
Behavioural Equivalence via Modalities
for Algebraic Effects

Alex Simpson and Niels Voorneveld(B)

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
{Alex.Simpson,Niels.Voorneveld}@fmf.uni-lj.si

Abstract. The paper investigates behavioural equivalence between pro-
grams in a call-by-value functional language extended with a signature
of (algebraic) effect-triggering operations. Two programs are considered
as being behaviourally equivalent if they enjoy the same behavioural
properties. To formulate this, we define a logic whose formulas specify
behavioural properties. A crucial ingredient is a collection of modalities
expressing effect-specific aspects of behaviour. We give a general theory
of such modalities. If two conditions, openness and decomposability, are
satisfied by the modalities then the logically specified behavioural equiva-
lence coincides with a modality-defined notion of applicative bisimilarity,
which can be proven to be a congruence by a generalisation of Howe’s
method. We show that the openness and decomposability conditions hold
for several examples of algebraic effects: nondeterminism, probabilistic
choice, global store and input/output.

1 Introduction

The notion of behavioural equivalence between programs is a fundamental con-
cept in the theory of programming languages. A conceptually natural approach
to defining behavioural equivalence is to consider two programs as being equiv-
alent if they enjoy the same ‘behavioural properties’. This can be made precise
by specifying a behavioural logic whose formulas express behavioural properties.
Two programs M,N are then defined to be equivalent if, for all formulas Φ, it
holds that M |= Φ iff N |= Φ (where M |= Φ expresses the satisfaction
relation: program M enjoys property Φ).

This logical approach to defining behavioural equivalence has been particu-
larly prominent in concurrency theory, where the classic result is that the equiv-
alence defined by Hennessy-Milner logic [4] coincides with bisimilarity [14,17].
The aim of the present paper is to adapt the logical approach to the very different
computational paradigm of applicative programming with effects.
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More precisely, we consider a call-by-value functional programming language
with algebraic effects in the sense of Plotkin and Power [21]. Broadly speaking,
effects are those aspects of computation that involve a program interacting with
its ‘environment’; for example: nondeterminism, probabilistic choice (in both
cases, the choice is deferred to the environment); input/output; mutable store
(the machine state is modified); control operations such as exceptions, jumps and
handlers (which interact with the continuation in the evaluation process); etc.
Such general effects collectively enjoy common properties identified in the work
of Moggi on monads [15]. Among them, algebraic effects play a special role.
They can be included in a programming language by adding effect-triggering
operations, whose ‘algebraic’ nature means that effects act independently of
the continuation. From the aforementioned examples of effects, only jumps and
handlers are non-algebraic. Thus the notion of algebraic effect covers a broad
range of effectful computational behaviour. Call-by-value functional languages
provide a natural context for exploring effectful programming. From a theoretical
viewpoint, other programming paradigms are subsumed; for example, imperative
programs can be recast as effectful functional ones. From a practical viewpoint,
the combination of effects with call-by-value leads to the natural programming
style supported by impure functional languages such as OCaml.

In order to focus on the main contributions of the paper (the behavioural logic
and its induced behavioural equivalence), we instantiate “call-by-value functional
language with algebraic effects” using a very simple language. Our language is a
simply-typed λ-calculus with a base type of natural numbers, general recursion,
call-by-value function evaluation, and algebraic effects, similar to [21]; although,
for technical convenience, we adopt the (equivalent) formulation of fine-grained
call-by-value [13]. The language is defined precisely in Sect. 2. Following [8,21],
an operational semantics is given that evaluates programs to effect trees.

Section 3 introduces the behavioural logic. In our impure functional setting,
the evaluation of a program of type τ results in a computational process that
may or may not invoke effects, and which may or may not terminate with a
return value of type τ . The key ingredient in our logic is an effect-specific family
O of modalities, where each modality o ∈ O converts a property φ of values of
type τ to a property o φ of general programs (called computations) of type τ .
The idea is that such modalities capture all relevant effect-specific behavioural
properties of the effects under consideration.

A main contribution of the paper is to give a general framework for defin-
ing such effect modalities, applicable across a wide range of algebraic effects.
The general setting is that we have a signature Σ of effect operations, which
determines the programming language, and a collection O of modalities, which
determines the behavioural logic. In order to specify the semantics of the logic, we
require each modality to be assigned a set of unit-type effect trees, which deter-
mines the meaning of the modality. Several concrete examples and a detailed
general explanation are given in Sect. 3.

In Sect. 4, we consider the relation of behavioural equivalence between pro-
grams determined by the logic. A fundamental well-behavedness property is that



302 A. Simpson and N. Voorneveld

any reasonable program equivalence should be a congruence with respect to the
syntactic constructs of the programming language. Our main theorem (The-
orem 1) is that, under two conditions on the collection O of modalities, which
hold for all the examples of effects we consider, the logically induced behavioural
equivalence is indeed a congruence.

In order to prove Theorem 1, we develop an alternative perspective on
behavioural equivalence, which is of interest in its own right. In Sect. 5 we
show how the modalities O determine a relation of applicative O-bisimilarity,
which is an effect-sensitive version of Abramsky’s notion of applicative bisim-
ilarity [1]. Theorem 2 shows that applicative O-bisimilarity coincides with the
logically defined relation of behavioural equivalence.

The proof of Theorem 1 is then concluded in Sect. 6, where we use Howe’s
method [5,6] to show that applicative O-bisimilarity is a congruence. Although
the proof is technically involved, we give only a brief outline, as the details closely
follow the recent paper [9], in which Howe’s method is applied to an untyped
language with general algebraic effects.

In Sect. 7, we present a variation on our behavioural logic, in which we make
the syntax of logical formulas independent of the syntax of the programming
language.

Finally, in Sect. 8 we discuss related and further work.

2 A Simple Programming Language

As motivated in the introduction, our chosen base language is a simply-typed
call-by-value functional language with general recursion and a ground type of
natural numbers, to which we add (algebraic) effect-triggering operations. This
means that our language is a call-by-value variant of PCF [20], extended with
algebraic effects, resulting in a language similar to the one considered in [21]. In
order to simplify the technical treatment of the language, we present it in the
style of fine-grained call-by-value [13]. This means that we make a syntactic dis-
tinction between values and computations, representing the static and dynamic
aspects of the language respectively. Furthermore, all sequencing of computa-
tions is performed using a single language construct, the let construct. The
resulting language is straightforwardly intertranslatable with the more tradi-
tional call-by-value formulation. But the encapsulation of all sequencing within
a single construct has the benefit of avoiding redundancy in proofs.

Our types are just the simple types obtained by iterating the function type
construction over two base types: N of natural numbers, and also a unit type 1.

Types: τ, ρ ::= 1 | N | ρ → τ
Contexts: Γ ::= ∅ | Γ, x : τ

As usual, term variables x are taken from a countably-infinite stock of such
variables, and the context Γ, x : τ can only be formed if the variable x does not
already appear in Γ .

As discussed above, program terms are separated into two mutually defined
but disjoint categories: values and computations.
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Values: V,W ::= ∗ | Z | S(V ) | λx.M | x
Computations: M,N ::= V W | return V | let M ⇒ x in N | fix (V ) |

case V in {Z ⇒ M,S(x) ⇒ N}
Here, ∗ is the unique value of the unit type. The values of the type of natural
numbers are the numerals represented using zero Z and successor S. The values
of function type are the λ-abstractions. And a variable x can be considered a
value, because, under the call-by-value evaluation strategy of the language, it
can only be instantiated with a value.

The computations are: function application V W ; the computation that does
nothing but return a value V ; a let construct for sequencing; a fix construct for
recursive definition; and a case construct that branches according to whether its
natural-number argument is zero or positive. The computation let M ⇒ x in N
implements sequencing in the following sense. First the computation M is eval-
uated. Only in the case that the evaluation of M terminates, with return value
V , does the thread of execution continue to N . In this case, the computation
N [V /x] is evaluated, and its return value (if any) is the one returned by the let
construct.

