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1 Introduction

The investigation of electromagnetic (EM) problems is directly connected to
the solution of Maxwell’s equations, which is, in most cases, obtained using
computational methods, as analytical techniques can be practically applied only
when specific or ideal conditions are satisfied. Especially when dynamic phenomena
need to be considered, the corresponding studies are commonly performed in the
time domain, and the finite-difference time-domain (FDTD) method constitutes one
of the most popular choices [1, 2]. Of course, other alternatives also exist, such as
the finite-element time-domain method [3], the discontinuous Galerkin time-domain
approach [4], or techniques based on integral equation methods [5]. The FDTD
scheme is well-known for its attractive features, which include the simplicity of
implementation, the explicit character (i.e. no matrix inversions are required), the
ability to model a wide range of material properties, its parallelization potential on
multi-core systems, etc. Furthermore, a number of extensions and improvements
of the standard formulation have been proposed through the years, including
high-order formulations [6], subgridding techniques [7], perfectly-matched layers
for absorbing boundary conditions [8], hybrid schemes with other discretization
methods [9], thin-wire formulations [10], surface-impedance boundary conditions
[11], etc.
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In its original formulation, the standard FDTD method is well-suited for linear
EM problems. In fact, the vast majority of pertinent FDTD applications and
the corresponding extensions have been mainly targeted towards cases without
nonlinearities. On the other hand, several nonlinear EM problems are of significant
engineering interest, including (but not restricted to) configurations operating at
optical frequencies, such as optical fibers, switches, resonators, filters, couplers,
multiplexers, and splitters, which constitute fundamental parts of modern and
future communication, signal-processing, and transmission systems. The constantly
increasing research regarding the aforementioned applications has triggered the
development of FDTD approaches for the study of the corresponding nonlinear
EM phenomena. Apart from the above-mentioned advantages, FDTD formula-
tions do not require any special conditions for their application, in order to
provide consistent results. For this reason, the full-wave FDTD solutions are
commonly more preferable than other approximate (less generic) models, such as
the nonlinear Schrödinger equation (an asymptotic envelope equation) [12] or the
beam-propagation technique (based on the paraxial wave equation) [13].

More specifically, the most common case of EM nonlinearities pertains to the
response of materials. In such cases, the material constitutive parameters exhibit a
dependence on the intensity of the electric or the magnetic field. This behavior gives
rise to a complicated form for the polarization P, which is related to the electric-field
intensity E and dielectric displacement D via

D = ε0E + P (1)

where ε0 is the electric permittivity of vacuum. The behavior of nonlinear media
can be described via the following general formula for the polarization’s compo-
nents [14]:

Pi =
∑

j

χ
(1)
ij Ej + 2

∑

j,k

χ
(2)
ijkEjEk + 4

∑

j,k,l

χ
(3)
ijklEjEkEl + . . . (2)

where χ(1) stands for the linear susceptibility and χ(2), χ(3), . . . denote nonlinear
susceptibilities with increasing orders.1 Two of the most characteristic pertinent
phenomena are the Kerr effect and Raman scattering, which are related to the
third-order nonlinear susceptibility models. Regarding the latter, the corresponding
relation between the polarization and the electric-field intensity is described in the
time domain by

PNL(r, t) = ε0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
χ(3)(t − τ1, t − τ2, t − τ3)E(r, τ1)

× E(r, τ2)E(r, τ3)dτ1dτ2dτ3 (3)

1In the simple—quite common—case of linear materials, it is P = ε0χ
(1)E.
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which clearly poses significant challenges in terms of implementation in the context
of an efficient time-domain computational scheme. Apart from that, other forms of
nonlinearities will be also considered in the present analysis.

In this chapter, we provide a review of selected FDTD-related works that
present formulations suitable for EM problems exhibiting nonlinear behavior in
at least one of their aspects. Although the pertinent literature has become quite
vast over the years, it is our opinion that the current collection covers a significant
number of important contributions for nonlinear problems, and extends previous
related reviews such as those found in [14–16]. Specifically, [15] summarizes the
main extensions of the FDTD method to nonlinear optics up to 1997, while [14]
presents a more general review of complex material models, where a small part is
devoted to the works pertinent to nonlinear media. Furthermore, [16] compares the
performance of two existing FDTD approaches that are suitable for modeling the
instantaneous Kerr effect. Without proceeding to a high level of detail, we provide
all the necessary information that one needs to have at hand, in order to understand
the main gist of each methodology and recognize the applications that the examined
approach is suitable for. In addition, a quick reference to the test problems that the
examined methods were implemented to is given. With the current study, a sufficient
description of the specific research area is provided, which can be useful for those
not previously familiar with nonlinear EM problems. It can also serve as a starting
point for researchers that wish to engage into the computational study of nonlinear
EM phenomena using FDTD techniques. Before proceeding to the main part of this
work, a short description of the original FDTD formulation that is suitable for linear
problems is provided.

2 FDTD Discretization of Linear Electromagnetic Problems

We begin by briefly introducing the standard FDTD methodology for linear EM
phenomena, which is currently considered a widely accepted numerical tool for
performing reliable simulation studies. In the case of linear, isotropic, and non-
dispersive materials, Maxwell’s equations take the form

∇ × E = −∂B
∂t

− Mc − Ms (4)

∇ × H = ∂D
∂t

+ Jc + Js (5)

where E is the electric-field intensity, H is the magnetic-field intensity, D = εrε0E
is the electric-flux density, B = μrμ0H is the magnetic-flux density, Jc = σE
and Mc = σ̃H denote the electric and magnetic conductivity current densities,
respectively, Js and Ms denote the electric- and magnetic-current source terms,
respectively, σ is the electric conductivity, σ̃ stands for the magnetic conductivity, ε0
is the electric permittivity in free space, μ is the magnetic permeability in free space,
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εr is the relative electric permittivity, and μr is the relative magnetic permeability.
The standard FDTD formulation considers the field values located at nodes that are
organized according to a dual staggered spatial grid, at distances of Δx,Δy,Δz

along x, y, z axes, respectively. Specifically, the primary grid is used for the electric

field components, with the following arrangement: Ex is located at
(
i + 1

2 , j, k
)

nodes, Ey at
(
i, j + 1

2 , k
)

, and Ez at
(
i, j, k + 1

2

)
nodes.2 In a similar fashion,

the magnetic-field components are located at nodes of the secondary grid, and are

organized according to: Hx on
(
i, j + 1

2 , k + 1
2

)
, Hy on

(
i + 1

2 , j, k + 1
2

)
, and Hz

on
(
i + 1

2 , j + 1
2 , k
)

. The time axis is also discretized with steps equal to Δt , with

the electric components computed at time instants described by (nΔt), while the

magnetic components are computed at
(
n + 1

2

)
time instants.

In order to discretize Maxwell’s equations, second-order finite-difference
approximations are implemented for both space and time derivatives. Consider,
for example, the equation

ε
∂Ex

∂t
= ∂Hz

∂y
− ∂Hy

∂z
− σEx − Jsx (6)

which is one of the six scalar equations that the two vector equations (4), (5) can
be decomposed. The approximating formulae for the three appearing derivatives at

node
(
i + 1

2 , j, k
)

and time instant
(
n + 1

2

)
are:

∂Ex

∂t
�

Ex |n+1
i+ 1

2 ,j,k
− Ex |n

i+ 1
2 ,j,k

Δt
(7)

∂Hz

∂y
�

Hz|n+ 1
2

i+ 1
2 ,j+ 1

2 ,k
− Hz|n+ 1

2

i+ 1
2 ,j− 1

2 ,k

Δy
(8)

∂Hy

∂z
�

Hy

∣∣n+ 1
2

i+ 1
2 ,j,k+ 1

2
− Hy

∣∣n+ 1
2

i+ 1
2 ,j,k− 1

2

Δz
(9)

In addition, the following averaging formula for the conductivity current is intro-
duced:

σEx � 1

2
σ |

i+ 1
2 ,j,k

(
Ex |n+1

i+ 1
2 ,j,k

+ Ex |n
i+ 1

2 ,j,k

)
(10)

2The convention f (iΔx, jΔy, kΔz, nΔt) = f |ni,j,k is used in this work.
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Once the aforementioned expressions are substituted in (6), the update equation for
Ex at each time instant is obtained:

Ex |n+1
i+ 1

2 ,j,k
=

2ε|
i+ 1

2 ,j,k
− σ |

i+ 1
2 ,j,k

Δt

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
Ex |n

i+ 1
2 ,j,k

+ 2Δt

Δy
(

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
)
(

Hz|n+ 1
2

i+ 1
2 ,j+ 1

2 ,k
− Hz|n+ 1

2

i+ 1
2 ,j− 1

2 ,k

)

− 2Δt

Δz
(

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
)
(

Hy

∣∣n+ 1
2

i+ 1
2 ,j,k+ 1

2
− Hy

∣∣n+ 1
2

i+ 1
2 ,j,k− 1

2

)

− 2Δt

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
Js,x

∣∣n+ 1
2

i+ 1
2 ,j,k

(11)

The same procedure is applied to the remaining five equations, so that an equal
number of discrete update formulae is derived, which determine the problem’s
interior discretization scheme. In this way, the required components are calculated
in an explicit fashion, without necessitating—computationally expensive—system
solutions in every iteration. Furthermore, the update procedure is conditionally
stable, with the time-step size bounded by the well-known stability limit

Δt ≤ 1

c0

√
1

Δx2 + 1
Δy2 + 1

Δz2

(12)

where c0 = 1/
√

με is the free-space speed of light.
As far as the boundary conditions are concerned, these are implemented accord-

ing to the physics of the problem under consideration. For instance, absorbing
boundary conditions are applied in the case of open (radiation) problems, homoge-
neous Dirichlet conditions in case of waves guided by metallic structures, periodic
conditions for infinite configurations, symmetry conditions for size reduction of the
computational domain, etc.

