
Springer Optimization and Its Applications 134

Themistocles M. Rassias   Editor

Applications 
of Nonlinear 
Analysis 



Springer Optimization and Its Applications

Volume 134

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Boards
J. Birge (University of Chicago)
C.A. Floudas (Texas A & M University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (Lehigh University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate during the
last few decades. New algorithmic and theoretical techniques have been developed,
the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge
of all aspects of the field has grown even more profound. At the same time, one of the
most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in all areas of
applied mathematics, engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications aims to publish state-
of-the-art expository works (monographs, contributed volumes, textbooks) that
focus on algorithms for solving optimization problems and also study applications
involving such problems. Some of the topics covered include nonlinear optimization
(convex and nonconvex), network flow problems, stochastic optimization, optimal
control, discrete optimization, multi-objective programming, description of soft-
ware packages, approximation techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393

http://www.springer.com/series/7393


Themistocles M. Rassias
Editor

Applications of Nonlinear
Analysis

123



Editor
Themistocles M. Rassias
Department of Mathematics
National Technical University of Athens
Athens, Greece

ISSN 1931-6828 ISSN 1931-6836 (electronic)
Springer Optimization and Its Applications
ISBN 978-3-319-89814-8 ISBN 978-3-319-89815-5 (eBook)
https://doi.org/10.1007/978-3-319-89815-5

Library of Congress Control Number: 2018946611

Mathematics Subject Classification: 26-XX, 28-XX, 30-XX, 32-XX, 34-XX, 35-XX, 37-XX, 39-XX,
41-XX, 43-XX, 45-XX, 46-XX, 47-XX, 49-XX, 52-XX, 53-XX, 54-XX, 57-XX, 58-XX, 65-XX

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-89815-5


Preface

The Applications of Nonlinear Analysis presents some classical and new results in
important subjects of nonlinear analysis and its applications.

The contributing papers have been written by experts from the international
mathematical community. These papers deepen our understanding of some of the
most essential research problems and theories of nonlinear nature.

Effort has been made for the presentation of the concepts, theories, and methods
to reach wide readership.

I would like to express my thanks to all the scientists who contributed to the
preparation of this volume. I would also like to acknowledge the superb assistance
of the staff of Springer for the publication of this book.

Athens, Greece Themistocles M. Rassias
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2 Jensen and Slater-Pečarić Type Inequalities for N -quasiconvex

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Jensen and Slater-Pečarić Type Inequalities for
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Fixed-Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
4.1 Generalizations of Nemytskii-Edelstein Fixed-Point Theorem . . . . 872
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New Applications of γ -Quasiconvexity

Shoshana Abramovich

1 Introduction

This survey deals with inequalities satisfied by γ -quasiconvex functions which are
one of the many variants of convex functions. Convex functions and their variants
are dealt with extensively (see for instance the classical books [11, 14, 16] and
their references) The γ -quasiconvex functions have already been dealt with by S.
Abramovich, L.-E. Persson and N. Samko. The basic facts on γ -quasiconvexity on
which this paper is built, can be found in [2, 8], and [9]. This survey is an extension
and continuation of [2], which include previous results related to γ -quasiconvexity.

We state here additional results to those in Survey [2]. In particular results con-
cerning Hölder, Minkowski, Jensen-Steffensen and Slater-Pečarić type inequalities
for γ -quasiconvex functions.

We start with a definition of and lemmas about γ -quasiconvexity, see [1, 2, 8],
and [9]:

Definition 1 Let γ be a real number. A real-valued function f defined on an
interval [0, b) with 0 < b ≤ ∞ is called γ -quasiconvex (γ -quasiconcave) if it
can be represented as the product of a convex (concave) function and the power
function xγ .

A convex function ϕ on [0, b) , 0 < b ≤ ∞ is characterized by the inequality

ϕ(y)− ϕ(x) ≥ Cϕ (x) (y − x), ∀x, y ∈ [0, b), Cϕ ∈ R, (1)

from which the following lemmas is easily established:
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Lemma 1 ([8, Lemma 1]) Let ψγ (x) = xγ ϕ (x), γ ∈ R, where ϕ is convex on
[0, b) , that is, ψγ is a γ -quasiconvex function. Then

ψγ (y)− ψγ (x) ≥ ϕ (x)
(
yγ − xγ

)+ Cϕ (x) y
γ (y − x) , (2)

holds for all x ∈ [0, b) , y ∈ [0, b) , where Cϕ (x) is defined by (1).

It is obvious that ψ (x) = xp+γ , x > 0, p ≥ 1 is γ -quasiconvex and when
0 < p < 1 is γ -quasiconcave.

The following lemma is derived by some computation on the right handside of
(2), (see also [9, Lemma 2]):

Lemma 2 ([9]) Let ϕ be convex differentiable function on [a, b) and let ψk (x) =
xkϕ (x) , k = 1, 2, . . . , N . Then the N -quasiconvex function ψN (x) = xNϕ (x)

satisfies for a ≤ x < y < b, a ≥ 0

ψN (y)− ψN (x) (3)

≥ (ψN (x))′ (y − x)+ (y − x)2
N∑

k=1

yk−1 (ψN−k (x))′

= (ψN (x))′ (y − x)+ (y − x)2
∂

∂x

(
xN − yN

x − y
ϕ (x)

)
.

In Sect. 2 we state results about Jensen’s type and Slater-Pečarić type inequalities
when the coefficients αi ≥ 0, i = 1, . . . , n. Also, we quote inequalities for which
the coefficients are not always non-negative. We call these coefficients Steffensen’s
coefficients.

In Sect. 3 Hardy type inequalities are presented.
By using the results stated about Jensen type inequalities for γ -quasiconvex

functions we get in Sect. 4 Hölder’s type inequalities which are of the type

∫
fgdν ≶

(∫
gqdν

)1/q (∫
f pdν

)1/p

H (f, g)

that lately are widely discussed (see for instance [12, 13, 15, 19] and their
references).

In Sect. 5 we state Minkowski type inequalities which are derived by using again
the Jensen type inequalities for the γ -quasiconvex functions f (x) = xp+1, x ≥ 0,
p ≥ 1.

Finally, in Sect. 6 we get by the γ -quasiconvexity technique an estimation of
Jensen Gap, in particular, for functions that have Taylor power series representation.
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2 Jensen and Slater-Pečarić Type Inequalities
for N -quasiconvex Functions

2.1 Jensen and Slater-Pečarić Type Inequalities for
N -quasiconvex Functions with Non-negative Coefficients

We quote here some of the basic results which appear in [9], which are used to prove
the theorems stated in the sequel.

Theorem 1 Let ϕ : [a, b) → R, a ≥ 0 be convex differentiable function, and let
ψk (x) be

ψk (x) = xkϕ (x) , k = 0, 1, . . . , N, ψ0 = ϕ.

Let

αi ≥ 0, xi ∈ [a, b) , i = 1, . . . , n,
n∑

i=1

αi = 1.

Denote

x =
n∑

i=1

αixi,

then:

1) A Jensen’s type inequality holds:

n∑

i=1

αiψN (xi)− ψN (x) (4)

≥
n∑

i=1

αiϕ (x)
(
xNi − xN

)
+

n∑

i=1

αiϕ
′
(x) xNi (xi − x)

=
n∑

i=1

N∑

k=1

αi (xi − x)2 xk−1
i (ψN−k (x))′

=
n∑

i=1

αi (xi − x)2
∂

∂x

(
xN − xNi

x − xi
ϕ (x)

)

.

If ϕ is also non-negative and increasing then for N = 2, . . . , the above
inequality refines Jensen’s inequality. For N = 1 we get for ψ1 (x) = xϕ (x)
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n∑

i=1

αiψ1 (xi)− ψ1 (x) (5)

≥
n∑

i=1

αiϕ
′
(x) xi (xi − x) =

n∑

i=1

αiϕ
′
(x) (xi − x)2 .

If ϕ is increasing and convex (and not necessarily non-negative) then again (5)
is a refinement of Jensen’s inequality.

2) For a fixed C ∈ [a, b) we get when

αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1

that

CNϕ (C)−
n∑

i=1

αix
N
i ϕ (xi) = ψN (C)−

n∑

i=1

αiψN (xi)

≥
n∑

i=1

αi

(
xNi ϕ (xi)

)′
(C − xi)+

n∑

i=1

αi (C − xi)
2

N∑

k=1

Ck−1 (ψN−k (xi))′

=
n∑

i=1

αi

(
xNi ϕ (xi)

)′
(C − xi)+

n∑

i=1

αi (C − xi)
2 ∂

∂xi

(
xNi − CN

xi − C
ϕ (xi)

)

.

3) Especially if

n∑

i=1

αiψ
′
N (xi) > 0,

and if

C = MψN
=

∑n
i=1 αixiψ

′
N (xi)∑n

i=1 αiψ
′
N (xi)

∈ [a, b) ,

then we get a Slater-Pečarić type inequality

ψN

(
MψN

)−
n∑

i=1

αiψN (xi)

≥
n∑

i=1

N∑

k=1

αi
(
MψN

− xi
)2
Mk−1

ψN
(ψN−k (xi))′

=
n∑

i=1

αi
(
MψN

− xi
)2 ∂

∂xi

(
MN

ψN
− xNi

MψN
− xi

ϕ (xi)

)

.
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If ϕ is also non-negative and increasing then for N = 1, . . . the above inequality
is a refinement of Slater Pečarić inequality.

We get in [9, Theorem 1] the integral form of Jensen’s type inequality for γ -
quasiconvex functions and the special case when γ = 1 is:

Lemma 3 ([2, 9]) Let f be a non-negative function. Let f and ϕ◦f beμ-integrable
functions on the probability measure space (Ω,μ) and

∫

Ω

f (s) dμ (s) > 0.

Let also ψ (x) = xϕ (x). If ϕ is a differentiable convex on [0, b), 0 < b ≤ ∞
∫

Ω

ψ (f (s)) dμ (s)− ψ

(∫

Ω

f (s) dμ (s)

)

≥
∫

Ω

ϕ′
(∫

Ω

f (σ) dμ (σ)

)(
f (s)−

∫

Ω

f (σ) dμ (σ)

)2

dμ (s) .

hold. If ϕ is also increasing we get a refinement of Jensen’s inequality.

Example 1 Let

ϕ (x) = ex
3
, ψ (x) = xex

3

then from the convexity of ψ we get that

∫ 1

0
ψ (x) dx ≥ e

1
8

2

and from the 1-quasiconvexity we get the better result

∫ 1

0
ψ (x) dx ≥ 5e

1
8

8
.

2.2 Jensen and Slater-Pečarić Type Inequalities
for Steffensen’s Coefficients

We state now a Jensen-Steffensen type inequality and a Slater-Pečarić type inequal-
ity for N -quasiconvex functions, when N is an integer, and the coefficients are
not necessarily non-negative. These coefficients ρ1, . . . , ρn are called Steffensen
coefficients, and satisfy

0 ≤ Pk =
k∑

i=1

ρi ≤ Pn, P k =
n∑

i=k
ρi ≥ 0, Pn > 0, k = 1, . . . , n.
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For 1-quasiconvex function ψ we present a Jensen’s type inequality obtained in
[9, Theorem 3]:

Theorem 2 Let ρ1, . . . , ρn be Steffensen coefficients, and let

x = (x1, . . . , xn) > 0

satisfy

0 < x1 ≤ . . . ≤ xn.

Let ϕ be non-negative, increasing differentiable convex function defined on x ≥ 0,
and let ψ (x) = xϕ (x). Let

x =
n∑

i=1

ρixi

Pn
.

Let s be the integer that satisfies 0 < xs ≤ x ≤ xs+1 ≤ xn. Then we get

n∑

i=1

ρiψ (xi)− Pnψ (x)

≥ ϕ′ (x1)

⎛

⎝
s∑

j=1

Pj +
∑

j=s+1

P j

⎞

⎠
( ∑n

i=1 ρi |xi − x|
∑s

j=1 Pi +
∑n

j=s+1 P j

)2

≥ ϕ′ (x1) Pn max {s, n− s}
( ∑n

i=1 ρi |xi − x|
Pn max {s, n− s}

)2

≥ ϕ′ (x1) (n− 1) Pn

(∑n
i=1 ρi |xi − x|
(n− 1) Pn

)2

≥ 0.

We state now a Jensen-Steffensen type inequality and Slater Pečarić type
inequality for N -quasiconvex functions, when N is an integer. The proof of this
theorem appears in [1], uses (3) and some of the techniques used in [6] and [7].

Theorem 3 Let ρ1, . . . , ρn be Jensen-Steffensen coefficients, and let x =
(x1, . . . , xn) satisfy 0 < x1 ≤ . . . ≤ xn. Let ϕ be non-negative, increasing
differentiable convex function defined on x ≥ 0, and let

ψN (x) = xNϕ (x)

where N is an integer. Let

x =
n∑

i=1

ρixi

Pn
.
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Let s be the integer that satisfies

0 < xs ≤ x ≤ xs+1 ≤ xn.

Then

n∑

i=1

ρiψN (xi)− PnψN (x) (6)

≥
N∑

k=1

xk−1
1 ψ ′

N−k (x1)

⎛

⎝
s∑

j=1

Pj +
∑

j=s+1

P j

⎞

⎠
( ∑n

j=1 ρj
∣
∣xj − x

∣
∣

∑s
j=1 Pj +

∑n
j=s+1 P j

)2

=
⎛

⎝
s∑

j=1

Pj +
∑

j=s+1

P j

⎞

⎠
( ∑n

j=1 ρj
∣
∣xj − x

∣
∣

∑s
j=1 Pj +

∑n
j=s+1 P j

)2
∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x=x1

≥ (Pn max {s, n− s})−1

(
n∑

i=1

ρi |xi − x|
)2

∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x=x1

≥ ((n− 1) Pn)
−1

(
n∑

i=1

ρi |xi − x|
)2

∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x=x1 ≥ 0

holds, unless one of the following two cases occurs:

1) either x = x1 or x = xn,
2) there exists k ∈ {3, . . . , n− 2} such that x = xk and

Pj
(
xj − xj+1

) = 0, j = 1, . . . , k − 1, P j

(
xj − xj−1

) = 0,

j = k + 1, . . . , n.

In these two cases

n∑

i=1

ρiψ (xi)− Pnψ (x) = 0.

A refinement of Slater-Pečarić inequality in case that ψN is N -quasiconvex
functions is proved in [1] and is as follows:

Theorem 4 Under the same conditions as in Theorem 3 on (ρ1, . . . , ρn),
(x1, . . . , xn) and on

ψk (x) = xkϕ (x) , k = 0, 1, . . . , N,



8 S. Abramovich

if

n∑

i=1

ρiψ
′
N (xi) �= 0,

we define

MψN
=

∑n
i=1 ρixiψ

′
N (xi)∑n

i=1 ρiψ
′
N (xi)

.

Let

x =
n∑

i=1

ρixi

Pn
.

Case A: for s satisfying

xs ≤ MψN
≤ xs+1, s + 1 ≤ n,

then,

n∑

i=1

ρiψN (xi)− PnψN

(
MψN

)
(7)

≤ −
N∑

k=1

xk−1
1 ψ ′

N−k (x1)

⎛

⎝
s∑

j=1

Pj +
∑

j=s+1

P j

⎞

⎠
( ∑n

j=1 ρj
∣∣xj − x

∣∣
∑s

j=1 Pj +
∑n

j=s+1 P j

)2

= −
⎛

⎝
s∑

j=1

Pj +
∑

j=s+1

P j

⎞

⎠

−1 ⎛

⎝
n∑

j=1

ρj
∣
∣xj − x

∣
∣

⎞

⎠

2
∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x=x1

≤ − (Pn max {s, n− s})−1

(
n∑

i=1

ρi |xi − x|
)2

∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x=x1

≤ − ((n− 1) Pn)
−1

(
n∑

i=1

ρi |xi − x|
)2

∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x=x1 ≤ 0

holds, unless one of the following two cases occurs:

1) either x = x1 or x = xn,
2) there exists k ∈ {3, . . . , n− 2} such that x = xk and

Pj
(
xj − xj+1

) = 0, j = 1, . . . , s − 1, P j

(
xj − xj−1

) = 0,

j = s + 1, . . . , n
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In these two cases

n∑

i=1

ρiψ (xi)− Pnψ
(
MψN

) = 0.

Case B: Then, for

MψN
> xn,

we obtain

n∑

i=1

ρiψN (xi)− PnψN

(
MψN

)

≤ − (nPn)
−1

(
n∑

i=1

ρi
∣∣xi −MψN

∣∣
)2

∂

∂x

(
xN − xN1

x − x1
ϕ (x)

)

/x = x1.

Theorem 4, is a refinement of Slater-Pečarić inequality.

3 Hardy Type Inequalities for γ -Quasiconvex Functions

The original Hardy’s inequality has a “turning point” (the point where the inequality
is reversed) at p = 1. One of its versions is:

∫ b

0

(
1

x

∫ x

0
f (y) dy

)p

xαdx (8)

≤
(

p

p − α − 1

)p ∫ b

0
f p (x) xα

(

1 −
(x
b

) p−α−1
p

)

dx

for

p ≥ 1, α < p − 1, 0 ≤ b ≤ ∞

or

p < 0, α > p − 1, 0 ≤ b ≤ ∞.

This inequality can be proved directly by the properties of convex functions (The
proof can be found in [17] and its references). But by using the γ -quasiconvexity
we get a refined variant of the original Hardy’s inequality where the turning point is
any p > 1 (see [8, Theorem 2] and [2, Theorem 12]).
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Theorem 5 Let

p ≥ 2, k > 1, 0 < b ≤ ∞,

and γ ∈ R+, and let the function f be nonnegative and locally integrable on
(0, b). Then

(
p + γ

k − 1

)p+γ ∫ b

0

[(
1 −

(x
b

) k−1
p+γ

)
xp+γ f p+γ (x)−

(∫ x

0
f (t) dt

)p+γ]
dx

xk

≥
(
k − 1

p + γ

)∫ b

0

∫ b

t

((

f (t)
p + γ

k − 1

(
t

x

)1− k−1
p+γ

)γ

−
(

1

x

∫ x

0
f (σ) dσ

)γ
)

×
(

1

x

∫ x

0
f (σ) dσ

)p

x

(
1− k−1

p+γ
)
(p+γ−1)

t
k−1
p+γ −1 dx

x2
dt

+p
(
k − 1

p + γ

)1−γ ∫ b

0

∫ b

t

(
f (t) t

1− k−1
p+γ

)γ
(

f (t)
p + γ

k − 1

(
t

x

)1− k−1
p+γ

−1

x

∫ x

0
f (σ) dσ

)(
1

x

∫ x

0
f (σ) dσ

)p−1

x

(
1− k−1

p+γ
)
(p+1)

t
k−1
p+γ −1 dx

x2
dt ≥ 0

(9)

holds, and when γ = 0, inequality (9) coincide with (8).

4 γ -Quasiconvexity and New Hölder Type Inequalities

In [1] Jensen’s type inequalities are used to prove new Hölder type inequalities
and reversed Hölder type inequalities, in particular Lemma 3 and the following
Lemmas 4 and 5 are used there to get refinements for p ≥ 2 of Hölder inequality,
lower bounds for 1 < p ≤ 2 and upper bounds when 0 < p < 1:

Lemma 4 ([9, Corollary 1]) Let 0 < p ≤ 1, and let f be a μ-measurable and
positive function on the probability measure space (μ,Ω) and

x =
∫

Ω

f (s) dμ (s) > 0.

Then

−I1 +
(∫

Ω

f (s) dμ (s)

)p

≤
∫

Ω

(f (s))p dμ (s) ≤
(∫

Ω

f (s) dμ (s)

)p

,
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where

I1 = p

(∫

Ω

f (s) dμ (s)

)p (
1 −

∫

Ω

f (s) dμ (s)

∫

Ω

(f (s))−1 dμ (s)

)
> 0.

Lemma 5 ([9, Corollary 2]) Let 0 < p ≤ 1,let f be a non-negative μ-measurable
function on the probability measure space (Ω,μ)and

x =
∫

Ω

f (s) dμ (s) > 0.

Then

−I2+
(∫

Ω

f (s) dμ (s)

)p

≤
∫

Ω

(f (s))p dμ (s) ≤
(∫

Ω

f (s) dμ (s)

)p

, (10)

where

I2 = p

(∫

Ω

f (s) dμ (s)

)p−1 ∫

Ω

(f (s)− x)2

f (s)
dμ (s) . (11)

From Lemma 3 we get that for the 1-quasiconvex functions

ϕ (x) = xp, x ≥ 0, p ≥ 2

the inequality

∫

Ω

(f (s))p dμ (s)−
(∫

Ω

f (s) dμ (s)

)p

(12)

≥ (p − 1)

(∫

Ω

f (s) dμ (s)

)p−2 ∫

Ω

(
f (s)−

∫

Ω

f (s) dμ (s)

)2

dμ (s)

holds.
By using (12) we get:

Theorem 6 Let p ≥ 2 and define q by 1
p
+ 1

q
= 1. Then for any two nonnegative

ν-measurable functions f and g

∫

Ω

fgdν (13)

≤
(∫

Ω

f pdν − (p − 1)

(∫
Ω
fgdν

∫
Ω
gqdν

)p−2 ∫

Ω

(
fg(1−q) −

∫
Ω
fgdν

∫
Ω
gqdν

)2

gqdν

) 1
p

×
(∫

Ω

gqdν

) 1
q

.
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If 1 < p ≤ 2 we get when

∫

Ω

f pdν ≥ (p − 1)

(∫
Ω
fgdν

∫
Ω
gqdν

)p−2 ∫

Ω

(
fg(1−q) −

∫
Ω
fgdν

∫
Ω
gqdν

)2

gqdν,

that

(∫

Ω

f pdν

) 1
p
(∫

Ω

gqdν

) 1
q

(14)

≥
∫

Ω

fgdν

≥
(∫

Ω

f pdν − (p − 1)

(∫
Ω
fgdν

∫
Ω
gqdν

)p−2 ∫

Ω

(
fg(1−q) −

∫
Ω
fgdν

∫
Ω
gqdν

)2

gqdν

) 1
p

×
(∫

Ω

gqdν

) 1
q

.

The last inequalities emphasize that through the 1-quasiconvexity and 1-
quasiconcavity notions we get refined Hölder inequality for p ≥ 2 in (13) and
a lower bound in (14) for 1 < p ≤ 2.

Similar results appear in [5] and [18], there by using another variant of convex
functions called superquadratic functions.

From Lemma 5 we get a two sided Hölder type inequality:

Theorem 7 Let 0 < p ≤ 1, f and g be non-negative μ-measurable functions on
the probability measure space (Ω, ν) then

(∫

Ω

f pdν

) 1
p
(∫

Ω

gqdν

) 1
q ≤

∫

Ω

fgdν (15)

≤
(∫

Ω

f pdν + p

(∫
Ω
fgdν

∫
Ω
gqdν

)p−1 ∫

Ω

(
fg(1−q) −

∫
Ω
fgdν

∫
Ω
gqdν

)2
g2q−1

f
dν

) 1
p

×
(∫

Ω

gqdν

) 1
q

.

Similarly we get from Lemma 4 that

Theorem 8 Let 0 < p ≤ 1, f and g be non-negative μ-measurable functions on
the probability measure space (Ω, ν), then

∫

Ω

fgdν
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≤
(∫

Ω

f pdν + p

(∫
Ω
fgdν

∫
Ω
gqdν

)p (∫

Ω

gqdν −
∫
Ω
fgdν

∫
Ω
gqdν

∫

Ω

g2q−1

f
dν

)) 1
p

×
(∫

Ω

gqdν

) 1
q

.

Hölder type inequality for 0 < p ≤ 1
2 and for 1

2 ≤ p < 1 which we state now, are
derived again from the theorems related to 1-quasiconvex functions but are obtained
by different substitutions than those employed in the proof of Theorems 6–8.

Theorem 9 Let 0 < p ≤ 1
2 and define 1

p
+ 1

q
= 1. Then for any positive ν-

measurable function f and g

∫

Ω

fgdν ≥
(∫

Ω

f pdν

) 1
p
(∫

Ω

gqdν

) 1
q

(16)

×
[

1 +
(

1

p
− 1

)∫

Ω

(
f p

∫
Ω
gqdν − gq

∫
Ω
f pdν

∫
Ω
f pdν

)2
g−q

∫
Ω
gqdν

dν

]

is derived, which is a refinement of Hölder inequality.
For 1

2 ≤ p < 1, we get the reverse of inequality (16) and together with Hölder
inequality for 0 < p < 1

(∫

Ω

gqdν

) 1
q
(∫

Ω

f pdν

) 1
p ≤

∫

Ω

fgdν ≤
(∫

Ω

gqdν

) 1
q
(∫

Ω

f pdν

) 1
p

(17)

×
[

1 +
(

1

p
− 1

)∫

Ω

(
f p

∫
Ω
gqdν − gq

∫
Ω
f pdν

∫
Ω
f pdν

)2
g−q

∫
Ω
gqdν

dν

]

is derived.

5 Minkowski Type Inequalities Using 1-Quasiconvexity

By using Theorem 6 in [1] we get Minkowski type inequalities:

Theorem 10 Let p ≥ 2 and let 1
q

= 1 − 1
p
. Then for any two non-negative ν-

measurable functions f and g

(∫
(f + g)p dν

) 1
p

≤
(∫

f pdν −D

(∫
f (f + g)p−1 dν

)p−2
) 1

p
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+
(∫

gpdν −D

(∫
g (f + g)p−1 dν

)p−2
) 1

p

where

D = (p − 1)

⎛

⎜
⎝
∫

⎛

⎜
⎝

(
g
∫
f (f + g)p−1 dν − f

∫
g (f + g)p−1 dν

)2
(f + g)p−2

(∫
(f + g)p dν

)p

⎞

⎟
⎠ dν

⎞

⎟
⎠ .

The following Theorem 11 follows from inequality (14) and is proved in [1].

Theorem 11 Let 1 < p ≤ 2 and let 1
q
= 1 − 1

p
. Then for any two non-negative

ν-measurable functions f and g

(∫
f pdν

) 1
p +

(∫
gpdν

) 1
p ≥

(∫
(f + g)p dν

) 1
p

≥
(∫

f pdν −D

(∫
f (f + g)p−1 dν

)p−2
) 1

p

+
(∫

gpdν −D

(∫
g (f + g)p−1 dν

)p−2
) 1

p

where

D = (p − 1)
∫ ((

g
∫
f (f + g)p−1 dν − f

∫
g (f + g)p−1 dν

)2
(f + g)p−2

(∫
(f + g)p dν

)p

)

dν.

and

∫
f pdν ≥ D

(∫
f (f+g)p−1 dν

)p−2

,

∫
gpdν ≥ D

(∫
g (f+g)p−1 dν

)p−2

.

We now quote from [1] Minkowski’s type inequalities when 0 < p ≤ 1
2 and

when 1
2 ≤ p < 1.

Theorem 12 Let 0 < p ≤ 1
2 and define 1

p
+ 1

q
= 1. Then for any two non-negative

ν-measurable functions f and g

(∫
(f + g)p dν

) 1
p
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≥
(∫

f pdν

) 1
p

×
[

1 +
(

1

p
− 1

)∫ (
(f + g)p

∫
f pdν − f p

∫
(f + g)p dν

∫
f pdν

)2
(f + g)−p

∫
(f + g)p dν

dν

]

+
(∫

gpdν

) 1
p

×
[

1 +
(

1

p
− 1

)∫ (
(f + g)p

∫
gpdν − gp

∫
(f + g)p dν

∫
gpdν

)2
(f + g)−p

∫
(f + g)p dν

dν

]

.

When 1
2 ≤ p < 1 we get

(∫
f pdν

) 1
p+

(∫
gpdν

) 1
p ≤

(∫
(f + g)p dν

) 1
p

≤
(∫

f pdν

) 1
p

×
[

1 +
(

1

p
− 1

)∫ (
(f + g)p

∫
f pdν − f p

∫
(f + g)p dν

∫
f pdν

)2
(f + g)−p

∫
(f + g)p dν

dν

]

+
(∫

gpdν

) 1
p

×
[

1 +
(

1

p
− 1

)∫ (
(f + g)p

∫
gpdν − gp

∫
(f + g)p dν

∫
gpdν

)2
(f + g)−p

∫
(f + g)p dν

dν

]

.

6 Bounds of “Jensen’s Gap” for N -quasiconvex Functions

6.1 Bounds for Difference Between Two “Jensen’s Gaps” for
N -quasiconvex Functions

We state here one of many results that can be derived from the previous theorems.
First we quote a result from [10] about the difference between two “Jensen’s gaps”

n∑

i=1

piψ (xi)− ψ
(
xp

)
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and
n∑

i=1

qiψ (xi)− ψ
(
xq

)
.

Then we present a new theorem proved in [1] with results when ψN is a N -
quasiconvex function. In particular for a 1-quasiconvex function ψ1 the result is
interesting.

These results are refinements of the following theorem by Dragomir in [10] (see
also [3]):

Theorem 13 Let

xi ∈ I, i = 1, . . . , n, xp =
n∑

i=1

pixi, pi ≥ 0, i = 1, . . . , n,
n∑

i=1

pi = 1

and

xq =
n∑

i=1

qixi, qi > 0, i = 1, . . . , n,
n∑

i=1

qi = 1,

m = min
1≤i≤n

(
pi

qi

)
and M = max

1≤i≤n

(
pi

qi

)
.

If ψ is convex then

M

(
n∑

i=1

qiψ (xi)− ψ
(
xq

)
)

≥
n∑

i=1

piψ (xi)− ψ
(
xp

)
(18)

≥ m

(
n∑

i=1

qiψ (xi)− ψ
(
xq

)
)

.

Now we state a refinement of Theorem 13 for N -quasiconvex function ψN.

Theorem 14 ([1, Theorem 18]) Suppose that ψN : [a, b) → R, 0 ≤ a < b ≤ ∞
is N -quasiconvex function, that is ψN = xNϕ (x) , N = 1, 2, . . . where ϕ is convex
on [a, b) .

Let

xi ∈ I, i = 1, . . . , n, xp =
n∑

i=1

pixi, pi ≥ 0, i = 1, . . . , n,
n∑

i=1

pi = 1

and

xq =
n∑

i=1

qixi, qi > 0, i = 1, . . . , n,
n∑

i=1

qi = 1.
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Then, for m = min
1≤i≤n

(
pi
qi

)
and M = max

1≤i≤n

(
pi
qi

)

(
n∑

i=1

piψN (xi)− ψN

(
xp

)
)

−m

(
n∑

i=1

qiψN (xi)− ψN

(
xq

)
)

(19)

≥
n∑

i=1

(pi −mqi)
(
xi − xp

)2 ∂

∂xp

(
xNi − xNp

xi − xp
ϕ
(
xp

)
)

+m (
xq − xp

)2

(
xNq − xNp

xq − xp
ϕ
(
xp

)
)

,

and
(

n∑

i=1

piψN (xi)− ψN

(
xp

)
)

−M

(
n∑

i=1

qiψN (xi)− ψN

(
xq

)
)

(20)

≤
n∑

i=1

(pi −Mqi)
(
xi − xq

)2 ∂

∂xq

(
xNi − xNq

xi − xq
ϕ
(
xq

)
)

−M (
xq − xp

)2 ∂

∂xq

(
xNq − xNp

xq − xp
ϕ
(
xq

)
)

.

For N = 1 we get that

(
n∑

i=1

piψ1 (xi)− ψ1
(
xp

)
)

−m

(
n∑

i=1

qiψ1 (xi)− ψ1
(
xq

)
)

(21)

≥ ϕ
′ (
xp

)
((

n∑

i=1

pix
2
i −

(
xp

)2

)

−m

(
n∑

i=1

qix
2
i −

(
xq

)2

))

,

and
(

n∑

i=1

piψ1 (xi)− ψ1
(
xp

)
)

−M

(
n∑

i=1

qiψ1 (xi)− ψ1
(
xq

)
)

(22)

≤ ϕ
′ (
xq

)
((

n∑

i=1

pix
2
i −

(
xp

)2

)

−M

(
n∑

i=1

qix
2
i −

(
xq

)2

))

.

In particular if ϕ is also non-negative increasing then (19)–(22) are refinements
of (18).
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6.2 Jensen Gap and Taylor Power Series

In [4] we get by the γ -quasiconvexity technique an estimation of Jensen Gap, in
particular, for functions that have Taylor power series representation, which we state
in this section.

Theorem 15 ([4, Theorem 1]) Let φ : [0, A) → R have the Taylor power series
representation on [0, A),

0 < A ≤ ∞ : φ (x) =
∞∑

n=0

anx
n.

Let ϕ be a convex increasing function on [0, A) that is related to φ by

ϕ (x) = φ (x)− φ(0)

x
=

∞∑

n=0

an+1x
n.

If f ≥ 0 and f, f 2 and φ ◦ f are integrable functions on Ω and

z =
∫

Ω

f dμ > 0,

where μ is a probability measure on Ω , then:

a)

∫

Ω

φ (f ) dμ− φ (z) ≥
(
φ (z)− φ(0)

z

)′ (∫

Ω

f 2dμ− z2
)
≥ 0.

In other words:

J (φ,μ, f ) =
∫

Ω

φ (f ) dμ− φ (z)

=
∞∑

n=0

an+1

∫

Ω

f n+1dμ−
∞∑

n=0

an+1z
n+1

≥
∞∑

n=0

(n+ 1) an+2z
n

(∫

Ω

f 2dμ− z2
)
≥ 0.

b) For

x =
m∑

i=1

αixi,

m∑

i=1

αi = 1, 0 ≤ αi ≤ 1, 0 ≤ xi < A, i = 1, . . . , m,
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it yields that

m∑

i=1

αiφ (xi)− φ (x) ≥
(
φ (x)− φ(0)

x

)′ ( m∑

i=1

αix
2
i − x2

)

≥ 0.

In other words,

m∑

i=1

∞∑

n=0

αian+1x
n+1
i −

∞∑

n=0

an+1x
n+1 ≥

∞∑

n=0

(n+1) an+2x
n

(
m∑

i=1

αix
2
i −x2

)

≥ 0.

Corollary 1 ([4, Corollary 3]) Let 0 < A ≤ ∞ and let φ : [0, A) have a Taylor
expansion

φ (x) =
∞∑

n=0

anx
n,

on [0, A) . If

x =
m∑

i=1

αixi,

m∑

i=1

αi = 1, 0 ≤ αi ≤ 1, 0 ≤ xi ≤ A, i = 1.2, . . . m,

then

J =
m∑

i=1

αiφ (xi)− φ (x) =
∞∑

n=2

an

(
m∑

i=1

αix
2
i − x2

)
n−1∑

k=1

(n− k) xk−1xn−k−1.

Concluding Remark In this survey we show refinements and extensions of
important type inequalities related to convexity. In future survey we will show other
refinements of important inequalities for instance the Hermite-Hadamard and the
Fejer inequalities.
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Criteria for Convergence of Iterates in a
Compression-Expansion Fixed Point
Theorem of Functional Type

Richard I. Avery, Douglas R. Anderson, and Johnny Henderson

1 Introduction

Fixed point theorems have widely been used to verify the existence of solutions
to boundary value problems [1, 4, 6–9, 11, 13]. There are results, for example
Petryshyn [12], that culminate in a solution to a boundary value problem; however,
the difficulty in applying these theorems lies in the invariance assumptions. Intervals
of functional type can be used to narrow the underlying set used with a fixed point
theorem in such a way that once a unique fixed point is established in an interval of
functional type, one can employ k-contraction principles to iterate to the solution in
the interval of functional type. Intervals of functional type which were introduced in
the extension of the compression-expansion fixed point theorem of functional type
[3] provide a means to narrow the search for a fixed point using the properties of the
operator. We conclude with an application that demonstrates some conditions that
can be included in a functional type interval that have not been used in existence of
solutions arguments in the past.
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2 Preliminaries

For completeness we provide the following definitions and theorems which are
nearly identical to the presentation in other compression-expansion fixed point
papers, in particular [2].

Definition 1 Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone if for all x ∈ P and λ ≥ 0, λx ∈ P and if x,−x ∈ P then x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y −
x ∈ P.

Definition 2 An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 3 A map α is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx + (1 − t)y) ≥ tα(x)+ (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a nonnegative
continuous convex functional on a cone P of a real Banach space E if β : P →
[0,∞) is continuous and

β(tx + (1 − t)y) ≤ tβ(x)+ (1 − t)β(y)

for all x, y ∈ P and t ∈ [0, 1].
Definition 4 Let A be an open subset of a cone P , a and b be nonnegative numbers,
α be a concave functional on P , and β be a convex functional on P . Then the set

A(β, b, α, a) = {x ∈ A : a < α(x) and β(x) < b}

is an interval of functional type.

Definition 5 Let D be a subset of a real Banach space E. If r : E → D is
continuous with r(x) = x for all x ∈ D, then D is a retract of E, and the map
r is a retraction.

Dugundji’s Theorem, which is stated below, is applied to the cone in our main result
so the fixed point index can be applied; a proof can be found in [5, p. 44]. The convex
hull of a subset D of a real Banach space X is given by

conv(D) =
{

n∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],
n∑

i=1

λi = 1, and n ∈ N

}

.
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Theorem 1 For Banach spaces X and Y , let D ⊂ X be closed and let F : D → Y

be continuous. Then F has a continuous extension F̃ : X → Y such that F̃ (X) ⊂
conv(F (D)).

Corollary 1 Every closed convex set of a Banach space is a retract of the Banach
space.

The proof of our fixed point theorem relies on properties of the fixed point index,
which are stated below; a proof can be found in [5, p. 238].

Theorem 2 Let X be a retract of a real Banach space E. Then, for every bounded
relatively open subset U of X and every completely continuous operator A : U →
X which has no fixed points on ∂U (relative to X), there exists an integer i(A,U,X)
satisfying the following conditions:

(i) Normality: i(A,U,X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;
(ii) Additivity: i(A,U,X) = i(A,U1, X)+ i(A,U2, X) whenever U1 and U2 are

disjoint open subsets of U such that A has no fixed points on U − (U1 ∪ U2);
(iii) Homotopy Invariance: i(H(t, ·), U,X) is independent of t ∈ [0, 1] whenever

H : [0, 1] × U → X is completely continuous and H(t, x) �= x for any
(t, x) ∈ [0, 1] × ∂ U ;

(iv) Solution: If i(A,U,X) �= 0, then A has at least one fixed point in U .

Moreover, i(A,U,X) is uniquely defined.

In the following theorem we extend the compression-expansion fixed point
theorem [3] that utilizes intervals of functional type with a condition for iterates
of an operator T to converge to a unique fixed point. In the spirit of the Leggett-
Williams fixed point theorem [10], which many of the compression-expansion fixed
point theorems of functional type have generalized, we do not know that T is
invariant on A(β, b, α, a). However, if suitable k-contractive conditions are met we
can still use the same arguments as presented in the Banach fixed point theorem to
prove that iterates converge and that the fixed point of T in A(β, b, α, a) is unique.
See [14, p. 17] for a presentation of these concepts; one can also see these techniques
in the work of Petryshyn [12]. The key is to first prove that there is a unique fixed
point in A(β, b, α, a), and then to show under additional conditions that the iterates
will converge to this fixed point.

For completeness and clarification, the entire proof of the extension is presented
below, as there was a hidden assumption in the original paper [3], namely A being
convex; moreover, x0 also needed to lie in the set A(θ, c, ψ, d), and the assumptions
that were made on the set ∂A(β, b, α, a) only needed to be made on the set A ∩
∂P (β, b, α, a).

Theorem 3 Suppose P is a cone in a real Banach space E, A is a relatively open
subset of P , α and ψ are nonnegative continuous concave functionals on P , β
and θ are nonnegative continuous convex functionals on P , and T : P → P is a
completely continuous operator. If there exist nonnegative numbers a, b, c, and d

and x0 ∈ A(β, b, α, a) ∩ A(θ, c, ψ, d) such that:
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(A0) A(β, b, α, a) is bounded;
(A1) if x ∈ ∂A ∩ P(β, b, α, a) and τ ∈ [0, 1], then (1 − τ)T x + τx0 �= x;
(A2) if x ∈ A ∩ ∂P (β, b, α, a) with α(x) = a and θ(x) ≤ c, then α(T x) > a;
(A3) if x ∈ A ∩ ∂P (β, b, α, a) with α(x) = a and θ(T x) > c, then α(T x) > a;
(A4) if x ∈ A ∩ ∂P (β, b, α, a) with β(x) = b and ψ(T x) < d, then β(T x) < b;
(A5) if x ∈ A ∩ ∂P (β, b, α, a) with β(x) = b and ψ(x) ≥ d, then β(T x) < b;

then T has a fixed point x∗ ∈ A(β, b, α, a). Moreover, if for all x ∈ A(β, b, α, a)

there exists a k ∈ [0, 1) such that

‖T x − x∗‖ ≤ k‖x − x∗‖,

then x∗ is the unique fixed point of T in A(β, b, α, a). Furthermore, if y0 ∈
A(β, b, α, a) and

‖T ny0 − x∗‖ ≤ k‖T n−1y0 − x∗‖

for all positive integers n, then

T ny0 → x∗.

Proof By Corollary 1, P is a retract of the Banach space E since it is convex and
closed.
Since the functional interval satisfies

A(β, b, α, a) = A ∩ P(β, b, α, a),

we have that

∂A(β, b, α, a)

= ∂(A ∩ P(β, b, α, a))

= (A ∩ P(β, b, α, a)) ∩ (P − (A ∩ P(β, b, α, a)))

= (A ∩ P(β, b, α, a)) ∩ (P − A) ∪ (P − P(β, b, α, a))

= (A ∩ P(β, b, α, a)) ∩ ((P − A) ∪ (P − P(β, b, α, a)))

⊆ (A ∩ P(β, b, α, a)) ∩ ((P − A) ∪ (P − P(β, b, α, a)))

= (A ∩ P(β, b, α, a) ∩ (P − A)) ∪ (A ∩ P(β, b, α, a) ∩ (P − P(β, b, α, a)))

= (∂A ∩ P(β, b, α, a)) ∪ (A ∩ ∂P (β, b, α, a)).

Define H : [0, 1] × A(β, b, α, a) → P by

H(τ, x) = (1 − τ)T x + τx0.
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Clearly, H is continuous and H
(
[0, 1] × A(β, b, α, a)

)
is precompact.

Claim H(τ, x) �= x for all (τ, x) ∈ [0, 1] × ∂A(β, b, α, a).

Suppose not; that is, suppose there exists (t0, y0) ∈ [0, 1] × ∂A(β, b, α, a)

such that

H(t0, y0) = y0.

Since y0 ∈ ∂A(β, b, α, a), we have that

y0 ∈ A ∩ ∂P (β, b, α, a),

so either β(y0) = b or α(y0) = a, as

∂A(β, b, α, a) ⊆
(
∂A ∩ P(β, b, α, a)

)
∪ (

A ∩ ∂P (β, b, α, a)
)

and H(τ, x) = (1 − τ)T x + τx0 �= x for all (τ, x) ∈ [0, 1] × ∂A ∩ P(β, b, α, a)

by condition (A1).

Case 2.1 β(y0) = b.
Either ψ(Ty0) < d or ψ(Ty0) ≥ d.

Subcase 2.1.1 ψ(Ty0) < d.
By condition (A4) we have β(Ty0) < b, thus it follows that

b = β(y0) = β ((1 − t0)T y0 + t0x0) ≤ (1 − t0)β(T y0)+ t0β(x0) < b,

which is a contradiction.

Subcase 2.1.2 ψ(Ty0) ≥ d.
Since x0 ∈ A(θ, c, ψ, d), ψ(x0) > d, hence we have that ψ(y0) ≥ d because

ψ(y0) = ψ((1 − t0)T y0 + t0x0) ≥ (1 − t0)ψ(T y0)+ t0ψ(x0) ≥ d,

and thus by condition (A5) we have β(Ty0) < b, which is the same contradiction
we arrived at in the previous subcase.

Case 2.2 α(y0) = a.
Either θ(T y0) ≤ c or θ(T y0) > c.

Subcase 2.2.1 θ(T y0) > c.
By condition (A3) we have α(Ty0) > a, thus we have

a = α(y0) = α((1 − t0)T y0 + t0x0) ≥ (1 − t0)α(T y0)+ t0α(x0) > a,

which is a contradiction.

Subcase 2.2.2 θ(T x0) ≤ c.
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Since x0 ∈ A(θ, c, ψ, d), θ(x0) < c, hence we have that θ(y0) ≤ c because

θ(y0) = θ((1 − t0)T y0 + t0x0) ≤ (1 − t0)θ(T y0)+ t0θ(x0) ≤ c,

and thus by condition (A2) we have α(Ty0) > a, which is the same contradiction
we arrived at in the previous case.

Therefore, we have shown that H(τ, x) �= x for all (τ, x) ∈ [0, 1] ×
∂A(β, b, α, a). Note, this also verifies that T does not have any fixed points on
∂A(β, b, α, a) (let τ = 0). Thus by the homotopy invariance property of the fixed
point index

i(T ,A(β, b, α, a), P ) = i(x0, A(β, b, α, a), P ),

and by the normality property of the fixed point index

i(T ,A(β, b, α, a), P ) = i(x0, A(β, b, α, a), P ) = 1.

Consequently by the solution property of the fixed point index, T has a fixed point
x∗ ∈ A(β, b, α, a).

Moreover, if for all x ∈ A(β, b, α, a) there exists a k ∈ [0, 1) such that

‖T x − x∗‖ ≤ k‖x − x∗‖,

then for any fixed point z∗ ∈ A(β, b, α, a) we have that

‖z∗ − x∗‖ = ‖T z∗ − x∗‖ ≤ k‖z∗ − x∗‖.

Therefore ‖z∗ − x∗‖ = 0 as k < 1, and we have verified that under this condition T
has a unique fixed point in A(β, b, α, a). Furthermore, if y0 ∈ A(β, b, α, a) and

‖T ny0 − x∗‖ ≤ k‖T n−1y0 − x∗‖

for all positive integers n, then by induction

‖T ny0 − x∗‖ ≤ kn‖y0 − x∗‖;

hence the iterates converge to the fixed point x∗, that is,

T ny0 → x∗.

��
The following corollary condenses the Leggett-Williams type conditions of

Theorem 3 into invariance-like conditions.
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Corollary 2 Suppose P is a cone in a real Banach space E, A is a relatively
open subset of P , α is a nonnegative continuous concave functional on P , β
is a nonnegative continuous convex functional on P , and T : P → P is a
completely continuous operator. If there exist nonnegative numbers a and b and
x0 ∈ A(β, b, α, a) such that

(A0) A(β, b, α, a) is bounded;
(A1) if x ∈ ∂A ∩ P(β, b, α, a) and τ ∈ [0, 1], then (1 − τ)T x + τx0 �= x;
(H2) if x ∈ A ∩ ∂P (β, b, α, a) with α(x) = a, then α(T x) > a; and,
(H3) if x ∈ A ∩ ∂P (β, b, α, a) with β(x) = b, then β(T x) < b;

then T has a fixed point x∗ ∈ A(β, b, α, a). Moreover, if for all x ∈ A(β, b, α, a)

there exists a k ∈ [0, 1) such that

‖T x − x∗‖ ≤ k‖x − x∗‖,
then x∗ is the unique fixed point of T in A(β, b, α, a). Furthermore, if y0 ∈
A(β, b, α, a) and

‖T ny0 − x∗‖ ≤ k‖T n−1y0 − x∗‖
for all positive integers n, then

T ny0 → x∗.

In our application in the next section we show how one can arrive at invariance
conditions to invoke Corollary 2 through a clever choice of the set A, and we show
that the iterates will converge to the unique fixed point in our interval of functional
type.

3 Application

In this section, using an interval of functional type, we will illustrate the key
techniques for verifying the existence and uniqueness of a positive solution for a
conjugate boundary value problem in an interval of functional type. Note that the
resulting conditions for a fixed point to exist in our functional-type interval will
force the boundaries to be mapped in and out respectively in the set A(β, α, b, a),
however the conditions do not force the boundaries to be mapped in and out respec-
tively in the set P(β, α, b, a), which is an important contribution of Theorem 3 and
Corollary 2 to the literature. We consider the classical conjugate boundary value
problem

x′′(t)+ f (x(t)) = 0, t ∈ (0, 1), (1)

x(0) = 0 = x(1), (2)
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where f : R → [0,∞) is continuous. It is well known that if x is a fixed point of
the operator T defined by

T x(t) :=
∫ 1

0
G(t, s)f (x(s))ds,

where

G(t, s) =
⎧
⎨

⎩

t (1 − s) if 0 ≤ t ≤ s ≤ 1

s(1 − t) if 0 ≤ s ≤ t ≤ 1,

then x is a solution of the boundary value problem (1), (2).
Define the cone P ⊂ E = C[0, 1], which is a Banach space with the norm

‖x‖ = sup
t∈[0,1]

|x(t)|,

by

P =
⎧
⎨

⎩
y ∈ E

∣
∣∣∣∣∣

y is concave, symmetric, and
nonnegative valued on [0,1] with
y(0) = 0 = y(1)

⎫
⎬

⎭
.

One can show that for all x ∈ P , applying the symmetry of x, that

(T x)

(
1

4

)
=

∫ 1
4

0
sf (x(s)) ds +

∫ 1
2

1
4

f (x(s))

4
ds

and

(T x)

(
1

2

)
=

∫ 1
2

0
s f (x(s)) ds.

For x ∈ P define the convex functional β on P by

β(x) := max
t∈

[
0, 1

2

] x(t) = x

(
1

2

)

and the concave functional α on P by

α(x) := min
t∈[ 1

4 ,
3
4 ]
x(t) = x

(
1

4

)
.
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We are now ready to prove the existence of a unique positive solution to (1), (2) in
our functional-type interval if the conditions in the following theorem are satisfied,
and show that a sequence of iterates will converge to this unique positive solution in
our interval of functional type.

Theorem 4 If 0 < 9a
2 < b, 0 < M < 16 and f : [0,∞) → [0,∞) is a

continuously differentiable function such that

(a) 6x < f (x) < 62b for x ∈ [0, a] ,

(b) 96x
11 + 36a

11 < f (x) < 8b for x ∈
[
a, 35a

24

]
,

(c) 16a < f (x) < 8b for x ∈
[

35a
24 ,

3b
4

]
,

(d) 16a < f (x) < 6b for x ∈
[

3b
4 , b

]
,

(e) 16a < f (x) for x ∈ [b, 2b],
(f ) |f ′(x)| < M for x ∈ [0, a], and
(g) |f ′(x)| < 16

3 for x ∈ [a, 2b],

then the conjugate boundary value problem (1), (2) has a positive solution x∗ ∈
A(β, b, α, a). Moreover, for every y ∈ A(β, b, α, a) we have that

T ny0 → x∗.

Proof Let

A =
{
x ∈ P : x

(
1

2

)
− x

(
1

4

)
<

b

4
,

35a

24
< x

(
1

2

)
,

and (f ◦ x)(t) > 16at + 8a for t ∈
[

1

4
,

1

2

]}
,

c ∈ R such that 9a
2 < c < b, and

x0(t) = 4ct (1 − t)

3
.

Then x0 satisfies

x0

(
1

4

)
= c

4
> a and x0

(
1

2

)
= c

3
>

9a

6
>

35a

24
,

so that

x0

(
1

2

)
− x0

(
1

4

)
= c

3
− c

4
= c

12
<

b

12
<

b

4
.
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Let t ∈
[

1
4 ,

1
2

]
. If x0(t) ∈

[
a, 35a

24

]
, then by the concavity of x0 and assumption (b)

we have

(f ◦ x0)(t) >
96

11
x0(t)+ 36a

11

>
96

11

(
11a

6
t + 13a

24

)
+ 36a

11

= 16at + 8a;

if x0(t) >
35a
24 , then by assumption (c) we have

(f ◦ x0)(t) > 16a ≥ 16at + 8a.

Thus, in either case we have that (f ◦ x0)(t) > 16at + 8a for t ∈
[

1
4 ,

1
2

]
. Therefore

x0 ∈ A(β, b, α, a).

For any x ∈ A(β, b, α, a) we see that b ≥ x(t) ≥ a for t ∈
[

1
4 ,

1
2

]
, thus

(T x)

(
1

2

)
− (T x)

(
1

4

)
=

∫ 1
2

1
4

(
s − 1

4

)
f (x(s)) ds

<

∫ 1
2

1
4

8b

(
s − 1

4

)
ds = b

4
.

Also, for any x ∈ A(β, b, α, a) we have that x
(

1
4

)
≥ a; thus, by concavity we have

x(t) ≥ 4at for t ∈
[
0, 1

4

]
, so that f (x(t)) > 24at for t ∈

[
0, 1

4

]
. It follows that

(T x)

(
1

2

)
=

∫ 1
2

0
s f (x(s)) ds

=
∫ 1

4

0
s f (x(s)) ds +

∫ 1
2

1
4

s f (x(s)) ds

>

∫ 1
4

0
s 6(4as) ds +

∫ 1
2

1
4

s (16as + 8a) ds = 35a

24

and

(T x)

(
1

4

)
=

∫ 1
4

0
s f (x(s)) ds +

∫ 1
2

1
4

f (x(s))

4
ds
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>

∫ 1
4

0
s 6(4as) ds +

∫ 1
2

1
4

16as + 8a

4
ds

≥
∫ 1

4

0
s 6(4as) ds +

∫ 1
2

1
4

4as + 2a ds = a.

By the concavity of T x and x0 we have for all τ ∈ [0, 1] that

(1 − τ)T x + τx0 is concave.

Also, since x0(
1
4 ) > a, (T x)( 1

4 ) > a, x0(
1
2 ) >

35a
24 and (T x)( 1

2 ) >
35a
24 , we have that

a < (1 − τ)T x

(
1

4

)
+ τx0

(
1

4

)
and

35a

24
< (1 − τ)T x

(
1

2

)
+ τx0

(
1

2

)
.

By the concavity of (1 − τ)T x + τx0 we have that

((1 − τ)T x + τx0)(t) ≥ 11a

6
t + 13a

24
for t ∈

[
1

4
,

1

2

]
.

Consequently for t ∈
[

1
4 ,

1
2

]
, if ((1 − τ)T x + τx0)(t) ∈

[
a, 35a

24

]
, then

(f ◦ ((1 − τ)T x + τx0))(t) >
96

11
((1 − τ)T x + τx0)(t)+ 36a

11

≥ 96

11

(
11a

6
t + 13a

24

)
+ 36a

11

= 16at + 8a,

and if ((1 − τ)T x + τx0)(t) >
35a
24 then

(f ◦ ((1 − τ)T x + τx0))(t) > 16a ≥ 16at + 8a.

Thus, in either case we have that (f ◦((1−τ)T x+τx0))(t) > 16at+8a. Therefore
we have that

(1 − τ)T x + τx0 �= x

for all x ∈ ∂A ∩ P(β, b, α, a) and τ ∈ [0, 1].
Clearly A(β, b, α, a) is a nonempty, bounded, open subset of P , and thus

condition (A1) of Corollary 2 is satisfied. We have also shown that

α(x) > a
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for all x ∈ A(β, b, α, a), so that condition (H2) of Corollary 2 is also satisfied. If
x ∈ ∂A(β, b, α, a) with β(x) = b, then

x

(
1

2

)
− x

(
1

4

)
<

b

4

hence

b − b

4
= 3b

4
< x

(
1

4

)
,

thus by the concavity of x, for t ∈
[

1
12 ,

1
4

]
, we have that

a <
b

4
≤ x(t).

It follows that

β(T x) = T x

(
1

2

)
=

∫ 1
2

0
s f (x(s)) ds

=
∫ 1

12

0
s f (x(s)) ds +

∫ 1
4

1
12

s f (x(s)) ds +
∫ 1

2

1
4

s f (x(s)) ds

<

∫ 1
12

0
62bs ds +

∫ 1
4

1
12

8bs ds +
∫ 1

2

1
4

6bs ds

= b.

As a result, condition (H3) of Corollary 2 is satisfied. Therefore by Corollary 2, T
has at least one fixed point x∗ ∈ A(β, b, α, a) which is a solution of the boundary
value problem (1), (2).
For any y ∈ A(β, b, α, a) we have

‖Ty − T x∗‖ = max
t∈[0,1]

∣∣
∣∣

∫ 1

0
G(t, s)f (y(s)) ds −

∫ 1

0
G(t, s)f (x∗(s)) ds

∣∣
∣∣

≤ max
t∈[0,1]

∫ 1

0
G(t, s) |f (y(s))− f (x∗(s))| ds

=
∫ 1

2

0
s |f (y(s))− f (x∗(s))| ds

=
∫ 1

4

0
s |f (y(s))− f (x∗(s))| ds
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+
∫ 1

2

1
4

s |f (y(s))− f (x∗(s))| ds

≤
∫ 1

4

0
s

(
max

w∈[0,b]
∣
∣f ′(w)

∣
∣
)
‖y − x∗‖ ds

+
∫ 1

2

1
4

s

(
max

w∈[a,b]
∣∣f ′(w)

∣∣
)
‖y − x∗‖ ds

<

(
M

32

)
‖y − x∗‖ +

(
1

2

)
‖y − x∗‖

= k‖y − x∗‖,

where

k = M

32
+ 1

2
< 1

since M < 16. Therefore x∗ is the unique solution for the boundary value problem
(1), (2) in A(β, b, α, a).