To the pure functional language described above, we add effect operations.
The collection of effect operations is specified by a set Σ (the signature) of such
operations, together with, for each σ ∈ Σ an associated arity which takes one of
the four forms below

αn → α N × αn → α αN → α N × αN → α.

The notation here is chosen to be suggestive of the way in which such arities are
used in the typing rules below, viewing α as a type variable. Each of the forms
of arity has an associated term constructor, for building additional computation
terms, with which we extend the above grammar for computation terms.

Effects: σ(M0,M1, . . . ,Mn−1) | σ(V ;M0,M1, . . . ,Mn−1) | σ(V ) | σ(W ;V )

Motivating examples of effect operations and their computation terms can be
found in Examples 0–5 below.

The typing rules for the language are given in Fig. 1 below. Note that the
choice of typing rule for an effect operation σ ∈ Σ depends on its declared arity.

The terms of type τ are the values and computations generated by the con-
structors above. Every term has a unique aspect as either a value or computation.
We write Val(τ) and Com(τ) respectively for closed values and computations.
So the closed terms of τ are Term(τ) = Val(τ) ∪ Com(τ). For n ∈ N a natural
number, we write n for the numeral Sn(Z), hence V al(N) := {n |n ∈ N}.

We now consider some standard signatures of computationally interesting
effect operations, which will be used as running examples throughout the paper.
(We use the same examples as in [8].)

Example 0 (Pure functional computation). This is the trivial case (from an effect
point of view) in which the signature Σ of effect operations is empty. The result-
ing language is a call-by-value variant of PCF [20].
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Fig. 1. Typing rules

Example 1 (Error). We take a set of error labels E. For each e ∈ E there is
an effect operator raisee : α0 → α which, when invoked by the computation
raisee(), aborts evaluation and outputs e as an error message.

Example 2 (Nondeterminism). There is a binary choice operator or : α2 → α
which gives two options for continuing the computation. The choice of continu-
ation is under the control of some external agent, which one may wish to model
as being cooperative (angelic), antagonistic (demonic), or neutral.

Example 3 (Probabilistic choice). Again there is a single binary choice operator
p-or : α2 → α which gives two options for continuing the computation. In this
case, the choice of continuation is probabilistic, with a 1

2 probability of either
option being chosen. Other weighted probabilistic choices can be programmed
in terms of this fair choice operation.

Example 4 (Global store). We take a set of locations L for storing natural num-
bers. For each l ∈ L we have lookupl : αN → α and updatel : N × α → α. The
computation lookupl(V ) looks up the number at location l and passes it as an
argument to the function V , and updatel(n;M) stores n at l and then continues
with the computation M .

Example 5 (Input/output). Here we have two operators, read : αN → α which
reads a number from an input channel and passes it as the argument to a func-
tion, and write : N × α → α which outputs a number (the first argument) and
then continues as the computation given as the second argument.

We next present an operational semantics for our language, under which a
computation term evaluates to an effect tree: essentially, a coinductively gener-
ated term using operations from Σ, and with values and ⊥ (nontermination) as
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the generators. This idea appears in [8,21], and our technical treatment follows
approach of the latter, adapted to call-by-value.

We define a single-step reduction relation � between configurations (S,M)
consisting of a stack S and a computation M . The computation M is the term
under current evaluation. The stack S represents a continuation computation
awaiting the termination of M . First, we define a stack-independent reduction
relation on computation terms that do not involve let at the top level.

(λx : τ.M)V � M [V/x]

case Z of {Z ⇒ M1; S(x) ⇒ M2} � M1

case S(V ) of {Z ⇒ M1; S(x) ⇒ M2} � M2[V/x]

fix(F ) � return λx : τ. let F (λy : τ.let fix F ⇒ z in zy) ⇒ w in wx

The behaviour of let is implemented using a system of stacks where:

Stacks S ::= id | S ◦ ( let (−) ⇒ x in M)

We write S{N} for the computation term obtained by ‘applying’ the stack S to
N , defined by:

id {N} = N

(S ◦ (let (−) ⇒ x in M)) {N} = S{ let N ⇒ x in M}

We write Stack(τ, ρ) for the set of stacks S such that for any N ∈ Com(τ), it
holds that S{N} is a well-typed expression of type ρ. We define a reduction
relation on pairs Stack(τ, ρ) × Com(τ) (denoted (S1,M1) � (S2,M2)) by:

(S, let N ⇒ x in M) � (S ◦ ( let (−) ⇒ x in M), N)
(S,R) � (S,R′) if R � R′

(S ◦ ( let (−) ⇒ x in M), return V ) � (S,M [V/x])

We define the notion of effect tree for an arbitrary set X, where X is thought
of as a set of abstract ‘values’.

Definition 1. An effect tree (henceforth tree), over a set X, determined by a
signature Σ of effect operations, is a labelled and possibly infinite tree whose
nodes have the possible forms.

1. A leaf node labelled with ⊥ (the symbol for nontermination).
2. A leaf node labelled with x where x ∈ X.
3. A node labelled σ with children t0, . . . , tn−1, when σ ∈ Σ has arity αn → α.
4. A node labelled σ with children t0, t1, . . . , when σ ∈ Σ has arity αN → α.
5. A node labelled σm where m ∈ N with children t0, . . . , tn−1, when σ ∈ Σ has

arity N × αn → α.
6. A node labelled σm where m ∈ N with children t0, t1, . . . , when σ ∈ Σ has

arity N × αN → α.
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We write TX for the set of trees over X. We define a partial ordering on
TX where t1 ≤ t2, if t1 can be obtained by replacing subtrees of t2 by ⊥.
This forms an ω-complete partial order, meaning that every ascending sequence
t1 ≤ t2 ≤ . . . has a least upper bound

⊔
n tn. Let Tree(τ) := TVal(τ), we will

define a reduction relation from computations to trees of values.
Given f : X → Y and a tree t ∈ TX, we write t[x �→ f(x)] ∈ TY for the tree

whose leaves x ∈ X are renamed to f(x). We have a function μ : TTX → TX,
which takes a tree r of trees and flattens it to a tree μr ∈ TX, by taking the
labelling tree at each non-⊥ leaf of r as the subtree at the corresponding node
in μr. The function μ is the multiplication associated with the monad structure
of the T operation. The unit of the monad is the map η : X → TX which takes
an element x ∈ X and returns a leaf labelled x.

The operational mapping from a computation M ∈ Com(τ) to an effect tree
is defined intuitively as follows. Start evaluating the M in the empty stack id,
until the evaluation process (which is deterministic) terminates (if this never
happens the tree is ⊥). If the evaluation process terminates at a configuration
of the form (id, return V ) then the tree is the leaf V . Otherwise the evaluation
process can only terminate at a configuration of the form (S, σ(. . . )) for some
effect operation σ ∈ Σ. In this case, create an internal node in the tree of the
appropriate kind (depending on σ) and continue generating each child tree of this
node by repeating the above process by evaluating an appropriate continuation
computation, starting from a configuration with the current stack S.

The following (somewhat technical) definition formalises the idea outlined
above in a mathematically concise way. We define a family of maps |−,−|(−) :
Stack(τ, ρ) × Com(τ) × N → Tree(ρ) indexed over τ, and ρ by:

|S, M |0 = ⊥

|S, M |n+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V if S = id ∧ M = return V

|S′, M ′|n if (S, M) � (S′, M ′)

σ(|S, M0|n, . . . , |S, Mm−1|n) σ :αm →α, M =σ(M0, . . . , Mm−1)

σ(|S, V 0|n, |S, V 1|n, . . . ) σ :αN →α, M =σ(V )

σk(|S, M0|n, . . . , |S, Mm−1|n) σ :N×αm →α, M =σ(k, M0, . . . , Mm−1)

σk(|S, V 0|n, |S, V 1|n, . . . ) σ :N×αN →α, M =σ(k, V )

⊥ otherwise

It follows that |S,M |n ≤ |S,M |n+1 in the given ordering on trees. We write
| − |(−) : Com(τ) × N → Tree(τ) for the function defined by |M |n = |id,M |n.
Using this we can give the operational interpretation of computation terms as
effect trees by defining | − | : Com(τ) → Tree(τ) by |M | :=

⊔
n |M |n.

