB = {

pB ∈ R
6 | hB(pB) ≤ 0,plB ≤ pB ≤ puB,

∥∥∥∥∥∥
⎡
⎣ p40 (pB)

Tt40 (pB)

M40 (pB)

⎤
⎦ − ỹB|T

∥∥∥∥∥∥ ≤ εB
}

(22)

where the coupling towards the turbine needs to meet a value ỹB|T . The weight w is
prescribed by the global optimizer and is constant during the local optimization. The
combustor optimization subprocess is based on Angersbach and Bestle (2014) pro-
viding tools for preliminary combustor design. Here the local optimization process
optimizes the airflow distribution throughout the combustion chamber to improve
efficiency and emissions as well as to meet local constraints like the pressure loss
distribution. The process ismodified towork in the environment of a global optimiza-
tion process and uses a CMA-ES algorithm to solve the local optimization problem
with surrogates. The number of iterations required is lower compared to the com-
pressor subsystem problem, but each individual iteration takes more computation
time due to file system operations dictated by the use of legacy code.

The global problem, as described in Eq. (18), is solved with the local-Multistart
Stochastical Response Surface (MSRS) algorithm by Regis and Shoemaker (2007).
It fulfils the demand for a small number of system evaluations, which here are chal-
lenging and time-consuming subsystem optimizations, through the application of a
response surface based search. The algorithm starts with an initial Design of Exper-
iments (DoE) with NS points to be evaluated, which are equally distributed in the
global design space sw by Latin hypercube sampling (LHS). The ranges of the global
variables are defined through a reference configuration. The subsystem optimization
is carried out at these points and the resulting objective function values ηC

∗, ηB
∗, E∗

I
are approximatedwith radial basis functions (RBF), Bouhamidi andMéhauté (2004).
A parallel calculation is possible during the DoE and allows for a reduced overall
computation time. From the calculated set of expensive function evaluations the
point sw

∗
with the best objective function value is chosen. A set of candidate points

C = {c1, c2, . . . , cn} is created around the chosen point as random perturbations
with zero mean and covariance matrix σ 2 I8 with σ 2 being the search radius. The
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points are then evaluated on the response surface to determine the most promising
candidate point. This is done by assessing the predicted function value f̂ (ci ) of each
candidate point and also by calculating the minimal distance d(ci ) to each point of
the DoE. To find the most promising candidate point, a weighted score is calculated
as

W (ci ) = w f g f (ci ) + wdgd (ci ) (23)

involving the normalized objective criterion

g f (ci ) = f̂ (ci ) − fmin

fmax − fmin
(24)

and the distance criterion

gd (ci ) = dmax − d(ci )
dmax − dmin

(25)

weighted by w f and wd , respectively, where w f + wd = 1. The distance criterion
guarantees sufficient distance to previously calculated points. A new point is selected
for an expensive calculation ci ∈ C through the weighted scoreW , and the response
surface is updated accordingly. The counter of non-improved steps ne is raised if
ci is not feasible or no improvement is found, i.e., f (c∗) ≥ f

(
sw

∗)
. To improve

convergence, the search radius is reduced by a factor of 0.5 if ne reaches a predefined
value Ne. This is repeated until a minimum radius is reached where the search is
restarted with a new DoE or terminated.

Due to the high complexity of the problem, the required number of points in the
DoE is hard to assess beforehand. To alleviate this problem, an augmented Latin
Hypercube Sampling algorithm (aLHS) based on Dalbey and Karystinos (2010) is
integrated into the calculation procedure. It allows for an extension of the original
sampling whilst still keeping results of the expensive calculations already performed
and preserves the characteristics of a LHS. To determine the need for an augmentation
of the original sampling, the response surface fitted to the results of the original DoE
is evaluated through a leave-one-out cross-validation and the resulting Spearman
correlation coefficient is compared to a predefined goal value. If the correlation is
not sufficient, the number of points in the DoE as well as the number of iterations is
augmented by a predefined factor and tested again with the added points.

