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Abstract Roots and leaves comprise two of the largest microbial habitats on Earth,
particularly in tropical forests where root and leaf surface areas are extremely high
and microbes are abundant and diverse. Fungal and bacterial endophytes are pri-
marily acquired via contagious spread from the surrounding environment. The soil
is an important reservoir for both fungal and bacterial endophytes; we term this a
soil microbial bank and suggest that it functions similarly to a soil seed bank.
Because most (*75%) studies have found a strong positive relationship between
plant diversity and soil microbial diversity, we predict that as plant diversity
increases so will endophyte taxonomic and functional diversity. Once inside plant
host tissues, endophytes can act as mutualists and increase plant performance
directly by producing plant hormones, or indirectly by decreasing fungal or insect
damage by up to 80%. Recent studies, however, have demonstrated that there are
costs associated with hosting “beneficial” endophytes for tropical trees. This is
important because it challenges more traditional dichotomies (e.g., beneficial or
deleterious) about endophytes and suggests that there are highly complex and
context-dependent trade-offs and costs involved in plant-endophyte interactions.
Though they comprise a cryptic component of tropical forests, plant-microbe
interactions may typically regulate tree diversity, composition, and forest function
at neighborhood and even regional scales. For example, pathogens may maintain
tree diversity by reducing the fitness of common species in areas where plant host
density is high or where hosts are close to reproductive conspecific adults.
Moreover, plant-endophyte interactions, whether pathogenic or mutualistic, may
comprise an entirely novel dimension of niche differentiation for coexisting tree
species. Overall, tree endophytes in tropical forests are complex, yet critical drivers
of forest dynamics and function.
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1 Introduction

Together, plant roots and leaves comprise two of the world’s largest microbial
habitats, yet we know little about the microbes that occur in these habitats, par-
ticularly in tropical forests (Curl and Truelove 2012; Griffin and Carson 2015).
Indeed, the global root area is over 100 million km2 and the global leaf area is over
1 billion km2, which alone is more than double the earth’s land surface area
(Jackson et al. 1997; Vorholt 2012). Moreover, microbial endophytes have been
isolated from every plant species studied to date, which includes species from
tundra to deserts, agricultural systems, and tropical rainforests (Stone et al. 2000;
Strobel et al. 2004; Rodriguez et al. 2009; Aly et al. 2010; Strobel 2012). The
ubiquitous distribution of endophytes and their high diversity and abundance in
some biomes suggest that these cryptic organisms can be powerful drivers of
ecological processes. Indeed, studies have demonstrated that fungal and bacterial
endophytes can increase or decrease plant performance, regulate plant diversity, and
cause cascading effects up and down trophic levels (e.g., Clay and Holah 1999;
Griffin et al. 2016, 2017; Laforest-Lapointe et al. 2017; reviewed by Rodriguez
et al. 2009; Saikkonen et al. 2010; Griffin and Carson 2015; Hardoim et al. 2015;
Brader et al. 2017). Studies to date, however, have focused primarily on grasses and
agricultural crops but not trees, which store the bulk of above-ground carbon
worldwide (Rudgers and Clay 2007; Hyde and Soytong 2008; Aly et al. 2010;
Porras-Alfaro and Bayman 2011; but cf Zimmerman and Vitousek 2012; Griffin
et al. 2016, 2017; Laforest-Lapointe et al. 2017).

In this book chapter, we review what is known about the identities, diversity,
ecological origins, and impacts of bacterial and fungal endophytes on tropical tree
hosts and their resident plant communities. In particular sections of this chapter
where studies are numerous and bacteria and fungi are distinguishably different, we
write separate sections on bacteria and fungi; otherwise, in other sections we group
bacteria and fungi together. We define endophytes as bacteria or fungi that have
colonized the interior portions of plant tissues (De Bary 1866; Henis and Bashan
1986; Hardoim et al. 2015; Griffin and Carson 2015). We define the endosphere as
the interior portion of any plant tissue from seed to adult (Compant et al. 2010). We
define operational taxonomic units (OTUs) as sequences delineated by percent
DNA sequence similarity (typically 97%).

Because most endophyte studies have focused on graminoids and other herba-
ceous species, we use these to draw some general inferences about the identities and
impacts of endophytes among tropical trees. It is important to note, however, that
grass endophytes are different from tree endophytes in two major ways. First, grass
endophytes are more likely to be vertically transmitted from mother to offspring via
seed whereas in trees, endophytes typically accumulate horizontally via contagious
spread (Arnold 2007; Rodriguez et al. 2009; Hardoim et al. 2015; Christian et al.
2017a). However, this conclusion remains tenuous because the degree to which tree
bacterial endophytes are vertically or horizontally transmitted is poorly known and
awaits further research (Griffin and Carson 2015; Hardoim et al. 2015; Brader et al.
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2017; Frank et al. 2017; but cf Edwards et al. 2015 for horizontal transmission in
rice). Moreover, grass endophytes are distantly related to tree-associated endo-
phytes (reviewed by Rodriguez et al. 2009), which alone warrants further research.
For one, phylogenetic differences among grass- and tree-associated endophytes are
artifacts of host life form differences or due to geographic isolation of sites and
microbial dispersal limitation. We argue that the latter might actually be more
important and hypothesize that the degree of phylogenetic overlap and endophyte
community similarity will increase substantially in communities where grasses are
relatively depauperate and immersed within habitats dominated by woody species
(e.g., forests). Nevertheless, applying any conclusions from grasses to trees has
limitations.

In this chapter, our main goals are the following:

1. Define microbial endophytes and discuss endophyte taxonomy with a focus on
the tropical biome (Sect. 2.).

2. Consider the ecological origins of microbial endophytes (Sect. 3.) and how they
colonize the endosphere (Sect. 4.), with a particular focus on tropical
endophytes.

3. Synthesize the impacts of endophytes on host performance (Sect. 5.) and dis-
cuss the potential large-scale implications of plant-microbe interactions
(Sect. 6.).

Ultimately, we argue that though they comprise a cryptic component of tropical
forests, endophytes are critical in regulating tree diversity, composition and forest
function.

