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1 The Strong Duality in the Infinite-Dimensional Setting

The duality theory we intend to study can be summarized as follows.
Let f : S → R, g : S → Y, h : S → Z be three mappings, where S here and in

what follows is a convex subset of a real normed space X, Y is a real normed space
ordered by a convex cone C, Z is a real normed space and consider the optimization
problem:

{
f (x0) = min

x∈K f (x)

x0 ∈ K = {x ∈ S : g(x) ∈ −C, h(x) = θZ}, (1)

where θZ is the zero element in the space Z.

The Lagrange dual problem is:

max
u∈C∗, v∈Z∗ inf

x∈S
[f (x) + 〈u, g(x)〉 + 〈v, h(x)〉] , (2)

where

C∗ := {u ∈ Y ∗ : 〈u, y〉 ≥ 0, ∀y ∈ C
}

is the dual cone of C and Z∗ is the dual space of Z.
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Then, we say that the strong duality holds for problems (1) and (2) if and only if
problems (1) and (2) admit a solution and the optimal values coincide.

The already classical results by Rockafellar [47], Holmes [36], Borwein and
Lewis [3] give sufficient conditions in order that the strong duality between
problems (1) and (2) holds.

All these conditions use concepts such as:

• the core:

Core C := {x ∈ C : Cone (C + { x}) = X} ;

• the intrinsic core:

Intrinsic Core C := {c ∈ C : ∀c′ ∈ aff (C) \ {c}, we have (c, c′) ∩ C �= ∅} ,

where aff (C) is the affine hull of C and (a, b) := {(1 − t)a + tb : t ∈ (0, 1)} ;
• strong quasi-relative interior of C :

sqri C := {x ∈ C : Cone (C − {x}) is a closed linear subspace of X} .

Such concepts (see [3, 36, 39, 47]) require the nonemptiness of the ordering
cone, which defines the cone constraints in convex optimization and variational
inequalities. However, the ordering cone of almost all the known problems, stated in
infinite dimensional spaces, has the interior (and all the above generalized interior
concepts) empty. Hence, the above interior conditions cannot be used to guarantee
the strong duality. This is the case, for example, of optimization problems or
variational inequalities connected with evolutionary financial network equilibrium
problems, the obstacle problem, the elastic-plastic torsion problem, the infinite-
dimensional bilevel problem, which use non-negative cones of Lebesgue or Sobolev
spaces (see [1, 8, 10–14, 22, 24, 25, 27, 31, 34, 35, 37, 46, 49]).

Only recently, in [16, 42, 43] the authors introduced new conditions called
S, S′, NES, which turn out to be necessary and sufficient conditions for the strong
duality and really useful in the applications. These conditions do not require the
nonemptiness of the interior of the ordering cone. This new strong duality theory
was then refined in [13, 17, 19, 37, 45].

Now we present in detail these new conditions.

1.1 Assumption S

Let us first recall that for a subset C ⊆ X and x ∈ X the tangent cone to C at x is
defined as

TC(x) = {y ∈ X : y = lim
n→∞ λn(xn − x), λn > 0, xn ∈ C, lim

n→∞ xn = x}.
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If x ∈ clC (the closure of C) and C is convex, we have

TC(x) = clcone(C − {x}),

where the coneA = {λx : x ∈ A, λ ∈ R
+} denotes the cone hull of a general

subset A of the space.

Definition 1 Given the mappings f, g, h and the set K as above, we say that
Assumption S is fulfilled at a point x0 ∈ K if and only if

TM̃(0, θY , θZ) ∩ (R−− × θY × θZ) = ∅

where

M̃ = {(f (x) − f (x0) + α, g(x) + y, h(x)) : x ∈ S \ K, α ≥ 0, y ∈ C},

R
−− = {λ ∈ R : λ < 0}.

Now we recall the main theorem on strong duality based on Assumption S (see
[13, 16, 17, 19, 45]).

Theorem 1 Assume that the functions f : S −→ R, g : S −→ Y are convex and
that h : S −→ Z is an affine-linear mapping. Assume that the Assumption S is
fulfilled at the optimal solution x0 ∈ K of the problem (1). Then also problem (2) is
solvable and if u ∈ C∗, v ∈ Z∗ are optimal solutions to (2), we have

〈u, g(x0)〉 = 0 (3)

and the optimal values of the two problems coincide; namely

f (x0) = min
x∈K f (x) = f (x0) + 〈ū, g(x0)〉 + 〈v̄, h(x0)〉

= max
u∈C∗
v∈Z∗

inf
x∈S

[f (x) + 〈u, g(x)〉 + 〈v, h(x)〉] .

Moreover it is seen in [4] that Assumption S is also a necessary condition for the
strong duality.

An important consequence of the strong duality is the usual relationship between
a saddle point of the so-called Lagrange functional

L(x, u, v) = f (x) + 〈u, g(x)〉 + 〈v, h(x)〉, ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗,

and the solution to (1) and (2). Indeed, we have the following theorem (see [16] and
[23]).
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Theorem 2 Let the assumptions of Theorem 1 be fulfilled. Then, x0 ∈ K is an
optimal solution to (1) if and only if there exist ū ∈ C∗, v̄ ∈ Z∗ such that (x0, ū, v̄)

is a saddle point of the Lagrange functional, namely:

L(x0, u, v) ≤ L(x0, ū, v̄) ≤ L(x, ū, v̄), ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗

and

〈ū, g(x0)〉 = 0.

1.2 Assumption S′

Assumption S′ requires additional hypotheses on the mappings f, g, h and works
on directional derivatives. Sometimes it is easier to use with respect to Assumption
S.

Let us assume that f, g, h have directional derivative at x0 ∈ K in every direction
x − x0 with arbitrary x ∈ S.

Definition 2 We say that Assumption S′ is fulfilled at the point x0 ∈ K if and only
if

TM ′(0, θY , θZ) ∩ (R−− × {θY } × {θZ}) = ∅,

where

M ′ = {(f ′(x0)(x − x0) + α, g(x0) + g′(x0)(x − x0) + y, h′(x0)(x − x0)) :

x ∈ S \ K, α ≥ 0, y ∈ C}.

The next theorem holds (see [42]).

Theorem 3 Let X and Z be real normed spaces, let Y be a real normed space
ordered by a closed convex cone C. Let S be a convex subset of X and let f :
S −→ R be a given convex functional, let g : S −→ Y be a convex mapping
and let h : S −→ Z an affine-linear mapping. Assume that f, g have a directional
derivative at x0 ∈ K solution to problem (1) in every direction x −x0 with arbitrary
x ∈ S. Then, the strong duality holds if and only if Assumption S′ is fulfilled.

1.3 Strong Duality in the Case of Nonlinear Equality
Constrains

Let us assume that h is no longer an affine-linear mapping, but, for instance, a
convex one, since it depends on the sign of v. Then the constraint set K is no longer
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convex. As a consequence, the usual optimality conditions for the convex functions
on convex sets cannot be applied. Moreover, if we consider the Lagrange functional

L(x, ū, v̄) = f (x) + 〈ū, g(x)〉 + 〈v̄, h(x)〉,

where ū ∈ C∗ and v̄ ∈ Z∗, even if h is convex as well as g, L is not, in
general, a convex functional. In order to overcome these difficulties, some strong
duality results have been elaborated under Assumption S′, but introducing additional
conditions (see [44] Theorem 2).

Theorem 4 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), (Z, ‖ · ‖Z) be real Banach spaces with
an ordering closed convex cone X+, C and D, respectively. Let S be an open
convex subset of X, let f : S → R be a convex functional such that f is Fréchet-
differentiable at a minimal point x0 ∈ K, let g : S → Y and h : S → Z be
convex functions with respect to the cones C and D, respectively, both Gâteaux-
differentiable at x0. Assume also:

(i) f ′(x0)(x) ≤ 0, ∀x ∈ S ∩ X+;
(ii) g′(x0)(x) ∈ −C ∀x ∈ S ∩ X+;

(iii) h′(x0)(S ∩ X+) = D;
(iv) lim

‖λ(x−x0)‖X→+∞
x∈K

‖h′(x0)(λ(x − x0)‖Z = +∞.

If Assumption S′ is fulfilled at x0, then the strong duality holds.

Example 1 Let us consider the following problem (see [44]):

min
u∈K

∫ T

0

(
u2

2(t) − u1(t)
)

dt,

where

K =
{
u ∈ L2([0, T ],R2) : u(t) ≥ 0 and u2

1(t) + u2
2(t) = 1 a.e.

}
.

We set:

f : L2([0, T ],R2) → R defined as f (u) =
∫ T

0

(
u2

2(t) − u1(t)
)

dt;
g : L2([0, T ],R2) → L2([0, T ],R2) defined as g(u) = −u;
h : L2([0, T ],R2) → L1([0, T ],R) defined as h(u) = u2

1(t) + u2
2(t) − 1.

We note that f attains its minimum value in K in correspondence of the couple of
constant functions u0 = (1, 0). Now, we verify that all assumptions of Theorem 4
are satisfied. Indeed:

(i) f ′(u0)(u) =
∫ T

0
−u1(t) dt ≤ 0, ∀(u1, u2) ∈ L2([0, T ],R2+);



106 G. Colajanni et al.

(ii) g′(u0)(u) = (−u1,−u2) ∈ −C, ∀(u1, u2) ∈ L2([0, T ],R2+);
(iii) h′(u0)(u) = 2u1 ≥ 0, ∀(u1, u2) ∈ L2([0, T ],R2+);
(iv) lim

‖λ(u−u0)‖
L2 →+∞

u∈K

‖h′(u0)(λ(u − u0)‖L1 = lim‖λ(u1−1,u2)‖L2→+∞ ‖2λ(u1 − 1)‖L1 =
+∞.