Example 3 (Nondeterminism). Nondeterministically generate a natural number:

?N := let fix(λx : 1 → N. or(λy : 1. Z, λy : 1. let xy ⇒ z in S(z))) ⇒ w in w∗
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3 Behavioural Logic and Modalities

The goal of this section is to motivate and formulate a logic for expressing
behavioural properties of programs. In our language, program means (well-typed)
term, and we shall be interested both in properties of computations and in prop-
erties of values. Accordingly, we define a logic that contains both value formulas
and computation formulas. We shall use lower case Greek letters φ, ψ, . . . for the
former, and upper case Greek letters Φ, Ψ, . . . for the latter. Our logic will thus
have two satisfaction relations

V |= φ M |= Φ

which respectively assert that “value V enjoys the value property expressed by
φ” and “computation M enjoys the computation property expressed by Φ”.

In order to motivate the detailed formulation of the logic, it is useful to
identify criteria that will guide the design.

(C1) The logic should express only ‘behaviourally meaningful’ properties of
programs. This guides us to build the logic upon primitive notions that have
a direct behavioural interpretation according to a natural understanding of
program behaviour.

(C2) The logic should be as expressive as possible within the constraints
imposed by criterion (C1).

For every type τ , we define a collection VF(τ) of value formulas, and a
collection CF(τ) of computation formulas, as motivated above.

Since boolean logical connectives say nothing themselves about computa-
tional behaviour, it is a reasonable general principle that ‘behavioural proper-
ties’ should be closed under such connectives. Thus, in keeping with criterion
(C2), which asks for maximal expressivity, we close each set CF(τ) and VF(τ),
of computation and value formulas, under infinitary propositional logic.

In addition to closure under infinitary propositional logic, each set VF(τ)
contains a collection of basic value formulas, from which compound formulas
are constructed using (infinitary) propositional connectives.1 The choice of basic
formulas depends on the type τ .
1 We call such formulas basic rather than atomic because they include formulas such

as (V �→ Φ), discussed below, which are built from other formulas.
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In the case of the natural numbers type, we include a basic value formula
{n} ∈ VF(N), for every n ∈ N. The semantics of this formula are given by:

V |= {n} ⇔ V = n.

By the closure of VF(N) under infinitary disjunctions, every subset of N can be
represented by some value formula. Moreover, since a general value formula in
VF(N) is an infinitary boolean combination of basic formulas of the form {n},
the value formulas represent exactly the subsets on N.

For the unit type, we do not require any basic value formulas. The unit type
has only one value, ∗. The two subsets of this singleton set of values are defined
by the formulas ⊥ (‘falsum’, given as an empty disjunction), and 
 (the truth
constant, given as an empty conjunction).

For a function type τ → ρ, we want each basic formula to express a funda-
mental behavioural constraint on values (i.e., λ-abstractions) W of type τ → ρ.
In keeping with the applicative nature of functional programming, the only way
in which a λ-abstraction can be used to generate behaviour is to apply it to an
argument of type τ , which, because we are in a call-by-value setting, must be
a value V . The application of W to V results in a computation WV of type ρ,
whose properties can be probed using computation formulas in CF(ρ). Based on
this, for every value V ∈ Val(τ) and computation formula Φ ∈ CF(ρ), we include
a basic value formula (V �→ Φ) ∈ VF(τ → ρ) with the semantics:

W |= (V �→ Φ) ⇔ WV |= Φ.

Using this simple construct, based on application to a single argument V , other
natural mechanisms for expressing properties of λ-abstractions are definable,
using infinitary propositional logic. For example, given φ ∈ VF(τ) and Ψ ∈
CF(ρ), the definition

(φ �→ Ψ) :=
∧

{(V �→ Ψ) | V ∈ Val(τ), V |= φ} (1)

defines a formula whose derived semantics is

W |= (φ �→ Ψ) ⇔ ∀V ∈Val(τ). V |= φ implies WV |= Ψ. (2)

In Sect. 7, we shall consider the possibility of changing the basic value formulas
in VF(τ → ρ) to formulas (φ �→ Ψ).

It remains to explain how the basic computation formulas in CF(τ) are
formed. For this we require a given set O of modalities, which depends on the
algebraic effects contained in the language. The basic computation formulas in
CF(τ) then have the form o φ, where o ∈ O is one of the available modalities,
and φ is a value formula in VF(τ). Thus a modality ‘lifts’ properties of values of
type τ to properties of computations of type τ .

In order to give semantics to computation formulas o φ, we need a general
theory of the kind of modality under consideration. This is one of the main
contributions of the paper. Before presenting the general theory, we first consider
motivating examples, using our running examples of algebraic effects.
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Example 0 (Pure functional computation). Define O = {↓}. Here the single
modality ↓ is the termination modality : ↓φ asserts that a computation termi-
nates with a return value V satisfying φ. This is formalised using effect trees:

M |= ↓φ ⇔ |M | is a leaf V and V |= φ.

Note that, in the case of pure functional computation, all trees are leaves: either
value leaves V , or nontermination leaves ⊥.

Example 1 (Error). Define O = {↓} ∪ {Ee | e ∈ E}. The semantics of the
termination modality ↓ is defined as above. The error modality Ee flags error e:

M |= Eeφ ⇔ |M | is a node labelled with raisee.

(Because raisee is an operation of arity 0, a raisee node in a tree has 0 children.)
Note that the semantics of Eeφ makes no reference to φ. Indeed it would be
natural to consider Ee as a basic computation formula in its own right, which
could be done by introducing a notion of 0-argument modality, and considering
Ee as such. In this paper, however, we keep the treatment uniform by always
considering modalities as unary operations, with natural 0-argument modalities
subsumed as unary modalities with redundant argument.

Example 2 (Nondeterminism). Define O = {♦, �} with:

M |= ♦φ ⇔ |M | has some leaf V such that V |= φ

M |= �φ ⇔ |M | has finite height and every leaf is a value V s.t. V |= φ.

Including both modalities amounts to a neutral view of nondeterminism. In the
case of angelic nondeterminism, one would include just the ♦ modality; in that of
demonic nondeterminism, just the � modality. Because of the way the semantic
definitions interact with termination, the modalities � and ♦ are not De Morgan
duals. Indeed, each of the three possibilities {♦, �}, {♦}, {�} for O leads to a
logic with a different expressivity.

Example 3 (Probabilistic choice). Define O = {P>q | q ∈ Q, 0 ≤ q < 1} with:

M |= P>q φ ⇔ P(|M | terminates with a value in {V | V |= φ}) > q,

where the probability on the right is the probability that a run through the
tree |M |, starting at the root, and making an independent fair probabilistic
choice at each branching node, terminates at a value node with a value V in the
set {V | V |= φ}. We observe that the restriction to rational thresholds q is
immaterial, as, for any real r with 0 ≤ r < 1, we can define:

P>r φ :=
∨

{P>q φ | q ∈ Q, r < q < 1}.

Similarly, we can define non-strict threshold modalities, for 0 < r ≤ 1, by:

P≥r φ :=
∧

{P>q φ | q ∈ Q, 0 ≤ q < r}.
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Also, we can exploit negation to define modalities expressing strict and non-strict
upper bounds on probabilities. Notwithstanding the definability of non-strict and
upper-bound thresholds, we shall see later that it is important that we include
only strict lower-bound modalities in our set O of primitive modalities.

Example 4 (Global store). For a set of locations L, define the set of states by
State = N

L. The modalities are O = {(s � r) | s, r ∈ State}, where informally:

M |= (s � r)φ ⇔ the execution of M, starting in state s, terminates in
final state r with return value V such that V |= φ.