2 What are Endophytes?

Though German botanist Heinrich Friedrich Link was the first to describe endo-
phytes in 1809, De Bary (1866) first defined “endophyte” as “any organism
occurring within plant tissues.” Since then, however, many definitions for “endo-
phyte” have been used (reviewed by Schulz and Coyne 2006; Griffin and Carson
2015; Hardoim et al. 2015). In fact, multiple definitions of the word “endophyte”
are likely used among chapters in this book. In the last 25 years, the most com-
monly used definition is from Petrini (1991), who defined endophytes as “all
organisms inhabiting plant organs that at some time in their life, can colonize
internal plant tissues without causing apparent harm to the host.” We point out two
serious problems with this definition. First, microbes reside along a “continuum of
infection patterns” (Wilson 1995) whereby a microbe can function as a mutualist,
pathogen, or commensal depending on the virulence of the microbe, host defense
responses, and environmental conditions (e.g., water availability, light availability,
etc.; Johnson et al. 1997; Saikkonen et al. 1998; Schulz and Boyle 2005; Kogel
et al. 2006; Johnson and Graham 2013; Mandyam et al. 2014). Thus, under
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Petrini’s definition, some endophytes would be defined as beneficial or benign
when in fact they can become pathogenic (Schulz and Coyne 2006). Moreover,
endophytic pathogens can reside within plant tissues but show no signs of infection,
yet these microbes can still cause significant decreases in host performance (e.g.,
Bashan and Okon 1981; Newsham et al. 1994; Malcolm et al. 2013). Bashan and
Okon (1981) provided a striking demonstration of this when they found that tomato
plants grown in soil inoculated with the pathogen Pseudomonas syringae
(Gammaproteobacteria) were morphologically symptomless but produced 30% less
foliage than plants in sterile soil. Thus, defining endophytes strictly as beneficial or
benign and thereby excluding pathogens from this definition is no longer tenable.
The second problem with categorizing endophytes by function is that culture-based
methods, which retrieve as little as 0.1–10% of entire microbial communities, and
subsequent inoculation experiments of particular strains must be performed to
assess microbial functionality (Amman et al. 1995). Thus, using a
functionally-based definition of endophyte (e.g., not pathogenic) may be unwise
because currently it is virtually impossible to characterize the functionality of the
large majority of endophytes. For these reasons, we feel that the most parsimonious
definition provided by De Bary (1866) is best; specifically, an endophyte is any
microbe that occurs within plant tissue (Henis and Bashan 1986; Hardoim et al.
2015; Griffin and Carson 2015; Christian et al. 2017a).

Currently, the total number of identified plant fungal endophyte sequences
outnumbers bacterial endophytes. To date, over 8,000 fungal endophytes have been
identified and placed within 4 phyla, Ascomycota (31%), Basidiomycota (20%),
Glomeromycota (40%), and Zygomycota (0.06%; almost 9% are unidentified; see
Table 2 in Hardoim et al. 2015). Fungal endophytes have been placed within 20
classes, 39% are Glomeromycetes (Glomeromycota), 19% are Agaricomycetes
(Basidiomycota), and 15 and 9% are in Dothideomycetes and Sordariomycetes,
respectively (Ascomycota). Comparatively, over 7,000 bacterial endophytes have
been identified in 23 phyla, 21 in the Bacterial Kingdom (99% of all sequences) and
2 in Archaea (1%). Eighty-one percent of all bacterial endophytes lie within 3
phyla, Actinobacteria (20%), Firmicutes (17%), and Proteobacteria (44%; see
Table 1 in Hardoim et al. 2015). How broadly these relative percentages apply is
unclear because endophytes have been primarily studied among temperate crop
species and have only been characterized in a few wild gymnosperms and
angiosperms (see reviews from Arnold 2007; Arnold 2008; Berg 2009; Rodriguez
et al. 2009; Compant et al. 2010; Hardoim et al. 2015; Brader et al. 2017). Clearly,
fungal and bacterial endophytes are diverse, yet even basic surveys of their dis-
tribution and abundance among tropical trees remain to be done.

2.1 Tree Endophytes in Tropical Forests

While it is likely that microbial endophytes are more diverse in tropical forests than
temperate forests, most studies to date have used culture-dependent techniques to
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characterize endophyte communities among plant species. Arnold and Lutzoni
(2007) demonstrated that among 22 plant species (14 tree species, 4 shrubs, 2
mosses, 1 fern and 1 liverwort), culturable fungal endophyte diversity was 24%
higher among tropical than among their temperate hosts. Moreover, latitude
explained almost 75% of the variation in the ratio of endophyte-infected leaves.
Specifically, endophytes were isolated from 97–100% of leaves in a tropical forest
in Panama compared to only 1% for the arctic site (Fig. 1). However, other
culture-based studies of fungal endophyte communities reveal that fungal endo-
phyte communities are not always highly diverse in tropical forests (e.g., Cannon
and Simmons 2002; Suryanarayanan et al. 2002, 2003, 2011; Murali et al. 2006).
For example, Suryanarayanan et al. (2003) found that that fungal leaf endophyte

Fig. 1 a Latitudinal gradient of endophyte infections (from Arnold and Lutzoni 2007). The
percentage of tissue fragments (each 2 mm2) infected by culturable endophytes for 34 host species/
site combinations, representing eight localities ranging from lowland tropical forest (Barro
Colorado Island (BCI), Panama) to arctic tundra (near Iqaluit, Nunavut, Canada). Solid squares
indicate conifers; open circles indicate all other hosts. b Latitudinal gradient of endophyte
diversity. Fisher’s alpha for 23 host–site combinations, representing 1202 strains of endophytic
fungi from six localities ranging from tropical forest at BCI to northern boreal forest (Schefferville,
Quebec, Canada). Solid squares indicate conifers; open circles indicate all other hosts
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diversity among 11 tree species in a tropical forest in India was 22% lower (Fisher’s
alpha diversity = 9.89) compared to Arnold and Lutzoni’s findings among trees in
Panama (Fisher’s alpha = 12.65, Arnold and Lutzoni 2007). Currently, it is difficult
to say anything definitive about patterns of endophyte diversity among tropical
forests because of the paucity of studies and the reliance on culture-based methods.

2.1.1 Bacterial Endophytes

In the first study of foliar bacterial endophyte communities among tropical forest
trees (however see Gayathri et al. 2010 and Castro et al. 2014 for mangrove trees),
Griffin (2016) identified a total of more than 5200 (non-singleton) OTUs among
seedlings of only five tree species, with a mean of almost 300 OTUs per individual
seedling. Overall, 92% of endophytes were found within Actinobacteria (49%),
Proteobacteria (32%) and Firmicutes (11%). Thus, Actinobacteria were dispro-
portionately represented compared to bacteria found in other plant species (20%;
Table 1 in Hardoim et al. 2015). The high diversity of Actinobacteria is noteworthy
because these bacteria produce almost half of the world’s antimicrobial compounds
(Berdy 2005; Waksman et al. 2010; Berdy 2012; see “Pathogen Protection” below).
Clearly, more studies using culture-independent techniques are needed to better
understand the identities and functions of endophyte communities among host
species in tropical forests.

2.1.2 Fungal Endophytes

To our knowledge, Zimmerman and Vitousek (2012) conducted the first
culture-independent sequencing of the foliar endophytic community of
Metrosideros polymorpha (Myrtaceae), an evergreen tropical tree endemic to large
islands in Hawaii. They identified a total of 2500 (non-singleton) OTUs and a mean
of 341 OTUs per tree among seven sites that spanned 80 km. Overall, differences in
annual precipitation (from <500 to >5,000 mm/y), elevation (100–2,400 m), and
substrate (lava-flow) age (100–3,500 yr) explained over half of endophyte diversity
and community composition (P < 0.01; R2 = 0.56). These findings are important
because they show that endophyte communities vary drastically within a single
species, over relatively short distances, and are sensitive to key substrate, resource,
and elevational gradients.