In order to have the strong duality, it remains to prove that also Assumption S′ holds
true. Let

(λ, θL2([0,T ],R2 , 0) ∈ TM ′(λ, θL2([0,T ],R2 , 0).

We need to verify that:

λ= lim
n

λn

(∫ T

0
f ′(u0)(un−u0) dt+αn

)
= lim

n
λn

(∫ T

0
−(un

1−1) dt+αn

)
≥ 0,

taking into account that:

θL2([0,T ],R2) = lim
n

λn

(
ϕ(u0) + ϕ′(u0)(un − u0) + vn

)
= lim

n
λn

(−1 − (un
1 − 1) + vn

1 ,−un
2 + vn

2

) = 0,

and

θL2([0,T ],R2) = lim
n

λn

(
2(un

1 − 1)
) = 0, (4)

where λn ≥ 0, n ∈ N, vn ∈ L2([0, T ],R2)+, un ∈ L2([0, T ],R2) \ K, αn ≥ 0,

∀n ∈ N.

From (4) it follows:

λ = lim
n

λn

(∫ T

0
(−un

1 − 1) dt + αn

)
≥ 0.

Example 2 Now, we present an example where assumption (i) is not satisfied (see
[44]).
Let us consider the problem:

min
u∈K

∫ 1

0

(
1

2
u2

2(t) + u1(t)

)
dt

where

K =
{
u ∈ L2([0, 1],R2) : u(t) ≥ 0 and u2

1(t) + u2
2(t) = 1, a.e. in [0, 1]

}
.
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We set:

f : L2([0, 1],R2) → R defined as f (u)=
∫ 1

0

(
1

2
u2

2(t) + u1(t)

)
dt;

g : L2([0, 1],R2) → L2([0, 1],R2) defined as g(u) = −u;
h : L2([0, 1],R2) → L1([0, 1],R) defined as h(u) = u2

1(t) + u2
2(t) − 1.

We note that f attains its minimum value in K in correspondence of the couple
of constant functions u0 = (1, 0). Assumption (i) of Theorem 4 is not satisfied.
Indeed:

(i) f ′(u0)(u) =
∫ 1

0
u1(t) dt ≥ 0, ∀(u1, u2) ∈ L2([0, 1],R2+);

(ii) g′(u0)(u) = (−u1,−u2) ∈ −C, ∀(u1, u2) ∈ L2([0, 1],R2+);
(iii) h′(u0)(u) = 2u1 ≥ 0, ∀(u1, u2) ∈ L2([0, 1],R2+);
(iv) lim

‖λ(u−u0)‖
L2 →+∞

u∈K

‖h′(u0)(λ(u − u0)‖L1 = +∞.

As in the previous example, it is easy to show that also Assumption S′ holds true.
Since we have (see also formula (2.5) in [44]):

(
f ′(u0) + 〈ū, g(u0) + g′(u0)〉 + 〈v̄, h′(u0)〉

)
u = 0 ∀u ∈ L2([0, 1],R2) (5)

and (3) holds true, it follows, from an easy calculation, that the maximum over C+
and v ∈ Z∗ is achieved when

u = (0, ū2) and v = −1

2
,

for some ū2 ≥ 0. Therefore,

max
u∈C∗
v∈Z∗

inf
x∈L2

[f (x) + 〈u, g(x)〉 + 〈v, h(x)〉]

= inf
u∈L2

[
f (u) + 〈(0, ū2), (−u1,−u2)〉 + 〈−1

2
, u2

1 + u2
2 − 1〉

]

= inf
u∈L2

[∫ 1

0

(
−1

2
u2

1(t) + u1(t) − ū2(t)u2(t) + 1

2

)
dt

]
.

As we have seen, not all the assumptions of Theorem 4 are fulfilled. Hence, if strong
duality holds, then we would have:

1 ≤
∫ 1

0

(
−1

2
u2

1(t) + u1(t) − ū2(t)u2(t) + 1

2

)
dt ∀(u1, u2) ∈ L2([0, 1],R2).
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It is enough to choose, for instance, (u1, u2) = (2, 0) to get a contradiction, since:

∫ 1

0

(
−1

2
4 + 2 + 1

2

)
dt =

∫ 1

0

1

2
dt = 1

2
.

1.4 NES (Non Empty Subdifferential Condition)

This new necessary and sufficient condition is the one which requires a smaller
number of assumptions on the functions. Recall that a subdifferential of a convex
function f : S → R, where S is a subset of a real normed space X, at x ∈ S is
defined by

∂f (x) = {x∗ ∈ X∗ : f (x) − f (x) ≥ 〈x∗, x − x〉,∀x ∈ S}.

For y ∈ Y , let us define a closed convex subset of Y as

Dy = (y − C)

with C the closed convex ordering cone of Y .
If on Y × Z, we consider the norm ‖(y, z)‖Y×Zł = ‖y‖Y + ‖z‖Z , let us define

ϕ : Y × Z → R

by

ϕ(y, z) = inf
x∈S

g(x)∈Dy

h(x)=z

f (x).

Definition 3 (Assumption NES) We say that the Condition NES is fulfilled for the
triple f, g, h with respect to K if and only if

∂ϕ(θY×Z) �= ∅. (6)

Taking into account that ϕ(θY×Z) = inf
x∈S−g(x)∈C

h(x)=θZ

f (x) = inf
x∈K f (x), (6) means that there

exist (y∗, z∗) ∈ Y ∗ × Z∗ such that

ϕ(y, z)−ϕ(θY×Z) = inf
x∈S

g(x)∈Dy

h(x)=z

f (x)− inf
x∈K f (x) ≥ 〈y∗, y〉+〈z∗, z〉, ∀(y, z) ∈ Y×Z.

Then, we have the following result (see [43] Theorem 3.2).
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Theorem 5 Let us assume that inf
x∈K f (x) ∈ R. Then, the strong duality holds for

problems (1) and (2) if and only if the Condition NES holds for f, g, h.

Now, the following result easily follows.

Corollary 1 Assume that f : S → R, g : S → Y are convex functions and let
h : S → Z be an affine-linear mapping. Then Assumption S is fulfilled at the
optimal solution x0 ∈ K of problem (1), if and only if Condition NES holds for f,

g, and h with respect to K.

Similarly, keeping in consideration the main result in [42], we have the following
result.

Corollary 2 Let X and Z be real normed spaces, let Y be a real normed space
ordered by a closed convex cone C. Let S be a convex subset of X and let f :
S → R be a given convex functional, let g : S → Y be a convex mapping and let
h : S → Z an affine-linear mapping. Assume that f, g have a directional derivative
at x0 ∈ K solution to problem (1) in every direction x − x0 with arbitrary x ∈ S.
Then, Assumption S′ is fulfilled at x0 if and only if Condition NES holds for f, g,

h with respect to K.

As for Assumptions S and S′, also Condition NES is really useful in the
applications as we can see in the next sections.

2 Applications to the General Financial Equilibrium
Problem

In this chapter we apply Assumption S, which was introduced in Sect. 1.1, to a
general equilibrium model of financial flows and prices (see also [15]).

2.1 Presentation of the Model

We consider a financial economy consisting of m sectors, for example households,
domestic business, banks and other financial institutions, as well as state and local
governments, with a typical sector denoted by i, and of n instruments, for example
mortgages, mutual funds, saving deposits, money market funds, with a typical
financial instrument denoted by j , in the time interval [0, T ]. Let si(t) denote the
total financial volume held by sector i at time t as assets, and let li (t) be the total
financial volume held by sector i at time t as liabilities. Further, we allow markets of
assets and liabilities to have different investments si(t) and li (t), respectively. Since
we are working in the presence of uncertainty and of risk perspectives, the volumes
si(t) and li (t) held by each sector cannot be considered stable with respect to time
and may decrease or increase. For instance, depending on the crisis periods, a sector
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may decide not to invest on instruments and to buy goods as gold and silver. At
time t , we denote the amount of instrument j held as an asset in sector i’s portfolio
by xij (t) and the amount of instrument j held as a liability in sector i’s portfolio
by yij (t). The assets and liabilities in all the sectors are grouped into the matrices
x(t), y(t) ∈ R

m×n, respectively. At time t we denote the price of instrument j held
as an asset and as a liability by rj (t) and by (1 + hj (t))rj (t), respectively, where
hj is a nonnegative function defined into [0, T ] and belonging to L∞([0, T ],R).

We introduce the term hj (t) because the prices of liabilities are generally greater
than or equal to the prices of assets. In this manner we describe, in a more realistic
way, the behaviour of the markets for which the liabilities are more expensive
than the assets. We group the instrument prices held as an asset nd as a liability
into the vectors r(t) = [r1(t), r2(t), . . . , ri(t), . . . , rn(t)]T and (1 + h(t))r(t) =
[(1 + h1(t))r1(t), (1 + h2(t))r2(t), . . . , (1 + hi(t))ri(t), . . . , (1 + hn(t))rn(t)]T ,

respectively. In our problem the prices of each instrument appear as unknown
variables. Under the assumption of perfect competition, each sector will behave
as if it has no influence on the instrument prices or on the behaviour of the other
sectors, but on the total amount of the investments and the liabilities of each sector.

We choose as a functional setting the very general Lebesgue space

L2([0, T ],Rp) =
{
f : [0, T ] → R

p measurable :
∫ T

0
‖f (t)‖2

pdt < +∞
}

,

with the norm

‖f ‖L2([0,T ],Rp) =
(∫ T

0
‖f (t)‖2

pdt

) 1
2

.