3 FDTD Methodologies for Nonlinear Problems

3.1 Integration of Nonlinear Maxwell’s Equations
in 1D Setups

The first attempts to exploit the FDTD algorithm for the solution of the nonlinear
Maxwell’s equations can be traced back to 1992 and the works reported in [17,
18]. Specifically, the methodology presented therein investigates the simple case of
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1D wave propagation along the x-axis considering nonlinear instantaneous effects,
where Ez and Hy are the components of the electric-and magnetic-field intensities,
respectively. In this manner, the study of optical solitons with extended bandwidths
becomes possible. The equations that describe the problem under investigation are:

μ0
∂Hy

∂t
= ∂Ez

∂x
(13)

∂Dz

∂t
= ∂Hy

∂x
(14)

Dz = ε0ε∞Ez + Pz (15)

where ε∞ is the relative permittivity at infinite frequency (the rest of the terms have
been explained previously). The polarization comprises a linear and a nonlinear part:

Pz = P L
z + P NL

z (16)

The (first-order) linear term is described by

P L
z =

∫ +∞

−∞
χ(1)(t − τ)Ez(x, τ ) dτ (17)

where χ(1) is the first-order susceptibility function. For the latter, Lorentz linear
dispersion is considered in [18], according to

χ(1)(t) = ω2
p

v0
e−δt/2 sin(v0t) (18)

with the corresponding permittivity described by

ε(ω) = ε∞ + χ(1)(ω) = ε∞ + ω2
0 (εs − ε∞)

ω2
0 − jδω − ω2

(19)

where ω2
p = ω2

0 (εs − ε∞) and ν2
0 = ω2

0 − δ2/4. The non-linear term P NL
z depends

on the third-order susceptibility function according to [19]

P NL
z = ε0χ

(3)Ez(x, t)

∫ +∞

−∞
g(t − τ)E2

z (x, τ ) dτ (20)

where

g(t) = αδ(t) + (1 − α)gR(t) (21)

gR(t) = τ 2
1 + τ 2

2

τ1τ
2
2

e
− t

τ2 sin

(
t

τ1

)
(22)
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In (21), the delta function represents Kerr non-resonant virtual electronic transitions
up to 1 fs, while the remaining part models transient Raman scattering. Parameter
α acts as a relative weight for Kerr and Raman interactions. After defining the
functions

F(t) = ε0

∫ t

0
χ(1)(t − τ)Ez(x, τ ) dτ (23)

G(t) = ε0

∫ t

0
gR(t − τ)E2

z (x, τ )dτ (24)

and differentiating the above two formulae, a couple of second-order nonlinear
equations is obtained, which are discretized with conventional finite differences and
solved simultaneously (Eqs. (13) and (14) are dealt with in a standard manner). For
instance, the equation pertinent to F is

1

ω2
0

d2F

dt2
+ δ

ω2
0

dF

dt
+
(

1 + εs − ε∞
ε∞ + αχ(3)E2

z

)
F + (εs − ε∞)(1 − α)χ(3)Ez

ε∞ + αχ(3)E2
z

G

= εs − ε∞
ε∞ + αχ(3)E2

z

Dz (25)

whose finite-difference analogue is

1

ω2
0

F |n+1
i − 2 F |ni + F |n−1

i

Δt2 + δ

ω2
0

F |n+1
i − F |n−1

i

2Δt

+
(

1 + εs − ε∞
ε∞ + αχ(3) E2

z

∣∣n
i

)
F |n+1

i + F |n−1
i

2

+ (εs − ε∞)(1 − α)χ(3) Ez|ni
ε∞ + αχ(3) E2

z

∣∣n
i

G|n+1
i + G|n−1

i

2

= εs − ε∞
ε∞ + αχ(3) E2

z

∣∣n
i

Dz|n+1
i + Dz|n−1

i

2
(26)

A similar result is obtained for the update of G. Evidently, values at two previous
time-steps need to be stored, and the latest value of Ez is obtained from

Ez = Dz − F − (1 − α) χ(3)EzG

ε0
(
ε∞ + αχ(3)E2

z

) (27)

The aforementioned nonlinear equation can be handled via an iterative Newton
procedure. The propagation of a single soliton, as well as the collision of two
solitons moving in different directions were simulated for the first time with this
methodology in [18].
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3.2 Multi-Dimensional Formulation with Applications

A FDTD methodology that solves Maxwell’s equations in a multi-dimensional (2D)
framework is presented in [20], where Lorentz linear dispersion as well as Raman
nonlinearity models are incorporated. Specifically, the former is described by

∂2PL

∂t2 + ΓL

∂PL

∂t
+ ω2

LPL = ε0χ0ω
2
LE (28)

while the latter is described by

∂2χNL

∂t2
+ ΓR

∂χNL

∂t
+ ω2

RχNL = εRω2
R|E|2 (29)

considering that P = PL + PNL = PL + ε0χ
NLE. The aforementioned equations

are combined with

∂

∂t
(μ0H) = −∇ × E (30)

∂

∂t
(εLE) = ∇ × H − ∂P

∂t
(31)

where εL is the linear permittivity. The proposed formulation differentiates from
earlier works that rely on the introduction of the effective quantities

εeff = εL + ε0χ
NL, σeff = ε0

∂

∂t
χNL (32)

The proposed methodology was applied in a problem of scattering of a pulsed
Gaussian beam, which is normally incident on a linear-nonlinear interface. It was
noted that propagation within the nonlinear medium resulted in self-focusing of the
beams, and the linear diffraction region and nonlinear effects were identified via the
intensity patterns in the focus region.

3.3 Transient Analysis Within a Nonlinear Magnetic Sheet

The FDTD solution of problems involving wave propagation within a significantly
conducting nonlinear magnetic medium is discussed in [21]. In essence, the case
of a saturable ferromagnetic material is considered, whose differential permeability
that describes the B − H characteristic curve is modeled by

dμ(H) = ∂B

∂H
= μm + Bs

Hc

e−|H |/Hc (33)
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where μm,Bs,Hc are known constants. The presence of the magnetic nonlinearity
affects only the magnetic-field update equation,

∂Ez

∂y
= −∂Bx

∂t
= −dμ(Hx)

∂Hx

∂t
(34)

which is easily transformed into a FDTD update equation using standard approxi-
mations:

Hx |n+1
j = Hx |nj − Δt

dμ
(
Hx |nj

)
Δy

(
Ez|n+ 1

2

j+ 1
2

− Ez|n+ 1
2

j− 1
2

)
(35)

Owing to the high conductivity of the considered medium, the current density term
in the corresponding discrete equation is computed from the most recent value
of E, in order to ensure stable simulations. Furthermore, to avoid computations
in free space that would weaken the stability, the fields are calculated only inside
the magnetic material. Such an approach necessitates the implementation of proper
boundary conditions, which are translated into second-order, one-sided, finite-
difference formulae, e.g.

Hx |n0 = 1

F

[
2 Einc|n + 1

2σΔy

(
4 Hx |n1 − Hx |n2

)]
(36)

where F = η0 + 3/(2σΔy) (η0 = √
μ0/ε0). It was also shown that the nonlinearity

plays the most significant role in the reduction of the maximum allowable time-
step size. In fact, due to the combination of the material’s nonlinearity and high
conductivity, the time-step size had to be reduced by 10–30 times with respect to
the Courant stability criterion, with smaller time-steps needed when the material is
governed by more intense nonlinearity.