Overall, Zimmerman and Vitousek (2012) identified a disproportionately large
portion of sequences in Ascomycota (85%) compared to those identified to date in
all other plants (*31%; Table 2 in Hardoim et al. 2015). Specifically, 73% of the
Ascomycota sequences were in the class Dothideomycetes, the largest Ascomycota
class and one that contains at least 18 plant pathogens (Ohm et al. 2012). Other
phyla represented included Basidiomycota (0.8%) and Streptophyta (0.6%). A large
percentage (40%) of the sequences, however, could not be identified in the
Genbank sequence database.
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3 What Structures Endophyte Communities?

3.1 Vertical Transmission: Common in Herbs But Not Trees

Despite the critical ecological importance of endophytes, we do not know whether
the majority of tree-associated microbes, particularly bacteria, are transmitted from
mother to offspring (i.e., vertical transmission) or via contagious spread (i.e., hor-
izontal transmission). On one hand, microbes may be transmitted vertically via seed
infections and ultimately colonize reproductive tissues after germination and
transmit microbes from one generation to the next (reviewed by Griffin and Carson
2015; Truyens et al. 2015). For example, clavicipitaceous fungi (see Box 1) are a
fungal class whose fungi associate with grasses as obligate symbionts, where they
establish long-term associations and colonize systemically among all host tissues
(reviewed by Kuldau and Bacon 2008). Moreover, these fungi are primarily ver-
tically transmitted from mother to offspring via seed (Clay 1989; Rodriguez et al.
2009). Saikkonen et al. (2004) proposed that vertical transmission often occurs in
grasses because their smaller stature and less complex architecture (relative to trees)
allow for endophytes to rapidly spread throughout the plant, including reproductive
tissues. Nonclavicipitaceous fungi associated with tree hosts, however, are pri-
marily horizontally transmitted and infect host tissues more locally (Arnold 2005;
Ganley and Newcome 2006; Arnold 2007; Arnold 2008; Rodriguez et al. 2009;
Saikkonen et al. 2010; Sanchez-Marquez et al. 2012; Hodgson et al. 2014; Christian
et al. 2015). Indeed, results to date suggest that tree endophytes do not commonly
colonize seeds vertically from the mother plant. For example, Ganley and
Newcombe (2006) found that only 16 of 800 seeds (2%) of Pinus monticola, a
species native to the western U.S., contained fungal endophytes. In addition,
Zalamea et al. (2015) recently demonstrated that only 0–4% of fresh seeds from 4
tropical tree species native to Panama were infected with bacteria and only 2–10%
were infected with fungi. The identities of fungal and bacterial isolates were not
characterized. Because of such low seed infection ratios, it appears that vertical
transmission of endophytes is far less common than horizontal transmission.
Though numerous studies have demonstrated that tropical tree endophytes provide
many benefits to plant hosts, pathogenic fungi are particularly prominent and
destructive in tropical forests (see “The impacts of microbial endophytes on plant
hosts” and “Pathogens” sections below). Moreover, Mejia et al. (2014) recently
demonstrated clear costs associated with hosting beneficial endophytes for the
tropical tree Theobroma cacao (Malvaceae); these included decreased nitrogen
metabolism and a substantial reduction in photosynthesis (33%). This finding, if
common, is important because endophytes that provide some benefit to their hosts
may typically come at a cost in terms of plant metabolism. Thus, the degree of
benefit of the endophyte may vary strongly with host condition and resource
availability, making it even more difficult to identify endophytes as beneficial or
harmful because of a high degree of context-dependency.
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Box 1. Classification of Endophytic Fungi
Rodriguez et al. (2009) divided fungal endophytes into different classes based
upon the method and location of host colonization. Class I, the clavicipita-
ceous fungi (Hypocreales; Ascomycota), are those associated with grasses
and are primarily vertically transmitted from mother to offspring via seed.
Class II endophytes are classified in the Dikarya subkingdom and are pri-
marily in the two divisions Ascomycota or Basidiomycota. Class II endo-
phytes colonize roots and leaves via seed coats and rhizomes and may be
either vertically or horizontally transmitted. Class III endophytes are also
almost exclusively classified in Ascomycota or Basidiomycota and are those
primarily found among trees. Moreover, Class III endophytes colonize
above-ground plant tissues via horizontal transmission and have high diver-
sity compared to all other classes. Finally, Class IV endophytes are dark,
septate endophytes and restricted to roots, where they reside inter- or
intra-cellularly in the cortical cell layers. Here, we primarily focus on
Class III endophytes because these are the tree-associated endophytes and are
particularly common in tropical forests (e.g., Lodge et al. 1996; Frohlich and
Hyde 1999; Arnold et al. 2000; Gamboa and Bayman 2001; Arnold and
Herre 2003; Arnold et al. 2003; Gamboa et al. 2003; Arnold and Lutzoni
2007; Higgins et al. 2007; Arnold 2008; Zimmerman and Vitousek 2012).

3.2 Horizontal Transmission

3.2.1 Endophyte Colonization of Roots

Soil is a key reservoir for microbial endophytes in tropical forests and represents a
soil microbial bank similar to a soil seed bank. A single gram of soil can host up to
10,000 fungal cells and hundreds of fungal species (Buee et al. 2009; Fierer et al.
2007a; Rousk et al. 2010). Comparatively, a gram of soil hosts up to one billion
bacterial cells and thousands of bacterial species (Whitman et al. 1998; Torsvik
et al. 2002; Gans et al. 2005; Schloss and Handelsman 2006; Fierer et al. 2007a, b;
Rousk et al. 2010). Moreover, viable microbial cells may persist for decades or
even longer in soil where at any time 50–80% of microbial cells are dormant
(reviewed by Lennon and Jones 2011). Thus, soil microbes may commonly use a
bet-hedging strategy where they do not colonize plant hosts until environmental
conditions are favorable.

Bacteria and fungi can colonize seeds in the soil before germination or be
mechanically chauffeured from the soil onto the developing seedling during ger-
mination (reviewed by Griffin and Carson 2015; Llado et al. 2017). For example,
Zalamea et al. (2015) found that prior to germination, fungal infection of the interior
of surface-sterilized seeds increased from *4–15% and bacterial infection
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increased from *2–50% after only a single month in situ in a tropical forest in
Panama. Thus, it appears that the soil microbial bank is likely critical to under-
standing seed and seedling colonization.

The roots of seedlings, saplings, and adults produce root exudates composed of
carbohydrates, amino acids, and organic acids that recruit fungal and microbial
endophytes (Phillips et al. 2011; Wang et al. 2016). In fact, up to 40% of newly
photosynthesized C among non-legume temperate crops and trees can be in the
form of root exudates which function to recruit mycorrhizal fungi and
nitrogen-fixing bacteria (reviewed by Kuzyakov and Domanski 2000; Werth and
Kuzyakov 2010). This is likely a major cost to plants and suggests just how critical
these endophytes are for plant hosts.