Then, the set of feasible assets and liabilities for each sector i = 1, . . . , m becomes

Pi =
{
(xi(t), yi(t)) ∈ L2([0, T ],R2n+ ) :
n∑

j=1

xij (t) = si(t),

n∑
j=1

yij (t) = li (t) a.e. in [0, T ]
}

and the set of all feasible assets and liabilities becomes

P =
{
(x(t), y(t)) ∈ L2([0, T ],R2mn) : (xi(t), yi(t)) ∈ Pi, i = 1, . . . , m

}
.

Now, we introduce the ceiling and the floor price associated with instrument j ,
denoted by rj and by rj , respectively, with rj (t) > rj (t) ≥ 0, a.e. in [0, T ]. The
floor price rj (t) is determined on the basis of the official interest rate fixed by the
central banks, which, in turn, take into account the consumer price inflation. Then
the equilibrium prices r∗

j (t) cannot be less than these floor prices. The ceiling price
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rj (t) derives from the financial need to control the national debt arising from the
amount of public bonds and of the rise in inflation. It is a sign of the difficulty on
the recovery of the economy. However it should be not overestimated because it
produced an availability of money.

In detail, the meaning of the lower and upper bounds is that to each investor a
minimal price rj for the assets held in the instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities in any case a minimal price (1+hj )rj .
Analogously each investor cannot obtain for an asset a price greater than rj and as
a liability the price cannot exceed the maximum price (1 + hj )rj .

We denote the given tax rate levied on sector i’s net yield on financial instrument
j , as τij . Assume that the tax rates lie in the interval [0, 1) and belong to
L∞([0, T ],R). Therefore, the government in this model has the flexibility of
levying a distinct tax rate across both sectors and instruments.

We group the instrument ceiling and floor prices into the column vectors rj (t) =
(rn(t))j=1,...,n, and rj (t) = (rj (t))j=1,...,n, respectively, and the tax rates τij into

the matrix τ(t) ∈ L2([0, T ],Rm×n).

The set of feasible instrument prices is:

R = {r ∈ L2([0, T ],Rn) : rj (t) ≤ rj (t) ≤ rj (t), j = 1, . . . , n, a.e. in [0, T ]},

where r and r are assumed to belong to L2([0, T ],Rn).
In order to determine for each sector i the optimal distribution of instruments held

as assets and as liabilities, we consider, as usual, the influence due to risk-aversion
and the optimality conditions of each sector in the financial economy, namely the
desire to maximize the value of the asset holdings while minimizing the value
of liabilities. An example of risk aversion is given by the well-known Markowitz
quadratic function based on the variance-covariance matrix denoting the sector’s
assessment of the standard deviation of prices for each instrument (see [40, 41]). In
our case, however, the Markowitz utility or other more general ones are assumed to
be time-dependent in order to incorporate the adjustment in time which depends on
the previous equilibrium states.

Then, we introduce the utility function Ui(t, xi(t), yi(t), r(t)), for each sector i,
defined as follows:

Ui(t, xi(t), yi(t), r(t)) = ui(t, xi(t), yi(t))

+
n∑

j=1

rj (t)(1 − τij (t))[xij (t) − (1 + hj (t))yij (t)],

where the term −ui(t, xi(t), yi(t)) represents a measure of the risk of the financial
agent and rj (t)(1 − τij (t))[xi(t) − (1 + hj (t))yi(t)] represents the value of the
difference between the asset holdings and the value of liabilities. We suppose that
the sector’s utility function Ui(t, xi(t), yi(t)) is defined on [0, T ] × R

n × R
n, is

measurable in t and is continuous with respect to xi and yi . Moreover we assume
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that
∂ui

∂xij

and
∂ui

∂yij

exist and that they are measurable in t and continuous with

respect to xi and yi . Further, we require that ∀i = 1, . . . , m, ∀j = 1, . . . , n, and
a.e. in [0, T ] the following growth conditions hold true:

|ui(t, x, y)| ≤ αi(t)‖x‖‖y‖, ∀x, y ∈ R
n, (7)

and

∣∣∣∂ui(t, x, y)

∂xij

∣∣∣ ≤ βij (t)‖y‖,
∣∣∣∂ui(t, x, y)

∂yij

∣∣∣ ≤ γij (t)‖x‖, (8)

where αi , βij , γij are non-negative functions of L∞([0, T ],R). Finally, we suppose
that the function ui(t, x, y) is concave.

In Sect. 2.5 we define a utility function of Markowitz type.
Now, we establish the equilibrium conditions for the prices which express the

equilibration of the total assets, the total liabilities and the portion of financial
transactions per unit Fj employed to cover the expenses of the financial institutions
including possible dividends and manager bonus. Indeed, the equilibrium condition
for the price rj of instrument j is the following:

m∑
i=1

(1 − τij (t))
[
x∗
ij (t) − (1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

⎧⎪⎨
⎪⎩

≥ 0 if r∗
j (t) = rj (t)

= 0 if rj (t) < r∗
j (t) < rj (t)

≤ 0 if r∗
j (t) = rj (t)

(9)

where (x∗, y∗, r∗) is the equilibrium solution for the investments as assets and as
liabilities and for the prices. In other words, the prices are determined taking into
account the amount of the supply, the demand of an instrument and the charges
Fj , namely if there is an actual supply excess of an instrument as assets and of the
charges Fj in the economy, then its price must be the floor price. If the price of an
instrument is positive, but not at the ceiling, then the market of that instrument must
clear. Finally, if there is an actual demand excess of an instrument as liabilities in
the economy, then the price must be at the ceiling.

Now, we can give different but equivalent equilibrium conditions, each of which
is useful to illustrate particular features of the equilibrium.

Definition 4 A vector of sector assets, liabilities and instrument prices
(x∗(t), y∗(t), r∗(t)) ∈ P × R is an equilibrium of the dynamic financial model if
and only if ∀i = 1, . . . , m, ∀j = 1, . . . , n, and a.e. in [0, T ], it satisfies the system
of inequalities
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−∂ui(t, x
∗, y∗)

∂xij

− (1 − τij (t))r
∗
j (t) − μ

(1)∗
i (t) ≥ 0, (10)

−∂ui(t, x
∗, y∗)

∂yij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t) − μ

(2)∗
i (t) ≥ 0, (11)

and equalities

x∗
ij (t)

[
− ∂ui(t, x

∗, y∗)
∂xij

− (1 − τij (t))r
∗
j (t) − μ

(1)∗
i (t)

]
= 0, (12)

y∗
ij (t)

[
− ∂ui(t, x

∗, y∗)
∂xij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t) − μ

(2)∗
i (t)

]
= 0, (13)

where μ
(1)∗
i (t), μ

(2)∗
i (t) ∈ L2([0, T ],R) are Lagrange multipliers, and verifies

conditions (9) a.e. in [0, T ].
We associate with each financial volumes si and li held by sector i the functions

μ
(1)∗
i (t) and μ

(2)∗
i (t), related, respectively, to the assets and to the liabilities and

which represent the “equilibrium disutilities” per unit of sector i. Then, (10) and (12)
mean that the financial volume invested in instrument j as assets x∗

ij is greater than

or equal to zero if the j -th component −∂ui(t, x
∗, y∗)

∂xij

− (1 − τij (t))r
∗
j (t) of the

disutility is equal to μ
(1)∗
i (t), whereas if −∂ui(t, x

∗, y∗)
∂xij

− (1 − τij (t))r
∗
j (t) >

μ
(1)∗
i (t), then x∗

ij (t) = 0. The same occurs for the liabilities.

The functions μ
(1)∗
i (t) and μ

(2)∗
i (t) are the Lagrange multipliers associated a.e.

in [0, T ] with the constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li (t) = 0,

respectively. They are unknown a priori, but this fact has no influence because we
will prove in the following theorem that Definition 4 is equivalent to a variational
inequality in which μ

(1)∗
i (t) and μ

(2)∗
i (t) do not appear (see [2] Theorem 2.1.).

Theorem 6 A vector (x∗, y∗, r∗) ∈ P × R is a dynamic financial equilibrium if
and only if it satisfies the following variational inequality:

Find (x∗, y∗, r∗) ∈ P × R:

m∑
i=1

∫ T

0

{ n∑
j=1

[
− ∂ui(t, x

∗
i (t), y∗

i (t))

∂xij

− (1 − τij (t))r
∗
j (t)

]

×[xij (t) − x∗
ij (t)]
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+
n∑

j=1

[
− ∂ui(t, x

∗
i (t), y∗

i (t))

∂yij

+ (1 − τij (t))r
∗
j (t)(1 + hj (t))

]

×[yij (t) − y∗
ij (t)]

}
dt

+
n∑

j=1

∫ T

0

m∑
i=1

{
(1 − τij (t))

[
x∗
ij (t) − (1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

}

×[rj (t) − r∗
j (t)

]
dt ≥ 0, ∀(x, y, r) ∈ P × R. (14)

Remark 1 We would like to explicitly remark that our definition of equilibrium
conditions (Definition 4) is equivalent to the equilibrium definition given by a vector
(x∗, y∗, r∗) ∈ P × R satisfying

max
Pi

∫ T

0

{
ui(t, xi(t), yi(t)) + (1 − τi(t))r

∗(t) × [xi(t) − (1 + h(t))yi(t)]
}
dt,

∀(xi, yi) ∈ Pi, and (9). We prefer to use Definition 4, since it is expressed in terms
of equilibrium disutilities.