3.4 Incorporating Active Device Models

The work of Toland et al. [22] presents a methodology that enables simulating
realistic devices incorporating active and nonlinear regions. Let us consider an active
device, like a resonant tunneling diode, with a junction capacitance C, a series
resistance R and a nonlinear current source F . The latter are translated into the
distributed parameters E and F(V s), considered for each grid cell. This actually
implies the cells within the active region can be treated as a voltage source, and the
total effect from all nodes in the active region is characteristic of the physical device.
It is well-known that voltage/current sources can be introduced into an FDTD
algorithm without difficulty, yet with a special attention to the overall stability of
the resulting scheme. Hence, we start from the fact that the voltage source is a
solution of

dVs

dt
+ Vs

RC
+ F(Vs)

C
= − Vin

RC
(37)
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For this equation to be solved, forward time average differencing can be utilized. To
this aim, the nonlinear current source is expanded in a Taylor series, as

F(Vs |n+1) ≈ F(Vs |n) + dF(Vs |n)
dV

[
Vs |n+1 − Vs |n

]
(38)

leading to

Vs |n+1 = A1 Vs |n − A2F(Vs |n) − A3Δy
[
Ey

∣∣n+1 + Ey

∣∣n
]

(39)

where

A1 = 2RC − Δt [1 − RdF(Vs)/dV ]

β
, A2 = 2RΔt

β
, A3 = Δt

β
(40)

with β = 2RC+Δt [1 + RdF(Vs)/dV ]. This outcome can then be plugged into the
FDTD algorithm. For example, bearing in mind a y-directed source, Ey is updated
according to

Ey

∣∣n+1 = ε/Δt − 0.5(1 − A3)/R

ε/Δt + 0.5(1 − A3)/R
Ey

∣∣n

+ 1

Δz [ε/Δt + 0.5(1 − A3)/R]

(
Hx |n+1/2

i,j+ 1
2 ,k+ 1

2
− Hx |n+1/2

i,j+ 1
2 ,k− 1

2

)

+ 1

Δx [ε/Δt + 0.5(1 − A3)/R]

(
Hz|n+1/2

i+ 1
2 ,j+ 1

2 ,k
− Hz|n+1/2

i− 1
2 ,j+ 1

2 ,k

)

− 1

2RΔy [ε/Δt + 0.5(1 − A3)/R]

[
(1 + A1) Vs |n − A2F(Vs |n)

]

(41)

The use of (39) in conjunction with (41), guarantees that no instabilities are to be
generated due to the nonlinear nature of the involved elements.

3.5 A Discrete Model for Magnetic Diffusion Problems

A possible alternative for problems involving slowly changing waveforms or
extended diffusion times is developed in [23]. Such problems pose certain com-
putational difficulties, due to the limiting Courant stability condition. As a study
example, we may consider an aluminum enclosure. At first, a transient field will
cause the appearance of eddy currents on the enclosure, which should lead to the
cancellation of the external excitation. If the aluminum were considered to be
a perfect conductor, the eddy currents would be characterized by long duration,
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similar to that of the transient field. Of course, these eddy currents are practically
characterized by a specific time constant, which depends on a number of factors,
such as the enclosure volume, the thickness and the conductivity of the wall. The
decay time can be of the order of 0.1 s, in case of an aluminum enclosure the
size of a large truck. If the duration of a magnetic pulse is much longer than
this value, the enclosure will behave as being magnetically transparent. However,
before this transparency takes place, any magnetic memory inside the enclosure
will be scrambled. In essence, the magnetic field penetrating the enclosure cannot
be treated solely in the context of a simple diffusion problem, at least in three
dimensions. In fact, when the magnetic field develops a component that is normal to
the surface of the enclosure, the corresponding problem should not be characterized
as diffusive. Furthermore, the fields in the enclosure satisfy Maxwell’s system, and
the appearance of eddy currents are a direct result of this property.

Problems involving steel enclosures are not much different than those with
aluminum enclosures. The main difference is that the steel’s permeability is likely
to prevent it from establishing a full magnetic transparency. Furthermore, nonlinear
effects will take place, considering the nonlinear relationship between B,H . On
the other hand, both enclosures will initially exclude interior magnetic fields, and
will allow magnetic fields to slowly appear into the interior. For studying these
phenomena, an implicit FDTD approach has been suggested.

Let us now consider a wave traveling along +x, with only Hy and Ez compo-
nents. As usual, air is represented by (ε0, μ0) and walls by (ε, μ, σ ). Moreover, E

will be computed at the air-wall interface. Regarding the grid, the x-axis is divided
into nodal points separated in air by Δx/2, while the spatial resolution in the walls
becomes δx/2. In air, the equation

∂Hy

∂x
= −ε0

∂Ez

∂t
(42)

can take the Crank-Nicolson FDTD form

E|n+1
i = E|ni − Δt

ε0Δx

[
λ
(
H |n+1

i+1 − H |n+1
i−1

)
+ (1 − λ)

(
H |ni+1 − H |ni−1

)]

(43)

Here, λ is a parameter that is set between 1/2 (center differences) and 1 (forward
differences) for implicit schemes. Equation (43) can be written in tridiagonal
form, as

− ai H |n+1
i+1 + bi E|n+1

i − ci H |n+1
i−1 = di (44)

where

ai = − λΔt

ε0Δx
, bi = 1, ci = λΔx

ε0Δt
, di = E|ni −(1−λ)

λΔt

μ0Δx
(H |ni+1−H |ni−1)

(45)
A corresponding set of equations can be deduced at even i with E,H , and μ0, ε0
interchanged. For λ �= 0, the two equation families allow all field samples to
be calculated simultaneously. If λ = 0 is selected, (43) becomes an explicit
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FDTD expression. In this case, E|i and H |i cannot be all advanced at the same
time. Moreover, at positions within the wall, (42) is modified by adding the term
−σE on the right side, and (44) needs to be altered by replacing (a, b, c, d) with
(A,B,C,D), where

Ai = −
( ε

Δt
− Λσ

)−1 λ

δx
= −Ci, Bi = 1,

Di =
ε

Δt
− (1 − Λ)σ
ε

Δt
+ Λσ

E|ni − 1(
ε

Δt
+ Λσ

)
δx

[
(1 − λ)

(
H |ni+1 − H |ni−1

)]
(46)

Here, Λ is another parameter that can be adjusted. It is noted that the coefficients
in (46) will produce numerical instabilities for “explicit” Λ values, if Δt is selected
higher than the Courant limit. Therefore, a consistent choice is to select Λ between
1/2 (center-differenced loss) and 1 (forward-differenced loss).

3.6 Calculation of Photonic Band Structures

The FDTD methodology of [24] is suitable for studying the photonic band structure
of a dielectric material, when Kerr-type nonlinearities are present. The algorithm
assumes field distributions (B and E) that are characterized by the wave vectors
k. The time-dependent Maxwell’s system is integrated to provide B(k, t). For a
specific k, Maxwell’s equations will also determine the appropriate frequency value.
In the case of nonlinear Kerr media, it is reminded that D = (

ε + χ |E|2)E. An
analytical solution for E is available for such a system. First, we take the square of
the magnitude the aforementioned formula, to find an equation for χ , i.e.

|χ |2x3 + 2 Re{ε ∗ χ}x2 + |ε|2x − |D|2 = 0 (47)

The solution to this cubic equation is known and its knowledge extremely useful, as
it can save computational time. The main question pertains to which root to consider,
among the available ones. The case we are studying (ε, χ have the same sign) is
quite simple, as there exists one positive real root, and x must be a positive real.
After x has been determined, E is given by

E = D
ε + χx

(48)

Computations are carried out by solving the system on a 3D lattice, with the curl
computed in k space. Such an approach can be more reliable than the standard
finite-difference approximation of the curl normally used in the FDTD method.
Furthermore, implementation of a staggered spatial grid (which adds programming
complexity) is avoided, and the periodic boundary condition is automatically
fulfilled, without requiring further modifications. The calculations evolve as follows
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(linear case):

B(k, t + Δt) = B(k, t) − jcΔtk × E(k, t + Δt/2) (49)

D(k, t + Δt/2) = D(k, t − Δt/2) + jcΔtk × B(k, t + Δt) (50)

E(r, t) = D(r, t)/ε(r) (51)

while (51) is replaced by the appropriate equation, for the nonlinear case. The split-
time scheme not only assures higher accuracy, but also is more economical in terms
of memory, as it is not necessary to preserve the field values at two subsequent
steps. Finally, B(k, t) is Fourier transformed to provide B(k, ω). To ensure that all
modes have been considered, B(k, t) is multiplied with a Gaussian function, with
a width half of that of 1/Δω (Δω is the frequency resolution). This action broaden
the peaks. As a source-free solution is required, the two divergence conditions
need to be satisfied. However, we still may select an arbitrary initial condition,
as the corresponding fields at later times will automatically satisfy the divergence
conditions (this can be verified by taking the divergence of Maxwell’s equations).
If the initial fields display nonzero divergence, they can be considered as fields
originating from static charges. Hence, they will be identified only at ω = 0. Note
that the resolution (Δk and Δω) of the calculation is mainly affected by two factors:
the grid size and the duration of integration.