Result Discussion

The test case optimization is based on a reference engine configuration taken from a
representative industry application. The presented result is obtained after 50 global
iterations which is reached after 120h showing the importance of an efficient global
optimization algorithm due to the long run times. Out of the 50 calculations, 45
converged for both compressor and combustor, yielding valid results to be used in
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the global optimization. This equals to a convergence rate of 90%. A subsystem
optimization is considered to be converged if all constraints are fulfilled and there
is no further improvement with respect to the local objectives. In all the cases of
non-convergence, only one subprocess per iteration did not converge, mostly due to
restrictive geometric variable inputs resulting in a failure to reach given boundary
conditions. Non-converged points are not used for updating the response surface of
the MSRS, but as part of the distance criterion to prevent a recalculation of narrow
design points. The results were obtained using the settings given in Table 1. The
used local-MSRS algorithm does not change the weights for distance and fitness
over the course of the optimization, thus forcing a smaller clustering radius due to
the low impact of the distance weight. Further the small search radius improves local
sampling density around the best point of the DoE. The number of allowed non-
improved results is set to 8 to provide sufficient exploration of the high dimensional
variable space without wasting too many calculations before the search radius is
halved. The normalized fitness is defined as fnorm = f/ fre f with f being the fitness
of the MSRS algorithm according to Eq. (9).

Figure 4 shows the current fitness value fnorm of the global configuration for the
duration of optimization, where the iterations performed during the initial DoE are

Table 1 Global optimization settings

Number of global iterations nglob 50

Number of points in the initial DoE Ns 41

Initial search radius σ 2 0.025

Distance weight w f 0.95

Fitness weight wd 0.05

Maximum number of non-improved results Ne 8
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Fig. 4 Current fitness value for the global optimization, compared to the reference fitness fre f
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marked in grey. The fitness is optimized compared to the reference configuration
with fitness fre f shown by line fnorm = λ. The highest positive value of fnorm repre-
sents the best configuration due to the normalization. A first improvement regarding
overall performance as defined by the objectives in Eqs. (1) and (2) and represented
by the fitness value is found during the DoE, which is then further improved by the
global optimizer via localized search. The optimizer uses information from the DoE
to identify the approximate location of the global optimum. After that, the local clus-
tering around the presumed best point improves the quality of the response surface
approximation locally, enforced through the initial search radius σ 2 and the distance
weight w f . This enables the algorithm to find a true global optimum close to the
presumed point, but it limits the amount of improvement to be achieved after the
end of the DoE, depending on the amount of improvement already found during the
DoE. Additionally the number of global iterations used in this example represents
a lower boundary due to the long calculation time of the component processes. A
further improvement is to be expected for further computation. Every subsystem
configuration is locally optimal for the given configuration, but may not present the
best value overall found during the optimization for the given local problem. The
improvement achieved during optimization is considerable regarding the fact that
the reference configuration already represents a capable design.

As the local-MSRS algorithm tends to focus on the specific region of highest
presumed performance, local variations after the end of the DoE are quite small;
see Fig. 5 showing the variations of the aerodynamic coupling variables between
compressor and combustor. The design settles on a configuration with relatively
low exit pressure allowing for good compressor efficiency whilst not having strong
effects on the combustor performance. The compressor exit temperature is prescribed
at relatively high values, which poses a less severe constraint on the compressor
compared to a low exit temperature. The Mach number is forced to low compressor

Fig. 5 Normalized compressor exit and combustor inlet quantities as prescribed by the global
optimizer
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Fig. 6 Normalized geometric quantities as prescribed by the global optimizer

exit values posing a challenge on the compressor optimization subprocess where
good combustor performance is associated with low inflow Mach numbers.

The distribution of the geometric coupling variables is shown in Fig. 6, with a fast
focus after the DoE. The geometric configuration promising the highest performance
is characterized by a low compressor gas path exit height. This mainly influences
the Mach number at the compressor exit via the overall compressor flow area. The
medium radial height of the compressor gas path is permissible due to the fact that
requirements for compressor exit pressure are relatively low. The length requirements
for the compressor are kept at a medium level as well, in turn influenced by the
required pressure at the compressor-combustor interface.