3.2.2 The Plant Diversity-Soil Organic Heterogeneity Hypothesis

Though the impacts of plant diversity on ecosystem function and trophic interac-
tions are well documented (recent reviews by Tilman et al. 2014; Lefcheck et al.
2015; Oliver et al. 2015; Schleuning et al. 2015; Tilman 2016; Duffy et al. 2017), to
our knowledge the degree to which plant diversity structures endophyte commu-
nities has never been considered. Hooper et al. (2000) and Waldrop et al. (2006)
proposed that increased plant diversity increases the range of organic substrates
entering the soil, thus creating more niche space that can accommodate a greater
diversity of soil microbes. We term this the plant diversity-soil organic hetero-
geneity hypothesis to distinguish this from other plant diversity hypotheses. Indeed,
72% of observational or experimental studies have demonstrated a positive rela-
tionship between plant diversity and soil microbial diversity, and this result is
consistent with free-living soil microbes, root-associated microbes (e.g., AM and
EM fungi), and phyllosphere bacteria (Table 1). However, most of these studies
(over 70%) have been conducted in grasslands, agricultural fields, or in the
greenhouse. Only 7 studies (14%) were conducted in tropical forests, where all but
one (Schappe et al. 2017) showed a positive relationship between plant diversity
and soil microbial diversity. To our knowledge, the relationship between plant
diversity and bacterial endophytes has never been evaluated. Still, it is likely that
the soils of hyper-diverse tropical forests host more diverse pools of microbes and
these soils are a major reservoir of plant endophytes (but cf Fierer and Jackson
2006).

3.2.3 Endophyte Colonization of Seedlings

Endophytes primarily colonize tropical tree seedlings via contagious spread (e.g.,
horizontal transmission; Arnold and Lutzoni 2007) and gain access to the leaf
interior via a few key mechanisms. Indeed, as many as 36,000 fungal spores per day
colonize endophyte-free tropical tree seedlings transplanted into the field (Arnold
and Herre 2003; Gilbert and Reynolds 2005). The sources of these spores remain
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poorly understood and we have no data regarding the rates of bacterial colonization;
however, this may well exceed rates of fungal colonization. Water and animal
vectors (particularly insects) spread fungi and bacteria among tropical trees (re-
viewed by Griffin and Carson 2015). For example, wind and rain caused by hur-
ricanes are the primary mechanisms for dispersal of Xanthomonas axonopodis
(Gammaproteobacteria), the bacterial pathogen that colonizes leaves and causes
citrus canker disease (Gottwald et al. 2002; Graham et al. 2004; Irey et al. 2006). In
fact, X. axonopodis dispersed at least 50 km, and likely much further, to cause new
outbreaks citrus canker following a hurricane in Florida (Irey et al. 2006; Gottwald
and Irey 2007). Finally, insect vectors in tropical forests, which are orders of
magnitudes more abundant and diverse compared to temperate systems, may dis-
perse endophytes at small scales among plant hosts or potentially up to thousands of
miles via migration (May 1988, 1990; Brown and Hovmoller 2002; Hamilton et al.
2010; Chapman et al. 2015; Stork et al. 2015). Indeed, 24 different xylem-feeding
insect species (Hemiptera) vector (in their foregut) the bacterium Xylella fastidiosa
(Gammaproteobacteria), which causes disease among temperate and tropical tree
species (Purcell et al. 1979; Krugner et al. 2000; Redak et al. 2004; Azevedo et al.
2016; Lopes et al. 2016). One of the diseases caused by Xylella fastidiosa is citrus
variegated chlorosis (CVC), which causes $120 million in losses per year in Latin
American (Bove and Ayres 2007; Lopes et al. 2016). Moreover, larger insects,
particularly in the orders Orthoptera and Lepidoptera, undertake seasonal move-
ments of more than a thousand miles (reviewed by Chapman et al. 2015). It is likely
that these insects spread bacteria and fungi among plant species during these
migrations, but data are non-existent.

4 Reaching the Endosphere

4.1 Bacteria

Bacterial endophytes may colonize root and leaf tissue, where they can then act as
mutualists or pathogens. As stated above, trees may recruit beneficial bacterial
endophytes by producing root exudates, though both beneficial and pathogenic
bacteria colonize root interiors via cracks in lateral root junctions, wounds, and root
hairs (Sorensen and Sessitsch 2007; Hardoim et al. 2008; Mercado-Blanco and
Prieto 2012). For example, rhizobial bacteria, which are more abundant in tropical
soils compared to temperate soils, use a complex system of signal exchanges with
plant hosts to enter roots via hairs or lateral root cracks (Hedin et al. 2009; Gourion
et al. 2015; Pajares and Bohannan 2016). Similarly, bacteria on the leaf surface
enter leaves at leaf openings such as trichome bases, stomata, or wounds created by
insects (Beattie and Lindow 1995; Agrios 2005; reviewed by Griffin and Carson
2015). Pathogenic bacteria in particular gain access to leaf interiors with sophisti-
cated and highly evolved secretion systems to bypass or suppress plant immunity
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(see “Pathogens” section). For example, P. syringae (Gammaproteobacteria), the
most well-studied plant pathogen in the world, produces coronatine and syringolin
to suppress host immunity to pathogens and induces stomatal opening, enabling
bacteria to access the apoplast (Zhao et al. 2003; Melotto et al. 2006, 2008;
Schellenberg et al. 2010). Because bacterial pathogens typically have secretion
systems that deliver dozens of proteins into plant host cells, we predict that this is a
common conduit by which bacteria invade host cells. Once inside a host, conditions
are typically much better for bacterial growth, reproduction, and proliferation
(Beattie and Lindow 1995, 1999; Lindow and Brandl 2003).

4.2 Fungi

While grass-associated clavicipitaceous fungal endophytes (Class I, see Box 1)
typically colonize the entire host plant systemically via vertical transmission (e.g.,
seed), tree-associated fungi (Classes II and III, see Box 1) typically colonize roots
and leaves via horizontal transmission. Fungi can directly enter roots or leaves via
plant epidermal cells by extending hyphae on top of, between, or through plant cells
(Jones and Dangl 2006; Rodriguez et al. 2009). Like bacteria, openings in leaves
(e.g., stomates) or roots (e.g., root hairs) may facilitate fungal invasion (e.g., Arnold
and Herre 2003; Agrios 2005). In addition, fungi evade or manipulate plant host
chemical pathways to gain entry (Van Bael et al. 2017). Lastly, damage caused by
leaf-chewing insects may provide a conduit for fungi to enter leaves. For example,
Arnold (2008) demonstrated that foliar damage caused by hesperlid larvae almost
doubled endophyte infection among leaves of the tree Gustavia superba in a
Panamanian forest. Ultimately, once inside the leaf, fungal hyphae typically grow
into the intercellular spaces of the mesophyll or the apoplast where they function as
mutualists or pathogens (Giraldo and Valent 2013).