Claim For all n ∈ N, ‖T ny‖ ≤ 2b, (T ny)( 1
4 ) > a, and ‖T ny − x∗‖ ≤ k‖T n−1

y − x∗‖.

Clearly this is true for n = 1 since we have already shown that

‖Ty − x∗‖ = ‖Ty − T x∗‖ < k‖y − x∗‖ ≤ b,

which also verifies that

‖Ty‖ < 2b.

We also have that

(T y)

(
1

4

)
=

∫ 1
4

0
s f (y(s)) ds +

∫ 1
2

1
4

f (y(s))

4
ds

>

∫ 1
2

1
4

f (y(s))

4
ds

≥
∫ 1

2

1
4

16a

4
ds = a.
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Let m ≥ 1 and suppose that ‖T jy‖ ≤ 2b, (T jy)( 1
4 ) > a, and ‖T jy − x∗‖ ≤

k‖T j−1y − x∗‖ for all j ≤ m. Thus,

(T m+1y)

(
1

4

)
=

∫ 1
4

0
s f ((T my)(s)) ds +

∫ 1
2

1
4

f ((T my)(s))

4
ds

>

∫ 1
2

1
4

f ((T my)(s))

4
ds

≥
∫ 1

2

1
4

16a

4
ds = a,

and

‖T m+1y − x∗‖ = ‖T m+1y − T x∗‖

= max
t∈[0,1]

∣∣∣∣

∫ 1

0
G(t, s)f (T my(s)) ds −

∫ 1

0
G(t, s)f (x∗(s)) ds

∣∣∣∣

≤ max
t∈[0,1]

∫ 1

0
G(t, s)

∣∣f ((T my)(s))− f (x∗(s))
∣∣ ds

=
∫ 1

2

0
s
∣∣f ((T my)(s))− f (x∗(s))

∣∣ ds

=
∫ 1

4

0
s
∣∣((T my)(s))− f (x∗(s))

∣∣ ds

+
∫ 1

2

1
4

s
∣∣f ((T my)(s))− f (x∗(s))

∣∣ ds

≤
∫ 1

4

0
s

(
max

w∈[0,2b]
∣∣f ′(w)

∣∣
)
‖T my − x∗‖ ds

+
∫ 1

2

1
4

s

(
max

w∈[a,2b]
∣
∣f ′(w)

∣
∣
)
‖T my − x∗‖ ds

<

(
M

32

)
‖T my − x∗‖ +

(
1

2

)
‖T my − x∗‖

= k‖T my − x∗‖.

Consequently we have

‖T m+1y − x∗‖ ≤ km+1‖y − x∗‖,
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since ‖T jy − x∗‖ ≤ k‖T j−1y − x∗‖ for all j ≤ m. Note, this also verifies that
‖T m+1y‖ < 2b, and the claim is proven by the principle of mathematical induction.
Therefore, for every y ∈ A(β, b, α, a) we have that

T ny → x∗.

This completes the proof. ��
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On Lagrangian Duality in Infinite
Dimension and Its Applications

Antonio Causa, Giandomenico Mastroeni, and Fabio Raciti

1 Introduction

The last decade has witnessed a renewed interest in the topic of Lagrangian duality
in infinite dimensional spaces, mainly motivated by the need to deal with time-
dependent or stochastic equilibrium problems in a Lebesgue space setting, or with
unilateral problems described by elliptic partial differential equations. Indeed, in
these applications, the classical theory is not applicable, because the ordering cones
used have empty topological interior and the usual constraint qualifications (see e.g.
[15, 20]) are not useful. In particular, in the Lebesgue spaces Lp, with p > 1,
it is well known that the cone of the almost everywhere nonnegative functions,
often used to describe inequality constraints in equilibrium problems (see e.g.
[12, 17, 18]), has empty topological interior, and the same happens in some Sobolev
spaces widely used in unilateral problems [8]. In order to overcome this problem, the
concept of quasi relative interior has been proposed and used by some scholars (see
e.g. [1, 2, 22]). A conical regularization method to cope with empty interior cones
has been proposed, from both the theoretical and numerical aspects in [21], while a
theory applicable to nonconvex problems can be found in [13]. It seems, however,
that the paper which mostly influenced the research on this topic has been [7],
because after its publication several scholars devoted their efforts to apply or develop
the results therein (see e.g. [6, 9, 16, 23, 24]; C. Zălinescu, Private communications,
September 4th, 5th, 7th, October 10th, 2007). Furthermore, the new theory has been
further improved in [3–5].
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We now specify the aim and character of the present contribution which is meant
for a broad audience, not necessarily skilled in duality theory. As a consequence we
make no attempt to provide a long list of references and of complementary results.
On the contrary, we aim for self-consistency and would like to convey to the reader
some important ideas and tools of duality theory. In the following section we present
a somewhat classical duality theory, along the same lines as in [19], which utilizes
a methodology similar to the conical extension widely used in [14]. In Sect. 3,we
present the main result of the new duality theory in the revised version of [4]. In
Sect. 4, we apply this new approach to investigate a theoretical property of Nash-
Rosen equilibria in infinite dimension [11]. At last, in the concluding section we
summarize our analysis and offer some research perspectives.

2 Lagrangian Duality in a Classical Framework

We establish some notation and useful definitions. For all the notions of general
convex analysis we refer to the book [26]. All the linear spaces we consider are
real. We denote by R

+ the open interval (0,+∞) and by R
+
0 the interval [0,+∞),

and analogously, R− = (−∞, 0), R−
0 = (−∞, 0]. The topological dual space of

a topological linear space Y will be denoted by Y ∗, while 〈·, ·〉 denotes the usual
duality pairing between Y and Y ∗, i.e., if y ∈ Y and u ∈ Y ∗, 〈u, y〉 is the value of u
at y. Moreover if C is a cone in Y , the dual cone of C is defined by

C∗ := {l ∈ Y ∗|〈l, y〉 ≥ 0, ∀y ∈ C}.

If K is a convex subset of a linear space and Y is a linear space partially ordered by
a convex cone C, a mapping g : K → Y is called C-convex iff ∀x, y ∈ K, ∀t ∈
[0, 1] it holds

t g(x)+ (1 − t)g(y)− g[t x + (1 − t)y] ∈ C.

The notion of convexity has been generalized in several ways. For our purposes the
notion of a convex-like function will be useful.

Definition 1 A map g : K → Y is called convex-like w.r.t. the convex cone C ⊂ Y

if the set g(K)+ C is convex.

Let us consider the following setting that will be assumed throughout the paper.
Let Ŝ be a convex set of a real linear topological space.
Let (Y, || · ||Y ) and (Z, || · ||Z) be a partially ordered normed space with ordering

cone C and a real normed space, respectively.
Let f : Ŝ → R be a given objective functional.
Let g : Ŝ → Y and h : Ŝ → Z be given constraints mappings with h affine-

linear.
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Let the mapping (f, g, h) : Ŝ → R × Y × Z be convex-like w.r.t. the product
cone R

+
0 × C × {0Z}.

Furthermore, assume that the set S = {x ∈ Ŝ|g(x) ∈ −C, h(x) = 0Z} is
nonempty and C is a closed convex cone whose interior will be assumed nonempty
whenever, in Sect. 2, we will user Slater’s assumption. We consider the following
optimization problem which, in the sequel, will be called Primal Problem.

min
x∈S f (x). (1)

The following lemma states that the Primal Problem is equivalent to the optimization
problem

min
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x, u, v), (2)

where the functional L : Ŝ × C∗ × Z∗ → R defined by

L(x, u, v) := f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉

is called Lagrange functional associated with problem (1).

Lemma 1 x ∈ S is an optimal solution of problem (1) if and only if x is an optimal
solution of problem (2). In this case the extremal values of both problems are equal.

Proof Assume that x ∈ S is a minimum point of f on S. Let us notice that for x ∈ Ŝ

such that g(x) ∈ −C one has 〈u, g(x)〉 ≤ 0,∀u ∈ C∗, hence supu∈C∗〈u, g(x)〉 = 0.
Thus, for all x ∈ Ŝ with g(x) ∈ −C, h(x) = 0Z we get 〈u, g(x)〉+〈v, h(x)〉 ≤ 0

for all (u, v) ∈ C∗ × Z∗, hence

sup
(u,v)∈C∗×Z∗

〈u, g(x)〉 + 〈v, h(x)〉 = 0.

Consider now an arbitrary x of Ŝ such that g(x) /∈ −C. Since C is convex and
closed there is a u ∈ C∗ such that 〈u, g(x)〉 > 0 and we can prove that

sup
(u,v)∈C∗×Z∗

〈u, g(x)〉 + 〈v, h(x)〉 = +∞.

Indeed, if g(x) /∈ −C the separation Theorem 11 (see the Appendix) ensures that
∃u ∈ Y ∗ \ {0Y ∗} such that 〈u,−g(x)〉 < infy∈C〈u, y〉, which implies 〈u, g(x)〉 > 0.
Moreover, it is not difficult to prove that u actually belongs to C∗. For each λ > 0
we also get λu ∈ C∗, whence:

sup
u∈C∗

〈u, g(x)〉 = +∞.
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If h(x) �= 0Z , we immediately obtain that

sup
v∈Z∗

〈v, h(x)〉 = +∞.

For all x ∈ Ŝ we thus get

sup
(u,v)∈C∗×Z∗

{f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉} = f (x)+ sup
(u,v)∈C∗×Z∗

{〈u, g(x)〉 + 〈v, h(x)〉}

= f (x)

≤ f (x)+ sup
(u,v)∈C∗×Z∗

〈u, g(x)〉 + 〈v, h(x)〉

≤ sup
(u,v)∈C∗×Z∗

{f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉},

which means that x ∈ S is also an optimal solution of the optimization problem (2).
Conversely, let x ∈ Ŝ be a minimal point of the functional ϕ : Ŝ −→ R ∪ {+∞}

defined by

ϕ(x) = sup
(u,v)∈C∗×Z∗

f (x)+ 〈u, g(x)〉 + 〈v, h(x) 〉.

It can be easily seen that

if g(x) /∈ −C, or h(x) �= 0 then sup
(u,v)∈C∗×Z∗

〈u, g(x)〉 + 〈v, h(x)〉 = +∞,

which is an obstruction to solvability of problem (2). It follows that x ∈ S and, with
the same reasoning as in the first part of the proof,

sup
(u,v)∈C∗×Z∗

{〈u, g(x)〉 + 〈v, h(x)〉} = 0.

Thus, for all x ∈ S we get

f (x) = f (x)+ sup
(u,v)∈C∗×Z∗

{〈u, g(x)〉 + 〈v, h(x)〉}

≤ sup
(u,v)∈C∗×Z∗

{f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉}

= f (x)+ sup
(u,v)∈C∗×Z∗

{〈u, g(x)〉 + 〈v, h(x)〉} = f (x),

which means that x is a minimal point of f on S. ��
We can associate with the Primal Problem (1) the following optimization problem

max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v), (3)



On Lagrangian Duality in Infinite Dimension and Its Applications 41

which is called the Dual Problem associated with the Primal Problem (1) or
equivalently (2). There are some relationships between the Primal Problem and the
Dual Problem. The first of these is the weak duality theorem.

Theorem 1 The maximal value of the Dual Problem is bounded from above by the
minimal value of the Primal Problem i.e.

max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v) ≤ min

x∈Ŝ
sup

(u,v)∈C∗×Z∗
L(x, u, v). (4)

Proof It is a consequence of the standard inequality

sup
b∈B

inf
a∈AF(a, b) ≤ inf

a∈A sup
b∈B

F(a, b),

where F : A× B → R. ��
With the aid of additional sufficient conditions one can show that the Primal Problem
and the Dual Problem are equivalent, i.e., inequality is replaced by equality in (4):

max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v) = min

x∈Ŝ
sup

(u,v)∈C∗×Z∗
L(x, u, v).

In such a case we say that strong duality holds for problem (1). Theorems that
guarantee this equivalence are called strong duality theorems.

Theorem 2 Assume that h(Ŝ) contains a neighborhood of 0Z and that there exists
x̂ ∈ Ŝ such that g(x̂) ∈ − intC, h(x̂) = 0Z . The last hypothesis is called Slater’s
condition.

If the Primal Problem (1) admits an optimal solution then the Dual Problem
admits an optimal solution and

max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v) = min

x∈Ŝ
sup

(u,v)∈C∗×Z∗
L(x, u, v).

Proof Let us consider the following subset of the space R× Y × Z, endowed with
the product topology,

M = {(f (x)+ α, g(x)+ y, h(x)) ∈ R× Y × Z|x ∈ Ŝ, α ≥ 0, y ∈ C}
= (f, g, h)(Ŝ)+ R

+
0 × C × {0Z}.

By our initial assumptions, the composite mapping (f, g, h) : Ŝ → R × Y × Z

is convex-like, hence the set M is convex. Since intC �= ∅ and h(Ŝ) contains a
neighborhood of 0Z , then intM �= ∅. By hypothesis there exists x ∈ S such that

f (x) ≤ f (x) for all x ∈ S.

Obviously (f (x), 0Y , 0Z) ∈ M . We now prove that (f (x), 0Y , 0Z) /∈ intM .
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Indeed, let us consider (a, b, c) ∈ M arbitrarily and notice that if x ∈ S then
a ≥ f (x), otherwise at least one of the two conditions: b /∈ −C, c �= 0Z is
fulfilled. Let us now consider a neighborhood of (f (x), 0Y , 0Z)):

]f (x)− ε, f (x)+ ε[ ×I (0Y )× I ′(0Z), for some ε > 0

and observe that in such an arbitrary neighborhood there are points which do not
belong to M . To this aim, choose a ∈]f (x) − ε, f (x)[, c = 0 and b ∈ I (0Y ) such
that b ∈ −C. As a consequence, (f (x), 0Y , 0Z)) /∈ intM .

By a separation theorem there are (μ, u, v) ∈ R × Y ∗ × Z∗, γ ∈ R with
(μ, u, v) �= (0, 0Y ∗ , 0Z∗) such that

μβ + 〈u, z〉 + 〈v, z′〉 > γ ≥ μf (x) for all (β, z, z′) ∈ intM. (5)

Since for a convex set K with nonempty interior the equality cl(K) = cl(intK)

holds true, we can conclude from inequality (5) that

μ(f (x)+α)+〈u, g(x)+y〉+〈v, h(x)〉 ≥ γ ≥ μf (x) for all x ∈ Ŝ, α ≥ 0, y ∈ C.

(6)
For x = x, α = 0 we obtain from (6) that

〈u, y〉 ≥ −〈u, g(x)〉, ∀y ∈ C (7)

and because C is a cone one can prove that u ∈ C∗. Since g(x) ∈ −C, the preceding
formula, for y = 0 implies

〈u, g(x)〉 = 0.

For x = x, y = 0Y from (6) we obtain μα ≥ 0, ∀α ≥ 0, hence μ ≥ 0. In
order to prove that μ > 0, we assume μ = 0 and will then get the false equality
(μ, u, v) = (0, 0Y ∗ , 0Z∗). Indeed, if μ = 0, (6) gives

〈u, g(x)+ y〉 + 〈v, h(x)〉 ≥ 0,∀x ∈ Ŝ,∀y ∈ C, (8)

Because of the Slater assumption, ∃x̂ ∈ Ŝ : g(x̂) ∈ − int(C), h(x̂) = 0Z .
From (8) we obtain:

〈u, g(x̂)+ y〉 ≥ 0 ∀y ∈ C

which, for y = 0 reads as

〈u, g(x̂)〉 ≥ 0.

Since g(x̂) ∈ − int(C), u �= 0 implies 〈u, g(x̂)〉 < 0, which yields to μ = 0.
Now, if v �= 0 holds true, we get

〈v, h(x)〉 ≥ 0,∀x ∈ Ŝ,
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but since h(Ŝ) contains a neighborhood of 0Z and h being linear-affine, it follows
that 〈v, h(Ŝ)〉 assumes both negative and positive values, contradicting the above
inequality, hence also v = 0Z∗ .

From inequality (6) with α = 0 and y = 0Y we get

μf (x)+ 〈u, g(x)〉 + 〈v, h(x)〉 ≥ μf (x) for all x ∈ Ŝ

which implies

f (x)+ 1

μ
〈u, g(x)〉 + 1

μ
〈v, h(x)〉 ≥ f (x) for all x ∈ Ŝ.

Let us denote u = 1

μ
u ∈ C∗, v = 1

μ
v ∈ Z∗. We obtain that 〈u, g(x)〉 = 0 and,

since h(x) = 0, that 〈v, h(x)〉 = 0. It follows

inf
x∈Ŝ

f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉 ≥ f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉.

Hence we get

f (x) = inf
x∈Ŝ

f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉,

and due to the weak duality theorem, (u, v) is an optimal solution of the dual
problem. ��
We can describe the relationships between the Primal Problem and the Dual Problem
by the notion of saddle point for the Lagrange functional L.

Definition 2 A point (x, u, v) ∈ Ŝ × C∗ × Z∗ is called a saddle point of the
Lagrange functional L on Ŝ × C∗ × Z∗ if

L(x, u, v) ≤ L(x, u, v) ≤ L(x, u, v) ∀x ∈ Ŝ, u ∈ C∗, v ∈ Z∗.

A saddle point of the Lagrange functional can be characterized by a minimax
theorem as follows.

Theorem 3 A point (x, u, v) ∈ Ŝ × C∗ × Z∗ is a saddle point of the Lagrange
functional L iff

min
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x, u, v) = max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v) (9)

and x and (u, v) are the optimal solutions of the problems which appear in the left
side and in the right side of (9) respectively.
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Proof Let us assume that Eq. (9) is satisfied. For x ∈ Ŝ and (u, v) ∈ C∗×Z∗ we get

sup
(u,v)∈C∗×Z∗

L(x, u, v) = inf
x∈Ŝ

L(x, u, v)

so it follows

L(x, u, v) ≤ sup
(u,v)∈C∗×Z∗

L(x, u, v) = inf
x∈Ŝ

L(x, u, v) ≤ L(x, u, v)

which obviously gives

L(x, u, v) = sup
(u,v)∈C∗×Z∗

L(x, u, v) = inf
x∈Ŝ

L(x, u, v).

Hence (x, u, v) is a saddle point of the Lagrange functional L.
Now let us assume that (x, u, v) ∈ Ŝ × C∗ × Z∗ is a saddle point of L. By

definition we get

max
(u,v)∈C∗×Z∗ L(x, u, v) = L(x, u, v) = min

x∈Ŝ
L(x, u, v) (10)

Given x̂ and (û, v̂) ∈ C∗ × Z∗ we get inf
x∈Ŝ L(x, û, v̂) ≤ L(x̂, û, v̂) and so

sup
(u,v)∈C∗×Z∗

inf
x∈Ŝ

L(x, u, v) ≤ sup
(u,v)∈C∗×Z∗

L(x̂, u, v)

hence

sup
(u,v)∈C∗×Z∗

inf
x∈Ŝ

L(x, u, v) ≤ inf
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x̂, u, v).

From this inequality and Eq. (10) we get

L(x, u, v) = inf
x∈Ŝ

L(x, u, v) ≤ sup
(u,v)∈C∗×Z∗

inf
x∈Ŝ

L(x, u, v)

≤ inf
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x, u, v) ≤ sup
(u,v)∈C∗×Z∗

L(x, u, v)

= L(x, u, v)

which easily gives the claim

L(x, u, v) = max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v) = min

x∈Ŝ
sup

(u,v)∈C∗×Z∗
L(x, u, v).

��
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The following theorem provides a relationship between a saddle point of the
Lagrange functional and the optimal solutions of the Primal and the Dual problems.

Theorem 4 A point (x, u, v) ∈ Ŝ × C∗ × Z∗ is a saddle point of the Lagrange
functional L iff x is an optimal solution of the Primal Problem (2), (u, v) is an
optimal solution of the Dual Problem (3) and strong duality holds for (1).

Proof Let us first assume that the point (x, u, v) ∈ Ŝ × C∗ × Z∗ is a saddle point
of the Lagrange functional L : Ŝ × C∗ × Z∗ → R. By Theorem (3) we get

L(x, u, v) = min
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x, u, v) = max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v).

It follows that x is an optimal solution of problem (2) and, by Lemma 1, x is also
an optimal solution of the primal problem (1). By the preceding equation, (u, v)
is an optimal solution of the dual problem (3) and the extremal values of the two
problems are equal.

Conversely, let us assume that x is an optimal solution of the primal problem (1)
and that (u, v) is an optimal solution of the dual problem (3) and that the extremal
values of these problems are equal.

Hence we get

λ := inf
x∈Ŝ

L(x, u, v) = max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v)

and, by Lemma 1,

f (x) = sup
(u,v)∈C∗×Z∗

L(x, u, v) = min
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x, u, v).

It follows that λ = f (x) and

〈u, g(x)〉 = 〈u, g(x)〉 + 〈v, h(x)〉 ≥ −f (x)+ inf
x∈Ŝ

f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉

= −f (x)+ λ = 0.

Since g(x) ∈ −C and u ∈ C∗ we get 〈u, g(x)〉 ≤ 0, which implies 〈u, g(x)〉 = 0
and finally f (x) = L(x, u, v).

Thus we get

L(x, u, v) = min
x∈Ŝ

sup
(u,v)∈C∗×Z∗

L(x, u, v) = max
(u,v)∈C∗×Z∗ inf

x∈Ŝ
L(x, u, v)

which, by the preceding Theorem 3, means that (x, u, v) is a saddle point of the
Lagrange functional. ��
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As a consequence of the Strong Duality Theorem 2 we get the following corollary
which gives a sufficient condition for the existence of a saddle point of the Lagrange
functional.

Corollary 1 Assume that h(Ŝ) contains a neighborhood of 0Z and that there exists
x̂ ∈ Ŝ such that g(x̂) ∈ − intC, h(x̂) = 0Z .

If x ∈ S is an optimal solution of the Primal Problem (1), then there exists
(u, v) ∈ C∗ ×Z∗ such that (x, u, v) is a saddle point of the Lagrange functional L.

3 A Characterization of Strong Duality in Infinite Dimension

As already explained in the introduction, in several concrete infinite dimensional
problems the ordering cones C have empty interior. To overcome this issue one
can use the notion of quasi relative interior for a convex set which allows for the
use of a new kind of separation theorems. Based on this kind of analysis, suitable
characterizations of strong duality have been obtained in the image space associated
with the Primal Problem (1) (see, e.g. [7]). We first provide some definitions and
propositions which will be useful in the sequel. The related proofs can be found for
instance in [19] or [26].

Definition 3 Let Ŝ be a nonempty subset of a linear space. The set

Cone(Ŝ) := {ts| t ≥ 0, s ∈ Ŝ}
is called the cone generated by Ŝ.

Definition 4 The set defined as

T
Ŝ
(x) = {y ∈ X| y = lim

n→∞ λn(xn − x), λn > 0, xn ∈ Ŝ, lim
n→∞ xn = x, ∀n ∈ N}

is called the contingent (or tangent) cone of the set Ŝ at the point x.

Proposition 1 If Ŝ is starshaped with respect to x ∈ Ŝ, then

Cone(Ŝ − {x}) ⊂ T
Ŝ
(x).

Proposition 2 Let Ŝ �= ∅. For each x ∈ Ŝ the following inclusion holds true:

T
Ŝ
(x) ⊂ cl Cone(Ŝ − {x}).

Proposition 3 For each x ∈ Ŝ, T
Ŝ
(x) is closed. Hence, if Ŝ is starshaped with

respect to x ∈ S, then

T
Ŝ
(x) = cl Cone(Ŝ − {x}).

Furthermore, if Ŝ is convex, then also T
Ŝ
(x) is convex, for every x ∈ Ŝ.
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Let us now consider the Primal and Dual problems, (1) and (3). We recall now
the new assumption introduced in [7].

Definition 5 We say that Assumption S is fulfilled at the point x0 ∈ S iff

TM̃(f (x0), 0Y , 0Z) ∩ (R− × {0Y } × {0Z}) = ∅

where

M̃ = {(f (x), g(x), h(x))|x ∈ Ŝ \ S} + (R+
0 × C × {0Z}).

In the sequel we follow the development given in [4]. First let us introduce the set:

E = {(f (x0), 0Y , 0Z)− (f, g, h)(Ŝ)− (R+
0 × C × {0Z})}.

We observe that (f, g, h) convex-like implies that E is convex.
Moreover, the optimality of a feasible point x0 can be expressed by means of the

set E as shown in the following result.

Proposition 4 x0 ∈ S is an optimal solution for the Primal Problem iff

E ∩ (R+ × C × {0Z}) = ∅. (11)

Proof Note that x0 ∈ S is an optimal solution for (1) iff the following system is
impossible

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (x0)− f (x) > 0

g(x) ∈ −C
h(x) = 0Z

x ∈ Ŝ

which can be equivalently written as

((f (x0), 0Y , 0Z)− (f, g, h)(Ŝ)) ∩ (R+ × C × {0Z}) = ∅.

or,

(0, 0Y , 0Z) �∈ [(f (x0), 0Y , 0Z)− (f, g, h)(Ŝ)− (R+ × C × {0Z})] =

[(f (x0), 0Y , 0Z)− (f, g, h)(Ŝ)− (R+ × C × {0Z})− (R+
0 × C × {0Z})].

Thus, x0 ∈ S is an optimal solution for (1) iff

(0, 0Y , 0Z) �∈ [(f (x0), 0Y , 0Z)−(f, g, h)(Ŝ)−(R+
0 ×C×{0Z})]−(R+×C×{0Z})

which is equivalent to (11).
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With a similar reasoning as in the proof of Theorem 2 it is possible to show that
(f (x0), 0Y , 0Z) ∈ cl(M̃).

Proposition 5 Let x0 ∈ S be an optimal solution of (1). Then Assumption S is
satisfied iff

TE (0, 0Y , 0Z) ∩ (R+ × {0Y } × {0Z}) = ∅.

Proof Suppose first that TM̃(f (x0), 0Y , 0Z) ∩ (R− × {0Y } × {0Z}) = ∅ and, by
contradiction, assume that there exists (t, 0Y , 0Z) ∈ TE (0, 0Y , 0Z) with t > 0.
Hence there exist sequences (xn) ⊂ Ŝ, (yn) ⊂ C, (βn) ⊂ R

+, (αn) ⊂ R
+
0 such that

lim
n
(f (xn)+ αn) = f (x0) lim

n
(g(xn)+ yn) = 0Y lim

n
h(xn) = 0Z (12)

lim
n
βn(f (x0)− f (xn)− αn) = t lim

n
βn(g(xn)+ yn) = 0Y lim

n
βnh(xn) = 0Z.

(13)

Since t > 0 and βn > 0 it follows that there exists n ∈ N such that f (xn) < f (x0)

for all n > n. Since x0 is an optimal solution of the Primal Problem it follows that
xn ∈ Ŝ \ S for all n > n. This means (−t, 0Y , 0Z) ∈ TM̃(f (x0), 0Y , 0Z) which
contradicts our initial assumption.

Conversely assume that TE (0, 0Y , 0Z) ∩ (R+ × {0Y } × {0Z}) = ∅. It is easily
seen that

TM̃(f (x0), 0Y , 0Z) ⊂ cl Cone(M̃ − (f (x0), 0Y , 0Z)) ⊂ − cl ConeE = −TE (0, 0Y , 0Z)

which implies that TM̃(f (x0), 0Y , 0Z) ∩ (R− × {0Y } × {0Z}) = ∅. ��
The following lemma will be useful in the proof of the strong duality theorem.

Lemma 2 Let H = {t ∈ R× Y × Z | 〈a, t〉 = 0} be an hyperplane of R× Y × Z.
The following statements are equivalent:

1. H separates the sets −(f, g, h)(Ŝ)+ (f (x0), 0Y , 0Z) and R
+ × C × {0Z}.

2. H separates the sets E and R
+ × C × {0Z}.

3. H separates the sets TE (0, 0Y , 0Z) and R
+ × C × {0Z}.

4. H separates the sets TE (0, 0Y , 0Z) and R
+ × {0Y } × {0Z}.

Proof Let H+ := {t ∈ R × Y × Z : 〈a, t〉 ≥ 0} and H− = {t ∈ R × Y × Z :
〈a, t〉 ≤ 0}.
• In order to prove that 1 implies 2 let us assume that −(f, g, h)(Ŝ) +

(f (x0), 0Y , 0Z) ⊂ H− and R
+ × {C} × {0Z} ⊂ H+. By proving that E ⊂ H−

the conclusion follows. Let us suppose that here exists t̂ ∈ E such that 〈a, t̂〉 > 0
and, since E := (f (x0), 0Y , 0Z)− (f, g, h)(Ŝ)−R

+
0 ×{C}×{0Z} it follows that

t̂ = t1− t2 for some t1 ∈ (f (x0), 0Y , 0Z)− (f, g, h)(Ŝ) and t2 ∈ R
+
0 ×C×{0Z}.
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From 〈a, t̂〉 > 0 we get 0 ≤ 〈a, t2〉 < 〈a, t1〉 ≤ 0, where the first
inequality follows from R

+
0 × C × {0Z} ⊂ H+, and the third one follows from

(f (x0), 0Y , 0Z)− (f, g, h)(Ŝ) ⊂ H−. This is a contradiction, hence the claim is
proved.

• In order to prove that 2 implies 3 let us assume that R+×C×{0Z} ⊂ H+ and E ⊂
H− from which it follows that TE (0, 0Y , 0Z) = cl ConeE ⊂ cl ConeH− = H−
which proves the claim.

• Since R
+ × {0Y } × {0Z} ⊂ R

+ × C × {0Z}, it easily follows that 3 implies 4.
• In order to prove that 4 implies 1 let us assume that TE (0, 0Y , 0Z) ⊂ H− and

R
+ × {0Y } × {0Z} ⊂ H+ and, by contradiction, assume that there exists t̂ ∈

R
+ × C × {0Z} such that 〈a, t̂〉 < 0. For a given t ∈ E and for every α ≥ 0 we

get t − αt̂ ∈ E ⊂ TE (0, 0Y , 0Z). Hence

lim
α→+∞〈a, t − αt̂〉 = +∞

which contradicts that 〈a, t〉 ≤ 0 for all t ∈ TE (0, 0Y , 0Z). This means that
R
+ × C × {0Z} ⊂ H+, and since (f (x0), 0Y , 0Z) − (f, g, h)(Ŝ) ⊂ E ⊂

TE (0, 0Y , 0Z) ⊂ H− the claim follows. ��
We can now state the main result.

Theorem 5 Let x0 ∈ S. Then

TE (0, 0Y , 0Z) ∩ (R+ × {0Y } × {0Z}) = ∅ (14)

iff strong duality holds for (1) and x0 is an optimal solution of (1).

Proof Let us suppose first that (14) is fulfilled. We first note that, since E is convex,
then TE (0, 0Y , 0Z) is a closed convex set and E ⊂ TE (0, 0Y , 0Z), which yields
E ∩ (R+ × {0Y } × {0Z}) = ∅ or, equivalently, E ∩ (R+ × C × {0Z}) = ∅ and
therefore x0 is an optimal solution for (1). By (14) it follows that there exists h ∈
(R+ × {0Y } × {0Z}) \ TE (0, 0Y , 0Z). By Theorem 11 in the Appendix, there exists
a = (t, u, v) ∈ (R × Y ∗ × Z∗) \ {(0, 0Y ∗ , 0Z∗)} such that 〈a, z〉 ≤ 0 < 〈a, h〉 for
all z ∈ TE (0, 0Y , 0Z).

Since E ⊂ TE (0, 0Y , 0Z) it follows that 〈a, z〉 ≤ 0 for all z ∈ E .
Now we can prove that 〈a, z〉 ≥ 0 for all z ∈ R

+ × C × {0Z}. Indeed, assume
that there exists ẑ ∈ R

+ × C × {0Z} such that 〈a, ẑ〉 < 0 and consider an arbitrary
z ∈ E . It follows that z− αẑ ∈ E for all α ≥ 0, hence

lim
α→+∞〈a, z− αẑ〉 = +∞

which is a contradiction. Hence by Lemma 2 (3 ⇒ 1) we get

〈a, z〉 ≥ 0 ∀z ∈ R
+ × C × {0Z} and 〈a, z〉 ≤ 0 ∀z ∈ −(f, g, h)(Ŝ)+ (f (x0), 0Y , 0Z)
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so the hyperplane H = {z ∈ R×Y×Z|〈a, z〉 = 0} separates the sets R+×C×{0Z}
and −(f, g, h)(Ŝ)+ (f (x0), 0Y , 0Z). Hence we get the following inequalities:

tr + 〈u, y〉 ≥ 0 ∀r ∈ R
+, ∀y ∈ C (15)

t (f (x0)− f (x))+ 〈u,−g(x)− y〉 + 〈v,−h(x)〉 ≤ 0 ∀x ∈ Ŝ, ∀y ∈ C. (16)

Inequality (15) implies that u ∈ C∗ and t ≥ 0.
If one assumes that t = 0 then 〈a, f 〉 = 0 for all f ∈ R

+ × {0Y }× {0Z}, but this
contradicts the fact that there exists h ∈ R

+ × {0Y } × {0Z} such that 〈a, h〉 > 0.
Hence t must be strictly positive.

Taking y = 0Y , x = x0 and u0 = u
t
∈ C∗, v0 = v

t
∈ Z∗ and substituting

in (16) we get 〈u0, g(x0)〉 ≥ 0, and since g(x0) ∈ −C and u0 ∈ C∗ it follows
〈u0, g(x0)〉 = 0. Hence

f (x0) = min
x∈Ŝ

f (x)+ 〈u0, g(x)〉 + 〈v0, h(x)〉

which means that the Primal and the Dual Problem have the same optimal values
and (u0, v0) is an optimal solution of the Dual.

To prove the necessary part, suppose that strong duality holds and x0 is an optimal
solution for (1). Let (u0, v0) ∈ C∗×Z∗ be an optimal solution of the Dual Problem.
Thus,

f (x)− f (x0)+ 〈u0, g(x)〉 + 〈v0, h(x)〉 ≥ 0 ∀x ∈ Ŝ,

hence the hyperplane H = {(r, y, z) ∈ R × Y × Z|r + 〈u0, y〉 + 〈v0, z〉 = 0}
separates the sets −(f, g, h)(Ŝ) + (f (x0), 0Y , 0Z) and R

+ × {0Y } × {0Z} which
means −(f, g, h)(Ŝ)+ (f (x0), 0Y , 0Z) ⊂ H− and R

+ × {0Y } × {0Z} ⊂ H+.
Note that since R+×C×{0Z} ⊂ H+ then statement 1 of Lemma 2 holds. Therefore,
statement 4 of Lemma 2 holds too, i.e.,

TE (0, 0Y , 0Z) ⊂ H− and R
+ × {0Y } × {0Z} ⊂ H+.

Since R
+ × {0Y } × {0Z} ⊂ H+ \H , then (14) is fulfilled.

From Theorems 5 and 3 we immediately obtain the following result.

Theorem 6 Let x0 ∈ Ŝ. Then there exists (u, v) ∈ (C∗ × Z∗) such that (x0, u, v)

is a saddle point of the Lagrange functional L iff (14) is fulfilled and x0 ∈ S.

The reader who is interested in further developments of these results can refer to
[4] or to the other papers cited in the introduction. As an application of the previous
analysis we investigate in the following section a property of the so called Nash-
Rosen equilibria.
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4 Application to Generalized Nash Equilibrium Problems in
Infinite Dimensional Spaces

In his seminal paper [25], Rosen introduced a new class of Nash equilibria (since
then known as Rosen equilibria) which have been proved very useful in several
applications. More recently, [10], Rosen equilibria have been investigated in the
light of variational inequalities theory. In this section we show as the recent
advancements in duality theory described in Sect. 3

4.1 The Setting of the Game

We describe the setting of our Nash game. For simplicity we deal with two players
(the case of N players being easily deduced).

Assume that X1 and X2 are two Banach spaces, and denote by X = X1 × X2
the product space and by u = (u1, u2) the generic element of X, that is u1 and u2

are the variables respectively controlled by the first and the second player. Let also
K ⊂ X be a non empty, convex set, J1 and J2 : X → R two functionals such
that J1(·, u2) is convex and Gâteaux differentiable for every u2 ∈ X2 and J2(u

1, ·)
is convex and Gâteaux differentiable for every u1 ∈ X1. Any of these functions is
called the utility function of the player i or the payoff function or the loss function
depending on the particular application in which the GNEP arises.

For every u = (u1, u2) ∈ X, the feasible strategies’ sets of the two players are of
the following kind:

K1(u) = {v1 ∈ X1 : (v1, u2) ∈ K} ⊂ X1

and

K2(u) = {v2 ∈ X2 : (u1, v2) ∈ K} ⊂ X2.

Notice that if u ∈ K then the above sets are non empty (ui ∈ Ki(u)) and convex.
This class of strategies’ sets, introduced by Rosen in [25], is often referred to as the
jointly convex case or GNEPs with coupled constraints motivated by the fact that
the feasible sets are linked through a shared or common constraint.

The goal of each player i, given the strategy of the rival, is to choose a strategy
which minimizes the function Ji on its feasible set. The following definition
describes the aim of the game: to find an equilibrium point for both players, that
is a vector (ū1, ū2) such that no player can decrease his utility function by changing
unilaterally ūi to any other feasible point.

Definition 6 We say that ū = (ū1, ū2) is a generalized Nash equilibrium or a
solution of the generalized Nash equilibrium problem (in short GNEP) if ū ∈ K

and the following conditions hold:
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{
J1(ū

1, ū2) = minu1∈K1(ū)
J1(u

1, ū2),

J2(ū
1, ū2) = minu2∈K2(ū)

J2(ū
1, u2)

(17)

We recall that if Y is a Banach space, a function I : Y → R is said to be Gâteaux
differentiable in ū ∈ Y if there exists ϕ ∈ Y � (the topological dual space of Y )
such that

lim
λ→0+

I (ū+ λu)− I (ū)

λ
= ϕ(u) ∀ u ∈ Y.

The functional ϕ is called the Gâteaux derivative of I and denoted by ϕ ≡ DI (ū).

Remark 1 By well known results of convex analysis, (see e.g. Theorem 3.8 of [19]),
ū = (ū1, ū2) is a solution of GNEP iff ū ∈ K and

{
D1J1(ū

1, ū2)(u1 − ū1) ≥ 0 ∀ u1 ∈ K1(ū),

D2J2(ū
1, ū2)(u2 − ū2) ≥ 0 ∀ u2 ∈ K2(ū)

(18)

where D1 and D2 stand for the Gâteaux derivative of J1(·, ū2) and J2(ū
1, ·)

respectively.

Denote by Γ : X → X�
1 ×X�

2 the mapping

Γ (u1, u2) =
(
D1J1(u

1, u2)

D2J2(u
1, u2)

)
. (19)

With the above notation, it is clear that (18) are equivalent to

Γ (ū)T (u− ū) ≥ 0 ∀u ∈ K1(ū)×K2(ū).

Since the convex sets Ki(ū) depend on the solution, one obtains that a GNEP
can be reformulated as a quasi-variational inequality. Following [10], the nature of
the feasible sets of the strategies of the two players allows to reduce the problem to
a variational inequality. Solving the variational inequality associated to Γ and the
convex set K (in short, VI(Γ ,K)), means finding a point ū = (ū1, ū2) ∈ K such that

Γ (ū)T (u− ū) ≥ 0 ∀u ∈ K. (20)

Analogously to [10], we have the following

Theorem 7 Every solution of the variational inequality VI(Γ ,K) is a solution of
GNEP.
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Proof Let ū = (ū1, ū2) ∈ K be a solution of (20) where Γ is as in (19). If u1 ∈
K1(ū), then u = (u1, ū2) ∈ K and from the definition of Γ , we get

0 ≤ Γ (ū)T (u− ū) = D1J1(ū
1, ū2)(u1 − ū1)

which is the first of the (18). In a similar way we get the second inequality of (18).
��

A solution of the GNEP that is also a solution of VI(Γ ,K) is usually referred to as a
variational equilibrium.

4.2 Lagrange Multipliers Rule

In the previous section we have proved that a solution of the GNEP can be obtained
as a solution of the VI(Γ ,K). By adopting this reduction method we can lose
solutions of the GNEP. In the present section we investigate which kind of solutions
are preserved for a special constraints set. As in the finite dimensional case, we
can prove that a solution of the GNEP is a variational equilibrium if and only if
the shared constraints have the same multipliers. We underline that our result holds
under any constraints qualification condition.

We will assume also that Y is a Banach space ordered by a convex cone C,
g : X → Y is a convex, continuously Gâteaux differentiable mapping and

K = {u ∈ X : g(u) ∈ −C}.
If f : X → R and ū ∈ K , we say that ū is a solution of the minimal problem

(Pf,K) if

f (ū) = min
K

f.

Our main result is the following:

Theorem 8

(i) Let ū be a solution of the VI(Γ ,K) such that a suitable constraints qualification
condition (for the VI(Γ ,K)) holds at ū. Then, ū is a solution of GNEP such that
both players share the same Lagrange multiplier.

(ii) Let ū be a solution of GNEP such that a constraints qualification condition
(for the GNEP) holds at ū and both players share the same Lagrange multiplier.
Then, ū is a solution of the VI(Γ ,K).

Proof

(i) Assume that ū is a solution of the VI(Γ ,K). Then, if f : X → R is the function
defined by

f (u) = Γ (ū)T (u− ū), (21)
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f is convex, Gâteaux differentiable with derivative given by Df (u)(z) =
Γ (ū)T (z) for all z ∈ X and for all u ∈ X and

f (ū) = min
K

f = 0.

Under a suitable constraints qualification condition, there exists w̄ ∈ C�

such that

0 = Df (ū)+ w̄ ◦Dg(ū) = Γ (ū)T + w̄ ◦Dg(ū), (22)

and

〈w̄, g(ū)〉Y �,Y = 0. (23)

Since g ∈ C1(X, Y ), Dg(ū)u = D1g(ū)u
1 + D2g(ū)u

2, (22) can be
rewritten as

D1J1(ū)u
1+D2J2(ū)u

2+w̄(D1g(ū)u
1)+w̄(D2g(ū)u

2) = 0 ∀(u1, u2) ∈ X

and for the arbitrariness of (u1, u2) ∈ X, (22) and (23) read as

(α) D1J1(ū)+ w̄ ◦D1g(ū) = 0, D2J2(ū)+ w̄ ◦D2g(ū) = 0,
(β) 〈w̄, g(ū)〉Y �,Y = 0.

If g1 : X1 → Y is the mapping g1(u
1) = g(u1, ū2), then the set K1(ū) can

be written as K1(ū) = {u1 : g1(u
1) ∈ −C} and analogously, if g2 : X2 → Y

is defined by g2(u
2) = g(ū1, u2), then K2(ū) = {u2 : g2(u

2) ∈ −C}. One has
also that Dgi(ūi) = Dig(ū) and gi(ū) = g(ū), i = 1, 2.

Then, (α) and (β) can be rewritten as

D1J1(ū)+ w̄ ◦Dg1(ū
1) = 0,

D2J2(ū)+ w̄ ◦Dg2(ū
2) = 0,

〈w̄, g1(ū)〉Y �,Y = 〈w̄, g2(ū)〉Y �,Y = 0.

This means that ū satisfies the Lagrange multipliers rule for the GNEP, and w̄ is
the multiplier for both players. These conditions guarantee (see Corollary 5.15
of [19]) that ū is a minimal solution of the problems (Pf,K) with (f,K) =
(J1,K1(ū)) and (f,K) = (J2,K(ū)) respectively, that is ū is a solution of
GNEP and both players share the same Lagrange multiplier.

(ii) Assume that ū is a solution of GNEP and some constraints qualification holds
at ū. If the two players share the same Lagrange multipliers, then

(α1) D1J1(ū)+ w̄ ◦Dg1(ū
1) = 0,

(β1) 〈w̄, g1(ū
1)〉Y �,Y = 0.
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and

(α2) D2J2(ū)+ w̄ ◦Dg2(ū
2) = 0,

(β) 〈w̄, g2(ū
2)〉Y �,Y = 0.

Then, it is clear that (α) and (β) are satisfied. From Corollary 5.15 of [19], we get
that ū is a minimal solution of problem (Pf,K) with f as in (21). This implies that
ū is a solution of the VI(Γ ,K). ��

4.3 The Role of Assumption S

We need first to state, in a convenient form for our purposes, an infinite dimensional
Lagrange multipliers rule for convex optimization problems, proved recently in [9].

Let us recall that

K = {u ∈ X : g(u) ∈ −C},

and ū ∈ K . Denote by

M̃ = {(f (u)− f (ū)+ α, g(u)+ z) : u ∈ X \K,α ≥ 0, z ∈ C} ⊆ R× Y.

Theorem 9 ([9], Theorem 3) Let X be a normed space, Y a Banach space ordered
by a convex cone C. Let f : X → R be a convex, Gâteaux differentiable functional,
g : X → Y a convex, Gâteaux differentiable mapping. Denote by

K = {u ∈ X : g(u) ∈ −C}.

Assume that ū ∈ K is a solution of the minimal problem (Pf,K):

f (ū) = min
K

f

and Assumption S is fulfilled at ū. Then, there exists w̄ ∈ C� such that

Df (ū)+ w̄ ◦Dg(ū) = 0 (24)

and

〈w̄, g(ū)〉Y �,Y = 0. (25)

Conversely, if (24) and (25) hold, then ū is the minimal solution of problem
(Pf,K) and Assumption S is fulfilled at ū.

We will refer to w̄ as the Lagrange multiplier.
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Remark 2 Notice that conditions (24) and (25) of the above theorem are the
counterpart in the infinite dimensional case of the well known KKT conditions.

We now formulate the Assumption S for the VI(Γ ,K) and for the GNEP.
Assume that ū is a solution of VI(Γ ,K). As in the proof of Theorem 8, if f :

X → R is the function defined in (21), then

f (ū) = min
u∈K f (u) = 0.

The set M̃ is defined by

M̃={(D1J1(ū)(u
1−ū1)+D2J2(ū)(u

2−ū2)+α, g(u)+z) : u ∈ X\K,α ≥ 0, z ∈ C}

and

T
M̃
(0, θY ) = {(l, u) ∈ R× Y :

l = lim
k
λk[D1J1(ū)(u

1
k − ū1)+D2J2(ū)(u

2
k − ū2)+ αk],

u = lim
k
λk[g(uk)+ zk],

lim
k
[D1J1(ū)(u

1
k − ū1)+D2J2(ū)(u

2
k − ū2)+ αk] = 0,

lim
k
[g(uk)+ zk] = θY ,

λk > 0, αk ≥ 0, uk ∈ X \K, zk ∈ C}.

Definition 7 We say that Assumption S holds at ū for the VI(Γ , K) if (l, θY ) ∈
T
M̃
(0, θY ) implies that l ≥ 0.

Assume that ū is a solution of GNEP. This means that ū verifies the following:

{
J1(ū

1, ū2) = minu1∈K1(ū)
J1(u

1, ū2),

J2(ū
1, ū2) = minu2∈K2(ū)

J2(ū
1, u2)

In this case we have two sets, M̃1 and M̃2 defined by

M̃1 = {(J1(u
1, ū2)− J1(ū)+ α, g(u1, ū2)+ z) : u1 ∈ X1 \K1(ū), α ≥ 0, z ∈ C}

and

M̃2 = {(J2(ū
1, u2)− J2(ū)+ α, g(ū1, u2)+ z) : u2 ∈ X2 \K2(ū), α ≥ 0, z ∈ C}.

The tangent cone to M̃1 at (0, θY ) is the set
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T
M̃1
(0, θY ) = {(l, u) ∈ R× Y :

l = lim
k
λk[J1(u

1
k, ū

2)− J1(ū)+ αk],

u = lim
k
λk[g(u1

k, ū
2)+ zk],

lim
k
[J1(u

1
k, ū

2)− J1(ū)+ αk] = 0,

lim
k
[g(u1

k, ū
2)+ zk] = θY ,

λk > 0, αk ≥ 0, u1
k ∈ X1 \K1(ū), zk ∈ C}.

An analogous frame holds for T
M̃2
(0, θY ).

Definition 8 We say that Assumption S holds at ū for GNEP if (l1, θY ) ∈
T
M̃1
(0, θY ) implies that l1 ≥ 0 and (l2, θY ) ∈ T

M̃2
(0, θY ) implies that l2 ≥ 0.

Remark 3 One has that T
M̃i
(0, θY ) ⊆ T

M̃
(0, θY ).

Let us prove the claim for i = 1. Indeed, if (l, u) ∈ T
M̃1
(0, θY ), there exist

sequences {λk}, {αk}, {u1
k}, {zk} such that λk > 0, αk ≥ 0, u1

k ∈ X1 \K1(ū), zk ∈ C

for every k ∈ N and l = limk λk[J1(u
1
k, ū

2)−J1(ū)+αk], u = limk λk[g(u1
k, ū

2)+
zk], limk[J1(u

1
k, ū

2) − J1(ū) + αk] = 0, and limk[g(u1
k, ū

2) + zk] = θY . From the
convexity of J1(·, ū2), one has

J1(u
1
k, ū

2)− J1(ū) ≥ D1J1(ū)(u
1
k − ū1).

If we define βk = J1(u
1
k, ū

2) − J1(ū) − D1J1(ū)(u
1
k − ū1) + αk ≥ 0 and uk =

(u1
k, ū

2) ∈ X \K then, it is immediately seen that (l, u) ∈ T
M̃
(0, θY ).

Remark 4 From the previous Remark we get that if Assumption S holds for VI(Γ ,K)
at ū, solution of VI(Γ ,K), then it holds also for the GNEP at ū.

From Theorem 8, it follows at once

Corollary 2

(i) Let ū be a solution of the VI(Γ ,K) such that Assumption S holds at ū. Then, ū is
a solution of GNEP such that both players share the same Lagrange multiplier.

(ii) Let ū be a solution of GNEP such that Assumption S holds at ū and both players
share the same Lagrange multiplier. Then, ū is a solution of the VI(Γ ,K).

The above framework can be successfully applied to GNEP in Lebesgue spaces.
In this respect, the main task is the verification of the validity of assumption S. For
the technical details which concern this aspect we refer the interested reader to [11].
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5 Conclusion and Further Research Directions

In this article we first explained in detail the main ideas and theorems of the
classical Lagrangian duality theory in infinite dimension and then focused on a
recent approach based on the so called assumption S which does not require that
the ordering cone used to describe the inequality constraints has empty interior.
This new approach has been refined and improved by different authors, mainly
from the theoretical point of view. As we have mentioned in the last section on
Nash equilibrium problems, the verification of assumption S is usually the difficult
part even for relatively simple constraints sets. In this respect, the investigation of
classes of sets for which assumption S holds has still to be carried out in a systematic
manner. However, given that this assumption is both necessary and sufficient for
strong duality, the use of sufficient conditions (see e.g. [4]) which imply it seems to
be a more promising research avenue.

Acknowledgements The work of F. Raciti was partially supported from University of Pisa (grant
PRA-2017-05).

Appendix

Theorem 10 Let S and T be convex subsets of a real topological vector space X

with int S �= ∅.
We get int S ∩ T = ∅ iff there are a non null continuous linear functional l :

X∗ → R and γ ∈ R such that

〈l, s〉 ≤ γ ≤ 〈l, t〉 ∀s ∈ S, ∀t ∈ T and 〈l, s〉 < γ ∀s ∈ int S.

Theorem 11 Let S be a closed and convex subset of a locally convex linear space.
We get that x ∈ X \ S iff it exists a linear and continuous functional l ∈ X∗ \ {0X∗}
such that:

l(x) < inf
s∈S l(s).

Moreover, if S is a cone we have that it exists l ∈ C∗ \ {0X∗} such that:

l(x) < 0 ≤ l(s), ∀s ∈ S.
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27. C. Zălinescu, Private communications: September 4th, 5th, 7th, October 10th (2007)



Stability Analysis of the Inverse Problem
of Parameter Identification in Mixed
Variational Problems

M. Cho, A. A. Khan, T. Malysheva, M. Sama, and L. White

1 Introduction

Mixed variational problems involving variable parameters emerge from a variety
of applied models. In this work, we study the inverse problem of estimating such
parameters from a measurement of the solution of a mixed variational problem. The
primary impetus of this work stems from the elasticity imaging inverse problem
which uses the discrepancy in the elasticity properties of healthy and unhealthy
tissues to locate cancerous tumors. The sought parameters in this application are
the Lamé parameters in a system of linear elasticity equations describing the
response of a body/traction force applied to an elastic object. Most works model
the human body as nearly incompressible, and the necessity to avoid the so-called
locking effect in numerical computations leads to an identification problem in
a mixed variational problem. We will give more details of this model shortly.
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We conduct this study in a general framework, and consequently, our approach
applies to other models as well. In fact, using our results, we will give new
formulations to study identification problems for nearly incompressible Stoke’s
equations. The field of inverse problems is currently among the most vibrant and
expanding branches of applied mathematics, and we refer the interested reader to
[4, 5, 8, 9, 12, 14, 15, 17, 19–22, 24, 25, 27–29, 33].

To facilitate the discussion, consider the elliptic boundary value problem (BVP)

−∇ · (q∇u) = f in Ω, u = 0 on ∂Ω, (1)

where Ω is a suitable domain in R
2 or R

3 and ∂Ω is its boundary. Interesting
real-world problems lead to (1). For instance, in (1), u = u(x) may represent the
steady-state temperature at a given point x of a body; then q would be a variable
thermal conductivity coefficient, and f the external heat source. The system (1)
also models from underground steady state aquifers in which the parameter q is the
aquifer transmissivity coefficient, u is the hydraulic head, and f is the recharge.

To study the inverse problem of estimating q from a measurement z of the
solution u of (1), there are mainly two approaches, namely, either regarding (1)
as a hyperbolic PDE in q or formulating an optimization problem to estimate q.

Among the optimization-based techniques, the output least-squares (OLS) method
minimizes

q → ‖u(q)− z‖2, (2)

where z is the data and u(q) solves the variational form of (1) given by

∫

Ω

q∇u · ∇v =
∫

Ω

f v, for all v ∈ H 1
0 (Ω). (3)

As a variant of the OLS method, Knowles [26] proposed minimizing

q →
∫

q∇(u(q)− z) · ∇(u(q)− z), (4)

where z is the measurement of u and u(q) solves (3). Although OLS is typically
nonconvex, Knowles [26] showed that (4) is convex. For identification in variational
problems, in [18], an extension of (4) was proposed and its convexity was proved in
an abstract setting. Motivated by [18], Jadamba et al. [23] introduced a new modified
output least-squares (MOLS) for the elasticity imaging inverse problem. Besides the
MOLS formulation, there are three other optimization formulations for the elasticity
imaging inverse problem, namely, the output least squares (OLS) formulation, the
energy output least-squares (EOLS) approach (see [13]), and the equation error
approach (see [12]).
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In this work, we investigate various aspects of the MOLS functional introduced
in [23], and contrast them with the corresponding features of the OLS approach and
the EOLS approach. The main contributions are:

1. We develop regularization frameworks for the identification of smooth as well
as nonsmooth parameters. We collect existence results and give new optimality
conditions for optimization problems with the regularized OLS, MOLS, and
EOLS objectives.

2. We conduct a thorough study of stability aspects of the inverse problem under
data perturbation. This includes a new stability result showing that a sequence
of the regularized problems involving noisy data, approximates the regularized
problem with the exact data, given that the noise diminishes. A related result
shows that the family of regularized problems converges to the original problem
if the regularization parameter converges to zero in a controlled manner.

3. We give new stability estimates for general inverse problems using the regular-
ized OLS, MOLS, and EOLS formulations. These results reflect on the selection
of an optimal regularization parameter for the continuous dependence on the
data perturbation. We present applications of the theoretical results and conduct
numerical experiments.

The contents of this paper are organized into seven sections. In Sect. 2 we give
various bounds on the solution of a mixed variational problem. Section 3 describes
three objective functionals, namely, the OLS, MOLS, and ELOS objectives in an
abstract setting. In Sect. 3 we describe a general regularization framework. The
regularized optimization problems are studied in a nonreflexive Banach space
setting as well as in a Hilbert space setting. We give existence results and derive
optimality conditions. In Sect. 4, we examine the impact of some perturbation in
the data. Section 5 provides a thorough study of the various stability issues of the
OLS, the MOLS, and the EOLS formulations. Section 6 presents some numerical
examples. The paper concludes with some general remarks.