Conclusions and Outlook

The process presented in this paper enables the solution of a complex overall opti-
mization problem through decoupling whilst using legacy code, based on the current
state of the art of preliminary engine design. Until now, this is done with fixed inter-
faces, which limit the overall design space. The proposed method removes this lim-
itation and uses flexible interfaces to explore new configurations. The performance
goal is defined as the overall core engine efficiency as a product of the compo-
nent efficiencies. The problem is represented by a simplified model of a industrial
application case, for which an optimized configuration is found. The use of an effi-
cient algorithm guarantees a minimum number of overall iterations. The fact that the
subprocesses are not simple system evaluations but rather complex optimizations
themselves, and thus retain an uncertainty regarding their results, poses a special
challenge to the overall optimization loop. Furthermore, a substitution of the current
weighted sum approach in the global optimization by a real multiobjective global
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optimizer is planned. Finally a step to implement the multiobjective coupling as
presented by Lockan et al. (2017) is planned to improve the performance of the
subprocess interfaces.
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Abstract The capability to reduce the structural weight of aircrafts, and conse-
quently the fuel consumption, is related to the accuracy of numerical tools and to the
efficiency of design methodologies available. In particular, the capability to model
the interaction of the severalmechanisms involved in physics phenomena represents a
key point in the development of engineering design tools. Typical examples are FSI
(Fluid-Structure Interaction) analyses in which the capability to properly capture
the behaviour of aeroelastic phenomena is crucial. Furthermore, the enhancement
of environments able to include structural shape optimizations represents a signif-
icant step forward in the development of greener aircrafts. The objectives of the
EU RIBES (Radial basis functions at fluid Interface Boundaries to Envelope flow
results for advanced Structural analysis) project was to reduce the uncertainness in
CFD (Computational Fluid Dynamics)-CSM (Computational Structural Mechanics)
aeroelastic analysis numericalmethodologies, enhancing the coupling between fluid-
dynamic and structural solvers, to improve the confidence on their accuracy and to
progress in the development of structural optimization tools. At this aim, the project
was focused on the development of an accurate load mapping procedure, on the
implementation of an innovative workflow for structural shape optimization and on
experimental validation of FSI (Fluid-Structure Interaction) methodologies. Radial
Basis Functions (RBF) supply the mathematical foundation for the first two topics.
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This paper summarizes the results achieved by the project, describes the developed
optimization tool and details the experimental campaign conducted to generate a
database of measurements on a typical realistic aeronautical wing structure.

Introduction

The “RIBES”1 (Radial basis functions at fluid Interface Boundaries to Envelope flow
results for advanced Structural analysis) project started in December 2014 and was
completedDecember 2016. Its objectivewas the enhancement of FSI (Fluid Structure
Interaction) analysis methodologies by the development and the validation of an
accurate coupling between structural and fluid dynamic tools and the development
of a structural optimization software capable to modify both thickness properties
and shape. The project, led by the University of Rome “Tor Vergata”, progressed
thorough the three main topics:

1. the development of an accurate and efficient load mapping procedure to trans-
fer vector fields from CFD (Computational Fluid Mechanics) to FEM (Finite
Element Method) solvers;

2. the implementation of a structural shape optimization tool;
3. the setup of an aeroelastic experimental campaign for FSI methodologies vali-

dation.

An innovative aspect of the methods developed is the adoption of Radial Basis
Functions (RBF) as a mathematical framework with which to face the problem
of post-processing of multivariate data and solution interpolation between non-
matching domains.

Partners of research were the RBF Morph2 software vendor, whose technology is
at the base of the implemented methodologies, the aerospace consulting engineer-
ing firm Design Methods3 which supported the experimental activities and the FSI
methods validation and the University of Naples “Federico II” that was in charge of
the experimental measurements.

The remainder of the paper is organized as follows: Section
“Radial Basis Functions” supplies a brief background about RBF, Section
“LoadMapping Procedure” describes the loadmapping procedure and its application
to an aeronautical test bench (in Section “Mapping Procedure Validation”). The
optimization strategy is outlined in Section “Structural Optimization Environment”

1http://ribes-project.eu/project.
2www.rbf-morph.com.
3www.designmethods.aero.

http://ribes-project.eu/project
http://www.rbf-morph.com
http://www.designmethods.aero
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along with a practical example presented in Section “Testing of the Optimization
Procedure”. Section “Experimental Campaign” is dedicated to the experimental
campaign. Finally, conclusions are drawn in Section “Conclusions”. A few pictures
referring to the experimental and numerical activities are reported in the Appendix.