Now, we would like to give an existence result. First of all, we remind some
definitions. Let X be a reflexive Banach space and let K be a subset of X and X∗ be
the dual space of X.

Definition 5 A mapping A : K → X∗ is pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such
that lim supn〈Aun, un − v〉 ≤ 0 it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u − v〉, ∀v ∈ K.

2. For each v ∈ K the function u �→ 〈Au, u − v〉 is lower bounded on the bounded
subset of K.

Definition 6 A mapping A : K → X∗ is hemicontinuous in the sense of Fan (F-
hemicontinuous) iff for all v ∈ K the function u �→ 〈Au, u − v〉 is weakly lower
semicontinuous on K.

The following existence result does not require any kind of monotonicity
assumptions.

Theorem 7 Let K ⊂ X be a nonempty closed convex bounded set and let A :
K ⊂ E → X∗ be B-pseudomonotone or F-hemicontinuous. Then the variational
inequality

〈Au, v − u〉 ≥ 0 ∀v ∈ K (15)

admits a solution.
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2.2 The Duality for the Financial Equilibrium Problem

Now, in order to study the duality for the financial equilibrium problem, let us set:

f (x, y, r) =
∫ T

0

{ m∑
i=1

n∑
j=1

[
−∂ui(t, x

∗(t), y∗(t))
∂xij

− (1 − τij (t))r
∗
j (t)

]

× [xij (t) − x∗
ij (t)]

+
m∑

i=1

n∑
j=1

[
−∂ui(t, x

∗(t), y∗(t))
∂yij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t)

]

× [yij (t) − y∗
ij (t)]

+
n∑

j=1

[
m∑

i=1

(1 − τij (t))
[
x∗
ij (t) − (1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

]

×
[
rj (t) − r∗

j (t)
] }

dt.

Then the Lagrange functional is

L (x, y, r, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2)) = f (x, y, r)

−
m∑

i=1

n∑
j=1

∫ T

0
λ

(1)
ij (t)xij (t) dt −

m∑
i=1

n∑
j=1

∫ T

0
λ

(2)
ij yij (t) dt

−
m∑

i=1

∫ T

0
μ

(1)
i (t)

⎛
⎝ n∑

j=1

xij (t) − si(t)

⎞
⎠ dt (16)

−
m∑

i=1

∫ T

0
μ

(2)
i (t)

⎛
⎝ n∑

j=1

yij (t) − li (t)

⎞
⎠ dt

+
n∑

j=1

∫ T

0
ρ

(1)
j (t)(rj (t) − rj (t)) dt +

n∑
j=1

∫ T

0
ρ

(2)
j (t)(rj (t) − rj (t)) dt,

where (x, y, r) ∈ L2([0, T ],R2mn+n), λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈
L2([0, T ], R

m), ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and λ(1), λ(2), ρ(1), ρ(2) are the
Lagrange multipliers associated, a.e. in [0, T ], with the sign constraints xi(t) ≥ 0,

yi(t) ≥ 0, rj (t) − rj (t) ≥ 0, rj (t) − rj (t) ≥ 0, respectively whereas the functions

μ(1)(t) and μ(2)(t) are the Lagrange multipliers associated, a.e. in [0, T ], with the
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equality constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li (t) = 0, respectively.

Hence, applying Theorem 1, the following result can be provided (see [2]):

Theorem 8 Let (x∗, y∗, r∗) ∈ P × R be a solution to variational inequality (14)
and let us consider the associated Lagrange functional (16). Then, the strong duality
holds and there exist λ(1)∗, λ(2)∗ ∈ L2([0, T ],Rmn+ ), μ(1)∗, μ(2)∗ ∈ L2([0, T ],Rm),

ρ(1)∗, ρ(2)∗ ∈ L2([0, T ],Rn+) such that (x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗,
ρ(1)∗, ρ(2)∗) is a saddle point of the Lagrange functional, namely

L (x∗, y∗, r∗, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2))

≤ L (x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) = 0 (17)

≤ L (x, y, r, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗)

∀(x, y, r) ∈ L2([0, T ],R2mn+n), ∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), ∀μ(1), μ(2) ∈
L2([0, T ],Rm), ∀ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and, a.e. in [0, T ],

−∂ui(t, x
∗(t), y∗(t))
∂xij

− (1 − τij (t))r
∗
j (t) − λ

(1)∗
ij (t) − μ

(1)∗
i (t) = 0,

∀i = 1, . . . , m, ∀j = 1 . . . , n;

−∂ui(t, x
∗(t), y∗(t))
∂yij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t) − λ

(2)∗
ij (t) − μ

(2)∗
i (t) = 0,

∀i = 1, . . . , m, ∀j = 1 . . . , n;
m∑

i=1

(1−τij (t))
[
x∗
ij (t) − (1 + hj (t))y

∗
ij (t)

]
+Fj (t)+ρ

(2)∗
j (t) = ρ

(1)∗
j (t), (18)

∀j = 1, . . . , n;

λ
(1)∗
ij (t)x∗

ij (t) = 0, λ
(2)∗
ij (t)y∗

ij (t) = 0, ∀i = 1, . . . , m, ∀j = 1, . . . , n (19)

μ
(1)∗
i (t)

⎛
⎝ n∑

j=1

x∗
ij (t) − si(t)

⎞
⎠ = 0, μ

(2)∗
i (t)

⎛
⎝ n∑

j=1

y∗
ij (t) − li (t)

⎞
⎠ = 0, (20)

∀i = 1, . . . , m

ρ
(1)∗
j (t)(rj (t)−r∗

j (t)) = 0, ρ
(2)∗
j (t)(r∗

j (t)−rj (t)) = 0, ∀j = 1, . . . , n. (21)
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Formula (18) represents the Deficit Formula. Indeed, if ρ
(1)∗
j (t) is positive, then

the prices are minimal and there is a supply excess of instrument j as an asset and
of the charge Fj (t), namely the economy is in deficit and, for this reason, ρ

(1)∗
j (t)

is called the deficit variable and represents the deficit per unit.
Analogously if ρ

(2)∗
j (t) is positive, then the prices are maximal and there is

a demand excess of instrument j as a liability, namely there is a surplus in the
economy. For this reason ρ

(2)∗
j (t) is called the surplus variable and represents the

surplus per unit.
From (18) it is possible to obtain the Balance Law

m∑
i=1

li (t) =
m∑

i=1

si(t) −
m∑

i=1

n∑
j=1

τij (t)
[
x∗
ij (t) − y∗

ij (t)
]

−
m∑

i=1

n∑
j=1

(1 − τij (t))hj (t)y
∗
ij (t) +

n∑
j=1

Fj (t) −
n∑

j=1

ρ
(1)∗
j (t) +

n∑
j=1

ρ
(2)∗
j (t).

(22)
Finally, assuming that the taxes τij (t), i = 1, . . . , m, j = 1, . . . , n, have a

common value θ(t), and the increments hj (t), j = 1, . . . , n, have a common value
i(t), otherwise we can consider the average values (see Remark 7.1 in [2]), the
significant Liability Formula follows

m∑
i=1

li (t) =
(1 − θ(t))

m∑
i=1

si(t) +
n∑

j=1

Fj (t) −
n∑

j=1

ρ
(1)∗
j (t) +

n∑
j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))
.

2.3 The Viewpoints of the Sector and of the System

The financial problem can be considered from two different perspectives: one from
the Point of View of the Sectors, which try to maximize the utility and a second point
of view, that we can call System Point of View, which regards the whole equilibrium,
namely the respect of the previous laws. For example, from the point of view of the
sectors, li (t), for i = 1, . . . , m, are liabilities, whereas for the economic system they
are investments and, hence, the Liability Formula, from the system point of view,
can be called “Investments Formula”. The system point of view coincides with the
dual Lagrange problem (the so-called “shadow market”) in which ρ

(1)
j (t) and ρ

(2)
j (t)

are the dual multipliers, representing the deficit and the surplus per unit arising from
instrument j . Formally, the dual problem is given by

Find (ρ(1)∗, ρ(2)∗) ∈ L2([0, T ],R2n+ ) such that
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n∑
j=1

∫ T

0
(ρ

(1)
j (t) − ρ

(1)∗
j (t))(rj (t) − r∗

j (t))dt (23)

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t) − ρ

(2)∗
j (t))(r∗

j (t) − rj (t))dt ≤ 0,

∀(ρ(1), ρ(2)) ∈ L2([0, T ],R2n+ ).

Indeed, taking into account inequality (17), we get

−
m∑

i=1

n∑
j=1

∫ T

0
(λ

(1)
ij (t) − λ

(1)∗
ij (t))x∗

ij (t) dt −
m∑

i=1

n∑
j=1

∫ T

0
(λ

(2)
ij − λ

(2)∗
ij )y∗

ij (t) dt

−
m∑

i=1

∫ T

0
(μ

(1)
i (t) − μ

(1)∗
i (t))

⎛
⎝ n∑

j=1

x∗
ij (t) − si(t)

⎞
⎠ dt

−
m∑

i=1

∫ T

0
(μ

(2)
i (t) − μ

(2)∗
i (t))

⎛
⎝ n∑

j=1

y∗
ij (t) − li (t)

⎞
⎠ dt

+
n∑

j=1

∫ T

0
(ρ

(1)
j (t) − ρ

(1)∗
j (t))(rj (t) − r∗

j (t)) dt

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t) − ρ

(2)∗
j (t))(r∗

j (t) − rj (t)) dt ≤ 0

∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈ L2([0, T ],Rm), ρ(1), ρ(2) ∈
L2([0, T ],Rn+).