We make the above definition precise using the effect tree of M . Define

exec : TX × State → X × State,

for any set X, to be the least partial function satisfying:

exec(t, s) =

⎧
⎪⎨

⎪⎩

(x, s) if t is a leaf labelled with x ∈ X

exec(ts(l), s) if t = lookupl(t0, t1, · · · ) and exec(ts(l), s)is defined

exec(t′, s[l := n]) if t = updatel,n(t′) and exec(t′, s[l := n]) is defined,

where s[l := n] is the evident modification of state s. Intuitively, exec(t, s) defines
the result of “executing” the tree of commands in effect tree t starting in state
s, whenever this execution terminates. In terms of operational semantics, it can
be viewed as defining a ‘big-step’ semantics for effect trees (in the signature of
global store). We can now define the semantics of the (s � r) modality formally:

M |= (s � r)φ ⇔ exec(|M |, s) = (V, r) where V |= φ.

Example 5 (Input/output). Define an i/o-trace to be a word w over the alphabet

{?n | n ∈ N} ∪ {!n | n ∈ N}.

The idea is that such a word represents an input/output sequence, where ?n
means the number n is given in response to an input prompt, and !n means that
the program outputs n. Define the set of modalities

O = {〈w〉↓, 〈w〉... | w an i/o-trace}.

The intuitive semantics of these modalities is as follows.

M |= 〈w〉↓φ ⇔ w is a complete i/o-trace for the execution of M

resulting in termination with V s.t. V |= φ

M |= 〈w〉... φ ⇔ w is an initial i/o-trace for the execution of M.

In order to define the semantics of formulas precisely, we first define relations
t |= 〈w〉↓P and t |= 〈w〉..., between t ∈ TX and P ⊆ X, by induction on words
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Fig. 2. The logic V

(Note that we are overloading the |= symbol.) In the following, we write ε for
the empty word, and we use textual juxtaposition for concatenation of words.

t |= 〈ε〉↓ P ⇔ t is a leaf x and x ∈ P

t |= 〈(?n)w〉↓ P ⇔ t = read(t0, t1, . . . ) and tn |= 〈w〉↓ P

t |= 〈(!n)w〉↓ P ⇔ t = writen(t′) and t′ |= 〈w〉↓P

t |= 〈ε〉... ⇔ true
t |= 〈(?n)w〉... ⇔ t = read(t0, t1, . . . ) and tn |= 〈w〉...
t |= 〈(!n)w〉... ⇔ t = writen(t′) and t′ |= 〈w〉...

The formal semantics of modalities is now easily defined by:

M |= 〈w〉↓ φ ⇔ |M | |= 〈w〉↓ {V | V |= φ}
M |= 〈w〉... φ ⇔ |M | |= 〈w〉....

Note that, as in Example 1, the formula argument of the 〈w〉... modality is redun-
dant. Also, note that our modalities for input/output could naturally be formed
by combining the termination modality ↓, which lifts value formulas to computa-
tion formulas, with sequences of atomic modalities 〈?n〉 and 〈!n〉 acting directly
on computation formulas. In this paper, we do not include such modalities, act-
ing on computation formulas, in our general theory. But this is a natural avenue
for future consideration.

We now give a formal treatment of the logic and its semantics, in full gener-
ality. We assume given a signature Σ of effect operations, as in Sect. 2. And we
assume given a set O, whose elements we call modalities.

We call our main behavioural logic V, where the letter V is chosen as a
reference to the fact that the basic formula at function type specifies function
behaviour on individual value arguments V .

Definition 2 (The logic V). The classes VF(τ) and CF(τ) of value and com-
putation formulas, for each type τ , are mutually inductively defined by the rules
in Fig. 2. In this, I can be instantiated to any set, allowing for arbitrary conjunc-
tions and disjunctions. When I is ∅, we get the special formulas 
 =

∧
∅ and

⊥ =
∨

∅. The use of arbitrary index sets means that formulas, as defined, form
a proper class. However, we shall see below that countable index sets suffice.
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In order to specify the semantics of modal formulas, we require a connection
between modalities and effect trees, which is given by an interpretation function

�·� : O → P(T1).

That is, every modality o ∈ O is mapped to a subset �o� ⊆ T1 of unit-type effect
trees. Given a subset P ⊆ X (e.g. given by a formula) and a tree t ∈ TX we can
define a unit-type tree t[∈P ] ∈ T1 as the tree created by replacing the leaves of
t that belong to P by ∗ and the others by ⊥. In the case that P is the subset
{V | V |= φ} specified by a formula φ ∈ VF(τ), we also write t[ |= φ] for t[∈P ].

We can now formally define the two satisfaction relations |= ⊆ Val(τ)×VF(τ)
and |= ⊆ Com(τ) × CF(τ), mutually inductively, by:

m |= {n} ⇔ m = n

W |= (V �→ Φ) ⇔ WV |= Φ

M |= o φ ⇔ |M | [ |= φ] ∈ �o�

W |= ¬φ ⇔ ¬(W |= φ).

We omit the evident clauses for the other propositional connectives. We remark
that all conjunctions and disjunctions are semantically equivalent to countable
ones, because value and computation formulas are interpreted over sets of terms,
Val(τ) and Com(τ), which are countable.

We end this section by revisiting our running examples, and showing, in each
case, that the example modalities presented above are all specified by suitable
interpretation functions �·� : O → P(T1).

Example 0 (Pure functional computation). We have O = {↓}. Define:

�↓� = { ∗ } (where ∗ is the tree with single node ∗)

Example 1 (Error). We have O = {↓} ∪ {Ee | e ∈ E}. Define:

�Ee� = { raisee }.

Example 2 (Nondeterminism). We have O = {♦, �}. Define:

�♦� = {t | t has some * leaf}
��� = {t | t has finite height and every leaf is a *}.

Example 3 (Probabilistic choice). O = {P>q | q ∈ Q, 0 ≤ q < 1}. Define:

�P>q� = {t | P( t terminates with a * leaf ) > q}.

Example 4 (Global store). O = {(s � r) | s, r ∈ State}. Define:

�(s � r)� = {t | exec(t, s) = (∗, r)}.

Example 5 (Input/output). O = {〈w〉↓, 〈w〉... | w an i/o-trace}. Define:

�〈w〉↓ � = {t | t |= 〈w〉↓ {∗} }
�〈w〉... � = {t | t |= 〈w〉...}.
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4 Behavioural Equivalence

The goal of this section is to precisely formulate our main theorem: under suitable
conditions, the behavioural equivalence determined by the logic V of Sect. 3 is
a congruence. In order to achieve this, it will be useful to consider the positive
fragment V+ of V.

Definition 3 (The logic V+). The logic V+ is the fragment of V consisting of
those formulas in VF(τ) and CF(τ) that do not contain negation.

Whenever we have a logic L whose value and computation formulas are given
as subcollections VFL(τ) ⊆ VF(τ) and CFL(τ) ⊆ CF(τ), then L determines
a preorder (and hence also an equivalence relation) between terms of the same
type and aspect.

Definition 4 (Logical preorder and equivalence). Given a fragment L of
V, we define the logical preorder �L, between well-typed terms of the same type
and aspect, by:

V �L W ⇔ ∀φ ∈ VFL(τ), V |= φ ⇒ W |= φ

M �L N ⇔ ∀Φ ∈ CFL(τ), M |= Φ ⇒ N |= Φ

The logical equivalence ≡L on terms is the equivalence relation induced by the
preorder (the intersection of �L and its converse).

In the case that formulas in L are closed under negation, it is trivial that the
preorder �L is already an equivalence relation, and hence coincides with ≡L.
Thus we shall only refer specifically to the preorder �L, for fragments, such as
V+, that are not closed under negation.

The two main relations of interest to us in this paper are the primary rela-
tions determined by V and V+: full behavioural equivalence ≡V ; and the positive
behavioural preorder �V+ (which induces positive behavioural equivalence ≡V+).