5 The Impacts of Microbial Endophytes on Plant Hosts

5.1 Beneficial Endophytes

5.1.1 Plant Growth Promotion

A diverse array of endophytes, typically root-associated bacteria, commonly fix
nitrogen and synthesize plant hormones that stimulate plant growth, reproduction,
and tissue differentiation (recently reviewed by Denance et al. 2013; Gaiero et al.
2013; Brader et al. 2014; Santoyo et al. 2016). Rhizobia (Alphaproteobacteria) and
actinorhizal bacteria (Actinomycetales) occupy root nodules of leguminous trees
(Fabaceae), which are relatively abundant in tropical forests, and fix nitrogen for
hosts in exchange for carbon (Gentry 1988; Hedin et al. 2009; Vitousek et al. 2013).
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Several other bacterial root endophytes—primarily Proteobacteria and Firmicutes—
also fix nitrogen, though the degree to which plants tap this source of N is unknown
(e.g., Baldani et al. 1997; Reinhold-Hurek and Hurek 1998; Dalla Santa et al.
2004). In recent studies of two temperate conifer species (using high throughput
sequencing), Carrell and Frank (2014, 2015) discovered that up to half of conifer
needle endophytes were nitrogen-fixing bacteria. In another study, Moyes et al.
(2016) detected significant nitrogenase (the enzyme which fixes nitrogen) activity
among bacterial endophytes in Pinus flexilis needles, and moreover this nitrogen
readily diffused into needles. Though foliar endophytes likely fix less nitrogen
compared to rhizobial bacteria in root nodules, it may ultimately be more
cost-effective for plants to support foliar nitrogen fixers compared to root nodule
bacteria which are costly (reviewed by Vitousek et al. 2013). In addition to fixing
nitrogen, it is common for plant-associated bacteria and fungi to function as
mutualists and produce plant hormones such as gibberellins, cytokinins, and auxins
that stimulate root and leaf growth and aid in wound repair (e.g., Lindow et al.
1998; Robinson et al. 1998; Gutierrez-Manero et al. 2001; Maor et al. 2004; Bhore
et al. 2010; reviewed by Strack et al. 2003; Spaepen et al. 2007). In fact, over 80%
of root bacterial endophytes produce indole-3-acetic acid (IAA), an auxin that
stimulates plant tissue differentiation thereby indirectly increasing plant growth
(Ramos Solano et al. 2008; Davies 2010). IAA producing-endophytes are phylo-
genetically widespread among at least 3 phyla of bacteria as well as 3 phyla of
fungi, all of which have been isolated from tropical trees (Schmelz et al. 2003;
Yang et al. 2006; Spaepen et al. 2007; Bajo et al. 2008; Rodriguez et al. 2009;
Davies 2010; Hoffman et al. 2013; Griffin and Carson 2015). Thus, it is likely that
tree endophytes in tropical forests commonly fix nitrogen and produce hormones
for their plant hosts. Alternatively, however, if these hormones stimulate plant
tissue differentiation in times of stress or when resources are low, these hormones
may be, to some degree, deleterious.

5.1.2 Pathogen Protection

i. Bacteria

Bacterial endophytes protect plant hosts from bacterial and fungal pathogens
primarily by competitive exclusion and antimicrobial production. Endophytes
typically occupy an ecological niche similar to pathogens, and early studies
hypothesized that endophytes decreased pathogen abundance via competitive
exclusion (reviewed by Hallmann et al. 1997). In this case, competition may occur
simply via priority effects whereby benign or beneficial pathogens arrive at and
occupy niche space, making it unavailable for pathogens (e.g., Wilson and Lindow
1994; Ji and Wilson 2002; Innerebner et al. 2011). In addition, more recent studies
have demonstrated that endophytes synthesize secondary metabolites such as
alkaloids, flavonoids, phenols, terpenoids, and xanthones, which inhibit pathogen
growth and persistence (reviewed by Strobel et al. 2004; Brader et al. 2014; Nisa
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et al. 2015). Actinomycetes, which comprise *20% of all endophytes identified to
date, alone synthesize almost half of the world’s known antimicrobial compounds
(Berdy 2005; Waksman et al. 2010; Berdy 2012; Hardoim et al. 2015). In a recent
study across five species of tropical tree seedlings, Griffin (2016) demonstrated that
nearly half of all foliar endophytes were actinomycetes. Though speculative, we
suggest that a critical function of endophytic actinomycetes is a key mutualism
whereby they provide antimicrobial agents in exchange for shelter, carbon, or other
nutrients from their plant hosts. This is functionally analogous to how
Myrmecophytic plants provide domatia and extrafloral nectaries for their ant
mutualists in exchange for protection from herbivores (Janzen 1966; Gaume et al.
1998; Heil and McKey 2003). We hypothesize that this is common function of
Actinomycetes and their host trees for numerous tree species in tropical forests.

ii. Fungi

Fungal endophytes also competitively exclude pathogens and produce an array of
secondary metabolites and antimicrobial compounds that likely offer some degree of
protection from fungal and bacterial pathogens. In greenhouse and field experiments
in Panama, Colletotrichum tropicale (Sordariomycetes), the dominant foliar endo-
phyte among at least 10 tropical tree species, reduced pathogen damage among T.
cacao seedlings by 10–80% compared to endophyte-free controls (Arnold et al.
2003; Hyde et al. 2009; Rojas et al. 2010; Cannon et al. 2012; Christian et al. 2017b).
The mechanisms by which C. tropicale decreased pathogen damage were not eval-
uated. In another study, Mejia et al. (2008) demonstrated that 48% of culturable
endophytes isolated from T. cacao leaves competitively excluded at least one of three
dominant fungal pathogens in vitro. In addition to competitive exclusion, fungal
endophytes decrease pathogen damage by producing antimicrobial compounds.
Schulz et al. (2002) demonstrated that *80% of 6,500 fungal endophytes from
temperate and tropical herbaceous plants and trees synthesized antimicrobial or
antifungal compounds in vitro. In all, nearly 5,000 secondary metabolites have been
isolated from fungal endophytes, half of which are polyketides, but also include
terpenoids, steroids, and phenols (reviewed by Gunatilaka 2006; Berdy 2012;
Ludwig-Muller 2015; Nisa et al. 2015). Polyketides, in particular, include antimi-
crobial compounds and mycotoxins that higher plants produce to defend themselves
against pathogens (Dixon 2001; Flores-Sanchez and Verpoorte 2009). Though it is
clear that fungal endophytes commonly produce antimicrobial compounds, empirical
studies demonstrating that these compounds are induced via endophyte-pathogen
interactions are lacking. One study however used metabolomic approaches to
demonstrate that a temperate pine tree endophyte, Paraconiothyrium variabile
(Coelomycetes), produced metabolites to inhibit Fusarium oxysporum
(Sordariomycetes) growth only after exposure to the pathogen (Combes et al. 2012).