Radial Basis Functions

Radial Basis Functions are powerful mathematical functions able to interpolate,
giving the exact values in the original points, functions defined at discrete points
only (source points) (Buhmann 2004). The interpolation quality and its behaviour
depends on the chosen RBF.

A linear system (of order equal to the number of source points introduced) needs
to be solved for coefficients calculation (De Boer et al. 2007). Once the unknown
coefficients are calculated, the field value at an arbitrary point inside or outside the
domain (interpolation/extrapolation) is expressed as the summation of the radial
contribution of each source point (if the point falls inside the influence domain). An
interpolation function composed by a radial basis and a polynomial is defined as
follows:

s(x) �
N∑

i�1

γiφ(‖x − xi‖) + h(x) (1)

The minimal degree of polynomial h depends on the choice of the basis function.
A unique interpolant exists (Buhmann 2004) if the basis function is a conditionally
positive definite function. If the basis functions are conditionally positive definite of
order m � 2, a linear polynomial can be used in a three-dimensional space:

h(x) � β + β1x + β2y + β3z (2)

In order to solve thewhole systemwith both contributions (1) and (2), an additional
condition is required. This last comes from orthogonality between the weights of the
radial basis and those of the polynomial supplement. The values for the coefficients
γ of RBF and the coefficients β of the linear polynomial can be obtained by solving
the system

(
M P

PT 0

)(
γ

β

)
�

(
g

0

)
(3)

where g is the vector of known values at the source points. M is the interpolation
matrix defined calculating all the radial interactions between source points

Mi j � φ
(∥∥xki − xk j

∥∥)
1 ≤ i j ≤ N (4)
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and P is the constraint matrix

P �

⎛
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1
...
1

x0k1
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...

x0kN
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y0k2
...

y0kN

z0k1

z0k2
...

z0kN

⎞

⎟⎟⎟⎟⎟⎟⎠
(5)

RBF have several advantages that makes them very attractive inmany areas of sci-
ence and engineering: surface reconstruction (Casciola et al. 2006), solution of partial
differential equations (Fasshauer 1999), image analysis of deformations (Biancolini
and Salvini 2012) and mesh morphing, to cite the most popular applications. This
last technique (Biancolini 2012) refers to the capability to rearrange an existingmesh
into a new shape, leaving the topology unchanged.

Load Mapping Procedure

A critical aspect in CFD-CSM based aeroelastic analysis is represented by the tech-
nique with which to transfer the aerodynamic loads from the wet surfaces of the fluid
dynamic mesh to the structural domain which, in general, have non-matching dis-
cretization on the common boundaries (Jiao and Heath 2004). The forces computed
by the CFD analyses are, in fact, extracted from the cells of the CFD walls bound-
aries in the form of vectors positioned on a cloud of points that will typically differ
from the FEM grid points (Fig. 1) on which the loads have to be applied (the grids
requirements are, in general, different for FEM and CFD analyses). An interpolation
between the two domains is then required with a consequential introduction of an

Fig. 1 Example of non-matching meshes
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Fig. 2 Main steps of the transfer procedure devised for the RIBES project

error. The minimization of the uncertainness associated to this process is the major
concern when defining a mathematical approach addressed to the interpolation task.

A major drawback of RBF is that, in order to obtain the interpolating series, a
linear system whose dimensions depend on the number of considered points, needs
to be solved. This issue can be conveniently handled by resorting to a proper domain
decomposition technique, such as the Partition ofUnity (POU) strategy (Babuska and
Melenk 1997). The POU method is used to organize the source and target point sets
into overlapping subdomains in which the interpolation problem is locally solved.
In order to recover the continuity of the field and to guarantee the smoothness of
the global solution, the resulting set of local solutions are combined together by a
blending function.

Although RBFs proved to be very accurate for interpolation, they cannot ensure
load conservation in the case of pressure mapping. This last requirement is satisfied
with the introduction of a Fuzzy Sets population (Zadeh 1965) throughout source
and target domains, to correct the outcome of RBF interpolation in order to meet
local and global balance.

The graph reported in Fig. 2 summarizes the main steps of the proposed transfer
procedure.