3.7 Z-Transform-Based FDTD Formulation

The study of nonlinear phenomena using the FDTD method is also the subject
of [25], where techniques borrowed from digital filtering theory are implemented.
Similar to other works, the Kerr effect is described by the polarization term

PK(t) = ε0χ
(3)
0 αE3(t) (52)

and the term due to Raman scattering is given by

PR(t) = ε0χ
(3)
0 (1 − α)E(t)

∫ t

0
gR(t − τ)E2(τ ) dτ (53)

where

gR(ω) = 1

1 + j2δNL

(
ω

ωNL

)
−
(

ω
ωNL

)2 (54)

By defining the integral

IR(t) = ε0χ
(3)
0 (1 − α)

∫ t

0
gR(t − τ)E2(τ ) dτ (55)
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the implementation of the Z-transform yields

IR(z) = ε0
γRΔte−αRΔt sin(βRΔt)z−1

1 − 2e−αRΔt cos(βRΔt)z−1 + e−2αRΔtz−2
E2(z) (56)

where αR, βR, γR are known constant coefficients. If the compact notation IR(z) =
ε0z

−1SR(z) is introduced (which is equivalent to IR|n = ε0 SR|n−1 in the time
domain), then the update of SR is performed via

SR|n = cnl1 SR|n−1 − cnl2 SR|n−2 + cnl3

(
E2
)∣∣∣

n

(57)

where cnl1, cnl2, cnl3 are known coefficients. As the implementation of time
discretization dictates

PR(t) = E(t)IR(t) ↔ PR|n = E|n IR|n

then PR|n is computed from the preceding value of SR:

PR|n = ε0 E|n SR|n−1 (58)

and then the current value of the latter is obtained from E2, according to (57).
Regarding the Kerr effect, after considering a proper Taylor expansion of E3, we

are led to an update equation of the form

(
E|n)3 = 3

(
E|n−1

)2 (
E|n)− 2

(
E|n−1

)3
(59)

which enables the computation of the corresponding polarization term PK |n
from (52). Evidently, the resulting equation dictates that PK depends on the electric-
field value at two different time-steps.

Finally, to calculate the E field from the individual polarization terms, we start
from

ε0ε∞ E|n = D|n − PL|n − PR|n − PK |n (60)

where PL denotes the linear polarization, for which a similar, Z-transform based
approach, is applied. Once all substitutions have been made, and all E|n terms have
been collected, we end up with

E|n =
1
ε0

D|n − SL|n−1 + 2χ
(3)
0 α

(
E|n−1)3

ε0 + χ
(3)
0 (1 − α)SR|n−1 + 3χ

(3)
0 α

(
E|n−1)2 (61)

The methodology of [25] was implemented in the 1D calculation of the reflection
coefficient from a nonlinear material with reasonably good accuracy. Furthermore,
the potential of this approach to simulate soliton propagation was exemplified, in
case of pulses with sufficiently large amplitude.
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3.8 Auxiliary-Differential-Equation Approach for Absorbing
and Gain Media

A fully explicit FDTD methodology capable of modeling wave propagation in
certain types of nonlinear media is presented in [26]. The proposed approach is
similar to the auxiliary-differential-equation (ADE) method used for dispersive
media, and incorporates the atomic rate equations, which correspond to the time
evolution of the atomic energy level populations, when the effect of applied signals
is taken into account. Consequently, nonlinear gain and absorption effects can be
included, and the approach is reliable over a non-trivial range of different signal
strengths.

First, it is shown in the considered work that the electric polarization in real
atomic transitions satisfies

d2P
dt2

+ Δωa

dP
dt

+ ω2
αP = κΔNE (62)

where Δωa is the total energy decay rate that corresponds to the actual linewidth
of the transition, ωa is the resonance frequency of the material that is related to
the atomic energy levels, κ is a constant related to, among others, the mass and the
charge of an electron, and ΔN represents the instantaneous population difference.
The time variation of the latter becomes significant in case of high signal intensities
and signals displaying rapid variations. Furthermore, for an ideal two-level system,
the population difference ΔN satisfies

dΔN

dt
= − 2

h̄ωa

E · dP
dt

− ΔN − ΔN0

τ21
(63)

where ΔN0 is the population difference at thermal equilibrium, h̄ denotes the
reduced Planck’s constant, and τ21 stands for the atoms’ lifetime in the upper
energy level.

Considering the simple case of 1D propagation, the standard finite-difference
update equation of the Ex component is

Ex |n+1
k = Ex |n+1

k − Δt

ε0Δz

(
Hy

∣∣n+ 1
2

k+ 1
2

− Hy

∣∣n+ 1
2

k− 1
2

)
− 1

ε0

(
Px |n+1

k − Px |nk
)

(64)

and the macroscopic polarization is obtained via

Px |n+1
k = 2Δt2

2ΔωaΔt

[
κ ΔN |nk Ex |nk+

(
2

Δt2 −ω2
a

)
Px |nk +

(
Δω

2Δt
− 1

Δt2 Px |n−1
k

)]

(65)
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In a similar fashion, the equation regarding ΔN is discretized as follows:

ΔN |n+1
k = 2τ12Δt

2τ21 + Δt

[
ΔN |nk

(
1

Δt
− 1

2τ21

)

+ΔN0

τ21
−
(
Ex |n+1

k + Ex |nk
) (

Px |n+1
k − Px |nk

)

Δth̄ωa

⎤

⎦ (66)

To ensure numerical stability as well as satisfactory accuracy, the size of the time-
step is determined by Δt ≤ Ta

100 , where Ta is the time period related to the material
resonance.

This approach was validated by considering a problem involving wave prop-
agation in a two-level system of atoms, considering Gaussian-pulse excitation.
Good agreement with existing theoretical models for the case of small-signal
frequency response was observed. Moreover, population dynamics in the presence
of considerable fields were also simulated satisfactorily using the aforementioned
technique.

3.9 Hybrid Implicit-Explicit Modeling

A hybridization of two computational schemes is proposed in [27] for modeling
2D waveguiding structures, which is suitable for problems with small, nonlinear
inclusions within larger, linear areas. The main feature of this algorithm is the partial
elimination of the restrictive time-step stability limit, by implementing a partially
implicit discretization approach in the nonlinear parts of the configuration under
study.

If a 2D computational domain is described by a set of xz-axes, the Ey component
satisfies the wave equation

∇2
xzEy − μ0ε0

∂2

∂t2

(
εrEy

)− μ0
∂

∂t

(
σEy

) = 0 (67)

where ∇2
xz = ∂2

∂x2 + ∂2

∂z2 . In nonlinear regions, the Kerr-type nonlinearity is expressed

via εr = εr,L +α
∣∣Ey

∣∣2. The discretization of (67) in linear areas is performed using
a forward-difference formula for the first temporal derivative, and central difference
approximations for the second temporal and spatial derivatives, resulting in the
following expression:

μ0 σ |i,k
Δt

(
E|n+1

i,k − E|ni,k
)

+ μ0ε0 εr |i,k
Δt2

(
E|n+1

i,k − 2 E|ni,k + E|n−1
i,k

)
=

= 1

Δx2

(
E|ni+1,k − 2 E|ni,k + E|ni−1,k

)+ 1

Δz2

(
E|ni,k+1 − 2 E|ni,k + E|ni,k−1

)

(68)
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Hence, the linear problem is treated with an explicit scheme, whose stability is
dictated by the standard limit. On the other hand, a weighted-averaging time-
stepping process is applied in nonlinear regions, according to:

μ0

Δt

[(
σEy

)∣∣n+1
i,k

− (σEy

)∣∣n
i,k

]
+μ0ε0

Δt2

[(
εrEy

)∣∣n+1
i,k

−2
(
εrEy

)∣∣n
i,k

+(εrEy

)∣∣n−1
i,k

]
=

=
∑

�,m�

c�

[
1

Δx2

(
Ey

∣∣m�

i+1,k
− 2 Ey

∣∣m�

i,k
+ Ey

∣∣m�

i−1,k

)

+ 1

Δz2

(
Ey

∣∣m�

i,k+1 − 2 Ey

∣∣m�

i,k
+ Ey

∣∣m�

i,k−1

)]

(69)

where � = 1, 2, 3 and m1 = n−1, m2 = n, m3 = n+1. As seen, the spatial deriva-
tives can be averaged over three successive time-steps. Note that the explicit scheme
is obtained simply by setting c2 = 1, c1 = c3 = 0 in the aforementioned formula. In
case of highly conducting materials, the partially implicit scheme with c1 = c2/2 =
c3 = 1/4 is selected instead, which exhibits better stability properties than the fully
explicit approach and, at the same time, does not suffer from artificial amplitude
attenuation, unlike the fully implicit method. Consequently, the overall stability is
not affected and is still directly related to the discretization approach applied in
the linear regions. To deal with the implicit updates, the authors in [27] implement
the Newton-Raphson’s iterative technique, using the field values at the current time
instant as the initial guess for the subsequent time-step. The developed method
was applied in problems involving either slab waveguides with weak or moderate
nonlinearities, or nonlinear distributed Bragg resonators with 40 grating periods.