2 Problem Formulation and Preliminary Results

Let V̂ and Q be real Hilbert spaces, let B be a real Banach space, let S ⊂ B be open,
and convex, and let A ⊂ S be closed, and convex. Let a : B × V̂ × V̂ → R be a
trilinear form symmetric in the last two arguments, let b : V̂ ×Q → R be a bilinear
map, let c : Q × Q → R be a symmetric bilinear map, and let m : V̂ → R be a
linear and continuous map. Assume that there are positive constants κ1, κ2, ς1, ς2,

and κ0 such that for every � ∈ S, p, q ∈ Q, and ū, v̄ ∈ V̂ , we have

a(�, v̄, v̄) ≥ κ1‖v̄‖2
V̂
, (5a)

|a(�, ū, v̄)| ≤ κ2‖�‖B‖ū‖V̂ ‖v̄‖V̂ , (5b)
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c(q, q) ≥ ς1‖q‖2
Q, (5c)

|c(p, q)| ≤ ς2‖p‖Q‖q‖Q, (5d)

|b(v̄, q)| ≤ κ0‖v̄‖V̂ ‖q‖Q. (5e)

Consider the mixed variational problem: Given � ∈ S, find (ū, p) ∈ V̂ ×Q with

a(�, ū, v̄)+ b(v̄, p) = m(v̄), for every v̄ ∈ V̂ , (6a)

b(ū, q)− c(p, q) = 0, for every q ∈ Q. (6b)

Our focus is on the inverse problem of identifying the parameter � ∈ A for which
a solution (ū, p) of (6) is closest to a given measurement (z̄, ẑ) of (ū, p).

In view of the coercivity and the continuity of the forms a(·, ·, ·) and c(·, ·), the
Lax-Milgram lemma ensures that for every � ∈ S, there exists a unique u = u(�) =
(ū(�), p(�)) ∈ V := V̂ × Q satisfying (6). Therefore, for every � ∈ S, the map
� → (ū(�), p(�)) is well-defined and single-valued. The following lemma gives
some additional information on the parameter-to-solution map:

Lemma 1 For any � ∈ S, the following estimates hold:

‖ū(�)‖V̂ ≤ ‖m‖V̂ ∗
κ1

, (7a)

‖p(�)‖Q ≤ ‖m‖V̂ ∗√
κ1ς1

, (7b)

‖u(�)‖V ≤ ‖m‖V̂ ∗√
κ1 min(κ1, ς1)

. (7c)

Proof Taking v = (ū, p) in (6) and combining the resulting two equations, we
obtain

κ1‖ū‖2
V̂ 2 + ς1‖p‖2

Q ≤ a(�, ū, ū)+ c(p, p) ≤ ‖m‖V̂ ∗‖ū‖V̂ ,

implying (7a), which leads to (7b), and finally by these bounds and the inequality

min(κ1, ς1)‖u‖2
V ≤ ‖m‖V̂ ∗‖ū‖V̂ ≤ ‖m‖2

V̂ ∗
κ1

,

the estimate (7c) follows. The proof is complete. ��
We now show that the parameter-to-solution map is Lipschitz continuous:

Lemma 2 For �1, �2 ∈ S, let u(�1) and u(�2) be the unique solutions of the
corresponding mixed variational problem. Then the following estimates hold:
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‖ū(�1)− ū(�2)‖V̂ ≤ κ2

κ2
1

‖m‖V̂ ∗‖�1 − �2‖B, (8a)

‖p(�1)− p(�2)‖Q ≤ κ2

κ1
√
ς1κ1

‖m‖V̂ ∗‖�1 − �2‖B, (8b)

‖u(�1)− u(�2)‖V ≤ κ2

κ1
√
κ1 min(κ1, ς1)

‖m‖V̂ ∗‖�1 − �2‖B. (8c)

Proof By the definitions of u(�1) and u(�2), we have

a(�1, ū(�1), v̄)+ b(v̄, p(�1)) = m(v̄), for every v̄ ∈ V̂ ,

b(ū(�1), q)− c(p(�1), q) = 0, for every q ∈ Q,

and

a(�2, ū(�2), v̄)+ b(v̄, p(�2)) = m(v̄), for every v̄ ∈ V̂ ,

b(ū(�2), q)− c(p(�2), q) = 0, for every q ∈ Q.

We set v = u(�1)− u(�2) in the above equations, and rearrange them to get

a(�1, ū(�1)− ū(�2), ū(�1)− ū(�2))+ b(ū(�1)− ū(�2), p(�1)− p(�2))

= a(�2 − �1, ū(�2), ū(�1)− ū(�2))

b(ū(�1)− ū(�2), p(�1)− p(�2)) = c(p(�1)− p(�2), p(�1)− p(�2)),

which implies

κ1‖ū(�1)− ū(�2)‖2
V̂
+ ς1‖p(�1)− p(�2)‖2

Q ≤ a(�1, ū(�1)− ū(�2), ū(�1)− ū(�2))

+ c(p(�1)− p(�2), p(�1)− p(�2))

= a(�2 − �1, ū(�2), ū(�1)− ū(�2))

≤ κ2‖�1 − �2‖B‖ū(�2)‖V̂ ‖ū(�1)− ū(�2))‖V̂
≤ κ2

κ1
‖m‖V̂ ∗‖�1 − �2‖B‖ū(�1)− ū(�2))‖V̂ ,

proving (8a). This estimate further gives that

ς1‖p(�1)− p(�2)‖2
Q ≤ κ2

2

κ3
1

‖m‖2
V̂ ∗‖�1 − �2‖2

B,

and hence establishing (8b). Finally, from

min(κ1, ς1)‖u(�1)− u(�2)‖2
V ≤ κ2

2

κ3
1

‖m‖2
V̂ ∗‖�1 − �2‖2

B,

we derive (8c). The proof is complete. ��
We now investigate the smoothness of the parameter-to-solution map:
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Theorem 1 For each � ∈ S, u = u(�) = (ū(�), p(�)) is infinitely differentiable at
�. The first derivative δu = (δū, δp) = (Dū(�)δ�,Dp(�)δ�) is the unique solution
of the mixed variational problem:

a(�, δū, v̄)+ b(v̄, δp) = −a(δ�, ū, v̄), ∀ v̄ ∈ V̂ (9a)

b(δū, q)− c(δp, q) = 0, ∀ q ∈ Q. (9b)

The second-order derivative

δ2u = (δ2ū, δ2p) = (D2ū(�)(δ�1, δ�2),D
2p(�)(δ�1, δ�2))

is the unique solution of the mixed variational problem:

a(�, δ2ū, v̄)+ b(v̄, δ2p) = −a(δ�2,Dū(�)δ�1, v̄)− a(δ�1,Dū(�)δ�2, v̄), ∀ v̄ ∈ V̂ (10a)

b(δ2ū, q)− c(δ2p, q) = 0, ∀ q ∈ Q. (10b)

Furthermore, the following estimates hold:

‖Dū(�)‖ ≤ κ2

κ2
1

‖m‖V̂ ∗ , (11a)

‖Dp(�)‖ ≤ κ2

κ1
√
κ1ς1

‖m‖V̂ ∗ , (11b)

‖Du(�)‖ ≤ κ2

κ1
√
κ1 min(κ1, ς1)

‖m‖V̂ ∗ , (11c)

‖D2ū(�)‖ ≤ 2κ2
2

κ3
1

‖m‖V̂ ∗ , (11d)

‖D2p(�)‖ ≤ 2κ2
2

κ2
1
√
κ1ς1

‖m‖V̂ ∗ , (11e)

‖D2u(�)‖ ≤ 2κ2
2

κ2
1

√
κ1 min(κ1, ς1)

‖m‖V̂ ∗ , (11f)

‖δ2ū‖V̂ ≤ 2κ2

κ1
‖δ�‖B‖Dū(�)δ�‖V̂ , (11g)

‖δ2p‖Q ≤ 2κ2√
ς1κ1

‖Dū(�)δ�‖V̂ ‖δ�‖B, (11h)

‖δ2u‖V ≤ 2κ2√
min(κ1, ς1)κ1

‖δ�‖B‖Dū(�)δ�‖V̂ , (11i)

Proof The derivative formulae have been given in [23]. We now proceed to verify
(11). We set v = (δū, δp) in (9) and combine the resulting inequalities to obtain
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κ1‖δū‖2
V̂
+ ς1‖δp‖2

Q ≤ a(�, δū, δū)+ c(δp, δp)

= −a(δ�, ū, δū) ≤ κ2‖δ�‖B‖δū‖V̂ ‖ū‖V̂
≤ κ2

κ1
‖m‖V̂ ∗‖δ�‖B‖δū‖V̂ ,

where we used an estimate from Lemma 1. Therefore, we have

‖δū‖V̂ ≤ κ2

κ2
1

‖m‖V̂ ∗‖δ�‖B,

which implies that

‖δp‖Q ≤ κ2

κ1
√
κ1ς1

‖m‖V̂ ∗‖δ�‖B,

and also

‖δu‖V ≤ κ2

κ1
√
κ1 min(κ1, ς1)

‖m‖V̂ ∗‖δ�‖B,

and the first three bounds follow from the above three inequalities.
For estimates for the second derivative, we take δ�1 = δ�2 = δ� and set v = δ2u

in (10) to get

a(�, δ2ū, δ2ū)+ b(δ2ū, δ2p) = −a(δ�,Dū(�)δ�, δ2ū)− a(δ�,Dū(�)δ�, δ2ū),

b(δ2ū, δ2p)− c(δ2p, δ2p) = 0,

and as before, after combining the above set of equations, we obtain

κ1‖δ2ū‖2
V̂
+ ς1‖δ2p‖2

Q ≤ a(�, δ2ū, δ2ū)+ c(δ2p, δ2p)

≤ 2κ2‖δ�‖B‖Dū(�)δ�‖V̂ ‖δ2ū‖V̂ , (12)

implying

‖δ2ū‖V̂ ≤ 2κ2
2

κ3
1

‖m‖V̂ ∗‖δ�‖2
B,

and consequently

‖δ2p‖Q ≤ 2κ2
2

κ2
1
√
κ1ς1

‖m‖V̂ ∗‖δ�‖2
B,
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and also

‖δ2u‖V̂ ≤ 2κ2
2

κ2
1

√
k1 min(κ1, ς1)

‖m‖V̂ ∗‖δ�‖2
B,

leading to the next three bounds.
For the remaining bounds, we note that (12) yields

‖δ2ū‖V̂ ≤ 2κ2

κ1
‖δ�‖B‖Dū(�)δ�‖V̂ ,

implying

‖δ2p‖2
Q ≤ 2κ2

ς1
‖δ�‖B‖Dū(�)δ�‖V̂ ‖δ2ū‖V̂ ≤ 22κ2

2

ς1κ1
‖Dū(�)δ�‖2

V̂
‖δ�‖2

B,

and hence

‖δ2p‖Q ≤ 2κ2√
ς1κ1

‖Dū(�)δ�‖V̂ ‖δ�‖B.

Moreover, from the inequality

min(κ1, ς1)‖δ2u‖2
V ≤ 2κ2‖δ�‖B‖Dū(�)δ�‖V̂ ‖δ2ū‖V̂ ,

we have

‖δ2u‖2
V ≤ 22κ2

2

min(κ1, ς1)κ1
‖δ�‖2

B‖Dū(�)δ�‖2
V̂

or equivalently

‖δ2u‖V ≤ 2κ2√
min(κ1, ς1)κ1

‖δ�‖B‖Dū(�)δ�‖V̂ , (13)

which establishes the last inequality. This completes the proof. ��

3 Optimization Formulations

As mentioned above, our focus is on the inverse problem of estimating the
coefficient � in (6) so that the unique solution u(�) = (ū(�), p(�)) of (6) is closest
in some norm to the given measurement z = (z̄, ẑ) of u(�). A common approach is
to pose this as an optimization problem minimizing the OLS functional

JO(�) := 1

2
‖u(�)− z‖2

Z = 1

2
‖ū(�)− z̄‖2

Z̄
+ 1

2
‖p(�)− ẑ‖2

Ẑ
,

with (z̄, ẑ) ∈ Z := Z̄ × Ẑ, where Z is a suitable observation space.
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The OLS formulation for nonlinear inverse problems of parameter identification
is typically nonconvex, and hence it is limited to characterizing local minima.
Of course, a natural strategy to circumvent the difficulties associated to the non-
convexity of the OLS functional is to introduce an analog of (4).

In [23], the following modified output least-squares (MOLS) was introduced

JM(�) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+b(ū(�)− z̄, p(�)− ẑ)− 1

2
c(p(�)− ẑ, p(�)− ẑ),

where (z̄, ẑ) ∈ V is the data.
For sake a completeness, we recall the following feature of MOLS (see [23]):

Theorem 2 The modified output least-squares functional defined above is convex
on the set A.

Proof Using the derivative characterization (9), we have

DJM(�)(�̂) = 1

2
a(�̂, ū(�)− z̄, ū(�)− z̄)− a(�̂, ū(�), ū(�)− z̄)

= −1

2
a(�̂, ū(�)+ z̄, ū(�)− z̄), (14)

which, using (9) again, yields

D2JM(�)(�̂, �̂) = a(�, δū, δū)+ c(δp, δp) ≥ κ1‖δū‖2 + ς1‖δp‖2, (15)

and the convexity follows. ��
In [13], the following energy output least-squares was proposed

JE(�) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ 1

2
c(p(�)− ẑ, p(�)− ẑ),

where (z̄, ẑ) ∈ V is the data.
The idea of minimizing the energy of the underlying variational problem

was fundamental to the convexity of (4). However, since the mixed variational
formulation involves a coupled system of equations, the two ways of combining
them result in MOLS and EOLS with different features; MOLS preserves convexity
but loses positivity whereas EOLS retains positivity but is non-convex in general.

The inverse problem of identifying parameters is ill-posed, and some regular-
ization is essential. Two frameworks have been developed for identification in (1),
one for the identification of smooth coefficients and the second for the identification
of discontinuous coefficients. In the following, we formulate two assumptions to
recapture these two frameworks:

Assumption A The Banach space B is continuously embedded in a Banach space
L. There is another Banach space B̂ that is compactly embedded in L. The set A is
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a subset of B ∩ B̂, closed and bounded in B and also closed in L. For any bounded
sequences {ūk} ⊂ V̂ , and {�k} ⊂ B with �k → � in L, for any fixed v ∈ V̂ , we have

a(�k − �, ūk, v) → 0. (16)

Moreover, R : B̂ → R is a positive, convex, ‖ · ‖L-lower-semicontinuous map with

R(�) ≥ τ1‖�‖B̂ − τ2, for every � ∈ A, for some τ1 > 0, τ2 > 0. (17)

Assumption B A Hilbert space Ĥ is compactly embedded into the space B, A ⊂
Ĥ is nonempty, closed, and convex, R : Ĥ → R is convex, lower-semicontinuous,
and there is α1 > 0 such that

R(�) ≥ α1‖�‖2
Ĥ
, for every � ∈ A. (18)

Given a regularization parameter κ > 0, a regularization map given through
either Assumption A or B, consider the following optimization problems involving
the OLS, MOLS, and EOLS functionals.

Find � ∈ A by solving the regularized OLS based optimization problem:

J κ
O(�) :=

1

2
‖u(�)− z‖2

Z + κR(�). (19)

Find � ∈ A by solving the regularized MOLS based optimization problem:

J κ
M(�) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ b(ū(�)− z̄, p(�)− ẑ)

− 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κR(�). (20)

Find � ∈ A by solving the regularized EOLS based optimization problem:

J κ
E(�) :=

1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κR(�). (21)

We have the following existence result for the above problems:

Theorem 3 Under Assumption A, optimization problems (19)–(21) have nonempty
solution sets, where every minimizer of (20) is a global minimizer. Moreover, �̄ ∈ A

is a minimizer of (20), if and only if, it solves the variational inequality:

− 1

2
a(�̂− �̄, ū(�̄)+ z̄, ū(�̄)− z̄) ≥ κ[R(�̄)− R(�̂)], for every �̂ ∈ A. (22)

Moreover, �̄ ∈ A is a minimizer of (19), then it solves the variational inequality

〈
Du(�̄)(�̂− �̄), u(�̄)− z

〉

Z
≥ κ[R(�̄)− R(�̂)], for every �̂ ∈ A. (23)
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Furthermore, if �̄ ∈ A is a minimizer of (21), then it solves the variational inequality

−1

2
a(�̂− �̄, ū(�)+ z̄, ū(�)− z̄)+ b(δu, p(�)− ẑ)

− b(ū(�)− z̄, δp) ≥ κ[R(�̄)− R(�̂)], for every �̂ ∈ A.

(24)

Proof The solvability of (20) can be found in [23] and the solvability of (21) can
be found in [13]. Analogous arguments can be used to prove the solvability of
(19). Since the MOLS objective and the regularizer R are both convex, variational
inequality (22) is a necessary and sufficient optimality conditions which follows
using (14). Analogously (23) is a necessary optimality condition of (19). Finally,
(24) is a necessary optimality condition of (21) and the specific form follows from
(see [13])

DJE(�)(δ�) = −1

2
a(δ�, ū(�)+ z̄, ū(�)− z̄)+ b(δu, p(�)− ẑ)− b(ū(�)− z̄, δp),

and the proof is complete. ��
Let us briefly touch upon the rationale behind the above assumptions. Assump-

tion A provides a theoretical framework to recover discontinuous coefficients and
is motivated by the use of total variation regularization in inverse problems. Recall
that the total variation of f ∈ L1(Ω) is given by

TV(f ) = sup

{
−

∫

Ω

f∇ · g : g = (g1, g2) ∈ C1
0(Ω;R2), |g(x)| ≤ 1 ∀ x ∈ Ω

}
,

where | · | represents the Euclidean norm of a vector. Clearly, if f ∈ W 1,1(Ω), then
TV(f ) = ∫

Ω
|∇f |.

If f ∈ L1(Ω) satisfies TV(f ) < ∞, then f is said to have bounded variation,
and BV(Ω) is defined by BV(Ω) = {

f ∈ L1(Ω) : TV(f ) < ∞}
. The norm on

BV(Ω) is ‖f ‖BV(Ω) = ‖f ‖L1(Ω)+TV(f ). The functional TV(·) is a seminorm on
BV(Ω) and is often called the BV-seminorm.

We set B = L∞(Ω), L = L1(Ω), B̂ = BV(Ω), and R(a) = T V (a), and define

A1 := {a ∈ L∞| 0 < c1 ≤ a(x) ≤ c2, almost everywhere},
A2 := {a ∈ L∞| 0 < c1 ≤ a(x) ≤ c2, almost everywhere, TV(a) ≤ c3 < ∞},

where c1, c2, and c3 are constants. It is known that L∞(Ω) is continuously
embedded in L1(Ω), BV(Ω) is compactly embedded in L1(Ω), and T V (·) is
convex and lower-semicontinuous in L1(Ω)-norm (see [1, 16]). If we study the
regularized optimization problems on the set A1, then the regularizer ensures that
the minimizing sequence remains bounded in B̂. However, if the set is A2, then
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the regularizer does not play any such role because A2 is already bounded in B̂.

Assumption B, however, is suitable for the identification of smooth parameters. It is
clearly satisfied on a suitable domain Ω by taking B = L∞(Ω) and Ĥ = H2(Ω)

and R(�) = ‖�‖2
Ĥ
.

4 Asymptotic Stability of the MOLS Approach

To study the asymptotic stability of the MOLS approach under data perturbation,
assume z = (z̄, ẑ) ∈ V is the exact data and zδ = (z̄δ, ẑδ) ∈ V is the contaminated
data such that ‖zδ − z‖V ≤ δ, where δ > 0.

Consider the problem of finding �δ ∈ A by minimizing

J δ
M(�) := 1

2
a(�, ū(�)− z̄δ, ū(�)− z̄δ)+ b(ū(�)− z̄δ, p(�)− ẑδ)

− 1

2
c(p(�)− ẑδ, p(�)− ẑδ)+ κR(�). (25)

where u(�) solves (6), κ > 0 is a fixed parameter, and R is given in (17).
The following result shows that for a fixed regularized parameter, the regularized

problems with contaminated data converge to the regularized problem with the exact
data if the noise decays suitably:

Theorem 4 For any δ > 0, (25) has a solution �δ. Furthermore, there exists a
subsequence {�δ} converging in ‖ · ‖L as δ → 0 to a solution �̃ of (20).

Proof The existence of a solution �δ of (25) follows from Theorem 3. We shall show
that {�δ} ⊂ A is bounded in B̂. For any �̂ ∈ A, we have

J δ
M(�δ) = 1

2
a(�δ, ū(�δ)− z̄δ, ū(�δ)− z̄δ)+ b(ū(�δ)− z̄δ, p(�δ)− ẑδ)

− 1

2
c(p(�δ)− ẑδ, p(�δ)− ẑδ)+ κR(�δ)

≤ 1

2
a(�̂, ū(�̂)− z̄δ, ū(�̂)− z̄δ)+ b(ū(�̂)− z̄δ, p(�̂)− ẑδ)

− 1

2
c(p(�̂)− ẑδ, p(�̂)− ẑδ)+ κR(�̂)

≤ 1

2
a(�̂, ū(�̂)−z̄, ū(�̂)−z̄)+a(�̂, ū(�̂)−z̄, z̄−z̄δ)+1

2
a(�̂, z̄−z̄δ, z̄−z̄δ)

+ b(ū(�̂)− z̄, p(�̂)− ẑ)+ b(ū(�̂)− z̄, ẑ− ẑδ)+ b(z̄− z̄δ, p(�̂)− ẑ)

+ b(z̄− z̄δ, ẑ− ẑδ)− 1

2
c(p(�̂)− ẑ, p(�̂)− ẑ)− c(p(�̂)− ẑ, ẑ− ẑδ)

− 1

2
c(z− zδ, z− zδ)+ κR(�̂) ≤ M,
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where M is a constant. Here we used (5) and the fact that zδ is bounded.
Furthermore, by using the fact that A is bounded in B and u(�δ) is bounded
independent of δ, we note that the term

1

2
a(�δ, ū(�δ)−z̄δ, ū(�δ)−z̄δ)+b(ū(�δ)−z̄δ, p(�δ)−ẑδ)− 1

2
c(p(�δ)−ẑδ, p(�δ)−ẑδ)

is bounded below by a constant. Therefore, by the definition of R(·), we deduce that
{�δ} is bounded in ‖ · ‖B̂ and therefore there is a subsequence of {�δ} converging in
‖ · ‖L to some �̃ ∈ A. We set uδ = (ū(�δ), p(�δ)). It can be shown that uδ → ũ =
(ū(�̃), p(�̃)) as δ → 0.

For an arbitrary � ∈ A, we have

J κ
M(�̃) = 1

2
a(�̃, ū(�̃)− z̄, ū(�̃)− z̄)+ b(ū(�̃)− z̄, p(�̃)− ẑ)

− 1

2
c(p(�̃)− ẑ, p(�̃)− ẑ)+ κR(�̃)

≤ lim inf
δ→0

{
1

2
a(�δ, ū(�δ)− z̄, ū(�δ)− z̄)+ b(ū(�δ)− z̄, p(�δ)− ẑ)

−1

2
c(p(�δ)− ẑ, p(�δ)− ẑ)+ κR(�δ)

}

≤ lim sup
δ→0

{
1

2
a(�δ, ū(�δ)− z̄δ, ū(�δ)− z̄δ)+ b(ū(�δ)− z̄δ, p(�δ)− ẑδ)

−1

2
c(p(�δ)− ẑδ, p(�δ)− ẑδ)+ κR(�δ)

}

≤ lim sup
δ→0

{
1

2
a(�, ū(�)− z̄δ, ū(�)− z̄δ)+ b(ū(�)− z̄δ, p(�)− ẑδ)

−1

2
c(p(�)− ẑδ, p(�)− ẑδ)+ κR(�)

}

≤ 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ b(ū(�)− z̄, p(�)− ẑ)

− 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κR(�),

where we repeatedly used the fact that δ → 0. Since � is arbitrarily, it follows that �̃
is a minimizer. ��

It would be of interest to explore an analogue of the above result when κ → 0.
Unfortunately the above proof does not carry over to this case, and consequently, we
develop a new proof relying on the equivalent variational inequality formulation.
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Let z = (z̄, ẑ) ∈ V be the exact data and let zn := (z̄n, ẑn) ∈ V be the noisy data
such that ‖zn − z‖ ≤ δn, where δn > 0. For n ∈ N, consider the problem of finding
�n ∈ A by solving

min
�∈A J

δn
M (�) := 1

2
a(�, ū(�)− z̄δn , ū(�)− z̄δn)+ b(ū(�)− z̄δn , p(�)− ẑδn)

− 1

2
c(p(�)− ẑδn , p(�)− ẑδn)+ κnR(�), (26)

where u(�) = (ū(�), p(�)) solves (6), κn > 0, and the regularizer R is defined in
Assumption A.

The following result proves the convergence of the regularization solutions:

Theorem 5 Assume that the solution set S of the following optimization problem
is nonempty:

min
�∈AJM(�) := 1

2
a(�, ū(�)−z̄, ū(�)−z̄)+b(ū(�)−z̄, p(�)−ẑ)−1

2
c(p(�)−ẑ, p(�)−ẑ).

(27)
Assume that {κn, δn, δnκ−1

n } → 0 as n → ∞. Then, for every n ∈ N, problem (26)
has a minimizer �n. Moreover, there is a subsequence {�n}, converging in ‖ · ‖L as
n → ∞, to a minimizer �̃ of (27).

Proof Since J
δn
M is convex, a necessary and sufficient optimality condition for a

minimizer �n ∈ A of (26) is the following variational inequality

〈DJ
δn
M (�n), �− �n〉 ≥ κn [R(�n)− R(�)] , for every � ∈ A, (28)

where

〈DJ
δn
M (�n), δ�〉 = −1

2
a(δ�, ūn + z̄n, ūn − z̄n).

Also any �̄ ∈ S satisfies the following variational inequality:

〈DJM(�̄), �− �̄〉 ≥ 0, for every � ∈ A. (29)

Setting � = �̄ in (28), � = �n in (29), and using the monotonicity

〈DJM(�̄)−DJM(�n), �̄− �n〉 ≥ 0,

which holds due to the convexity of MOLS, we get

〈DJ
δn
M (�n)−DJM(�n), �̄− �n〉 ≥ κn

[
R(�n)− R(�̄)

]
.

To obtain an upper bound on the left-hand side term of the above inequality, we note
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2〈DJ
δn
M (�n)−DJM(�n), �̄− �n〉

=a(�n − �̄, ūn + z̄n, ūn − z̄n)− a(�n − �̄, ūn + z̄, ūn − z̄)

=a(�n − �̄, ūn + z̄, ūn − z̄n)+ a(�n − �̄, z̄n − z̄, ūn − z̄n)

+ a(�n − �̄, ūn + z̄, z̄− ūn)

=a(�n − �̄, ūn + z̄, z̄− z̄n)+ a(�n − �̄, z̄n − z̄, ūn − z̄n)

=a(�n − �̄, ūn + z̄, z̄− z̄n)+ a(�n − �̄, z̄n − ūn, z̄− z̄n)

=a(�n − �̄, z̄n + z̄, z̄− z̄n)

=a(�n − �̄, z̄n − z̄, z̄− z̄n)+ a(�n − �̄, 2z̄, z̄− z̄n)

≤κ2‖�̄− �n‖B
[
2δn‖z̄‖V + δ2

n

]

≤cδn‖�̄− �n‖B,

where c is constant including κ2, ‖z̄‖V , and a fixed upper bound on δn.

Therefore, κn
[
R(�n)− R(�̄)

] ≤ cδn‖�̄−�n‖B, and A is bounded inB, we obtain
that there is a constant c̃ such that R(an) ≤ c̃, ensuring that the sequence remains
bounded in B̂ and consequently has a subsequence {�n} which converges, in ‖ · ‖L,
to some �̃ ∈ A. We set ũ = u(�̃). It can be shown that un → ũ = ũ(�̃) as n → ∞.

Let � ∈ A be arbitrary. Then,

J κ
M(�̃) = 1

2
a(�̃, ū(�̃)− z̄, ū(�̃)− z̄)+ b(ū(�̃)− z̄, p(�̃)− ẑ)

− 1

2
c(p(�̃)− ẑ, p(�̃)− ẑ)

≤ lim
n→∞

{
1

2
a(�n, ūn − z̄, ūn − z̄)+ b(ūn − z̄, pn − ẑ)

−1

2
c(pn − ẑ, pn − ẑ)

}

≤ lim
n→∞

{
1

2
a(�n, ūn − z̄n, ūn − z̄n)+ b(ūn − z̄n, pn − ẑn)

−1

2
c(pn − ẑn, pn − ẑn)+ κnR(�n)

}

≤ lim
n→∞

{
1

2
a(�, ū(�)− z̄n, ū(�)− z̄n)+ b(ū(�)− z̄n, p(�)− ẑn)

−1

2
c(p(�)− ẑn, p(�)− ẑn)+ κnR(�)

}
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= 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ b(ū(�)− z̄, p(�)− ẑ)

− 1

2
c(p(�)− ẑ, p(�)− ẑ),

by similar calculations as in Theorem 4. Hence, �̃ is a minimizer of (20). ��

5 Local Stability Estimates

Inspired by the approach developed by Alt [2, 3], Chavent [7], Colonius and
Kunisch [10, 11], and White [31, 32], we shall now investigate the stability of
OLS, MOLS, and EOLS to the data perturbation by using Tikhonov regularization.
Throughout this section, we assume that the regularization space H is a Hilbert
space continuously embedded in the parameter space B, that is, there is an
embedding constant ĉ such that ‖w‖B ≤ ĉ‖w‖H , for every w ∈ H. Let Y be a
Banach space, let C ⊂ Y be a pointed, closed, and convex cone inducing a partial
ordering in Y , and let C+ be the positive dual of C. The cone C is related to the set
A ⊂ H of admissible parameters which is contained in the open set S ⊂ H, and will
be used to pose admissibility using explicit constraints. We assume that g : S → Y

is twice differentiable map such that A := {� ∈ H | g(�) ∈ −C}. We also assume
that the outcome space V is continuously embedded in the observation space Z. For
the applications that we have in mind, it is enough to assume that ‖w‖Z ≤ ‖w‖V ,
for every w ∈ V. Throughout this section, κ > 0 is a fixed regularization parameter.

Given J̃ : S × Z → R+ and g : S → Y, for z ∈ Z, consider problem (Pz):

min J̃ (�, z) subject to A := {� ∈ H | g(�) ∈ −C}.
We assume that for every z = (z̄, ẑ) ∈ Z := Z̄ × Ẑ, there is at least one solution �z

of problem (Pz). Conditions on g are vital for the selection of the constraint space Y .
We denote by �z ∈ H a solution of (Pz), and explore how such solutions depend on
the data z. Throughout this section, by (�0, z0) ∈ H × Z, we denote the reference
point where �0 is a solution of (Pz0) and z0 is the exact data. For simplicity, we
assume that the constraint map g is twice continuously differentiable.

The well-known Karush-Kuhn-Tucker (KKT) condition for (Pz0) will be used:

Theorem 6 Let �0 ∈ A be a regular point, that is, for every � ∈ A, the constraint
qualification

0 ∈ int (g(�0)+Dg(�0)(�− �0)+ C) , (30)

holds. Then there exists μ0 ∈ C+ such that μ0(g(�0)) = 0, g(�0) ∈ −C, and for
every � ∈ A, we have

DJ̃ (�0)(�− �0) = −μ0(Dg(�0)(�− �0)). (31)
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Commonly used constraints sets in the identification problems are pointwise
constraints and/or norm constraints. The following result (see [10]) shows that every
point in such sets is a regular point:

Lemma 3 Let Q be a real Hilbert space, and let K ⊂ Q be a closed convex cone
with vertex at zero inducing an ordering on Q such that K = {q ∈ Q|q ≥ 0}.
For k ∈ K and γ ∈ R

+, we define G = (G1,G2) : Q → Q × R by G(q) =
(G1(q),G2(q)) = (k − q, ‖q‖2 − γ 2). Let γ > ‖k‖. Then every point of the set
Q̃ = {q ∈ Q| G(q) ≤ 0} is a regular point.

5.1 Stability of the Output Least-Squares Approach

We now return to the regularized OLS based optimization problem (P 1
z ):

min JO(�, z) := 1

2
‖u(�)− z‖2

Z + κ

2
‖�‖2

H

= 1

2
‖ū(�)− z̄‖2

Z̄
+ 1

2

∥∥p(�)− ẑ
∥∥2
Ẑ
+ κ

2
‖�‖2

H (32)

subject to � ∈ A := {� ∈ H | g(�) ∈ −C}.
Using the chain rule, we get the following derivatives with respect to �:

D�JO(�, z)(δ�) = 〈Du(�)(δ�), u(�)− z〉Z + κ 〈�, δ�〉H , (33a)

D2
�JO(�, z)(δ�, δ�) =

〈
D2u(�)(δ�, δ�), u(�)− z

〉

Z

+ ‖Du(�)(δ�)‖2
Z + κ ‖δ�‖2

H . (33b)

The following result establishes the local Hölder continuity of the OLS approach:

Theorem 7 Let �0 ∈ A be a regular point. Then, for every κ satisfying

κ >
2κ2

2 ĉ
2‖m‖V̂ ∗

κ2
1

√
κ1 min(κ1, ς1)

‖u(�0)− z0‖Z , (34)

there are neighborhoods Uz0 of z0 and U�0 of �0 such that for every solution �z ∈
U�0 of (P 1

z ), we have

‖�z − �0‖H ≤ c ‖z− z0‖
1
2
Z ,

where c > 0 is independent of the data and ĉ > 0 is the embedding constant.
If Z = V, then the following condition on κ ensures the above conclusion:

κ >
κ2

2 ĉ
2

min{κ1, ς1}κ1
‖u(�0)− z0‖2

V . (35)
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Proof We will use Theorem 13 with X = H , D = S ⊃ A, and W = Z. Evidently,
conditions (A1)–(A3) of Theorem 13 hold because JO and g are twice continuously
differentiable with respect to variables (�, z). We only need to show that (65) holds.
In other words, we need to show that there exists δ > 0 such that for any feasible �
sufficiently close to �0, we have

JO(�, z0)− JO(�0, z0) ≥ δ‖�− �0‖2. (36)

By using the Taylor’s expansion of JO at (�0, z0), we have

JO(�, z0)− JO(�0, z0) = D�JO(�0, z0)(Δ�)+ 1

2
D2
�JO(�t , z0)(Δ�,Δ�),

where Δ� = �− �0, �t = �0 + t (�− �0), and t ∈ (0, 1). Using (31), we obtain

JO(�, z0)−JO(�0, z0) = −μ0(Dg (�0) (Δ�))+ 1

2
D2
�JO(�t , z0)(Δ�,Δ�). (37)

Note that (30) means that 0 = g(�0)+Dg(�0)(Δ�)+ c, for some c ∈ C, implying

0 = μ0(g(�0))+ μ0(Dg(�0)(Δ�))+ μ0(c),

and hence μ0(Dg (�0) (Δ�)) = −μ0(c) ≤ 0. It follows from (37) that

JO(�, z0)− JO(�0, z0) ≥ 1

2
D2
�JO(�t , z0)(Δ�,Δ�). (38)

We need a lower bound for the right-hand side term in the above inequality. For this,
by (33), we get

D2
�JO(�t , z0)(Δ�,Δ�) =

〈
D2u(�t )(Δ�,Δ�), u(�t )− z0

〉

Z

+ ‖Du(�t )(Δ�)‖2
Z + κ ‖Δ�‖2

H

≥
〈
D2u(�t )(Δ�,Δ�), u(�t )− z0

〉

Z
+ κ ‖Δ�‖2

H

≥ −
∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
Z
‖u(�t )− z0‖Z + κ ‖Δ�‖2

H .

(39)

Using Theorem 1, we have

∥
∥∥D2u(�t )(Δ�,Δ�)

∥
∥∥
Z
≤ ‖D2u(�t )(Δ�,Δ�)‖V

≤ 2κ2
2‖m‖V̂ ∗

κ2
1

√
κ1 min(κ1, ς1)

‖Δ�‖2
B

≤ 2κ2
2 ĉ

2‖m‖V̂ ∗

κ2
1

√
κ1 min(κ1, ς1)

‖Δ�‖2
H . (40)



Parameter Identification in Mixed Variational Problems 79

Moreover, invoking Lemma 2, we obtain

‖u(�t )− z0‖Z ≤ ‖u(�t )− u(�0)‖Z + ‖u(�0)− z0‖Z
≤ ‖u(�t )− u(�0)‖V + ‖u(�0)− z0‖Z
≤ κ2‖m‖V̂ ∗

κ1
√
κ1 min(κ1, ς1)

t ‖Δ�‖B + ‖u(�0)− z0‖Z

≤ ĉκ2‖m‖V̂ ∗

κ1
√
κ1 min(κ1, ς1)

‖Δ�‖H + ‖u(�0)− z0‖Z . (41)

Combining (39)–(41), we obtain

D2
�JO(�t , z0)(Δ�,Δ�) ≥

(

κ − 2κ2
2 ĉ

2‖m‖V̂ ∗
κ2

1
√
κ1 min(κ1, ς1)

‖u(�0)− z0‖Z − c̃ ‖Δ�‖H
)

‖Δ�‖2
H ,

(42)
where c̃ is a constant, independent of the measured data, given by

c̃ := 2κ3
2 ĉ

3‖m‖2
V̂ ∗

κ4
1 min(κ1, ς1)

> 0.

Due to the assumption (34), that is, due to the inequality

κ >
2κ2

2 ĉ
2‖m‖V̂ ∗

κ2
1

√
κ1 min(κ1, ς1)

‖u(�0)− z0‖Z ,

we can find a neighborhood U�0 of �0 such that

δ := κ − 2κ2
2 ĉ‖m‖V̂ ∗

κ2
1

√
κ1 min(κ1, ς1)

‖u(�0)− z0‖Z − c̃ ‖Δ�‖H > 0,

and consequently

D2
�JO(�t , z0)(Δ�,Δ�) ≥ δ ‖Δ�‖2

H ,

for every � ∈ U�0, which, when combined with (38), implies that

JO(�, z0)− JO(�0, z0) ≥ δ

2
‖Δ�‖2

H , for every � ∈ U�0 ,

and hence condition (36) holds when the regularization parameter κ satisfies (34).
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To prove (36) under (35) and the case Z = V , we write an analogue of (39) as
follows

D2
�JO(�t , z0)(Δ�,Δ�)

=
〈
D2u(�t )(Δ�,Δ�), u(�t )− z0

〉

V
+ ‖Du(�t )(Δ�)‖2

V + κ ‖Δ�‖2
H

≥ −
∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
V
‖u(�t )− z0‖V + ‖Du(�t )(Δ�)‖2

V + κ ‖Δ�‖2
H ,

On the other hand, from (11), we can deduce the following inequality

‖D2u(�t )(Δ�,Δ�)‖V ≤ 2κ2√
min(κ1, ς1)κ1

‖Du(�t )(Δ�)‖V ‖Δ�‖B

≤ 2κ2ĉ√
min(κ1, ς1)κ1

‖Du(�t )(Δ�)‖V ‖Δ�‖H

and subsequently the following chain of inequalities

‖D2u(�t )(Δ�,Δ�)‖V ‖u(�t )− z0‖V ≤
∥∥
∥D2u(�t )(Δ�,Δ�)

∥∥
∥
V

[‖u(�t )− u(�0)‖V
+‖u(�0)− z0‖V

]

≤
∥∥
∥D2u(�t )(Δ�,Δ�)

∥∥
∥
V
‖u(�t )− u(�0)‖V

+
∥∥
∥D2u(�t )(Δ�,Δ�)

∥∥
∥
V
‖u(�0)− z0‖V

≤
∥
∥∥D2u(�t )(Δ�,Δ�)

∥
∥∥
V
‖u(�t )− u(�0)‖V

+ 2κ2ĉ√
min(κ1, ς1)κ1

‖Du(�t )(Δ�)‖V ‖Δ�‖H ‖u(�0)− z0‖V

≤ 2ĉ3κ3
2‖m‖2

V̂ ∗

κ4
1 min(κ1, ς1)

‖Δ�‖3
H + ‖Du(�t )(Δ�)‖2

V

+ κ2
2 ĉ

2

min{κ1, ς1}κ1
‖Δ�‖2

H‖u(�0)− z0‖2
V ,

implying that

D2
�JO(�t , z0)(Δ�,Δ�) ≥

(

κ− κ2
2 ĉ

2

min{κ1, ς1}κ1
‖u(�0)−z0‖2

V−c̃ ‖Δ�‖H
)

‖Δ�‖2
H ,
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where

c̃ := 2ĉ3κ3
2‖m‖2

V̂ ∗

κ4
1 min(κ1, ς1)

> 0

is independent of the measured data. The remaining arguments to complete the proof
are identical to the ones given for the case of (34). ��

In essence, Theorem 7 conveys that the local Holder stability necessitates a lower
bound on the regularization parameter which involves a fixed constant and the term
‖u(�0) − z0‖ which speaks of the quality of the exact data. The condition Z = V

suggests that the data ought to be sufficiently regular. In this case, the lower bound
on κ includes the term ‖u(�0)−z0‖2

V , and hence more regular data permits a smaller
regularization parameter.

Local Lipschitz stability can be obtain using Theorem 14. However, the main
challenge here is to show the bound on the multipliers. For this, we choose the
regularization space to be H := H 2(Ω).

We consider the following regularized optimization problem (Q1
z):

min JO(�, z) := 1

2
‖u(�)− z‖2

Z + κ

2
‖�‖2

H

subject to � ∈ A := {� ∈ H | 0 < α0 ≤ �(x)}. (43)

where κ > 0 is the regularization parameter and α0 is a known constant. Evidently,
the map g : H → H is given by g(�) = α0 − �. We choose C to be the cone
of positive functions in H . For each z by �z we denote the corresponding solution
to (Q1

z).
By using the chain rule, we compute the derivative of the objective functional:

D�JO(�, z)(δ�) = 〈Du(�)(δ�), u(�)− z〉Z + κ 〈�, δ�〉H (44)

The following feature of the derivative of the OLS functional will be used shortly:

Lemma 4 There exist neighborhoods U�0 ⊂ H of �0, Uz0 ⊂ Z of z0, respectively,
and a constant c > 0 such that for every z1, z2 ∈ Uz0 , and �z1 , �z2 ∈ U�0 , we have

|D�JO(�
z1 , z1)(δ�)−D�JO(�

z2 , z2)(δ�)| ≤ c
(∥∥�z1 − �z2

∥∥
H
+ ‖z1 − z2‖Z

) ‖δ�‖H .

(45)

Proof Using (44), we obtain

D�JO(�
z1 , z1)(δ�)−D�JO(�

z2 , z2)(δ�)

= 〈
Du(�z1)(δ�), u(�z1)− z1

〉
Z
− 〈

Du(�z2)(δ�), u(�z2)− z2
〉
Z

+ κ
〈
�z1 − �z2 , δ�

〉
H
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= 〈
Du(�z1)(δ�)−Du(�z2)(δ�), u(�z1)− z1

〉
Z

+ 〈
Du(�z2)(δ�), u(�z1)−u(�z2)+z2−z1

〉
Z
+κ 〈

�z1−�z2 , δ�
〉
H
,

and hence

|D�JO(�
z1 , z1)(δ�)−D�JO(�

z2 , z2)(δ�)| (46)

≤ ∥∥Du(�z1)(δ�)−Du(�z2)(δ�)
∥∥
V

∥∥u(�z1)− z1
∥∥
Z

+ ∥∥Du(�z2)(δ�)
∥∥
V

[∥∥u(�z1)− u(�z2)
∥∥
V
+ ‖z1 − z2‖Z

]+ κ
∥∥�z1 − �z2

∥∥
H
‖δ�‖H .

(47)

Using the bounds from Theorem 1, we obtain
∥∥Du(�z1)(δ�)−Du(�z2)(δ�)

∥∥
V
≤ c1

∥∥�z1 − �z2
∥∥
H
‖δ�‖H , (48)

where

c1 = 2κ2
2 ĉ

2

κ2
1

√
κ1 min(κ1, ς1)

‖m‖V̂ ∗ .

We also have the following bounds

∥∥Du(�z2)(δ�)
∥∥ ≤ c2 ‖δ�‖H , (49)

∥∥u(�z1)− u(�z2)
∥∥
V
≤ c2

∥∥�z1 − �z2
∥∥
H
, (50)

where

c2 = ĉκ2

κ1
√
κ1 min(κ1, ς1)

‖m‖V̂ ∗ .

By using (48)–(50), in (47), we obtain

|D�JO(�
z1 , z1)(δ�)−D�JO(�

z2 , z2)(δ�)|
≤ ∥∥Du(�z1)(δ�)−Du(�z2)(δ�)

∥∥
V

∥∥u(�z1)− z1
∥∥
Z

+ ∥∥Du(�z2)(δ�)
∥∥
V

[∥∥u(�z1)− u(�z2)
∥∥
V
+ ‖z1 − z2‖Z

]

+ κ
∥
∥�z1 − �z2

∥
∥
H
‖δ�‖H

≤ c1
∥∥u(�z1)− z1

∥∥
Z

∥∥�z1 − �z2
∥∥
H
‖δ�‖H + c2

2

∥∥�z1 − �z2
∥∥
H
‖δ�‖H

+ c2 ‖z1 − z2‖Z ‖δ�‖H + κ
∥∥�z1 − �z2

∥∥
H
‖δ�‖H

≤
(
c1

∥∥u(�z1)− z1
∥∥
Z

∥∥�z1 − �z2
∥∥
H
+ c2

2

∥∥�z1 − �z2
∥∥
H

+c2 ‖z1 − z2‖Z + κ
∥∥�z1 − �z2

∥∥
H

) ‖δ�‖H .
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Choosing two bounded neighborhoods, Uz0 ⊂ Z of z0, and U�0 ⊂ H of �0, and a
constant c3 > 0 such that c1 ‖u(�z1)− z1‖ ≤ c3, we write the above inequality as
follows

∣∣D�J (�
z1 , z1)(δ�)−D�J (�

z2 , z2)(δ�)
∣∣

≤
((
c3 + c2

2 + κ
) ∥∥�z1 − �z2

∥∥
H
+ c2 ‖z1 − z2‖Z

)
‖δ�‖H

≤ c
(∥∥�z1 − �z2

∥∥
H
+ ‖z1 − z2‖Z

) ‖δ�‖H ,

where c is a suitable constant. The proof is complete. ��
We now establish the local Lipschitz continuity of the OLS approach:

Theorem 8 Assume that either (34) holds or Z = V and (35) holds. Then there
are neighborhoods Uz0 of z0 and U�0 of �0 such that for every solution �z ∈ U�0 of
(Q1

z), there is a constant c such that

‖�z − �0‖H ≤ c ‖z− z0‖Z .

Proof We will employ Theorem 14. Since we have verified the assumptions (A1)–
(A3) of this result in Theorem 7, we only need to show that the assumptions (A4)
and (A5) hold.

To verify (A4), we define the Lagrangian functional L : A× Z × Y ∗ → R by

L(�, z, μ) = JO(�, z)+ 〈μ, g(�)〉,

which due to the identity D2g(�0) = 0, yields

D2
�L(�0, z0, μ)(δ�, δ�) = D2

�JO(�0, z0)(δ�, δ�)+ 〈μ,D2g(�0)(δ�, δ�)〉
≥ δ ‖δ�‖2

H , (51)

where the existence of δ > 0 follows from Theorem 7. Hence (A4) is verified.
Finally, to prove (A5), we first note that every element � ∈ A is a regular

point (see Lemma 3 or [31, Lemma 3.1]). Indeed, since the ordering cone C has
a nonempty interior (see [31, Remark 3.5]), a Slater constraint qualification holds
for each point � ∈ C. In fact,

g(�̄)+Dg(�)(�− �̄) = α0 − �̄+ �̄− � = α0 − � ∈ − int(C),

by taking � = α0 + kF , where kF : D → R denotes the constant map kF (x) = k

with k > 0. Therefore, independently of z, for every �z solution to (Qz) there exists
a (unique) multiplier μz ∈ C+ such that

D�JO(�
z, z)(δ�) = −〈μz,Dg(�

z)(δ�)〉 = 〈μz, δ�〉 = μz(δ�).
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By Lemma 4, there are neighborhoods Uz0 ⊂ Z of z0, U�0 ⊂ H of �0 and a constant
c > 0 so that

|μz(δ�)− μz̄(δ�)| =
∣
∣∣D�JO(�

z, z)(δ�)−D�JO(�
z̄, z̄)(δ�)

∣
∣∣

≤ c
(∥∥∥�z̄ − �z

∥∥∥
H
+ ‖z̄− z‖Z

)
‖δ�‖H ,

and consequently, for every z ∈ Uz0 , �z̄ ∈ U�0 we obtain

‖μz − μz̄‖H ∗ ≤ c
(∥∥∥�z̄ − �z

∥∥∥
H
+ ‖z̄− z‖Z

)
,

and hence condition (A5) of Theorem 14 is also verified. The proof is complete. ��

5.2 Stability of the Modified Output Least-Squares Approach

To study stability of the MOLS approach, we consider the regularized optimization
problem (P 2

z ) :

min JM(�, z) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ b(ū(�)− z̄, p(�)− ẑ)

− 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κ

2
‖�‖2

H ,

subject to � ∈ A := {� ∈ H | g(�) ∈ −C}.

We have the following stability result concerning the Hölder continuity:

Theorem 9 Let κ > 0 be arbitrary and let �0 ∈ A be a regular point. Then there
are neighborhoods Uz0 of z0, U�0 of �0 and a constant c > 0 such that for every
solution �z ∈ U�0 of (P 2

z ), we have

‖�z − �0‖H ≤ c ‖z− z0‖
1
2
Z .

Proof We will again apply Theorem 13. Evidently, conditions (A1)–(A3) hold as the
maps J and g are twice continuously differentiable with respect to both variables
(�, z). To prove (65), we note that

D�JM(�, z)(δ�) = −1

2
a(δ�, ū(�)+ z̄, ū(�)− z̄)+ κ 〈�, δ�〉H ,

D2
�JM(�, z)(δ�, δ�) = a(�,Dū(�)(δ�),Dū(�)(δ�))+ c(Dp(�)(δ�),Dp(�)(δ�))

+ κ ‖δ�‖2
H ,
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As in Theorem 7, we have

JM(�, z0)− JM(�0, z0) ≥ 1

2
D2
�JM(�t , z0)(Δ�,Δ�)

= 1

2
a(�t ,Dū(�t )(Δ�),Dū(�t )(Δ�))+ 1

2
c(Dp(�t )(Δ�),Dp(�t )(Δ�))

+ κ

2
‖Δ�‖2

H

≥ κ1

2
‖Dū(�t )(Δ�)‖2

V̂
+ ς1

2
‖Dp(�t )(Δ�)‖2

V̂
+ κ

2
‖Δ�‖2

H ≥ κ

2
‖Δ�‖2

H ,

and hence (65) holds for any κ > 0. The proof is complete. ��
Following the same approach as for the case of the OLS functional, in our next

result, we take H := H 2(Ω) to give an improved stability estimate. We consider
the following problem (Q2

z):

min JM(�, z) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ b(ū(�)− z̄, p(�)− ẑ)

− 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κ

2
‖�‖2

H

subject to � ∈ A := {� ∈ H | 0 < α0 ≤ �(x)}.
where κ > 0 is a fixed regularization parameter.

As before, for each z by �z we denote the corresponding solution to (Q2
z). We

again choose Y = H, and C as the cone of positive functions in H , and define
g : H → H by g(�) = α0 − �.

The following technical result will be used shortly.

Lemma 5 There exist neighborhoods Uz0 ⊂ V of z0, U�0 ⊂ H of �0, respectively,
and a constant c > 0 such that for every �z1 , �z2 ∈ U�0 , z1, z2 ∈ Uz0 , we have
∣∣D�JM(�

z1 , z1)(δ�)−D�JM(�
z2 , z2)(δ�)

∣∣ ≤ c
(∥∥�z1−�z2

∥∥
H
+‖z1−z2‖V

) ‖δ�‖H .

(52)

Proof Using the derivative characterization of the MOLS functional, we have

D�JM(�
z1 , z1)(δ�)−D�JM(�

z2 , z2)(δ�) = 1

2
a(δ�, ū(�z2)− z2, ū(�

z2)+ z2)

− 1

2
a(δ�, ū(�z1)− z1, ū(�

z1)+ z1)+ κ
〈
�z1 − �z2 , δ�

〉
H

= 1

2
a(δ�, ū(�z2)− ū(�z1)+ z1 − z2, ū(�

z2)+ z2)

+ 1

2
a(δ�, ū(�z1)− z1, ū(�

z2)− ū(�z1)+ z2 − z1)+ κ
〈
�z1 − �z2 , δ�

〉
H
,

where we used the symmetry and the linearity of trilinear form a.
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On a bounded neighborhood of z0, the following two estimates hold:

|a(δ�, ū(�z2)− ū(�z1)+ z1 − z2, ū(�
z2)+ z2)| ≤ c1‖δ�‖H

[‖ū(�z1)− ū(�z2)‖V
+‖z1 − z2‖V ]

|a(δ�, ū(�z1)− z1, ū(�
z2)− ū(�z1)+ z2 − z1)| ≤ c2‖δ�‖H

[‖ū(�z1)− ū(�z2)‖V
+‖z1 − z2‖V ] ,

where c1 and c2 are two constants.
The above inequalities confirm that there exists a constant c3 such that

∣∣D�J (�
z1 , z1)(δ�)−D�J (�

z2 , z2)(δ�)
∣∣

≤ c3
(‖ū(�z1)− ū(�z2)‖V + ‖z1 − z2‖V

) ‖δ�‖H ,

and (52) follows using ‖ū(�z2) − ū(�z1)‖V ≤ c4 ‖�z1 − �z2‖H (cf. Lemma 2). The
proof is complete. ��

The following is the Lipschitz continuity estimate:

Theorem 10 There is a neighborhood U�0 of �0 such that for every solution �z ∈
U�0 of (Q2

z) and a constant c > 0 which is independent of the data, we have

∥∥�z − �0
∥∥
H

≤ c ‖z− z0‖V .

Proof We will again apply Theorem 14. As (A1)–(A3) have already been shown,
we only need to show (A4)–(A5). We proceed by defining the Lagrangian functional
L : A× Z × Y ∗ → R by

L(�, z, μ) = JM(�, z)+ 〈μ, g(�)〉.

Since D2g(�) = 0, we have

D2
�L(�0, z0, μ)(δ�, δ�) = D2

�JM(�0, z0)(δ�, δ�)+〈μ,D2g(�)(δ�, δ�)〉 ≥ δ ‖δ�‖2
H ,

where the coercivity condition follows by the arguments used in Theorem 7. Hence
(A4) is verified.

We have already noticed that every point in A is a regular point. Therefore,
independently of z, for every �z solution to (Qz

2) there exists a (unique) multiplier
μz ∈ C+ such that

D�JM(�
z, z)(δ�) = −〈μz,Dg(�

z)(δ�)〉 = μz(δ�).
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By applying Lemma 5 there exist neighborhoods Uz0 ⊂ V of z0, U�0 ⊂ H of �0
respectively and a constant c > 0 such that

∣
∣μz1(δ�)− μz2(δ�)

∣
∣ = ∣

∣D�JM(�
z1, z1)(�

z1)(δ�)−D�JM(�
z2 , z2)(�

z2)(δ�)
∣
∣

≤ c
(∥∥�z1 − �z2

∥∥
H
+ ‖z1 − z2‖V

) ‖δ�‖H
which at once implies that

∥∥μz1 − μz2

∥∥ ≤ c
(∥∥�z1 − �z2

∥∥
H
+ ‖z1 − z2‖V

)
,

for every z1, z2 ∈ Uz0 , �z1 , �z2 ∈ U�0 . Therefore (A5) is also verified and the proof
is complete. ��

5.3 Stability of the Energy Output Least-Squares Approach

We now consider the EOLS based regularized optimization problem (P 3
z ) :

min JE(�, z) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κ

2
‖�‖2

H

subject to � ∈ A := {� ∈ H | g(�) ∈ −C}.

We have the following stability result:

Theorem 11 Let �0 ∈ A be a regular point. Then, for every regularization
parameter κ satisfying

κ >
κ2

2 ĉ
2(ς2 + κ0)

2

min{κ1, ς1}κ2
1

‖u(�0)− z0‖2
V , (53)

there are neighborhoods Uz0 ⊂ V of z0, U�0 ⊂ H of �0, and a constant c > 0 such
that for every solution �z in U�0 of (P 3

z ), we have

‖�z − �0‖H ≤ c ‖z− z0‖
1
2
V .