We next formulate the appropriate notion of (pre)congruence to apply to the
relations ≡V and �V+ . These two preorders are examples of well-typed relations
on closed terms. Any such relation can be extended to a relation on open terms
in the following way. Given a well-typed relation R on closed terms, we define the
open extension R◦ where Γ � MR◦N : τ precisely when, for every well-typed
vector of closed values

−→
V : Γ , it holds that M [

−→
V ]RN [

−→
V ]. The correct notion

of precongruence for a well-typed preorder on closed terms, is to ask for its open
extension to be compatible in the sense of the definition below; see, e.g., [10,19]
for further explanation.

Definition 5 (Compatibility). A well-typed open relation R is said to be
compatible if it is closed under the rules in Fig. 3.

We now state our main congruence result, although we have not yet defined
the conditions it depends upon.
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Fig. 3. Rules for compatibility

Theorem 1. If O is a decomposable set of Scott-open modalities then the open
extensions of ≡V and �V+ are both compatible. (It is an immediate consequence
that the open extension of ≡V+ is also compatible.)

The Scott-openness condition refers to the Scott topology on T1.

Definition 6. We say that o ∈ O is upwards closed if �o� is an upper-closed
subset of T1; i.e., if t ∈ �o� implies t′ ∈ �o� whenever t ≤ t′.

Definition 7. We say that o ∈ O is Scott-open if �o� is an open subset in the
Scott topology on T1; i.e., �o� is upper closed and, whenever t1 ≤ t2 ≤ . . . is an
ascending chain in T1 with supremum �iti ∈ �o�, we have tn ∈ �o� for some n.

Before formulating the property of decomposability, we make some simple
observations about the positive preorder �V+ .

Lemma 8. For any V0, V1 ∈ Val(ρ → τ), we have V0 �V+ V1 if and only if:

∀W ∈ V al(ρ), ∀Ψ ∈ CFV+(τ), V0 |= (W �→ Ψ) implies V1 |= (W �→ Ψ).

Lemma 9. For any M0,M1 ∈ Com(τ), we have M0 �V+ M1 if and only if:

∀o ∈ O, ∀φ ∈ VFV+(τ), M0 |= o φ implies M1 |= o φ.

Similar characterisations, with appropriate adjustments, hold for behavioural
equivalence ≡V .

The decomposability property is formulated using an extension of the positive
preorder �V+ , at unit type, from a relation on computations to a relation on
arbitrary effect trees. Accordingly, we define a preorder � on T1 by:

t � t′ ⇔ ∀o ∈ O, (t ∈ �o� ⇒ t′ ∈ �o�) ∧ (t[∈ ∅] ∈ �o� ⇒ t′[∈ ∅] ∈ �o�).
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Proposition 10. For computations M,N ∈ Com(1), it holds that |M | � |N | if
and only if M �V+ N .

Proof. The defining condition for |M | � |N | unwinds to:

∀o ∈ O, (M |= o
 implies N |= o
) ∧ (M |= o⊥ implies N |= o⊥).

This coincides with M �V+ N by Lemma 9. ��
We now formulate the required notion of decomposability. We first give the

general definition, and then follow it with a related notion of strong decompos-
ability, which can be more convenient to establish in examples. Both definitions
are unavoidably technical in nature.

For any relation R ⊆ X × Y and subset A ⊆ X, we write R↑A for the right
set {y ∈ Y | ∃x ∈ A, xRy}. This allows use to easily define our required notion.

Definition 11 (Decomposability). We say that O is decomposable if, for all
r, r′ ∈ TT1, we have:

(∀A ⊆ T1, r[∈ A] � r′[∈ �↑A]) ⇒ μr � μr′.

Corollary 22 in Sect. 5, may help to motivate the formulation of the above prop-
erty, which might otherwise appear purely technical. The following stronger ver-
sion of decomposability, which suffices for all examples considered in the paper,
is perhaps easier to understand in its own right.

Definition 12 (Strong decomposability). We say that O is strongly decom-
posable if, for every r ∈ TT1 and o ∈ O for which μr ∈ �o�, there exists a
collection {(oi, o

′
i)}i∈I of pairs of modalities such that:

1. ∀i ∈ I, r[∈ �o′
i�] ∈ �oi� ; and

2. for every r′ ∈ TT1, (∀i ∈ I, r′[∈ �o′
i�] ∈ �oi� ) implies μr′ ∈ �o�.

Proposition 13. If O is a strongly decomposable then it is decomposable.

Proof. Suppose that r[∈ A] � r′[∈ (�↑ A)] holds for every A ⊆ T1. Assume that
μr ∈ �o� ∈ O. Then strong decomposability gives a collection {(oi, o

′
i)}I . By the

definition of �, for each o′
i we have �↑ �o′

i� = �o′
i�. By the initial assumption,

r[∈ �o′
i�] ∈ �oi� implies r′[∈ (�↑ �o′

i�)] ∈ �oi�, and hence r′[∈ �o′
i�] ∈ �oi�. This

holds for every i, so by strong decomposability μr′ ∈ �o�. We have shown that
μr ∈ �o� implies μr′ ∈ �o�. One can prove similarly that μr[∈ ∅] ∈ �o� implies
that μr′[∈ ∅] ∈ �o� by observing that �↑ {x |x[∈ ∅] ∈ �o′

i�} = {x |x[∈ ∅] ∈ �o′
i�}.

Thus it holds that μr � μr′ and hence O is decomposable. ��
We end this section by again looking at our running examples, and showing,

in each case, that the identified collection O of modalities is Scott-closed (hence
upwards closed) and strongly decomposable (hence decomposable). For any of
the examples, upwards closure is easily established, so we will not show it here.
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Example 0 (Pure functional computation). We have O = {↓} and �↓� = { ∗ }.
Scott openness holds since if �iti = ∗ then for some i we must already have
ti = ∗. It is strongly decomposable since: μr ∈ �↓� ⇔ r[∈ �↓�] ∈ �↓�, which
means r returns a tree t which is a leaf ∗.

Example 1 (Error). We have O = {↓} ∪ {Ee | e ∈ E} and �Ee� = { raisee }.
Scott-openness holds for both modalities for the same reason as in the previous
example, and its strongly decomposable since:

μr ∈ �↓� ⇔ r[∈ �↓�] ∈ �↓�.

Which means r returns a tree t which returns ∗.

μr ∈ �Ee� ⇔ r[∈ �Ee�] ∈ �Ee� ∨ r[∈ �Ee�] ∈ �↓�.

Which means r raises an error, or returns a tree that raises an error.

Example 2 (Nondeterminism). We have O = {♦, �}. The Scott-openness of
�♦� = {t | t has some ∗ leaf} is because if �iti has a ∗ leaf, then that leaf
must already be contained in ti for some i. Similarly, if �iti ∈ ��� then, because
��� = {t |t has finite height and every leaf is a∗}, the tree �iti has finitely many
leaves and all must be contained in ti for some i. Hence ti ∈ ���. Strong decom-
posability holds because:

μr ∈ �♦� ⇔ r[∈ �♦�] ∈ �♦� and μr ∈ ��� ⇔ r[∈ ���] ∈ ���.

The right-hand-side of the former states that r has as a leaf a tree t, which itself
has a leaf ∗. That of the latter states that r is finite and all leaves are finite trees
t that have only ∗ leaves. The same arguments show that {♦} and {�} are also
decomposable sets of Scott open modalities.

Example 3 (Probabilistic choice). O = {P>q | q ∈ Q, 0 ≤ q < 1}. For the
Scott-openness of �P>q� = {t | P( t terminates with a * leaf ) > q}, note that
P(�iti terminates with a ∗ leaf ) is determined by some countable sum over the
leaves of ti. If this sum is greater than a rational q, then some finite approxima-
tion of the sum must already be above q. The finite sum is over finitely many
leaves from �iti, all of which will be present in ti for some i. Hence ti ∈ �P>q�.

We have strong decomposability, since P(μr terminates with a∗ leaf ) equals
the integral of the function fr(x) = sup{y ∈ [0, 1] | r[�P>x�] ∈ �P>y�} from [0, 1]
to [0, 1]. Indeed, fr(x) gives the probability that r return a tree t ∈ �P>x�. So we
know that if ∀x, y, r[�P>x�] ∈ �P>y� ⇒ r′[�P>x�] ∈ �P>y�, then fr′(x) ≥ fr(x)
for any x. Hence if μr ∈ �P>q� then

∫
fr > q, whence also

∫
fr′ > q, which

means μr′ ∈ �P>q�.