3.10 3D Optical Pulse Simulation Using a Moving Reference
Frame

A finite-difference methodology that is particularly suited for the efficient 3D
modeling of single-mode propagation in optical fibers over large distances is
presented in [28]. Using normalized units, the dielectric displacement can be
expressed in the following form:

D = εrE + PL + PNL (70)

where for the nonlinear polarization, the Kerr effect is modeled via PNL = χ(3)E3.
As already mentioned, the proper manipulation of Taylor expansion of E3 produces
(E|n)3 � 3(E|n−1)2 E|n − 2(E|n−1)3 , a formula which was also introduced in
[25]. We eventually end up with the expression

E|n = D|n + 2χ
(3)
0

(
E|n−1)3

εr + 3χ
(3)
0

(
E|n−1)2 (71)

Note that the linear polarization term is computed with a formula similar to (61).
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The implementation of the proposed methodology exploits several strategies,
in an attempt to improve the algorithm’s overall efficiency. First, the spatial mesh
density is selected to be higher along the direction of propagation, and reduced in the
transverse direction, where the pulses are expected to change much slower. Second,
the symmetry of the transverse field is taken into consideration, and only one
quadrant of the computational space actually needs to be simulated, after applying
the proper boundary conditions. Finally, the pulse is always held in the middle of the
computational domain, by computing the average position of the pulse on the axis
located at the center of the fiber’s core and properly displacing the field values in
the mesh, with respect to a pre-selected spatial buffer. Due to the moving reference
frame, a wavelet transform is applied, in order to track the changes of the pulse’s
shape, while a Fourier transform at the central pulse frequency is implemented, for
the assessment of the pulse’s speed and attenuation.

3.11 Decoupled FDTD Algorithms for 2D Photonic Crystals

The methodology presented in [29] is suitable for the analysis of arbitrary 2D struc-
tured material configurations, which lead to second-harmonic (SH) generation.3

In essence, an artificial separation of the fundamental field (FF) and the SH is
accomplished, which partially sacrifices generality, but enables less time-consuming
simulations.

Considering an incident H-polarized FF, standard (linear) FDTD updating is
implemented for the calculation for the FF. The nonlinearity is not considered for
the FF, but only for the SH, which is not associated to the FF. The SH field is updated
according to

ESH
z

∣∣∣
n+1

i,j
= ESH

z

∣∣∣
n

i,j

+ Δt

εSH
∣∣
i,j

Δ

(
H SH

y

∣∣∣
n+ 1

2

i+ 1
2 ,j

− H SH
y

∣∣∣
n+ 1

2

i− 1
2 ,j

+ H SH
x

∣∣∣
n+ 1

2

i,j− 1
2

− H SH
x

∣∣∣
n+ 1

2

i,j+ 1
2

)

− 1

εSH
∣∣
i,j

(
P (2)

z

∣∣∣
n+ 1

2

i,j
− P (2)

z

∣∣∣
n− 1

2

i,j

)
(72)

where the last term, which is proportional to the time-derivative of the second-order
polarization, represents the nonlinearity source. The polarization is obtained from
the FF values, in a manner that depends on the properties of the considered nonlinear
material. For instance, the case of a defective nonlinear photonic crystal is examined
in [29], where the polarization update has the form

3Second-harmonic generation is a phenomenon, according to which a wave within a nonlinear
medium can produce another wave with twice the frequency of the former.
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P
(2)
z

∣∣∣
n+ 1

2

i,j
= P

(2)
z

∣∣∣
n− 1

2

i,j
+ ε0 d|i,j

2

⎡

⎣
(

EFF
x

∣∣∣
n+ 1

2

i+ 1
2 ,j+1

)2

+
(

EFF
x

∣∣∣
n+ 1

2

i+ 1
2 ,j

)2

−
(

EFF
x

∣∣∣
n− 1

2

i+ 1
2 ,j+1

)2

−
(

EFF
x

∣∣∣
n− 1

2

i+ 1
2 ,j

)2

+
(

EFF
y

∣∣∣
n+ 1

2

i,j+ 1
2

)2

+
(

EFF
y

∣∣∣
n+ 1

2

i+1,j+ 1
2

)2

−
(

EFF
y

∣∣∣
n− 1

2

i,j+ 1
2

)2

−
(

EFF
y

∣∣∣
n− 1

2

i+1,j+ 1
2

)2
⎤

⎦

(73)

where d stands for the nonlinear susceptibility. The examined structure supports
waveguide modes at both FF and SH frequencies, as it is designed to exhibit
photonic bandgaps in the proximity of the FF frequency in the case of H-
polarization, and near the SH frequency for E-polarization. The configuration’s
transmission diagrams was computed, which displayed maxima at the expected
wavelengths.

3.12 A High-Order Extension of the Nonlinear ADE-FDTD
Technique

The work of [30] presents a reformulation of the ADE technique, for problems
concerning optical pulse propagating within linear Lorentz and nonlinear Kerr and
Raman media. The main difference compared to other approaches is that the ADE
approach is applied to the polarization, rather than to the polarization currents. The
technique was originally developed for linear cases only [7], and this work extended
it to nonlinear cases as well. Furthermore, unlike the conventional formulation of the
FDTD method, the authors of [30] introduced spatial approximations of the form

∂f

∂u

∣∣∣∣
i

� 1

Δu

∑

�

c�

(
f |

i+�+ 1
2

− f |
i−�− 1

2

)
(74)

where c�, � = 0, 1, . . . are the stencil coefficients of wavelet-based schemes
that correspond to Deslauriers–Dubuc interpolating bases. The above-mentioned
approximations are capable of ensuring higher-order accuracy for spatial deriva-
tives. The paper considered third-order nonlinear polarization, consisting of both
the Kerr (PK ) and the Raman (PR) nonlinearities. The latter is treated with a simple
ADE technique, which is also consistent with the implementation of the anisotropic
perfectly matched layer (PML) absorbing boundary condition of [31]. As the
electric-flux density is related to the electric-field intensity and the polarization
terms via

Dy

∣∣n+1 = ε0ε∞ Ey

∣∣n+1 + PD|n+1 + PL|n+1 + PK |n+1 + PR|n+1 (75)
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(PD,PL correspond to Debye and Lorentz dispersion, respectively) the final form
of the update equation, similar to [25], becomes

Ey

∣∣n+1 = Dy

∣∣n+1 − aD PD|n − bD Ey

∣∣n − PL|n+1

ε0

[
ε∞ + bD + αχ

(3)
0

(
Ey

∣∣n+1
)2 + S|n+1

] (76)

where aD, bD are known coefficients, and S denotes an auxiliary variable related to
Raman nonlinearity. Evidently, the aforementioned formula is nonlinear and needs
to be solved via an iterative scheme

The typical problems that were studied for numerical verification considered
mainly 2D geometries and demonstrated spatio-temporal soliton propagation in
optical media. In addition, the computational savings due to the high-order approx-
imations in terms of memory requirements and computing times were clearly
demonstrated.