Choosing λ(1) = λ(1)∗, λ(2) = λ(2)∗, μ(1) = μ(1)∗, μ(2) = μ(2)∗, we obtain the
dual problem (23)

Note that, from the System Point of View, also the expenses of the institutions
Fj (t) are supported from the liabilities of the sectors.

Remark 2 Let us recall that from the Liability Formula we get the following index
E(t), called “Evaluation Index”, that is very useful for the rating procedure:

E(t) =

m∑
i=1

li (t)

m∑
i=1

s̃i (t) +
n∑

j=1

F̃j (t)

,

where we set

s̃i (t) = si(t)

1 + i(t)
, F̃j (t) = Fj (t)

1 + i(t) − θ(t) − θ(t)i(t)
.
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From the Liability Formula we obtain

E(t)=1−

n∑
j=1

ρ
(1)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛
⎝ m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

⎞
⎠

+

n∑
j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛
⎝ m∑

i=1

s̃i (t) +
n∑

j=1

F̃j (t)

⎞
⎠

(24)

If E(t) is greater or equal than 1, the evaluation of the financial equilibrium is
positive (better if E(t) is proximal to 1), whereas if E(t) is less than 1, the evaluation
of the financial equilibrium is negative.

2.4 The Contagion Problem

Let us note that in the balance law:

m∑
i=1

li (t) −
m∑

i=1

si(t) +
m∑

i=1

n∑
j=1

τij (t)
[
x∗
ij (t) − y∗

ij (t)
]

+
m∑

i=1

n∑
j=1

(1 − τij (t))hj (t)y
∗
ij (t) −

n∑
j=1

Fj (t) = −
n∑

j=1

ρ
(1)∗
j (t) +

n∑
j=1

ρ
(2)∗
j (t),

if

n∑
j=1

ρ
(1)∗
j (t) >

n∑
j=1

ρ
(2)∗
j (t), (25)

namely the sum of all the deficit exceeds the sum of all the surplus, the balance of
all the financial entities is negative (see also [18]). In this case we say that a negative
contagion is determined and we can assume that the insolvencies of individual
entities propagate through the entire system. It is sufficient that only one deficit
ρ

(1)∗
j (t) is large to obtain, even if the other ρ

(2)∗
j (t) are lightly positive, a negative

balance for the all system.
When condition (25) is verified, we get E(t) ≤ 1 and, hence, also E(t) is a

significant indicator that the financial contagion happens.
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In [20] a regularity result of ρ
(1)∗
j (t), ρ

(2)∗
j (t), has been proved. Let us set

F(t) = [F1(t), F2(t), . . . , Fn(t)]T ;

ν = (x, y, r) =
((

xij

)
i=1,...,m
j=1,...,n

,
(
yij

)
i=1,...,m
j=1,...,n

,
(
rj
)
j=1,...,n

)
;

A(t, ν) =
([

−∂ui(t, x, y)

∂xij

− (1 − τij (t))rj (t)

]
i=1,...,m
j=1,...,n

,

[
−∂ui(t, x, y)

∂yij

+ (1 − τij (t))(1 + hj (t))rj (t)

]
i=1,...,m
j=1,...,n

, (26)

[
m∑

i=1

(1 − τij (t))
(
xij (t) − (1 + hj (t))yij (t)

)+ Fj (t)

]
j=1,...,n

)
;

A : K → L2([0, T ],R2mn+n),

with

K = P × R.

Let us note that K is a convex, bounded and closed subset of L2([0, T ],R2mn+n).
Moreover assumption (8) implies that A is lower semicontinuous along line
segments.

The following result holds true (see [20] Theorem 2.4):

Theorem 9 Let A ∈ C0([0, T ],R2mn+n) be strongly monotone in x and y,
monotone in r , namely, there exists α such that, for t ∈ [0, T ],

〈〈A(t, ν1) − A(t, ν2), ν1 − ν2〉〉 ≥ α(‖x1 − x2‖2 + ‖y1 − y2‖2), (27)

∀ν1 = (x1, y1, r1), ν2 = (x2, y2, r2) ∈ R
2mn+n.

Let r(t), r(t), h(t), F (t) ∈ C0([0, T ],Rn+), let τ(t) ∈ C0([0, T ],Rmn) and let
s, l ∈ C0([0, T ],Rm), satisfying the following assumption (β):

• there exists δ1(t) ∈ L2([0, T ]) and c1 ∈ R such that, for a.a. t ∈ [0, T ]:

‖s(t)‖ ≤ δ1(t) + c1;

• there exists δ2(t) ∈ L2([0, T ]) and c2 ∈ R such that, for a.a. t ∈ [0, T ]:

‖l(t)‖ ≤ δ2(t) + c2.
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Then the Lagrange variables, ρ(1)∗(t), ρ(2)∗(t), which represent the deficit and
the surplus per unit, respectively, are continuous too.

2.5 An Example of a Markowitz-Type Risk Measure

We generalize and provide an evolutionary Markowitz-type measure of the risk
proposed with a memory term. This function is effective, namely an existence
theorem for the general financial problem holds (see [21]). In this way we cover
a lack providing the existence of a significant evolutionary measure of the risk. The
particular, but significant, example of utility function is:

ui(xi(t), yi(t))

=
[

xi(t)

yi(t)

]T

Qi

[
xi(t)

yi(t)

]
+
∫ t

0

[
xi(t − z)

yi(t − z)

]T

Qi

[
xi(t − z)

yi(t − z)

]
dz, (28)

where Qi denotes the sector i’s assessment of the standard deviation of prices for
each instrument j.

3 Applications to the Elastic-Plastic Torsion Problem

In this chapter we apply Assumption S to the elastic-plastic torsion problem.

3.1 Presentation of the Problem

The elastic-plastic torsion problem and its relationships with obstacle problem have
been deeply investigated in years 1965–1980. Later on these studies have been
resumed, with particular regards to existence and properties of Lagrange multipliers.
The existence of Lagrange multipliers is strictly related to strong duality theory.

The problem arises from aerodynamics and has been formulated by R. Von Mises
(see [53]): the elastic-plastic torsion problem of a cylindrical bar with cross section
Ω is to find a function u(x) which vanishes on the boundary ∂Ω and, together
with its first derivatives, is continuous on Ω; nowhere on Ω the gradient of u must
have an absolute value (modulus) less than or equal to a given positive constant τ ;
whenever in Ω the strict inequality holds, the function u must satisfy the differential
equation Δu = −2μθ , where the positive constants μ and θ denote the shearing
modulus and the angle of twist per unit length, respectively.
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From the Von Mises formulation it follows that the cross section Ω is divided
into two regions: an elastic region E = {x ∈ Ω : |Du(x)| < 1} and a plastic region
P = {x ∈ Ω : |Du(x)| = 1}.

This problem is a free boundary one and a suitable tool for studying this kind
of problems is the variational inequality theory. To this end, let us consider the
following variational inequality:

Find u ∈ K =
{

v ∈ H
1,∞
0 (Ω) : |Dv| =

n∑
i=1

(
∂v

∂xi

)2

≤ 1 a.e. on Ω

}
such that

∫
Ω

n∑
i=1

∂u

∂xi

(
∂v

∂xi

− ∂u

∂xi

)
dx ≥

∫
Ω

F(v − u)dx ∀v ∈ K, (29)

with Ω ⊂ R
n open bounded convex set with Lipschitz boundary ∂Ω , F ∈ Lp(Ω),

p > 1.
As it is well known, (29) admits a unique solution u ∈ W 2,p(Ω)∩K (see [6, 7]).
In literature, in the planar case the existence and the properties of a smooth

solution of the elastic-plastic torsion problem have been studied by Ting ([50–52]),
whereas multidimensional case has been studied by Brezis in [5], who proved the
existence of a Lagrange multiplier for (29), assuming F = cost > 0, namely, if u is
the solution of variational inequality (29), then there exists a unique μ ∈ L∞(Ω),
μ ≥ 0 a.e. in Ω such that:

⎧⎪⎨
⎪⎩

μ(1 − |Du|) = 0 a.e. in Ω

−Δu −
n∑

i=1

∂

∂xi

(
μ

∂u

∂xi

)
= F in the sense of D

′
(Ω),

(30)

that is the solution of (29) solves the elastic-plastic torsion problem.
Conversely, if u ∈ K and there exists μ satisfying (30), then it is easily proved

that u is the solution of (29).
In virtue of this equivalence the variational inequality (29) is the elastic-plastic

torsion problem formulated by Von Mises.
Moreover, in this case, the solution to elastic-plastic torsion problem coincides

with the solution to obstacle problem and is nonnegative.
Only recently the relationship between problems (29) and (30) has been clarified

in the case of general linear operators and nonlinear monotone operators. In this
section we will describe these results, together with the study of radial solutions to
the elastic-plastic torsion.
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3.2 The Elastic-Plastic Torsion Problem for Linear Operators

First, we establish the existence of Lagrange multipliers associated to a general
linear operator. In particular we prove that the Lagrange multipliers associated to
the elastic-plastic torsion problem for linear operators always exist and, in general,
they result as a Radon measure. This result is proved using the classical strong
duality.

Moreover, the result may be generalized, namely, it is possible to prove that
the Lp Lagrange multipliers exist if and only if Assumption S holds and this is
a consequence of the new strong duality described in Sect. 1.1.