Example 4 (Global store). We have O = {(s � s′) | s, s′ ∈ State}. For the Scott-
openness of �(s � s′)� = {t | exec(t, s) = (∗, r)}, note that if exec(�iti, s) =
(∗, s′), there is a single finite branch of t that follows the path the recursive
function exec took. This branch must already be contained in ti for some i. We
also have strong decomposability since:

μr ∈ �s � s′� ⇔ ∃s′′ ∈ State, r[∈ �s′′ � s′�] ∈ �s � s′′�.

Which just means that exec(r, s) = (t, s′′) and exec(t, s′′) = (∗, s′) for some s′′.
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Example 5 (Input/output). We have O = {〈w〉↓, 〈w〉... | w an i/o-trace}. For the
Scott-openness of �〈w〉↓ � = {t | t |= 〈w〉↓ {∗} }, note that the i/o-trace 〈w〉↓
is given by some finite branch, which if in �iti must be in ti for some i. The
Scott-openness of �〈w〉... � = {t | t |= 〈w〉... } holds for similar reasons. We have
strong decomposability because of the implications:

μr ∈ �〈w〉↓� ⇔ ∃v, u i/o-traces, vu = w ∧ r[∈ �〈u〉↓�] ∈ �〈v〉↓�.
Which means r follows trace v returning t, and t follows trace u returning ∗.

μr ∈ �〈w〉. . .� ⇔ r[∈ �↓�] ∈ �〈w〉. . .� ∨ ∃v, u, vu = w ∧ r[∈ �〈u〉. . .�] ∈ �〈v〉↓�.
Which means either r follows trace w immediately, or it follows v returning a
tree that follows u.

5 Applicative O-(bi)similarity

In this section we look at an alternative description of our logical pre-order.
Central to such a definition lies the concept of a relator [12,25], which we use
to lift a relation on value terms to a relation on computation terms. With our
family of modalities O we can define a relator which takes a relation R ⊆ X ×Y
and returns the relation O(R) ⊆ TX × TY , defined by:

t O(R) t′ ⇔ ∀A ⊆ X,∀o ∈ O, t[∈ A] ∈ �o� ⇒ t′[∈ (R↑A)] ∈ �o�.

Note that O(id1) = (�). Following [9], we use this relation-lifting operation to
define notions of applicative similarity and bisimilarity.

Definition 14. An applicative O-simulation is given by a pair of relations Rv
τ

and Rc
τ for each type τ , where Rv

τ ⊆ Val(τ)2 and Rc
τ ⊆ Com(τ)2, such that:

1. V Rv
NW ⇒ (V = W )

2. MRc
τN ⇒ |M | O(Rv

τ ) |N |
3. V Rv

ρ→τW ⇒ ∀U ∈ Val(ρ), V U Rc
τ WU

Applicative O-similarity is the largest applicative O-simulation, which is equal
to the union of all applicative O-simulations.

Definition 15. An applicative O-bisimulation is a symmetric O-simulation.
The relation of O-bisimilarity is the largest applicative O-bisimulation.

Lemma 16. Applicative O-bisimilarity is identical to the relation of applicative
(O ∩ Oop)-similarity, where t(O ∩ Oop)(R)r ⇔ tO(R)r ∧ rO(Rop)t.

Proof. Let R be the O-bisimilarity, then by symmetry we have Rop = R. So if
MRN we have NRM , and by the simulation rules we derive |M |O(R)|N | and
|N |O(R)|M | which is what we needed.

Let R be the O ∩ Oop-similarity. If MRopN then |N |(O ∩ Oop)(R)|M | so
|N |O(R)|M | ∧ |M |O(Rop)|N | which results in |M |(O ∩ Oop)(Rop)|N |. Verifying
the other simulation conditions as well, we can conclude that the symmetric
closure R ∪ Rop is also a O ∩ Oop-simulation. So R must, as the largest such
simulation, be symmetric. Hence R is a symmetric O-simulation as well.
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For brevity, we will leave out the word “applicative” from here on, and write
o to mean its denotation �o�. We also introduce brackets, writing o[φ] for o φ.
The key result now is that the maximal relation, the O-similarity is in most
cases the same object as our logical preorder. We first give a short Lemma.

Lemma 17. For any fragment L of V closed under countable conjunction, it
holds that for each value V there is a formula χV ∈ L s.t. W |=L χV ⇔
V �L W .

Proof. For each U such that (V ��L U), choose a formula φU ∈ L such that
V |=L φU and (U �|= φU ). Then if we define χV :=

∧
{U |V 
�LU} φU it holds that

V ��L U ⇔ U �|= χV , which is what we want.

Theorem 2 (a). For any family of upwards closed modalities O, we have that
the logical preorder �V+ is identical to O-similarity.

Proof. We write � instead of �V+ to make room for other annotations. We first
prove that our logical preorder � is an O-simulation by induction on types.

1. Values of N. If n �v
N m, then since n |= {n} we have that m |= {n}, hence

m = n.
2. Computations of τ . Assume M �c

τ N , we prove that |M |O(�v
τ )|N |. Take

A ⊆ Val(τ) and o ∈ O such that |M |[∈ A] ∈ o. Taking the following formula
φ :=

∨
a∈A χa (where χa as in Lemma 17), then b |= φ ⇔ ∃a ∈ A, a �v

τ b and
a ∈ A ⇒ a |= φ. So |M |[|= φ] ≥ |M |[∈ A], hence since o is upwards closed,
|M |[|= φ] ∈ o. By M �c

τ N we have |N |[∈ {b ∈ Val(τ) | ∃a ∈ A, a �v
τ b}] =

|N |[|= φ] ∈ o. Hence we can conclude that |M |O(�v
τ )|N |.

3. Function values of ρ → τ , this follows from Lemma 8 and the Induction
Hypothesis.

We can conclude that � is an O-simulation. Now take an arbitrary O-simulation
R. We prove by induction on types that R ⊆ (�).

1. Values of N. If V Rv
NW then V = W , hence by reflexivity we get V �v

N W .
2. Computations of τ . Assume MRc

τN , we prove that M �c
τ N using the char-

acterisation from Lemma 9. Say for o ∈ O and φ ∈ VF(τ) we have M |= o[φ].
Let Aφ := {a ∈ Val(τ) | a |= φ} ⊆ Val(τ), then |M |[∈ Aφ] = |M |[|= φ] ∈ o
hence by MRc

τN we derive |N |[∈ {b ∈ Val(τ) | ∃a ∈ Aφ, aRv
τ b}] ∈ o. By

Induction Hypothesis on values of τ , we know that Rv
τ ⊆ (�v

τ ), hence
‘∃a ∈ Aφ, aRv

τ b’ implies b |= φ. We get that |N |[|= φ] ≥ |N |[∈ {b ∈
Val(τ) | ∃a ∈ Aφ, aRv

τ b}], so by upwards closure of o we have |N |[|= φ] ∈ o
meaning N |= o[φ]. We conclude that M �c

τ N .
3. Function values of ρ → τ , assume V Rv

ρ→τW . We prove V �v
ρ→τ W using the

characterisation from Lemma 8. Assume V |= (U �→ Φ) where U ∈ Val(ρ)
and Φ ∈ CF(τ), so V U |= Φ. By V Rv

ρ→τW we have V U Rc
τ WU and by

Induction Hypothesis we have Rc
τ ⊆ (�c

τ ), so V U �c
τ WU . Hence WU |= Φ

meaning W |= (U �→ Φ). We can conclude that V �v
ρ→τ W .
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4. Values of 1. If V Rv
1W then V = ∗ = W hence V �v

1 W .

In conclusion: any O-simulation R is a subset of the O-simulation �V+ . So �V+

is O-similarity. ��
Alternatively, we can look at the variation of our logic with negation. This

is related to applicative bisimulations.