3.13 A Vector ADE-FDTD Method for Nonlinear Problems

A FDTD method that features a general vector ADE approach is developed
in [32] for 2D setups, where the electric field does not feature just a single
vector component, and is suitable for propagation problems in dispersive nonlinear
materials. The polarization current is considered to comprise three terms, J =
JLorentz + JKerr + JRaman. The linear Lorentz polarization model is the sum of
contributions from different resonances,

JLorentz =
3∑

�=1

JLorentz,� (77)

In phasor representation, each term can be written as

J̇Lorentz,� = ε0β�ω2
�

jω

ω2
� − ω2

Ė (78)

After multiplying the above equation with
(
ω2

� − ω2
)
, applying the inverse trans-

form, and discretizing the resulting expression, we end up with

JLorentz,�
∣∣n+1 = α� JLorentz,�

∣∣n − JLorentz,�
∣∣n−1 + γ�

2Δt

(
E|n+1 − E|n−1

)
(79)

where α�, γ� are known coefficients. However, the current density is required at(
n + 1

2

)
time instants, hence a simple averaging process is applied that yields

JLorentz,�
∣∣n+ 1

2 =1

2

[
(1+α�) JLorentz,�

∣∣n−JLorentz,�
∣∣n−1+ γ�

2Δt

(
E|n+1−E|n−1

)]

(80)
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Regarding the nonlinear Kerr polarization, it satisfies

JKerr = ∂PKerr

∂t
= ∂

∂t

(
αε0χ

(3)
0 |E|2E

)
(81)

and it is discretized according to

JKerr|n+ 1
2 = αε0χ

(3)
0

Δt

{(∣∣∣E|n+1
∣∣∣
)2

E|n+1 − (∣∣E|n∣∣)2 E|n
}

(82)

As far as the nonlinear Raman polarization is concerned, an auxiliary variable is
introduced for the convolution

S(t) = χ
(3)
Raman(t) ∗ |E(t)|2 FT↔ S(ω) = χ

(3)
Raman(ω)F

{
|E(t)|2

}
(83)

where

χ
(3)
Raman(ω) = (1 − α)χ

(3)
0 ω2

Raman

ω2
Raman + 2jωδRaman − ω2

(84)

and F denotes Fourier transform. Transforming back to the time domain produces

∂2S

∂t2 + 2δRaman
∂S

∂t
+ ω2

Raman = (1 − α) χ
(3)
0 ω2

Raman|E|2 (85)

which, when discretized, leads to the update equation

S|n+1=2 − ω2
RamanΔt2

δRamanΔt + 1
S|n+δRamanΔt−1

δRamanΔt+1
S|n−1+ (1−α)χ

(3)
0 ω2

RamanΔt2

δRamanΔt+1

(∣∣E|n∣∣)2
(86)

Finally, the Raman polarization term at the time instant
(
n + 1

2

)
is updated

according to

JRaman|n+ 1
2 = ε0

Δt

(
E|n+1 S|n+1 − E|n S|n

)
(87)

Taking into account all the aforementioned quantities, the update of the electric-field
intensity at (n + 1) must be performed via

∇ × H|n+ 1
2 − ε0

Δt

(
E|n+1 − E|n

)
− JLorentz|n+ 1

2 − JKerr|n+ 1
2 − JRaman|n+ 1

2 = 0

(88)
Evidently, the aforementioned formula describes a nonlinear system of coupled
equations. First, Ex |n+1, Ey

∣∣n+1 are updated from (80), (82), (87), and (88). Then,
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the authors of [32] suggest the implementation of a multi-dimensional Newton’s
method, and define an objective function vector, according to
[

x

y

]
= ∇ × H|n+ 1

2 − ε0

Δt

(
E|n+1 − E|n

)

− 1

2

3∑

�=1

[
(1 + α�) JLorentz,�

∣∣n − JLorentz,�
∣∣n−1 + γ�

2Δt

(
E|n+1 − E|n−1

)]

− αε0χ
(3)
0

Δt

{(∣∣∣E|n+1
∣∣∣
)2

E|n+1 − (∣∣E|n∣∣)2 E|n
}

+ ε0

Δt

(
E|n+1Sn+1 − E|nSn

)

(89)

Next, if the m-th guesses for Ex |n+1, Ey

∣∣n+1 are represented by e
(m+1)
x , e

(m+1)
y ,

then Newton’s approach updates the guesses according to
⎡

⎣
e(m+1)
x

e(m+1)
y

⎤

⎦ =
⎡

⎣
e(m)
x

e(m)
y

⎤

⎦− J−1

([
x

y

])∣∣∣∣∣

(m)

(90)

until both objective functions attain values that are sufficiently close to zero (J stands
for the Jacobian ∂(x, y)/∂(ex, ey)). Temporal and spatial solitons in dispersive
nonlinear material were modeled, in the context of numerically demonstrating the
potential of the suggested approach.

3.14 Nonlinear FDTD Approach with Exponential Integrators

Electromagnetic problems with general nonlinear polarizations are studied with a
Krylov-subspace-based operator-exponential method in [33], by following different
strategies for the different (linear, nonlinear) parts of the involved differential
equations. Specifically, the linear part is treated with a high-accuracy approach,
while the nonlinear part is evaluated by means of standard high-order techniques.

In order to apply such an strategy, the governing equations need to be
expressed as

∂

∂t
ΨΨΨ = HHH ΨΨΨ +NNN (ΨΨΨ , t) (91)

where ΨΨΨ = [E H]T. The HHH part is treated via an accurate exponential integrator,
whileNNN that denotes the nonlinear behavior, is updated with a sufficiently accurate
standard approach. Specifically, the two scaled (c0 = 1) splitting terms are

HHH =
[

−σe
1
εr

∇×
− 1

μr
∇× −σm

]
, NNN (ΨΨΨ ) =

[(
C (E) − 1

ε

)
∇ × H

0

]
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where C(E) is defined as follows: starting from the constitutive relation

D = ε0

(
εr + χ(3)|E|2

)
E (92)

the corresponding temporal derivatives are related via

∂E
∂t

= C (E)
∂D
∂t

where it is found that

C (E) =
[
ε2
r + 4χ(3)εr |E|2 + 3

(
χ(3)

)2|E|4
]

I − 2χ(3)εnlA

(εnl)
2 (εr + 3χ(3)|E|2) (93)

In the above equation, εnl = εr + χ(3)|E|2 and

A =
⎡

⎣
E2

x ExEy ExEz

ExEy E2
y EyEz

ExEz EyEz E2
z

⎤

⎦ (94)

Note that the operator HHH does not depend on the electric or the magnetic field.
The discretization of the linear and nonlinear parts can be performed via standard
methodologies, such as finite differences, finite elements, etc.

The most crucial part of this methodology is the time integration of the involved
equation. Based on a classical fourth-order Runge-Kutta scheme, the authors of [33]
first propose the implementation of a Lawson exponential integrator, according to
the following scheme:

Y1 = Ψ
(
t |n−1

)
(95)

Y2 = Δt

2
eΔtHHH NNN

(
Y1, t |n−1

)
+ e

ΔtHHH
2 Y1 (96)

Y3 = Δt

2
NNN
(

Y2, t |n−2
)

+ e
ΔtHHH

2 Y1 (97)

Y4 = Δte
ΔtHHH

2 NNN
(

Y3, t |n− 1
2

)
eΔtHHH Y1 (98)

ΨΨΨ
(
t |n) = Δt

6

[
eΔtHHH NNN

(
Y1, t |n−1

)
+ 2e

ΔtHHH
2 NNN

(
Y2, t |n− 1

2

)

+2e
ΔtHHH

2 NNN
(

Y3, t |n− 1
2

)
+NNN

(
Y4, t |n)

]
+ eΔtHHH Y1 (99)

To ensure that the Lawson integrator is fourth-order accurate, the matrix exponential
is computed through Krylov-subspace techniques, with a Krylov-subspace dimen-
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sion equal to 6. The authors mention that higher-order integrators can be realized,
provided that the corresponding increase in the Krylov-subspace dimension is
ensured, but at the same time significantly increasing the memory requirements
compared to the standard FDTD approach.

Another fourth-order approach proposed in [33] is based on the Rosenbrock-
Wanner exponential integrators. Considering the general first-order initial-value
problem

∂y

∂t
= f (y), y(0) = 0 (100)

Rosenbrock-Wanner methods emerge from the linearization of the result of applying
the implicit Euler discretization scheme to the aforementioned equation. Specifi-
cally, the authors in [33] apply the following fourth-order multi-step approach:

k1 = φ

(
1

2
ΔtA

)
f (yn) (101)

k2 = φ (ΔtA) f (yn) (102)

w3 = 3

8
(k1 + k2) (103)

u3 = yn + Δtw3 (104)

d3 = f (u3) − f (yn) − ΔtAw3 (105)

k3 = φ

(
1

2
ΔtA

)
d3 (106)

yn+1 = yn + Δt

(
k2 + 16

27
k3

)
(107)

where

di = f (ui) − f (yn) − ΔtA

s∑

j=1

αij kj (108)

s is the number of steps, A = f ′(yn) represents the Jacobian that results from the
linearization, φ(A) = I/(I − A) is the characteristic of the implicit Rosenbrock-
Wanner methods, and αij are free parameters. The performance of this approach
relies on the exact computation of the Jacobian at each time-step, otherwise only
first-order accuracy is ensured (however, only two Krylov subspaces are required
for a single time-step). Despite its computational overhead, the authors mention that
the suggested approach offers specific advantages that render it a quite competitive
solver for nonlinear Maxwell’s equations.
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3.15 A Unified Nonlinear FDTD Formulation

A FDTD formulation that is capable of including various linear and nonlinear kinds
of dispersion is presented in [34], which also facilitates the implementation of
unidirectional sources, such as Gaussian beams. The nonlinear polarization term
satisfies P(t) = ε0S(t)E(t), where S(t) is computed as the convolution of χ(3)(t)

and E2(t). The quantity S can be obtained from the recursive relation

S|n+1 = A
(
E2
)∣∣∣

n + B S|n + C S|n−1 (109)

By properly changing the values of the parameters χ(3), A, B, and C, Kerr as well
as Raman nonlinearities can be modeled. For a general dispersive Kerr nonlinear
medium, we have

D = ε0 (ε∞ + S) E + PL + ε0χ
(3)
0 E2E (110)

When no material dispersion is taken into account, we have

D = ε0

(
εr + χ

(3)
0,KE2

)
E (111)

which can be used for the numerical update of the electric-field intensity. For the
more general dispersive nonlinear Kerr medium, it is

D = ε0 (ε∞ + S) E + PL + ε0χ
(3)
0,KE2E (112)

On the other hand, in case of absent instantaneous Kerr nonlinearity and linear
dispersion, we end up with the simple update

E|n+1 = 1

ε0
(
ε∞ + S|n+1) D|n+1 (113)

Finally, the authors described a general approach for the implementation of unidi-
rectional sources, featuring arbitrary profiles, shapes, and radiation towards different
angles.

