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Abstract In the econometric field, spatio-temporal data is often modeled by spatial
dynamic panel data models (SDPD). In the last decade, several versions of the
SDPD model have been proposed, based on different assumptions on the spatial
parameters and different properties of the estimators. In particular, the classic
version of the model assumes that the spatial parameters are homogeneous over
location. Another version, proposed recently and called generalized SDPD, assumes
that the spatial parameters are adaptive over location. In this work we propose
a strategy for testing the particular structure of the spatial dynamic panel data
model, by means of a multiple testing procedure that allows to choose between
the generalized version of the model and some specific versions derived from the
general one by imposing particular constraints on the parameters. The multiple test
is made using the Bonferroni technique and the distribution of the multiple test
statistic is derived by a residual bootstrap resampling procedure.
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1 The SDPD Models

Consider a multivariate stationary process {y;} of order p generating the observa-
tions at time ¢ from p different locations. The following model

yr = DAo)Wy; + DAy)yr—1 + D)Wy, + &, (1

has been proposed by [1] as a generalized version of the spatial dynamic panel data
model of [2]. The errors &, are serially uncorrelated, they have zero mean value and
may show cross-sectional correlation and heteroscedasticity, which means that &,
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have a full variance/covariance matrix X.; the spatial matrix W is a weight matrix
with zero main diagonal; the matrices D(l;) are diagonal, for j = 0, 1, 2, with main
diagonal equal to vectors 1; = (A1, ..., Ajp), respectively. Model (1) guarantees
adaptivity by means of its 3p parameters Aj;,i =1,..., pand j =0, 1,2, and itis
characterized by the sum of three terms: the spatial component, driven by matrix W
and the vector parameter lo; the dynamic component, driven by 11; and the spatial—
dynamic component, driven by W and 1.

Starting from the general model in (1), denoted as generalized SDPD model,
we derive different models as special cases by considering some constraints on the
parameters. The most used among these is the classic SDPD of [2], with only three
parameters, where the spatial coefficients are constant among locations

Yi = AWy + A1yi—1 + 22 Wy—| + &}, ()

and the errors are homoscedastic and uncorrelated. We call this model constant
SDPD. Other special cases of the model can be derived from the generalized SDPD
by testing the significance of specific A j; coefficients.

2 A Strategy for Testing the Particular Structure of SDPD
Models

In the sequel, we assume that yq,---,yr are T observations from a stationary
process defined by (1) or (2). We assume that the process has mean zero and denote
with X ; = Cov(ys, yi—j) = E(yiy,_ j) the autocovariance matrix of the process at
lag j, where the prime subscript denotes the transpose operator.

The estimators of the parameters for the generalized SDPD model (1) have
been proposed and analyzed by Dou et al. [1]. Denote such estimators with
()A\o,', ):1,-, 3»2,-)’ , where the index i = 1, ..., p indicates the specific location. For
the sake of brevity, we do not report the details of such estimators here.

In order to test the structure of the SDPD model, we define the test statistics

Dji =vn(Rji=3;). i=1,....p andj=01.2. 3)

In the (3), we are comparing the estimator under the generalized model, A ji» with
the estimator under the standard model with constant coefficients, which is evaluated
by X j= 11) Z,f:l ):jk, the mean value of the estimates over different locations, for
Jj =0, 1, 2. Note that large values of the statistics in the (3) denote a preference for
the generalized SDPD model. Instead, when the true model has constant parameters,
as in the SDPD model of [2], the statistics in (3) are expected to be around zero. In
order to give an empirical evidence of this, Fig. 1 shows the estimated density (based

on N = 250 replications of the model) of the statistic D ji = /1 (}\\. ji— A j>, for
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Fig. 1 Estimated densities (based on N = 250 replications of the model) of the statistic in (3), for
j =2,i =1 and dimension p = 50, with different time series lengths (denoted by the line width,
as indicated in the legend). The left side refers to the case generated under the Null hypothesis
of true constant SDPD model. The right side refers to the case generated under the alternative
hypothesis of true generalized SDPD model

j =2,i =1 and dimension p = 50, with different time series lengths (going from
T = 100 to T = 1000 and denoted by the line width, as indicated in the legend).
The left side of the figure refers to a case where the true model is the constant SDPD
model, with constant parameters, therefore this is a case generated under the Null
hypothesis. In such a case, as expected, the distribution of the statistic is centered
around zero. The right side of the figure refers to a case where the true model is a
generalized SDPD, with non-constant parameters, therefore this is a case generated
under the alternative hypothesis. In the last case, as expected, the statistic D i 1S
far away from zero. Moreover, as required for consistency, the value of the statistic
increases for increasing time series length. Similar results can be shown for other
values of i, j and p.

3 Bootstrap Scheme for the Multiple Testing Procedure

Figure 1 shows that the statistics in (3) can be used as building blocks of a testing
procedure in order to identify the specific structure of the spatial dynamic model and
to classify it between the two categories of constant SDPD and generalized SDPD.
The hypotheses we need to test are

Hi:Dji=0, vs H :Dj#0 fori=1,...,p, 4

where j denotes the specific spatial parameter, j = 0, 1, 2. Test (4) has a multiple
testing structure and the problem then becomes how to decide which hypotheses
to reject, taking into account the multitude of tests. If many hypotheses are tested
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jointly, some are bound to appear as significant by chance alone, even if in reality
they are not relevant. To prevent us from declaring true null hypotheses to be false,
we seek control (at least asymptotically) of the familywise error rate (FWE), which
is the probability of making at least one false rejection. The most familiar scheme for
controlling the FWE is the well known Bonferroni method: for each null hypothesis
H; ,individual p-values p;s are computed and the hypothesis H; is rejected at global
level o if p; < a/m.

In order to derive the individual p-values p;s, we use a resampling procedure
based on the residual bootstrap approach, to approximate the distribution of the test
statistics D ji- This procedure runs as follows.

1. First obtain the bootstrap errors {¢;} by drawing B = 999 replicates indepen-
dently from the residuals & =y, —¥,, where §; = AoWy; + A1y;—1 + AWy, _1.
2. Generate the bootstrap series, under the Null hypothesis, as

¥ = A, — W) I, + 2W)yr | + €

3. Compute the bootstrap statistics f);fi =./n ():j‘l — )_»jf), as in (3), with )A\jfl. and ):7
estimated from the bootstrap data y;.
4. Foragiveni = 1, ..., p,theindividual p-value p; for testing H; is defined as the

probability P( |D;fl.| > |ﬁ i |‘ Y1, ..., ¥7), which is approximated by the relative
frequency of the event (|D7i | > |ﬁ jil) over the 999 bootstrap replications.

The size of the test (with nominal size « = 0.1) and the power have been evaluated
empirically for different values of p and T and reported in the following table.

Under the Null for j =0 for j =1 for j =2

(=size) T =100 500 1000 100 500 1000 100 500 1000

p=10 0.124 0.1 0.072 0.184 0.144 0.148 0.136 0.112 0.108

p =50 0.024 0.12  0.092 0.156 0.144 0.172 0.144 0.164 0.24

p =100 0.888 0.2 0.204 0.82 0.216 0.244 0.884 0.128 0.136

Under the Alternative for j =0 for j =1 for j =2

(=power) T =100 500 1000 100 500 1000 100 500 1000

p=10 0.204 1 1 1 1 1 0.988 1 1

p =50 0.056 0.108 0.148 1 1 1 1 1 1

p =100 0.44 0.968 1 1 1 1 1 1 1
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