Theorem 2 (b). For any family of upwards closed modalities O, we have that
the logical equivalence ≡V is identical to O-bisimilarity.

Proof. Note first that ≡V is symmetric.
Secondly, note that since ≡V=�V we know by Lemma 17, that for any V ,

there is a formula χV such that W |= χV ⇔ V ≡V W .
Using these special formulas χV , the rest of the proof is very similar to the

proof in Theorem2(a). Here follow the non-trivial parts of the proof, different
from the previous lemma. For proving ≡V is an O-simulation:

1. Computations of τ . Assume M ≡c
τ N and |M |[∈ A] ∈ o ∈ O. Then M |=

o[
∨

V ∈A χV ] hence N |= o[
∨

V ∈A χV ] meaning |N |[∈ {W | ∃V ∈ A, V ≡c
τ

W}]. So |M |O(≡v
τ )|N |.

2. Functions of ρ → τ , if V ≡v
ρ→τ W and U ∈ Val(ρ). If V U |= Φ, then

V |= U �→ Φ hence W |= U �→ Φ so WU |= Φ. Same vice versa, so
V U ≡c

τ WU .

So ≡V is an O-bisimulation. Now take any O-bisimulation R.

1. Computations of τ , if MRN and M |= o[φ] then |M |[|= φ] ∈ o hence
|N |[∈ {W | ∃V |= φ, V Rv

τW}] ∈ o. By Induction Hypothesis, (Rv
τ ) ⊆ (≡v

τ )
so {W | ∃V |= φ, V Rv

τW} ⊆ {W | ∃V |= φ, V ≡v
τ W}. So by upwards

closure of o we get that |N |[∈ {W | ∃V |= φ, V ≡v
τ W}] ∈ o and further that

N |= o[φ]. We can conclude M ≡V N .
2. Values of ρ → τ , if V RW and V |= U �→ Φ, then V U |= Φ and V U R WU

hence by Induction Hypothesis, V U ≡ WU meaning WU |= Φ so W |= U �→
Φ. If V |= ¬(U �→ Φ) then ¬(V U |= Φ) hence by V U ≡ WU we have
¬(WU |= Φ) so W |= ¬(U �→ Φ). For the

∨
and

∧
constructors, a

simple Induction Step would suffice, and for higher level negation note that
¬∨

φ ⇔ ∧ ¬φ and ¬∧
φ ⇔ ∨¬φ.

We can conclude that (R) ⊆ (≡V), so ≡V is indeed O-bisimilarity. ��
We end this section by stating the abstract properties of our relational lifting

O(R) required for the proof by Howe’s method in Sect. 6 to go through. The
necessary properties were identified in [9]. The contribution of this paper is that
all the required properties follow from our modality-based definition of O(R).
The first set of properties tell us that O(−) is a relator in the sense of [12]:

Lemma 18. If the modalities from O are upwards closed, then O(−) is a relator,
meaning that:
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1. If R ⊆ X × X is reflexive, then so is O(R).
2. ∀R,∀S, O(R)O(S) ⊆ O(RS), where RS is relation composition.
3. ∀R,∀S, R ⊆ S ⇒ O(R) ⊆ O(S).
4. ∀f : X → Z, g : Y → W,R ⊆ Z × W,O((f × g)−1R) = (Tf × Tg)−1O(R)

where (f × g)−1(R) = {(x, y) ∈ X × Y | f(x)Rg(y)}.
The next property together with the previous lemma establishes that O(−) is a
monotone relator in the sense of [25].

Lemma 19. If the modalities from O are upwards closed, then O(−) is mono-
tone, meaning for any f : X → Z, g : Y → W , R ⊆ X × Y and S ⊆ Z × W :

(∀x, y, xRy ⇒ f(x)S g(y)) ∧ tO(R)r ⇒ t[x �→ f(x)]O(S) r[y �→ g(y)]

The relator also interacts well with the monad structure on T .

Lemma 20. If O is a decomposable set of upwards closed modalities, then:

1. xRy ⇒ η(x)O(R)η(y);
2. tO(O(R))r ⇒ μtO(R)μr.

Finally, the following properties show that relator behaves well with respect to
the order on trees.

Lemma 21. If O only contains Scott open modalities, then:

1. If R is reflexive, then t ≤ r ⇒ tO(R)r.
2. For any two sequences u0 ≤ u1 ≤ u2 ≤ . . . and v0 ≤ v1 ≤ v2 ≤ . . . :

∀n, (unO(R)vn) ⇒ (�nun)O(R)(�nvn)

The lemmas above list the core properties of the relator, which are satisfied
when our family O is decomposable and contains only Scott open modalities.
The results below follow from those above.

Corollary 22. If O contains only upwards closed modalities, then:

O is decomposable ⇔ ∀R ⊆ X ×Y,∀t, r ∈ TT1, (tO(O(R))r ⇒ μtO(R)μr)

Corollary 23. If O is a decomposable family of upwards closed modalities, then
lifted relations are preserved by Kleisli lifting and effect operators:

1. Given f : X → Z, g : Y → W , R ⊆ X × Y and S ⊆ Z × W , if for all
x ∈ X and y ∈ Y we have xRy ⇒ f(x)O(S) g(y)) and if tO(R)r then
μ(t[x �→ f(x)])O(S)μ(r[y �→ g(y)])

2. (∀k, ukO(S)vk) ⇒ σ(u0, u1, . . . )O(S)σ(v0, v1, . . . )

Point 2 of Corollary 23 has been stated in such a way that it contains both the
infinite arity case αN → α and the finite arity case αn → α. So it states that
any lifted relation is preserved under any of the predefined algebraic effects.
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6 Howe’s Method

In this section, we apply Howe’s method, first developed in [5,6], to establish
the compatibility of applicative (bi)similarity, and hence of the behavioural pre-
orders. Given a relation R on terms, one defines its Howe closure R•, which is
compatible and contains the open extension R◦. Our proof makes fundamental
use of the relator properties from Sect. 5, closely following the approach of [9].

Proposition 24. If O is a decomposable set of Scott open modalities, then for
any O-simulation preorder �, the restriction of its Howe closure �• to closed
terms is an O-simulation.

In the proof of the proposition, the relator properties are mainly used to show
that �• satisfies condition (2) in Definition 14.

We can now establish the compatibility of applicative O-similarity.

Theorem 3 (a). If O is a decomposable set of Scott open modalities, then the
open extension of the relation of O-similarity is compatible.

Proof (sketch). We write �s for the relation of O-similarity. Since �s is an O-
simulation, we know by Proposition 24 that �•

s limited to closed terms is one
as well, and hence is contained in the largest O-simulation �s. Since �•

s is
compatible, it is contained in the open extension �◦

s. We can conclude that �◦
s

is equal to the Howe closure �•
s, which is compatible. ��

To prove that O-bisimilarity is compatible, we use the following result from
[10] (where we write S∗ for the transitive-reflexive closure of a relation S).

Lemma 25. If R◦ is symmetric and reflexive, then R•∗ is symmetric.

Theorem 3 (b). If O is a decomposable set of Scott open modalities, then the
open extension of the relation of O-bisimilarity is compatible.

Proof (sketch). We write O-bisimilarity as �b. From Proposition 24 we know that
�•

b on closed terms is an O-simulation, and so we know �•∗
b is an O-simulation

as well (using Lemma 18). Since �b is reflexive and symmetric, we know by the
previous lemma that �•∗

b is symmetric. Hence �•∗
b is an O-bisimulation, implying

(�•∗
b ) ⊆ (�◦

b) by compatibility of �•∗
b . Since (�◦

b) ⊆ (�•
b) ⊆ (�•∗

b ) we have that
(�•∗

b ) = (�◦
b), and we can conclude that �◦

b is compatible. ��
Theorem 1 is an immediate consequence of Theorems 2 and 3.