3.16 Modeling Cold-Plasma Maxwell’s Equations with a
Time-Split Technique

The authors of [35] discuss a methodology for cold-plasma equations, when an
external EM excitation is present. Specifically, the nonlinear Drude model for
modeling nonlinear dispersive media is extracted from the cold-plasma equations,
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and associated with Maxwell’s system. The cold-plasma equations for the electron
density ne and velocity ue, and Maxwell’s equations for fields E, B are given by

∂ne

∂t
+ ∇ · (neue) = 0 (114)

∂ue

∂t
+ (ue · ∇)ue = qe

me

(E + ue × B) (115)

∇ · B = 0 (116)

ε0∇ · D = ρ
∂B
∂t

= −∇ × E (117)

ε0
∂E
∂t

= 1

μ0
∇ × B − J (118)

where me, qe are the electron mass and charge, respectively. The electron number
density and velocity field are represented by ne(r) and ue(r). The first equation is
the continuity equation, and the second one is the generalized Newton’s second law.
The charge density ρ and current density J are defined as ρ = qe(ne − n0) and
J = qeneue, respectively, where n0 is the (assumed constant) positive ion density .
To secure charge neutrality, the electron density equals n0 before the exciting field
appears. After rewriting the initial equations in terms of ρ and J, we obtain

∂ρ

∂t
= −∇ · J (119)

∂J
∂t

+
∑

k

∂

∂xk

JJk

qene

= qe

me

(qeneE + J × B) = 1

τ
J (120)

where τ is the phenomenological damping time constant. The aforementioned
equations can be reduced to

∂J
∂t

= − 1

τ
J+ε0ω

2
pE+ qe

me

(ρE + J × B)−
∑

k

∂

∂xk

(
JJk

ρ + ε0meω2
p/qe

)
(121)

where ω(r) = √q2
e n0(r)/(ε0me) is the plasma frequency.

In order to develop a discrete model for the nonlinear Drude equation (121),
a time-split semi-implicit finite-difference approach is proposed. Specifically, the
initial problem is divided into three subproblems:

∂J
∂t

= − 1

τ
J + ε0ω

2
pE + qe

me

ε0(∇ · E)E (122)

∂J
∂t

= qe

me

J × B (123)

∂J
∂t

= −
∑

k

∂

∂xk

(
JJk

ρ + ε0meω2
p/qe

)
(124)
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First, using (122), J is updated from time-step n−1/2 to n+1/2 utilizing an implicit
approach with respect to J, and explicit differencing for the remaining terms. Hence,

J(1) − J|n−1/2

Δt
= −J(1) + J|n−1/2

2τ
+ ε0ω

2
p E|n + qe

me

ε0(∇ · E|n)E|n (125)

where J(1) is the intermediate updated value of J at n + 1/2. The ∇ · En term
is evaluated in a standard fashion. As it is required at the same mesh points as
the electric field, the divergence must be interpolated. Then, the finite-difference
equation can be solved explicitly:

J(1) = τ − Δt/2

τ + Δt/2
Jn−1/2 + τΔt

τ + Δt/2
ε0

[
ω2

pEn + qe

me

(∇ · En)En

]
(126)

Second, an implicit scheme is applied to (122). Before updating this equation, the
components of J are computed at the cell centers via interpolation. Similarly, H
is interpolated at the cell center, and also at time instant n. The advantage of this
collocation is that it eliminates the need to solve large systems. The resulting update
requires that the following linear system is solved, for each cell center:

J(2) − Ĵn

Δt
= qe

me

μ0
J(2) + Ĵn

2
× Ĥn (127)

or, more compactly, AJ(2) = A′ Ĵ
∣∣∣
n

, with

A =
⎛

⎝
1 −aHz aHy

aHz 1 −aHx

−aHy aHx 1

⎞

⎠ (128)

where the hat notation indicates interpolation. Moreover, A′ denotes the transpose
of A, Ĥ = [Hx Hy Hz]′, and a = 0.5Δtμ0qe/me. The explicit solution then takes
the form

J(2)=

= 1

|A|

⎛

⎜⎝
1 + a2(H 2

x − H 2
y − H 2

z ) 2a(aHxHy + Hz) 2a(aHzHx − Hy)

2a(aHxHy − Hz) 1 + a2(H 2
y − H 2

z − H 2
x ) 2a(aHyHz − Hx)

2a(aHzHx + Hy) 2a(aHyHz − Hx) 1 + a2(H 2
z − H 2

x − H 2
y )

⎞

⎟⎠

∣∣∣∣∣∣∣

n

(129)

where |A| = 1 + a2
(
H 2

x + H 2
y + H 2

z

)
. Finally, (124) is updated, after it is written

in conservation form:

∂J
∂t

+ Fx(J) + Gy(J) + Kz(J) = 0 (130)
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where F(J) = JJx/ρ
′, G(J) = JJy/ρ

′, K(J) = JJz/ρ
′ and ρ′ = ρ + ε0meω

2
p/qe.

In this case, a two-step Lax-Wendroff approach can be implemented. The time-step
is chosen to satisfy the CFL conditions as Δt < Δx/(2 max{υmax, c}), where c

is the speed of light in vacuum and υmax = max{|J/ρ′|} is the maximum wave
velocity in the plasma. After the last update has been performed, all J components
are interpolated back at the cell face centers, and can be then introduced in the FDTD
method for computing the E field.

3.17 3D Modeling of Nonlinear Ferroelectric Materials

The work of [36] investigates the behavior of nonlinear ferroelectric materials
(i.e. materials with nonlinear polarization response) and specifically their effects,
when they are present inside a rectangular waveguide. Regarding ferroelectric
materials, the linear relation P = ε0χE is valid only for small values of the applied
electric-field intensity. When the electric field becomes stronger, all the electric
domains of the material are aligned, and polarization reaches saturation, without the
requirement of an external bias. The nonlinear behavior of the ferroelectric material
can be described reliably by a modified hyperbolic tangent function,

P = Psat tanh (EscaleE) (131)

where Psat is the polarization saturation limit, and Escale = ε0(εr−1)
Psat

is a scaling
factor.

In order to construct a FDTD algorithm without augmented memory require-
ments, the time derivative of D is computed according to

∂D
∂t

= ∂D
∂E

∂E
∂t

= PsatEscale

(
1 − tanh2 (EscaleE)

)
+ ε0 (132)

which leads to the definition of the effective permittivity:

εeff = PsatEscale

(
1 − tanh2

(
Escale

∣∣∣En−1
∣∣∣
))

+ ε0 (133)

Then, the electric- and magnetic-field intensities are update in a standard manner,
following

Hn+ 1
2 = Hn− 1

2 − Δt

μ0
∇ × En (134)

En+1 = En + Δt(εeff)
−1∇ × Hn+ 1

2 (135)

Compared to the linear case, simulations show that the presence of a ferroelectric
material in a waveguide structure leads to an increase of the peak power density
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and a spatial compression of the pulsewidth. This type of behavior can be useful
in various contemporary applications that require high-power electromagnetic pulse
generation, sharp/compressed waveforms, etc.

