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Abstract While the study of bacteria and filamentous fungi that inhabit plants has
been extensive, endophytic yeast biology remains less understood. Recent research
is encouraging as to the potential of endophytic yeasts for industrial and agricultural
applications, providing strong incentives for better understanding these yeasts.
Endophytic yeasts could have significant advantages over bacterial and filamentous
endophytes and they can easily be cultured, stored long term and applied to crops.
While more research and especially field trials are required to assess their potential,
it seems the use of endophytic yeasts could be a viable way of reducing fertilizer
and water inputs in agriculture, and potentially increasing yields. Their application
seems especially promising in the field of remediation of heavy metal pollutants,
and as biocontrol agents to protect plants from pathogens. However, many aspects
of endophytic yeast biology still need to be elucidated, especially when it comes to
how the yeasts are able to colonize their niche. This chapter reviews recent research
on endophytic yeasts and points to the need for further research into the ecology of
these valuable yeasts.

1 Introduction

While the study of endophytic bacteria and filamentous fungi has been extensive,
endophytic yeast biology and ecology remain poorly understood. Whether this is
due to bias in isolation and cultivation techniques towards bacteria and filamentous
fungi, or simply a lesser prevalence of yeasts in the phytobiome, is unclear. This
apparent rarity could also be exacerbated by the complex and cryptic nature of their
life styles, especially in the case of basidiomycetous yeasts. However, yeasts pre-
sent many advantages for agricultural use over filamentous fungi given their sim-
pler cultivation and application techniques. Yeasts applied to plants seem to be
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distributed systemically, unlike some filamentous fungi, and can be easily culti-
vated in a similar way to bacteria. They also present advantages over bacteria
including their ability to be freeze-dried more efficiently than bacteria and therefore
be more easily distributed for agricultural use. Given their ubiquitous presence in
the phytobiome and their potentially great agricultural and industrial applications, it
is crucial to further study endophytic yeasts. This chapter reviews recent research
on endophytic yeasts and points to the need for further research into the ecology of
these valuable microorganisms.

2 Defining Endophytic Yeasts

Here we define endophytic yeasts as fungi that have a unicellular part of their
lifecycle, which typically reside within plant tissues and do not cause damage to
their hosts. The divide between epiphytic and endophytic yeasts has remained
blurred, especially in the case of yeasts that populate fruit surfaces, and could
potentially penetrate the outer layer of fruits. However, several groups have
reported their confidence in surface sterilization techniques, reporting a lack of
epiphytes in the washing media after surface sterilization (Prior et al. 2017;
Tantirungkij et al. 2015).

Different hypotheses describing the typical composition of the endophytic yeast
community published recently point to diverging views over this issue. This is
likely in part due to the large variation of endophytic communities based on the host
plant as well as various biotic and abiotic factors (Prior et al. 2017). Opinions differ
especially over whether the phytobiome is dominated by the commonly known and
studied ascomycetous yeasts or the more cryptic basidiomycetous yeasts. One
school of thought claims that, given that ascomycete fungi are more common in
endophytic filamentous fungi communities and in the world as a whole, endophytic
yeasts must be mostly ascomycetes (Prior et al. 2017). This claim is supported by
the fact that basidiomycetes are strict aerobes and therefore ascomycetes may be
more successful in microaerobic environments inside plant tissues or fruits
(Glushakova and Kachalkin 2017). However, there have been reports of a strong
prevalence of basidiomycetous yeasts in plant tissues including in the leaves of
Ficus plants (Solis et al. 2014). Some might propose that these recent results may be
due to a cultivation bias in favor of basidiomycetes. However, this hypothesis was
supported by a culture independent approach used for rice leaf yeasts, which also
showed that more than half of the reported phylotypes were previously unknown,
pointing to the flaws of relying solely on culturing methods for characterizing
endophytic yeast communities (Tantirungkij et al. 2015). One point supporting the
basidiomycetous-dominated hypothesis is the fact that basidiomycetes have a larger
metabolic diversity which could allow them to adapt better to the in planta envi-
ronment (Ichinose 2013). Regardless, these differing hypotheses support the need
for further research using high throughput culture-independent sequencing
approaches in order to better understand endophytic yeast diversity and prevalence.
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3 Plant Growth-Promoting Characteristics