Proof We shall again use Theorem 13. Conditions (A1)–(A3) hold as JE and g are
twice continuously differentiable with respect to both variables (�, z). Recall that

D�JE(�, z)(δ�) = −1

2
a(δ�, ū(�)− z̄, ū(�)+ z̄)− b(ū(�)− z̄, δp)

+ c(δp, p(�)− ẑ)+ κ 〈�, δ�〉H
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D2
�JE(�, z)(δ�, δ�) = a(�, δū, δū)+ c(δp, δp)− b(δū, δp)− b(ū(�)− z̄, δ2p)

+ c(δ2p, p(�)− ẑ)+ c(δp, δp)+ κ 〈δ�, δ�〉H ,

and since (9) yields c(δp, δp) = b(δū, δp), we have

D2
�JE(�, z)(δ�, δ�) = a(�, δū, δū)+ c(δp, δp)+ c(δ2p, p(�)− ẑ)

− b(ū(�)− z̄, δ2p)+ κ ‖δ�‖2
H

≥ κ1 ‖δū‖2
V̂
+ ς1 ‖δp‖2

Q − (ς2 + κ0) ‖u(�)− z‖V
∥∥∥δ2p

∥∥∥
Q
+ κ ‖δ�‖2

H

≥ κ1 ‖δū‖2
V̂
− (ς2 + κ0) ‖u(�)− z‖V

∥
∥∥δ2u

∥
∥∥
V
+ κ ‖δ�‖2

H .

Following the same reasoning as in the proof of Theorem 7, we have

JE(�, z0)− JE(�0, z0) ≥ 1

2
D2
�JE(�t , z0)(Δ�,Δ�)

≥ κ1

2
‖Dū(�t )(Δ�)‖2

V̂
− (ς2+κ0)

2
‖u(�t )−z‖V

∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
V
+κ

2
‖Δ�‖2

H .

Moreover, using (11), we can deduce the following identity

∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
V
≤ 2κ2ĉ√

min(κ1, ς1)κ1
‖Dū(�t )Δ�‖V̂ ‖Δ�‖H

and due the chain of inequalities

(ς2 + κ0)

∥
∥∥D2u(�t )(Δ�,Δ�)

∥
∥∥
V
‖u(�t )− z0‖V

≤ (ς2 + κ0)

∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
Z

[‖u(�t )− u(�0)‖V
+‖u(�0)− z0‖V

]

≤ (ς2 + κ0)

∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
V
‖u(�t )− u(�0)‖V

+ (ς2 + κ0)

∥∥∥D2u(�t )(Δ�,Δ�)

∥∥∥
Z
‖u(�0)− z0‖V

≤ (ς2 + κ0)

∥
∥∥D2u(�t )(Δ�,Δ�)

∥
∥∥
V
‖u(�t )− u(�0)‖V

+ 2(ς2 + κ0)κ2ĉ√
min(κ1, ς1)κ1

√
κ1

√
κ1‖Dū(�t )(Δ�)‖V ‖Δ�‖H ‖u(�0)− z0‖V

≤ 2ĉ3κ3
2‖m‖2

V̂ ∗(ς2 + κ0)

κ4
1 min(κ1, ς1)

‖Δ�‖3
H + κ1 ‖Du(�t )(Δ�)‖2

V
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+ κ2
2 ĉ

2(ς2 + κ0)
2

min{κ1, ς1}κ2
1

‖Δ�‖2
H‖u(�0)− z0‖2

V ,

we obtain

D2
�JE(�t , z0)(Δ�,Δ�) ≥

(

κ−κ2
2 ĉ

2(ς2+κ0)
2

min{κ1, ς1}κ2
1

‖u(�0)−z0‖2
V−c̃ ‖Δ�‖H

)

‖Δ�‖2
H ,

where

c̃ := 2ĉ3κ3
2‖m‖2

V̂ ∗(ς2 + κ0)

κ4
1 min(κ1, ς1)

> 0.

The rest of proof can be completed by the same reasoning as used in Theorem 7. ��
For the improved estimates, we take H := H 2(Ω) and consider problem (Q3

z):

min JE(�, z) := 1

2
a(�, ū(�)− z̄, ū(�)− z̄)+ 1

2
c(p(�)− ẑ, p(�)− ẑ)+ κ

2
‖�‖2

H

subject to � ∈ A := {� ∈ H : 0 < α0 ≤ �(x)},

where κ > 0 is the regularization parameter. Again, for each z ∈ V , the parameter
�z denotes the solution to (Q3

z)

The following technical result will be used shortly:

Lemma 6 There exist neighborhoods Uz0 ⊂ V of z0, U�0 ⊂ H of �0, respectively,
and a constant c > 0 such that for every �z1 , �z2 ∈ U�0 , z1, z2 ∈ Uz0 , we have

∣∣D�JE(�
z1 , z1)(δ�)−D�JE(�

z2 , z2)(δ�)
∣∣ ≤ c

(∥∥�z1−�z2
∥∥
H
+‖z1 − z2‖V

) ‖δ�‖H .

(54)

Proof In previous result, we have seen that

D�JE(�, z)(δ�) = −1

2
a(δ�, ū(�)−z̄, ū(�)+z̄)−b(ū(�)−z̄, δp)+c(δp, p(�)−ẑ)

+ κ 〈�, δ�〉H

Since the first term − 1
2a(δ�, ū(·) − z̄, ū(·) + z̄) correspond with the derivative of

functional by Lemma 5 we only have to verify the result for the term

D�H(�z, z) := −b(ū(�)− z̄, δp)+ c(δp, p(�)− ẑ)

In fact,

D�H(�z1 , z1)(δ�)−D�H(�z2 , z2)(δ�) = −b(ū(�z1)− z̄1,Dp(�
z1)(δ�))
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+ c(Dp(�z1)(δ�), p(�z1)− ẑ1)+ b(ū(�z2)− z̄2,Dp(�
z2)(δ�))

− c(Dp(�z2)(δ�), p(�z2)− ẑ2)

= b(ū(�z2)− ū(�z1)+ z̄1 − z̄2,Dp(�
z2)(δ�))

+ b(ū(�z1)− z̄1,Dp(�
z2)(δ�)−Dp(�z1)(δ�))

+ c(Dp(�z1)(δ�)−Dp(�z2)(δ�), p(�z1)− ẑ1)

+ c(Dp(�z2)(δ�), p(�z1)− p(�z2)+ ẑ2 − ẑ1)

≤ κ0
(∥∥ū(�z2)− ū(�z1)

∥∥
V̂
+ ‖z̄1 − z̄2‖V̂

) ∥∥Dp(�z2)(δ�)
∥∥
Q

+ κ0
∥∥ū(�z1)− z̄1

∥∥
V̂

∥∥Dp(�z2)(δ�)−Dp(�z1)(δ�))
∥∥
Q

+ ς2
∥∥Dp(�z1)(δ�)−Dp(�z2)(δ�)

∥∥
Q

∥∥p(�z1)− ẑ1
∥∥
Q

+ ς2

(∥
∥p(�z1)− p(�z2)

∥
∥
Q
+ ∥

∥ẑ2 − ẑ1
∥
∥
Q

) ∥
∥Dp(�z2)(δ�)

∥
∥
Q

As for previous results, applying estimates of Lemma 2 and Theorem 1 it is easily
seen that
∣
∣D�H(�z1, z1)(δ�)−D�H(�z2 , z2)(δ�)

∣
∣ ≤ c

(∥∥�z1 − �z2
∥
∥
H
+ ‖z1 − z2‖V

) ‖δ�‖H .

on a bounded neighborhood of z0, for some appropriate constant c > 0. ��
As a consequence of Theorem 11 and Lemma 6, and following the same reasoning
as in Theorem 8, we have the following estimate.

Theorem 12 Assume that �0 is regular and (53) holds. Then here are neighbor-
hoods Uz0 ⊂ V of z0, U�0 ⊂ H of �0, and a constant c > 0 such that for every
solution �z in U�0 of (Q3

z), we have constant c such that

‖�z − �0‖H ≤ c ‖z− z0‖Z .

6 Computational Results

We now present two examples for the inverse problem of identifying a parameter μ
on a two-dimensional domain Ω = (0, 1) × (0, 1) with boundary ∂Ω = Γ1 × Γ2.
The coefficients were identified in a finite dimensional space of dimension of 1522
on a mesh with 2901 triangles. Since we focus on the recovery of parameters in
nearly incompressible materials, λ is taken as a large constant, typically λ = 106.

All experiments here are of a synthetic nature, and we used an adaptive mesh
to obtain an accurate solution and then used it for the data z. The optimization
was performed using the Newton method. For simplicity, the H 1 semi-norm
regularization was used and the regularization parameter was chosen by trial
and error.
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6.1 Elasticity Imaging Inverse Problem

Given the domain Ω as a subset of R2 or R3 and ∂Ω = Γ1 ∪ Γ2 as its boundary,
the following system models the response of an isotropic elastic body to the known
body forces and boundary traction:

−∇ · σ = f in Ω, (55a)

σ = 2με(u)+ λdivu I, (55b)

u = g on Γ1, (55c)

σn = h on Γ2. (55d)

In (55), the vector-valued function u = u(x) is the displacement of the elastic
body, f is the applied body force, n is the unit outward normal, and ε(u) = 1

2 (∇u+
∇uT) is the linearized strain tensor. The resulting stress tensor σ in the stress-strain
law (55b) is obtained under the condition that the elastic body is isotropic and the
displacement is sufficiently small so that a linear relationship remains valid. Here μ
and λ are the Lamé parameters which quantify the elastic properties of the object.

Our focus is on studying the elasticity imaging inverse problem of locating
soft inclusions in an incompressible object, for example, cancerous tumor in
the human body. From a mathematical standpoint, this inverse problem seeks μ

from a measurement of the displacement vector u under the assumption that the
parameter λ is very large. The fundamental idea behind the elasticity imaging
inverse problem is that the stiffness of soft tissue can vary significantly based on
its molecular makeup, and varying macroscopic/microscopic structure and such
changes in stiffness are related to changes in tissue health. In other words, the
elasticity imaging inverse problem mathematically mimics the practice of palpation
by making use of the differing elastic properties of healthy and unhealthy tissue to
identify tumors. In most of the existing literature on the elasticity imaging inverse
problem, the human body is modeled as an incompressible elastic object. Although
this assumption simplifies the identification process as there is only one parameter
μ to identify, it significantly complicates the computational process as the classical
finite element methods become entirely ineffective due to the so-called locking
effect. One of the few techniques to handle this problem is by resorting to mixed
finite element formulation. We explain this in the following. For the time being,
in (55), we set g = 0. For this case, the space of test functions, denoted by V, is
given by:

V = {v̄ ∈ H 1(Ω)×H 1(Ω) : v̄ = 0 on Γ1}.
By using the Green’s identity and the boundary conditions (55c) and (55d), we
obtain the following weak form of the elasticity system (55): Find ū ∈ V such that

∫

Ω

2με(ū) · ε(v̄)+
∫

Ω

λ(div ū)(div v̄) =
∫

Ω

f v̄ +
∫

Γ2

v̄h, for every v̄ ∈ V.

(56)
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The mixed finite elements approach then consists of introducing a pressure term
p ∈ Q = L2(Ω)

p = λ(div ū), (57)

or equivalently,

∫

Ω

(div ū)q −
∫

Ω

1

λ
pq = 0, for every q ∈ Q. (58)

By using relation (57), the weak form (56) reads: Find ū ∈ V such that

∫

Ω

2με(ū) · ε(v̄)+
∫

Ω

p(div v̄) =
∫

Ω

f v̄ +
∫

Γ2

v̄h, for every v̄ ∈ V. (59)

The problem of finding ū ∈ V satisfying (56) has now been reformulated as the
problem of finding (ū, p) ∈ V ×Q satisfying the mixed variational problems (58)
and (59) (Fig. 1).

We now present a numerical example to identify a parameter μ in (55) where the
top and bottom domain boundaries (Γ1) are fixed with constant Dirichlet condition
g(x, y) and the left and right boundaries (Γ2) have Neumann condition h(x, y). The
functions defining the coefficient, load, and boundary conditions are as follows:

μ (x, y) =
(

1 − 0.12 cos(3π
√
x2 + y2)

)−1
, f (x, y) =

[
1 + 0.1x2

0.1(1 + y)

]
,

g (x, y) =
[

0
0.1

]
on Γ1, h (x, y) =

[
0.1x

0.5 + y2

]
on Γ2.

6.2 Identification in Stokes Equations

We now consider Stokes equations

− ∇ · (μ∇u)+∇p = f in Ω, (60a)

− div u = 0 in Ω, (60b)

where u can be considered as the velocity field of an incompressible fluid motion,
and p is then the associated pressure, μ is the viscosity coefficient of the fluid.
Here we consider homogeneous Dirichlet boundary condition for the velocity, i.e.
u|∂Ω = 0. By multiplying v ∈ H 1

0 (Ω) to (60a) and q ∈ L2(Ω) to the mass
equation (60b), and applying integration by part for the momentum equation, we
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Fig. 1 Reconstruction for the elasticity imaging. The top figure shows the exact coefficient, the
middle figure shows that estimated coefficient, and the bottom figure shows the error
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obtain the following weak form of the Stokes equations (60): Find u ∈ (H 1
0 (Ω))2

and a pressure p ∈ L2(Ω) such that

∫

Ω

μ∇u · ∇v −
∫

Ω

p(div v) =
∫

Ω

f v, for every v ∈ (H 1
0 (Ω))2 (61)

−
∫

Ω

(div u)q = 0 for every q ∈ L2(Ω). (62)

The Stokes equations (60) can be introduced by the saddle point problem (6) with
the following setting:

a(μ, u, v) =
∫

Ω

μ∇u · ∇v, b(u, q) = −
∫

Ω

(div u)q, c(p, q)

=
∫

Ω

1

λ
pq, m(v) =

∫

Ω

f v,

where c(p, q) is the penalization that removes the zero mean restriction on pressure.
Figure 2 shows the numerical results for (60) with λ = 106 and

μ (x, y) = 1 − 1

2
sin

[
2π

(
x + 1

10

)(
y + 1

10

)]
, f (x, y) =

[ − 1
5x

cos(πx)

]
.

6.3 Performance Analysis

We start all the methods with the same initial guess and under the same stopping
criteria. Table 1 shows that the MOLS and EOLS functional require fewer iterations
to converge to the solution. Also, we compare the minimum eigenvalues of the
Hessian of the MOLS, the EOLS, and the OLS functional over some Newton
algorithm iterations applied to the elasticity imaging inverse problem in Fig. 3. The
minimum and the maximum of δmin of the Hessian matrix along with the L2 error
and a total number of algorithm iterations for all examples are given in Table 1.

6.4 Error Analysis for Decreasing λ

We also consider the behavior of the MOLS functional for various values of λ to
study its general insusceptibility to the locking effect. Figure 4 shows that theL2(Ω)

norm of the residual error ||e|| = ||μestimated − μexact|| are bounded and decreasing
against finer mesh sizes.
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Fig. 2 Reconstruction for Stokes equations. The top figure shows the exact coefficient, the middle
figure shows that estimated coefficient, and the bottom figure shows the error
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Fig. 3 Comparison of the minimum eigenvalue δmin of the Hessian for elasticity imaging

Table 1 Performance comparison for the MOLS, the EOLS, and the OLS approaches

Method Iterations L2-error Min. δmin Max. δmax

Elasticity imaging: κ = 10−5 and λ = 106

MOLS 47 1.4235 × 10−6 2.9855 × 10−5 3.0598 × 10−5

EOLS 49 1.1342 × 10−6 2.9860 × 10−5 3.1842 × 10−5

OLS 88 3.7083 × 10−4 1.6307 × 10−7 9.7479 × 10−6

Stokes equations: κ = 10−6 and λ = 106

MOLS 77 9.8614 × 10−7 1.7541 × 10−6 1.8284 × 10−6

EOLS 79 9.7618 × 10−7 1.7540 × 10−6 1.8184 × 10−6

OLS 134 2.7252 × 10−5 4.1311 × 10−8 2.0312 × 10−7

7 Concluding Remarks

In this work, we performed a detailed study of various aspects of the convex MOLS
functional, and in general, nonconvex OLS and EOLS functionals for the inverse
problem of parameter identification in an abstract mixed variational problem. We
developed a rigorous regularization framework and gave new stability results. Our
numerical results showed the feasibility of our approach. There are many directions
of research that we would like to pursue. One of our priorities is to extend our
stability results estimates for nonquadratic regularization. We anticipate that the
framework developed by Resmerita and Scherzer [30], which is based on the
convexity arguments, can be quite useful. We would also like to conduct a thorough
numerical experimentation to verify the stability estimates for varying regularity
of the data. We are also keen on extending the developed framework for the
identification of uncertain parameters (see [6]).
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Appendix: Tools from Stability and Optimization Theory

We collect a few results from abstract perturbation and optimization theory. Let X
and Y be Banach spaces, let W be a normed space, and let D be an open subset of
X. Let K ⊂ Y be a pointed, closed, convex cone with apex at origin, and let K+ be
its dual. Let f : D ×W → R and g : D ×W → Y be given single-valued maps.
For w ∈ W, we consider the following perturbed optimization problem:

(Pw) minimize f (x,w) subject to g(x,w) ∈ K. (63)

For a fixed w0 ∈ W, the above problem is the unperturbed problem. Let x0 be a
solution of the unperturbed problem. We make the following assumptions:

(A1) There is a neighborhood N1(w0) of w0 such that for all w ∈ N1(w0), the
mappings f (·, w) and g(·, w) are twice continuously differentiable on D.

(A2) There is a neighborhood N1(x0) of w0 and there are constants Lf ,L
′
f , Lg, L

′
g

such that for all w1, w2 ∈ N1(w0) and for all x1, x2 ∈ N1(x0), the following
inequalities hold:

|f (x1, w1)− f (x2, w2)| ≤ Lf [‖x1 − x2‖ + ‖w1 − w2‖] ,

|fx(x1, w1)− fx(x2, w2)| ≤ L′
f [‖x1 − x2‖ + ‖w1 − w2‖] ,
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|g(x1, w1)− g(x2, w2)| ≤ Lg [‖x1 − x2‖ + ‖w1 − w2‖] ,

|gx(x1, w1)− gx(x2, w2)| ≤ L′
g [‖x1 − x2‖ + ‖w1 − w2‖] .

(A3) fxx and gx,x are continuous at (x0, w0).

(A4) There exists a constant δ0 > 0 and a Lagrange multiplier λ0 for x0 so that

Lx,x(x0, λ0, w0)(h, h) = (fx,x(x0, w0)− λ0gx,x(x0, w0))(h, h) ≥ δ0‖h‖2,

for every h = x−x0 with x ∈ T0 = {x ∈ X| g(x0, w0)+gx(x0, w0)(x−x0) ∈
K}.

(A5) There are neighborhoods N(w0) of w0 and N(x0) of x0 so that if w ∈ N(w0)

and xw is a solution of (Pw) on Σ(w) ∩ N(x0) then there are a constant k
independent of w and a multiplier λw with

‖λw − λ0‖ ≤ k(‖xw − x0‖ + ‖w − w0‖). (64)

We denote the feasible set by Σ(w) := {x ∈ D| g(x,w) ∈ K}.
The following result from Alt [3, Theorem 2.5]:

Theorem 13 Let x0 be a solution of (Pw0). Suppose x0 is a regular point and
assumptions (A1)–(A3) hold. Suppose further that there is a neighborhood N2(x0)

of x0 and a constant δ > 0 such that for every x ∈ Σ(w) ∩N2(x0), we have

f (x,w0)− f (x0, w0) ≥ δ‖x − x0‖2. (65)

Then there is a r > 0 and a neighborhood N(w0) of w0 so that for all w ∈
N(w0) the following holds: If xw is a solution of Pw on Σ(w) ∩ Br(x0), then xw ∈
intBr(x0) and for a constant k, we have

‖xw − x0‖ ≤ k‖z− z0‖1/2.

We will also use the following interesting result by Alt [3, Theorem 3.5]:

Theorem 14 Let assumptions (A1)–(A3) be fulfilled. Suppose x0 is a regular
solution of (Pw0) and let λ0 is a Lagrange multiplier for x0 such that assumptions
(A4)–(A5) hold. Then there is a r > 0 and a neighborhood N(w0) of w0 such that
for all w ∈ N(w0) the following holds: If xw is a solution of (Pw), on Σ(w)∩B(x0),
then x ∈ intBr(x0) and for a constant k independent of w, we have

‖xw − x0‖ ≤ k‖w − w0‖.
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Nonlinear Duality in Banach Spaces and
Applications to Finance and Elasticity

G. Colajanni, Patrizia Daniele, Sofia Giuffrè, and Antonino Maugeri

1 The Strong Duality in the Infinite-Dimensional Setting

The duality theory we intend to study can be summarized as follows.
Let f : S → R, g : S → Y, h : S → Z be three mappings, where S here and in

what follows is a convex subset of a real normed space X, Y is a real normed space
ordered by a convex cone C, Z is a real normed space and consider the optimization
problem:

{
f (x0) = min

x∈K f (x)

x0 ∈ K = {x ∈ S : g(x) ∈ −C, h(x) = θZ},
(1)

where θZ is the zero element in the space Z.
The Lagrange dual problem is:

max
u∈C∗, v∈Z∗ inf

x∈S [f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉] , (2)

where

C∗ := {
u ∈ Y ∗ : 〈u, y〉 ≥ 0, ∀y ∈ C

}

is the dual cone of C and Z∗ is the dual space of Z.
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Then, we say that the strong duality holds for problems (1) and (2) if and only if
problems (1) and (2) admit a solution and the optimal values coincide.

The already classical results by Rockafellar [47], Holmes [36], Borwein and
Lewis [3] give sufficient conditions in order that the strong duality between
problems (1) and (2) holds.

All these conditions use concepts such as:

• the core:

Core C := {x ∈ C : Cone (C + { x}) = X} ;

• the intrinsic core:

Intrinsic Core C := {
c ∈ C : ∀c′ ∈ aff (C) \ {c}, we have (c, c′) ∩ C �= ∅} ,

where aff (C) is the affine hull of C and (a, b) := {(1 − t)a + tb : t ∈ (0, 1)} ;
• strong quasi-relative interior of C :

sqri C := {x ∈ C : Cone (C − {x}) is a closed linear subspace of X} .

Such concepts (see [3, 36, 39, 47]) require the nonemptiness of the ordering
cone, which defines the cone constraints in convex optimization and variational
inequalities. However, the ordering cone of almost all the known problems, stated in
infinite dimensional spaces, has the interior (and all the above generalized interior
concepts) empty. Hence, the above interior conditions cannot be used to guarantee
the strong duality. This is the case, for example, of optimization problems or
variational inequalities connected with evolutionary financial network equilibrium
problems, the obstacle problem, the elastic-plastic torsion problem, the infinite-
dimensional bilevel problem, which use non-negative cones of Lebesgue or Sobolev
spaces (see [1, 8, 10–14, 22, 24, 25, 27, 31, 34, 35, 37, 46, 49]).

Only recently, in [16, 42, 43] the authors introduced new conditions called
S, S′, NES, which turn out to be necessary and sufficient conditions for the strong
duality and really useful in the applications. These conditions do not require the
nonemptiness of the interior of the ordering cone. This new strong duality theory
was then refined in [13, 17, 19, 37, 45].

Now we present in detail these new conditions.

1.1 Assumption S

Let us first recall that for a subset C ⊆ X and x ∈ X the tangent cone to C at x is
defined as

TC(x) = {y ∈ X : y = lim
n→∞ λn(xn − x), λn > 0, xn ∈ C, lim

n→∞ xn = x}.
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If x ∈ clC (the closure of C) and C is convex, we have

TC(x) = clcone(C − {x}),

where the coneA = {λx : x ∈ A, λ ∈ R
+} denotes the cone hull of a general

subset A of the space.

Definition 1 Given the mappings f, g, h and the set K as above, we say that
Assumption S is fulfilled at a point x0 ∈ K if and only if

TM̃(0, θY , θZ) ∩ (R−− × θY × θZ) = ∅

where

M̃ = {(f (x)− f (x0)+ α, g(x)+ y, h(x)) : x ∈ S \K, α ≥ 0, y ∈ C},

R
−− = {λ ∈ R : λ < 0}.

Now we recall the main theorem on strong duality based on Assumption S (see
[13, 16, 17, 19, 45]).

Theorem 1 Assume that the functions f : S −→ R, g : S −→ Y are convex and
that h : S −→ Z is an affine-linear mapping. Assume that the Assumption S is
fulfilled at the optimal solution x0 ∈ K of the problem (1). Then also problem (2) is
solvable and if u ∈ C∗, v ∈ Z∗ are optimal solutions to (2), we have

〈u, g(x0)〉 = 0 (3)

and the optimal values of the two problems coincide; namely

f (x0) = min
x∈K f (x) = f (x0)+ 〈ū, g(x0)〉 + 〈v̄, h(x0)〉

= max
u∈C∗
v∈Z∗

inf
x∈S [f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉] .

Moreover it is seen in [4] that Assumption S is also a necessary condition for the
strong duality.

An important consequence of the strong duality is the usual relationship between
a saddle point of the so-called Lagrange functional

L(x, u, v) = f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉, ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗,

and the solution to (1) and (2). Indeed, we have the following theorem (see [16] and
[23]).
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Theorem 2 Let the assumptions of Theorem 1 be fulfilled. Then, x0 ∈ K is an
optimal solution to (1) if and only if there exist ū ∈ C∗, v̄ ∈ Z∗ such that (x0, ū, v̄)

is a saddle point of the Lagrange functional, namely:

L(x0, u, v) ≤ L(x0, ū, v̄) ≤ L(x, ū, v̄), ∀x ∈ S, ∀u ∈ C∗, ∀v ∈ Z∗

and

〈ū, g(x0)〉 = 0.

1.2 Assumption S′

Assumption S′ requires additional hypotheses on the mappings f, g, h and works
on directional derivatives. Sometimes it is easier to use with respect to Assumption
S.

Let us assume that f, g, h have directional derivative at x0 ∈ K in every direction
x − x0 with arbitrary x ∈ S.

Definition 2 We say that Assumption S′ is fulfilled at the point x0 ∈ K if and only
if

TM ′(0, θY , θZ) ∩ (R−− × {θY } × {θZ}) = ∅,
where

M ′ = {(f ′(x0)(x − x0)+ α, g(x0)+ g′(x0)(x − x0)+ y, h′(x0)(x − x0)) :

x ∈ S \K, α ≥ 0, y ∈ C}.

The next theorem holds (see [42]).

Theorem 3 Let X and Z be real normed spaces, let Y be a real normed space
ordered by a closed convex cone C. Let S be a convex subset of X and let f :
S −→ R be a given convex functional, let g : S −→ Y be a convex mapping
and let h : S −→ Z an affine-linear mapping. Assume that f, g have a directional
derivative at x0 ∈ K solution to problem (1) in every direction x−x0 with arbitrary
x ∈ S. Then, the strong duality holds if and only if Assumption S′ is fulfilled.

1.3 Strong Duality in the Case of Nonlinear Equality
Constrains

Let us assume that h is no longer an affine-linear mapping, but, for instance, a
convex one, since it depends on the sign of v. Then the constraint set K is no longer
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convex. As a consequence, the usual optimality conditions for the convex functions
on convex sets cannot be applied. Moreover, if we consider the Lagrange functional

L(x, ū, v̄) = f (x)+ 〈ū, g(x)〉 + 〈v̄, h(x)〉,

where ū ∈ C∗ and v̄ ∈ Z∗, even if h is convex as well as g, L is not, in
general, a convex functional. In order to overcome these difficulties, some strong
duality results have been elaborated under Assumption S′, but introducing additional
conditions (see [44] Theorem 2).

Theorem 4 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ), (Z, ‖ · ‖Z) be real Banach spaces with
an ordering closed convex cone X+, C and D, respectively. Let S be an open
convex subset of X, let f : S → R be a convex functional such that f is Fréchet-
differentiable at a minimal point x0 ∈ K, let g : S → Y and h : S → Z be
convex functions with respect to the cones C and D, respectively, both Gâteaux-
differentiable at x0. Assume also:

(i) f ′(x0)(x) ≤ 0, ∀x ∈ S ∩X+;
(ii) g′(x0)(x) ∈ −C ∀x ∈ S ∩X+;

(iii) h′(x0)(S ∩X+) = D;
(iv) lim

‖λ(x−x0)‖X→+∞
x∈K

‖h′(x0)(λ(x − x0)‖Z = +∞.

If Assumption S′ is fulfilled at x0, then the strong duality holds.

Example 1 Let us consider the following problem (see [44]):

min
u∈K

∫ T

0

(
u2

2(t)− u1(t)
)
dt,

where

K =
{
u ∈ L2([0, T ],R2) : u(t) ≥ 0 and u2

1(t)+ u2
2(t) = 1 a.e.

}
.

We set:

f : L2([0, T ],R2) → R defined as f (u) =
∫ T

0

(
u2

2(t)− u1(t)
)
dt;

g : L2([0, T ],R2) → L2([0, T ],R2) defined as g(u) = −u;
h : L2([0, T ],R2) → L1([0, T ],R) defined as h(u) = u2

1(t)+ u2
2(t)− 1.

We note that f attains its minimum value in K in correspondence of the couple of
constant functions u0 = (1, 0). Now, we verify that all assumptions of Theorem 4
are satisfied. Indeed:

(i) f ′(u0)(u) =
∫ T

0
−u1(t) dt ≤ 0, ∀(u1, u2) ∈ L2([0, T ],R2+);
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(ii) g′(u0)(u) = (−u1,−u2) ∈ −C, ∀(u1, u2) ∈ L2([0, T ],R2+);
(iii) h′(u0)(u) = 2u1 ≥ 0, ∀(u1, u2) ∈ L2([0, T ],R2+);
(iv) lim

‖λ(u−u0)‖L2→+∞
u∈K

‖h′(u0)(λ(u− u0)‖L1 = lim‖λ(u1−1,u2)‖L2→+∞‖2λ(u1 − 1)‖L1 =
+∞.

In order to have the strong duality, it remains to prove that also Assumption S′ holds
true. Let

(λ, θL2([0,T ],R2 , 0) ∈ TM ′(λ, θL2([0,T ],R2 , 0).

We need to verify that:

λ= lim
n
λn

(∫ T

0
f ′(u0)(un−u0) dt+αn

)
= lim

n
λn

(∫ T

0
−(un1−1) dt+αn

)
≥ 0,

taking into account that:

θL2([0,T ],R2) = lim
n
λn

(
ϕ(u0)+ ϕ′(u0)(un − u0)+ vn

)

= lim
n
λn

(−1 − (un1 − 1)+ vn1 ,−un2 + vn2
) = 0,

and

θL2([0,T ],R2) = lim
n
λn

(
2(un1 − 1)

) = 0, (4)

where λn ≥ 0, n ∈ N, vn ∈ L2([0, T ],R2)+, un ∈ L2([0, T ],R2) \ K, αn ≥ 0,
∀n ∈ N.

From (4) it follows:

λ = lim
n
λn

(∫ T

0
(−un1 − 1) dt + αn

)
≥ 0.

Example 2 Now, we present an example where assumption (i) is not satisfied (see
[44]).
Let us consider the problem:

min
u∈K

∫ 1

0

(
1

2
u2

2(t)+ u1(t)

)
dt

where

K =
{
u ∈ L2([0, 1],R2) : u(t) ≥ 0 and u2

1(t)+ u2
2(t) = 1, a.e. in [0, 1]

}
.
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We set:

f : L2([0, 1],R2) → R defined as f (u)=
∫ 1

0

(
1

2
u2

2(t)+ u1(t)

)
dt;

g : L2([0, 1],R2) → L2([0, 1],R2) defined as g(u) = −u;
h : L2([0, 1],R2) → L1([0, 1],R) defined as h(u) = u2

1(t)+ u2
2(t)− 1.

We note that f attains its minimum value in K in correspondence of the couple
of constant functions u0 = (1, 0). Assumption (i) of Theorem 4 is not satisfied.
Indeed:

(i) f ′(u0)(u) =
∫ 1

0
u1(t) dt ≥ 0, ∀(u1, u2) ∈ L2([0, 1],R2+);

(ii) g′(u0)(u) = (−u1,−u2) ∈ −C, ∀(u1, u2) ∈ L2([0, 1],R2+);
(iii) h′(u0)(u) = 2u1 ≥ 0, ∀(u1, u2) ∈ L2([0, 1],R2+);
(iv) lim

‖λ(u−u0)‖L2→+∞
u∈K

‖h′(u0)(λ(u− u0)‖L1 = +∞.

As in the previous example, it is easy to show that also Assumption S′ holds true.
Since we have (see also formula (2.5) in [44]):

(
f ′(u0)+ 〈ū, g(u0)+ g′(u0)〉 + 〈v̄, h′(u0)〉

)
u = 0 ∀u ∈ L2([0, 1],R2) (5)

and (3) holds true, it follows, from an easy calculation, that the maximum over C+
and v ∈ Z∗ is achieved when

u = (0, ū2) and v = −1

2
,

for some ū2 ≥ 0. Therefore,

max
u∈C∗
v∈Z∗

inf
x∈L2

[f (x)+ 〈u, g(x)〉 + 〈v, h(x)〉]

= inf
u∈L2

[
f (u)+ 〈(0, ū2), (−u1,−u2)〉 + 〈−1

2
, u2

1 + u2
2 − 1〉

]

= inf
u∈L2

[∫ 1

0

(
−1

2
u2

1(t)+ u1(t)− ū2(t)u2(t)+ 1

2

)
dt

]
.

As we have seen, not all the assumptions of Theorem 4 are fulfilled. Hence, if strong
duality holds, then we would have:

1 ≤
∫ 1

0

(
−1

2
u2

1(t)+ u1(t)− ū2(t)u2(t)+ 1

2

)
dt ∀(u1, u2) ∈ L2([0, 1],R2).
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It is enough to choose, for instance, (u1, u2) = (2, 0) to get a contradiction, since:

∫ 1

0

(
−1

2
4 + 2 + 1

2

)
dt =

∫ 1

0

1

2
dt = 1

2
.

1.4 NES (Non Empty Subdifferential Condition)

This new necessary and sufficient condition is the one which requires a smaller
number of assumptions on the functions. Recall that a subdifferential of a convex
function f : S → R, where S is a subset of a real normed space X, at x ∈ S is
defined by

∂f (x) = {x∗ ∈ X∗ : f (x)− f (x) ≥ 〈x∗, x − x〉,∀x ∈ S}.

For y ∈ Y , let us define a closed convex subset of Y as

Dy = (y − C)

with C the closed convex ordering cone of Y .
If on Y × Z, we consider the norm ‖(y, z)‖Y×Zł = ‖y‖Y + ‖z‖Z , let us define

ϕ : Y × Z → R

by

ϕ(y, z) = inf
x∈S

g(x)∈Dy

h(x)=z

f (x).

Definition 3 (Assumption NES) We say that the Condition NES is fulfilled for the
triple f, g, h with respect to K if and only if

∂ϕ(θY×Z) �= ∅. (6)

Taking into account that ϕ(θY×Z) = inf
x∈S−g(x)∈C

h(x)=θZ

f (x) = inf
x∈K f (x), (6) means that there

exist (y∗, z∗) ∈ Y ∗ × Z∗ such that

ϕ(y, z)−ϕ(θY×Z) = inf
x∈S

g(x)∈Dy

h(x)=z

f (x)− inf
x∈K f (x) ≥ 〈y∗, y〉+〈z∗, z〉, ∀(y, z) ∈ Y×Z.

Then, we have the following result (see [43] Theorem 3.2).
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Theorem 5 Let us assume that inf
x∈K f (x) ∈ R. Then, the strong duality holds for

problems (1) and (2) if and only if the Condition NES holds for f, g, h.

Now, the following result easily follows.

Corollary 1 Assume that f : S → R, g : S → Y are convex functions and let
h : S → Z be an affine-linear mapping. Then Assumption S is fulfilled at the
optimal solution x0 ∈ K of problem (1), if and only if Condition NES holds for f,
g, and h with respect to K.

Similarly, keeping in consideration the main result in [42], we have the following
result.

Corollary 2 Let X and Z be real normed spaces, let Y be a real normed space
ordered by a closed convex cone C. Let S be a convex subset of X and let f :
S → R be a given convex functional, let g : S → Y be a convex mapping and let
h : S → Z an affine-linear mapping. Assume that f, g have a directional derivative
at x0 ∈ K solution to problem (1) in every direction x − x0 with arbitrary x ∈ S.
Then, Assumption S′ is fulfilled at x0 if and only if Condition NES holds for f, g,
h with respect to K.

As for Assumptions S and S′, also Condition NES is really useful in the
applications as we can see in the next sections.

2 Applications to the General Financial Equilibrium
Problem

In this chapter we apply Assumption S, which was introduced in Sect. 1.1, to a
general equilibrium model of financial flows and prices (see also [15]).

2.1 Presentation of the Model

We consider a financial economy consisting of m sectors, for example households,
domestic business, banks and other financial institutions, as well as state and local
governments, with a typical sector denoted by i, and of n instruments, for example
mortgages, mutual funds, saving deposits, money market funds, with a typical
financial instrument denoted by j , in the time interval [0, T ]. Let si(t) denote the
total financial volume held by sector i at time t as assets, and let li (t) be the total
financial volume held by sector i at time t as liabilities. Further, we allow markets of
assets and liabilities to have different investments si(t) and li (t), respectively. Since
we are working in the presence of uncertainty and of risk perspectives, the volumes
si(t) and li (t) held by each sector cannot be considered stable with respect to time
and may decrease or increase. For instance, depending on the crisis periods, a sector
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may decide not to invest on instruments and to buy goods as gold and silver. At
time t , we denote the amount of instrument j held as an asset in sector i’s portfolio
by xij (t) and the amount of instrument j held as a liability in sector i’s portfolio
by yij (t). The assets and liabilities in all the sectors are grouped into the matrices
x(t), y(t) ∈ R

m×n, respectively. At time t we denote the price of instrument j held
as an asset and as a liability by rj (t) and by (1 + hj (t))rj (t), respectively, where
hj is a nonnegative function defined into [0, T ] and belonging to L∞([0, T ],R).
We introduce the term hj (t) because the prices of liabilities are generally greater
than or equal to the prices of assets. In this manner we describe, in a more realistic
way, the behaviour of the markets for which the liabilities are more expensive
than the assets. We group the instrument prices held as an asset nd as a liability
into the vectors r(t) = [r1(t), r2(t), . . . , ri(t), . . . , rn(t)]T and (1 + h(t))r(t) =
[(1 + h1(t))r1(t), (1 + h2(t))r2(t), . . . , (1 + hi(t))ri(t), . . . , (1 + hn(t))rn(t)]T ,
respectively. In our problem the prices of each instrument appear as unknown
variables. Under the assumption of perfect competition, each sector will behave
as if it has no influence on the instrument prices or on the behaviour of the other
sectors, but on the total amount of the investments and the liabilities of each sector.

We choose as a functional setting the very general Lebesgue space

L2([0, T ],Rp) =
{
f : [0, T ] → R

p measurable :
∫ T

0
‖f (t)‖2

pdt < +∞
}
,

with the norm

‖f ‖L2([0,T ],Rp) =
(∫ T

0
‖f (t)‖2

pdt

) 1
2

.

Then, the set of feasible assets and liabilities for each sector i = 1, . . . , m becomes

Pi =
{
(xi(t), yi(t)) ∈ L2([0, T ],R2n+ ) :
n∑

j=1

xij (t) = si(t),

n∑

j=1

yij (t) = li (t) a.e. in [0, T ]
}

and the set of all feasible assets and liabilities becomes

P =
{
(x(t), y(t)) ∈ L2([0, T ],R2mn) : (xi(t), yi(t)) ∈ Pi, i = 1, . . . , m

}
.

Now, we introduce the ceiling and the floor price associated with instrument j ,
denoted by rj and by rj , respectively, with rj (t) > rj (t) ≥ 0, a.e. in [0, T ]. The
floor price rj (t) is determined on the basis of the official interest rate fixed by the
central banks, which, in turn, take into account the consumer price inflation. Then
the equilibrium prices r∗j (t) cannot be less than these floor prices. The ceiling price
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rj (t) derives from the financial need to control the national debt arising from the
amount of public bonds and of the rise in inflation. It is a sign of the difficulty on
the recovery of the economy. However it should be not overestimated because it
produced an availability of money.

In detail, the meaning of the lower and upper bounds is that to each investor a
minimal price rj for the assets held in the instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities in any case a minimal price (1+hj )rj .
Analogously each investor cannot obtain for an asset a price greater than rj and as
a liability the price cannot exceed the maximum price (1 + hj )rj .

We denote the given tax rate levied on sector i’s net yield on financial instrument
j , as τij . Assume that the tax rates lie in the interval [0, 1) and belong to
L∞([0, T ],R). Therefore, the government in this model has the flexibility of
levying a distinct tax rate across both sectors and instruments.

We group the instrument ceiling and floor prices into the column vectors rj (t) =
(rn(t))j=1,...,n, and rj (t) = (rj (t))j=1,...,n, respectively, and the tax rates τij into

the matrix τ(t) ∈ L2([0, T ],Rm×n).
The set of feasible instrument prices is:

R = {r ∈ L2([0, T ],Rn) : rj (t) ≤ rj (t) ≤ rj (t), j = 1, . . . , n, a.e. in [0, T ]},

where r and r are assumed to belong to L2([0, T ],Rn).
In order to determine for each sector i the optimal distribution of instruments held

as assets and as liabilities, we consider, as usual, the influence due to risk-aversion
and the optimality conditions of each sector in the financial economy, namely the
desire to maximize the value of the asset holdings while minimizing the value
of liabilities. An example of risk aversion is given by the well-known Markowitz
quadratic function based on the variance-covariance matrix denoting the sector’s
assessment of the standard deviation of prices for each instrument (see [40, 41]). In
our case, however, the Markowitz utility or other more general ones are assumed to
be time-dependent in order to incorporate the adjustment in time which depends on
the previous equilibrium states.

Then, we introduce the utility function Ui(t, xi(t), yi(t), r(t)), for each sector i,
defined as follows:

Ui(t, xi(t), yi(t), r(t)) = ui(t, xi(t), yi(t))

+
n∑

j=1

rj (t)(1 − τij (t))[xij (t)− (1 + hj (t))yij (t)],

where the term −ui(t, xi(t), yi(t)) represents a measure of the risk of the financial
agent and rj (t)(1 − τij (t))[xi(t) − (1 + hj (t))yi(t)] represents the value of the
difference between the asset holdings and the value of liabilities. We suppose that
the sector’s utility function Ui(t, xi(t), yi(t)) is defined on [0, T ] × R

n × R
n, is

measurable in t and is continuous with respect to xi and yi . Moreover we assume
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that
∂ui

∂xij
and

∂ui

∂yij
exist and that they are measurable in t and continuous with

respect to xi and yi . Further, we require that ∀i = 1, . . . , m, ∀j = 1, . . . , n, and
a.e. in [0, T ] the following growth conditions hold true:

|ui(t, x, y)| ≤ αi(t)‖x‖‖y‖, ∀x, y ∈ R
n, (7)

and

∣∣
∣
∂ui(t, x, y)

∂xij

∣∣
∣ ≤ βij (t)‖y‖,

∣∣
∣
∂ui(t, x, y)

∂yij

∣∣
∣ ≤ γij (t)‖x‖, (8)

where αi , βij , γij are non-negative functions of L∞([0, T ],R). Finally, we suppose
that the function ui(t, x, y) is concave.

In Sect. 2.5 we define a utility function of Markowitz type.
Now, we establish the equilibrium conditions for the prices which express the

equilibration of the total assets, the total liabilities and the portion of financial
transactions per unit Fj employed to cover the expenses of the financial institutions
including possible dividends and manager bonus. Indeed, the equilibrium condition
for the price rj of instrument j is the following:

m∑

i=1

(1 − τij (t))
[
x∗ij (t)− (1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

⎧
⎪⎨

⎪⎩

≥ 0 if r∗j (t) = rj (t)

= 0 if rj (t) < r∗j (t) < rj (t)

≤ 0 if r∗j (t) = rj (t)

(9)

where (x∗, y∗, r∗) is the equilibrium solution for the investments as assets and as
liabilities and for the prices. In other words, the prices are determined taking into
account the amount of the supply, the demand of an instrument and the charges
Fj , namely if there is an actual supply excess of an instrument as assets and of the
charges Fj in the economy, then its price must be the floor price. If the price of an
instrument is positive, but not at the ceiling, then the market of that instrument must
clear. Finally, if there is an actual demand excess of an instrument as liabilities in
the economy, then the price must be at the ceiling.

Now, we can give different but equivalent equilibrium conditions, each of which
is useful to illustrate particular features of the equilibrium.

Definition 4 A vector of sector assets, liabilities and instrument prices
(x∗(t), y∗(t), r∗(t)) ∈ P × R is an equilibrium of the dynamic financial model if
and only if ∀i = 1, . . . , m, ∀j = 1, . . . , n, and a.e. in [0, T ], it satisfies the system
of inequalities
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−∂ui(t, x
∗, y∗)

∂xij
− (1 − τij (t))r

∗
j (t)− μ

(1)∗
i (t) ≥ 0, (10)

−∂ui(t, x
∗, y∗)

∂yij
+ (1 − τij (t))(1 + hj (t))r

∗
j (t)− μ

(2)∗
i (t) ≥ 0, (11)

and equalities

x∗ij (t)
[
− ∂ui(t, x

∗, y∗)
∂xij

− (1 − τij (t))r
∗
j (t)− μ

(1)∗
i (t)

]
= 0, (12)

y∗ij (t)
[
− ∂ui(t, x

∗, y∗)
∂xij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t)− μ

(2)∗
i (t)

]
= 0, (13)

where μ
(1)∗
i (t), μ(2)∗

i (t) ∈ L2([0, T ],R) are Lagrange multipliers, and verifies
conditions (9) a.e. in [0, T ].

We associate with each financial volumes si and li held by sector i the functions
μ
(1)∗
i (t) and μ

(2)∗
i (t), related, respectively, to the assets and to the liabilities and

which represent the “equilibrium disutilities” per unit of sector i. Then, (10) and (12)
mean that the financial volume invested in instrument j as assets x∗ij is greater than

or equal to zero if the j -th component −∂ui(t, x
∗, y∗)

∂xij
− (1 − τij (t))r

∗
j (t) of the

disutility is equal to μ
(1)∗
i (t), whereas if −∂ui(t, x

∗, y∗)
∂xij

− (1 − τij (t))r
∗
j (t) >

μ
(1)∗
i (t), then x∗ij (t) = 0. The same occurs for the liabilities.

The functions μ(1)∗
i (t) and μ

(2)∗
i (t) are the Lagrange multipliers associated a.e.

in [0, T ] with the constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li (t) = 0,

respectively. They are unknown a priori, but this fact has no influence because we
will prove in the following theorem that Definition 4 is equivalent to a variational
inequality in which μ

(1)∗
i (t) and μ

(2)∗
i (t) do not appear (see [2] Theorem 2.1.).

Theorem 6 A vector (x∗, y∗, r∗) ∈ P × R is a dynamic financial equilibrium if
and only if it satisfies the following variational inequality:

Find (x∗, y∗, r∗) ∈ P ×R:

m∑

i=1

∫ T

0

{ n∑

j=1

[
− ∂ui(t, x

∗
i (t), y

∗
i (t))

∂xij
− (1 − τij (t))r

∗
j (t)

]

×[xij (t)− x∗ij (t)]
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+
n∑

j=1

[
− ∂ui(t, x

∗
i (t), y

∗
i (t))

∂yij
+ (1 − τij (t))r

∗
j (t)(1 + hj (t))

]

×[yij (t)− y∗ij (t)]
}
dt

+
n∑

j=1

∫ T

0

m∑

i=1

{
(1 − τij (t))

[
x∗ij (t)− (1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

}

×[
rj (t)− r∗j (t)

]
dt ≥ 0, ∀(x, y, r) ∈ P ×R. (14)

Remark 1 We would like to explicitly remark that our definition of equilibrium
conditions (Definition 4) is equivalent to the equilibrium definition given by a vector
(x∗, y∗, r∗) ∈ P ×R satisfying

max
Pi

∫ T

0

{
ui(t, xi(t), yi(t))+ (1 − τi(t))r

∗(t)× [xi(t)− (1 + h(t))yi(t)]
}
dt,

∀(xi, yi) ∈ Pi, and (9). We prefer to use Definition 4, since it is expressed in terms
of equilibrium disutilities.

Now, we would like to give an existence result. First of all, we remind some
definitions. Let X be a reflexive Banach space and let K be a subset of X and X∗ be
the dual space of X.

Definition 5 A mapping A : K → X∗ is pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such
that lim supn〈Aun, un − v〉 ≤ 0 it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u− v〉, ∀v ∈ K.

2. For each v ∈ K the function u  → 〈Au, u− v〉 is lower bounded on the bounded
subset of K.

Definition 6 A mapping A : K → X∗ is hemicontinuous in the sense of Fan (F-
hemicontinuous) iff for all v ∈ K the function u  → 〈Au, u − v〉 is weakly lower
semicontinuous on K.

The following existence result does not require any kind of monotonicity
assumptions.

Theorem 7 Let K ⊂ X be a nonempty closed convex bounded set and let A :
K ⊂ E → X∗ be B-pseudomonotone or F-hemicontinuous. Then the variational
inequality

〈Au, v − u〉 ≥ 0 ∀v ∈ K (15)

admits a solution.
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2.2 The Duality for the Financial Equilibrium Problem

Now, in order to study the duality for the financial equilibrium problem, let us set:

f (x, y, r) =
∫ T

0

{ m∑

i=1

n∑

j=1

[
−∂ui(t, x

∗(t), y∗(t))
∂xij

− (1 − τij (t))r
∗
j (t)

]

× [xij (t)− x∗ij (t)]

+
m∑

i=1

n∑

j=1

[
−∂ui(t, x

∗(t), y∗(t))
∂yij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t)

]

× [yij (t)− y∗ij (t)]

+
n∑

j=1

[
m∑

i=1

(1 − τij (t))
[
x∗ij (t)− (1 + hj (t))y

∗
ij (t)

]
+ Fj (t)

]

×
[
rj (t)− r∗j (t)

] }
dt.

Then the Lagrange functional is

L (x, y, r, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2)) = f (x, y, r)

−
m∑

i=1

n∑

j=1

∫ T

0
λ
(1)
ij (t)xij (t) dt −

m∑

i=1

n∑

j=1

∫ T

0
λ
(2)
ij yij (t) dt

−
m∑

i=1

∫ T

0
μ
(1)
i (t)

⎛

⎝
n∑

j=1

xij (t)− si(t)

⎞

⎠ dt (16)

−
m∑

i=1

∫ T

0
μ
(2)
i (t)

⎛

⎝
n∑

j=1

yij (t)− li (t)

⎞

⎠ dt

+
n∑

j=1

∫ T

0
ρ
(1)
j (t)(rj (t)− rj (t)) dt +

n∑

j=1

∫ T

0
ρ
(2)
j (t)(rj (t)− rj (t)) dt,

where (x, y, r) ∈ L2([0, T ],R2mn+n), λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈
L2([0, T ], R

m), ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and λ(1), λ(2), ρ(1), ρ(2) are the
Lagrange multipliers associated, a.e. in [0, T ], with the sign constraints xi(t) ≥ 0,
yi(t) ≥ 0, rj (t)− rj (t) ≥ 0, rj (t)− rj (t) ≥ 0, respectively whereas the functions

μ(1)(t) and μ(2)(t) are the Lagrange multipliers associated, a.e. in [0, T ], with the
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equality constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li (t) = 0, respectively.

Hence, applying Theorem 1, the following result can be provided (see [2]):

Theorem 8 Let (x∗, y∗, r∗) ∈ P ×R be a solution to variational inequality (14)
and let us consider the associated Lagrange functional (16). Then, the strong duality
holds and there exist λ(1)∗, λ(2)∗ ∈ L2([0, T ],Rmn+ ), μ(1)∗, μ(2)∗ ∈ L2([0, T ],Rm),

ρ(1)∗, ρ(2)∗ ∈ L2([0, T ],Rn+) such that (x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗,
ρ(1)∗, ρ(2)∗) is a saddle point of the Lagrange functional, namely

L (x∗, y∗, r∗, λ(1), λ(2), μ(1), μ(2), ρ(1), ρ(2))

≤ L (x∗, y∗, r∗, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) = 0 (17)

≤ L (x, y, r, λ(1)∗, λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗)

∀(x, y, r) ∈ L2([0, T ],R2mn+n), ∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), ∀μ(1), μ(2) ∈
L2([0, T ],Rm), ∀ρ(1), ρ(2) ∈ L2([0, T ],Rn+) and, a.e. in [0, T ],

−∂ui(t, x
∗(t), y∗(t))
∂xij

− (1 − τij (t))r
∗
j (t)− λ

(1)∗
ij (t)− μ

(1)∗
i (t) = 0,

∀i = 1, . . . , m, ∀j = 1 . . . , n;

−∂ui(t, x
∗(t), y∗(t))
∂yij

+ (1 − τij (t))(1 + hj (t))r
∗
j (t)− λ

(2)∗
ij (t)− μ

(2)∗
i (t) = 0,

∀i = 1, . . . , m, ∀j = 1 . . . , n;
m∑

i=1

(1−τij (t))
[
x∗ij (t)− (1 + hj (t))y

∗
ij (t)

]
+Fj (t)+ρ

(2)∗
j (t) = ρ

(1)∗
j (t), (18)

∀j = 1, . . . , n;

λ
(1)∗
ij (t)x∗ij (t) = 0, λ(2)∗ij (t)y∗ij (t) = 0, ∀i = 1, . . . , m, ∀j = 1, . . . , n (19)

μ
(1)∗
i (t)

⎛

⎝
n∑

j=1

x∗ij (t)− si(t)

⎞

⎠ = 0, μ
(2)∗
i (t)

⎛

⎝
n∑

j=1

y∗ij (t)− li (t)

⎞

⎠ = 0, (20)

∀i = 1, . . . , m

ρ
(1)∗
j (t)(rj (t)−r∗j (t)) = 0, ρ(2)∗j (t)(r∗j (t)−rj (t)) = 0, ∀j = 1, . . . , n. (21)
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Formula (18) represents the Deficit Formula. Indeed, if ρ(1)∗j (t) is positive, then
the prices are minimal and there is a supply excess of instrument j as an asset and
of the charge Fj (t), namely the economy is in deficit and, for this reason, ρ(1)∗j (t)

is called the deficit variable and represents the deficit per unit.
Analogously if ρ

(2)∗
j (t) is positive, then the prices are maximal and there is

a demand excess of instrument j as a liability, namely there is a surplus in the
economy. For this reason ρ

(2)∗
j (t) is called the surplus variable and represents the

surplus per unit.
From (18) it is possible to obtain the Balance Law

m∑

i=1

li (t) =
m∑

i=1

si(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)− y∗ij (t)

]

−
m∑

i=1

n∑

j=1

(1 − τij (t))hj (t)y
∗
ij (t)+

n∑

j=1

Fj (t)−
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t).

(22)
Finally, assuming that the taxes τij (t), i = 1, . . . , m, j = 1, . . . , n, have a

common value θ(t), and the increments hj (t), j = 1, . . . , n, have a common value
i(t), otherwise we can consider the average values (see Remark 7.1 in [2]), the
significant Liability Formula follows

m∑

i=1

li (t) =
(1 − θ(t))

m∑

i=1

si(t)+
n∑

j=1

Fj (t)−
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))
.

2.3 The Viewpoints of the Sector and of the System

The financial problem can be considered from two different perspectives: one from
the Point of View of the Sectors, which try to maximize the utility and a second point
of view, that we can call System Point of View, which regards the whole equilibrium,
namely the respect of the previous laws. For example, from the point of view of the
sectors, li (t), for i = 1, . . . , m, are liabilities, whereas for the economic system they
are investments and, hence, the Liability Formula, from the system point of view,
can be called “Investments Formula”. The system point of view coincides with the
dual Lagrange problem (the so-called “shadow market”) in which ρ(1)j (t) and ρ(2)j (t)

are the dual multipliers, representing the deficit and the surplus per unit arising from
instrument j . Formally, the dual problem is given by

Find (ρ(1)∗, ρ(2)∗) ∈ L2([0, T ],R2n+ ) such that
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n∑

j=1

∫ T

0
(ρ

(1)
j (t)− ρ

(1)∗
j (t))(rj (t)− r∗j (t))dt (23)

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t)− ρ

(2)∗
j (t))(r∗j (t)− rj (t))dt ≤ 0,

∀(ρ(1), ρ(2)) ∈ L2([0, T ],R2n+ ).

Indeed, taking into account inequality (17), we get

−
m∑

i=1

n∑

j=1

∫ T

0
(λ

(1)
ij (t)− λ

(1)∗
ij (t))x∗ij (t) dt −

m∑

i=1

n∑

j=1

∫ T

0
(λ

(2)
ij − λ

(2)∗
ij )y∗ij (t) dt

−
m∑

i=1

∫ T

0
(μ

(1)
i (t)− μ

(1)∗
i (t))

⎛

⎝
n∑

j=1

x∗ij (t)− si(t)

⎞

⎠ dt

−
m∑

i=1

∫ T

0
(μ

(2)
i (t)− μ

(2)∗
i (t))

⎛

⎝
n∑

j=1

y∗ij (t)− li (t)

⎞

⎠ dt

+
n∑

j=1

∫ T

0
(ρ

(1)
j (t)− ρ

(1)∗
j (t))(rj (t)− r∗j (t)) dt

+
n∑

j=1

∫ T

0
(ρ

(2)
j (t)− ρ

(2)∗
j (t))(r∗j (t)− rj (t)) dt ≤ 0

∀λ(1), λ(2) ∈ L2([0, T ],Rmn+ ), μ(1), μ(2) ∈ L2([0, T ],Rm), ρ(1), ρ(2) ∈
L2([0, T ],Rn+).