Let us now describe the problem in detail.
Let Ω ⊂ R

n be an open bounded domain either convex or with boundary of class
C1,1. Let us consider the linear elliptic operator

L u = −
n∑

i,j=1

∂

∂xj

(
aij

∂u

∂xj

)
+

n∑
i=1

bi

∂u

∂xi

+ cu (31)

with associated bilinear form on H
1,∞
0 (Ω) × H

1,∞
0 (Ω) given by

a(u, v) =
∫

Ω

⎛
⎝ n∑

i,j=1

aij

∂u

∂xj

∂v

∂xi

+
n∑

i=1

bi

∂u

∂xi

v + cuv

⎞
⎠ dx,

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i,j=1

aij (x)ξiξj ≥ a|ξ |2 a.e. on Ω,∀ξ ∈ R
n

a > 0, aij ∈ C1(Ω), bi, c ∈ L∞(Ω)

c > 0 such large that a(u, u) ≥ α‖u‖2
H

1,∞
0 (Ω)

, α > 0, ∀u ∈ H
1,∞
0 (Ω).

(32)
Let us consider the variational inequality:

Find u ∈ K =
{

v ∈ H
1,∞
0 (Ω) :

n∑
i=1

(
∂v

∂xi

)2

≤ 1, a.e. on Ω

}
such that:

∫
Ω

L u(v − u) dx ≥
∫

Ω

F(v − u) dx, ∀v ∈ K. (33)

As it is well known, variational inequality (33) admits a unique solution u ∈ K

and, if F ∈ Lp(Ω), p > 1, u ∈ W 2,p(Ω) ∩ K (see [6, 7]).
We are able to prove the existence of a Lagrange multiplier for variational

inequality (33) as a Radon measure (see [28, 30]).
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Theorem 10 Under the above assumptions on Ω and L , let F ∈ Lp(Ω), p > 1,
and u ∈ K ∩ W 2,p(Ω) be the solution to problem (33). Then there exists μ ∈
(L∞(Ω))∗ such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈μ, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;
〈μ,

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)
〉 = 0

∫
Ω

(L u − F)ϕ dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi

〉 ∀ϕ ∈ H
1,∞
0 (Ω).

(34)

The theorem means that, if we consider a solution u of variational inequality (33),
then conditions (34) are satisfied. Moreover it is possible to show that, as a
consequence of conditions (34), the solution of variational inequality (33) is also
a solution of the elastic-plastic torsion problem and vice versa.

We mention the paper [9], in which the authors prove the existence of a Lagrange
multiplier as a positive Radon measure under different assumptions and using a
different technique.

In order to prove Theorem 10 we use the strong duality property in the classical
sense (see [26, 38]) and its consequence on the existence of saddle points of the
Lagrange functional. We briefly recall them.

Theorem 11 (Classical Strong Duality Property) Let S be a nonempty subset
of a real linear space X; (Y, ‖ · ‖) be a partially ordered real normed space with
ordering cone C; f : S → R be a given objective functional; g : S → Y be a given
constraint mapping; let the composite mapping (f, g) : S → R × Y be convex-like
with respect to product cone R+ × C in R × Y . Let the constraint set be given as
K := {v ∈ S : g(v) ∈ −C} which is assumed to be nonempty. Let the ordering cone
C have a nonempty interior int (C). If the primal problem

min
v ∈ S

g(v) ∈ −C

f (v) (35)

is solvable and the generalized Slater condition is satisfied, namely there is a vector
v̂ ∈ S with g(v̂) ∈ −int (C), then the dual problem

max
μ∈C∗ inf

v∈S
[f (v) + μ(g(v))] (36)

is also solvable and the extremal values of the two problems are equal. Moreover, if u
is the optimal solution to problem (35) and μ ∈ C∗ is a solution of the problem (36),
it results

μ(g(u)) = 0. (37)
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Theorem 12 Under the same assumptions as above, suppose the ordering cone
C to be closed. Then a point (u, μ) ∈ S × C∗ is a saddle point of the Lagrange
functional L if and only if u is a solution of the primal problem (35), μ is a solution
of the dual problem (36) and the extremal values of the two problems are equal.

Indeed, let u ∈ K∩W 2,p(Ω) be the solution to (33). Let us rewrite the variational
inequality (33) as the minimum problem

min
v∈K

f (v) = f (u) = 0 (38)

where

f (v) =
∫

Ω

(L u − F)(v − u) dx.

Let us set S = X = H
1,∞
0 (Ω), Y = L∞(Ω),

f (v) : H
1,∞
0 (Ω) → R,

g(v) =
n∑

i=1

(
∂v

∂xi

)2

− 1 : H
1,∞
0 (Ω) → L∞(Ω),

C = {w ∈ L∞(Ω) : w ≥ 0} = {w ∈ L∞(Ω) : w(x) ≥ 0 a.a. x ∈ Ω}.

Since f and g are convex on the space H
1,∞
0 (Ω), then the composite mapping

(f, g) is convex-like with respect to the product cone R+×C in R×Y . Moreover, we
are able to prove that int (C) �= ∅ and that generalized Slater condition is verified.
Then, every assumption of Theorem 11 is verified and, since the primal problem is
solvable, it follows that the dual problem

max
μ∈C∗ inf

v∈S
[f (v) + μ(g(v))] (39)

is also solvable and the extremal values of the two problems coincide. Moreover, if
u is a solution of the problem (38) and μ ∈ C∗ is a solution of the problem (39),
condition (37) holds, namely

μ(g(u)) = 0. (40)

Finally, since the ordering cone C is closed, we may apply Theorem 12, from
which it follows

∫
Ω

(L u − F)ϕ dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi

〉. (41)
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In conclusion, since

C∗ = {μ ∈ (L∞(Ω))∗ : μ(y) ≥ 0 ∀y ∈ C}
= {μ ∈ (L∞(Ω))∗ : μ(y) ≥ 0 ∀y ∈ L∞(Ω), y(x) ≥ 0 a.a. x ∈ Ω},

from (40), (41) we obtain that, if u is a solution of (33), then of the primal
problem (38), there exists μ ∈ C∗ solution of the dual problem (39) and the
following conditions are satisfied:

〈μ, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;

〈μ,

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)
〉 = 0

∫
Ω

(L u − F)ϕ dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi

〉 ∀ϕ ∈ H
1,∞
0 (Ω),

namely, Theorem 10 is proved.
Moreover, if μ ∈ (L∞(Ω))∗, μ can be expressed by a Radon’s integral with

respect to the finitely additive measure Ψ :

μ(v) =
∫

Ω

v(x)Ψ (dx).

Ψ is finitely additive, has a bounded total variation and is absolutely continuous
with respect to the Lebesgue measure, that is m(B) = 0 implies Ψ (B) = 0.

From this properties of μ and conditions (34) it is possible to prove that the
solution of variational inequality (33) is also a solution of the elastic plastic torsion
problem and vice versa.

In order to obtain a regularization of this result, namely to obtain the existence of
a Lagrange multiplier for variational inequality (33) as a L∞ function, it is necessary
to consider the convex set K in H 1

0 (Ω), that is

K∇ =
{

v ∈ H 1
0 (Ω) :

n∑
i=1

(
∂v

∂xi

)2

≤ 1 a.e. on Ω

}
.

But in this case the interior of the ordering cone, which defines the sign constraints,
is empty, then it is not possible to apply the classical strong duality theory. It is
necessary to apply the new strong duality principle described in Sect. 1.1 and, then,
we obtain the following characterization in terms of Assumption S of the elastic-
plastic torsion problem (see Theorem 3.4 in [19]).

Theorem 13 Let u ∈ K∇ ∩ W 2,p(Ω) be the solution to problem

∫
Ω

L u(v − u) dx ≥
∫

Ω

F(v − u) dx, ∀v ∈ K∇ . (42)
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Then there exists μ̄ ∈ L∞(Ω) such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ̄ ≥ 0

μ̄

(
1 −

n∑
i=1

(
∂u

∂xi

)2
)

= 0 a.e. in Ω

Lu − F = 2
n∑

i=1

∂

∂xi

(
μ̄

∂u

∂xi

)
in the sense of distributions

(43)

if and only if the solution u of (42) verifies Assumption S.

The theorem means that, if the solution of (42) verifies Assumption S, then
conditions (43) are satisfied, that is the solution of (42) is a solution of the elastic-
plastic torsion problem; vice versa if u ∈ W 2,p(Ω) verifies (43), and, then, in
particular, is a solution of the elastic-plastic torsion problem, then u solves (42)
and verifies Assumption S.

The thesis is achieved rewriting the variational inequality (42) as the minimum
problem

min
v∈K∇

f (v) = f (u) = 0 (44)

where

f (v) =
∫

Ω

(L u − F)(v − u) dx (45)

with the settings

f (v) : H 1
0 (Ω) → R

g(v) =
n∑

i=1

(
∂v

∂xi

)2

− 1 : H 1
0 (Ω) → L1(Ω)

C = {w ∈ L1(Ω) : w ≥ 0}
M̃ = {(ψ(v) + α, g(v) + w) : v ∈ H 1

0 (Ω) \ K∇ , α ≥ 0, w ∈ C
}
.

Assuming that Assumption S holds, from Theorem 1 it follows that there exists
μ̄ ∈ C∗ = {μ ∈ L∞(Ω) : ∫

Ω
μv dx ≥ 0, ∀v ∈ L1(Ω)

}
such that

μ̄

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)
= 0 a.e. in Ω. (46)

Then the thesis is obtained using Theorem 2 and (46). Vice versa assuming that
conditions (43) hold, it is possible to show that u verifies Assumption S and, finally,
it is easy to verify that u is a solution to variational inequality (42).
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3.3 The Elastic-Plastic Torsion Problem for Nonlinear
Monotone Operators

Second, we are aimed at the investigation of the existence of Lagrange multipliers
associated to the following nonlinear problem (see [7] for the existence and the
regularity of solutions to (47)):

Find u ∈ K :
∫

Ω

n∑
i=1

ai(Du)

(
∂v

∂xi

− ∂u

∂xi

)
dx ≥

∫
Ω

F(v − u)dx, ∀v ∈ K.