The majority of our knowledge of plant growth-promoting characteristics of endo-
phytes comes from studying bacterial endophytes and comparisons can be useful for
studying endophytic yeasts. This hints at evidence of convergent evolution of habitat
use between yeasts and bacteria that occupy the phytosphere. This is understandable
from their similar lifestyles in terms of their ecological niches, as well as their
physiology, including their single-celled existence adapted to aquatic environments,
fast growth rates, and the importance of biofilms in their lifecycle. Additionally,
there has been evidence indicating the possibility of mixed biofilm formation con-
taining both bacteria and yeasts (Bandara et al. 2006; Firrincieli et al. 2015). These
convergent traits, as well as ecological and physical proximity, seem to indicate the
possibility of cross-kingdom horizontal gene transfer events. These events have been
hinted at in the past but little conclusive evidence has been found as of yet (Firrincieli
et al. 2015; Hall et al. 2005; Marcet-Houben and Gabaldon 2010).

Several growth-promoting traits are commonly found in endophytic yeasts and
endophytes in general including phytohormone production, stress alleviation, pro-
tection against pathogens and increasing nutrient uptake by the plant. All of these
traits have been found in yeasts but three stand out in particular as being common to
endophytic yeasts, and seem to be unifying characteristics. These are IAA pro-
duction, siderophore production and ACC deaminase activity.

Plant hormone production provides a direct method of plant growth promotion
by endophytes. Auxins and gibberellins have many growth-promoting properties in
plants including promoting root growth and stem elongation, as well as more
broadly, cell proliferation and elongation. Specifically, the production of
indole-3-acetic acid (IAA) by endophytic yeasts has been widely reported by
several groups and extensively reviewed (Doty 2013; Moller et al. 2016; Nassar
et al. 2005). Interestingly, this trait was reported to only occur in media supple-
mented with tryptophan (Hardoim et al. 2008; Xin et al. 2009). This also seems to
be true in the case of endophytic bacteria (Kandel et al. 2017). This observation
provides a strong basis for the plant endophyte symbiosis. Tryptophan is a complex
amino acid which is costly to produce for the yeast but is found inside the plant and
in plant exudates (Kamilova et al. 2006). While it may be too costly for the yeast to
produce tryptophan to make IAA on its own, when the plant provides it with
tryptophan, the yeast can, in return, provide IAA and subsequently promote the
growth of its host. This also serves as an indirect way for the plant to divert nitrogen
into root and shoot mass, especially in situations where nitrogen is plentiful.

ACC, or 1-aminocyclopropane-1-carboxylate, is a molecule that serves as a
precursor to the production of ethylene, a plant stress hormone. ACC deaminases
are enzymes that cleave the molecule ACC into a-ketobutyrate and ammonia and
have commonly been found in endophytic bacteria, as well as endophytic yeasts
(Glick et al. 2007; Nutaratat et al. 2014; Sun et al. 2009). The endophytic yeasts that
have this activity may therefore serve as sinks for ACC, therefore decreasing total
ethylene concentrations in the plant. Ethylene is a stress hormone that inhibits
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growth of the plant. Yeasts may therefore prevent this growth inhibition, and
generally increase the plant’s tolerance to stress. These enzymes may also serve as a
mechanism for ammonia secretion by the yeasts, which have been reported in the
past and could serve as a way for the plant to recycle nitrogen using its symbiotic
partners (Nutaratat et al. 2014).