iii. Endophytes induce host resistance to pathogens

There is increasing evidence that both bacterial and fungal endophytes can
trigger an immune response in host plants (induced systemic resistance) to increase
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host tolerance to pathogens (Bargabus et al. 2002; Bargabus et al. 2004; Tran et al.
2007; Verhagen et al. 2010; Brotman et al. 2012; Desoignies et al. 2013; Mejia
et al. 2014). Endophytes may ramp up host resistance to combat future pathogen or
insect attack (reviewed by Pineda et al. 2010; Zamioudis and Pieterse 2012; Bakker
et al. 2013; Pieterse et al. 2014). This mutualism is particularly common among
bacteria in the genera Pseudomonas (Gammaproteobacteria) and Bacillus (Bacilli),
which are some of most common taxa isolated from tropical tree species (Lambais
et al. 2006, 2014, 2017; Kembel et al. 2014). For example, Van Peer et al. (1991)
were the first to demonstrate that root colonization by the bacterium Pseudomonas
fluorescens enhanced carnation (Dianthus caryophyllus L.) resistance to the fungal
pathogen F. oxysporum. Since then, over 100 studies have been published that have
demonstrated the ability of bacterial strains to systemically induce host resistance to
pathogens in other portions of the plant (reviewed by Pieterse et al. 2014; Griffin
and Carson 2015). Though not many cases of systemically induced host resistance
exist for fungi, Mejia et al. (2014) recently demonstrated that colonization of the
fungal endophyte Colletotrichum tropicale inside T. cacao leaves caused the
up-regulation of pathogen-resistance genes. Because Colletotrichum is a dominant
fungal endophyte, this phenomenon may be more common among fungal endo-
phytes than previously thought.

5.1.3 Herbivore Protection

Endophytes commonly reduce herbivore damage by activating plant defense
pathways or by altering enemy behavior. For example, tomato root inoculations
with the bacterium Bacillus subtilis reduced egg masses of a root-knot nematode.
These nematodes damage tomato roots and exacerbate Fusarium pathogen infection
by 40–62% (Adam et al. 2014). For fungi, vertically transmitted grass endophytes
decrease host susceptibility to insects and even mammalian herbivores by as much
as 55% (Clay and Schardl 2002; Schardl et al. 2004; Saikkonen et al. 2010; Tanaka
et al. 2012; Faeth and Saari 2012). In a meta-analysis of 99 papers, Saikkonen et al.
(2010) concluded that grass endophytes typically function to deter herbivores;
however, there was no overall relationship between tree endophytes and herbivore
damage. More recent studies, however, have revealed that fungal endophytes can
either directly decrease herbivore survival rates or indirectly decrease their fecun-
dity, alter foraging behaviors or the gut microbiome, or even increase their sus-
ceptibility to predation (Marcelino et al. 2008; Van Bael et al. 2009; Jaber and Vidal
2010; Bittleston et al. 2011; Estrada et al. 2013; Hammer and Van Bael 2015). For
example, studies of leaf-cutter ants (Atta and Acromyrmex) demonstrated that
fungal endophytes alter leaf selection and ant behavior (Van Bael et al. 2012;
Coblentz and Van Bael 2013; Estrada et al. 2013; Estrada et al. 2015). In a
Panamanian forest, Van Bael et al. (2012) demonstrated that ants took 30–40%
longer to cut, carry, and clean leaves with higher fungal endophyte abundance and
diversity compared to leaves with lower abundance and diversity. Moreover, at the
same site, ants selected leaves that on average hosted 20–33% fewer fungal
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endophytes compared to surrounding leaves (Coblentz and Van Bael 2013). These
findings are important because leaf-cutter ants defoliate leaves of *60% of woody
species in Neotropical forests and cut 12–17% of the total leaf area produced by
trees (Cherrett 1968; Rockwood 1976; Blanton and Ewel 1985; Holldobler and
Wilson 2010). Overall, these results suggest that fungal endophytes likely regulate
herbivore foraging and damage.

5.2 Pathogens

Plant pathogens gain access to host cells using highly evolved mechanisms, where
they then proliferate and cause disease. Like mutualists, pathogenic bacteria can
enter plant tissue through openings (e.g., stomates, trichome bases, wounds) and
proliferate in intercellular spaces (reviewed by Griffin and Carson 2015). Fungal
pathogens and the fungal-like protist oomycetes can enter directly via epidermal
cells or through feeding structures called haustoria, which function to invaginate
plant cell membranes (reviewed by Jones and Dangl 2006; Dean et al. 2012; Jiang
and Tyler 2012; Pawlowski et al. 2012; Thines 2014). Both bacteria and fungi use
highly adapted secretion systems to deliver effector proteins into plant cells to break
down host cell walls, facilitate dispersal of microbes on and inside plant tissues, and
bypass plant immune responses (Jones and Dangl 2006; Ellis et al. 2009;
Stergiopoulos and de Wit 2009; Wooldridge 2009). Fungi and oomycetes can do
this either in the extracellular matrix formed along epidermal cells or once inside
host cells, whereas bacteria must deliver effectors inside cells (Jones and Dangl
2006). Once effectors are delivered, pathogens can feed on dead host cells
(necrotrophs) or invade quickly and extract nutrients from hosts without killing
them (biotrophs), however many of the most prolific pathogens can display both
lifestyles (Glazebrook 2005; Jackson 2009; Dean et al. 2012; Mansfield et al. 2012).
Successful pathogens are able to either suppress or evade detection and cause
damage to plant tissue.

5.2.1 Bacterial Pathogens

Though the impacts of bacterial pathogens in tropical forests are not well docu-
mented, evidence from agricultural systems suggests that these organisms likely
cause severe damage even in more diverse systems. Some of the most potent
bacterial pathogens in the world occur in the tropics and diminish agricultural
yields. For example, P. syringae has commonly been isolated from plants in
Fabaceae, one of the most commonly represented families in tropical forests (Horst
1990; Sarkar and Guttman 2004; Silby et al. 2011; Morris et al. 2013; reviewed by
Griffin and Carson 2015). Moreover, Xanthomonas (Gammaproteobacteria) is a
largely pathogenic bacterial genus whose members reduce tropical crop yields,
including banana, citrus, rice, and sugarcane, by over 50% (Biruma et al. 2007;
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Tripathi et al. 2009; Ryan et al. 2011). Three Xanthomonas species (X. axonopodis,
X. campestris, X. oryzae) are among the top ten most “scientifically and econom-
ically important” plant pathogenic bacteria in the world. Four of the other
ten, two Dickeya (Gammaproteobacteria) spp. and two Pectobacterium
(Gammaproteobacteria) spp., together cause disease in half of all angiosperm plant
orders (Ma et al. 2007). If endophytes are primarily pathogenic and tree host species
are differentially vulnerable, then endophytes may be major agents of forest turn-
over particularly in small size classes and in areas around parent trees (see “The
impacts of endophytes on tropical tree communities” section below).