Choosing λ(1) = λ(1)∗, λ(2) = λ(2)∗, μ(1) = μ(1)∗, μ(2) = μ(2)∗, we obtain the
dual problem (23)

Note that, from the System Point of View, also the expenses of the institutions
Fj (t) are supported from the liabilities of the sectors.

Remark 2 Let us recall that from the Liability Formula we get the following index
E(t), called “Evaluation Index”, that is very useful for the rating procedure:

E(t) =

m∑

i=1

li (t)

m∑

i=1

s̃i (t)+
n∑

j=1

F̃j (t)

,

where we set

s̃i (t) = si(t)

1 + i(t)
, F̃j (t) = Fj (t)

1 + i(t)− θ(t)− θ(t)i(t)
.
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From the Liability Formula we obtain

E(t)=1−

n∑

j=1

ρ
(1)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛

⎝
m∑

i=1

s̃i (t)+
n∑

j=1

F̃j (t)

⎞

⎠

+

n∑

j=1

ρ
(2)∗
j (t)

(1 − θ(t))(1 + i(t))

⎛

⎝
m∑

i=1

s̃i (t)+
n∑

j=1

F̃j (t)

⎞

⎠

(24)

If E(t) is greater or equal than 1, the evaluation of the financial equilibrium is
positive (better ifE(t) is proximal to 1), whereas ifE(t) is less than 1, the evaluation
of the financial equilibrium is negative.

2.4 The Contagion Problem

Let us note that in the balance law:

m∑

i=1

li (t)−
m∑

i=1

si(t)+
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)− y∗ij (t)

]

+
m∑

i=1

n∑

j=1

(1 − τij (t))hj (t)y
∗
ij (t)−

n∑

j=1

Fj (t) = −
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t),

if

n∑

j=1

ρ
(1)∗
j (t) >

n∑

j=1

ρ
(2)∗
j (t), (25)

namely the sum of all the deficit exceeds the sum of all the surplus, the balance of
all the financial entities is negative (see also [18]). In this case we say that a negative
contagion is determined and we can assume that the insolvencies of individual
entities propagate through the entire system. It is sufficient that only one deficit
ρ
(1)∗
j (t) is large to obtain, even if the other ρ(2)∗j (t) are lightly positive, a negative

balance for the all system.
When condition (25) is verified, we get E(t) ≤ 1 and, hence, also E(t) is a

significant indicator that the financial contagion happens.
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In [20] a regularity result of ρ(1)∗j (t), ρ(2)∗j (t), has been proved. Let us set

F(t) = [F1(t), F2(t), . . . , Fn(t)]T ;

ν = (x, y, r) =
((
xij

)
i=1,...,m
j=1,...,n

,
(
yij

)
i=1,...,m
j=1,...,n

,
(
rj
)
j=1,...,n

)
;

A(t, ν) =
([

−∂ui(t, x, y)

∂xij
− (1 − τij (t))rj (t)

]

i=1,...,m
j=1,...,n

,

[
−∂ui(t, x, y)

∂yij
+ (1 − τij (t))(1 + hj (t))rj (t)

]

i=1,...,m
j=1,...,n

, (26)

[
m∑

i=1

(1 − τij (t))
(
xij (t)− (1 + hj (t))yij (t)

)+ Fj (t)

]

j=1,...,n

)
;

A : K → L2([0, T ],R2mn+n),

with

K = P ×R.

Let us note that K is a convex, bounded and closed subset of L2([0, T ],R2mn+n).
Moreover assumption (8) implies that A is lower semicontinuous along line
segments.

The following result holds true (see [20] Theorem 2.4):

Theorem 9 Let A ∈ C0([0, T ],R2mn+n) be strongly monotone in x and y,
monotone in r , namely, there exists α such that, for t ∈ [0, T ],

〈〈A(t, ν1)− A(t, ν2), ν1 − ν2〉〉 ≥ α(‖x1 − x2‖2 + ‖y1 − y2‖2), (27)

∀ν1 = (x1, y1, r1), ν2 = (x2, y2, r2) ∈ R
2mn+n.

Let r(t), r(t), h(t), F (t) ∈ C0([0, T ],Rn+), let τ(t) ∈ C0([0, T ],Rmn) and let
s, l ∈ C0([0, T ],Rm), satisfying the following assumption (β):

• there exists δ1(t) ∈ L2([0, T ]) and c1 ∈ R such that, for a.a. t ∈ [0, T ]:

‖s(t)‖ ≤ δ1(t)+ c1;

• there exists δ2(t) ∈ L2([0, T ]) and c2 ∈ R such that, for a.a. t ∈ [0, T ]:

‖l(t)‖ ≤ δ2(t)+ c2.
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Then the Lagrange variables, ρ(1)∗(t), ρ(2)∗(t), which represent the deficit and
the surplus per unit, respectively, are continuous too.

2.5 An Example of a Markowitz-Type Risk Measure

We generalize and provide an evolutionary Markowitz-type measure of the risk
proposed with a memory term. This function is effective, namely an existence
theorem for the general financial problem holds (see [21]). In this way we cover
a lack providing the existence of a significant evolutionary measure of the risk. The
particular, but significant, example of utility function is:

ui(xi(t), yi(t))

=
[
xi(t)

yi(t)

]T
Qi

[
xi(t)

yi(t)

]
+

∫ t

0

[
xi(t − z)

yi(t − z)

]T
Qi

[
xi(t − z)

yi(t − z)

]
dz, (28)

where Qi denotes the sector i’s assessment of the standard deviation of prices for
each instrument j.

3 Applications to the Elastic-Plastic Torsion Problem

In this chapter we apply Assumption S to the elastic-plastic torsion problem.

3.1 Presentation of the Problem

The elastic-plastic torsion problem and its relationships with obstacle problem have
been deeply investigated in years 1965–1980. Later on these studies have been
resumed, with particular regards to existence and properties of Lagrange multipliers.
The existence of Lagrange multipliers is strictly related to strong duality theory.

The problem arises from aerodynamics and has been formulated by R. Von Mises
(see [53]): the elastic-plastic torsion problem of a cylindrical bar with cross section
Ω is to find a function u(x) which vanishes on the boundary ∂Ω and, together
with its first derivatives, is continuous on Ω; nowhere on Ω the gradient of u must
have an absolute value (modulus) less than or equal to a given positive constant τ ;
whenever in Ω the strict inequality holds, the function u must satisfy the differential
equation Δu = −2μθ , where the positive constants μ and θ denote the shearing
modulus and the angle of twist per unit length, respectively.
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From the Von Mises formulation it follows that the cross section Ω is divided
into two regions: an elastic region E = {x ∈ Ω : |Du(x)| < 1} and a plastic region
P = {x ∈ Ω : |Du(x)| = 1}.

This problem is a free boundary one and a suitable tool for studying this kind
of problems is the variational inequality theory. To this end, let us consider the
following variational inequality:

Find u ∈ K =
{

v ∈ H
1,∞
0 (Ω) : |Dv| =

n∑

i=1

(
∂v

∂xi

)2

≤ 1 a.e. on Ω

}

such that

∫

Ω

n∑

i=1

∂u

∂xi

(
∂v

∂xi
− ∂u

∂xi

)
dx ≥

∫

Ω

F(v − u)dx ∀v ∈ K, (29)

with Ω ⊂ R
n open bounded convex set with Lipschitz boundary ∂Ω , F ∈ Lp(Ω),

p > 1.
As it is well known, (29) admits a unique solution u ∈ W 2,p(Ω)∩K (see [6, 7]).
In literature, in the planar case the existence and the properties of a smooth

solution of the elastic-plastic torsion problem have been studied by Ting ([50–52]),
whereas multidimensional case has been studied by Brezis in [5], who proved the
existence of a Lagrange multiplier for (29), assuming F = cost > 0, namely, if u is
the solution of variational inequality (29), then there exists a unique μ ∈ L∞(Ω),
μ ≥ 0 a.e. in Ω such that:

⎧
⎪⎨

⎪⎩

μ(1 − |Du|) = 0 a.e. in Ω

−Δu−
n∑

i=1

∂

∂xi

(
μ
∂u

∂xi

)
= F in the sense of D

′
(Ω),

(30)

that is the solution of (29) solves the elastic-plastic torsion problem.
Conversely, if u ∈ K and there exists μ satisfying (30), then it is easily proved

that u is the solution of (29).
In virtue of this equivalence the variational inequality (29) is the elastic-plastic

torsion problem formulated by Von Mises.
Moreover, in this case, the solution to elastic-plastic torsion problem coincides

with the solution to obstacle problem and is nonnegative.
Only recently the relationship between problems (29) and (30) has been clarified

in the case of general linear operators and nonlinear monotone operators. In this
section we will describe these results, together with the study of radial solutions to
the elastic-plastic torsion.
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3.2 The Elastic-Plastic Torsion Problem for Linear Operators

First, we establish the existence of Lagrange multipliers associated to a general
linear operator. In particular we prove that the Lagrange multipliers associated to
the elastic-plastic torsion problem for linear operators always exist and, in general,
they result as a Radon measure. This result is proved using the classical strong
duality.

Moreover, the result may be generalized, namely, it is possible to prove that
the Lp Lagrange multipliers exist if and only if Assumption S holds and this is
a consequence of the new strong duality described in Sect. 1.1.

Let us now describe the problem in detail.
Let Ω ⊂ R

n be an open bounded domain either convex or with boundary of class
C1,1. Let us consider the linear elliptic operator

L u = −
n∑

i,j=1

∂

∂xj

(
aij

∂u

∂xj

)
+

n∑

i=1

bi
∂u

∂xi
+ cu (31)

with associated bilinear form on H
1,∞
0 (Ω)×H

1,∞
0 (Ω) given by

a(u, v) =
∫

Ω

⎛

⎝
n∑

i,j=1

aij
∂u

∂xj

∂v

∂xi
+

n∑

i=1

bi
∂u

∂xi
v + cuv

⎞

⎠ dx,

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i,j=1

aij (x)ξiξj ≥ a|ξ |2 a.e. on Ω,∀ξ ∈ R
n

a > 0, aij ∈ C1(Ω), bi, c ∈ L∞(Ω)

c > 0 such large that a(u, u) ≥ α‖u‖2
H

1,∞
0 (Ω)

, α > 0, ∀u ∈ H
1,∞
0 (Ω).

(32)
Let us consider the variational inequality:

Find u ∈ K =
{

v ∈ H
1,∞
0 (Ω) :

n∑

i=1

(
∂v

∂xi

)2

≤ 1, a.e. on Ω

}

such that:

∫

Ω

L u(v − u) dx ≥
∫

Ω

F(v − u) dx, ∀v ∈ K. (33)

As it is well known, variational inequality (33) admits a unique solution u ∈ K

and, if F ∈ Lp(Ω), p > 1, u ∈ W 2,p(Ω) ∩K (see [6, 7]).
We are able to prove the existence of a Lagrange multiplier for variational

inequality (33) as a Radon measure (see [28, 30]).
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Theorem 10 Under the above assumptions on Ω and L , let F ∈ Lp(Ω), p > 1,
and u ∈ K ∩ W 2,p(Ω) be the solution to problem (33). Then there exists μ ∈
(L∞(Ω))∗ such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈μ, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;
〈μ,

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)

〉 = 0

∫

Ω

(L u− F)ϕ dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi
〉 ∀ϕ ∈ H

1,∞
0 (Ω).

(34)

The theorem means that, if we consider a solution u of variational inequality (33),
then conditions (34) are satisfied. Moreover it is possible to show that, as a
consequence of conditions (34), the solution of variational inequality (33) is also
a solution of the elastic-plastic torsion problem and vice versa.

We mention the paper [9], in which the authors prove the existence of a Lagrange
multiplier as a positive Radon measure under different assumptions and using a
different technique.

In order to prove Theorem 10 we use the strong duality property in the classical
sense (see [26, 38]) and its consequence on the existence of saddle points of the
Lagrange functional. We briefly recall them.

Theorem 11 (Classical Strong Duality Property) Let S be a nonempty subset of
a real linear space X; (Y, ‖ · ‖) be a partially ordered real normed space with
ordering cone C; f : S → R be a given objective functional; g : S → Y be a given
constraint mapping; let the composite mapping (f, g) : S → R× Y be convex-like
with respect to product cone R+ × C in R × Y . Let the constraint set be given as
K := {v ∈ S : g(v) ∈ −C} which is assumed to be nonempty. Let the ordering cone
C have a nonempty interior int (C). If the primal problem

min
v ∈ S

g(v) ∈ −C

f (v) (35)

is solvable and the generalized Slater condition is satisfied, namely there is a vector
v̂ ∈ S with g(v̂) ∈ −int (C), then the dual problem

max
μ∈C∗ inf

v∈S[f (v)+ μ(g(v))] (36)

is also solvable and the extremal values of the two problems are equal. Moreover, if u
is the optimal solution to problem (35) and μ ∈ C∗ is a solution of the problem (36),
it results

μ(g(u)) = 0. (37)
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Theorem 12 Under the same assumptions as above, suppose the ordering cone
C to be closed. Then a point (u, μ) ∈ S × C∗ is a saddle point of the Lagrange
functional L if and only if u is a solution of the primal problem (35), μ is a solution
of the dual problem (36) and the extremal values of the two problems are equal.

Indeed, let u ∈ K∩W 2,p(Ω) be the solution to (33). Let us rewrite the variational
inequality (33) as the minimum problem

min
v∈K f (v) = f (u) = 0 (38)

where

f (v) =
∫

Ω

(L u− F)(v − u) dx.

Let us set S = X = H
1,∞
0 (Ω), Y = L∞(Ω),

f (v) : H 1,∞
0 (Ω) → R,

g(v) =
n∑

i=1

(
∂v

∂xi

)2

− 1 : H 1,∞
0 (Ω) → L∞(Ω),

C = {w ∈ L∞(Ω) : w ≥ 0} = {w ∈ L∞(Ω) : w(x) ≥ 0 a.a. x ∈ Ω}.

Since f and g are convex on the space H 1,∞
0 (Ω), then the composite mapping

(f, g) is convex-like with respect to the product cone R+×C in R×Y . Moreover, we
are able to prove that int (C) �= ∅ and that generalized Slater condition is verified.
Then, every assumption of Theorem 11 is verified and, since the primal problem is
solvable, it follows that the dual problem

max
μ∈C∗ inf

v∈S[f (v)+ μ(g(v))] (39)

is also solvable and the extremal values of the two problems coincide. Moreover, if
u is a solution of the problem (38) and μ ∈ C∗ is a solution of the problem (39),
condition (37) holds, namely

μ(g(u)) = 0. (40)

Finally, since the ordering cone C is closed, we may apply Theorem 12, from
which it follows

∫

Ω

(L u− F)ϕ dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi
〉. (41)
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In conclusion, since

C∗ = {μ ∈ (L∞(Ω))∗ : μ(y) ≥ 0 ∀y ∈ C}
= {μ ∈ (L∞(Ω))∗ : μ(y) ≥ 0 ∀y ∈ L∞(Ω), y(x) ≥ 0 a.a. x ∈ Ω},

from (40), (41) we obtain that, if u is a solution of (33), then of the primal
problem (38), there exists μ ∈ C∗ solution of the dual problem (39) and the
following conditions are satisfied:

〈μ, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;

〈μ,
(

n∑

i=1

(
∂u

∂xi

)2

− 1

)

〉 = 0

∫

Ω

(L u− F)ϕ dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi
〉 ∀ϕ ∈ H

1,∞
0 (Ω),

namely, Theorem 10 is proved.
Moreover, if μ ∈ (L∞(Ω))∗, μ can be expressed by a Radon’s integral with

respect to the finitely additive measure Ψ :

μ(v) =
∫

Ω

v(x)Ψ (dx).

Ψ is finitely additive, has a bounded total variation and is absolutely continuous
with respect to the Lebesgue measure, that is m(B) = 0 implies Ψ (B) = 0.

From this properties of μ and conditions (34) it is possible to prove that the
solution of variational inequality (33) is also a solution of the elastic plastic torsion
problem and vice versa.

In order to obtain a regularization of this result, namely to obtain the existence of
a Lagrange multiplier for variational inequality (33) as aL∞ function, it is necessary
to consider the convex set K in H 1

0 (Ω), that is

K∇ =
{

v ∈ H 1
0 (Ω) :

n∑

i=1

(
∂v

∂xi

)2

≤ 1 a.e. on Ω

}

.

But in this case the interior of the ordering cone, which defines the sign constraints,
is empty, then it is not possible to apply the classical strong duality theory. It is
necessary to apply the new strong duality principle described in Sect. 1.1 and, then,
we obtain the following characterization in terms of Assumption S of the elastic-
plastic torsion problem (see Theorem 3.4 in [19]).

Theorem 13 Let u ∈ K∇ ∩W 2,p(Ω) be the solution to problem

∫

Ω

L u(v − u) dx ≥
∫

Ω

F(v − u) dx, ∀v ∈ K∇ . (42)
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Then there exists μ̄ ∈ L∞(Ω) such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ̄ ≥ 0

μ̄

(

1 −
n∑

i=1

(
∂u

∂xi

)2
)

= 0 a.e. in Ω

Lu− F = 2
n∑

i=1

∂

∂xi

(
μ̄
∂u

∂xi

)
in the sense of distributions

(43)

if and only if the solution u of (42) verifies Assumption S.

The theorem means that, if the solution of (42) verifies Assumption S, then
conditions (43) are satisfied, that is the solution of (42) is a solution of the elastic-
plastic torsion problem; vice versa if u ∈ W 2,p(Ω) verifies (43), and, then, in
particular, is a solution of the elastic-plastic torsion problem, then u solves (42)
and verifies Assumption S.

The thesis is achieved rewriting the variational inequality (42) as the minimum
problem

min
v∈K∇

f (v) = f (u) = 0 (44)

where

f (v) =
∫

Ω

(L u− F)(v − u) dx (45)

with the settings

f (v) : H 1
0 (Ω) → R

g(v) =
n∑

i=1

(
∂v

∂xi

)2

− 1 : H 1
0 (Ω) → L1(Ω)

C = {w ∈ L1(Ω) : w ≥ 0}
M̃ = {

(ψ(v)+ α, g(v)+ w) : v ∈ H 1
0 (Ω) \K∇ , α ≥ 0, w ∈ C

}
.

Assuming that Assumption S holds, from Theorem 1 it follows that there exists
μ̄ ∈ C∗ = {

μ ∈ L∞(Ω) : ∫
Ω
μv dx ≥ 0, ∀v ∈ L1(Ω)

}
such that

μ̄

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)

= 0 a.e. in Ω. (46)

Then the thesis is obtained using Theorem 2 and (46). Vice versa assuming that
conditions (43) hold, it is possible to show that u verifies Assumption S and, finally,
it is easy to verify that u is a solution to variational inequality (42).
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3.3 The Elastic-Plastic Torsion Problem for Nonlinear
Monotone Operators

Second, we are aimed at the investigation of the existence of Lagrange multipliers
associated to the following nonlinear problem (see [7] for the existence and the
regularity of solutions to (47)):

Find u ∈ K :
∫

Ω

n∑

i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx ≥

∫

Ω

F(v − u)dx, ∀v ∈ K.

(47)
In particular, we are able to prove that the Lagrange multiplier is always a Radon

measure when the operator is strictly monotone, whereas the Lagrange multiplier is
a Lp function when the operator is strongly monotone (see [32]). The first result is
proved using classical strong duality theory, whereas for the second one we apply
the new strong duality theory described in Sect. 1.1.

From now on we assume that Ω ⊂ R
n is an open bounded convex set with

Lipschitz boundary ∂Ω and a is an operator of class C2. In a first step we suppose
that the operator is strictly monotone, namely

(a(P )− a(Q), P −Q) > 0 ∀P,Q ∈ R
n, P �= Q. (48)

In a first theorem we are able to prove the equivalence between elastic-plastic
torsion problem and obstacle problem.

Theorem 14 Under the above assumptions on Ω and a, if a(0) = 0 and F ≡
const., the solution u of (47) coincides with the solution of

Find u ∈ Kδ :
∫

Ω

n∑

i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx ≥

∫

Ω

F(v − u)dx, ∀v ∈ Kδ,

(49)
where

Kδ =
{
v ∈ W

1,∞
0 (Ω) : |v(x)| ≤ δ(x) = dist (x, ∂Ω) a.e. on Ω

}
.

In a second theorem we prove the existence of Lagrange multipliers for prob-
lem (47) as a Radon measure.

Theorem 15 Under the above assumptions on Ω and a, let F ∈ Lp(Ω), p > 1,
and u ∈ K be the solution to (47). Then there exists μ ∈ (L∞(Ω))∗ such that
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈μ, y〉 ≥ 0 ∀y ∈ L∞(Ω), y ≥ 0 a.e. in Ω;
〈μ,

(
n∑

i=1

(
∂u

∂xi

)2

− 1

)

〉 = 0;
∫

Ω

{
n∑

i=1

ai(Du)
∂ϕ

∂xi
− Fϕ

}

dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi
〉 ∀ϕ ∈ W

1,∞
0 (Ω).

(50)

From conditions (50) it follows that, if u belongs to the elastic region E, μ ≡ 0
and then u is a solution of the elliptic equation Au = F a.e. in Ω , where A =
−∑n

i=1
∂ai (Du)
∂xi

and, in particular, a solution of (47) solves the elastic-plastic torsion
problem. Conversely it is easily proved that, if u ∈ K satisfies conditions (50), then
u solves variational inequality (47).

The proof of Theorem 15 is based on the following steps. First we rewrite
variational inequality (47) as the minimum problem

min
v∈K f (v) = f (u) = 0 (51)

where

f (v) =
∫

Ω

{
n∑

i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
− F(v − u)dx

}

. (52)

Then, setting S = X = W
1,∞
0 (Ω), Y = L∞(Ω),

f (v) : W 1,∞
0 (Ω) → R

g(v) =
n∑

i=1

(
∂v

∂xi

)2

− 1 : W 1,∞
0 (Ω) → L∞(Ω),

as in the linear case (see [29, 30]) we are able to prove that the assumptions of
Theorems 11 and 12 hold. Consequently, if u is a solution of (47), then of the
problem (51), there exists μ ∈ C∗ solution of the dual problem

max
μ∈C∗ inf

v∈S[f (v)+ 〈μ, g(v)〉] (53)

and (u, μ) is a saddle point of the so called Lagrange functional

L(v,μ) = f (v)+ 〈μ, g(v)〉, ∀v ∈ W
1,∞
0 (Ω),∀μ ∈ C∗,

namely

L(u,μ) ≤ L(u,μ) ≤ L(v,μ), ∀v ∈ W
1,∞
0 (Ω),∀μ ∈ C∗. (54)
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Via variational arguments we obtain that

∫

Ω

{
n∑

i=1

ai(Du)
∂ϕ

∂xi
− f ϕ

}

dx = 〈μ,−2
n∑

i=1

∂u

∂xi

∂ϕ

∂xi
〉 ∀ϕ ∈ W

1,∞
0 (Ω).

(55)
Then from (37), (55), we obtain conditions (50).
If now we assume strong monotonicity assumption

(a(P )− a(Q), P −Q) > ν‖P −Q‖2 ∀P,Q ∈ R
n, P �= Q, (56)

we are able to prove the following regularization theorem concerning Lagrange
multipliers.

Theorem 16 Under the same assumptions on Ω as above, let a satisfy strong
monotonicity assumption (56), with a(0) = 0, let F be a positive constant and
u ∈ K ∩W 2,p(Ω) be the solution to problem (47). Then there exists μ̄ ∈ Lp(Ω)

such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ̄ ≥ 0 a.e. in Ω

μ̄

(

1 −
n∑

i=1

(
∂u

∂xi

)2
)

= 0 a.e. in Ω

n∑

i=1

∂ai(Du)

∂xi
+ F = μ̄ a.e. in Ω.

(57)

Of course, as for the linear problem, it is easy to prove that, if u ∈ K and there
exists μ̄ satisfying (57), then u is also the solution to problem (47).

Let us notice that, if u is the solution to problem (47), in virtue of Theorem 14, it
is the solution of problem (49). In particular, since f ≡ const. > 0, a is monotone
and a(0) = 0, it is possible to prove that u is the solution of the problem

Find u ∈ K1 :
∫

Ω

n∑

i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx ≥

∫

Ω

f (v − u)dx, ∀v ∈ K1,

(58)
where

K1 =
{
v ∈ W

1,∞
0 (Ω) : 0 ≤ v(x) ≤ δ(x) = dist (x, ∂Ω) a.e. on Ω

}
.

Finally, we are able to prove that the elastic region coincides with the set where
u does not touch the obstacle, namely

Theorem 17 Under the same assumptions on Ω , a and f as in Theorem 16, setting

I = {x ∈ Ω : u(x) = δ(x)},

Λ = {x ∈ Ω : u(x) < δ(x)}
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it results

P = {x ∈ Ω : |Du| = 1} = I,

E = {x ∈ Ω : |Du| < 1} = Λ.

In order to prove Theorem 16, we should apply strong duality theory in the case
X = S = H 1

0 (Ω), but in this case, as we already observed, the ordering cone
C = {w ∈ L1(Ω) : w(t) ≥ 0 a.e. in Ω} has an empty interior, then the classical
strong duality theory cannot be applied.

It is necessary to use the new strong duality theory described in Sect. 1.1.
To this end, let us consider variational inequality (47) under assumption (56)

and let u ∈ K be the solution to (47). From the regularity results in [7] it follows
that, if F ∈ Lp(Ω), 1 < p < ∞, u belongs to W 2,p(Ω) ∩ K . In particular, if
p > n, Du belongs to C0,α(Ω). From Theorem 14, it follows that u is a solution
to problem (49). Since strong monotonicity holds and u is regular, it also solves the
problem

Find u ∈ K1
δ :

∫

Ω

n∑

i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx ≥

∫

Ω

f (v − u)dx, ∀v ∈ K1
δ ,

(59)
where

K1
δ =

{
v ∈ H 1

0 (Ω) : |v(x)| ≤ δ(x) a.e. on Ω
}
.

Moreover, since f is positive and a monotone, with a(0) = 0, u is also the
solution to

Find u ∈ K2 :
∫

Ω

n∑

i=1

ai(Du)

(
∂v

∂xi
− ∂u

∂xi

)
dx ≥

∫

Ω

f (v − u)dx, ∀v ∈ K2,

(60)
where

K2 =
{
v ∈ H 1

0 (Ω) : 0 ≤ v(x) ≤ δ(x) a.e. in Ω
}
.

Now, we may rewrite problem (60) as an optimization problem. Let us set

f (v) =
∫

Ω

(Au− F) (v − u) dx, v ∈ K2, (61)

where

A = −
n∑

i=1

∂ai(Du)

∂xi
.
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As we already observed, u ∈ K2 ∩ W 2,p(Ω) is the solution of (60) and let us
remark that

min
v∈K2

f (v) = f (u) = 0. (62)

We are able to prove that, assuming

X = Y = L2(Ω), C = C∗ =
{
v ∈ L2(Ω) : v(x) ≥ 0 a.e. in Ω

}
, g(v) = v − δ,

the optimization problem (62) fulfills Assumption S. Then the strong duality and
Theorem 2 hold, from which we get, via variational arguments, that there exists
μ ∈ C such that

Au− F + μ = 0 a.e. in Ω, (63)

μ(x)(u(x)− δ(x)) = 0 a.e. in Ω. (64)

From Theorem 17, that is achieved using delicate tools of nonlinear partial
differential equations, conditions (57) follow.

Remark 3 Another way to reach the strong duality is to verify Assumption NES.
Indeed, in this particular setting, our map

ϕ : L2(Ω) −→ R

is defined by

ϕ(α) = inf
v∈H 1

0 (Ω)

0≤v≤δ+α

∫

Ω

(Au− F)(v − u)dx. (65)

In particular, in virtue of (61),

ϕ(θL2(Ω)) = inf
v∈H 1

0 (Ω)

0≤v≤δ
f (v) = inf

v∈K2
f (v) = f (u) = 0, (66)

then it results

∂ϕ(θL2(Ω)) =
{
ϕ∗ ∈ L2(Ω) : ϕ(α) ≥ 〈ϕ∗, α〉 ∀α ∈ L2(Ω)

}
, (67)

and we are able to prove that, setting μ = (Aδ − f ) · χ{x∈Ω: u(x)=δ(x)},

μ ∈ ∂ϕ(θL2(Ω)).

In any case, the strong duality holds.
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3.4 Von Mises Functions

We now provide an example of the so-called “Von Mises functions”, namely of
solutions of the elastic-plastic torsion problem, associated to nonlinear monotone
operators, which are not obtained by means of the obstacle problem in the case
F = constant .

We consider an operator a(p) : R
n → R

n, of class C2, strictly mono-
tone. Let Ω ⊆ R

n with boundary ∂Ω ∈ C2,1 = W 3,∞, P = Γμ =
{x ∈ Ω : δ(x) = d(x, ∂Ω) < μ}, E = Ω \ P .

As it is well known μ can be chosen in such a way that for every x ∈ Γμ there
is a unique closest point from ∂Ω to x and δ(x) owns the same regularity of ∂Ω on
Γμ. Then δ(x) ∈ W 3,p(P ), ∀p > 1, and its trace δ/∂P ∈ W 3−1/p,p(∂P ).

Let

F(x) =
n∑

i=1

Diai(Dδ)−Δδ(x) a.e. inP

and w(x) ∈ W 3,p(E), ∀p > 1, the solution of
⎧
⎪⎨

⎪⎩

n∑

i=1

Diai(Dw) = 0 a.e. in E

w(x) = δ(x) on ∂E.

We can directly prove that, in E, G(Dw) = |Dw|2 − 1 verifies

∑

i,j

∂

∂xi

[
∂ai(Dw)

∂pj

∂

∂xj
G(Dw)

]
≥ 0.

Then we may apply maximum principle to G(Dw), from which it follows
|Dw| < 1 in E.

The function u(x) ∈ W 2,p(Ω), ∀p > 1,

u(x) =
{
δ(x) x ∈ P

w(x) x ∈ E

arises.
Setting

F̃ (x) =
{
F(x) x ∈ P

0 x ∈ E,

it results

n∑

i=1

Diai(Du)− F̃ (x) =
{
Δδ(x) x ∈ P

0 x ∈ E,
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namely

n∑

i=1

Diai(Du)− F̃ (x) =
n∑

i=1

∂

∂xi

(
χP (x)

∂u

∂xi

)
a.e. in Ω.

Moreover

χP (x)(|Du|2 − 1) = 0,

and by means of maximum principle we can prove

|Du| ≤ 1,

that is u is a solution of an elastic-plastic torsion problem.

3.5 Radial Solutions

Finally, we search for radial solutions to the elastic-plastic torsion problem,
assuming the free term to belong to Lp(Ω) (see [33]). In particular, for n = 2,
we investigate the nature of the torsion and when the transition from the elastic case
to the plastic one happens. We are able to find the explicit solution u ∈ W 2,p(Ω)

and the Lagrange multiplier μ ∈ Lp(Ω) in the two admissible cases, namely, when
the elastic and the plastic regions both exist and when the torsion is only elastic.
Moreover, we characterize the free boundary and obtain a necessary and sufficient
condition in order that the plastic region exists. Finally, we provide some examples.

To this aim, let us assume that Ω is the ball of Rn of radius 1 centered at the
origin, and F ∈ Lp(Ω), p > n, is of radial type, namely F(x) = f (|x|) = f (ρ),
with |x| = ρ.

We search for solutions to (43) such that u(x) ∈ W 2,p(Ω) and μ(x) ∈ Lp(Ω)

are of radial type, namely μ(x) = μ(|x|) = μ(ρ), u(x) = ϕ(|x|) = ϕ(ρ). In this
case, since u(x) = ϕ(ρ), ∂u

∂xi
= ϕ′(ρ) xi

ρ
, Δu = ϕ′′ + n−1

ρ
ϕ′(ρ), |Du| = ϕ′(ρ),

bearing in mind that u ∈ K , conditions (43 ) become

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ϕ′(ρ)| = 1; μ(ρ) ≥ 0 a.e. in [0, 1];
μ(ρ)

(
1 − |ϕ′(ρ)|) = 0 a.e. in [0, 1];

−ϕ′′(ρ)− n− 1

ρ
ϕ′(ρ)−

n∑

i=1

∂

∂xi

(
μ
∂u

∂xi

)
= f (ρ).

(68)

Under the following assumptions: there exists ρ ∈ (0, 1) such that

∫
Cρ(0)

F (x)dx

|∂Cρ(0)| = 1, (69)
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where Cρ(0) is the closed ball of radius ρ centered at the origin, namely

∫ ρ

0
ρf (ρ)dρ = ρ, (70)

and

ρf (ρ) ≥ 0 is a nondecreasing function in [0, 1], (71)

we are able to prove the following result.

Theorem 18 Under conditions (69), (71), the region [0, ρ] is an elastic region and
the region [ρ, 1] is a plastic region. Moreover, the solution ϕ to (68) is

ϕ(ρ) =
⎧
⎨

⎩
1 − ρ +

∫ ρ

ρ

1

t

∫ t

0
σf (σ)dσdt ρ ∈ [0, ρ]

1 − ρ ρ ∈ (ρ, 1],
(72)

and it results to be ϕ(ρ) ∈ W 2,p(0, 1) and μ(ρ) ∈ Lp(0, 1).

If Eq. (70) does not admit any solution ρ ∈ (0, 1), namely ∀ρ ∈ (0, 1)

1

ρ

∫ ρ

0
σf (σ)dσ < 1 or

1

ρ

∫ ρ

0
σf (σ)dσ > 1,

the plastic region does not exist. The case

1

ρ

∫ ρ

0
σf (σ)dσ > 1 ∀ρ ∈ (0, 1)

is not admissible, since it implies

ϕ′(ρ) < −1 ∀ρ ∈ (0, 1).

Then, we are able to prove the following result.

Theorem 19 Under condition (71), if

1

ρ

∫ ρ

0
σf (σ)dσ < 1 ∀ρ ∈ (0, 1),

then, [0,1] is an elastic region. Moreover, the solution ϕ to (68) is

ϕ(ρ) =
∫ 1

ρ

1

t

∫ t

0
σf (σ)dσdt ∀ρ ∈ [0, 1]. (73)

It results to be ϕ(ρ) ∈ W 2,p(0, 1).
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Example 3 Let us consider a first example, namely F = const = k > 0. In this
case we obtain the same results as in [48], p. 15.

If we consider a first case, F = k > 2, the plastic region exists, since

lim
ρ→0+

∫ ρ

ρ

kσdσ = k

2
ρ2,

namely, ρ = 2
k
< 1 is the solution to (70).

Then, by (72) we get the continuous function

ϕ(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

k

4

[
(1 − ρ2)− (1 − 2

k
)2
]
in E = [0, 2

k
)

1 − ρ in P = [ 2
k
, 1].

It is easily seen that u ∈ W 2,p(Ω).
Moreover, the Lagrange multiplier μ(ρ) exists and belongs to Lp([0, 1]):

μ(ρ) =
{
k
ρ

2
− 1 ≥ 0 in P = [ 2

k
, 1]

0 ∈ E = [0, 2
k
).

If we consider the other case F = const = k, 0 < k ≤ 2, the plastic region does
not exist, since ρ = 2

k
≥ 1 is the solution to (70).

Then, the torsion is all elastic and by (73) we get the continuous function

ϕ(ρ) = k

4
(1 − ρ2). (74)

ϕ(ρ) as in (74) and μ = 0 verify conditions (68) in [0, 1]. Moreover u ∈ W 2,p(Ω).

Let us now consider problem (68) with f (ρ) = k

ρα
, 0 < α < 1.

The condition α < 1 ensures that F(x) ∈ Lp(Ω), 2 = n < p < 2
α

. Moreover,
condition (71) is verified.

If we consider the case k > 2 − α, the plastic region exists, since

lim
ρ→0+

∫ ρ

ρ

σf (σ ) dσ = k

2 − α
ρ2−α

namely, ρ =
(

2−α
k

) 1
1−α

< 1 is the solution to (70).

Then, by (72) we get the continuous function

ϕ(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
(

2 − α

k

) 1
1−α + k

(2 − α)2

(
2 − α

k

) 2−α
1−α − k

(2 − α)2
ρ2−α in E = [0, ρ)

1 − ρ in P = [ρ, 1].

It is easily seen that u ∈ W 2,p(Ω).
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Moreover, the Lagrange multiplier μ(ρ) exists and belongs to Lp([0, 1]):

μ(ρ) =
⎧
⎨

⎩

k

2 − α
ρ1−α − 1 ≥ 0 in P = (ρ, 1]

0 in E = [0, ρ].

Finally, if we consider the other case 0 < k ≤ 2 − α, the plastic region does not

exist, since ρ =
(

2−α
k

) 1
1−α ≥ 1 is the solution to (70).

Then, the torsion is all elastic and by (73) we get the continuous function

ϕ(ρ) = k

(2 − α)2
(1 − ρ2−α) ∀ρ ∈ [0, 1]. (75)

ϕ(ρ) as in (75) and μ = 0 verify conditions (68) in [0, 1]. Moreover, u ∈
W 2,p(Ω).

References

1. A. Barbagallo, A. Maugeri, Duality theory for a dynamic oligopolistic market equilibrium
problem. Optimization 60, 29–52 (2011)

2. A. Barbagallo, P. Daniele, S. Giuffrè, A. Maugeri, Variational approach for a general financial
equilibrium problem: the deficit formula, the balance law and the liability formula. A path to
the economy recovery. Eur. J. Oper. Res. 237(1), 231–244 (2014)

3. J.M. Borwein, V. Jeyakumar, A.S. Lewis, M. Wolkowicz, Constrained approximation via
convex programming. University of Waterloo. Preprint (1988)

4. R.I. Bot, E.R. Csetnek, A. Moldovan, Revisiting some duality theorems via the quasirelative
interior in convex optimization. J. Optim. Theory Appl. 139(1), 67–84 (2008)

5. H. Brezis, Moltiplicateur de Lagrange en Torsion Elasto-Plastique. Arch. Rational Mech. Anal.
49, 32–40 (1972)

6. H. Brezis, Problèmes Unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)
7. H. Brezis, G. Stampacchia, Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc.

Math. Fr. 96, 153–180 (1968)
8. V. Caruso, P. Daniele, A network model for minimizing the total organ transplant costs. Eur. J.

Oper. Res. (2017). https://doi.org/10.1016/j.ejor.2017.09.040
9. V. Chiadó-Piat, D. Percivale, Generalized Lagrange multipliers in elastoplastic torsion, J.

Differ. Equ. 114, 570–579 (1994)
10. M.G. Cojocaru, P. Daniele, A. Nagurney, Projected dynamical systems and evolutionary

variational inequalities via Hilbert spaces and applications. J. Optim. Theory Appl. 127,
549–563 (2005)

11. P. Daniele, Dynamic Networks and Evolutionary Variational Inequalities (Edward Elgar
Publishing, Cheltenham, 2006)

12. P. Daniele, Evolutionary variational inequalities and applications to complex dynamic multi-
level models. Transp. Res. Part E 46, 855–880 (2010)

13. P. Daniele, S. Giuffrè, General infinite dimensional duality and applications to evolutionary
network equilibrium problems. Optim. Lett. 1, 227–243 (2007)

14. P. Daniele, S. Giuffrè, Random variational inequalities and the random traffic equilibrium
problem. J. Optim. Theory Appl. 167(1), 363–381 (2015)

https://doi.org/10.1016/j.ejor.2017.09.040


138 G. Colajanni et al.

15. P. Daniele, S. Giuffrè, S. Pia, Competitive financial equilibrium problems with policy
interventions. J. Ind. Manag. Optim. 1(1), 39–52 (2005)

16. P. Daniele, S. Giuffrè, G. Idone, A. Maugeri, Infinite dimensional duality and applications.
Math. Ann. 339, 221–239 (2007)

17. P. Daniele, S. Giuffrè, A. Maugeri, Remarks on general infinite dimensional duality with cone
and equality constraints. Commun. Appl. Anal. 13(4), 567–578 (2009)

18. P. Daniele, S. Giuffrè, M. Lorino, A. Maugeri, C. Mirabella, Functional inequalities and
analysis of contagion in the financial networks, in Handbook of Functional Equations –
Functional Inequalities, ed. by Th.M. Rassias. Optimization and Its Applications, vol. 95
(Springer, Berlin, 2014), pp. 129–146

19. P. Daniele, S. Giuffrè, A. Maugeri, F. Raciti, Duality theory and applications to unilateral
problems. J. Optim. Theory Appl. 162(3), 718–734 (2014)

20. P. Daniele, S. Giuffrè, M. Lorino, Functional inequalities, regularity and computation of the
deficit and surplus variables in the financial equilibrium problem. J. Glob. Optim. 65, 575–596
(2016)

21. P. Daniele, M. Lorino, C. Mirabella, The financial equilibrium problem with a Markowitz-type
memory term and adaptive, constraints. J. Optim. Theory Appl. 171, 276–296 (2016)

22. P. Daniele, A. Maugeri, A. Nagurney, Cybersecurity investments with nonlinear budget con-
straints: analysis of the marginal expected utilities, in Operations Research, Engineering, and
Cyber Security, ed. by N.J. Daras, T.M. Rassias. Springer Optimization and Its Applications,
vol. 113 (Springer, Berlin, 2017), pp. 117–134

23. M.B. Donato, The infinite dimensional Lagrange multiplier rule for convex optimization
problems. J. Funct. Anal. 261(8), 2083–2093 (2011)

24. M.B. Donato, A. Maugeri, M. Milasi, C. Vitanza, Duality theory for a dynamic Walrasian pure
exchange economy. Pac. J. Optim. 4, 537–547 (2008)

25. S. Giuffrè, Strong solvability of boundary value contact problems. Appl. Math. Optim. 51(3),
361–372 (2005)

26. S. Giuffrè, Elements of duality theory, in Topics in Nonlinear Analysis and Optimization, ed.
by Q.H. Ansari (World Education, Delhi, 2012), pp. 251–267

27. S. Giuffrè, S. Pia, Weighted traffic equilibrium problem in non pivot Hilbert spaces with long
term memory, in AIP Conference Proceedings Rodi, September 2010, vol. 1281, pp. 282–285

28. S. Giuffrè, A. Maugeri, New results on infinite dimensional duality in elastic-plastic torsion.
Filomat 26(5), 1029–1036 (2012)

29. S. Giuffrè, A. Maugeri, Lagrange multipliers in elastic-plastic torsion, in AIP Conference
Proceedings Rodi, September 2013, vol. 1558, pp. 1801–1804

30. S. Giuffrè, A. Maugeri, A measure-type Lagrange multiplier for the elastic-plastic torsion.
Nonlinear Anal. 102, 23–29 (2014)

31. S. Giuffrè, G. Idone, A. Maugeri, Duality theory and optimality conditions for generalized
complementary problems. Nonlinear Anal. 63, e1655–e1664 (2005)

32. S. Giuffrè, A. Maugeri, D. Puglisi, Lagrange multipliers in elastic-plastic torsion problem for
nonlinear monotone operators. J. Differ. Equ. 259(3), 817–837 (2015)

33. S. Giuffrè, A. Pratelli, D. Puglisi, Radial solutions and free boundary of the elastic-plastic
torsion problem. J. Convex Anal. 25(2), 529–543 (2018)

34. J. Gwinner, F. Raciti, Random equilibrium problems on networks. Math. Comput. Model. 43,
880–891 (2006)

35. J. Gwinner, F. Raciti, On a class of random variational inequalities on random sets. Numer.
Funct. Anal. Optim. 27, 619–636 (2006)

36. R.B. Holmes, Geometric Functional Analysis (Springer, Berlin, 1975)
37. G. Idone, A. Maugeri, Generalized constraints qualification and infinite dimensional duality.

Taiwan. J. Math. 13, 1711–1722 (2009)
38. J. Jahn, Introduction to the Theory of Nonlinear Optimization, 3rd edn. (Springer, Berlin, 2007)
39. V. Jeyakumar, H. Wolkowicz, Generalizations of slater constraint qualification for infinite

convex programs. Math. Program. 57, 85–101 (1992)
40. H.M. Markowitz, Portfolio selection. J. Financ. 7, 77–91 (1952)



Nonlinear Duality in Banach Spaces and Applications to Finance and Elasticity 139

41. H.M. Markowitz, Portfolio Selection: Efficient Diversification of Investments (Wiley, New
York, 1959)

42. A. Maugeri, D. Puglisi, A new necessary and sufficient condition for the strong duality and the
infinite dimensional Lagrange Multiplier rule. J. Math. Anal. Appl. 415(2), 661–676 (2014)

43. A. Maugeri, D. Puglisi, Non-convex strong duality via subdifferential. Numer. Funct. Anal.
Optim. 35, 1095–1112 (2014)

44. A. Maugeri, D. Puglisi, On nonlinear strong duality and the infinite dimensional Lagrange
multiplier rule. J. Nonlinear Convex Anal. 18(3), 369–378 (2017)

45. A. Maugeri, F. Raciti, Remarks on infinite dimensional duality. J. Glob. Optim. 46, 581–588
(2010)

46. A. Maugeri, L. Scrimali, New approach to solve convex infinite-dimensional bilevel problems:
application to the pollution emission price problem. J. Optim. Theory Appl. 169(2), 370–387
(2016)

47. R.T. Rockafellar, Conjugate duality and optimization, in Conference Board of the Mathemati-
cal Science Regional Conference Series in Applied Mathematics, vol. 16 (Society for Industrial
and Applied Mathematics, Philadelphia, 1974)

48. J.F. Rodrigues, Obstacle Problems in Mathematical Physics. Mathematics Studies, vol. 134
(Elsevier, Amsterdam, 1987)

49. L. Scrimali, Infinite dimensional duality theory applied to investment strategies in environmen-
tal policy. J. Optim. Theory Appl. 154, 258–277 (2012)

50. T.W. Ting, Elastic-plastic torsion of a square bar. Trans. Am. Math. Soc. 113, 369–401 (1966)
51. T.W. Ting, Elastic-plastic torsion problem II. Arch. Ration. Mech. Anal. 25, 342–366 (1967)
52. T.W. Ting, Elastic-plastic torsion problem III. Arch. Ration. Mech. Anal 34, 228–244 (1969)
53. R. Von Mises, Three remarks on the theory of the ideal plastic body, in Reissner Anniversary

Volume (Edwards, Ann Arbor, 1949)



Selective Priorities in Processing of Big
Data

Nicholas J. Daras

1 Introduction

The aim of the present paper is to document a quantitative systemic modeling for the
processing of big data flow. Since, according to official calculations, the total global
flow of data exceeds 150 million petabytes annual rate, or nearly 500 exabytes per
day, it is very clear that the ever-increasing volume of data will soon cause great
difficulty in the efficient processing of information and will make extremely difficult
task of processing the data flow.

In order to urgently overcome this obstacle, a good idea seems to be the appro-
priate choice of data amounts. To this direction, this paper studies a reasonable
question which arises and may be constitute a central subject of discussion in
subsequent additional scientific studies. The question relates to the preference of
choices and priorities in the processing of big data. Equivalently, if each one of a
group of data processors prefers to be limited to different sets of data amounts from
a collection of big data, then how much the different priorities of processing could
lead to equilibrium situations or contrasts?

The paper is divided in two parts. The first part examines the case of a single
data processor. Obviously, for each data entity in the domain of his competence,
the processor can choose or use only an amount of data. Thus, in Sect. 2.1, we
will describe how through its options, the data processor may prefer to focus only
on some choices. A program of data selection for the processor specifies the data
amount of each entity that the processor may take into account. Then, in Sect. 2.2,
we will study the selectivity display of a processor in order to actually exploit a
certain amount of data from another. A data selection preference is the relation
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that determines such any selectivity. In order to establish a well such preference,
in Sect. 2.3, we will show how a processor should associate certain significance in
each component of the system (vector) of times of data processing, while in Sect. 2.4
we will study the topology of the space of data selection preferences and we shall
describe neighboring preferences of a given data selection preference. Having regard
to all these, in the next Sect. 2.5 we will investigate the lower hemicontinuity of the
relation defining the set of all rational choices for the data amounts, and in Sect. 2.6
we will deal with the concept of the mean rational data amount choice for a set of
data processors. The second part of the paper is devoted to the case of several data
processors. In this case, each of the processors has its own priorities and preferences,
and, after a brief introduction, we will see that there are cores and equilibriums of
contrasts, the study of which may provide useful information (Sects. 3.3 and 3.4).

2 Rational Choice of Data Sets

2.1 Programs of Data Selections

We begin by recalling some basic definitions.

Definition 2.1

(i) A data entity (index, concept, term, thing, etc.) in a given data system (or
data complex) S is something that exists by itself, although it need not be of
material existence (http://www.thefreedictionary.com/entity).

(ii) A measurable data entity in S is anything that can be measured in S [1].It
is assumed that all entities over the given system S are distinguishable,
measurable and indicated by an index i running from 1 to � ∈ N ∪ {∞}.

(iii) The amount di of a measurable data entity i over S can be expressed by a
natural number.

In what follows, without loss of generality, we will always assume that

1. the amount of each data entity in a given system S takes values in the set R of the
real numbers and

2. any unit vector

1di =
⎛

⎜
⎝0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

i-position

⎞

⎟
⎠ of R�

is identified with one unit of the data amount di (i = 1, 2, . . . , �).

We point out that the first of these two assumptions does not contradict the Defi-
nition 2.1(iii), only facilitates, in a meaningful way, any technical documentation of
the considerations that will follow in the paper, because the embedding in the larger
space of real numbers gives greater capabilities and allows an easier processing.

http://www.thefreedictionary.com/entity
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Under these assumptions, we give the following two definitions.

Definition 2.2 The linear space R
�, endowed with the corresponding product

Euclidean topology, is called a continuous space of data amounts over the system
S. Every bundle of data amounts (d1, d2, . . . , d�) can be represented by a point in
the measurable space R

� of data amounts over the system S.

Definition 2.3 For a data processor M, a program of data selection over the
system S specifies the data amount of each data entity in S that M takes into
account, as well as the data amount of this entity which he will make available.
We shall use the convention that the data amount of a data entity in S which has
to be made available by the processor is represented by a negative number, while
the amount of a data entity over S which has to be made available to the processor
is represented by a positive number. Then, every program of data selection can be
represented by an element

x= (d1, d2, . . . , d�)

in the continuous measurable space R
� of data amounts over the system S.

Remark 2.1 It is obvious that every element in R
� can be interpreted meaningfully

as a program of data selection.
It is assumed that for every data processor M there is a nonempty closed subset

XM in R
�, the focal data set of M, or simply the focal set of M, which describes

the set of a priori possible programs of data selection over the system S. Here a
priori possible means that, ignoring processing acts, the data processor can carry
out the program of data selection over the system S. More specifically, we have the
following.

Definition 2.4 A focal data set or simply focal set X over the system S is a
nonempty subset of the data entity set over S which is closed, convex and bounded
from below. Given a vector b ∈ R

� and a compact subset E ⊂ R
�, we denote by

Xb;;E the compact set of all focal sets X such that b ∈ X and X ∩ E �= ∅.

Remark 2.2 A focal set over the system S will typically belong to a discrete (not
necessarily finite) set in R

�.

2.2 Data Selection Preferences

Definition 2.5 We say that a data processor M selects the program of data
selection x instead of the program of data selection x

′
if he wants to select x

whenever he is offered the alternatives x and x
′
.

The binary relation “selected” becomes a powerful tool for modeling analysis if the
behavior of the data processors reveals a certain ‘consistency’ of choices.
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Definition 2.6 A data selection preference, or simply data preference, in the
complex S is a pair (X,!), where

1. X is a focal set over S and
2. ! X×X is a transitive and non-reflexive binary relation on X such that ! is open

in X× X.

In what follows, instead of (x, y) ∈!, we shall write

x ! y.

Thus,

x � y means (x, y) ∈� .

Sometimes it is convenient to represent a data selection preference by an R-valued
function. Thus, we can give the following

Definition 2.7 Given a (X,!), a data preference representation in S is a continu-
ous function

u : X → R

such that
x ! y if and only if u (x) > u (y).

Remark 2.3 It is well known that if E is a compact subset of R�, then the set P (E)
of all nonempty closed subsets of E together with the Hausdorff distance on E is a
compact metric space. We will assume that

1. K (⊂ P (E)) is a compact subset of focal sets X ⊂ E.

Notice that the particular choice of E is immaterial. To restrict in this way the
“universe” of focal sets X is no restriction for our analysis; however, it simplifies
the mathematical presentation, since the set K will turn out to be compact.

Notation 2.1

1. The set of all data selection preferences (X,!) in S with X ∈ K is denoted by

P = PK.

2. The set of all data selection preferences (X,!) in S with X ∈ Xy;;E is
denoted by

Py;;E.

It is easy to verify the following result.
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Proposition 2.1 To every data selection preference (X,!) ∈ P we associate the set

F := {(x, y) ∈ E × E : x ∈ X, y ∈ X and x � y} .

The set F is characterized by the system of the following four properties.

1. F is a closed subset in E × E.
2. The set {x ∈ E : there is a y with (x, y) ∈ F} belongs to the compact set K.
3. (x, y) ∈ F implies (x, x) ∈ F and (y, y) ∈ F .
4. (x, y) /∈ F and (y, z) /∈ F implies (x, z) /∈ F .

Conversely, given such a set F , we obtain the corresponding data selection
preference (X,!) ∈ P by setting
X : {x ∈ E : (x, x) ∈ F } and ! (X× X) {F}.

In order to investigate the behavior of the modeling process, it is often required
additional properties of the data selection preferences. For this purpose, we will now
define some useful auxiliary subsets of P .

Definition 2.8 Let (X,!) ∈ P be a given data selection preference.

(i) (X,!) is said to be locally non-satiated in the complex S if for each x ∈
X and each neighborhood U = Ux of x there exists a x

′ ∈ X ∩ U such that
x
′ ! x. The set of all locally non-satiated data selection preferences in P is

denoted by

Plns .

(ii) (X,!) is said to be monotonic in S if 0 ≤ x ≤ y and x �= y in X imply y ! x.
The set of all monotonic data selection preferences in P is denoted by

Pmo.

(iii) (X,!) is said to be negatively transitive in S if for every x, y, z ∈ X with
x � y and y � z we have x � z. The set of all negatively transitive data
selection preferences in P is denoted by
P�.

For a data selection preference in P� one defines the data selection indifference
in S by
x y if and only if x � y and y � x.

The indifference relation on X is reflexive, transitive and symmetric. The
relation � is then written as �. Obviously, the data selection indifference � is
reflexive, transitive and complete.

Definition 2.9 The data selection indifference
(
X,�

) ∈ P� is called:

1. convex in the complex S if for every z ∈ X, the set
{
x ∈ X : z � x

}
is convex

and
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2. strongly convex in S if for every x x
′
, x �= x

′
, and every 0 < λ < 1 it follows

that λx + (1 − λ) x
′ ! x.

3. The set of all convex (strongly convex) data selection preferences in P� is
denoted by

P�
co . (P�

sco).

2.3 Weighted Data Systems and Data Amount Processing
Capacities

A weighted data system w in S associates to every measurable data entity i in S two
numerical values: its weight wi and its balancing evaluation bi . The concept of the
weight for the data entity i depends upon the importance attributed to this entity by
the manager of the data processor. Regarding the concept of balancing evaluation
bi , this means that bi/bj is the amount of available data dj for the weighted entity j
in order to obtain one unit of data amount for the weighted entity i.

Definition 2.10 Hereafter, for the weight or/and the balancing evaluation of a given
weighted data entity in a system S, we will use, without any distinction and risk of
confusion, the single term data significance of the entity.

Hence, a weighted data system in a complex S associates to every weighted data
entity i in S a real number pi , its data significance. Thus p can be considered as an
element of R�.

If a data processor M in S decides to consider and use the weighted data system with
data significance p= (p1, p2, . . . , p�), then any M’s choice of programs of data
selection x = (d1, . . . , d�) in his data focal set XM is further restricted. Indeed,

Definition 2.11 The weighted data system’s value px of x cannot exceed a certain
number CM the data amount processing capacity of M in S.

The real number CM represents the maximum weighted value of a potential data
processing by M. Thus, a data amount processing capacity CM in S is typically
a function of prevailing weights for the weighted data entities. However, it will be
convenient to treat the data amount processing capacity as an independent argument.

Definition 2.12 Let M be a data processor, with data focal set X and data amount
processing capacity CM in S. If M prefers a weighted data system with significance
p= (p1, p2, . . . , p�), we define the set of data amount processing options of M
in S by
B (X, CM, p) := {x= (d1, . . . , d�) ∈ X : (p1, p2, . . . , p�) (d1, d2, . . . , d�) ≤ CM}.