Siderophore production is another common trait of endophytic yeasts that has
been substantially reviewed for arboreal endophytes and found in rice and sugar
cane leaf endophytes (Moller et al. 2016; Nutaratat et al. 2014). Siderophores are
iron chelating compounds microorganisms produce when facing iron starvation
(Loaces et al. 2011). These compounds are secreted and then recaptured once they
have chelated iron. This could serve as a method for plant growth promotion as they
could provide the plant with chelated iron that it cannot absorb directly from the
soil. Additionally, these compounds could help endophytic yeasts colonize the plant
and exclude other microorganisms and could explain antifungal characteristics of
some yeasts as described later in this review. This is well known in epiphytic yeasts,
which prevent fruit spoilage, for example (Loaces et al. 2011; Nutaratat et al. 2014).

Several other plant growth-promoting characteristics have been reported recently
but less commonly, possibly as a result of a lack of in depth characterization of
these endophytes. One of these characteristics is catalase activity, an enzyme that
decreases the presence of reactive oxygen species and could help promote stress
tolerance in the plant (Khalifa et al. 2016). This catalase activity has been reported
recently in many of the yeast endophytes found in sugar cane and rice leaves in
Thailand (Nutaratat et al. 2014). Nutaratat et al. also reported ammonium secretion
independent of ACC deaminase activity, as well as increased phosphate solubi-
lization by several of the yeasts. Additionally, the production of polyamines by
these yeasts was also reported. These compounds have a complex role in plant
growth and are involved in many cellular processes including the synthesis of
macromolecules, as well as growth, survival and stress tolerance of cells. However,
they could also generally function in plant growth promotion by yeasts (Takahashi
and Kakehi 2010).

4 Industrial and Environmental Applications

Given the growth-promoting characteristics of endophytic yeasts, their potential
applications in agriculture are great. Growth promotion by a poplar endophyte
Rhodotorula graminis has been reported in bell peppers and poplar (Khan et al.
2012; Knoth et al. 2013). Additionally, another Rhodotorula strain has been shown
to increase germination of cucumber seedlings both through inoculation and
treatment by filtered supernatant (Akhtyamova and Sattarova 2013). However, very
few of these plant experiments exist as most of the research in the past has been
focused on the diversity and ecology of these yeasts rather than their applications.
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The use of these yeast endophytes in agriculture could reduce inputs of water and
fertilizer and are important to study in the future given our growing population and
increasing food demand.

A couple of the studies that showed growth promotion by endophytic yeasts
focused on their potential to be used for bioaugmented phytoremediation of heavy
metals. Heavy metal contaminated sites pose significant health risks and current
technologies for remediation are expensive and insufficient (Deng et al. 2012;
Dhankher et al. 2012). Although decontamination using plants as bioaccumulators
offers a cheaper alternative that could provide potential for concurrent bioenergy
production, this strategy is often inefficient given that heavy metals negatively affect
plant health (Deng et al. 2012; Sheng et al. 2008). However, these negative impacts
on plant health could be remediated by the addition of pollutant tolerant endo-
phytes, termed bioaugmented phytoremediation. Deng et al. reported that a
Cryptococcus sp. from rape roots not only increased the survival rate of Chinese
kale seedlings in metal contaminated soil but also promoted their growth.
Additionally, Wang et al. showed that Brassica sp. seedlings inoculated with
endophytic Rhodotorula sp. showed increased growth and increased extraction of
Cd, Pb, Zn, and Cu (Wang et al. 2013). In addition to the previously discussed
advantages of using endophytic yeasts over bacteria, yeasts may also be better
suited for bioaugmented phytoremediation given that contaminated sites are often
contaminated by multiple organic and inorganic pollutants and fungi tend to have a
broader range of tolerances to pollutants (D’Annibale et al. 2006; Deng et al. 2012).