5.2.2 Fungal Pathogens

Fungal pathogens typically lie within the phyla Ascomycota and Basidiomycota
and cause more damage to hosts in tropical than in temperate systems. For example,
seven of the top ten most “scientifically and economically important” fungal
pathogens lie within Ascomycota, while the remaining three lie within
Basidiomycota (Dean et al. 2012). The most destructive agricultural plant pathogen
globally is the rice blast caused by Magnaporthe oryzae (Sordariomycetes), which
destroys enough rice to feed more than 60 million people annually (Scardaci et al.
1997). Though particular species actually function as mutualists (see above), many
Colletotrichum spp. (Sordariomycetes) are particularly damaging to tropical crop
species, where they can cause up to 100% mortality among banana, cassava, sor-
ghum, and rubber trees (Prusky 1996; Cao et al. 2017). In general, pathogens in
tropical systems decrease crop yields 50–100% more than temperate pathogens, and
moreover outnumber temperate pathogens 10:1 (Wellman 1968; Wellman 1972;
Hill and Waller 1982; Shivas and Hyde 1997; Thurston 1998; Gilbert 2005). In the
first studies on plant-pathogen interactions in tropical forests, Augspurger and
colleagues found that damping-off disease caused by Pythium (Oomycetes)
spp. was the leading cause of seedling mortality for six of nine tree species in
Panama (Augspurger 1983; Augspurger and Kelly 1984; Augspurger 1984;
Kitajima and Augspurger 1989). In Neotropical forests, foliar fungal pathogens
cause damage to over three-fourths of shrub and tree species, and the degree of
damage ranges from 1–34% of entire leaf area (N = 78 species; Gilbert 1995;
Barone 1998; Benitez-Malvido et al. 1999; Garcia-Guzman and Dirzo 2001).
Indeed, even small levels of damage to tropical seedlings are not trivial, because as
little as 8% of leaf damage can cause up to 100% seedling mortality (Clark and
Clark 1985; reviewed by Coley and Barone 1996). Thus, fungal pathogens in
tropical systems cause significant damage to plant hosts and have broad implica-
tions for plant communities at larger scales.
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5.3 Endohyphal Bacteria—Good or Bad for Plant Hosts?

Recent studies have demonstrated that fungal endophytes can harbor bacteria within
their hyphae, which together can increase or decrease host plant performance
(Partida-Martinez and Hertweck 2005; Partida-Martinez et al. 2007a; Salvioli et al.
2010, 2016; Hoffman et al. 2013; reviewed by Bonfante and Anca 2009). Fungi that
host endobacteria are phylogenetically diverse, including members of
Mucoromycotina, Mortierellomycotina, Glomeromycota, Basidiomycota, and
Ascomycota. Surprisingly, to date, however, endohyphal bacteria are exclusively
found in Proteobacteria (Barbieri et al. 2000; Bianciotto et al. 2003; Bertaux et al.
2005; Partida-Martinez et al. 2007b; Sharma et al. 2008; Sato et al. 2010; Desiro
et al. 2015). For example, the plant mutualist mycorrhiza Gigaspora margarita
(Glomeromycota) harbors the bacterium Candidatus Glomeribacter gigasporarum
(Betaproteobacteria) in densities of 250,000 cells per fungal spore, and when this
bacterium is present it enhances fungal establishment and growth (Bianciotto et al.
1996, 2003, 2004). Conversely, the fungal root endophyte Rhizopus microsporus
(Mucorales) harbors the bacterium Burkholderia rhizoxinica (Betaproteobacteria),
which causes rice blast disease only when both the bacterium and fungus are
present (Partida-Martinez and Hertweck 2005; Partida-Martinez et al. 2007b). In
another study, Hoffman et al. (2013) demonstrated that the foliar fungal endophyte
Pestalotiopsis aff. neglecta (Sordariomycetes) isolated from a temperate coniferous
tree (Platycladus orientalis) produced * 5 times more plant hormones when its
endohyphal bacterium Luteubacter (Gammaproteobacteria) spp. was also present.
Moreover, P. orientalis shoot and root length increased by *30–33% when the
bacterium was present inside the fungal endophyte. Though studies have been
limited in scope, multi-trophic interactions among fungi, bacteria, and plant hosts
are likely common among higher plants. For example, Shaffer et al. (2016) recently
found that 75% of seed and foliar fungal endophytes hosted at least one endohyphal
bacterium among 26 tropical angiosperm species. Clearly, more studies are needed
to understand the breadth and implications of these very complex
microbe-microbe-plant interactions. Specifically, we propose that future studies
address the prevalence and impacts of predatory bacteria (those that kill and digest
other bacteria) and bacteriophages (viruses that infect bacteria) among
tree-associated endophyte communities (Box 2).

Box 2. Predatory bacteria and bacteriophages: 2 new areas on the
horizon
Predatory bacteria and bacteriophages are abundant organisms that occur in
nature and may be critical components of plant ecology. It has been known
for decades that “predatory” bacteria (e.g., Bdellovirbio, Micavibrio,
Myxobacteria) kill and digest other gram-negative bacteria (reviewed by
Negus et al. 2017). Specifically, Bdellovibrio (Deltaproteobacteria) bacteria
colonize the space between the cytoplasmic membrane and outer membrane

Tree Endophytes: Cryptic Drivers of Tropical Forest Diversity 85



(periplasm), where they feed on the host cell’s proteins and nucleic acids and
ultimately kill host cells from the inside out (Sockett 2009). Micavibrio
(Alphaproteobacteria) bacteria attach to the exterior of a prey bacterium and
remain attached as they divide, eventually draining their host to death (a.k.a.
the “vampire” bacteria). Myxobacteria (Deltaproteobacteria) hunt other bac-
teria as social swarms, releasing enzymes into the environment to digest their
prey (Velicer and Vos 2009). Though these predator-prey interactions have
almost exclusively been demonstrated in water and in soil, scientists have
recently suggested that predatory bacteria may be common inside mammalian
hosts (Dashiff et al. 2011; Negus et al. 2017). We hypothesize that this may
also commonly occur among plant hosts in tropical forests because water and
soil are both major sources of plant endophytes (see “What structures
endophyte communities?” above). Moreover, Alphaproteobacteria and
Deltaproteobacteria are two of the most common classes on and inside leaves
of tree species in Panama (Kembel et al. 2014; Griffin 2016). Perhaps even
more ecologically important than predatory bacteria, bacteriophages (Greek
for “eaters of bacteria”), or viruses that infect bacteria, are the most abundant
organisms on Earth and are estimated to infect up to 70% of bacterial cells
globally (Tortora et al. 2016; Willey et al. 2016). Though bacteriophages are
of particular interest in agriculture where they can be genetically engineered
to control plant bacterial pathogens (Frampton et al. 2012; Pires et al. 2016),
their prevalence in more natural systems and their basic ecology remain
underexplored. Knowing that the plant microbiome is a cryptic driver of plant
community dynamics at large scales (see “The impacts of endophytes on
tropical tree communities” section), microbe-microbe interactions (e.g.,
endohyphal bacteria, predator-prey bacteria, bacteriophage-bacteria) may
prove to be the true drivers of plant community structure and function.