7 Pure Behavioural Logic

In this section, we briefly explore an alternative formulation of our logic. This has
both conceptual and practical motivations. Our very approach to behavioural
logic, fits into the category of endogenous logics in the sense of Pnueli [24]. For-
mulas (φ and Φ) express properties of individual programs, through satisfaction
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relations (V |= φ and M |= Φ). Programs are thus considered as ‘models’ of
the logic, with the satisfaction relation being defined via program behaviour.

It is conceptually appealing to push the separation between program and logic
to its natural conclusion, and ask for the syntax of the logic to be independent of
the syntax of the programming language. Indeed, it seems natural that it should
be possible to express properties of program behaviour without knowledge of the
syntax of the programming language. Under our formulation of the logic V, this
desideratum is violated by the value formula (V �→ Ψ) at function type, which
mentions the programming language value V .

This issue can be addressed, by replacing the basic value formula (V �→ Ψ)
with the alternative (φ �→ Ψ), already mentioned in Sect. 3. Such a change also
has a practical motivation. The formula (φ �→ Ψ) declares a precondition and
postcondition for function application, supporting a useful specification style.

Definition 26. The pure behavioural logic F is defined by replacing rule (2) in
Fig. 2 with the alternative:

φ ∈ VF(ρ) Ψ ∈ CF(τ)
(φ �→ Ψ) ∈ VF(ρ → τ)

(2∗)

The semantics is modified by defining V |= (φ �→ Ψ) using formula (2) of
Sect. 3.

Proposition 27. If the open extension of ≡V is compatible then the logics V
and F are equi-expressive. Similarly, if the open extension of �V+ is compatible
then the positive fragments V+ and F+ are equi-expressive.

Proof. The definition of (φ �→ Ψ) within V, given in (1) of Sect. 3, can be used
as the basis of an inductive translation from F to V (and from F+ to V+).

For the reverse translation, whose correctness proof is more interesting, we
give a little more detail. Every value/computation formula, φ/Φ, of V is induc-
tively translated to a corresponding formula φ̂/Φ̂ of F . The interesting case is:

̂(V �→ Φ) := (ψV �→ Φ̂),

where ψV is a formula such that: V |=F ψV ; and, for any ψ, if V |=F ψ then
ψV → ψ (meaning that V ′ |=F ψV implies V ′ |=F ψ, for all V ′). Such a formula
ψV is easily constructed as a countable conjunction (cf. Lemma 17). One then
proves, by induction on types, that the F-semantics of φ̂ (resp. Φ̂) coincides with
the V-semantics of φ (resp. Φ). In the case for ̂(V �→ Φ), the induction hypothesis
is used to establish that any V ′ satisfying V ′ |=F ψV enjoys the property that
V ′ ≡V V . It then follows from the compatibility of ≡V that WV ′ ≡V WV , for
any W of appropriate type, whence WV ′ ≡F WV . The rest of the proof can
easily be erected around these observations. ��
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Combining the above proposition with Theorem1 we obtain the following.

Corollary 28. Suppose O is a decomposable family of Scott-open modalities.
Then ≡F coincides with ≡V , and �F+ coincides with �V+ . Hence the open
extensions of ≡F and �F+ are compatible.

We do not know any proof of the compatibility of the ≡F and �F+ relations
that does not go via the logic V. In particular, the compatibility property of the
fix operator seems difficult to establish directly for ≡F and �F+ .

8 Discussion and Related Work

The behavioural logics considered in this paper are designed for the purpose
of clarifying the notion of ‘behavioural property’, and for defining behavioural
equivalence. As infinitary propositional logics, they are not directly suited to
practical applications such as specification and verification. Nevertheless, they
serve as low-level logics into which more practical finitary logics can be trans-
lated. For this, the closure of the logics under infinitary propositional logic is
important. For example, there are standard translations of quantifiers and least
and greatest fixed points into infinitary propositional logic. Also, in the case of
global store, Hoare triples translate into logical combinations of modal formulas.

Our approach, of basing logics for effects on behavioural modalities, may
potentially inform the design of practical logics for specifying and reasoning
about effects. For example, Pitts’ evaluation logic was an early logic for general
computational effects [18]. In the light of the general theory of modalities in the
present paper, it seems natural to replace the built-in � and ♦ modalities of
evaluation logic, with effect-specific modalities, as in Sect. 3.

The logic for algebraic effects, of Plotkin and Pretnar [23], axiomatises effect-
ful behaviour by means of an equational theory over the signature of effect oper-
ations, following the algebraic approach to effects advocated by Plotkin and
Power [22]. Such equational axiomatisations are typically sound with respect to
more than one notion of program equivalence. The logic of [23] can thus be used
to soundly reason about program equivalence, but does not in itself determine
a notion of program equivalence. Instead, our logic is specifically designed as
a vehicle for defining program equivalence. In doing so, our modalities can be
viewed as a chosen family of ‘observations’ that are compatible with the effects
present in the language. It is the choice of modalities that determines the equa-
tional properties that the effect operations satisfy.

The logic of [23] itself makes use of modalities, called operation modalities,
each associated with a single effect operations in Σ. It would be natural to
replace these modalities, which are syntactic in nature, with behavioural modal-
ities of the form we consider. Similarly, our behavioural modalities appear to
offer a promising basis for developing a modality-based refinement-type sys-
tem for algebraic effects. In general, an important advantage we see in the use
of behavioural modalities is that our notion of strong decomposability appears
related to the availability of compositional proof principles for modal properties.
This is a promising avenue for future exploration.
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A rather different approach to logics for effects has been proposed by Gon-
charov, Mossakowski and Schröder [3,16]. They assume a semantic setting in
which the programming language is rich enough to contain a pure fragment that
itself acts as a program logic. This approach is very powerful for certain effects.
For example, Hoare logic can be derived in the case of global store. However, it
appears not as widely adaptable across the range of effects as our approach.

Our logics exhibit certain similarities in form with the endogenous logic devel-
oped in Abramsky’s domain theory in logical form [2]. Our motivation and app-
roach are, however, quite different. Whereas Abramsky shows the usefulness of
an axiomatic approach to a finitary logic as a way of characterising denotational
equality, the present paper shows that there is a similar utility in considering an
infinitary logic from a semantic perspective (based on operational semantics) as
a method of defining behavioural equivalence.

The work in this paper has been carried out for fine-grained call-by-value [13],
which is equivalent to call-by-value. The definitions can, however, be adapted to
work for call-by-name, and even call-by-push-value [11]. Adding type construc-
tors such as sum and product is also straightforward. We have not checked the
generalisation to arbitrary recursive types, but we do not foresee any problem.

An omission from the present paper is that we have not said anything
about contextual equivalence, which is often taken to be the default equiva-
lence for applicative languages. In addition to determining the logically defined
preorders/equivalences, the choice of the set O of modalities gives rise to a
natural definition of contextual preorder, namely the largest compatible pre-
order that, on computations of unit type 1, is contained in the � relation from
Sect. 4. The compatibility of �V+ established in the present paper means that
we have the expected relation inclusions ≡V ⊆ �V+ ⊆ �ctxt. It is an interesting
question whether the logic can be restricted to characterise contextual equiva-
lence/preorder. A more comprehensive investigation of contextual equivalence is
being undertaken, in ongoing work, by Aliame Lopez and the first author.

The crucial notion of modality, in the present paper, was adapted from the
notion of observation in [8]. The change from a set of trees of type N (an observa-
tion) to a set of unit-type trees (a modality) allows value formulas to be lifted to
computation formulas, analogously to predicate lifting in coalgebra [7], which is a
key characteristic of our modalities. Properties of Scott-openness and decompos-
ability play a similar role the present paper to the role they play in [8]. However,
the notion of decomposability for modalities (Definition 11) is more subtle than
the corresponding notion for observations in [8].

There are certain limitations to the theory of modalities in the present paper.
For example, for the combination of probability and nondeterminism, one might
naturally consider modalities ♦Pr and �Pr asserting the possibility and neces-
sity of the termination probability exceeding r. However, the decomposability
property fails. It appears that this situation can be rescued by changing to a
quantitative logic, with a corresponding notion of quantitative modality. This is
a topic of ongoing research.
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