(47)
In particular, we are able to prove that the Lagrange multiplier is always a Radon

measure when the operator is strictly monotone, whereas the Lagrange multiplier is
a Lp function when the operator is strongly monotone (see [32]). The first result is
proved using classical strong duality theory, whereas for the second one we apply
the new strong duality theory described in Sect. 1.1.

From now on we assume that Ω ⊂ R
n is an open bounded convex set with

Lipschitz boundary ∂Ω and a is an operator of class C2. In a first step we suppose
that the operator is strictly monotone, namely

(a(P ) − a(Q), P − Q) > 0 ∀P,Q ∈ R
n, P �= Q. (48)

In a first theorem we are able to prove the equivalence between elastic-plastic
torsion problem and obstacle problem.

Theorem 14 Under the above assumptions on Ω and a, if a(0) = 0 and F ≡
const., the solution u of (47) coincides with the solution of

Find u ∈ Kδ :
∫

Ω

n∑
i=1

ai(Du)

(
∂v

∂xi

− ∂u

∂xi

)
dx ≥

∫
Ω

F(v − u)dx, ∀v ∈ Kδ,

(49)
where

Kδ =
{
v ∈ W

1,∞
0 (Ω) : |v(x)| ≤ δ(x) = dist (x, ∂Ω) a.e. on Ω

}
.

In a second theorem we prove the existence of Lagrange multipliers for prob-
lem (47) as a Radon measure.

Theorem 15 Under the above assumptions on Ω and a, let F ∈ Lp(Ω), p > 1,
and u ∈ K be the solution to (47). Then there exists μ ∈ (L∞(Ω))∗ such that
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈μ, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;
〈μ,

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)
〉 = 0;

∫
Ω

{
n∑

i=1

ai(Du)
∂ϕ

∂xi

− Fϕ

}
dx = 〈μ,−2

n∑
i=1

∂u

∂xi

∂ϕ

∂xi

〉 ∀ϕ ∈ W
1,∞
0 (Ω).

(50)

From conditions (50) it follows that, if u belongs to the elastic region E, μ ≡ 0
and then u is a solution of the elliptic equation Au = F a.e. in Ω , where A =
−∑n

i=1
∂ai (Du)

∂xi
and, in particular, a solution of (47) solves the elastic-plastic torsion

problem. Conversely it is easily proved that, if u ∈ K satisfies conditions (50), then
u solves variational inequality (47).

The proof of Theorem 15 is based on the following steps. First we rewrite
variational inequality (47) as the minimum problem

min
v∈K

f (v) = f (u) = 0 (51)

where

f (v) =
∫

Ω

{
n∑

i=1

ai(Du)

(
∂v

∂xi

− ∂u

∂xi

)
− F(v − u)dx

}
. (52)

Then, setting S = X = W
1,∞
0 (Ω), Y = L∞(Ω),

f (v) : W
1,∞
0 (Ω) → R

g(v) =
n∑

i=1

(
∂v

∂xi

)2

− 1 : W
1,∞
0 (Ω) → L∞(Ω),

as in the linear case (see [29, 30]) we are able to prove that the assumptions of
Theorems 11 and 12 hold. Consequently, if u is a solution of (47), then of the
problem (51), there exists μ ∈ C∗ solution of the dual problem

max
μ∈C∗ inf

v∈S
[f (v) + 〈μ, g(v)〉] (53)

and (u, μ) is a saddle point of the so called Lagrange functional

L(v,μ) = f (v) + 〈μ, g(v)〉, ∀v ∈ W
1,∞
0 (Ω),∀μ ∈ C∗,

namely

L(u,μ) ≤ L(u,μ) ≤ L(v,μ), ∀v ∈ W
1,∞
0 (Ω),∀μ ∈ C∗. (54)
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Via variational arguments we obtain that

∫
Ω

{
n∑

i=1

ai(Du)
∂ϕ

∂xi

− f ϕ

}
dx = 〈μ,−2

n∑
i=1

∂u

∂xi

∂ϕ

∂xi

〉 ∀ϕ ∈ W
1,∞
0 (Ω).

(55)
Then from (37), (55), we obtain conditions (50).
If now we assume strong monotonicity assumption

(a(P ) − a(Q), P − Q) > ν‖P − Q‖2 ∀P,Q ∈ R
n, P �= Q, (56)

we are able to prove the following regularization theorem concerning Lagrange
multipliers.

Theorem 16 Under the same assumptions on Ω as above, let a satisfy strong
monotonicity assumption (56), with a(0) = 0, let F be a positive constant and
u ∈ K ∩ W 2,p(Ω) be the solution to problem (47). Then there exists μ̄ ∈ Lp(Ω)

such that ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ̄ ≥ 0 a.e. in Ω

μ̄

(
1 −

n∑
i=1

(
∂u

∂xi

)2
)

= 0 a.e. in Ω

n∑
i=1

∂ai(Du)

∂xi

+ F = μ̄ a.e. in Ω.

(57)

Of course, as for the linear problem, it is easy to prove that, if u ∈ K and there
exists μ̄ satisfying (57), then u is also the solution to problem (47).

Let us notice that, if u is the solution to problem (47), in virtue of Theorem 14, it
is the solution of problem (49). In particular, since f ≡ const. > 0, a is monotone
and a(0) = 0, it is possible to prove that u is the solution of the problem

Find u ∈ K1 :
∫

Ω

n∑
i=1

ai(Du)

(
∂v

∂xi

− ∂u

∂xi

)
dx ≥

∫
Ω

f (v − u)dx, ∀v ∈ K1,

(58)
where

K1 =
{
v ∈ W

1,∞
0 (Ω) : 0 ≤ v(x) ≤ δ(x) = dist (x, ∂Ω) a.e. on Ω

}
.

Finally, we are able to prove that the elastic region coincides with the set where
u does not touch the obstacle, namely

Theorem 17 Under the same assumptions on Ω , a and f as in Theorem 16, setting

I = {x ∈ Ω : u(x) = δ(x)},

Λ = {x ∈ Ω : u(x) < δ(x)}
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it results

P = {x ∈ Ω : |Du| = 1} = I,

E = {x ∈ Ω : |Du| < 1} = Λ.

In order to prove Theorem 16, we should apply strong duality theory in the case
X = S = H 1

0 (Ω), but in this case, as we already observed, the ordering cone
C = {w ∈ L1(Ω) : w(t) ≥ 0 a.e. in Ω} has an empty interior, then the classical
strong duality theory cannot be applied.

It is necessary to use the new strong duality theory described in Sect. 1.1.
To this end, let us consider variational inequality (47) under assumption (56)

and let u ∈ K be the solution to (47). From the regularity results in [7] it follows
that, if F ∈ Lp(Ω), 1 < p < ∞, u belongs to W 2,p(Ω) ∩ K . In particular, if
p > n, Du belongs to C0,α(Ω). From Theorem 14, it follows that u is a solution
to problem (49). Since strong monotonicity holds and u is regular, it also solves the
problem

Find u ∈ K1
δ :
∫

Ω

n∑
i=1

ai(Du)

(
∂v

∂xi

− ∂u

∂xi

)
dx ≥

∫
Ω

f (v − u)dx, ∀v ∈ K1
δ ,

(59)
where

K1
δ =

{
v ∈ H 1

0 (Ω) : |v(x)| ≤ δ(x) a.e. on Ω
}

.

Moreover, since f is positive and a monotone, with a(0) = 0, u is also the
solution to

Find u ∈ K2 :
∫

Ω

n∑
i=1

ai(Du)

(
∂v

∂xi

− ∂u

∂xi

)
dx ≥

∫
Ω

f (v − u)dx, ∀v ∈ K2,

(60)
where

K2 =
{
v ∈ H 1

0 (Ω) : 0 ≤ v(x) ≤ δ(x) a.e. in Ω
}

.

Now, we may rewrite problem (60) as an optimization problem. Let us set

f (v) =
∫

Ω

(Au − F) (v − u) dx, v ∈ K2, (61)

where

A = −
n∑

i=1

∂ai(Du)

∂xi

.
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As we already observed, u ∈ K2 ∩ W 2,p(Ω) is the solution of (60) and let us
remark that

min
v∈K2

f (v) = f (u) = 0. (62)

We are able to prove that, assuming

X = Y = L2(Ω), C = C∗ =
{
v ∈ L2(Ω) : v(x) ≥ 0 a.e. in Ω

}
, g(v) = v − δ,

the optimization problem (62) fulfills Assumption S. Then the strong duality and
Theorem 2 hold, from which we get, via variational arguments, that there exists
μ ∈ C such that

Au − F + μ = 0 a.e. in Ω, (63)

μ(x)(u(x) − δ(x)) = 0 a.e. in Ω. (64)

From Theorem 17, that is achieved using delicate tools of nonlinear partial
differential equations, conditions (57) follow.