6 The Impacts of Endophytes on Tropical Tree
Communities

6.1 Negative Density Dependence of Pathogens Maintains
Tree Community Diversity

Specialist pathogens may act as a stabilizing force to promote and maintain plant
diversity by reducing host fitness in areas close to reproductive adults or when host
density is high (Gillett 1962; Janzen 1970; Connell 1971). Simply put, pathogens
that are host-specific can cause a reduction in the competitive abilities of particular
plant species and allow other plant species to co-occur (Janzen 1970; Connell 1971;
reviewed by Carson et al. 2008). Studies demonstrating host-specificity of

86 E. A. Griffin and W. P. Carson



pathogens and frequency-dependent tree mortality have been observed numerous
times in the tropics, primarily for insect pests and fungal pathogens (e.g., Mangan
et al. 2010; Bagchi et al. 2014; reviewed Carson et al. 2008; Mordecai 2011;
Comita et al. 2014; Sarmiento et al. 2017). Augspurger and colleagues conducted
the first empirical tests of the Janzen-Connell hypothesis for pathogens and
demonstrated that oomycete pathogens were host-specific and their impacts were
greater in areas of higher seedling density closer to parent trees (Augspurger 1983,
1984; Kitajima and Augspurger 1989). Since these studies, numerous others have
shown similar patterns among oomycetes and fungal pathogens in tropical forests
(Gilbert et al. 1994; Gilbert and De Steven 1996; Gilbert et al. 2001; Gilbert and
Webb 2007; Comita et al. 2010; Mangan et al. 2010; Bagchi et al. 2014). La Manna
et al. (2017) recently demonstrated that negative density dependence is stronger for
rare tree species in tropical forests compared to rare temperate species, which may
function to maintain hyper-diversity of tropical tree communities. Not a single
study, however, has determined whether this pattern exists for pathogenic bacteria.
In the first study of its kind, Griffin et al. (2016) found that seedlings of three of five
tree species grew up to 49% more after experimentally reducing their foliar bacteria
in situ for three years in a tropical forest in Panama. These results demonstrate that
the net effect of these bacteria were pathogenic (though bacterial reductions
increased growth for one species). If this is true, the implications for the mainte-
nance of species diversity in tropical forests are clear: enemies may build up around
conspecifics of particular species and reduce their performance and dominance.

6.2 Endophytes Can Partition the Plant Fundamental Niche
to Enhance Tree Diversity

Microbial endophytes below- and above-ground may provide an important yet
cryptic dimension of niche differentiation for plant communities at large scales.
Though soil resource and light gradients have been associated with species-specific
trade-offs required for niche partitioning (Clark et al. 1998; Condit et al. 2000;
Harms et al. 2001; reviewed by Wright 2002; Kitajima and Poorter 2008), it
remains unclear how these abiotic factors facilitate the coexistence of hundreds of
tree species in tropical forests (e.g., Hubbell et al. 1999; Hubbell 2001; Chave 2004;
Silvertown 2004). Plant-associated microbes, however, may function as a stabi-
lizing force to increase differences in species’ performance outcomes (i.e., niches)
along gradients or among interactions with other trophic levels (e.g., Chesson 2000;
Bever et al. 2010; Mordecai 2011). In this framework, such stabilizing processes
cause intraspecific effects to be more negative than interspecific differences
(Chesson 2000). Thus, when any single species increases in abundance, its per
capita growth rate slows relative to other species, which aids in species coexistence
(Chesson 2000). Recently, Griffin et al. (2016, 2017) found that foliar bacteria
caused co-occurring plant species to perform quite differently within contrasting
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soil nutrient resource levels suggesting that the interplay between plant microbes
and soil fertility can create a cryptic and fairly narrow niche early in ontogeny.
Ultimately, plant-microbe interactions may more finely partition niche space among
coexisting plant species and thus function to maintain plant diversity.

7 Conclusions and Future Directions

Bacterial and fungal endophytes are diverse and important drivers of plant per-
formance and may be critical components of tropical tree community composition
and structure. On one hand, endophytes may directly increase host performance by
producing plant hormones or confer protection to hosts from pathogens and other
enemies via competitive exclusion, metabolite production, or by inducing plant
systemic resistance to enemies. On the other hand, endophytes may function as
pathogens and decrease plant host performance, which may have important
implications for plant communities. Recent studies have demonstrated that
bacterial-fungal interactions, notably interactions between fungal endophytes and
their endohyphal bacteria, can either strengthen mutualist interactions between
plants and microbes or together cause disease. Thus, endophytes comprise a cryptic
and complex dimension of trophic interactions within plant communities and
empirical studies are needed to unravel this complexity.

Tropical endophytes should be a major research focus moving forward. Indeed,
recent developments in high-throughput sequencing technologies, specifically
next-generation sequencing and “-omics” approaches, have allowed us to address
more questions about the complex interactions between endophytes and plant hosts.
Thus, it is clear that our understanding of endophyte-host interactions, particularly
among tropical trees, is still in its infancy. Moreover, recent studies have demon-
strated that microbe-microbe interactions such as mycorrhizal fungi-endohyphal
bacteria, predator-prey dynamics among bacteria, and bacteriophage-bacteria
interactions are common and may ultimately be critical for endophyte community
structure and function. In particular, we propose two interesting and novel areas
moving forward: 1. Testing the prevalence and impacts of 1. Bacteriophages that
protect plant hosts via antibiotics; and 2. Predatory bacteria that colonize plants or
possibly even plant-associated bacteriophages that consume bacteria (Box 2). If
these interactions are common and widespread, the interactions that occur among
microbes may be key to understanding ecological processes and plant community
dynamics. Recent reviews have posited that plant-associated microbes should be
model systems to test important community-level ecological theories such as suc-
cession, competition, and community assembly (Meyer and Leveau 2012; Christian
et al. 2015; Griffin and Carson 2015). Notable goals of future research include 1.
Quantify the costs and trade-offs associated with trees hosting “beneficial” endo-
phytes among tropical trees; 2. Evaluate the degree to which endophytes produce
antimicrobial compounds and empirically determining the degree to which fungal
endophytes protect tropical tree hosts via systemic induced resistance in situ; 3.
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Begin to empirically evaluate the ecological impacts of microbe-microbe interac-
tions on plant host performance and ultimately plant community dynamics.
Ultimately, we are just beginning to scratch the surface of our understanding of the
plant microbiome, and scientists should be excited to disentangle the complexities
of one of the last frontiers of biodiversity.
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