The program of data selection which actually is chosen in the set of processing
options B (X, CM, p) depends directly on the data selection preferences.
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Definition 2.13 Let M be a data processor, with data selection preference (X,!)
and data amount processing capacity CM in S. If M prefers a weighted data system
with data significance p in S, we define the set A = A (X,!, CM, p) of all his
rational choices for the data amount in S as the set of maximal elements in the set
of data amount processing options, i.e.

A (X,!, CM, p) = {
x∗ = (d1, . . . , d�) ∈ B (X, CM, p) :

there is no x = (d1, . . . , d�) ∈ B (X, CM, p) with x ! x∗
}
.

Consequently, x∗ ∈ A (X,!, CM, p) if and only if x ! x∗ implies x > CM.

2.4 Topology of the Space of Data Selection Preferences:
Neighboring Selection Preferences

Our next purpose will be to investigate how M’s set of rational choices for the data
amount in S depends continuously on his data preference (X,!), his data amount
processing capacity CM and weighted data system with data significance p in S.

Surely, the discrete topology on P allows the correspondences on the set of data
rational choices to have continuity properties. However, for clear reasons, we want
a topology which is metrizable and separable or even compact.

Theorem 2.1

(i) The set P of all data selection preferences in the complex S endowed with the
topology Tclosed of closed convergence (http://www.math.kit.edu/ iag4/ lehre/
stochgeom2010s/media/ topology.pdf ) is compact and metrizable.

(ii) A sequence (Xn,!n)n∈N of data selection preferences in S converges to (X,!)
in (P, Tclosed) if and only if

liminf n→∞ {(x, y) ∈ Xn × Xn : x � y} = limsupn→∞ {(x, y) ∈ Xn × Xn :

x � y} = {(x, y) ∈ X× X : x � y} .

(iii) The topology Tclosed of closed convergence on the set P of data selection
preferences in S is the coarsest topology on P which has the property that
the set

{
(X,!, x, y) ∈ P × R

� × R
� : x, y ∈ X and x � y

}

is closed.

http://www.math.kit.edu/iag4/lehre/stochgeom2010s/media/topology.pdf
http://www.math.kit.edu/iag4/lehre/stochgeom2010s/media/topology.pdf
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Proof

(i) It is well known that the set F
(
R
� × R

�
)

of all closed subsets of R
� × R

�

endowed with the topology Tclosed of closed convergence is compact and
metrizable. In order to show that (P, Tclosed) is compact and metrizable, it
suffices to show that “P is a closed subset of

(
R
� × R

�, Tclosed
)
”. In this

direction, let us assume that (Xn,!n)n∈N is a sequence in P and F is the closed
limit of a sequence (Fn)n∈N where Fn := {

(x, y) ∈ Xn × Xn : x�ny
}
. We

have to show that “the data selection preference (X,!) belongs to F ”,where
X := {

x ∈ R
� : (x, x) ∈ F

}
and !:= (X× X) \F . In other words, we have to

show that

1. X is a data focal set over a system S (i.e., a nonempty subset of the data space R�

which is closed, convex and bounded from below) and
2. !⊂ X × X is a transitive and non-reflexive binary relation on X such that ! is

open in X× X.

To do so, observe that, since liminf n→∞ Fn = limsupn→∞ Fn = F ,

1. the set X is the closed limit of the sequence (Xn)n∈N.

Further, the set X is nonempty, since every set Xn belongs to K (Notation 2.1). It
follows that

1. the set X intersects a given compact set.

On the other hand, since every data focal set Xn is convex,

1. the closed limit X is a convex set.

Indeed, let x, y ∈ X and 0 < λ < 1. Since X = liminf n→∞ Xn, there are
sequences (xn ∈ Xn)n∈N and (yn ∈ Xn)n∈N converging to x and y respectively.
Since Xn is convex, we have λxn+(1 − λ) yn ∈ Xn. Consequently, λx+(1 − λ) y ∈
liminf n→∞ Xn = X.

It is now easily seen that

1. X ∈ K.

We show now that the data selection preference ! on X is non reflexive. Let
x ∈ X. Then there is a sequence (xn ∈ Xn)n∈N converging to x. Since !n is non
reflexive, we have (xn, xn) ∈ Fn. Hence (x, x) ∈ F , since liminf n→∞ Xn = X.
Thus, we have x � x.

Next, we show that the data selection preference ! on X is transitive. Let x ! y

and y ! z. To get a contradiction, let us assume that x � z, i.e., (x, z) ∈ F .
Since liminf n→∞ Fn = F there is a sequence (xn, zn) ∈ Fn with (xn, zn) −→

n→∞
(x, z). For n large enough, we have

(
xn, yn

)
/∈ Fn and (yn, zn) /∈ Fn, where

(yn ∈ Xn)n∈N converging to y. Indeed, if this were not true, it would follow that
(x, y) ∈ limsupn→∞ Fn = F or (y, z) ∈ F , which contradicts x ! y and
y ! z. Hence, by transitivity of !n we obtain (xn, zn) /∈ Fn which constitutes a
contradiction.
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(ii) It is well known that, in a compact metrizable space M endowed with the
topology of closed convergence, a sequence (Fn ⊂ M)n∈N of closed subsets
of M converges to a closed set F ⊂ M with respect to the topology of closed
convergence in M if and only if liminf n→∞ Fn = limsupn→∞ Fn = F .
Application for M = (P, Tclosed) proves the desired assertion.

(iii) Since (P, Tclosed) is a compact space, every separated coarser topology on P
coincides with Tclosed . Thus, it remains to show that the set

{(X,!, x, y) : x, y ∈ X and x � y}

is closed in (P, Tclosed)× R
�× R

�. Let (Xn,!n, xn, yn) −→
n→∞ (X,!, x, y),

where xn, yn ∈ Xn and xn � yn. Hence ( xn, yn) ∈ Fn, which implies that
(x, y) ∈ liminf n→∞ Fn = F , i.e. x, y ∈ X and x � y.

For later easy reference we state three immediate consequences of Theorem 2.1.

Corollary 2.1 The mapping (X,!)  → X of P into R
� is closed and lower

hemicontinuous.

Corollary 2.2 The set
{
(X,!, x, y) ∈ P × R

� × R
� : x, y ∈ X and x ! y

}
is a

Borel subset of P × R
� × R

�.

Corollary 2.3 Let (X,!) ∈ P , x, y ∈ X and x ! y. Then there are neighborhoods
V , Vx and Vy of (X,!) in P , x and y in R

�, respectively, such that x
′!′

y
′
, for every(

X
′
,!

)
∈ V , x

′ ∈ Vx ∩ X
′

and y
′ ∈ Vy ∩ X

′
.

In later sections, it will—for technical measure theoretical reasons—be important
to know that the sets

Pmo (the set of all monotonic data selection preferences in P),
P� (the set of all negatively transitive data selection preferences in P),
P�
co (the set of all convex (strongly convex) data selection preferences in P�) and

P�
sco (the set of all convex (strongly convex) data selection preferences in P�)

are Borel subsets of the compact metrizable space P . In that regard, it is easy to
show the following result.

Proposition 2.2 The sets Pmo, P�, P�
co and P�

sco are not closed Gδ-sets in P , with
closures different from P .

2.5 The Lower Hemicontinuity for the Rational Choice of Data
Amount

Let p= (p1, p2, . . . , p�) be the data significance vector of the weighted data entity
system S.
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Proposition 2.3 The defining relation B of the set

B (X, CM, p) : = {x= (d1, . . . , d�) ∈ X : (p1, p2, . . . , p�) · (d1, d2, . . . , d�)≤CM}

of the processing options of a data processor M in the complex S is closed in
P × R× R

� and lower hemicontinuous at every point (X, CM, p) ∈ P × R× R
�.

Proof The defining relation B is the intersection of the correspondence (X,!)  →
X of P into R

� with the correspondence

(X, CM, p)  −→
{
x ∈ R

� : p · x ≤ CM
}

of P×R×R
� into R

�. Since, by Corollary 2.1, both mappings are closed, we infer
that B is closed. To show the lower hemicontinuity of B, let us consider the relation
B̌ defined by

B̌ (X, CM, p) := {x ∈ X : p · x ≤ CM} .

By assumption, there is a vector x = (d1, . . . , d�) ∈ B̌ (X, CM, p).

Let
(
Xn,!n, C(n)M, pn

)

n∈N be a sequence converging to (X,!, CM, w) in P . By

Corollary 2.1, the correspondence (X,!)  → X of P into R
� is low-hemicontinuous.

Thus, there is a sequence (xn ∈ X )n∈N converging to x ∈ X. Evidently, the strict
inequality w · x < CM implies wn · xn < C(n)M for n large enough. Hence,

xn ∈ B̌
(
Xn, C(n)M, pn

)
for enough large n, which proves that the relation B̌ is

lower hemicontinuous at (X, CM, p). The convexity of the data focal set X implies

that B (X, CM, p) = B̌ (X, CM, p). The desired assertion now follows, since the
closure of a lower hemicontinuous mapping is also lower hemicontinuous.

Proposition 2.4 The defining relation

Aof the set A (X,!, CM, p) = {
x∗ = (d1, . . . , d�) ∈ B (X, CM, p) :

there is no x = (d1, . . . , d�) ∈ B (X, CM, p) with x ! x∗
}

of data amount’s rational choices in the complex S is nonempty and compact in
P × R × R

�. Further, it is lower hemicontinuous at every point (X,! , CM, p) ∈
P × R × R

� where the set B (X, CM, w) of processing options of M is compact
and X, CM, p satisfy the inequality

inf {p · X} < CM.

Note that the assumption inf {p · X} < CM cannot be weakened to

inf {p · X} ≤ CM.
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Proof By Proposition 2.3, the defining relation B of the set B (X, CM, p) is
closed and lower hemicontinuous at every point (X, CM, w) ∈ P × R × R

�.
Since the set B (X, CM, p) of processing options of M is compact and convex,
the defining relation B of B (X, CM, p) is continuous at the point (X, CM, p).
Put S := P × R × R

�. Since, by Theorem 2.1(iii) and Proposition 2.3, the set{
(s, x, y) ∈ S× R

� × R
� : x, y ∈ B (s) and x�sy

}
is closed in S × R

� × R
�,

the desired assertion follows.

2.6 Mean Rational Data Amount Choice

2.6.1 Data Sectors

We consider a finite set

M

of data processors M, each of whom is described by its data focal set XM in the
complex S, his data selection preference !M in S and his data amount processing
capacity CM in S. We introduce the map

s : M → P×R:M  −→ s (M) = (XM,!M, CM) .

Notation 2.2 If M selects a weighted data system with data significance
p= (p1, p2, . . . , p�) in S, then the data amount’s rational choice set of a data
processor M with characteristics s (M) ∈ P×R will be denoted by
A (s (M) , p).
Thus, we are leaded to the following.

Definition 2.14 If each data processor M selects the weighted data system with
data significance p= (p1, p2, . . . , p�) in the complex S, the mean rational data
amount choice of the set M in S is given by

A (s, p) := 1

|M|
∑

M∈M
A (s (M) , p)

Here the notation |·| means cardinality of set.

If χ denotes the normalized counting measure on M, i.e.,

χ (ε) := |ε|/|M|

for every subset ε of M, it is immediately verified that

A (s, p) :=
∫

M

A (s (·) , p) dχ.



152 N. J. Daras

Clearly, the integral is defined for more general mappings s and measures χ .
Indeed, we shall define later “mean rational data amount choice” by this formula
in a more general situation. However, let us first prepare and motivate this step of
abstraction.

Definition 2.15 The image measure  of χ with respect to the mapping s is called
the data preference-capacity distribution of the set M of data processors in the
complex S.

Thus,

 (B) = χ
(
s−1 (B)

)

denotes the fraction of data processors in M whose characteristics belong to B ⊂
P×R.

Definition 2.16 The marginal distributions
 P on P and  R on R

are called the data preference distribution and data capacity distribution in the
complex S, respectively.

Remark 2.4 The data preference-capacity distribution in the complex S may or may
not to be the product of its marginal distributions, i.e., it is not assumed that the data
capacity distribution is independent of the data preference distribution.

Notation 2.3 In some general cases, one is not primarily concerned about the total
rational data choice of a small number of data processors. Typically, one is interested
in the total rational data choice in S of all data processors in a large society. In
this case, it seems natural and convenient (for analytical reasons) to view the data
preference-capacity distribution  as an atomless distribution1[5] over the space of
all characteristics P×R, that is as a distribution satisfying  (X,!, CM) = 0 for
every (X,!, CM) ∈ P×R.

To view the distribution of the processor’s characteristics of a finite set M of
data processors as an atomless distribution means that the “actual” distribution is
considered as a distribution of a sample of size |M| drawn from a “hypothetical”
population of processors. There is also another reason why one should consider
atomless distributions of data processor’s characteristics: the very fact that data
processors are not alike—which means in our framework that the support of the
data preference-capacity distribution is “spread over” the set P×R can give rise
to properties, for example of the mean rational data amount choice in S, which
would not hold without the diversification of data processor’s characteristics. To be
more specific, if data selection preferences, say in P�, are not strongly convex in
S, the mean rational data amount choice in S for a set of data processors is, in
general, not unique. However, given a weighted data system with data significance

1A distribution μ on P×K is atomless if μ (X,!, CM) = 0 for every (X,!, CM) ∈ P × R.
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vector p # 0, Proposition 2.4 guarantees that, for a topologically large subset of
characteristics

(
�, CM

)
, the rational choice set of data amounts in S has a small

diameter. Thus, for a “widely spread” distribution of data characteristics one can
hope that, for “most” data processors, the rational choice set of data amounts in
the complex S is small.

The assumption of atomless distributions of data processors’ characteristics, in
particular, requires that “many” data processors be involved. Then the focal data
decision in the complex S of a typical data processor will have only a small influence
on the total rational data choice in S. In such a case, we do not need that the
distribution of data processors’ characteristics is atomless, but this distribution is
induced from a very “large” set of data processors The above discussion motivates
the following.

Definition 2.17 Let M be the set of all data processors in the complex S.

(i) A data sector in the complex S is a measurable mapping

s : (M,A, v ) → P×R

of a measure space (M,A, v ), consisting of the set M, a σ -algebra A of
subsets of M and a (probability) measure v on A, into the space P×R of data
characteristics such that the mean data processing capacity

∫

M

CM◦s dv

is finite.
(ii) A data sector in S is called

1. simple, if the measure space (M,A, v ) is simple, i.e., M is a finite set, A is
the set of all subsets of M, and v (E) = (|E |/|M|) whenever E ⊂ M;

2. partitionable, if the measure space (M,A, v ) is atomless, i.e., for every E ∈
A with v (E) > 0 there is a set K ⊂ E with 0 < v (K) < v (E);

3. convex, if almost all data processors of every atom of the measure space
(M,A, v ) have convex data selection preferences.

Remark 2.5 According to this definition, a partitionable data sector in S is always
convex in S.

Notation 2.4

(i) The generic element in the set M of a data sector in S is a data processor M
in S.

(ii) The data selection preference and data amount processing capacity of a data
processor in S are denoted by

s (M)= (
Xs(M),!s(M), Cs(M)

)
.
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(iii) If it is clear which mapping s is considered, we shall write, as usually, shorter

(XM,!M, CM ) .

(iv) The image measure
v ◦ s−1

is called the data preference-capacity distribution of the data sector s :
(M,A, v ) → P×R in S and is denoted by
 s , or simply  .

(v) Given a weighted data vector w ∈ R
�, the integral

∫

M

A (s (·) , p) dv

is called the mean rational data amount choice of the data sector s :
(M,A, v ) → P×R in S. It is denoted by

A (s, p) .

A partitionable data sector in S is, in fact, a more abstract concept. Its interpretation
relies on the analogy to the case of a simple data sector. It describes a data sector
in S with a very large set of data processors—an uncountable infinite set—where
every individual data processor has strictly no influence on the mean rational data
amount choice.

The σ -algebra A has only been introduced for technical reasons. Conceptually
A should be considered—as in the case of a simple data sector—as the set of all
subsets of M.

2.6.2 Data Preference-Capacity Distributions

One easily verifies (we shall prove a more general result in Theorem 2.2 below) that
the mean rational data amount choice A (s, p) in the complex S only depends on the
data preference-capacity distribution  = χ ◦ s−1 in S, provided the data amount’s
rational choice sets A (s (M) , p) are convex in S. More precisely, we have

A (s, p) =
∫

P×R

A (·, p) d .

However, in general, the mean rational data amount choice in S depends on the data
preference-capacity distribution in S and on the number |M| of data processors in
M. We shall now show in which situation the mean rational data amount choice in
S is determined by the data preference-capacity distribution in S.

To prove the first result of this paragraph, we may quote some auxiliary material
with necessary background.
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Lemma 2.1 ([3]) Let (Ω, A, m) be a measure space consisting of a set Ω , a σ -
algebra A of subsets of Ω and a (probability) measure m on A.

1. Let ϕ be a mapping with a measurable graph of a measurable space T into R
n.

2. If h is a measurable function of T into R
n, then the mapping ω  −→ ϕ (ω)+h (ω)

has a measurable graph.
3. If h is a measurable function of (Ω, A, v) into T , then the composition ϕ ◦ h :

ω  −→ ϕ (h (ω)) has a measurable graph.
4. Let ϕ be a mapping with a measurable graph of (Ω, A, m) into a complete

separable metric space Υ and h a measurable mapping of Υ into a separable
metric space M .

5. The mapping h ◦ ϕ : ω  −→ h (ϕ (ω)) has an (A× B (M))-analytic graph.2

6. If ϕ is a mapping with a measurable graph of (Ω, A, v) into R
n, then the

mapping

conv (ϕ) : ω  −→ conv (ϕ) (ω)

has an (A× Bn)-analytic graph.

1. Suppose Ω is a topological complete space and Υ is another complete separable
metric space. If ϕ is a mapping with a measurable graph of Ω into Υ and u is a
measurable function of Υ into R, then

2. the function

sup u (ϕ (·)) : Ω → R: ω  → sup u (ϕ (ω)) := sup {u (x) : x ∈ ϕ (ω)}

is measurable and

1. the mapping

ϕu : Ω → Υ : ω  → {x ∈ ϕ (ω) : u (x) = sup u (ϕ (ω)) }

has a measurable (analytic) graph.

1. If, in particular, Υ = R
n, the graph of the mapping conv (ϕ) is measurable.

2. If (Ω, A, m) is an atomless measure space [2] and ϕ is a mapping with a
measurable graph of (Ω, A, m) into R

n, then the following properties hold.
3. The integral

∫

Ω

ϕ dm

is a convex set in R
n.

1. Let Υ be a set in R
n. If ϕ (ω) := S for every ω ∈ Ω , then

∫

Ω

ϕ dm = conv (Υ ) .

2B (M) denotes the Borel σ -algebra generated by the open subsets of M .
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2. If the mapping ϕ of (Ω, A, m) into R
n is closed-valued and integrably bounded,

then the integral

∫

Ω

ϕ dm

is a compact subset of Rn.

1. Let ϕ be a mapping with a measurable graph of the measurable space
(Ω, A, m) into R

n. If
∫
ϕ �= ϕ (ω), ω ∈ A, then

sup

{
p · x : x ∈

∫
ϕ

}
=

∫
sup {p · x : x ∈ ϕ (·)}

for every vector p ∈ R
n.

1. Let ϕ be a mapping with a measurable graph of the measurable space
(Ω, A, m) into R

n+. The following hold.

conv

(∫

Ω

ϕ dm

)
=

∫

Ω

conv (ϕ) dm.

In particular, if the measure space is atomless, then
∫
Ω
ϕ dm = ∫

Ω
conv (ϕ) dm.

1. Let ϕ be a mapping with a measurable graph of a measurable space (T , J) into
R
n such that ϕ (t)is closed convex and contains no straight line whenever t ∈ T .

If h is a measurable function of (Ω, A, v) into T , then

∫

Ω

ϕ ◦ h dm =
∫

T

ϕ d
(
m ◦ h−1

)
.

Proof

(i)(a) The mapping f : (ω, x)  −→ (ω, x − h (ω)) of Ω × R
n into Ω × R

n is
(A⊗ Bn)-measurable. Here B denotes the Borel σ -algebra on R generated
by the open subsets of R. Consequently, if Gϕ+h and Gϕ are the graphs of
ϕ + h and ϕ, respectively then Gϕ+h = f−1

(
Gϕ

) ∈ A⊗ Bn.
(b) Similarly, since the mapping g : (ω, x)  −→ (h (ω) , x) of Ω × R

n into
T × R

n is measurable, the graph Gϕ◦h = g−1
(
Gϕ

)
is measurable.

(ii)(a) The set G = {(ω, x, z) ∈ Ω×Υ ×M:x ∈ ϕ (ω) and z = h (x)} belongs
to A⊗ B (Υ )⊗ B (M). Since the graph Gh◦ϕ is obtained by projecting the
set G on Ω×M , and since Υ is complete separable metric space, we infer
that Gh◦ϕ is an (A× B (M))-analytic graph (see p. 34 in [4]).

(b) Let Δ =
{
(ξ1, . . . , ξn+1) : ξi ≥ 0 and

∑n+1
i=1 ξi = 1

}
. The map-

ping ψ : ω  −→ ϕ (ω) × · · · × ϕ (ω) × {(ξ1, . . . , ξn+1)} of
(Ω, A, m) into R

n(n+1) × Δ has a measurable graph. The function
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h : (x1, . . . , xn+1, ξ1, . . . , ξn+1 )  −→ ∑n+1
i=1 ξixi of K

n(n+1) × Δ into
R
n is continuous. Since conv (ϕ) = h◦ϕ, part (ii)(a) implies that the graph

Gconv(ϕ) is analytic.
(iii)(a) We have to show that for every c ∈ R the set

Ω(ϕ)
c := {ω ∈ Ω: sup u (ϕ (ω)) > c }

belongs to A. Since Ω
(ϕ)
c = projΩ

{
(ω, x) ∈ Gϕ : u (x) > c

}
(Gϕ is the

graph of ϕ) and since the assumptions on ϕ and u imply that

{
(ω, x) ∈ Gϕ : u (x) > c

} ∈ A⊗ B (Υ )

it follows from the Projection Theorem that Ω(ϕ)
c ∈ A.

(b) The second assertion now follows readily. The function (ω, x)  → u (x) −
sup u (ϕ (ω)) is A

∫
B (Υ )−measurable. Hence

V = {(ω, x) ∈ Ω × Υ : u (x) = sup u (ϕ (ω)) } ∈ A⊗ B (Υ )

and consequently Gϕu = Gϕ

⋂
V ∈ A⊗ B (Υ ).

(c) Let ϕk (ω) = {x ∈ ϕ (ω) : |x| ≤ k} (k = 1, 2, . . . ). One easily verifies
that conv (ϕ (ω)) = ⋃∞

k=1 conv
(
ϕk (ω)

)
. For every v ∈ R

n, consider the
mapping Hv of Ω into R

n:

Hv (ω) :=
{
x ∈ R

n : v · x ≤ sup v · ϕk (ω)
}
.

By part (iii)(b), the function ω  → sup vϕk (ω) is measurable, and hence the
graph of Hv is measurable. Since conv

(
ϕk (ω)

) = ⋂
v∈D Hv (ω), where

D denotes a countable dense subset in R
n, the graph of conv

(
ϕk

)
(k =

1, 2, . . . ) is measurable, and hence the graph of conv (ϕ) is measurable.
(iv)(a) Let x1, x2 ∈ ∫

ϕdm and 0 < λ < 1. We denote by Lϕ the set of
m-integrable functions f : Ω → R

n such that f (ω) ∈ ϕ (ω) almost
everywhere in Ω . There are integrable functions f1, f2 ∈ Lϕ such that
x1 = ∫

f1dm and x2 = ∫
f2dm. From Liapunov’s Theorem, it follows that

the set
{(∫

E

f1 dm,

∫

E

f2 dm

)
∈ R

2n : E ∈ A

}

is convex. Since (0, 0) and (x1, x2) belong to this set, there exists a set
E ∈ A such that

(λx1, λ x2) =
(∫

E

f1 dm,

∫

E

f2 dm

)
.
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Define the function f ∈ Lϕ by

f (ω) =
{
f1 (ω) , if ω ∈ E

f2 (ω) , if ω /∈ E.

Then, one easily verifies that
∫
f = λx1+ (1 − λ) x2.This shows that the

integral
∫
Ω
ϕ dm is a convex set in R

n.
(b) From part (iv)a, it follows that conv (Υ ) ⊂ ∫

Ω
ϕ dm. On the other hand, it

is easily proved, by induction on the dimension of R
n, that

∫
Ω
f dm ∈

conv (Υ ) for every f with f (ω) ∈ Υ , almost everywhere on Ω . In
particular,

∫
Ω
ϕ dm ⊂ conv (Υ ).

(v) Observe that, by Fatou’s lemma in n-dimension, if (ϕν)ν∈N is a sequence of
mappings of (Ω, A, m) into R

n+ such that there exists a sequence (gν)ν∈N
of functions of Ω intoRn+ with the properties:

1. ϕν (ω) = gν (ω), almost everywhere in Ω and
2. the sequence (gν)ν∈N is uniformly integrable and the set {gν (ω) : ν ∈ N}

is bounded almost everywhere in Ω ,

then limsupν∈N
(∫

ϕν
) ⊂ ∫

limsupν∈N (ϕν). Letting ϕν = ϕ (ν ∈ N), we
have limsupν∈N

(∫
ϕν

) = ϕ (ω) since ϕ (ω) is closed. Thus, by the above
remark, every adherent point of

∫
ϕ belongs to

∫
ϕ. This proves assertion

(v).
(vi) The left-hand side is clearly at most equal to the right-hand side. From

part (iv), it follows that the function ω  → sup {p ϕ (ω)} is A-measurable.
Since there is by assumption an integrable selection for ϕ, the right-hand
side is well defined (it may be +8). Consider a real number α <

∫
s,

where s (ω) = sup {p ϕ (ω)}. We have to show that there is a function
f ∈ Lϕ such that α < p

∫
f . For this we choose an integrable selection

h ∈ Lϕ and consider for every integer ν the truncated mapping ϕν (ω) =
{x ∈ ϕ (ω) : |x − h (ω)| = ν}. Clearly, the graph of ϕν is measurable.
Hence, by part (c), the function sν (ω) = sup {p ϕν (ω)} is measurable. It is
also integrable, since h is integrable. Since (sν (ω))ν∈N ↗ s (ω), we obtain,
by the monotone convergence theorem, that

∫
sν → ∫

s. Consequently, for
ν large enough, we have α <

∫
sν . Thus, there is an integrable function

g of Ω into R such that α <
∫
g and g (ω) < sν (ω), ω ∈ Ω . Let

ψ (ω) := {x ∈ ϕν (ω) : p x > g (ω)}. Clearly ψ (ω) �= ϕ (ω), ω ∈ A,
and the graph of the mapping ψ is measurable. Consequently, by the
Measurable Selection Theorem, there exists a measurable selection f of
ψ , and hence of ϕ, which is even integrable. Since g (ω) < pf (ω) we
obtain

∫
g < p

∫
f and consequently < p

∫
f .

(vii) We prove the assertion by induction on the dimension n of Kn. Clearly the
theorem holds for n = 0. First we show that

∫
conv (ϕ) =

∫
ϕ if and only if conv

(∫
ϕ

)
=

∫
ϕ. (1)
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If
∫
conv (ϕ) = φ, then

∫
ϕ = φ and conv

(∫
ϕ
) = φ. To show

the converse, we assume that
∫
conv (ϕ) �= φ. Let f be an integrable

selection of conv (ϕ). Let v ∈ R
n and v # 0. Consider the set ψ (ω) =

{x ∈ ϕ (ω) : vx = vf (ω)}. Since f (ω) ∈ conv (ϕ (ω)), we have ψ (ω) �=
φ almost everywhere in Ω . The graph of the mapping ψ is measurable.
Therefore, by the measurable selection theorem, there exists a measurable
selection h ofψ . Since f is integrable, v # 0 and ϕ is positive, the selection
h is integrable, and hence

∫
ϕ �= φ. In the remainder of the proof of (vii),

we shall assume that
∫
ϕ �= φ. Next, we show that:

conv

(∫
ϕ

)
and

∫
conv (ϕ) (2)

have the same closure.
For every v ∈ R

n, one obtains sup
(
v
∫
ϕ
) ≤ sup

(
v
∫
conv (ϕ)

) ≤∫
sup (vϕ) = sup

(
v
∫
ϕ
)
. Indeed, the two inequalities are trivial and

the equality follows from (v). Hence, for every v ∈ R
n, we have

sup
(
v
∫
conv (ϕ)

) = sup
(
vconv

(∫
ϕ
))

, which proves property (2), since
the two sets are convex. Now, for every subset X of Rn and every v ∈ R

n

we define Xv := {x ∈ X : vx = sup vX }. It remains to show that for every
v ∈ R

n we have
(∫

conv (ϕ)
)v = (

conv
∫
ϕ
)v . Using the measurable

selection theorem, one easily shows that if ψ is a mapping of (Ω, A, m)

into R
n whose graph is analytic and

∫
ψ �= φ, then for every v ∈ R

n we
have

(∫
ψ
)v �= φ if and only if ψv (ω) �= φ almost everywhere in Ω and∫

ψv �= (∫
ψ
)v . We want to apply this to the mappings ϕ and conv (ϕ).

Since the graph of conv (ϕ) is analytic, but may not be measurable, we
have to use here the Measurable Selection Theorem for analytic sets. (if ϕ
is closed-valued, then conv (ϕ) has a measurable graph, by part (iii)(c)).
Also one easily verifies that for every nonempty subset X of Rn one has
(convX)v = conv (Xv). Consequently

(∫
conv (ϕ)

)v = ∫
(conv (ϕ))v =∫

conv (ϕv) and analogously conv
(∫

ϕ
)v = conv

(∫
ϕ
)v = conv

(∫
ϕv

)
.

Thus, it remains to show that:

∫
conv

(
ϕv

) = conv

(∫
ϕv

)
. (3)

Since, by part (iii), the graph of the relation ϕv is measurable, it follows,
from (1) that

∫
conv (ϕv) = φ if and only if

∫
ϕv = φ. Thus we

may assume in the remainder of the proof that
∫
ϕv �= φ. Consider the

hyperplane H = {x ∈ R
n : vx = 0}. There exists a coordinate axis L,

say the first, not contained in H. We consider the projection Q parallel
to L into H. Let h be the function of Ω into R

n defined by ω  −→
h (ω) := x − Qx for some x ∈ ϕv (ω). The function h is well-defined
and measurable. Clearly ϕv (ω) = Qϕv (ω) + h (ω). One easily verifies
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that conv
(∫

ϕv
) = conv

(∫
(Qϕv + h)

) = conv
(∫

Qϕv
) + ∫

h and∫
conv (ϕv) = ∫

conv (Qϕv + h) = ∫
conv (Qϕv)+ ∫

h. Hence, in order
to prove (3) it suffices to prove that

conv

(∫
Qϕv

)
=

∫
conv

(
Qϕv

)
. (4)

This follows from the induction hypothesis. Indeed, the vectors
Qe2,. . . , Qen form a basis for the hyperplane H (ej denotes the j th
unit vector in R

n). With respect to this basis, the mapping Qϕv becomes a
mapping ϕv ofΩ into K

n−1. The mapping ϕv is positive, since ϕ is positive.
Moreover, ϕv has a measurable graph, since Qϕv has a measurable graph.
Therefore, by induction hypothesis, we obtain conv

(∫
ϕv

) = ∫
conv (ϕv).

Let T denote the linear and injective mapping of Rn−1 into R
n, defined by

T (ζ2, . . . , ζn) = ∑
j ζjQej . Clearly Qϕv (ω) = T ϕv (ω). One easily

verifies that
∫
conv (T ◦ ϕv) = T

∫
conv (ϕv) = T conv

(∫
ϕv

) =
conv

(∫
T ◦ ϕv).

Thus, we obtain (4).
(viii) It is well known that if f is a measurable selection for ϕ, then f ◦ h is a

measurable selection for ϕ◦h. Therefore, the “change-of-variable formula”3

implies that
∫
ϕ d

(
m ◦ h−1

) ⊂ ∫
ϕ ◦ h dm. In order to prove the converse

inclusion we have to show that for every x ∈ ∫
ϕ ◦ h dm we can find an

integrable selection g ∈ Lϕ◦h with x ∈ ∫
g which is of the form: g = f ◦h,

where f is a measurable function of T into R
n. There exists a measurable

function f : T → R
n such that g = f ◦ h if and only if g is h−1 (J)-

measurable. Hence it remains to show that for every g ∈ Lϕ◦h there exists
a h−1 (J)-measurable selection of ϕ ◦ h with the same integral. But such
a selection is easily found. Let K = h−1 (J). Consider the conditional
expectation E

Kg of g given the σ -algebra K (the conditional expectation
is taken coordinatewise). By definition, EKg is a K-measurable function of
Ω into R

n and one has
∫
E
Kg dm = ∫

g dm. Thus we have only to show
that the function E

Kg is a selection for ϕ ◦h. Let ψ = ϕ ◦h. Since g ∈ Lψ ,
we obtain for every v ∈ R

n that inf vψ (ω) = vg (ω) almost everywhere in
Ω . By part (i)b, the graph of ψ belongs to K ⊗ Bn. Recall that B denotes
the Borel σ -algebra on R generated by the open subsets of R. Hence, part
(ii) implies that inf vψ () is Kv-measurable, and thus is almost everywhere
equal to a K-measurable function. Consequently, almost everywhere in Ω ,
depending on v, one obtains that

inf vψ (ω) =
(
E
Kinf vψ

)
(ω) =

(
E
Kvψ

)
(ω) = v

(
E
Kg

)
(ω) .

3If M is a metric space, f is a measurable mapping of Ω into M and h is a measurable mapping
of M into R, then h is m ◦ f−1-integrable if and only if h ◦ f is m-integrable and

∫
M
h dm =∫

Ω
h ◦ f dm.
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Thus, if Q denotes a countable dense subset of Rn, we have shown that,
almost everywhere in Ω , one has
inf vψ (ω) = v

(
E
Kg

)
(ω), foe every v ∈ Q.

Since ψ (ω) is closed, convex and contains no straight line, this implies that
almost everywhere in Ω , it holds(
E
Kg

)
(ω) ∈ ψ (ω).

We are now in position to prove the main result of this section.

Theorem 2.2 For every data sector s : (M,A, v ) → P×R in the complex S and
every weighted data system with data significance vector p # 0 in S, one has

(i) conv
(
A (s, p)

)
= conv

(∫
P×R

A (·, p) d ), where  = v ◦ s−1.

(ii) If the data sector s is convex in S, then the mean rational data amount choice
set A (s, p) in S is convex.

(iii) If inf {p · XM} ≤ CM, a.e. in M, then the mean rational data amount choice
set A (s, p) in S is nonempty and compact.

Proof

(i) Since, by Lemma 2.1(ii)(a) and Lemma 2.1(i)(a), the mappings A (·, p) and
A (s (·) , p) have both measurable graph and since they are bounded from
below, we have

conv

(∫
A (s (·) , p) dv

)
=

∫
conv (A (s (·) , p))dv =

∫
conv (A (·, p))d = conv

∫
A (·, p) d .

Indeed, the first and third equality follows from Lemma 2.1(vii). The second
equality follows from the transformation formula of Lemma 2.1(viii), since, by
Lemma 2.1(iii)(c), the graph of the mapping

conv (A (·, p))
belongs to B (P×R)× B�.

(ii) It is easily seen that the measure space (M,A, v ) can be decomposed into
a countable union of atoms and an atomless part. Since on atoms the data
selection preferences are convex, the rational choice set of data amounts is
also convex. Therefore, by Lemma 2.1(iv)(a), the mean rational data amount
choice set A (s, p) is convex.

(iii) It remains to show that
∫
A (·, p) d is nonempty and compact. Since

p # 0 and XM ≤ CM,  -almost everywhere on P×R,
The rational choice set A (X,! , CM, p ) of data amounts is nonempty almost
everywhere. Thus, by the measurable selection theorem and Lemma 2.1(v), the
integral

∫
A (·, p) d 
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is nonempty and compact if the mapping A (·, p) is integrably bounded. To
show this, one can assume without loss of generality that A takes values only
in R

�+. Then consider the function

V : P×R → R
� : (X,! , CM )  → V (X,! , CM ) :=

(CM
p1

, . . . ,
CM
p�

)
.

Clearly, A (X,! , CM, p ) ≤ V (X,! , CM ). Since, by assumption,∫
CMd < ∞, we conclude that the function V is  -integrable.

3 Contrasting Selective Priorities

3.1 Introduction

In this chapter we will study the evaluation of selective priorities for the data
amounts by several processors. To this end, let us consider a set M of data processors
M, each of whom is described by its focal data set XM over a complex S, his
corresponding data selection preference !M over S and his available data amount
over S. Hence, each data processor is characterized by an element in the space
P × R

�. A contrast of selective priorities for the data amounts is defined to be
a mapping of a finite set M of data processors into the space P ×R

� of processors’
characteristics. For reasons which will become clear later, we shall also consider
sets M of data processors which are infinite. Of course, in this case, the “total
available data amount over S” is infinitely large. To overcome the problems that
this creates, we shall replace the concept of “total available data amount in S” by
that of “mean available data amount in S”.

Obviously, the outcome of any contrast of selective priorities for the data amounts
can be viewed as a redistribution of the initially available data amount over S. The
analysis of a contrast, as presented here, consists of specifying a certain class of
redistributions as possible outcomes and investigates two equilibrium concepts: the
collaborative concept and the non-collaborative concept.

Let us consider first the collaborative concept. The contrast core of selective
priorities for the data amounts consists of those redistributions of the available
data amount over S which no other group of data processors can “improve upon”.
A group of data processors can improve upon redistribution if the group, by using
the data amount available to it, can make each member of that group better off,
regardless of the actions of the data processors outside that group. Let us now turn to
the non- collaborative concept. A contrast equilibrium of selective priorities for the
data amounts consists of a redistribution of the available data amount over S and a
vector of weighted data such that no individual data processor acting independently
can improve upon his situation when these weighted data prevail. To say that certain
weighted data prevail means that every data processor takes these weighted data as
given (beyond his influence) and that there is a “program” where the data processors
can use any amount of every weighted data by using these weighted data.
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In Proposition 3.1, we show that any contrast equilibrium of selective priorities
belongs to the contrast core of selective priorities. To study the converse, we need a
meaning for the data concept of “pure contrasting”, that is a set of data processors
each of whom cannot influence the outcome of their collective activity but certain
interplays of whom can influence that outcome. This leads logically to the concept of
the partitionable data processing, also called data processing with a “continuum
of data processors.” The essential result is the identity of the contrast core of
selective priorities and the set of contrast equilibriums of selective priorities for
such a partitionable data processing (see Theorem 3.1).

3.2 Main Definitions

In the context of pure contrasting, a data processor is described by a point in the
space P × R

� the space of processors’ characteristics. In order to simplify the
presentation we shall often assume that

1. the data focal set X over a complex S is equal to the positive orthant R�+ and
2. the vector δ of available data amount is ≥ 0.

With this formalism we are in position to give a more rigorous definition for the
concept of the contrasting of selective priorities.

Definition 3.1

(i) A contrast I of selective priorities for the data amounts over the complex
S is a measurable mapping I : (M,A, v ) → P × R

� of a measure space
(M,A, v ), consisting of the set M, a σ -algebra A of subsets of M and a
(probability) measure v on A, into the space P × R

� of data processors’
characteristics such that the mean available data amount over S

∫

M

δ◦I dv

is finite.
(ii) An allocation for the contrast I over S is an integrable function f :

(M,A, v ) → R
� such that almost everywhere in M, the focus vector f (M)

belongs to the data focal set of the data processor M.
(iii) An allocation f for the contrast I over S is called attainable or a state of the

I if
∫

f (M)

f dv =
∫

M

δ◦I dv.

(iv) A contrast I of selective priorities over S is called

1. simple if the measure space (M,A, v ) is simple, i.e.



164 N. J. Daras

M is a finite set, A is the set of all subsets of M and v (E) = (|E |/|M|)
whenever E ⊂ M;

1. partitionable if the measure space (M,A, v ) is atomless, i.e., for every
E ∈ A with v (E) there is a K ⊂ E such that K ∈ A and 0 < v (K) < v (E);

2. convex if almost all data processors of every atom of the measure space
(M,A, v ) have convex data selection preferences.

The focal data set, data selection preference and totally available data amount S of
a data processor M in M are denoted by

I (M) = (
X (I (M)) , !I(M), δ (I (M))

)
.

If it is clear which contrast I is considered, we will shorten this
(X (M) , !M, δ (M)) or (XM, !M, δM).

Definition 3.2

(i) Subsets of M belonging to A are called data processors’ synergies.
(ii) The distribution of I, i.e. the measure v◦I−1 on P×R

� is called the preference-
availability distribution of the contrast I and is denoted by μI or simply by μ.

If f is an allocation for the simple contrast I, then f (M) denotes the vector of data
significances allocated to the data processor M and

∫
δ dv = (1/|M|) ∑

M∈M δM
is the mean available data amount δ of the contrast I over S. We emphasize that∫
E f dv does not mean the vector of data significances allocated to a synergy E ,

indeed, if I is a simple contrast of selective priorities, then

∫

E
f dv = (1/|M|)

∑

E∈A
f.

A partitionable contrast of selective priorities for the data amounts is, in fact, a
quite abstract concept. The interpretation relies on analogy to the case of a simple
contrast. As in the case of a simple contrast, f (M) denotes the vector of data
significances allocated to the data processor M. The number v (E) is interpreted as
the fraction of the totality of data processors belonging to E and the integral

∫
δ dv

is the mean available data amount δ of the contrast I over S. Further, the σ -algebra
A of synergies is introduced for technical measure theoretic reasons. As in the case
of a simple contrast, there is no a priori restriction on possible synergies. Since for a
partitionable measure space (M,A, v ), the set M must be uncountably infinite, we
shall speak of a “continuum of data processors” as the set of participants. The results
of Sects. 3.3 and 3.4 provide a strong justification for considering the partitionable
contrast of selective priorities as the proper mathematical formulation of the concept
of “pure contrasting”, that is to say, a set of data processors, each of whom cannot
influence the outcome of their collective activity but certain synergies can influence
that outcome. The later concept is, in fact, as abstract as the former, which has the
decisive advantage of being mathematically well defined.
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A convex contrast of selective priorities has been defined in order to have a
concise way of referring to a contrast that is either partitionable or simple with
convex data selection preferences. From a formal point of view one might also
consider a measure space (M,A, v ) with atoms and a non-atomic (atomless) part.
In terms of the interpretation given earlier, one could consider a data processing
atom or simply atom as a group of data processors which cannot split up; either all
of them join a synergy or none does so. Note, however, that the mapping I, and also
every allocation f , must be constant on an atom. This means that all data processors
in the atom must have identical characteristics and must receive the same bundle in
an allocation. This is so special a case that it makes the interpretation of atoms as
synergies of little contrast significance. An alternative approach is to consider an
atom as a “big” data processor. In the framework of the model under consideration
“big” can only mean “big” in terms of the available data amount. Thus, a data
processing atom would be a data processor that has infinitely more available data
amount than any data processor in the partitionable part. Now, the measure v (K)
has a different interpretation. Formerly it expressed the relative number of data
processors in the synergy K, here it expresses something like the relative size of
the available data amount of K. Moreover the allocation f (M) and the preferences
!M must also be reinterpreted. The net result is far from clear.

3.3 Contrast Core and Contrast Equilibriums

A state of contrast is clearly not in equilibrium if one data processor or a group
of data processors could carry out decisions under the current circumstances and
arrive at a position which is more advantageous to all members of the group than
the current state. The underlying notion of equilibrium is based on the behavioral
assumption that data processors want to improve their position, and that to achieve a
preferred situation they are willing to cooperate. This notion of equilibrium leads to
the basic concept of the contrast core of selective priorities for the data amounts. In
such a case, the synergy of data processors can improve upon a redistribution of the
available data amount over S if the synergy, by using the data amount available to
it, can make each member better off. The contrast core of selective priorities for the
data amounts is defined as the set of all redistributions that no synergy can improve
upon. Formally:

Definition 3.3 Let

I : (M,A, v ) → P × R
�

be a contrast of selective priorities for the data amounts over the complex S. Let also
f be an allocation for I. The synergy C ∈ A can improve upon the allocation f if
there exists another allocation g for I such that

1. g (M)!Mf (M), almost everywhere in the synergy C,
2. v (C) > 0 and

∫
C g dv = ∫

C δ dv.
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The set of all attainable allocations for the contrast I that no synergy in A can
improve upon is called the core of selective priorities for the contrast I, or simply
the contrast core for I, and is denoted by
C (I).

The meaning of the definitions of “improve” and core of selective priorities for a
contrast is clear in the case of simple contrasts. In the framework presented here,
all externalities of focal data sets are excluded (i.e., data selection preferences do
not depend on the data amounts available to other data processors); the utility level
of the members in a synergy does not depend on actions taken by data processors
outside the synergies. The contrast core expresses what synergies can or cannot do
for them, not what they can or cannot do to their opponents. Therefore, we used the
term “to improve upon” and not “to block.”

We now introduce a different concept of equilibrium. Suppose the follow-
ing hold.

1. Every weighted data system over S has a data significance p.
2. Every data processor in a contrast considers this data significance as given.

Then, the data processor M with characteristics (XM,!M, δM) considers only
vectors of data amounts in his set of data options

{x ∈ XM : p · x ≤ p · δM}

and chooses a most desired vector in that set. If all these individually taken
decisions—decentralized through the data significance system p—yield a situation
where the rational choice set of data amounts equals the total supply we call that
state of contrast equilibrium for the data amounts. This concept of equilibrium
is based on the behavioral assumption that data processors consider the data
significance system as given and make their decisions independently of each other.
The only link between these individual decisions is the data significance system.
Formally: An allocation f for the contrast I over S is called

Definition 3.4 An allocation f for the contrast I : (M,A, v ) → P × R
� together

with a data significance system p ∈ R
� is said to be an equilibrium of contrasts

of selective priorities for I, or simply a contrast equilibrium for I, if the following
two conditions are satisfied.

1. f (M) ∈ A

⎛

⎜
⎝XM, !M, p · δM︸ ︷︷ ︸

CM

, p

⎞

⎟
⎠ almost everywhere in M,

i.e., f (M) is a maximal element for !M in the set

B = B (X, CM, p) := {x = (d1, . . . , d�) ∈ X :

(p1, p2, . . . , p�) · (d1, d2, . . . , d�) ≤ CM}
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of data options of M.

1.
∫
f (M)

f dv = ∫
M
δ dv,

i.e., mean rational data amount choice equals mean data availability.
The allocation f for the contrast I is called a contrast allocation if there exists a
weight vector p ∈ R

� such that (f, p) is an equilibrium of contrasts of selective
priorities for I. The set of all equilibriums of contrasts of selective priorities for I is
denoted by

W (I) .

A data significance system p ∈ R
� is said to be a data equilibrium of

significance levels or simply a data equilibrium vector for the contrast I if there
exists an allocation f for I such that (f, p) is an equilibrium of contrasts of selective
priorities for I. The set of all data equilibrium vectors for I which are normalized,
i.e.|p| = 1, is denoted by
e (I).

Under what conditions is justified the behavioral assumption that the data processors
can adapt to the prevailing system of data significance system? The obvious answer
is the following: data processors take significances as given if they have no influence
on them. This leads to a partitionable contrast of selective priorities. In that case,
one could ask what is special about the contrast allocations among the allocations
that cannot be improved upon. We shall show that there is nothing special; every
deviation from a contrast allocation can be improved upon. That is to say, contrast
allocations, and only they, belong to the contrast core of selective priorities, i.e.

W (I) = C (I) .

One part of the identity is trivial:

Proposition 3.1 For every contrast of selective priorities for the data amounts I in
S, we have

W (I) ⊂ C (I) .

Proof Let f ∈ W (I) but f /∈ C (I). Thus, there is a synergy C ∈ A, v (C) > 0,
and there is an allocation g such that

1. g (M)!Mf (M), almost everywhere in the synergy C
2. v (C) > 0 and

∫
g(C) g dv = ∫

C δ dv.

By (i) and the definition of a contrast allocation, we obtain
p · δ (M) < p · g (M) almost everywhere in C,
where p denotes an equilibrium significance associated with f . Hence

p ·
∫

C
δ dv < p ·

∫

C
g dv,

which contradicts (ii).
The central result of this section is proved in the following.
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Theorem 3.1 Let I : (M,A, v ) → Pmo × R
�+ be a partitionable contrast of

selective priorities for the data amounts in S with

∫
δdv # 0.

Then

W (I) = C (I) .

Proof By Proposition 3.1, it is enough to show that f ∈ C (I) implies f ∈ W (I).
Consider for every data processor M ∈ M, the sets
≺M (f ) := {x ∈ XM : x!Mf (M)} and h (M) := {≺M (f )− δ (M)}⋃ {0}.
Since the measure space (M,A, v ) is atomless, the integral

∫
hdv is a convex subset

in R
�. Since 0 ∈ ∫

hdv, it is clear that

∫
hdv �= A.

We now claim that
∫
hdv

⋂
R
�− = {0}. Assume to the contrary that there is an

integrable function h in the set Lh of all integrable selections of h, (that is of the set
of all v-integrable h : M → R

� which have the property that h (M) ∈ h (M) almost
everywhere in M), with

∫
hdv < 0. Then the interplay C = {M ∈ M : h (M) �= 0}

can improve the allocation f with the allocation

g (M) = h (M)+ δ (M)−
∫
hdv

v (C) .

Indeed, v (C) > 0, g (M)!Mf (M) for every M ∈ C and
∫
C g dv = ∫

C δ dv.
Consequently, there exists a hyperplane separating the two convex sets

∫
hdv and

R
�−, i.e. there is a vector p ∈ R

�, p ≥ 0, p �= 0, such that

0 ≤ p · z f or every z ∈
∫

hdv. (5)

The graph of the mapping h is measurable. Indeed the set

G :=
{
(X,!, x, y) ∈ Pmo × R

�+ × R
�+ : x ! y

}

is a Borel set in Pmo×R
�+×R

�+. Now the graph of the mapping M  → h (M) \ {0},
i.e., the set

{
(M, x) ∈ M× R

�+1 : x + δ (M)!Mf (M)
}
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is equal to h−1 (G) where h is a mapping of M× R
� into M× R

� × R
� defined by

h (M, x)? (XM,!M, x + δ (M) , f (M)) .

Clearly the mapping h is measurable, and hence the graph of h is measurable.
Therefore it follows

inf z∈∫ hdv p · z =
∫

inf x∈h(·) p · x dv.

Consequently, we obtain from (5) that 0 ≤ ∫
inf p · h dv. Since by definition the set

h (M) contains 0, we clearly have infp · h (M) ≤ 0. Hence, it follows that, almost
everywhere in M, inf p · h (M) = 0. Thus, we have shown that

almost everywhere in M, p · δ (M) ≤ p · x f or every x!Mf (M) . (6)

It follows from (6) that almost everywhere in M,

p · δ (M) = p · f (M) .

Indeed, first we obtain from (6) that p · δ (M) ≤ p · f (M) almost everywhere in
M. Now, if p · δ (M) < p ·f (M)for a set of data processors with positive measure,
then we obtain

p ·
∫

δ dv < p ·
∫

f dv,

which contradicts
∫
δ dv = ∫

f dv. Since by assumption
∫
δ dv # 0 and since

p ≥ 0, p �= 0, we surely have

v {M ∈ M : p · δ (M) > 0} > 0.

But for a data processor M with positive income, i.e., p · δ (M) > 0, property (6)
implies that

f (M) ∈ A (X,!M, p · δM (M) , p) .

Indeed, for x ∈ R
�+ with p · x < p · δ (M), it follows from (6) that

x�M f (M) .

Since in the case p · δ (M) > 0 for every x ∈ R
�+ with p · x = p · δ (M) is limit of a

sequence (xn) with p ·xn < p ·δ (M), the continuity of the selection preference rela-
tion !M implies x�M f (M). Thus f (M) is a maximal element for �M in the
set of data amount processing options

{
x ∈ R

�+ : p · x ≤ p · δ (M)
}
. This, together
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with the monotony of the selection preferences, implies that p # 0. Hence f (M)

belongs to the rational choice set of data amounts A (X,!M, p · δM (M) , p) even
in the case p · δ (M) = 0 since, by (6), the vector δ (M) belongs to the set of data
amount processing options which in this case is equal to {0}. This proves that (f, p)
is an equilibrium of contrasts of selective priorities for I.

3.4 Determinateness of Data Equilibrium Vectors

In this section we will investigate the existence of data equilibrium vectors for
a contrast I of selective priorities for the data amounts over the complex S

with particular emphasis on the case where the data selection preferences are not
assumed to be convex. Clearly, the classical assumption of convex preferences
cannot simply be dropped. Indeed, in a contrast of selective priorities, where the
influence of a certain individual data processor cannot be neglected, the convexity
of his preferences is essential in proving the existence of data equilibrium vectors.
The extreme case, where the contrast of selective priorities for the data amounts is
partitionable, is particularly simple (see Theorem 3.2 below).

The results of this section will show the important role that plays the number
of participants into a contrast (of selective priorities for the data amounts) to
the issue of existence of data equilibrium vectors, in the case where the selection
preferences are not convex. Proposition 3.3 and its consequences will show that
the data equilibrium vectors depend in a continuous way on the data defining the
contrast of selective priorities.

Let us introduce some notation. We shall write

A (t, p) ≡ A

⎛

⎝X,!, p · δ
︸ ︷︷ ︸

t

, p

⎞

⎠

(instead of = (X,!, p · δ) ∈ P × R
�+1 and p ∈ R

�).
Consequently, given the data equilibrium vector p, the mean rational choice set

of data amounts of a contrast I : (M,A, v ) → P × R
�, of selective priorities for

the data amounts is denoted by

u (I, p) :=
∫

A (I (·) , p) dv.

Given I and p, the mapping

Ip : (M,A, v ) → P × R : Ip (M) := (
XI(M),!M, p · δI(M)

)

defines a data sector in the complex S. With the Notation 2.4(v) of Sect. 2.6, we
clearly have

u (I, p) = A
(
Ip, p

)
.
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However, the sets∫
P×R� u (t, p)d I and

∫
P×R

u (·, ·, p)d Ip
may well be defined; only their convex hulls are identical.

It is easy to prove the following.

Proposition 3.2 If the sequence (In)n∈N of contrasts of selective priorities con-
verges in distribution to the contrast I of selective priorities for the data amounts
and if limn→∞pn=p, then the sequence

(
I
pn
n

)
n∈N of the data sectors in the complex

S converges in distribution to the data sector Ip in the complex S.

Before giving the main result on the existence of data equilibrium vectors for a
contrast I of selective priorities for the data amounts over the complex S, we need
some preparatory material.

Definition 3.5 Let I be a contrast of selective priorities for the data amounts
over the complex S. For every weighted data system with significance vector
p= (p1, p2, . . . , p�), we define the mean excess rational data choice Z ( p) by
Z (p) := u (I, p)− ∫

δ dv.

As it is readily seen, if 0 ∈ Z (p∗), then a significance vector p∗ =(
p∗

1, p
∗
2, . . . , p

∗
�

)
is a data equilibrium vector for a contrast I of selective priorities

for the data amounts over the complex S. The existence of data significances for the
contrast I therefore depends on properties of the mean excess rational data choice
relation Z . The relevant properties of Z are summarized in the following.

Proposition 3.3 Let I : (M,A, v ) → Pmo × R
�+ be a contrast of selective

priorities for the data amounts over the complex S with
∫
δ dv # 0. Then the

mean excess rational data choice mapping Z has the following properties.

1. Z is homogeneous of degree zero (i.e., for every p # 0 and λ > 0 one has

Z (p) = Z (λp)).

2. For every weighted data system with data significance vector

p= (p1, p2, . . . , p�) # 0

and

z ∈ Z (p)

one has

p · z = 0.
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3. The mapping Z is compact-valued, bounded from below and upper hemi-
continuous4.

4. If the sequence
(
p(n) =

(
p
(n)
1 p

(n)
2 , . . . , p

(n)
�

))

n∈N of strictly positive signifi-

cance vectors converges to p which is not strictly positive, then

inf n∈N
{∑�

i=1 zi : z ∈ Z
(
p(n)

)}
> 0 for n large enough.

Proof Property (i) follows immediately from the definition of the set Z (p). Since
data selection preferences are monotonic, we have p · x = p · δ (M) for every
x ∈ A (I (M) , p). This clearly implies property (ii). Let now p # 0. Then there
is a neighborhood Up of p consisting of strictly positive vectors. For any fixed
M ∈ M, the mapping p  −→ u (I (M) , p) is closed at p. Further, there is an
integrable real function h of M such that
|u (I (M) , p)| ≤ h (M) whenever M ∈ M and p ∈ Up,
e.g.

h (M) = 1

min
{
pi : p ∈ Up, i = 1, 2, . . . , �

} |δ (M)| .