Another promising use of endophytic yeasts in agriculture is their use as biocontrol
agents against fungal and bacterial pathogens. This use of endophytes for biocontrol
has been reported many times for bacterial endophytes (Ait Barka et al. 2002; Brooks
et al. 1994; Compant et al. 2005; Kandel et al. 2017; Miotto-Vilanova et al. 2016).
Conversely, the use of endophytic yeasts as potential biocontrol agents has not been
studied until very recently. One group reported that a Rhodotorula rubra strain,
isolated from rice, showed strong inhibition of various Fusarium species, which are
one of the most economically important fungal pathogens (Akhtyamova and
Sattarova 2013). Additionally, the yeast also showed strong inhibition of growth of
Xanthomoonas malvacearum and Erwinia species, both important bacterial plant
pathogens. This biocontrol ability was also found in the filtered supernatant of the
yeast (Akhtyamova and Sattarova 2013). Additionally, Kandel et al. reported the
antifungal activity of the poplar endophyte Rhodotorula graminis against the com-
mon fungal pathogen Rhizoctonia solani (Kandel et al. 2017).

There are a few hypotheses that explain the potential mechanisms of these
biocontrol abilities. One involves the production of siderophores described earlier
in this review. In addition to their potential role to promote plant growth, side-
rophores that scavenge and sequester iron could prevent the establishment of fungal
pathogens since other fungi need iron in order to grow and establish. This has been
shown in epiphytic yeasts and bacteria (Calvente et al. 2001; Loaces et al. 2011).
However, antifungal characteristics have been found in yeasts that do not produce
siderophores. These antifungal characteristics seem to be fairly uncommon which
points to a more specific mechanism (Nutaratat et al. 2014). A likely hypothesis is
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the secretion by endophytic yeasts of cellulases and cell wall degrading enzymes,
described as the killer yeast phenomenon (Magliani et al. 1997). Some yeasts
produce toxins that have strong antagonistic effects on other fungi and bacteria and
likely phytopathogens which could help protect their host (Magliani et al. 1997).
Finally, endophytic yeasts might help exclude phytopathogens simply by occupy-
ing their niche, thus preventing deleterious fungi and oomycetes from colonizing
plant tissues (Prior et al. 2017).

Endophytic yeasts could also be used for the production of a variety of bio-
chemicals as was previously reviewed (Doty 2013). Possessing a wide variety of
metabolic options given their adaptations to fluctuations in their environments and
their wide host range, endophytic yeasts could provide opportunities for more
efficient metabolism of various, difficult to produce, chemicals.

5 Anthropogenic Impacts on Endophytic Yeast Diversity

Recently, there has been increased interest in the research of the anthropogenic
impacts on yeast diversity. Notably, Prior et al. studied the impact of fungicide on
yeast communities. Fungicides are highly toxic to soil communities and cause
significant stress to plants (Jorgensen et al. 2012). However, their direct impact on
endophytes has not been studied until recently. This group looked closely at the
impacts of two types of fungicides, contact fungicides, such as sulfur and copper,
and systemic fungicides such as azoxystrobin. Sulfur and copper had a strong effect
on the species richness and colony count of common bean endophytes. The sys-
temic fungicide, azoxystrobin, had an even stronger impact on the endophytic
community. Interestingly, once the fungicides leached out of the plant host, the
niche inside the plant was eventually recolonized. However, this recolonization also
represented a drastic shift in species diversity. This may indicate a recolonization of
the plant by potentially pathogenic fungi where endophytes lived before, and could
hint at an explanation for the variable success of fungicides in some crops.

Another group has focused on the changes in endophytic communities in plants
close to urban areas. This group previously reported a stronger presence of human
pathogenic and opportunistic yeast species in pollen in urban environments which
may be responsible for increased allergic reactions (Glushakova et al. 2015). More
recently, they reported significant changes in the endophytic populations of the
fruits of Malus domestica and Pyrus communis (Glushakova and Kachalkin 2017).
Notably, there was a significantly greater abundance of the opportunistic human
pathogen C. parapsilosis. Overall, they reported that the anthropogenic load has
significant impacts on fruit in urban areas. One could imagine potentially significant
consequences to endophytic yeast communities within plants living in urban areas
and endophytes potentially being outcompeted and replaced by non-native species
and human opportunist pathogens. This anthropogenic impact has also been
reported by Solis et al. who noticed that plants in greenhouses in Berlin that were
moved across various locations had a greater diversity of endophytic yeasts as
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compared to ones that were left in soil throughout the year (Solis et al. 2014). These
data point to a strong anthropogenic impact on endophytic yeast communities that
may have significant consequences on plant health.