In Fig. 3 an example of interpolation, in which the pressure is mapped between
non-matching nodes mesh using RBF and Fuzzy Sets, is reported. The upper figure
reports the source CFD mesh while the target FEM mesh is reported in the lower
one.
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Fig. 3 Example of loadmapping interpolation between non-matching domains, source (above) and
target (below)
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Table 1 Non-corrected interpolation errors between HiReNASD model grids

Fx err
(%)

Fy err
(%)

Fz err
(%)

Mx err
(%)

My err
(%)

Mz err
(%)

47.3 6.6 1.0 13.1 13.8 27.8

Table 2 Corrected interpolation errors between HiReNASD model grids

Mx err
(%)

My err
(%)

Mz err
(%)

0.01 −0.28 −0.06

Mapping Procedure Validation

The developed mapping procedure was validated using the HiReNASD (High
Reynolds Number Aero-Structural Dynamics) test case (Ballmann 2008). It con-
sists in a half wing/fuselage wind tunnel model used in a workshop for aeroelastic
numerical methods validation. Both CFD and FEM grids are available. The static
pressure field was mapped from the CFD wing surface grid to the wing structural
FEM mesh. Table 1 reports the errors introduced by the interpolation process with-
out correction between the two non-matching domains. Mismatches on forces (F)
and moments (M) are computed component-wise along x, y and z directions (which
appear as subscripts).

Table 2 reports the errors on moments obtained applying the correction proce-
dure implemented within the RIBES project (in which errors on forces are zero for
definition). The errors are below 0.3% along all directions.

Structural Optimization Environment

Structural optimization is a strategic topic in aircraft design. The weight reduction is
directly connected to the performances improvement and to the “green” behaviour
of the machine. Several consolidated methods, able to optimize the thickness of the
structural elements, are available on the market. However, the capability to perform
an efficient structural shape optimization is still an open issue.

The structural optimization procedure developed within the RIBES project is
based on routines that manage the geometric parameters, update the model, perform
the FEM analysis and drive the optimization. The possibility to perform both a
shape and thickness optimization was implemented by two strategies. Thickness is
introduced as variable of design directly taking the control of the Nastran bulk data
file by the management of the property label in the ASCII file (Fig. 4).

The shape change is applied to the topology directly on the numerical domain by
mesh morphing techniques (Fig. 5). Several algorithms have been explored for this
task (Sederberg and Parry 1986; Masud et al. 2007). The mesh morphing algorithm
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Fig. 4 Bulk data file

Fig. 5 Example of mesh morphing

implemented in the RIBES software is based on the use of the FEM itself. Shape
modifications are applied to an auxiliarymodelwith the samegeometry of the original
one, the deformed mesh is the result of a FE analysis.

The shape modification is applied to the computational domain as a linear combi-
nation of vectors belonging to the FEMmodel nodal positions space. The parametric
formulation of the structural mesh is:

XFEM � XFEM0 + ηsδXs (6)

whereXFEM are the positions of the grid nodes,XFEM0 are the positions of the nodes
of the undeformedmesh and ηs are parameters (that constitute the variables of design)
used to amplify the displacement vectors δXs.

The optimum definition is based on filling a DOE (Design Of Experiment) table,
with design points selected with the Latin hypercube sampling method (McKay et al.
1979), and on the application of aResponse Surface (RS) onwhich to apply the search
algorithm. One of the most efficient approach, for the RS evaluation, is the Kriging
method and the RBF interpolation (Jin et al. 2001). The University of Rome “Tor
Vergata” developed a RS metamodel based on the RBF using various kernels.

The complete workflow of the structural optimization procedure is sketched in
Fig. 6.

The automatic process is included in the dashed frame while the external blocks
indicate the setup activities that have to be manually performed in advance. A set of
script routines complete the DOE table, drive the computation, extract the solutions,
update the FEM setup according to the selected design point, compute the RS and
apply the single or multi-objective search algorithm to find the optimum or the Pareto
solution. The parameters that is possible to extract to be used to compute the objective
functions and/or to implement constraints are the maximum stress (or the maximum
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Fig. 6 Workflow of the structural optimization procedure

failure index in the case of composite materials), the maximum displacement (for the
entire structure or for each property of the model) and the total mass of the structure.

A Graphical User Interface (GUI) was developed to simplify the problem setup
and the postprocessing of solutions. It can be used to automatically generate the
input text file expected by the software, evaluate the Pareto front, extract designs and
perform other useful operations as plotting the response surface.