3.18 Analysis of Second-Harmonic Generation in Periodic
Structures

An extension of the split-field (SF) FDTD method to 2D periodic configurations
without any assumptions regarding the material symmetries is developed in [37].
For a non-magnetic and non-conducting medium, Maxwell’s equations are given by

∇ × E = −jωμ0H, ∇ × H = jωε0εrE + jωFNL (136)

where FNL is the nonlinear polarization. The SF FDTD method transforms the
electric and magnetic fields, considering that the new quantities contain the oblique
field propagation in an implicit fashion. This produces the new variables

P = Eej (kxx+kyy), Q = cμ0Hej (kxx+kyy) (137)

where P and Q are considered in the phasor domain. A similar transformation
can be also implemented to the nonlinear polarization term, using GNL =
cμ0FNLej (kxx+kyy). Substituting the new components into Maxwell’s equations,
the SF-FDTD algorithm is formulated as

jω

c
P = κ∇ × Q + jω

c
κqQ − jωGNL (138)

jω

c
Q = −∇ × P − jω

c
κqP (139)

where κ = ε−1
r and

q = ω

c

⎡

⎣
0 0 −ky

0 0 kx

ky −kx 0

⎤

⎦ (140)

The appearance of time derivatives on both sides hinders the direct approximation
via finite differences. To solve this problem, new variables are defined, separating
both P, Q into two parts:

P = Pa + κqQ − cGNL, Q = Qa − qP (141)



926 T. T. Zygiridis and N. V. Kantartzis

After proper manipulations, discretizing the equations with respect to time yields

1

cΔt

(
Pa|n+1 − Pa|n

)
= κ∇ × Q|n+1/2 (142)

1

cΔt

(
Qa|n+1 − Qa|n

)
= −∇ × P|n+1/2 (143)

The stability of the SF-FDTD algorithm is affected by various factors, including the
CFL condition, the averaging process, and large incidence angles. The lower bound
can ensure stability in most case studies. Consequently, the CFL number is selected
low enough, in order to ensure both stability and convergence. Furthermore, this
also leads to lower time and spatial resolutions and, hence, larger grids, simulation
times, and computational resources. It is reminded that FDTD models display
exponentially growing computational costs. Consequently, increasing the grid size
has a severe consequence on the necessary simulation times. The proposed SF-
FDTD leapfrog algorithm updates the “a” fields from the P and Q quantities. After
that, the current P field is calculated from

P = Pa + κqQa − cGNL

I + κq2 (144)

where I is the identity matrix. After updating P, it is straightforward to obtain
Q. Moving to a particular material configuration, let us examine introducing the
polarization terms in (144) for the case of a tensorial second-order nonlinear
susceptibility. To this objective, polarization FNL that represents the nonlinear
response in non-centrosymmetric materials associates the second-order nonlinear
susceptibility with the field within the considered configuration. Actually, the
appearance of a fundamental or pump field at ωf produces an exchange of energy
with the (second-harmonic field) at ωs = 2ωf . The nonlinear polarization is
described by a third-rank tensor d that, in the case of second harmonic generation
(in a periodic nanostructure), can be represented in matrix form as

d =
⎡

⎣
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤

⎦ (145)

whose elements are defined according to the involved nonlinear medium. Taking
into account the transformation, we find that

⎡

⎢⎣
G

NL,ωf
x

G
NL,ωf
y

G
NL,ωf
z

⎤

⎥⎦ = 2

c
d

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

P
ωf
x E

ωs
x

P
ωf
y E

ωs
y

P
ωf
z E

ωs
z

P
ωf
z E

ωs
y + P

ωf
y E

ωs
z

P
ωf
z E

ωs
x + P

ωf
x E

ωs
z

P
ωf
x E

ωs
y + P

ωf
y E

ωs
x

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(146)
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⎡

⎢⎣
G

NL,ωs
x

G
NL,ωs
y

G
NL,ωs
z

⎤

⎥⎦ = 1

c
d

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

P
ωf
x P

ωf
x

P
ωf
y P

ωf
y

P
ωf
z P

ωf
z

2P
ωf
z P

ωf
y

2P
ωf
z P

ωf
x

2P
ωf
x P

ωf
y

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(147)

Once the “a” fields are known, the total fields can be computed. It turns out that they
can be expressed using only the “a” fields and the interior electric components. For
instance,

P
ωf
x =

P
ωf
xa − κ

(
kyQ

ωf
za − kxkyP

ωf
y − cḠ

NL,ωf
x

)

1 + κ
[
k2
y + 2

(
d11E

ωs
x + d15E

ωs
z + d16E

ωs
y

)] (148)

P ωs
x =

P
ωs
xa − κ

(
kyQ

ωs
za − kxkyP

ωs
y − cG

NL,ωs
x

)

1 + κk2
y

(149)

where

Ḡ
NL,ωf
x = 2

c

[
d12P

ωf
y Eωs

y + d13P
ωf
z Eωs

z

+ d14

(
P

ωf
z Eωs

y + P
ωf
y Eωs

z

)
+ d15P

ωf
z Eωs

x + d16P
ωf
y Eωs

x

]
(150)

Similar formulae are obtained for the remaining components. In this manner, a
nonlinear equation system of the form P = U(P) is composed. For its solution,
a fixed-point iterative procedure can be selected. The key point of this approach is
to solve the iterative process with the form P(p+1) = U(P(p)), with p = 1, 2, . . . the
number of iterations. It is noted that the fixed-point process needs to be performed
at every time-step of the FDTD updating procedure. The approach requires an
initial guess of P, which corresponds to the fields considering linear media. Then,
subsequent iterations are carried out, so that the precision of the outcomes improves
with every iteration. Finally, in order to ensure the convergence of the iterative
procedure, the amplitude of E must be limited by an upper bound, which is dictated
by the magnitude of the second-order susceptibility.

3.19 Time-Filtered Integration of Maxwell’s Equations

The case of a dielectric medium with Kerr nonlinearity is also examined in [38], in
the context of verifying the performance of a novel FDTD approach that employs
an unstaggered temporal grid. Specifically, considering a 1D setup and that the
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time derivatives of the dielectric displacement and the electric-field intensity are
connected via

∂E

∂t
= c (E)

∂D

∂t
(151)

where c (E) = ε + 3χ(3)E2, the corresponding electromagnetic phenomena can be
described by the following discrete model:

E|n+1
i − Ẽ

∣∣∣
n−1

i

2Δt
= 1

ε + 3χ(3)
(
E|ni
)2

H |av

i+ 1
2

− H |av

i− 1
2

Δx
+ ν

∂4E

∂x4

∣∣∣∣
n

i

(152)

H |n+1
p − H̃

∣∣∣
n−1

p

2Δt
= 1

μ

E|av

p+ 1
2

− E|av

p− 1
2

Δx
+ ν

∂4H

∂x4

∣∣∣∣
n

i

(153)

In the above equations, it is p = i in case of spatial collocation, or p = i + 1/2

in case of staggered spatial grids. The Ẽ

∣∣∣
n−1

i
, H̃

∣∣∣
n−1

p
components denote values

obtained after a time filtering process has been applied, according to the implicit
scheme

F̃

∣∣∣
n−1

i
= F |n−1

i
+γ

(
− F̃

∣∣∣
n−3

i
+ 4 F̃

∣∣∣
n−2

i
− 6 F̃

∣∣∣
n−1

i
+ 4 F |ni − F |n+1

i

)
, F = E, H

(154)
Note that these computations can be conducted in an explicit fashion, after proper
reformulation. The aim of the aforementioned filtering approach is to weaken high-
frequency modes that emerge due to lack of staggering in time. The averaged values
appearing in the spatial derivative approximations are computed via

F |av
i = 1

24

(− F |ni + 26 F |ni − F |ni
)

(155)

F |av

i+ 1
2

= 7

12

(
F |ni+1 + F |ni

)− 1

12

(
F |ni+2 + F |ni−1

)
(156)

for collocated and staggered grids, respectively. Approximations (155) and (156)
actually result in fourth-order finite-difference formulae. Finally, the fourth-order
derivatives appearing in (152) and (153) act as smoothers that combat inadequately
resolved high-frequency oscillations, and are computed via

∂4F

∂x4

∣∣∣∣
n

i

= 1

Δx4

(− F |ni−2 + 4 F |ni−1 − 6 F |ni + 4 F |ni+1 − F |ni+2

)
(157)
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To validate the proposed computational scheme, the authors of [38] proceeded to the
analysis of parametric Four-Wave Mixing, which is a phenomenon directly related
to the third-order nonlinearity.

4 Conclusions

In the present work, we have reviewed a number of important contributions regard-
ing the development of finite-difference models for nonlinear EM problems that
may emerge in numerous realistic applications. As nonlinearities do not necessarily
comply with a specific unique form, pertinent research efforts have produced a
number of different computational approaches that adapt the conventional FDTD
algorithm to the peculiar requirements of each problem. The majority of the
developed techniques preserve most of the attractive properties of the classic FDTD
scheme, thus the study of a wide variety of nonlinear EM problems can be conducted
reliably, without requiring special conditions to hold. Evidently, the present study
is not completely exhaustive. However, it is the authors’ belief that many of the
available key contributions in this scientific area have been included, and a quite
complete description of the latter has been formulated. In any case, the research
on computational nonlinear EM models is ongoing and continuously developing,
and novel contributions towards more efficient techniques or numerical approaches
for less explored phenomena and applications constantly appear, thus broadening
further this already vast scientific subject.
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