6 Colonization

One of the most intriguing aspects of endophytic yeast biology is the ability of the
yeasts to fully colonize plants. Unlike bacteria, yeasts are not motile and do not
have chemotactic capabilities towards, for example, plant root exudates. This means
that yeasts that are in the soil most likely cannot colonize plants simply by
swimming in the direction of the roots like bacteria do. Additionally, they do not
typically form a mycelium and therefore, cannot produce hyphae that are able to
grow towards their hosts. Epiphytic yeasts, in addition to being passively diffused in
their environment by air and water, are dispersed by insects. A couple of specific
examples include the vectoring of Saccharomyces cerevisiae by social wasps, as
well as the sweet potato epiphyte, Candida kunwiensis, which has been found on
the bumblebees that pollinate the sweet potato plants (Hong et al. 2003; Stefanini
et al. 2012). Further research showed that yeasts are strongly associated with insects
including in the guts of beetles and on fruit flies (Chandler et al. 2012; Suh et al.
2005). This association was extensively reviewed by Ganter, and supports the
convincing hypothesis that endophytic yeasts are vectored by insects and are able to
colonize their plant hosts in this way (Ganter 2006). Supporting evidence includes
the recent study showing that several endophytic yeasts of rice leaves were also
found in association with brown plant hoppers and beetles (Tantirungkij et al.
2015). Additionally, there have been recent studies suggesting the importance of
endophytic yeasts in multipartite associations between tree-associated insects, their
host trees, and yeasts which were thoroughly reviewed by Moller et al. (2016).
Overall, this idea offers a fairly convincing hypothesis of one of the ways endo-
phytic yeasts are able to move around their environment and colonize different plant
hosts.

The other important question is how the yeasts can systemically colonize the
host plant. The endophytic yeast, Rhodotorula graminis, is able to colonize the
entire plant, including leaf and xylem tissue when the plant is inoculated from the
roots (Kandel et al. unpublished). One simple explanation is that the yeast can
colonize the plant passively, simply by growing inside of the root until the popu-
lation can gain access to the xylem tissue, and from there, colonize the rest of the
plant as water is shuttled through the plant. Although this has not been shown
directly, as plant associated fungi, endophytic yeasts likely have the enzymatic
capabilities to degrade plant cell walls. This has been directly shown in bacterial
and filamentous endophytes (Santoyo et al. 2016; Uzma et al. 2016).

Another interesting hypothesis is the possible role of a dimorphic life cycle of
some endophytic yeasts. As discussed previously, many endophytic yeasts are
basidiomycetes, a phylum which contains many plant and animal pathogens with
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dimorphic lifecycles including a saprobic yeast phase as well as a sexual fila-
mentous phase (Morrow and Fraser 2009). In particular, Cryptococcus and
Rhodotorula, two genera that are commonly found inside plant hosts, contain many
yeast strains with observed filamentous stages.

