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Abstract We investigate the use of Bregman iteration method for the solution of
the portfolio selection problem, both in the single and in the multi-period case. Our
starting point is the classical Markowitz mean-variance model, properly extended
to deal with the multi-period case. The constrained optimization problem at the
core of the model is typically ill-conditioned, due to correlation between assets. We
consider l1-regularization techniques to stabilize the solution process, since this has
also relevant financial interpretations.
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1 Introduction

In this work we discuss the numerical solution of the portfolio selection problem.
Our starting point is the classical Markowitz mean-variance framework, in which
one aims at the construction of an investment portfolio that exposes investor to
minimum risk providing him a fixed expected return. A common strategy to estimate
Markowitz model parameters is to use historical data as predictive of the future
behaviour of asset returns. This typically leads to ill-conditioned numerical prob-
lems. We then consider l1 regularization techniques; the single-period regularized
model was introduced in [3], where a l1-penalty term is added to the objective
function of the optimization problem at the core of the model. This has also nice

S. Corsaro (�) · Z. Marino · F. Perla
Dipartimento di Studi aziendali e quantitativi, Università degli Studi di Napoli “Parthenope”,
Napoli, Italy
e-mail: stefania.corsaro@uniparthenope.it; zelda.marino@uniparthenope.it;
francesca.perla@uniparthenope.it

V. De Simone
Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”,
Caserta, Italy
e-mail: valentina.desimone@unicampania.it

© Springer International Publishing AG, part of Springer Nature 2018
M. Corazza et al. (eds.), Mathematical and Statistical Methods
for Actuarial Sciences and Finance, https://doi.org/10.1007/978-3-319-89824-7_45

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89824-7_45&domain=pdf
mailto:stefania.corsaro@uniparthenope.it
mailto:zelda.marino@uniparthenope.it
mailto:francesca.perla@uniparthenope.it
mailto:valentina.desimone@unicampania.it
https://doi.org/10.1007/978-3-319-89824-7_45


250 S. Corsaro et al.

financial interpretations, both in terms of transaction costs and control of short-
positions. We then extend the regularizedmodel to the multi-period case. Our model
satisfies time consistency, a fundamental requirement in this framework. Different
definitions of time consistency can be found in literature, either related to dynamic
risk measures or investment policies [5]; this concept deals with the consistency
over time of decisions taken with the support of evolving available information. We
discuss the numerical solution in both cases. We develop iterative algorithms based
on Bregman iteration method, that converts the constrained problem into a short
sequence of unconstrained ones. The presence of the l1-term makes the solution of
the involved optimization sub-problem not trivial, thus we apply ad hoc methods to
deal with non-smoothness [1].

In Sect. 2 we describe the regularized portfolio selection model; in Sect. 3 we
describe Bregman iteration method.

2 Regularized Portfolio Selection Model

Let n be the number of traded assets. We assume self-financing investment
strategies, both in the single and in the multi-period case. We start by describing
the static mean-variance problem. We suppose that one unit of capital is available
and define

w = (w1, w2, . . . , wn)
T

the portfolio weight vector, where wi is the amount invested in the i-th security.
We furthermore denote with

r = (r1, r2, . . . , rn)
T

the vector of expected asset returns. Regularized portfolio selection is formulated as
the following quadratic constrained optimization problem:

minw wT �w + τ‖w‖1
s.t.
wT 1n = 1,
wT r = ρ

where 1n is the column vector of ones of dimension n, ρ is the fixed expected
portfolio return, and � is the covariance matrix of returns. The first constraint is
a budget constraint which establishes that all the available capital is invested. The
second one fixes the expected return.

Let us now turn to the dynamic case and consider m dates, which define m − 1
periods of investment. Decisions are assumed at time ti , i = 1, . . . ,m−1; decision
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taken at time ti is kept in the period [ti , ti+1). Portfolio weights and asset returns
are now stored in matrices W ∈ �n×m, R ∈ �n×(m−1), in which the i-th columns
wi , ri contain, respectively, the weight vector at time ti and the expected return
vector in the period [ti , ti+1). Regularized portfolio selection is formulated as the
following constrained optimization problem:

min
W

m∑

i=1

[
wT

i �iwi + τ‖wi‖1
]

s.t.

wT
1 1n = 1 (1)

wT
i 1n = (1 + ri−1)

T wi−1, i = 2, . . . ,m (2)

wT
n 1n = xterm (3)

where xterm is the expected wealth provided by the overall investment and �i is the
covariance matrix estimated in the i-th period. As in the one-period case, constraint
(1) is the budget constraint, constraint (2) means that the investment strategy is self-
financing, thus, at the end of each period the wealth is given by the revaluation
of the previous one. Finally, constraint (3) fixes the investment target. We adopt
a separable formulation for the risk measure, so, following [4], we show that our
approach is time consistent.

3 Bregman Iteration for Portfolio Selection

Regularized portfolio selection can be in general formulated as the constrained
nonlinear optimization problem:

minw E(w)

s.t.
Aw = b,

(4)

where, defined M = m+ 1, N = m ·n, the functionalE(w) : �N −→ � is strictly
convex and non-smooth due to the presence of the l1-penalty term and A ∈ �M×N

is the matrix form of the constraints and b ∈ �M . Bregman iteration can be used
to reduce (4) in a short sequence of unconstrained problems by using the Bregman
distance associated with E [2].

The Bregman distance associated with a proper convex functional E(w) at point
v is defined as:

D
p
E(w, v) = E(w) − E(v)− < p,w − v >,
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where p ∈ ∂E(v) is a subgradient in the subdifferential of E at point v and < ., . >

denotes the canonical inner product in RN . First of all, the constrained problem (4)
is converted into the unconstrained one:

minw E(w) + λ
2 ‖Aw − b‖22 (5)

for a fixed λ > 0. Then, at each Bregman iterationE(w) is replaced by the Bregman
distance so a sub-problem in the form of (5) is solved according to the following
iterative scheme:

{
wk+1 = argminwD

pk
E (w,wk) + λ

2 ‖Aw − b‖22,
pk+1 = pk − λAT (Awk+1 − b) ∈ ∂E(wk+1).

(6)

Under suitable hypotheses the convergence of the sequence {wk} to the solution
of the constrained problem (4) is guaranteed in a finite number of steps [6]. Since
there is generally no explicit expression for the solution of the sub-minimization
problem involved in (6), at each iteration the solution is computed inexactly using
an iterative solver. At this purpose, we focus on first order methods, which are
gradient-based that converge rather slowly; however, for large problem dimensions,
usually a fast lower-precision solution is favoured. In particular, we use the
Fast Proximal Gradient method with backtracking stepsize rule (FISTA) [1], an
accelerated variant of Forward Backward algorithm, suitable for minimizing convex
objective functions given by summation of smooth and non-smooth terms. We test
our algorithms on real market data, and validate our approach observing the out-of-
sample performances of optimal portfolios.
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