Testing of the Optimization Procedure

The procedure described above was tested on the optimization of the RIBES wind
tunnelmodelmetal structure (Cella et al. 2015). The test following describedwas per-
formed on a composite rib obtained taking as a reference the RIBES wing arbitrarily
scaled to a realistic full scale.

A preliminary FE analysis was run on a portion of wing box with all its elements
(skin, ribs, spars). This structure was constrained at the root section and loaded by
forces distributed on a set of points according to the mapping procedure previously
described. The displacement field obtained for the boundary of the rib was extracted
from the overall model and used to load a new model of the single rib.

Three lightening holes were placed on the rib and reinforcements were extruded
around them. Two additional vertical reinforcements were added between the holes.
The material of the rib was assumed to be carbon fibre reinforced epoxy pre-preg.

A single objective optimization was setup. The objective function was the min-
imization of the total mass constraining the structural integrity. The variables of
design were:

• Depth of web openings (out of plane) ranged from 0 (flat) to 30 mm;
• Clew depth from 0 (flat) to 30 mm;
• Holes radius from 100 to 140 mm.
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Fig. 7 Baseline rib

Fig. 8 Optimized rib

A comparison of the rib before and after the application of the proposed modifi-
cations is shown in the next two figures (Figs. 7 and 8).

In order to properly populate the design space, 250 structural linear analyses
(instability issues were not kept into account) were run. Material strength was evalu-
ated in terms of Failure Index (FI) according to composite materials theory. Results
of analyses (in terms of maximum failure indexes and masses) were used as input
for the RBF interpolation in order to generate a RS. All points resulted safe from a
structural point of view since all maximum failure indexes were lower than 1.
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The lowest mass was obtained, as expected, at the maximum value of holes radii.
This parameter was the only affecting the solution. The estimated output for this
arrangement was FI�0.52, mass�3.35 kg. As a check, a FEM analysis was run in
order to assess the RBF prediction. The obtained results were FI�0.49 (percentage
error 6%) and mass�3.36 kg (percentage error 0.3%).

A deeper verification of the proposed method was performed by evaluating also
the configuration with the lowest FI, with a value of 0.40 and a mass equal to 4.08 kg.
According to the RBF interpolation, this condition would have been achieved with
depth ofweb openings 30mmand holes radii of 130mm. The FEManalysis provided
a result (FI�0.43, mass�4.08 kg) with an error lower than 7%.

It is possible to conclude, for the loading configuration considered, the vertical
clews to provide no benefit from a structural point of view. Only the reinforcements
around the openings actually gave a contribution to the strength of the rib. It showed,
nevertheless, to be not necessary to avoid the risk of failure.

Experimental Campaign

A significant part of the RIBES project resources were allocated on the setup of an
extensive aeroelastic wind tunnel test campaign to be performed on a model that
replicates a typical metallic aeronautical wing structure. The aim is to generate an
experimental base of assessment customized for the validation of the software devel-
oped within the project. The task is to produce a database of loads, pressure, stress
and deformation measurements that is significant for a realistic aeronautical design
problem (http://ribes-project.eu/experiments/). This activity was conducted with the
collaboration of the University of Naples “Federico II”. The facility adopted was a
low speed closed circuit wind tunnel with a test Section “Radial Basis Functions”
metres wide and an airflow speed limit of 45 m/s. The model deformation was eval-
uated by laser scan.

The requirements for the wing tunnel measurements and for the model were:

• for the tests

– static pressure measurements under steady flow conditions;
– forces and moments measurements;
– model deformation measurements;
– stresses measurements on most significant structure locations;

• for the model

– scaled physical model of a metallic wing type of structure;
– rectangular shape and small thickness;
– installation of strain gauges and pressure pick-up points at its surface.

The design of a flexible model was particular critical because, for manufacturing
reasons, the simple scaling of a real wing box to dimensions compatible to a low

http://ribes-project.eu/experiments/
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Fig. 9 Detail of the internal structure of the RIBES WT model

speed WT test chamber is impracticable also referring to small aircrafts. The results
was necessarily a quite stiff structure.