To give a specific example, Rhodotorula graminis strain WP1 is a poplar
endophyte that was the first endophytic yeast to have its genome fully sequenced
(Firrincieli et al. 2015). According to recent phylogenies, this endophyte is very
closely related to Rhodotorula glutinis var. glutinis (Biswas et al. 2001). Using a
clever experiment with auxotrophic mutants of two different mating types of this
species, this yeast was shown to form a mycelium when opposite mating types were
mixed together (Banno 1967). Given the evolutionary relationship between the two
yeasts, it is extremely likely that R. graminis is also able to form a mycelium. This
is further supported by recent investigations into the mating locus of R. graminis
which has a similar structure to R. glutinis (Joubert, unpublished). Additionally,
genomic analysis by Maia et al. showed strong conservation between the mating
locus of R. gramins strain WP1 and other closely related species (Maia et al. 2015).
These preliminary investigations have strongly supported the presence of two
separate mating types of R. graminis (Firincelli et al., unpublished). However, the
significance of this sexual filamentous stage in yeast colonization needs to be
evaluated. These mycelial forms could enable the active spread of the endophyte
throughout the plant and allow it to colonize its host from the roots to the leaves.
However, this is unlikely to play a significant role in plant colonization given that a
large portion of endophytic yeasts are ascomycetes which do not form a filament
and the fact that the yeast can seemingly colonize the plant in its haploid yeast
stage. One thing is for certain, these filamentous sexual forms are a great source of
recombination and diversity, potentially allowing the yeasts to adapt rapidly to
different plant hosts and environmental conditions.

Another interesting hypothesis to explain yeast colonization is the role of the
production of IAA. This hormone affects plant roots by inhibiting differentiation of
plant root cells and promoting root elongation. This could positively affect plant
health overall and could also provide opportunities for colonization by yeast
endophytes. The main barrier to microbial colonization of the xylem is the
Casparian strip in mature roots. However, if the yeast produces enough IAA in the
rhizosphere, as they are capable of doing in vitro, it could prevent root cells from
maturing, and therefore, decrease the presence of the Casparian strip (Kandel et al.
2017; Verbon and Liberman 2016). This could provide an avenue for colonization
by the yeast. Interestingly, ACC deaminase activity also promotes root elongation
and therefore might provide a similar benefit to the yeast in colonization (Glick
et al. 2007).

A possible requirement to the establishment of a yeast population is the for-
mation of a biofilm. The yeast lifestyle in general is adapted for aquatic environ-
ments, such as the plant xylem, but biofilm formation is likely a requirement for full
colonization of the xylem by the yeast (Moller et al. 2016). Genes encoding a
polysaccharide capsule were also found in the genome of R. graminis strain WP1
(Firrincieli et al. 2015). These endophyte biofilms could allow a form of protection
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from various environmental conditions, as well as a site of reproduction and the
formation of resistance stages as they do in other yeasts (Ramage et al. 2009). This
could also be a strong source of expression of plant growth-promoting character-
istics of these yeasts, and potentially provide an explanation for the paradox of how
yeasts are able to fight off fungal phytopathogens using antifungal molecules
without harming themselves. Although this has not been directly studied in endo-
phytic yeasts, this theory seems to be supported by evidence that endophytes have
stronger endophytic characteristics in mixed biofilms including both bacteria and
filamentous endophytes (Bandara et al. 2006).

7 Conclusion

While the biology of endophytic yeasts remains relatively unexplored, recent
research is encouraging as to their potential for industrial and agricultural appli-
cations. While more research and especially field trials need to be done to assess
this potential, it seems the use of endophytic yeasts could be a viable way of
reducing fertilizer and water inputs in agriculture, and potentially increasing yields.
These yeasts could also have significant advantages over their bacterial and fila-
mentous neighbors. Their application seems especially promising in the field of
remediation of heavy metal pollutants, and as biocontrol agents to protect plants
from pathogens without harming the plant’s microbiome. Still, many questions
remain, especially when it comes to the biology and diversity of these yeasts. The
way yeasts are able to colonize plants still remains a mystery, and many experi-
ments on the process of inoculation of the host need to be done in order to elucidate
this mystery. The role of insects in the life history of yeasts and their dispersal seem
to be a promising avenue for research as well. Finally, many questions on the
diversity of yeast species across different plant hosts still need to be answered, and
the possibility of significant cultivation biases needs to be thoroughly evaluated.
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