Remark 3 Another way to reach the strong duality is to verify Assumption NES.
Indeed, in this particular setting, our map

ϕ : L2(Ω) −→ R

is defined by

ϕ(α) = inf
v∈H 1

0 (Ω)

0≤v≤δ+α

∫
Ω

(Au − F)(v − u)dx. (65)

In particular, in virtue of (61),

ϕ(θL2(Ω)) = inf
v∈H 1

0 (Ω)

0≤v≤δ

f (v) = inf
v∈K2

f (v) = f (u) = 0, (66)

then it results

∂ϕ(θL2(Ω)) =
{
ϕ∗ ∈ L2(Ω) : ϕ(α) ≥ 〈ϕ∗, α〉 ∀α ∈ L2(Ω)

}
, (67)

and we are able to prove that, setting μ = (Aδ − f ) · χ{x∈Ω: u(x)=δ(x)},

μ ∈ ∂ϕ(θL2(Ω)).

In any case, the strong duality holds.
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3.4 Von Mises Functions

We now provide an example of the so-called “Von Mises functions”, namely of
solutions of the elastic-plastic torsion problem, associated to nonlinear monotone
operators, which are not obtained by means of the obstacle problem in the case
F = constant .

We consider an operator a(p) : R
n → R

n, of class C2, strictly mono-
tone. Let Ω ⊆ R

n with boundary ∂Ω ∈ C2,1 = W 3,∞, P = Γμ =
{x ∈ Ω : δ(x) = d(x, ∂Ω) < μ}, E = Ω \ P .

As it is well known μ can be chosen in such a way that for every x ∈ Γμ there
is a unique closest point from ∂Ω to x and δ(x) owns the same regularity of ∂Ω on
Γμ. Then δ(x) ∈ W 3,p(P ), ∀p > 1, and its trace δ/∂P ∈ W 3−1/p,p(∂P ).

Let

F(x) =
n∑

i=1

Diai(Dδ) − Δδ(x) a.e. in P

and w(x) ∈ W 3,p(E), ∀p > 1, the solution of⎧⎪⎨
⎪⎩

n∑
i=1

Diai(Dw) = 0 a.e. in E

w(x) = δ(x) on ∂E.

We can directly prove that, in E, G(Dw) = |Dw|2 − 1 verifies

∑
i,j

∂

∂xi

[
∂ai(Dw)

∂pj

∂

∂xj

G(Dw)

]
≥ 0.

Then we may apply maximum principle to G(Dw), from which it follows
|Dw| < 1 in E.

The function u(x) ∈ W 2,p(Ω), ∀p > 1,

u(x) =
{

δ(x) x ∈ P

w(x) x ∈ E

arises.
Setting

F̃ (x) =
{

F(x) x ∈ P

0 x ∈ E,

it results

n∑
i=1

Diai(Du) − F̃ (x) =
{

Δδ(x) x ∈ P

0 x ∈ E,
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namely

n∑
i=1

Diai(Du) − F̃ (x) =
n∑

i=1

∂

∂xi

(
χP (x)

∂u

∂xi

)
a.e. in Ω.

Moreover

χP (x)(|Du|2 − 1) = 0,

and by means of maximum principle we can prove

|Du| ≤ 1,

that is u is a solution of an elastic-plastic torsion problem.

3.5 Radial Solutions

Finally, we search for radial solutions to the elastic-plastic torsion problem,
assuming the free term to belong to Lp(Ω) (see [33]). In particular, for n = 2,
we investigate the nature of the torsion and when the transition from the elastic case
to the plastic one happens. We are able to find the explicit solution u ∈ W 2,p(Ω)

and the Lagrange multiplier μ ∈ Lp(Ω) in the two admissible cases, namely, when
the elastic and the plastic regions both exist and when the torsion is only elastic.
Moreover, we characterize the free boundary and obtain a necessary and sufficient
condition in order that the plastic region exists. Finally, we provide some examples.

To this aim, let us assume that Ω is the ball of Rn of radius 1 centered at the
origin, and F ∈ Lp(Ω), p > n, is of radial type, namely F(x) = f (|x|) = f (ρ),
with |x| = ρ.

We search for solutions to (43) such that u(x) ∈ W 2,p(Ω) and μ(x) ∈ Lp(Ω)

are of radial type, namely μ(x) = μ(|x|) = μ(ρ), u(x) = ϕ(|x|) = ϕ(ρ). In this
case, since u(x) = ϕ(ρ), ∂u

∂xi
= ϕ′(ρ)

xi

ρ
, Δu = ϕ′′ + n−1

ρ
ϕ′(ρ), |Du| = ϕ′(ρ),

bearing in mind that u ∈ K , conditions (43 ) become

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|ϕ′(ρ)| = 1; μ(ρ) ≥ 0 a.e. in [0, 1];
μ(ρ)

(
1 − |ϕ′(ρ)|) = 0 a.e. in [0, 1];

−ϕ′′(ρ) − n − 1

ρ
ϕ′(ρ) −

n∑
i=1

∂

∂xi

(
μ

∂u

∂xi

)
= f (ρ).

(68)

Under the following assumptions: there exists ρ ∈ (0, 1) such that

∫
Cρ(0)

F (x)dx

|∂Cρ(0)| = 1, (69)
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where Cρ(0) is the closed ball of radius ρ centered at the origin, namely∫ ρ

0
ρf (ρ)dρ = ρ, (70)

and

ρf (ρ) ≥ 0 is a nondecreasing function in [0, 1], (71)

we are able to prove the following result.

Theorem 18 Under conditions (69), (71), the region [0, ρ] is an elastic region and
the region [ρ, 1] is a plastic region. Moreover, the solution ϕ to (68) is

ϕ(ρ) =
⎧⎨
⎩ 1 − ρ +

∫ ρ

ρ

1

t

∫ t

0
σf (σ)dσdt ρ ∈ [0, ρ]

1 − ρ ρ ∈ (ρ, 1],
(72)

and it results to be ϕ(ρ) ∈ W 2,p(0, 1) and μ(ρ) ∈ Lp(0, 1).

If Eq. (70) does not admit any solution ρ ∈ (0, 1), namely ∀ρ ∈ (0, 1)

1

ρ

∫ ρ

0
σf (σ)dσ < 1 or

1

ρ

∫ ρ

0
σf (σ)dσ > 1,

the plastic region does not exist. The case

1

ρ

∫ ρ

0
σf (σ)dσ > 1 ∀ρ ∈ (0, 1)

is not admissible, since it implies

ϕ′(ρ) < −1 ∀ρ ∈ (0, 1).

Then, we are able to prove the following result.

Theorem 19 Under condition (71), if

1

ρ

∫ ρ

0
σf (σ)dσ < 1 ∀ρ ∈ (0, 1),

then, [0,1] is an elastic region. Moreover, the solution ϕ to (68) is

ϕ(ρ) =
∫ 1

ρ

1

t

∫ t

0
σf (σ)dσdt ∀ρ ∈ [0, 1]. (73)

It results to be ϕ(ρ) ∈ W 2,p(0, 1).
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Example 3 Let us consider a first example, namely F = const = k > 0. In this
case we obtain the same results as in [48], p. 15.

If we consider a first case, F = k > 2, the plastic region exists, since

lim
ρ→0+

∫ ρ

ρ

kσdσ = k

2
ρ2,

namely, ρ = 2
k

< 1 is the solution to (70).
Then, by (72) we get the continuous function

ϕ(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

k

4

[
(1 − ρ2) − (1 − 2

k
)2
]

in E = [0, 2
k
)

1 − ρ in P = [ 2
k
, 1].

It is easily seen that u ∈ W 2,p(Ω).
Moreover, the Lagrange multiplier μ(ρ) exists and belongs to Lp([0, 1]):

μ(ρ) =
{

k
ρ

2
− 1 ≥ 0 in P = [ 2

k
, 1]

0 ∈ E = [0, 2
k
).

If we consider the other case F = const = k, 0 < k ≤ 2, the plastic region does
not exist, since ρ = 2

k
≥ 1 is the solution to (70).

Then, the torsion is all elastic and by (73) we get the continuous function

ϕ(ρ) = k

4
(1 − ρ2). (74)

ϕ(ρ) as in (74) and μ = 0 verify conditions (68) in [0, 1]. Moreover u ∈ W 2,p(Ω).

Let us now consider problem (68) with f (ρ) = k

ρα
, 0 < α < 1.

The condition α < 1 ensures that F(x) ∈ Lp(Ω), 2 = n < p < 2
α

. Moreover,
condition (71) is verified.

If we consider the case k > 2 − α, the plastic region exists, since

lim
ρ→0+

∫ ρ

ρ

σf (σ ) dσ = k

2 − α
ρ2−α

namely, ρ =
(

2−α
k

) 1
1−α

< 1 is the solution to (70).

Then, by (72) we get the continuous function

ϕ(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
(

2 − α

k

) 1
1−α + k

(2 − α)2

(
2 − α

k

) 2−α
1−α − k

(2 − α)2
ρ2−α in E = [0, ρ)

1 − ρ in P = [ρ, 1].

It is easily seen that u ∈ W 2,p(Ω).
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Moreover, the Lagrange multiplier μ(ρ) exists and belongs to Lp([0, 1]):

μ(ρ) =
⎧⎨
⎩

k

2 − α
ρ1−α − 1 ≥ 0 in P = (ρ, 1]

0 in E = [0, ρ].

Finally, if we consider the other case 0 < k ≤ 2 − α, the plastic region does not

exist, since ρ =
(

2−α
k

) 1
1−α ≥ 1 is the solution to (70).

Then, the torsion is all elastic and by (73) we get the continuous function

ϕ(ρ) = k

(2 − α)2 (1 − ρ2−α) ∀ρ ∈ [0, 1]. (75)

ϕ(ρ) as in (75) and μ = 0 verify conditions (68) in [0, 1]. Moreover, u ∈
W 2,p(Ω).
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