Themodel consisted in an aluminium alloy taperedwing,with twoC shaped spars,
ten ribs, 3 upper surface stringers (to prevent buckling) all covered by a skin 0.6 mm
thick (Fig. 9). The model has been built following typical aeronautical technique and
finally assembled after the installation of both pressure taps and strain gauges. The
wing is fixed on the side wall of the test section as a cantilever (Fig. 12 in appendix).

Two FSI analysis methodologies were validated against the RIBES test case: a
traditional 2-way (described in Cella and Biancolini 2012), in which the mapping of
loads was performed by the procedure developed within the project, and a method
based on the modal approach in which the modal base is generated by a set of
RBF solutions replicating a set of natural modal shapes of the structure (up to 8
modes were adopted) (Biancolini et al. 2016). The two methods estimated a very
similar deformation but both solutions are overestimated compared to measurements
(Fig. 10). A hypothesis, to justify this disagreement, might be related to the panels
junctions FEM modelling which were simply connected by points. Such model do
not account for friction and interference that are present along the junctions surface
leading, probably, to model a structure more flexible than the real one.

The set of installed strain gauges (Fig. 11) provided a map of the stress state of
the structure. For the numerical/experimental comparison was used the solution of
the FEM analysis resulting from the convergence of the 2-way procedure. Figure 13
in appendix reports the visualizations of the normal stresses, in the Y direction and
highlights the locations of some of the strain gauges. Table 3 compares the numerical
values of the computation with the measurements.

A reasonable matching between measured and computed stresses was, in general,
observed. Significant disagreements are, however, present in locations close to the
root region (sensors ID numbers higher than 13) where higher stress gradients are
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Fig. 10 Numerical-
experimental comparison of
RIBES WT model
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present. The combination of the information deriving from the computed deforma-
tion and the comparison of the stress state would suggest that the distribution of
the load between the front spar and the skin was not properly captured. A possible
explanation might be related to the modelling of the panels junctions, as stated previ-
ously. Furthermore, no junction between reinforcements and spar is modelled. This
simplification might be also responsible of the not accurate estimation of the loads
transferred between spar and skin. Uncertainness might be also introduced by the
junction between the two front spar thickening and the root rib. The elements are,
in fact, linked by two linchpins which were not modelled in the numerical configu-
ration. Further details on the RIBES aeroelastic numerical/experimental validation
activity can be found in (Cella 2016).

Fig. 11 Details of strain gauges installation of on the WIBES wing structure
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Table 3 Measured and computed σy at strain gauges location on the RIBES wing

Sensor ID Position Measured σy (MPa) FEM σy (MPa)

9 Mid front spar up −12.2 −11

10 Mid front spar low 12.3 −10

11 Mid rear spar up −8 −8

12 Mid rear spar low 7.5 −6

13 Front spar thickening
up

−15.6 −38

14 Front spar thickening
low

15 −36

15 Upper skin −143.2 −21

17 Upper skin −31.5 −15

Conclusions

The main achievements of the RIBES project concern the developments of an accu-
rate loadmapping procedure forCFD-CSMbased FSI analyses tools, an optimization
software able to face problems of structural shape optimization and a database of
aeroelastic measurements (including deformation and stress state) of a typical aero-
nautical wing structure.

The tools developed within the project offer several advantages. The mapping
procedure can be easily automatized and integrated in 2-way FSI workflow to cre-
ate optimization design environments. The FEM tool capability to parametrize and
update the structural properties, combined with the CFD mesh adaptation to the
FEM deformation in a closed loop, provides the possibility to create a shape design
method that combines aerodynamic and structural optimizations in a single environ-
ment. Such a tool can be adopted to face static and dynamic aero-structural designs
enabling multi objective/multi physics optimisation in which performances coming
from different solutions are pursued steering the same common reference geometry.

All measurements, geometries, numerical models and solutions of numeri-
cal/experimental activities performed within the RIBES project are available on line
to the scientific community (www.ribes-project.eu). The wish is the RIBES test case
to constitute an enhancement for information sharing between scientists and a frame-
work for further discussions, research activities, proposals and collaborations.
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Appendix

See Figs. 11, 12 and 13.

Fig. 12 RIBES WT model installed in the test section

Fig. 13 FEM solution of the 2-way FSI analysis on the RIBES WT model
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