Thus, the mapping p  −→ u (I, p) is closed at p. Since the correspondence u (I, ·)
is bounded on the neighborhood Up of p, it follows that u (I, ·) is compact-valued
and upper hemi-continuous at p. This clearly implies property (iii). Finally, property
(iv) follows from the fact that the data selection preferences are assumed to be
monotone and

∫
δ dv # 0.

The following Proposition is the fundamental mathematical result in contrast
equilibrium analysis.

Proposition 3.4 Let Z be a mapping of

intΔ =
{

p= (p1, p2, . . . , p�) ∈ R
�+ :

�∑

i=1

pi = 1

}

into R
�+ which has the properties (ii), (iii) and (iv) of Proposition 3.3. Then there

exists a vector p∗ # 0 such that

0 ∈ convZ (p∗) (=the convex hull of Z (p∗)).

Proof For any n ≥ �, we set

Δn :=
{

p= (p1, p2, . . . , p�) ∈ R
�+ :

�∑

i=1

pi = 1 and pi ≥ 1

n
∀i = 1, 2, . . . , �

}

.

4A relation ϕ of the metric space M into the metric space N is said to be upper hemi-continuous
at x ∈ M if ϕ (x) �≡ ϕ and if for every neighborhood Uϕ(x) of ϕ (x) there exists a neighborhood
Ux of x such that ϕ (Ux) ⊂ Uϕ(x). A relation ψ of the metric space M into the metric space N is
said to be lower hemi-continuous at x ∈ M if ψ (x) �≡ ψ and if for every open set G in N with
ψ (x) ∩G �= ψ there exists a neighborhood Ux of x such that ψ (Ux) ∩G �= ψ.
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Applying the fixed point theorem to the map 'n → R
�:p  → convZ (p), we infer

the existence of vectors
p(n) =

(
p
(n)
1 p

(n)
2 , . . . , p

(n)
�

)
∈ 'n and z(n) =

(
z(n)1 z(n)2 , . . . , z(n)�

)
∈ R

�

such that

z(n) ∈ convZ
(
p(n)

)
(7)

and

p · z(n) ≤ 0 f or every p ∈ 'n(n ≥ �). (8)

It suffices to show that z(n) = 0 for some n. Without of generality, we can

assume that the sequence
(
p(n) =

(
p
(n)
1 p

(n)
2 , . . . , p

(n)
�

))

n∈N is convergent, say

limn→∞p(n) = p ∈ Δ. One may claim that p # 0. Otherwise, it would follow that∑�
i=1 z(n)i > 0 for n large enough, which contradicts (8). Since p # 0, it follows

that
z(n) = 0 for n large enough.
Indeed, let n be such that int'n contains p. Clearly, we have p(n) · z(n) = 0, and,
since for n large enough, p(n) ∈ int'n, it follows, from (8), that z(n) = 0.

As an immediate consequence of Propositions 3.3 and 3.4, we have the following
result.

Theorem 3.2 Let I : (M,A, v ) → Pmo × R
�+ be a contrast of selective priorities

for the data amounts over the complex S with
∫
δ dv # 0. Then there exists an

equilibrium (f, p∗) of contrasts of selective priorities for I, with p∗ # 0.

Proof It suffices only to note that the mean rational data amount choice A (I, p∗)
of a convex data processing is convex (Theorem 2.2).

Corollary 3.1 The core is nonempty for every convex contrast of selective priorities
for the data amounts I : (M,A, v ) → Pmo × R

�+ over the complex S with∫
δ dv # 0.
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General Inertial Mann Algorithms and
Their Convergence Analysis for
Nonexpansive Mappings

Qiao-Li Dong, Yeol Je Cho, and Themistocles M. Rassias

1 Introduction

Let H be a Hilbert space and C be a nonempty closed convex subset of H . A
mapping T : C → C is said to be nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖

for all x, y ∈ C and Fix(T ) := {x ∈ C : T x = x} denotes the set of fixed points
of T .

In this paper, we consider the following fixed point problem:

Problem 1 Suppose that T : C → C is a nonexpansive mapping with Fix(T ) �= ∅.
Find a point x∗ ∈ C such that

T (x∗) = x∗.

Approximating fixed point problems for nonexpansive mappings has a variety of
specific applications since many problems can be seen as a fixed point problem of
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nonexpansive mappings such as convex feasibility problems, monotone variational
inequalities (see [3, 4] and references therein). In 2011, Micchelli et al. [27]
proposed fixed-point framework in the study of the total-variation model for image
denoising and finding a fixed point of a nonexpansive mapping was embedded
in their algorithms. Recently, in 2013 and 2016, Chen et al. [9, 10] showed the
convergence of the primal-dual fixed point algorithms with aid of the fixed point
theories of the nonexpansive mappings. A great deal of literature on the iteration
methods for fixed points problems of nonexpansive mappings have been published
(for example, see [11, 13, 15, 16, 19, 30–32, 35, 38]).

One of the most used algorithms is the Mann algorithm [20, 22] as follows:

xn+1 = αnxn + (1 − αn)T xn (1)

for each n ≥ 0. The iterative sequence {xn} converges weakly to a fixed point of T
provided that {αn} ⊂ [0, 1] satisfies

∑∞
n=1 αn(1 − αn) = +∞.

In generally, the convergence rate of the Mann algorithm is very slow, especially,
for large scale problems. In 2014, Sakurai and Liduka [36] pointed out that, to
guarantee practical systems and networks (see, for example, [17, 18]) stable and
reliable, the fixed point has to be quickly found. So, there are increasing interests in
study of fast algorithms for approximating fixed points of nonexpansive mappings.

To the best of our knowledge, there are two main ways to speed up the Mann
algorithm. One way is to combine conjugate gradient methods [29] and the Mann
algorithm to construct the accelerated Mann algorithm (see [12]). We will make
further analysis of the accelerated Mann algorithm in Sect. 3. Another way is to
combine the inertial extrapolation with Mann algorithm.

Consider the following minimization problem:

minϕ(x) (2)

for all x ∈ H , where ϕ(x) is differentiable. There are many methods to solve the
problem (2), the most popular two methods among which are the steepest descent
method and the conjugate gradient method. The later is a popular acceleration
method of the former.

To accelerate speed of convergence of the algorithms, multi-step methods
have been proposed in the literature, which can usually be viewed as certain
discretizations of the second-order dynamical system with friction:

ẍ(t)+ γ ẋ(t)+∇ϕ(x(t)) = 0,

where γ > 0 represents a friction parameter. One of the simplest method is the
two-step heavy ball method, in which, given xn and xn−1, the next point xn+1 is
determined via

xn+1 − 2xn + xn−1

h2
+ γ

xn − xn−1

h
+∇ϕ(xn) = 0,



General Inertial Mann Algorithms for Nonexpansive Mappings 177

which results in an iterative algorithm of the form

xn+1 = xn + β(xn − xn−1)− α∇ϕ(xn) (3)

for each n ≥ 0, where β = 1−γ h and α = h2. In 1964, Polyak [33] firstly used (3)
to solve the minimization problem (2) and called it an inertial type extrapolation
algorithm. In 1987, Polyak [33, 34] also considered the relation between the heavy
ball method and the following conjugate gradient method:

xn+1 = xn + βk(xn − xn−1)− αk∇ϕ(xn) (4)

for each n ≥ 0, where αk and βk can be chosen through different ways. It is obvious
that the only difference between the heavy ball method (3) is the choice of the
parameters.

From Polyak’s work, as an acceleration process, the inertial extrapolation algo-
rithms were widely studied. Especially recently, researchers constructed many iter-
ative algorithms by using inertial extrapolation, such as inertial forward-backward
algorithm [2, 7, 21], inertial extragradient methods [14] and fast iterative shrinkage
thresholding algorithms (FISTA) (see [5, 8]). The inertial extrapolation algorithm is
a two-step iterative method and its main feature is that the next iterate is defined by
making use of the previous two iterates.

By using the technique of the inertial extrapolation, in 2008, Mainge [23]
introduced the classical inertial Mann algorithm:

{
yn = xn + αn(xn − xn−1),

xn+1 = (1 − λn)yn + λnT (yn)
(5)

for each n ≥ 1. He showed that {xn} converges weakly to a fixed point of T under
the following conditions:

(B1) αn ∈ [0, α) for each n ≥ 1, where α ∈ [0, 1);
(B2)

∑∞
n=1 αn‖xn − xn−1‖2 < +∞;

(B3) infn≥1 λn > 0 and supn≥1 λn < 1.

For satisfying the summability condition (B2) of the sequence {xn}, one need
to calculate αn at each step (see [28]). In 2015, Bot and Csetnek [7] got rid of
the condition (B2) and substituted (B1) and (B3) with the following conditions,
respectively:

(C1) for each n ≥ 1, {αn} ⊂ [0, α] is nondecreasing with α1 = 0 and 0 ≤ α < 1;
(C2) for each n ≥ 1,

δ >
α2(1 + α)+ ασ

1 − α2 , 0 < λ ≤ λn ≤ δ − α[α(1 + α)+ αδ + σ ]
δ[1 + α(1 + α)+ αδ + σ ] ,

where λ, σ, δ > 0.
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In this paper, we introduce a general inertial Mann algorithm which includes
the classical inertial Mann algorithm and the accelerated Mann algorithm as special
cases. The numerical experiments show that the accelerated Mann behaves better
than other algorithms.

The structure of the paper is as follows. In Sect. 2, we present some lemmas
which will be used in the main result. In Sect. 3, we revisit first the accelerated
Mann algorithm and show that it is an inertial type algorithm. Then we analyze the
relationship between the general inertial Mann algorithm with some other ones. The
weak convergence of the general inertial Mann algorithm is discussed in Sect. 4.
We apply the general inertial Mann algorithm to the minimization problems and
propose a general inertial type gradient-projection algorithm in Sect. 5. In the final
section, Sect. 6, some numerical results are provided, which give the best choice of
the parameters in the general inertial Mann algorithm.

2 Preliminaries

We use the notation:

1. ⇀ for weak convergence and → for strong convergence;
2. ωw(xk) = {x : ∃xkj ⇀ x} denotes the weak ω-limit set of {xk}.
The following identity will be used several times in the paper (see Corollary 2.14
of [4]):

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2 (6)

for all α ∈ R and (x, y) ∈ H ×H .

Definition 1 A mapping T : H → H is called an averaged mapping if it can be
written as the average of the identity I and a nonexpansive mapping, that is,

T = (1 − α)I + αS, (7)

where α is a number in ]0, 1[ and S : H → H is a nonexpansive mapping. More
precisely, when (7) holds, we say that T is α-averaged.

It is obvious that a averaged mapping is nonexpansive.

Lemma 1 ([1]) Let {ψn}, {δn} and {αn} be the sequences in [0,+∞) such that
ψn+1 ≤ ψn+αn(ψn−ψn−1)+δn for each n ≥ 1,

∑∞
n=1 δn < +∞ and there exists

a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following hold:

(1)
∑

n≥1[ψn − ψn−1]+ < +∞, where [t]+ = max{t, 0};
(2) there exists ψ∗ ∈ [0,+∞) such that limn→+∞ ψn = ψ∗.
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Lemma 2 ([4]) Let D be a nonempty closed convex subset of H and T : D → H
be a nonexpansive mapping. Let {xn} be a sequence in D and x ∈ H such that
xn ⇀ x and T xn − xn → 0 as n → +∞. Then x ∈ Fix(T ).

Lemma 3 ([4]) Let C be a nonempty subset of H and {xn} be a sequence in H
such that the following two conditions hold:

(i) for all x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.

Then the sequence {xn} converges weakly to a point in C.

3 The General Inertial Mann Algorithms

In this section, first, we revisit the accelerated Mann algorithm. Then we propose
the general inertial Mann algorithm and show that it includes some other algorithms
as special cases.

3.1 Revisit the Accelerated Mann Algorithm

In 2014, Sakurai and Liduka [36] first proposed an acceleration of the Halpern
algorithm to search for a fixed point of a nonexpansive mapping. Inspired by their
work, by combining the Mann algorithm (1) and conjugate gradient methods [29],
the authors [12] proposed the following accelerated Mann algorithm:

dn+1 := 1
γ
(T (xn)− xn)+ βndn, (8)

yn := xn + γ dn+1, (9)

xn+1 := λnxn + (1 − λn)yn (10)

for each n ≥ 1, where γ > 0. The sequence {xn} converges weakly to a fixed point
of T provided that the sequences {λn} and {βn} satisfy the following conditions:

(A1)
∑∞

n=0 λn(1 − λn) = ∞;
(A2)

∑∞
n=0 βn < ∞.

Moreover, the sequence {xn} satisfies the following condition:

(A3) {T (xn)− xn} is bounded.

Remark 1 The condition (A3) is very strict. Sakurai and Liduka [36] discussed it
on two cases:
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(1) Suppose that Fix(T ) is bounded. Let C be a bounded closed convex set such
that Fix(T ) ⊂ C and PC can be easily computed (for example, C is a closed
ball with a large enough radius). Then compute

xn+1 := PC(λnxn + (1 − λn)yn)

for each n ≥ 1 instead of the xn+1 in (10). The boundedness of C and the
nonexpansivity of T mean that {xn} and {T (xn)} are bounded. Therefore, the
condition (A3) holds.

(2) Suppose that Fix(T ) is unbounded. One cannot choose a bounded C satisfying
that Fix(T ) ⊂ C and verify the boundedness of {T (xn)− xn}.

Next, we rewrite the accelerated Mann algorithm (8)–(10). Based on the new
formula, its convergence will be reanalyzed in Sect. 4.

Substitute (9) into (10), we have

xn+1 = λnxn + (1 − λn)(xn + γ dn+1)

= xn + (1 − λn)γ dn+1
(11)

for each n ≥ 1, which implies that

dn+1 = 1

(1 − λn)γ
(xn+1 − xn) (12)

for each n ≥ 1. Combining (8) and (9), we have

yn = T (xn)+ γβndn

= T (xn)+ βn

1 − λn−1
(xn − xn−1)

(13)

for each n ≥ 1, where the second equality comes from (12). Substitute (13)
into (10), we obtain

xn+1 = λnxn + (1 − λn)

[
T (xn)+ βn

1 − λn−1
(xn − xn−1)

]

= λnxn + (1 − γn)T (xn)+ βn(1 − λn)

1 − λn−1
(xn − xn−1)

= λn

[
xn + βn(1 − λn)

λn(1 − λn−1)
(xn − xn−1)

]
+ (1 − λn)T (xn)

(14)

for each n ≥ 1. Set

αn = βn(1 − λn)

λn(1 − λn−1)
(15)
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and

yn = xn + αn(xn − xn−1) (16)

for each n ≥ 1. Then the formula (8)–(10) can be rewrite as:
{
yn = xn + αn(xn − xn−1),

xn+1 = λnyn + (1 − λn)T xn
(17)

for each n ≥ 1.

3.2 Algorithms

Now we present the general inertial Mann algorithm as follows:
⎧
⎪⎪⎨

⎪⎪⎩

yn = xn + αn(xn − xn−1),

zn = xn + βn(xn − xn−1),

xn+1 = (1 − λn)yn + λnT (zn)

(18)

for each n ≥ 1, where {αn}, {βn} and {λn} satisfy the following conditions:

(D1) {αn} ⊂ [0, α] and {βn} ⊂ [0, β] are nondecreasing with α1 = β1 = 0 and
α, β ∈ [0, 1);

(D2) for any λ, σ, δ > 0,

δ >
αξ(1 + ξ)+ ασ

1 − α2 , 0 < λ ≤ λn ≤ δ − α[ξ(1 + ξ)+ αδ + σ ]
δ[1 + ξ(1 + ξ)+ αδ + σ ] , (19)

where ξ = max{α, β}.
Remark 2 By form, the general inertial Mann algorithm is the most general Mann
algorithm with inertial effects we are aware of. It is easy to show that the general
inertial Mann algorithm includes other algorithms as special cases. The relations
between the algorithm (18) with other work are as follows:

(1) αn = βn, i.e., yn = zn: this is the classical inertial Mann algorithm [23];
(2) βn = 0: this becomes the accelerated Mann algorithm [12];
(3) αn = 0: it becomes the following algorithm

{
zn = xn + βn(xn − xn−1),

xn+1 = (1 − λn)xn + λnT (zn)
(20)

for each n ≥ 1, which has not been studied before. Inspired by Malitsky [26] and
Mainge [24, 25], we call the algorithm (20) the reflected Mann algorithm.
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4 Convergence Analysis

In this section, we prove the convergence of the general inertial Mann algorithm and
then deduce the convergence of other methods.

Theorem 1 Suppose that T : H → H is nonexpansive with Fix(T ) �= ∅.
Assume the conditions (D1) and (D2) hold. Then the sequence {xn} generated by
the general inertial Mann algorithm (18) converges weakly to a point of Fix(T ).

Proof Take arbitrarily p ∈ Fix(T ). From (6), it follows that

‖xn+1 − p‖2 = (1 − λn)‖yn − p‖2 + λn‖T zn − p‖2 − λn(1 − λn)‖T zn − yn‖2

≤ (1 − λn)‖yn − p‖2 + λn‖zn − p‖2 − λn(1 − λn)‖T zn − yn‖2.

(21)
Using (6) again, we have

‖yn − p‖2 = ‖(1 + αn)(xn − p)− αn(xn−1 − p)‖2

= (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2 + αn(1 + αn)‖xn − xn−1‖2

(22)
Similarly, we have

‖zn − p‖2 = (1 + βn)‖xn − p‖2 − βn‖xn−1 − p‖2 + βn(1 + βn)‖xn − xn−1‖2.

(23)
Combining (21), (22) and (23), we have

‖xn+1 − p‖2 − (1 + θn)‖xn − p‖2 + θn‖xn−1 − p‖2

≤ −λn(1 − λn)‖T zn − yn‖2

+ [(1 − λn)αn(1 + αn)+ λnβn(1 + βn)]‖xn − xn−1‖2,

(24)

where

θn = αn(1 − λn)+ βnλn.

From (D1), (D2) and λn ∈ (0, 1), it follows that the θn ⊂ [0, ξ ] is nondecreasing
with θ1 = 0. Using (18), we have
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‖T zn − yn‖ =
∥∥∥

1

λn
(xn+1 − xn)+ αn

λn
(xn−1 − xn)

∥∥∥
2

= 1

λn
2 ‖xn+1 − xn‖2 + α2

n

λn
2 ‖xn−1 − xn‖2

+ 2
αn

λn
2 〈xn+1 − xn, xn−1 − xn〉

≥ 1

λn
2 ‖xn+1 − xn‖2 + α2

n

λn
2 ‖xn−1 − xn‖2

+ αn

λn
2

(
− ρn‖xn+1 − xn‖2 − 1

ρn
‖xn−1 − xn‖2

)
,

(25)

where we denote ρn := 1
αn+δλn . From (24) and (25), we can derive the inequality

‖xn+1 − p‖2 − (1 + θn)‖xn − p‖2 + θn‖xn−1 − p‖2

≤ (1 − λn)(αnρn − 1)

λn
‖xn+1 − xn‖2 + μn‖xn − xn−1‖2,

(26)

where

μn = (1 − λn)αn(1 + αn)+ λnβn(1 + βn)+ αn(1 − λn)
1 − ρnαn

ρnλn
≥ 0 (27)

since ρnαn ≤ 1 and λn ∈ (0, 1). Again, taking into account the choice of ρn, we
have

δ = 1 − ρnαn

ρnλn
,

and, from (27),

μn = (1−λn)αn(1+αn)+λnβn(1+βn)+αn(1−λn)δ ≤ ξ(1+ ξ)+αδ (28)

for each n ≥ 1. In the following, we apply some techniques from [2, 7] adapted
to our setting. Define the sequences φn := ‖xn − p‖2 for all n ∈ N and Ψn :=
φn − θnφn−1 + μn‖xn − xn−1‖2 for all n ≥ 1. Using the monotonicity of {θn} and
the fact that φn ≥ 0 for all n ∈ N, we have

Ψn+1 −Ψn ≤ φn+1 − (1+ θn)φn+ θnφn−1 +μn+1‖xn+1 −xn‖2 −μn‖xn−xn−1‖2.

By (26), we know

Ψn+1 − Ψn ≤
( (1 − λn)(αnρn − 1)

λn
+ μn+1

)
‖xn+1 − xn‖2. (29)
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Now, we claim that

(1 − λn)(αnρn − 1)

λn
+ μn+1 ≤ −σ (30)

for each n ≥ 1. Indeed, by (27) and the monotonicity of {λn}, we have

(1 − λn)(αnρn − 1)

λn
+ μn+1 ≤ −σ

⇐⇒ λn(μn+1 + σ)+ (1 − λn)(αnρn − 1) ≤ 0

⇐⇒ λn(μn+1 + σ)− δλn(1 − λn)

αn + δλn
≤ 0

⇐⇒ (αn + δλn)(μn+1 + σ)+ δλn ≤ δ.

Employing (28), we have

(αn + δλn)(μn+1 + σ)+ δλn ≤ (α + δλn)[ξ(1 + ξ)+ αδ + σ ] + δλn ≤ δ,

where the last inequality follows by using the upper bound for (λn) in (19). Hence
the claim in (30) is true. It follows from (29) and (30) that

Ψn+1 − Ψn ≤ −σ‖xn+1 − xn‖2 (31)

for each n ≥ 1. The sequence (Ψn)n≥1 is non-increasing and the boundness for
(θn)n≥1 delivers

−ξφn−1 ≤ φn − ξφn−1 ≤ Ψn ≤ Ψ1 (32)

for each n ≥ 1. Thus we obtain

φn ≤ ξnφ0 + Ψ1

n−1∑

k=1

ξk ≤ ξnφ0 + Ψ1

1 − ξ
(33)

for each n ≥ 1, where we notice that Ψ1 = φ1 ≥ 0 (due to the relation θ1 = α1 =
β1 = 0). Using (31)–(33), for all n ≥ 1, we have

σ

n∑

k=1

‖xk+1 − xk‖2 ≤ Ψ1 − Ψn+1 ≤ Ψ1 + ξφn ≤ ξn+1φ0 + Ψ1

1 − ξ
,

which means that

∞∑

n=1

‖xn+1 − xn‖2 < +∞. (34)
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Thus we have

lim
n→∞‖xn+1 − xn‖ = 0. (35)

From (20), we have

‖yn − xn+1‖ ≤ ‖xn − xn+1‖ + αn‖xn − xn−1‖
≤ ‖xn − xn+1‖ + α‖xn − xn−1‖,

which with (35) implies that

lim
n→∞‖yn − xn+1‖ = 0. (36)

Similarly, we obtain

lim
n→∞‖zn − xn+1‖ = 0. (37)

For an arbitrary p ∈ Fix(T ), by (26), (28), (34) and Lemma 1, we derive that
limn→∞ ‖xn − p‖ exists (we take into consideration also λn ∈ (0, 1) in (26)). On
the other hand, let x be a sequential weak cluster point of {xn}, that is, there exists a
subsequence {xnk } which converge weakly to x. By (37), it follows that znk ⇀ x as
k → ∞. Furthermore, from (18), we have

‖T zn − zn‖ ≤ ‖T zn − yn‖ + ‖yn − zn‖

≤ 1

λn
‖xn+1 − yn‖ + ‖yn − xn+1‖ + ‖zn − xn+1‖

≤
(

1 + 1

λ

)
‖xn+1 − yn‖ + ‖zn − xn+1‖.

Thus, by (36) and (37), we obtain ‖T znk − znk‖ → 0 as k → ∞. Applying now
Lemma 2 for the sequence {znk }, we conclude that x ∈ Fix(T ). From Lemma 3, it
follows that {xn} converges weakly to a point in Fix(T ). This completes the proof.

��
Let αn = βn and then Theorem 1 becomes Theorem 5 in [7].

Theorem 2 Suppose that T : H → H is a nonexpansive mapping with
Fix(T ) �= ∅. Assume the conditions (C1) and (C2) hold. Then the sequence {xn}
generated by the classical Mann algorithm (5) converges weakly to a point of
Fix(T ).

Let βn = 0 and then we obtain another convergence condition of the accelerated
Mann algorithm.
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Theorem 3 Suppose that T : H → H is a nonexpansive mapping with
Fix(T ) �= ∅. Assume that {αn} ⊂ [0, α] is nondecreasing with α1 = 0 and
0 ≤ α < 1 and {λn} satisfies

δ >
α2(1 + α)+ ασ

1 − α2 , 0 < λ ≤ λn ≤ δ − α[α(1 + α)+ αδ + σ ]
δ[1 + α(1 + α)+ αδ + σ ] ,

where λ, σ, δ > 0. Then the sequence {xn} generated by the accelerated Mann
algorithm (17) converges weakly to a point of Fix(T ).

Remark 3 It is obvious that Theorem 3 does not need the strict condition (A3).

Let αn = 0 and then we obtain the convergence theorem of the reflected Mann
algorithm.

Theorem 4 Suppose that T : H → H is a nonexpansive mapping with
Fix(T ) �= ∅. Assume that {βn} ⊂ [0, β] is nondecreasing with β1 = 0 and
0 ≤ β < 1 and {λn} satisfies

0 < λ ≤ λn ≤ 1

1 + β(1 + β)+ σ
,

where λ, σ > 0. Then the sequence {xn} generated by the reflected Mann algorithm
(20) converges weakly to a point of Fix(T ).

5 Applications

Consider the following constrained convex minimization problem:

min
x∈C ϕ(x), (38)

where C is a closed convex subset of a Hilbert space H and ϕ : C → R is a real-
valued convex function. If ϕ(x) is differentiable, then the problem (38) is equivalent
to the following fixed point problem:

x = PC(x − γ∇ϕ(x)), (39)

where γ > 0. Then the gradient-projection algorithm generates a iterative
sequence via

xn+1 = PC(xn − γ∇ϕ(xn)) (40)

for each n ≥ 1, where the initial guess x0 is taken from C arbitrarily, the parameter
γ is a positive real number and PC is the metric projection from H onto C.
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Remark 4 There are some inertial type algorithms for solving the minimization
problems (38). We first review them as follows:

(1) In 2015, Bot and Csetnek [6] proposed the so-called inertial hybrid proximal
extragradient algorithm, which includes the following algorithm as a special
case:

{
yk = xk + αk(x

k − xk−1),

xk+1 = PC(y
k − λk∇ϕ(xk))

for each k ≥ 1. They showed the convergence of the algorithm provided that
∇ϕ is γ -cocoercive and {αk} is nondecreasing with α1 = 0, 0 ≤ αk ≤ α and
0 < λ ≤ λk ≤ 2γ σ 2 for any α, σ ≥ 0 such that α(5 + 4σ 2)+ σ 2 < 1.

(2) In 2015, Malitski [26] proposed the projected reflected method:

xk+1 = PC

(
xk − λ∇ϕ(2xk − xk−1)

)

for each k ≥ 1. In 2016, Mainge [24, 25] extended the above method to more
general cases as follows:

⎧
⎨

⎩

yk = xk + αk(x
k − xk−1),

xk+1 = PC

(
xk − λn∇ϕ(yk)

)

for each k ≥ 1, where αk ≥ 0 and {λn} ⊂ [0, 1] satisfies some conditions.
They proved the convergence of the method when ∇ϕ is Lipshitz continuous
and monotone.

(3) In 2016, Dong et al. [14] introduced the extragradient method with inertial
effects:

⎧
⎪⎪⎨

⎪⎪⎩

wk = xk + αk(xk − xk−1),

yk = PC(wk − τ∇ϕ(wk)),

xk+1 = (1 − λk)wk + λkPC(wk − τ∇ϕ(yk))
(41)

for each k ≥ 1. The numerical experiments show that the inertial algorithm (41)
speeds up the extragradient method.

Assume that ∇ϕ is L-Lipschitz continuous, namely, there is a constant L > 0
such that

‖∇ϕ(x)− ∇ϕ(y)‖ ≤ L‖x − y‖ (42)

for all x, y ∈ C. In 2011, Xu [37] showed that the composite PC(I − γ∇ϕ) is
((2 + γL)/4)-averaged for 0 < γ < 2/L. So the composite PC(I − γ∇ϕ) is



188 Q.-L. Dong et al.

nonexpansive and we use the general inertial Mann methods (18) to construct the
general inertial gradient-projection algorithm for (38) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

yn = xn + αn(xn − xn−1),

zn = xn + βn(xn − xn−1),

xn+1 = (1 − λn)yn + λnPC(zn − γ∇ϕ(zn))
(43)

for each n ≥ 1, where {αn}, {βn} and {λn} satisfy the conditions (D1) and (D2).
To generalize Theorem 1, we have the following convergent result:

Theorem 5 Assume that the minimization problem (38) is consistent and the
gradient ∇ϕ satisfies the Lipschitz condition (42). Let γ be a number such that
0 < γ < 2/L. Then the sequence {xn} generated by the general inertial gradient-
projection algorithm (43) converges weakly to a minimizer of the problem (38).

6 Numerical Examples and Conclusions

In this section, we present a numerical example to illustrate the choice of the
parameters {αn} and {βn} in the general inertial algorithm (18). All the programs are
written in Matlab version 7.0. and performed on a PC Desktop Intel(R) Core(TM)
i5-4200U CPU @ 1.60 GHz 2.30 GHz, RAM 4.00 GB.

Problem 2 (see [36]) For any nonempty closed convex set Ci ⊂ R
N for each i =

0, 1, · · · ,m,

Find x∗ ∈ C :=
m⋂

i=0

Ci,

where one assumes that C �= ∅.
Define a mapping T : RN → R

N by

T := P0

( 1

m

m∑

i=1

Pi

)
, (44)

where Pi = PCi
(i = 0, 1, · · · ,m) stands for the metric projection onto Ci . Since

Pi (i = 0, 1, · · · ,m) is nonexpansive, the mapping T defined by (44) is also
nonexpansive. Moreover, we find that

Fix(T ) = Fix(P0)

m⋂

i=1

Fix(Pi) = C0

m⋂

i=1

Ci = C.
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Table 1 The general inertial Mann algorithm with αn = 0.4, λn = 0.5, N = 500, m = 300

The initial value βn 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100 × rand(N, 1) Iter. 8 18 20 1367 1291 1195 796 32 36 41 47

(1, 1, · · · , 1) Iter. 4 13 15 17 1111 1031 928 27 31 36 42

(1,−1, · · · , 1,−1) Iter. 4 13 15 17 1429 1333 1217 27 31 36 42

Table 2 The general inertial Mann algorithm with βn = 0.0, λn = 0.5, N = 500, m = 700

The initial value αn 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100 × rand(N, 1) Iter. 2181 4093 3786 4 8 2588 12 11 15 15 19

(1, 1, · · · , 1) Iter. 4798 4557 4315 3585 4 3 3 8 8 7 7

(10,−10, · · · , 10,−10) Iter. 3608 3427 3249 5 3213 8 7 12 11 11 15

In the experiment, we set Ci (i = 0, 1, · · · ,m) as a closed ball with center ci ∈
R
N and radius ri > 0. Thus Pi (i = 0, 1, · · · ,m) can be computed with

Pi(x) :=
⎧
⎨

⎩

ci + ri

‖ci − x‖ (x − ci) if ‖ci − x‖ > ri,

x if ‖ci − x‖ ≤ ri .

Choose ri := 1 (i = 0, 1, · · · ,m), c0 := 0, ci ∈ (−1/
√
N, 1/

√
N)N (i =

1, · · · ,m) are randomly chosen.
In the numerical results listed in the tables, “Iter." denotes the number of

iterations. We take E(x) = ‖xn − xn−1‖ < 10−6 as the stopping criterion and
test three initial values x0.

In the general inertial Mann algorithm, there are three parameters αn, βn, λn. To
compare the different algorithms, we choose λn = 0.5 and test different choices of
αn and βn.

Table 1 illustrates that the number of iterations for the general inertial Mann
algorithm with βn = 0 is minimal, that is, the accelerated Mann algorithm is best.

From Table 2, we conclude that the number of the iteration is small for the
accelerated algorithm with αn ∈ [0.6, 1.0].
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Reverses of Jensen’s Integral Inequality
and Applications: A Survey of Recent
Results

Silvestru Sever Dragomir

1 Introduction

Let ($,A, μ) be a measurable space consisting of a set $, a σ -algebra A of parts
of $ and a countably additive and positive measure μ on A with values in R∪{∞} .

For a μ-measurable function w : $ → R, with w (x) ≥ 0 for μ-a.e. (almost
every) x ∈ $, consider the Lebesgue space Lw ($,μ) := {f : $ → R, f is μ-
measurable and

∫
$
w (x) |f (x)| dμ (x) < ∞}. For simplicity of notation we write

everywhere in the sequel
∫
$
wdμ instead of

∫
$
w (x) dμ (x) . We also assume that∫

$
wdμ = 1.
An useful result that is used to provide simpler upper bounds for the difference

in Jensen’s inequality is the Gruss’ inequality. We recall now some facts related to
this famous result.

If f, g : $ → R are μ-measurable functions and f, g, fg ∈ Lw ($,μ) , then
we may consider the Čebyšev functional

Tw (f, g) :=
∫

$

wfgdμ−
∫

$

wf dμ

∫

$

wgdμ. (1.1)

The following result is known in the literature as the Grüss inequality

|Tw (f, g)| ≤ 1

4
(% − γ ) (&− δ) , (1.2)
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provided

−∞ < γ ≤ f (x) ≤ % < ∞, −∞ < δ ≤ g (x) ≤ & < ∞ (1.3)

for μ-a.e. a. x ∈ $. The constant 1
4 is sharp in the sense that it cannot be replaced

by a smaller quantity.
Note that if $ = {1, . . . , n} and μ is the discrete measure on $, then we obtain

the discrete Grüss inequality

∣
∣∣∣∣

n∑

i=1

wixiyi −
n∑

i=1

wixi ·
n∑

i=1

wiyi

∣
∣∣∣∣
≤ 1

4
(% − γ ) (&− δ) , (1.4)

provided γ ≤ xi ≤ %, δ ≤ yi ≤ & for each i ∈ {1, . . . , n} and wi ≥ 0 with
Wn := ∑n

i=1 wi = 1.
With the above assumptions, if f ∈ Lw ($,μ) then we may define

Dw (f ) := Dw,1 (f ) :=
∫

$

w

∣∣
∣∣f −

∫

$

wf dμ

∣∣
∣∣ dμ. (1.5)

In 2002, Cerone and Dragomir [5] obtained the following refinement of the Grüss
inequality (1.2):

Theorem 1 (Cerone and Dragomir [5]) Let w, f, g : $ → R be μ-measurable
functions with w ≥ 0 μ-a.e. (almost everywhere) on $ and

∫
$
wdμ = 1. If f, g,

fg ∈ Lw ($,μ) and there exists the constants δ, & such that

−∞ < δ ≤ g (x) ≤ & < ∞ for μ-a.e. x ∈ $, (1.6)

then we have the inequality

|Tw (f, g)| ≤ 1

2
(&− δ)Dw (f ) . (1.7)

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller quantity.

Remark 1 The inequality (1.7) was obtained for the particular case $ = [a, b] and
the uniform weight w (t) = 1, t ∈ [a, b] by Cheng and Sun in [7]. However, in that
paper the authors did not prove the sharpness of the constant 1

2 .

For f ∈ Lp,w ($,A, μ) := {
f : $ → R,

∫
$
w |f |p dμ < ∞}

, p ≥ 1 we may
also define

Dw,p (f ) :=
[∫

$

w

∣∣∣∣f −
∫

$

wf dμ

∣∣∣∣

p

dμ

] 1
p

=
∥∥∥∥f −

∫

$

wf dμ

∥∥∥∥
$,p

(1.8)
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where ‖·‖$,p is the usual p-norm on Lp,w ($,A, μ) , namely,

‖h‖$,p :=
(∫

$

w |h|p dμ
) 1

p

, p ≥ 1.

Using Hölder’s inequality we get

Dw,1 (f ) ≤ Dw,p (f ) for p ≥ 1, f ∈ Lp,w ($,A, μ) ; (1.9)

and, in particular for p = 2

Dw,1 (f ) ≤ Dw,2 (f ) :=
[∫

$

wf 2dμ−
(∫

$

wf dμ

)2
] 1

2

, (1.10)

if f ∈ L2,w ($,A, μ) .
For f ∈ L∞ ($,A, μ) := {

f : $ → R, ‖f ‖$,∞ := essupx∈$ |f (x)| < ∞}

we also have

Dw,p (f ) ≤ Dw,∞ (f ) :=
∥∥∥
∥f −

∫

$

wf dμ

∥∥∥
∥
$,∞

. (1.11)

The following corollary may be useful in practice.

Corollary 1 With the assumptions of Theorem 1, we have

|Tw (f, g)| ≤ 1

2
(&− δ)Dw (f ) (1.12)

≤ 1

2
(&− δ)Dw,p (f ) if f ∈ Lp ($,A, μ) , 1 < p < ∞;

≤ 1

2
(&− δ)Dw,∞ (f ) if f ∈ L∞ ($,A, μ) .

Remark 2 The inequalities in (1.12) are in order of increasing coarseness. If we
assume that −∞ < γ ≤ f (x) ≤ % < ∞ for μ-a.e. x ∈ $, then by the Grüss
inequality for g = f we have for p = 2

[∫

$

wf 2dμ−
(∫

$

wf dμ

)2
] 1

2

≤ 1

2
(% − γ ) . (1.13)

By (1.12), we deduce the following sequence of inequalities

|Tw (f, g)| ≤ 1

2
(&− δ)

∫

$

w

∣
∣∣∣f −

∫

$

wf dμ

∣
∣∣∣ dμ (1.14)
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≤ 1

2
(&− δ)

[∫

$

wf 2dμ−
(∫

$

wf dμ

)2
] 1

2

≤ 1

4
(&− δ) (% − γ )

for f, g : $ → R, μ-measurable functions and so that −∞ < γ ≤ f (x) < % <

∞, −∞ < δ ≤ g (x) ≤ & < ∞ for μ-a.e. x ∈ $. Thus, the inequality (1.14) is a
refinement of Grüss’ inequality (1.2).

In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, Dragomir obtained in 2002 [14] the following result:

Theorem 2 (Dragomir [14]) Let ' : [m,M] ⊂ R → R be a differentiable convex
function on (m,M) and f : $ → [m,M] so that ' ◦ f, f, '′ ◦ f, (

'′ ◦ f ) f ∈
Lw ($,μ) , where w ≥ 0 μ-a.e. on $ with

∫
$
wdμ = 1. Then we have the

inequality:

0 ≤
∫

$

w (' ◦ f ) dμ−'

(∫

$

wf dμ

)
(1.15)

≤
∫

$

w
(
'′ ◦ f ) f dμ−

∫

$

w
(
'′ ◦ f ) dμ

∫

$

wf dμ

≤ 1

2

[
'′ (M)−'′ (m)

] ∫

$

w

∣∣∣
∣f −

∫

$

wf dμ

∣∣∣
∣ dμ.

For a generalization of the first inequality when differentiability is not assumed
and the derivative '′ is replaced with a selection ϕ from the subdifferential ∂', see
the paper [41] by Niculescu.

Remark 3 If μ ($) < ∞ and ' ◦ f, f, '′ ◦ f, (
'′ ◦ f ) f ∈ L ($,μ) , then we

have the inequality:

0 ≤ 1

μ ($)

∫

$

(' ◦ f ) dμ−'

(
1

μ ($)

∫

$

f dμ

)
(1.16)

≤ 1

μ ($)

∫

$

(
'′ ◦ f ) f dμ− 1

μ ($)

∫

$

(
'′ ◦ f ) dμ 1

μ ($)

∫

$

f dμ

≤ 1

2

[
'′ (M)−'′ (m)

] 1

μ ($)

∫

$

∣∣∣
∣f − 1

μ ($)

∫

$

f dμ

∣∣∣
∣ dμ.

Remark 4 On making use of (1.15) and (1.14), one can state the following string of
reverse inequalities for the Jensen’s difference

0 ≤
∫

$

w (' ◦ f ) dμ−'

(∫

$

wf dμ

)
(1.17)
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≤
∫

$

w
(
'′ ◦ f ) f dμ−

∫

$

w
(
'′ ◦ f ) dμ

∫

$

wf dμ

≤ 1

2

[
'′ (M)−'′ (m)

] ∫

$

w

∣∣∣
∣f −

∫

$

wf dμ

∣∣∣
∣ dμ

≤ 1

2

[
'′ (M)−'′ (m)

]
[∫

$

wf 2dμ−
(∫

$

wf dμ

)2
] 1

2

≤ 1

4

[
'′ (M)−'′ (m)

]
(M −m) .

We notice that the inequality between the first, second and last term from (1.17)
was proved in the general case of positive linear functionals in 2001 by Dragomir
in [13].

The discrete case is as follows. Let ā = (a1, . . . , an) , b̄ = (b1, . . . , bn) ,

p̄ = (p1, . . . , pn) be n-tuples of real numbers with pi ≥ 0 (i ∈ {1, . . . , n}) and∑n
i=1 pi = 1. If b ≤ bi ≤ B, i ∈ {1, . . . , n} , then one has the inequality

∣∣∣
∣∣

n∑

i=1

piaibi −
n∑

i=1

piai

n∑

i=1

pibi

∣∣∣
∣∣
≤ 1

2
(B − b)

n∑

i=1

pi

∣∣∣
∣∣∣
ai −

n∑

j=1

pjaj

∣∣∣
∣∣∣

(1.18)

≤ 1

2
(B − b)

⎡

⎣
n∑

i=1

pi

∣
∣∣∣∣∣
ai −

n∑

j=1

pjaj

∣
∣∣∣∣∣

p⎤

⎦

1
p

≤ 1

2
(B − b) max

i=1,n

∣
∣∣∣∣∣
ai −

n∑

j=1

pjaj

∣
∣∣∣∣∣
,

where 1 < p < ∞. The constant 1
2 is sharp in the first inequality.

If more information about the vector ā = (a1, . . . , an) is available, namely, if
there exists the constants a and A such that a ≤ ai ≤ A, i ∈ {1, . . . , n} , then

∣
∣∣∣∣

n∑

i=1

piaibi −
n∑

i=1

piai

n∑

i=1

pibi

∣
∣∣∣∣
≤ 1

2
(B − b)

n∑

i=1

pi

∣∣
∣∣∣∣
ai −

n∑

j=1

pjaj

∣∣
∣∣∣∣

(1.19)

≤ 1

2
(B − b)

⎡

⎢
⎣

n∑

i=1

pi

∣∣∣∣∣
∣
ai −

n∑

j=1

pjaj

∣∣∣∣∣
∣

2
⎤

⎥
⎦

1
2

≤ 1

4
(B − b) (A− a) ,

with the constants 1
2 and 1

4 best possible.
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Corollary 2 Let ' : [m,M] → R be a differentiable convex function on (m,M) .

If xi ∈ [m,M] and wi ≥ 0 (i = 1, . . . , n) with Wn := ∑n
i=1 wi = 1, then one has

the reverse of Jensen’s weighted discrete inequality:

0 ≤
n∑

i=1

wi' (xi)−'

(
n∑

i=1

wixi

)

(1.20)

≤
n∑

i=1

wi'
′ (xi) xi −

n∑

i=1

wi'
′ (xi)

n∑

i=1

wixi

≤ 1

2

[
'′ (M)−'′ (m)

] n∑

i=1

wi

∣
∣∣∣∣∣
xi −

n∑

j=1

wjxj

∣
∣∣∣∣∣
.

Remark 5 We notice that the inequality between the first and second term in (1.20)
was proved in 1994 by Dragomir and Ionescu, see [25].

On utilizing (1.20) and (1.19) we can state the string of inequalities

0 ≤
n∑

i=1

wi' (xi)−'

(
n∑

i=1

wixi

)

(1.21)

≤
n∑

i=1

wi'
′ (xi) xi −

n∑

i=1

wi'
′ (xi)

n∑

i=1

wixi

≤ 1

2

[
'′ (M)−'′ (m)

] n∑

i=1

wi

∣∣∣∣
∣∣
xi −

n∑

j=1

wjxj

∣∣∣∣
∣∣

≤ 1

2

[
'′ (M)−'′ (m)

]
⎡

⎣
n∑

i=1

wix
2
i −

(
n∑

i=1

wixi

)2
⎤

⎦

1/2

≤ 1

4

[
'′ (M)−'′ (m)

]
(M −m) .

We notice that the inequality between the first, second and last term in (1.21) was
proved in 1999 by Dragomir in [12].

In this paper we survey several new reverses of the celebrated Jensen’s inequality
for convex functions and Lebesgue integral on measurable spaces. Applications
for weighted discrete means, to Hölder inequality, Cauchy-Bunyakovsky-Schwarz
inequality and for f -divergence measures in information theory are also given.
Finally, applications for functions of selfadjoint operators in Hilbert spaces with
some examples of interest are also provided.
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2 A Refinement and a Divided-Difference Reverse

2.1 General Results

Following Roberts and Varberg [45, p. 5], we recall that if f : I → R is a convex
function, then for any x0 ∈ I̊ (the interior of the interval I ) the limits

f ′− (x0) := lim
x→x0−

f (x)− f (x0)

x − x0
and f ′+ (x0) := lim

x→x0+
f (x)− f (x0)

x − x0

exists and f ′− (x0) ≤ f ′+ (x0) . The functions f ′− and f ′+ are monotonic nondecreas-
ing on I̊ and this property can be extended to the whole interval I (see [45, p. 7]).

From the monotonicity of the lateral derivatives f ′− and f ′+ we also have the
gradient inequality

f ′− (x) (x − y) ≥ f (x)− f (y) ≥ f ′+ (y) (x − y)

for any x, y ∈ I̊ .

If I = [a, b] , then at the end points we also have the inequalities

f (x)− f (a) ≥ f ′+ (a) (x − a)

for any x ∈ (a, b] and

f (y)− f (b) ≥ f ′− (b) (y − b)

for any y ∈ [a, b).
For a real function g : [m,M] → R and two distinct points α, β ∈ [m,M] we

recall that the divided difference of g in these points is defined by

[α, β; g] := g (β)− g (α)

β − α
.

In what follows, we assume that w : $ → R, with w (x) ≥ 0 for μ-a.e. x ∈ $, is a
μ-measurable function with

∫
$
wdμ = 1.

Theorem 3 (Dragomir [23]) Let ' : I → R be a continuous convex function on
the interval of real numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ , I̊ the
interior of I. If f : $ → R, is μ-measurable, satisfying the bounds

−∞ < m ≤ f (x) ≤ M < ∞ for μ-a.e. x ∈ $ (2.1)

and such that f, ' ◦ f ∈ Lw ($,μ) , then by denoting

f $,w :=
∫

$

wf dμ ∈ [m,M]
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and assuming that f $,w �= m, M, we have

∣∣∣∣

∫

$

∣∣'(f )−'
(
f $,w

)∣∣ sgn
[
f − f $,w

]
wdμ

∣∣∣∣ (2.2)

≤
∫

$

(' ◦ f )wdμ−'
(
f $,w

)

≤ 1

2

([
f $,w,M;']− [

m, f$,w;'
])
Dw (f )

≤ 1

2

([
f $,w,M;']− [

m, f$,w;'
])
Dw,2 (f )

≤ 1

4

([
f $,w,M;']− [

m, f$,w;'
])
(M −m) ,

where sgn is the sign function, i.e. sgn (x) = x
|x| for x �= 0 and sgn (0) = 0. The

constant 1
2 in the second inequality from (2.2) is best possible.

Proof We recall that if ' : I → R is a continuous convex function on the interval
of real numbers I and α ∈ I then the divided difference function 'α : I \ {α} → R,

'α (t) := [α, t;'] := '(t)−'(α)

t − α

is monotonic nondecreasing on I \ {α} .
For f as considered in the statement of the theorem we can assume that that it is

not constant μ-almost every where, since for that case the inequality (2.2) is trivially
satisfied.

For f $,w ∈ (m,M), we consider now the function defined μ-almost everywhere
on $ by

'f$,w
(x) := '(f (x))−'

(
f $,w

)

f (x)− f $,w

.

We will show that 'f$,w
and h := f − f $,w are synchronous μ-a.e. on $.

Let x, y ∈ $ with f (x) , f (y) �= f $,w. Assume that f (x) ≥ f (y) , then

'f$,w
(x) = '(f (x))−'

(
f $,w

)

f (x)− f $,w

≥ '(f (y))−'
(
f $,w

)

f (y)− f $,w

= 'f$,w
(y)

(2.3)
and

h (x) ≥ h (y) , (2.4)
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which shows that
[
'f$,w

(x)−'f$,w
(y)

]
[h (x)− h (y)] ≥ 0. (2.5)

If f (x) < f (y) , then the inequalities (2.3) and (2.4) reverse but the inequality (2.5)
still holds true.

This show that forμ-a.e. x, y ∈ $we have (2.5) and the claim is proven as stated.
Utilising the continuity property of the modulus we have

∣∣∣
[∣∣∣'f$,w

(x)

∣∣∣−
∣∣∣'f$,w

(y)

∣∣∣
]

[h (x)− h (y)]
∣∣∣

≤
∣∣∣
[
'f$,w

(x)−'f$,w
(y)

]
[h (x)− h (y)]

∣∣∣

=
[
'f$,w

(x)−'f$,w
(y)

]
[h (x)− h (y)]

for μ-a.e. x, y ∈ $.

Multiplying with w (x) , w (y) ≥ 0 and integrating over μ (x) and μ (y) we have

∣∣
∣∣

∫

$

∫

$

[∣∣
∣'f$,w

(x)

∣∣
∣−

∣∣
∣'f$,w

(y)

∣∣
∣
]

(2.6)

× [h (x)− h (y)]w (x)w (y) dμ (x) dμ (y)|

≤
∫

$

∫

$

[
'f$,w

(x)−'f$,w
(y)

]

× [h (x)− h (y)]w (x)w (y) dμ (x) dμ (y) .

A simple calculation shows that

1

2

∫

$

∫

$

[∣∣∣'f$,w
(x)

∣
∣∣−

∣
∣∣'f$,w

(y)

∣
∣∣
]

(2.7)

× [h (x)− h (y)]w (x)w (y) dμ (x) dμ (y)

=
∫

$

∣∣
∣'f$,w

(x)

∣∣
∣ h (x)w (x) dμ (x)

−
∫

$

∣∣∣'f$,w
(x)

∣∣∣w (x) dμ (x)

∫

$

w (x) h (x) dμ (x)

=
∫

$

∣∣∣∣
∣
'(f (x))−'

(
f $,w

)

f (x)− f $,w

∣∣∣∣
∣
[
f (x)− f $,w

]
w (x) dμ (x)

=
∫

$

∣
∣'(f (x))−'

(
f $,w

)∣∣ sgn
[
f (x)− f $,w

]
w (x) dμ (x)
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and

1

2

∫

$

∫

$

[
'f$,w

(x)−'f$,w
(y)

]
(2.8)

× [h (x)− h (y)]w (x)w (y) dμ (x) dμ (y)

=
∫

$

'f$,w
(x) h (x)w (x) dμ (x)

−
∫

$

'f$,w
(x)w (x) dμ (x)

∫

$

h (x)w (x) dμ (x)

=
∫

$

' (f (x))−'
(
f $,w

)

f (x)− f $,w

[
f (x)− f $,w

]
w (x) dμ (x)

=
∫

$

[
'(f (x))−'

(
f $,w

)]
w (x) dμ (x)

=
∫

$

w (' ◦ f ) dμ−'
(
f $,w

)
.

On making use of the identities (2.7) and (2.8) we obtain from (2.6) the first
inequality in (2.2).

Now, since f satisfies the condition (2.1) then we have that

[
m, f$,w;'

] = '
(
f $,w

)−'(m)

f $,w −m
≤ 'f$,w

(x) (2.9)

≤ '(M)−'
(
f $,w

)

M − f $,w

= [
f $,w,M;']

for μ-a.e. x ∈ $.

Applying now the Grüss’ type inequality (1.7) and taking into account the second
part of the equality in (2.7) we have that

∫

$

w (' ◦ f ) dμ−'
(
f $,w

)

≤ 1

2

([
f $,w,M;']− [

m, f$,w;'
]) ∫

$

w
∣∣f − f $,w

∣∣ dμ

which proves the second inequality in (2.2).
The other two bounds are obvious from the comments in the introduction.
It is obvious that from (2.2) we get the following reverse of the first Hermite-

Hadamard inequality for the convex function ' : [a, b] → R
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1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)
(2.10)

≤ 1

2

([
a + b

2
, b;'

]
−

[
a,

a + b

2
;'

])
Dw (e)

where e (t) = t, t ∈ [a, b] .
Since a simple calculation shows that

1

2

([
a + b

2
, b;'

]
−

[
a,

a + b

2
;'

])

= 2

b − a

[
'(a)+'(b)

2
−'

(
a + b

2

)]

and

Dw (e) = 1

b − a

∫ b

a

∣∣
∣∣t −

a + b

2

∣∣
∣∣ dt =

1

4
(b − a) ,

and we get from (2.10) that

0 ≤ 1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)
(2.11)

≤ 1

2

[
'(a)+'(b)

2
−'

(
a + b

2

)]
.

To prove the sharpness of the constant 1
2 in the second inequality from (2.2) we

need now only to show that the equality case in (2.11) is realized.
If we take, for instance '(t) = ∣∣t − a+b

2

∣∣ , t ∈ [a, b] , then we observe that ' is
convex and we get in both sides of (2.11) the same quantity 1

4 (b − a) . ��
Corollary 3 With the assumptions in Theorem 3 and if the lateral derivatives
'′+ (m) and '′− (M) are finite, then we have the inequalities

0 ≤
∫

$

(' ◦ f )wdμ−'
(
f $,w

)
(2.12)

≤ 1

2

([
f $,w,M;']− [

m, f$,w;'
])
Dw (f )

≤ 1

2

(
'′− (M)−'′+ (m)

)
Dw (f )

≤ 1

2

(
'′− (M)−'′+ (m)

)
Dw,2 (f )

≤ 1

4

(
'′− (M)−'′+ (m)

)
(M −m) .

The constant 1
2 in the second and third inequality from (2.12) is best possible.
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Proof We need to prove only the third inequality.
By the convexity of ' we have the gradient inequalities

'(M)−'
(
f $,w

)

M − f $,w

≤ '′− (M)

and

'
(
f $,w

)−'(m)

f $,w −m
≥ '′+ (m) .

These imply that

[
f $,w,M;']− [

m, f$,w;'
] ≤ '′− (M)−'′+ (m)

and the proof is concluded.
We observe that from (2.12) we get the following reverse of the Hermite-

Hadamard inequality for the convex function ' : [a, b] → R having finite lateral
derivative '′+ (a) and '′− (b)

1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)
(2.13)

≤ 1

2

[
'(a)+'(b)

2
−'

(
a + b

2

)]
≤ 1

8

[
'′− (b)−'′+ (a)

]
(b − a) .

We observe that the convex function '(t) = ∣∣t − a+b
2

∣∣ has finite lateral derivatives

'′− (b) = 1 and '′+ (a) = −1

and replacing this function in (2.13) we get in all terms the same quantity 1
4 (b − a) .

This proves that the constant 1
2 in the second and third inequality from (2.12) is

best possible. ��
Remark 6 Let ' : I → R be a continuous convex function on the interval of
real numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ , I̊ the interior of I.
Let ā = (a1, . . . , an) , p̄ = (p1, . . . , pn) be n-tuples of real numbers with pi ≥
0 (i ∈ {1, . . . , n}) and

∑n
i=1 pi = 1. If m ≤ ai ≤ M, i ∈ {1, . . . , n} , with∑n

i=1 piai �= m, M, then

∣
∣∣∣∣∣

n∑

i=1

pi

[

|'(ai)| −
∣∣∣∣∣
'

(
n∑

i=1

piai

)∣∣∣∣∣

]

sgn

∣
∣∣∣∣∣
ai −

n∑

j=1

pjaj

∣
∣∣∣∣∣

∣
∣∣∣∣∣

(2.14)
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≤
n∑

i=1

pi' (ai)−'

(
n∑

i=1

piai

)

≤ 1

2

([
n∑

i=1

piai,M;'
]

−
[

m,

n∑

i=1

piai;'
])

n∑

i=1

pi

∣∣∣∣∣
∣
ai −

n∑

j=1

pjaj

∣∣∣∣∣
∣
.

If the lateral derivatives '′+ (m) and '′− (M) are finite, then we also have the
inequalities

0 ≤
n∑

i=1

pi' (ai)−'

(
n∑

i=1

piai

)

(2.15)

≤ 1

2

([
n∑

i=1

piai,M;'
]

−
[

m,

n∑

i=1

piai;'
])

n∑

i=1

pi

∣∣∣
∣∣∣
ai −

n∑

j=1

pjaj

∣∣∣
∣∣∣

≤ 1

2

(
'′− (M)−'′+ (m)

) n∑

i=1

pi

∣∣∣∣
∣∣
ai −

n∑

j=1

pjaj

∣∣∣∣
∣∣
.

Remark 7 Define the weighted arithmetic mean of the positive n-tuple x =
(x1, . . . , xn) with the nonnegative weights w = (w1, . . . , wn) by

An (w, x) := 1

Wn

n∑

i=1

wixi

where Wn := ∑n
i=1 wi > 0 and the weighted geometric mean of the same n-

tuple, by

Gn (w, x) :=
(

n∏

i=1

x
wi

i

)1/Wn

.

It is well know that the following arithmetic mean-geometric mean inequality holds

An (w, x) ≥ Gn (w, x) .

Applying the inequality (2.15) for the convex function '(t) = − ln t, t > 0 we
have the following reverse of the arithmetic mean-geometric mean inequality

1 ≤ An (w, x)

Gn (w, x)
(2.16)
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≤
⎡

⎢
⎣

(
An(w,x)

m

)An(w,x)−m

(
M

An(w,x)

)M−An(w,x)

⎤

⎥
⎦

1
2An(w,|x−An(w,x)|)

≤ exp

[
1

2

M −m

mM
An (w, |x − An (w, x)|)

]
,

provided that 0 < m ≤ xi ≤ M < ∞ for i ∈ {1, . . . , n} .

2.2 Applications for the Hölder Inequality

It is well known that if f ∈ Lp ($,μ) , p > 1, where the Lebesgue space
Lp ($,μ) is defined by

Lp ($,μ) := {f : $ → R, f is μ-measurable and
∫

$

|f (x)|p dμ (x) < ∞}

and g ∈ Lq ($,μ) with 1
p
+ 1

q
= 1 then fg ∈ L ($,μ) := L1 ($,μ) and the

Hölder inequality holds true

∫

$

|fg| dμ ≤
(∫

$

|f |p dμ
)1/p (∫

$

|g|p dμ
)1/q

.

Assume that p > 1. If h : $ → R is μ-measurable, satisfies the bounds

−∞ < m ≤ |h (x)| ≤ M < ∞ for μ-a.e. x ∈ $

and is such that h, |h|p ∈ Lw ($,μ) , for a μ-measurable function w : $ → R,
with w (x) ≥ 0 for μ-a.e. x ∈ $ and

∫
$
wdμ > 0, then from (2.2) we have

∣∣∣
∣

∫

$

∣∣∣|h|p − |h|p$,w

∣∣∣ sgn
[|h| − |h|$,w

]
wdμ

∣∣∣
∣ (2.17)

≤
∫
$
|h|p wdμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)p

≤ 1

2

([|h|$,w,M; (·)p]− [
m, |h|$,w; (·)p

])
D̃w (|h|)

≤ 1

2

([|h|$,w,M; (·)p]− [
m, |h|$,w; (·)p

])
D̃w,2 (|h|)

≤ 1

4

([|h|$,w,M; (·)p]− [
m, |h|$,w; (·)p

])
(M −m) ,
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where |h|$,w :=
∫
$
|h|wdμ∫
$ wdμ

∈ [m,M] and

D̃w (|h|) := 1
∫
$
wdμ

∫

$

w

∣∣∣
∣|h| −

∫
$
|h|wdμ

∫
$
wdμ

∣∣∣
∣ dμ

while

D̃w,2 (|h|) =
[∫

$
w |h|2 dμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)2
] 1

2

.

The following result related to the Hölder inequality holds:

Proposition 1 (Dragomir [23]) If f ∈ Lp ($,μ), g ∈ Lq ($,μ) with p > 1,
1
p
+ 1

q
= 1 and there exists the constants γ, % > 0 and such that

γ ≤ |f |
|g|q−1 ≤ % μ-a.e. on $,

then we have
∣∣
∣∣∣

∫

$

∣∣
∣∣∣
|f |p
|g|q −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p
∣∣
∣∣∣
sgn

[ |f |
|g|q−1

−
∫
$
|fg| dμ

∫
$
|g|q dμ

]
|g|q dμ

∣∣
∣∣∣

(2.18)

≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

≤ 1

2

([∫
$
|fg| dμ

∫
$
|g|q dμ , %; (·)p

]
−

[
γ,

∫
$
|fg| dμ

∫
$
|g|q dμ ; (·)p

])
D̃|g|q

( |f |
|g|q−1

)

≤ 1

2

([∫
$
|fg| dμ

∫
$
|g|q dμ , %; (·)p

]
−

[
γ,

∫
$
|fg| dμ

∫
$
|g|q dμ ; (·)p

])
D̃|g|q ,2

( |f |
|g|q−1

)

≤ 1

4

([∫
$
|fg| dμ

∫
$
|g|q dμ , %; (·)p

]
−

[
γ,

∫
$
|fg| dμ

∫
$
|g|q dμ ; (·)p

])
(% − γ ) ,

where

D̃|g|q
( |f |
|g|q−1

)
= 1

∫
$
|g|q dμ

∫

$

|g|q
∣
∣∣∣

|f |
|g|q−1 −

∫
$
|fg| dμ

∫
$
|g|q dμ

∣
∣∣∣ dμ

and

D̃|g|q ,2
( |f |
|g|q−1

)
=

[
1

∫
$
|g|q dμ

∫

$

|f |2
|g|q−2 dμ−

(∫
$
|fg| dμ

∫
$
|g|q dμ

)2
] 1

2

.
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Proof The inequalities (2.19) follow from (2.17) by choosing

h = |f |
|g|q−1 and w = |g|q .

The details are omitted. ��
Remark 8 We observe that for p = q = 2 we have from the first inequality in (2.18)
the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality

∣∣
∣∣∣∣

∫

$

∣∣
∣∣∣∣

|f |2
|g|2 −

(∫
$
|fg| dμ

∫
$
|g|2 dμ

)2
∣∣
∣∣∣∣
sgn

[
|f |
|g| −

∫
$
|fg| dμ

∫
$
|g|2 dμ

]

|g|2 dμ
∣∣
∣∣∣∣

(2.19)

≤
∫
$
|f |2 dμ

∫
$
|g|2 dμ −

(∫
$
|fg| dμ

∫
$
|g|2 dμ

)2

≤ 1

2
(% − γ )

1
∫
$
|g|2 dμ

∫

$

|g|2
∣∣∣
∣∣
|f |
|g| −

∫
$
|fg| dμ

∫
$
|g|2 dμ

∣∣∣
∣∣
dμ

≤ 1

2
(% − γ )

⎡

⎣ 1
∫
$
|g|2 dμ

∫

$

|f |2 dμ−
(∫

$
|fg| dμ

∫
$
|g|2 dμ

)2
⎤

⎦

1
2

≤ 1

4
(% − γ )2 ,

provided that f, g ∈ L2 ($,μ), and there exists the constants γ, % > 0 such that

γ ≤ |f |
|g| ≤ % μ-a.e. on $.

2.3 Applications for f -Divergence

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [31], Kullback and Leibler [36],
Rényi [44], Havrda and Charvat [28], Kapur [34], Sharma and Mittal [47], Burbea
and Rao [4], Rao [43], Lin [37], Csiszár [9], Ali and Silvey [1], Vajda [54], Shioya
and Da-te [48] and others (see for example [39] and the references therein).

These measures have been applied in a variety of fields such as: anthropology
[43], genetics [39], finance, economics, and political science [46, 51, 52], biology
[42], the analysis of contingency tables [27], approximation of probability distribu-
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tions [8, 35], signal processing [32, 33] and pattern recognition [2, 6]. A number of
these measures of distance are specific cases of Csiszár f -divergence and so further
exploration of this concept will have a flow on effect to other measures of distance
and to areas in which they are applied.

Assume that a set $ and the σ -finite measure μ are given. Consider the set of
all probability densities onμ to be P := {

p|p : $ → R, p (x) ≥ 0,
∫
$
p (x) dμ (x)

= 1}.
Csiszár f -divergence is defined as follows [10]

If (p, q) :=
∫

$

p (x) f

[
q (x)

p (x)

]
dμ (x) , p, q ∈ P, (2.20)

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived.

The Kullback-Leibler divergence [36] is well known among the information
divergences. It is defined as:

DKL (p, q) :=
∫

$

p (x) ln

[
p (x)

q (x)

]
dμ (x) , p, q ∈ P, (2.21)

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are the: variation distance Dv , Hellinger
distance DH [29], χ2-divergence Dχ2 , α-divergence Dα , Bhattacharyya distance
DB [3], Harmonic distance DHa , Jeffrey’s distance DJ [31], triangular discrimina-
tion D& [53], etc. . . They are defined as follows:

Dv (p, q) :=
∫

$

|p (x)− q (x)| dμ (x) , p, q ∈ P; (2.22)

DH (p, q) :=
∫

$

∣∣∣
√
p (x)−√

q (x)

∣∣∣ dμ (x) , p, q ∈ P; (2.23)

Dχ2 (p, q) :=
∫

$

p (x)

[(
q (x)

p (x)

)2

− 1

]

dμ (x) , p, q ∈ P; (2.24)

Dα (p, q) := 4

1 − α2

[
1 −

∫

$

[p (x)]
1−α

2 [q (x)]
1+α

2 dμ (x)

]
, p, q ∈ P;

(2.25)

DB (p, q) :=
∫

$

√
p (x) q (x)dμ (x) , p, q ∈ P; (2.26)

DHa (p, q) :=
∫

$

2p (x) q (x)

p (x)+ q (x)
dμ (x) , p, q ∈ P; (2.27)
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DJ (p, q) :=
∫

$

[p (x)− q (x)] ln

[
p (x)

q (x)

]
dμ (x) , p, q ∈ P; (2.28)

D& (p, q) :=
∫

$

[p (x)− q (x)]2

p (x)+ q (x)
dμ (x) , p, q ∈ P . (2.29)

For other divergence measures, see the paper [34] by Kapur or the book on line [50]
by Taneja.

Most of the above distances (2.21)–(2.29), are particular instances of Csiszár f -
divergence. There are also many others which are not in this class (see for example
[50]). For the basic properties of Csiszár f -divergence see [10, 11] and [54].

Before we apply the results obtained in the previous section we observe that, by
employing the inequalities from (1.17) we can state the following theorem:

Proposition 2 (Dragomir [23]) Let f : (0,∞) → R be a convex function with
the property that f (1) = 0. Assume that p, q ∈ P and there exists the constants
0 < r < 1 < R < ∞ such that

r ≤ q (x)

p (x)
≤ R for μ-a.e. x ∈ $. (2.30)

Then we have

0 ≤ If (p, q) ≤ 1

2

[
f ′− (R)− f ′+ (r)

]
Dv (p, q) (2.31)

≤ 1

2

[
f ′− (R)− f ′+ (r)

] [
Dχ2 (p, q)

]1/2

≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
.

Proof From (1.17) we have
∫

$

p (x) f

(
q (x)

p (x)

)
dμ (x)− f

(∫

$

q (x) dμ (x)

)
(2.32)

≤ 1

2

[
f ′− (R)− f ′+ (r)

]

×
∫

$

p (x)

∣∣∣∣
q (x)

p (x)
−

∫

$

q (y) dμ (y)

∣∣∣∣ dμ (x)

≤ 1

2

[
f ′− (R)− f ′+ (r)

]

×
[∫

$

p (x)

(
q (x)

p (x)

)2

dμ−
(∫

$

q (x) dμ

)2
] 1

2

≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
,



Reverses of Jensen’s Integral Inequality and Applications 211

and since

∫

$

p (x)

∣
∣∣∣
q (x)

p (x)
−

∫

$

q (y) dμ (y)

∣
∣∣∣ dμ (x) = Dv (p, q)

and

∫

$

p (x)

(
q (x)

p (x)

)2

dμ−
(∫

$

q (x) dμ

)2

= Dχ2 (p, q) ,

then we get from (2.32) the desired result (2.31). ��
Remark 9 The inequality

If (p, q) ≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
(2.33)

was obtained for the discrete divergence measures in 2000 by Dragomir, see [15].

Proposition 3 (Dragomir [23]) With the assumptions in Proposition 2 we have

∣
∣I|f |(sgn(·)−1) (p, q)

∣
∣ ≤ If (p, q) (2.34)

≤ 1

2
([1, R; f ] − [r, 1; f ])Dv (p, q)

≤ 1

2
([1, R; f ] − [r, 1; f ])

[
Dχ2 (p, q)

]1/2

≤ 1

4
([1, R; f ] − [r, 1; f ]) (R − r) ,

where I|f |(sgn(·)−1) (p, q) is the generalized f -divergence for the non-necessarily
convex function |f | (sgn (·)− 1) and is defined by

I|f |(sgn(·)−1) (p, q) :=
∫

$

∣∣∣∣f
(
q (x)

p (x)

)∣∣∣∣ sgn

[
q (x)

p (x)
− 1

]
p (x) dμ. (2.35)

Proof From the inequality (2.2) we have

∣
∣∣∣

∫

$

∣
∣∣∣f

(
q (x)

p (x)

)∣∣∣∣ sgn

[
q (x)

p (x)
− 1

]
p (x) dμ.

∣
∣∣∣ (2.36)

≤
∫

$

p (x) f

(
q (x)

p (x)

)
dμ (x)− f

(∫

$

q (x) dμ (x)

)

≤ 1

2
([1, R; f ] − [r, 1; f ])
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×
∫

$

p (x)

∣∣∣∣
q (x)

p (x)
−

∫

$

q (y) dμ (y)

∣∣∣∣ dμ (x)

≤ 1

2
([1, R; f ] − [r, 1; f ])

×
[∫

$

p (x)

(
q (x)

p (x)

)2

dμ−
(∫

$

q (x) dμ

)2
] 1

2

≤ 1

4
([1, R; f ] − [r, 1; f ]) (R − r) ,

from where we get the desired result (2.34). ��
The above results can be utilized to obtain various inequalities for the divergence

measures in Information Theory that are particular instances of f -divergence.
Consider the Kullback-Leibler divergence

DKL (p, q) :=
∫

$

p (x) ln

[
p (x)

q (x)

]
dμ (x) , p, q ∈ P,

which is an f -divergence for the convex function f : (0,∞) → R, f (t) = − ln t.
If p, q ∈ P such that there exists the constants 0 < r < 1 < R < ∞ with

r ≤ q (x)

p (x)
≤ R for μ-a.e. x ∈ $, (2.37)

then we get from (2.31) that

DKL (p, q) ≤ R − r

2rR
Dv (p, q) (2.38)

≤ R − r

2rR

[
Dχ2 (p, q)

]1/2 ≤ (R − r)2

4rR

and from (2.34) that

DKL (p, q) ≤ 1

2
Dv (p, q) ln

(
1

RR−1r1−r

)
(2.39)

≤ 1

2

[
Dχ2 (p, q)

]1/2 ln

(
1

RR−1r1−r

)

≤ 1

4
(R − r) ln

(
1

RR−1r1−r

)
.
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The interested reader can obtain other similar results by considering f -
divergence measures generated by other convex functions such as the Jeffrey’s
distance DJ or the triangular discrimination D&. The details are omitted.

3 Reverse Inequalities in Terms of First Derivative

3.1 General Results

The following reverse of the Jensen’s inequality holds:

Theorem 4 (Dragomir [21]) Let ' : I → R be a continuous convex function on
the interval of real numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ , where I̊ is
the interior of I. If f : $ → R is μ-measurable, satisfies the bounds

−∞ < m ≤ f (x) ≤ M < ∞ for μ-a.e. x ∈ $

and such that f, ' ◦ f ∈ Lw ($,μ) , then

0 ≤
∫

$

w (x)' (f (x)) dμ (x)−'
(
f̄$,w

)
(3.1)

≤ (
M − f̄$,w

) (
f̄$,w −m

) '′− (M)−'′+ (m)

M −m

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

where f̄$,w := ∫
$
w (x) f (x) dμ (x) ∈ [m,M] ,'′− is the left and '′+ is the right

derivative of the convex function '.

Proof By the convexity of ' we have that

∫

$

w (x)' (f (x)) dμ (x)−'
(
f̄$,w

)
(3.2)

=
∫

$

w (x)'

[
m(M − f (x))+M (f (x)−m)

M −m

]
dμ (x)

−'

(∫

$

w (x)

[
m(M − f (x))+M (f (x)−m)

M −m

]
dμ (x)

)

≤
∫

$

(M − f (x))' (m)+ (f (x)−m)' (M)

M −m
w (x) dμ (x)

−'

(
m

(
M − f̄$,w

)+M
(
f̄$,w −m

)

M −m

)
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=
(
M − f̄$,w

)
'(m)+ (

f̄$,w −m
)
'(M)

M −m

−'

(
m

(
M − f̄$,w

)+M
(
f̄$,w −m

)

M −m

)

:= B.

Then, by the convexity of ' we have the gradient inequality

'(t)−'(M) ≥ '′− (M) (t −M)

for any t ∈ [m,M). If we multiply this inequality with t −m ≥ 0, we deduce

(t −m)' (t)− (t −m)' (M) ≥ '′− (M) (t −M) (t −m) , t ∈ [m,M] .
(3.3)

Similarly, using the other gradient inequality

'(t)−'(m) ≥ '′+ (m) (t −m)

for any t ∈ (m,M], we also get

(M − t)' (t)− (M − t)' (m) ≥ '′+ (m) (t −m) (M − t) , t ∈ [m,M] .
(3.4)

Adding (3.3) to (3.4) and dividing by M −m, we deduce

'(t)− (t −m)' (M)+ (M − t)' (m)

M −m
≥ (t −M) (t −m)

M −m

[
'′− (M)−'′+ (m)

]
,

for any t ∈ (m,M) .

By denoting

&' (t;m,M) := (t −m)' (M)+ (M − t)' (m)

M −m
−'(t) , t ∈ [m,M]

we then get the following inequality of interest

0 ≤ &' (t;m,M) ≤ (M − t) (t −m)

M −m

[
'′− (M)−'′+ (m)

]
(3.5)

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]

for any t ∈ (m,M) .

Now, since with the above notations we have B = &'

(
f̄$,w;m,M

)
, then

by (3.5) we have
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B ≤
(
M − f̄$,w

) (
f̄$,w −m

)

M −m

[
'′− (M)−'′+ (m)

]

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

and the proof is completed. ��
Corollary 4 Let ' : I → R be a continuous convex function on the interval of real
numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ . If xi ∈ I and pi ≥ 0 for
i ∈ {1, . . . , n} with

∑n
i=1 pi = 1, then we have the inequality

0 ≤
n∑

i=1

pi' (xi)−'
(
x̄p

)
(3.6)

≤ (
M − x̄p

) (
x̄p −m

) '′− (M)−'′+ (m)

M −m

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

where x̄p := ∑n
i=1 pixi ∈ I.

Remark 10 Consider the positive n-tuple x = (x1, . . . , xn) with the nonnegative
weights w = (w1, . . . , wn) where Wn := ∑n

i=1 wi > 0. Applying the inequal-
ity (3.6) for the convex function '(t) = − ln t, t > 0 we have

1 ≤ An (w, x)

Gn (w, x)
≤ exp

[
1

Mm
(M − An (w, x)) (An (w, x)−m)

]
(3.7)

≤ exp

[
1

4

(M −m)2

mM

]

,

provided that 0 < m ≤ xi ≤ M < ∞ for i ∈ {1, . . . , n} .
For the Lebesgue measurable function g : [α, β] → R we introduce the

Lebesgue p-norms defined as

‖g‖[α,β],p :=
(∫ β

α

|g (t)|p dt
)1/p

if g ∈ Lp [α, β] ,

for p ≥ 1 and

‖g‖[α,β],∞ := essup
t∈[α,β]

|g (t)| if g ∈ L∞ [α, β] ,

for p = ∞.

The following result also holds:
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Theorem 5 (Dragomir [21]) With the assumptions in Theorem 4, we have the
inequalities

0 ≤
∫

$

w (x)' (f (x)) dμ (x)−'
(
f̄$,w

)
(3.8)

≤
(
M − f̄$,w

) ∫ f̄$,w

m

∣∣'′ (t)
∣∣ dt + (

f̄$,w −m
) ∫M

f̄$,w

∣∣'′ (t)
∣∣ dt

M −m

:= *'

(
f̄$,w;m,M

)
,

where the integral in the second term of the inequality is taken in the Lebesgue
sense.

We also have the bounds:

*'

(
f̄$,w;m,M

)
(3.9)

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1
2 +

∣
∣
∣f̄$,w−m+M

2

∣
∣
∣

M−m

]
∫M

m

∣∣'′ (t)
∣∣ dt,

[
1
2

∫M

m

∣∣'′ (t)
∣∣ dt + 1

2

∣∣
∣
∫M

f̄$,w

∣∣'′ (t)
∣∣ dt − ∫ f̄$,w

m

∣∣'′ (t)
∣∣ dt

∣∣
∣
]

and

*'

(
f̄$,w;m,M

)
(3.10)

≤
(
f̄$,w −m

) (
M − f̄$,w

)

M −m

[∥
∥'′∥∥[

f̄$,w,M
]
,∞ + ∥

∥'′∥∥[
m,f̄$,w

]
,∞

]

≤ 1

2
(M −m)

∥∥'′∥∥[
f̄$,w,M

]
,∞ + ∥∥'′∥∥[

m,f̄$,w

]
,∞

2
≤ 1

2
(M −m)

∥∥'′∥∥
[m,M],∞

and

*'

(
f̄$,w;m,M

) ≤ 1

M −m

[(
f̄$,w −m

) (
M − f̄$,w

)1/q ∥∥'′∥∥[
f̄$,w,M

]
,p

(3.11)

+ (
M − f̄$,w

) (
f̄$,w −m

)1/q ∥∥'′∥∥[
m,f̄$,w

]
,p

]

≤ 1

M −m

[(
f̄$,w −m

)q (
M − f̄$,w

)

+ (
M − f̄$,w

)q (
f̄$,w −m

)]1/q ∥∥'′∥∥
[m,M],p

where p > 1, 1
p
+ 1

q
= 1.
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Proof Observe that, with the above notations we have

*' (t;m,M) = (t −m)' (M)+ (M − t)' (m)

M −m
−'(t) (3.12)

= (t −m)' (M)+ (M − t)' (m)− (M −m)' (t)

M −m

= (t −m)' (M)+ (M − t)' (m)− (M − t + t −m)' (t)

M −m

= (t −m) ['(M)−'(t)] − (M − t) ['(t)−'(m)]

M −m

for any t ∈ [m,M] .
Taking the modulus on (3.12) and noticing that *' (t;m,M) ≥ 0 for any t ∈

[m,M] , we have that

*' (t;m,M) ≤ (t −m) |'(M)−'(t)| + (M − t) |'(t)−'(m)|
M −m

(3.13)

=
(t −m)

∣
∣∣
∫M

t
'′ (s) ds

∣
∣∣+ (M − t)

∣
∣∣
∫ t

m
'′ (s) ds

∣
∣∣

M −m

≤ (t −m)
∫M

t

∣∣'′ (s)
∣∣ ds + (M − t)

∫ t

m

∣∣'′ (s)
∣∣ ds

M −m

for any t ∈ [m,M] .
Finally, if we write the inequality (3.13) for t = f̄$,w ∈ [m,M] and utilize the

inequality (3.2), we deduce the desired result (3.8).
Now, we observe that

(t −m)
∫M

t

∣∣'′ (s)
∣∣ ds + (M − t)

∫ t

m

∣∣'′ (s)
∣∣ ds

M −m
(3.14)

≤

⎧
⎪⎨

⎪⎩

max {t −m,M − t} ∫M

m

∣∣'′ (t)
∣∣ dt

max
{∫M

t

∣∣'′ (s)
∣∣ ds,

∫ t

m

∣∣'′ (s)
∣∣ ds

}
(M −m)

=

⎧
⎪⎪⎨

⎪⎪⎩

[
1
2 (M −m)+ ∣∣t − m+M

2

∣∣
] ∫M

m

∣∣'′ (t)
∣∣ dt

[
1
2

∫M

m

∣∣'′ (s)
∣∣ ds + 1

2

∣∣∣
∫M

t

∣∣'′ (s)
∣∣ ds − ∫ t

m

∣∣'′ (s)
∣∣ ds

∣∣∣
]
(M −m)

for any t ∈ [m,M] . This proves the inequality (3.9).
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By the Hölder’s inequality we have

∫ M

t

∣∣'′ (s)
∣∣ ds ≤

⎧
⎪⎨

⎪⎩

(M − t)
∥
∥'′∥∥

[t,M],∞

(M − t)1/q
∥∥'′∥∥

[t,M],p if p > 1, 1
p
+ 1

q
= 1

and

∫ t

m

∣∣'′ (s)
∣∣ ds ≤

⎧
⎪⎨

⎪⎩

(t −m)
∥
∥'′∥∥

[m,t],∞

(t −m)1/q
∥∥'′∥∥

[m,t],p if p > 1, 1
p
+ 1

q
= 1

which give that

(t −m)
∫M

t

∣∣'′ (s)
∣∣ ds + (M − t)

∫ t

m

∣∣'′ (s)
∣∣ ds

M −m
(3.15)

≤ (t −m) (M − t)
∥∥'′∥∥

[t,M],∞ + (M − t) (t −m)
∥∥'′∥∥

[m,t],∞
M −m

= (t −m) (M − t)

M −m

[∥∥'′∥∥
[t,M],∞ + ∥∥'′∥∥

[m,t],∞
]

≤ 1

2
(M −m)

∥∥'′∥∥
[t,M],∞ + ∥∥'′∥∥

[m,t],∞
2

≤ 1

2
(M −m)max

{∥
∥'′∥∥

[t,M],∞ ,
∥
∥'′∥∥

[m,t],∞
}
= 1

2
(M −m)

∥
∥'′∥∥

[m,M],∞

and

(t −m)
∫M

t

∣∣'′ (s)
∣∣ ds + (M − t)

∫ t

m

∣∣'′ (s)
∣∣ ds

M −m
(3.16)

≤
(t −m) (M − t)1/q

∥∥'′∥∥
[t,M],p + (M − t) (t −m)1/q

∥∥'′∥∥
[m,t],p

M −m

≤ 1

M −m

[(
(t −m) (M − t)1/q

)q +
(
(M − t) (t −m)1/q

)q]1/q

×
[∥∥'′∥∥p

[t,M],p + ∥∥'′∥∥p
[m,t],p

]1/p

= 1

M −m

[
(t −m)q (M − t)+ (M − t)q (t −m)

]1/q ∥∥'′∥∥
[m,M],p

for any t ∈ [m,M] .
These prove the desired inequalities (3.10) and (3.11). ��
The discrete case is as follows:



Reverses of Jensen’s Integral Inequality and Applications 219

Corollary 5 Let ' : I → R be a continuous convex function on the interval of real
numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ , I̊ is the interior of I. If xi ∈ I

and pi ≥ 0 for i ∈ {1, . . . , n} with
∑n

i=1 pi = 1, then we have the inequality

0 ≤
n∑

i=1

pi' (xi)−'
(
x̄p

)
(3.17)

≤
(
M − x̄p

) ∫ x̄p
m

∣∣'′ (t)
∣∣ dt + (

x̄p −m
) ∫M

x̄p

∣∣'′ (t)
∣∣ dt

M −m

:= *'

(
x̄p;m,M

)
,

where *'

(
x̄p;m,M

)
satisfies the bounds

*'

(
x̄p;m,M

)
(3.18)

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1
2 +

∣
∣∣x̄p−m+M

2

∣
∣∣

M−m

]
∫M

m

∣
∣'′ (t)

∣
∣ dt,

[
1
2

∫M

m

∣∣'′ (t)
∣∣ dt + 1

2

∣∣∣
∫M

x̄p

∣∣'′ (t)
∣∣ dt − ∫ x̄p

m

∣∣'′ (t)
∣∣ dt

∣∣∣
]

and

*'

(
x̄p;m,M

)
(3.19)

≤
(
x̄p −m

) (
M − x̄p

)

M −m

[∥∥'′∥∥
[x̄p,M],∞ + ∥∥'′∥∥

[m,x̄p],∞
]

≤ 1

2
(M −m)

∥
∥'′∥∥

[x̄p,M],∞ + ∥
∥'′∥∥

[m,x̄p],∞
2

≤ 1

2
(M −m)

∥∥'′∥∥
[m,M],∞

and

*'

(
x̄p;m,M

) ≤ 1

M −m

[(
x̄p −m

) (
M − x̄p

)1/q ∥∥'′∥∥
[x̄p,M],p (3.20)

+ (
M − x̄p

) (
x̄p −m

)1/q ∥∥'′∥∥
[m,x̄p],p

]

≤ 1

M −m

[(
x̄p −m

)q (
M − x̄p

)

+ (
M − x̄p

)q (
x̄p −m

)]1/q ∥∥'′∥∥
[m,M],p .

Remark 11 Under the assumptions of Remark 10 , on applying the inequality (3.17)
for the convex function '(t) = − ln t, we have the following reverse of the
arithmetic mean-geometric mean inequality

1 ≤ An (w, x)

Gn (w, x)
≤

(
An (w, x)

m

)M−An(w,x)
(

M

An (w, x)

)An(w,x)−m
. (3.21)
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3.2 Applications for the Hölder Inequality

Assume that p > 1. If h : $ → R is μ-measurable, satisfies the bounds

−∞ < m ≤ |h (x)| ≤ M < ∞ for μ-a.e. x ∈ $

and is such that h, |h|p ∈ Lw ($,μ) , for a μ-measurable function w : $ → R,
with w (x) ≥ 0 for μ-a.e. x ∈ $ and

∫
$
wdμ > 0, then from (3.1) we have

0 ≤
∫
$
|h|p wdμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)p

(3.22)

≤ p
Mp−1 −mp−1

M −m

(
M − |h|$,w

) (|h|$,w −m
)

≤ 1

4
p (M −m)

(
Mp−1 −mp−1

)
,

where |h|$,w :=
∫
$
|h|wdμ∫
$ wdμ

∈ [m,M] .

Proposition 4 (Dragomir [21]) If f ∈ Lp ($,μ), g ∈ Lq ($,μ) with p > 1,
1
p
+ 1

q
= 1 and there exists the constants γ, % > 0 and such that

γ ≤ |f |
|g|q−1

≤ % μ-a.e. on $

then we have

0 ≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

(3.23)

≤ p
%p−1 − γ p−1

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)

≤ 1

4
p (% − γ )

(
%p−1 − γ p−1

)
.

Proof The inequalities (3.23) follow from (3.22) by choosing

h = |f |
|g|q−1 and w = |g|q .

The details are omitted. ��
Remark 12 We observe that for p = q = 2 we have from the first inequality
in (3.23) the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality
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0 ≤
∫

$

|g|2 dμ
∫

$

|f |2 dμ−
(∫

$

|fg| dμ
)2

(3.24)

≤
(

% −
∫
$
|fg| dμ

∫
$
|g|2 dμ

)(∫
$
|fg| dμ

∫
$
|g|2 dμ − γ

)(∫

$

|g|2 dμ
)2

≤ 1

4
(% − γ )2

(∫

$

|g|2 dμ
)2

,

provided that f, g ∈ L2 ($,μ) and there exists the constants γ, % > 0 such that

γ ≤ |f |
|g| ≤ % μ-a.e. on $.

Corollary 6 With the assumptions of Proposition 4 we have the following additive
reverses of the Hölder inequality:

0 ≤
(∫

$

|f |p dμ
)1/p (∫

$

|g|q dμ
)1/q

−
∫

$

|fg| dμ (3.25)

≤ p1/p
(
%p−1−γ p−1

% − γ

) 1
p
(
%−

∫
$
|fg| dμ

∫
$
|g|q dμ

) 1
p
(∫

$
|fg| dμ

∫
$
|g|q dμ−γ

) 1
p
∫

$

|g|q dμ

≤ 1

41/p
p1/p (% − γ )1/p

(
%p−1 − γ p−1

)1/p
∫

$

|g|q dμ

where p > 1 and 1
p
+ 1

q
= 1.

Proof By multiplying in (3.23) with
(∫

$
|g|q dμ)p we have

∫

$

|f |p dμ
(∫

$

|g|q dμ
)p−1

−
(∫

$

|fg| dμ
)p

≤ p
%p−1 − γ p−1

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)(∫

$

|g|q dμ
)p

≤ 1

4
p (% − γ )

(
%p−1 − γ p−1

)(∫

$

|g|q dμ
)p

,

which is equivalent with

∫

$

|f |p dμ
(∫

$

|g|q dμ
)p−1

(3.26)

≤
(∫

$

|fg| dμ
)p

+ p

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)
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×
(∫

$

|g|q dμ
)p

%p−1 − γ p−1

% − γ

≤
(∫

$

|fg| dμ
)p

+ 1

4
p (% − γ )

(
%p−1 − γ p−1

)(∫

$

|g|q dμ
)p

.

Taking the power 1/p with p > 1 and employing the following elementary
inequality that state that for p > 1 and α, β > 0,

(α + β)1/p ≤ α1/p + β1/p

we have from the first part of (3.26) that

∫

$

|f |p dμ
(∫

$

|g|q dμ
)1− 1

p

(3.27)

≤
∫

$

|fg| dμ

+
[
p

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)(∫

$

|g|q dμ
)p

%p−1 − γ p−1

% − γ

]1/p

.

Since 1 − 1
p

= 1
q
, we get from (3.27) the first inequality in (3.25). The rest is

obvious. ��
If h : $ → R is μ-measurable, satisfies the bounds

−∞ < m ≤ |h (x)| ≤ M < ∞ for μ-a.e. x ∈ $

and is such that h, |h|p ∈ Lw ($,μ) , for a μ-measurable function w : $ → R,
with w (x) ≥ 0 for μ-a.e. x ∈ $ and

∫
$
wdμ > 0, then from Theorem 5 we have

amongst other the following inequality

0 ≤
∫
$
|h|p wdμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)p

(3.28)

≤ (
Mp −mp

) [1

2
+ 1

M −m

∣∣∣
∣

∫
$
|h|wdμ

∫
$
wdμ

− m+M

2

∣∣∣
∣

]
.

From this inequality we can state that:

Proposition 5 (Dragomir [21]) With the assumptions of Proposition 4 we have

0 ≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

(3.29)

≤ (
%p − γ p

) [1

2
+ 1

% − γ

∣∣∣
∣

∫
$
|fg| dμ

∫
$
|g|q dμ − γ + %

2

∣∣∣
∣

]
.

Finally, the following additive reverse of the Hölder inequality can be stated
as well:
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Corollary 7 With the assumptions of Proposition 4 we have

(∫

$

|f |p dμ
)1/p (∫

$

|g|q dμ
)1/q

−
∫

$

|fg| dμ (3.30)

≤ (
%p − γ p

)1/p
[

1

2
+ 1

% − γ

∣
∣∣∣

∫
$
|fg| dμ

∫
$
|g|q dμ − γ + %

2

∣
∣∣∣

]1/p ∫

$

|g|q dμ.

Remark 13 We observe that for p = q = 2 we have from the first inequality
in (3.29) the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality

∫

$

|g|2 dμ
∫

$

|f |2 dμ−
(∫

$

|fg| dμ
)2

(3.31)

≤
(
%2 − γ 2

)[
1

2
+ 1

% − γ

∣∣∣∣
∣

∫
$
|fg| dμ

∫
$
|g|2 dμ − γ + %

2

∣∣∣∣
∣

](∫

$

|g|2 dμ
)2

provided that f, g ∈ L2 ($,μ) and there exists the constants γ, % > 0 such that

γ ≤ |f |
|g| ≤ % μ-a.e. on $.

One can easily observe that the bound provided by (3.31) is not as good as the one
given by (3.24). The details are omitted.

3.3 Applications for f -Divergence

The following result holds:

Proposition 6 (Dragomir [21]) Let f : (0,∞) → R be a convex function with
the property that f (1) = 0. Assume that p, q ∈ P and there exists the constants
0 < r < 1 < R < ∞ such that

r ≤ q (x)

p (x)
≤ R for μ-a.e. x ∈ $. (3.32)

Then we have the inequalities

0 ≤ If (p, q) ≤ (R − 1) (1 − r)
f ′− (R)− f ′+ (r)

R − r
(3.33)

≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
.
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Proof Utilising Theorem 4 we can write that

∫

$

p (x) f

(
q (x)

p (x)

)
dμ (x)− f

(∫

$

q (x) dμ (x)

)
(3.34)

≤
(
R −

∫

$

q (x) dμ (x)

)(∫

$

q (x) dμ (x)− r

)
f ′− (R)− f ′+ (r)

R − r

≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
,

for p, q ∈ P satisfying (3.32) and since f
(∫

$
q (x) dμ (x)

) = f (1) = 0 we get
from (3.34) the desired result (3.33). ��

By the use of Theorem 5 we can also state the following result:

Proposition 7 (Dragomir [21]) With the assumptions in Proposition 6, we have
the inequalities

0 ≤ If (p, q) ≤ Bf (r, R) (3.35)

where

Bf (r, R) := (R − 1)
∫ 1
r

∣∣f ′ (t)
∣∣ dt + (1 − r)

∫ R

1

∣∣f ′ (t)
∣∣ dt

R − r
. (3.36)

Moreover, we have the following bounds for Bf (r, R) ,

Bf (r, R) (3.37)

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1
2 +

∣
∣∣1− r+R

2

∣
∣∣

R−r

]
∫ R

r

∣
∣f ′ (t)

∣
∣ dt,

[
1
2

∫ R

r

∣∣f ′ (t)
∣∣ dt + 1

2

∣∣∣
∫ R

1

∣∣f ′ (t)
∣∣ dt − ∫ 1

r

∣∣f ′ (t)
∣∣ dt

∣∣∣
]

and

Bf (r, R) (3.38)

≤ (1 − r) (R − 1)

R − r

[∥∥f ′∥∥
[1,R],∞ + ∥∥f ′∥∥

[r,1],∞
]

≤ 1

2
(R − r)

∥∥f ′∥∥
[1,R],∞ + ∥∥f ′∥∥

[r,1],∞
2

≤ 1

2
(R − r)

∥
∥f ′∥∥

[r,R],∞
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and

Bf (r, R) (3.39)

≤ 1

R − r

[
(1 − r) (R − 1)1/q

∥∥f ′∥∥
[1,R],p + (R − 1) (1 − r)1/q

∥∥f ′∥∥
[r,1],p

]

≤ 1

R − r

[
(1 − r)q (R − 1)+ (R − 1)q (1 − r)

]1/q ∥∥f ′∥∥
[r,R],p

where p > 1, 1
p
+ 1

q
= 1.

The above results can be utilized to obtain various inequalities for the divergence
measures in information theory that are particular instances of f -divergences.

Consider, for example, the Kullback-Leibler divergence measure

DKL (p, q) :=
∫

$

p (x) ln

[
p (x)

q (x)

]
dμ (x) , p, q ∈ P,

which is an f -divergence for the convex function f : (0,∞) → R, f (t) = − ln t.
If p, q ∈ P such that there exists the constants 0 < r < 1 < R < ∞ with

r ≤ q (x)

p (x)
≤ R for μ-a.e. x ∈ $, (3.40)

then we get from (3.33) that

DKL (p, q) ≤ (R − 1) (1 − r)

rR
(3.41)

and from (3.35) that

DKL (p, q) ≤ ln

(
R1−r

rR−1

) 1
R−r

.

The interested reader can obtain similar results for other divergence measures as
listed above. However, the details are omitted.

4 More Reverse Inequalities

4.1 General Results

The following reverse of the Jensen’s inequality that provides a refinement and an
alternative for the inequality in Theorem 4 holds:
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Theorem 6 (Dragomir [20]) Let ' : I → R be a continuous convex function on
the interval of real numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ , I̊ is the
interior of I. If f : $ → R is μ-measurable, satisfies the bounds

−∞ < m ≤ f (x) ≤ M < ∞ for μ-a.e. x ∈ $

and such that f, ' ◦ f ∈ Lw ($,μ) , where w ≥ 0 μ-a.e. on $ with
∫
$
wdμ =

1, then

0 ≤
∫

$

w (' ◦ f ) dμ−'
(
f̄$,w

)
(4.1)

≤
(
M − f̄$,w

) (
f̄$,w −m

)

M −m
sup

t∈(m,M)

+' (t;m,M)

≤ (
M − f̄$,w

) (
f̄$,w −m

) '′− (M)−'′+ (m)

M −m

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

where f̄$,w := ∫
$
w (x) f (x) dμ (x) ∈ [m,M] and +' (·;m,M) : (m,M) → R

is defined by

+' (t;m,M) = '(M)−'(t)

M − t
− '(t)−'(m)

t −m
.

We also have the inequality

0 ≤
∫

$

w (' ◦ f ) dμ−'
(
f̄$,w

) ≤ 1

4
(M −m)+'

(
f̄$,w;m,M

)
(4.2)

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

provided that f̄$,w ∈ (m,M) .

Proof By the convexity of ' we have that

∫

$

w (x)' (f (x)) dμ (x)−'
(
f̄$,w

)
(4.3)

=
∫

$

w (x)'

[
m(M − f (x))+M (f (x)−m)

M −m

]
dμ (x)

−'

(∫

$

w (x)

[
m(M − f (x))+M (f (x)−m)

M −m

]
dμ (x)

)
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≤
∫

$

(M − f (x))' (m)+ (f (x)−m)' (M)

M −m
w (x) dμ (x)

−'

(
m

(
M − f̄$,w

)+M
(
f̄$,w −m

)

M −m

)

=
(
M − f̄$,w

)
'(m)+ (

f̄$,w −m
)
'(M)

M −m

−'

(
m

(
M − f̄$,w

)+M
(
f̄$,w −m

)

M −m

)

:= B.

By denoting

&' (t;m,M) := (t −m)' (M)+ (M − t)' (m)

M −m
−'(t) , t ∈ [m,M]

we have

&' (t;m,M) = (t −m)' (M)+ (M − t)' (m)− (M −m)' (t)

M −m
(4.4)

= (t −m)' (M)+ (M − t)' (m)− (M − t + t −m)' (t)

M −m

= (t −m) ['(M)−'(t)] − (M − t) ['(t)−'(m)]

M −m

= (M − t) (t −m)

M −m
+' (t;m,M)

for any t ∈ (m,M) .

Therefore we have the equality

B =
(
M − f̄$,w

) (
f̄$,w −m

)

M −m
+'

(
f̄$,w;m,M

)
(4.5)

provided that f̄$,w ∈ (m,M) .

For f̄$,w = m or f̄$,w = M the inequality (4.1) is obvious. If f̄$,w ∈ (m,M),
then

+'

(
f̄$,w;m,M

) ≤ sup
t∈(m,M)

+' (t;m,M)

= sup
t∈(m,M)

[
'(M)−'(t)

M − t
− '(t)−'(m)

t −m

]
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≤ sup
t∈(m,M)

[
'(M)−'(t)

M − t

]
+ sup

t∈(m,M)

[
−'(t)−'(m)

t −m

]

= sup
t∈(m,M)

[
'(M)−'(t)

M − t

]
− inf

t∈(m,M)

[
'(t)−'(m)

t −m

]

= '′− (M)−'′+ (m) ,

which by (4.3) and (4.5) produces the desired result (4.1).
Since, obviously

(
M − f̄$,w

) (
f̄$,w −m

)

M −m
≤ 1

4
(M −m) ,

then by (4.3) and (4.5) we deduce the first inequality (4.2). The second part is clear.
��

Corollary 8 Let ' : I → R be a continuous convex function on the interval of real
numbers I and m, M ∈ R, m < M with [m,M] ⊂ I̊ . If xi ∈ [m,M] and pi ≥ 0
for i ∈ {1, . . . , n} with

∑n
i=1 pi = 1, then we have the inequalities

0 ≤
n∑

i=1

pi' (xi)−'
(
x̄p

)
(4.6)

≤
(
M − x̄p

) (
x̄p −m

)

M −m
sup

t∈(m,M)

+' (t;m,M)

≤ (
M − x̄p

) (
x̄p −m

) '′− (M)−'′+ (m)

M −m

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

and

0 ≤
n∑

i=1

pi' (xi)−'
(
x̄p

) ≤ 1

4
(M −m)+'

(
x̄p;m,M

)
(4.7)

≤ 1

4
(M −m)

[
'′− (M)−'′+ (m)

]
,

where x̄p := ∑n
i=1 pixi ∈ (m,M) .

Remark 14 Consider the positive n-tuple x = (x1, . . . , xn) with the nonnegative
weights w = (w1, . . . , wn) where Wn := ∑n

i=1 wi > 0. Applying the inequality
between the first and third term in (4.6) for the convex function '(t) = − ln t,
t > 0 we have
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1 ≤ An (w, x)

Gn (w, x)
≤ exp

[
1

Mm
(M − An (w, x)) (An (w, x)−m)

]
(4.8)

≤ exp

[
1

4

(M −m)2

mM

]

,

provided that 0 < m ≤ xi ≤ M < ∞ for i ∈ {1, . . . , n} .
Also, if we apply the inequality (4.7) for the same function ' we get that

1 ≤ An (w, x)

Gn (w, x)
(4.9)

≤
[(

M

An (w, x)

)M−An(w,x)
(

m

An (w, x)

)An(w,x)−m]− 1
4 (M−m)

≤ exp

[
1

4

(M −m)2

mM

]

.

The following result also holds:

Theorem 7 (Dragomir [20]) With the assumptions of Theorem 6, we have the
inequalities

0 ≤
∫

$

w (' ◦ f ) dμ (x)−'
(
f̄$,w

)
(4.10)

≤ 2 max

{
M − f̄$,w

M −m
,
f̄$,w −m

M −m

}[
'(m)+'(M)

2
−'

(
m+M

2

)]

≤ 1

2
max

{
M − f̄$,w, f̄$,w −m

} [
'′− (M)−'′+ (m)

]
.

Proof First of all, we recall the following result obtained by the author in [16] that
provides a refinement and a reverse for the weighted Jensen’s discrete inequality:

n min
i∈{1,...,n}

{pi}
[

1

n

n∑

i=1

'(xi)−'

(
1

n

n∑

i=1

xi

)]

(4.11)

≤ 1

Pn

n∑

i=1

pi' (xi)−'

(
1

Pn

n∑

i=1

pixi

)

n max
i∈{1,...,n}

{pi}
[

1

n

n∑

i=1

'(xi)−'

(
1

n

n∑

i=1

xi

)]

,
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where ' : C → R is a convex function defined on the convex subset C of the linear
space X, {xi}i∈{1,...,n} ⊂ C are vectors and {pi}i∈{1,...,n} are nonnegative numbers
with Pn := ∑n

i=1 pi > 0.
For n = 2 we deduce from (4.11) that

2 min {t, 1 − t}
[
'(x)+'(y)

2
−'

(
x + y

2

)]
(4.12)

≤ t' (x)+ (1 − t)' (y)−'(tx + (1 − t) y)

≤ 2 max {t, 1 − t}
[
'(x)+'(y)

2
−'

(
x + y

2

)]

for any x, y ∈ C and t ∈ [0, 1] .
If we use the second inequality in (4.12) for the convex function ' : I → R and

m, M ∈ R, m < M with [m,M] ⊂ I̊ , we have for t = M−f̄$,w

M−m that
(
M − f̄$,w

)
'(m)+ (

f̄$,w −m
)
'(M)

M −m
(4.13)

−'

(
m

(
M − f̄$,w

)+M
(
f̄$,w −m

)

M −m

)

≤ 2 max

{
M − f̄$,w

M −m
,
f̄$,w −m

M −m

}

×
[
'(m)+'(M)

2
−'

(
m+M

2

)]
.

Utilizing the inequality (4.3) and (4.13) we deduce the first inequality in (4.10).
Since

'(m)+'(M)
2 −'

(
m+M

2

)

M −m

= 1

4

[
'(M)−'

(
m+M

2

)

M − m+M
2

− '
(
m+M

2

)−'(m)

m+M
2 −m

]

and, by the gradient inequality, we have that

'(M)−'
(
m+M

2

)

M − m+M
2

≤ '′− (M)

and

'
(
m+M

2

)−'(m)

m+M
2 −m

≥ '′+ (m) ,
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then we get

'(m)+'(M)
2 −'

(
m+M

2

)

M −m
≤ 1

4

[
'′− (M)−'′+ (m)

]
. (4.14)

On making use of (4.13) and (4.14) we deduce the last part of (4.10). ��
Corollary 9 With the assumptions in Corollary 8, we have the inequalities

0 ≤
n∑

i=1

pi' (xi)−'
(
x̄p

)
(4.15)

≤ 2 max

{
M − x̄p

M −m
,
x̄p −m

M −m

}[
'(m)+'(M)

2
−'

(
m+M

2

)]

≤ 1

2
max

{
M − x̄p, x̄p −m

} [
'′− (M)−'′+ (m)

]
.

Remark 15 Since, obviously,

M − f̄$,w

M −m
,
f̄$,w −m

M −m
≤ 1

then we obtain from the first inequality in (4.10) the simpler, however coarser
inequality

0 ≤
∫

$

w (' ◦ f ) dμ (x)−'
(
f̄$,w

)
(4.16)

≤ 2

[
'(m)+'(M)

2
−'

(
m+M

2

)]
.

We notice that the discrete version of this result, namely

0 ≤
n∑

i=1

pi' (xi)−'
(
x̄p

) ≤ 2

[
'(m)+'(M)

2
−'

(
m+M

2

)]
(4.17)

was obtained in 2008 by Simić in [49].

Remark 16 With the assumptions in Remark 14 we have the following reverse of
the arithmetic mean-geometric mean inequality

1 ≤ An (w, x)

Gn (w, x)
≤

(
A (m,M)

G (m,M)

)2 max
{
M−An(w,x)

M−m ,
An(w,x)−m

M−m
}

, (4.18)

where A (m,M) is the arithmetic mean while G(m,M) is the geometric mean of
the positive numbers m and M .
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4.2 Applications for the Hölder Inequality

Assume that p > 1. If h : $ → R is μ-measurable, satisfies the bounds

0 < m ≤ |h (x)| ≤ M < ∞ for μ-a.e. x ∈ $

and is such that h, |h|p ∈ Lw ($,μ) , for a μ-measurable function w : $ → R,
with w (x) ≥ 0 for μ-a.e. x ∈ $ and

∫
$
wdμ > 0, then from (4.1) we have

0 ≤
∫
$
|h|p wdμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)p

(4.19)

≤
(
M − |h|$,w

) (|h|$,w −m
)

M −m
Bp (m,M)

≤ p
Mp−1 −mp−1

M −m

(
M − |h|$,w

) (|h|$,w −m
)

≤ 1

4
p (M −m)

(
Mp−1 −mp−1

)
,

where |h|$,w :=
∫
$
|h|wdμ∫
$ wdμ

∈ [m,M] and +p (·;m,M) : (m,M) → R is defined by

+p (t;m,M) = Mp − tp

M − t
− tp −mp

t −m

while

Bp (m,M) := sup
t∈(m,M)

+p (t;m,M) . (4.20)

From (4.2) we also have the inequality

0 ≤
∫
$
|h|p wdμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)p

≤ 1

4
(M −m)+p

(|h|$,w;m,M
)

(4.21)

≤ 1

4
p (M −m)

(
Mp−1 −mp−1

)
.

Proposition 8 (Dragomir [20]) If f ∈ Lp ($,μ), g ∈ Lq ($,μ) with p > 1, 1
p
+

1
q
= 1 and there exists the constants γ, % > 0 and such that

γ ≤ |f |
|g|q−1 ≤ % μ-a.e. on $,
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then we have

0 ≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

(4.22)

≤ Bp (γ, %)

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)

≤ p
%p−1 − γ p−1

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)

≤ 1

4
p (% − γ )

(
%p−1 − γ p−1

)
,

and

0 ≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

(4.23)

≤ 1

4
(% − γ )+p

(∫
$
|fg| dμ

∫
$
|g|q dμ ; γ, %

)
≤ 1

4
p (% − γ )

(
%p−1 − γ p−1

)
,

where Bp (·, ·) and +p (·; ·, ·) are defined above.

Proof The inequalities (4.22) and (4.23) follow from (4.19) and (4.21) by choosing

h = |f |
|g|q−1

and w = |g|q .

The details are omitted. ��
Remark 17 We observe that for p = q = 2 we have +2 (t; γ, %) = % − γ =
B2 (γ, %) and then from the first inequality in (4.22) we get the following reverse of
the Cauchy-Bunyakovsky-Schwarz inequality:

∫

$

|g|2 dμ
∫

$

|f |2 dμ−
(∫

$

|fg| dμ
)2

(4.24)

≤
(

% −
∫
$
|fg| dμ

∫
$
|g|2 dμ

)(∫
$
|fg| dμ

∫
$
|g|2 dμ − γ

)(∫

$

|g|2 dμ
)2

provided that f, g ∈ L2 ($,μ), and there exists the constants γ, % > 0 such that

γ ≤ |f |
|g| ≤ % μ-a.e. on $.
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Corollary 10 With the assumptions of Proposition 8 we have the following additive
reverses of the Hölder inequality

0 ≤
(∫

$

|f |p dμ
)1/p (∫

$

|g|q dμ
)1/q

−
∫

$

|fg| dμ (4.25)

≤
[
Bp (γ, %)

% − γ

]1/p (
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)1/p (∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)1/p

×
∫

$

|g|q dμ

≤ p1/p
(
%p−1 − γ p−1

% − γ

)1/p (
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)1/p (∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)1/p

×
∫

$

|g|q dμ

≤ 1

41/p
p1/p (% − γ )1/p

(
%p−1 − γ p−1

)1/p
∫

$

|g|q dμ

and

0 ≤
(∫

$

|f |p dμ
)1/p (∫

$

|g|q dμ
)1/q

−
∫

$

|fg| dμ (4.26)

≤ 1

41/p (% − γ )1/p +
1/p
p

(∫
$
|fg| dμ

∫
$
|g|q dμ ;m,M

)∫

$

|g|q dμ

≤ 1

41/p p
1/p (% − γ )1/p

(
%p−1 − γ p−1

)1/p
∫

$

|g|q dμ

where p > 1 and 1
p
+ 1

q
= 1.

Proof By multiplying in (4.22) with
(∫

$
|g|q dμ)p we have

∫

$

|f |p dμ
(∫

$

|g|q dμ
)p−1

−
(∫

$

|fg| dμ
)p

≤ Bp (γ, %)

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)(∫

$

|g|q dμ
)p

≤ p
%p−1 − γ p−1

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)(∫

$

|g|q dμ
)p

≤ 1

4
p (% − γ )

(
%p−1 − γ p−1

)(∫

$

|g|q dμ
)p

,
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which is equivalent with

∫

$

|f |p dμ
(∫

$

|g|q dμ
)p−1

(4.27)

≤
(∫

$

|fg| dμ
)p

+ Bp (γ, %)

% − γ

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)

×
(∫

$

|g|q dμ
)p

≤
(∫

$

|fg| dμ
)p

+ p

(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)

×
(∫

$

|g|q dμ
)p

%p−1 − γ p−1

% − γ

≤
(∫

$

|fg| dμ
)p

+ 1

4
p (% − γ )

(
%p−1 − γ p−1

)(∫

$

|g|q dμ
)p

.

Taking the power 1/p with p > 1 and employing the following elementary
inequality that state that for p > 1 and α, β > 0,

(α + β)1/p ≤ α1/p + β1/p

we have from the first part of (4.27) that

(∫

$

|f |p
)1/p

dμ

(∫

$

|g|q dμ
)1− 1

p

(4.28)

≤
∫

$

|fg| dμ+
[
Bp (γ, %)

% − γ

]1/p (
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)1/p (∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)1/p

×
∫

$

|g|q dμ

and since 1 − 1
p

= 1
q

we get from (4.28) the first inequality in (4.25). The rest is
obvious.

The inequality (4.26) can be proved in a similar manner, however the details are
omitted. ��

If h : $ → R is μ-measurable, satisfies the bounds

0 < m ≤ |h (x)| ≤ M < ∞ for μ-a.e. x ∈ $

and is such that h, |h|p ∈ Lw ($,μ) , for a μ-measurable function w : $ → R,
with w (x) ≥ 0 for μ-a.e. x ∈ $ and

∫
$
wdμ > 0, then from (4.10) we also have
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the inequality

0 ≤
∫
$
|h|p wdμ
∫
$
wdμ

−
(∫

$
|h|wdμ

∫
$
wdμ

)p

(4.29)

≤ 2

[
mp +Mp

2
−

(
m+M

2

)p]
max

{
M − |h|$,w

M −m
,
|h|$,w −m

M −m

}

≤ 1

2
p
(
Mp−1 −mp−1

)
max

{
M − |h|$,w, |h|$,w −m

}
.

where, as above, |h|$,w :=
∫
$
|h|wdμ∫
$ wdμ

∈ [m,M].

From the inequality (4.29) we can state:

Proposition 9 (Dragomir [20]) With the assumptions of Proposition 8 we have

0 ≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

(4.30)

≤ 2 ·
γ p+%p

2 −
(
γ+%

2

)p

% − γ
max

{
% −

∫
$
|fg| dμ

∫
$
|g|q dμ ,

∫
$
|fg| dμ

∫
$
|g|q dμ − γ

}

≤ 1

2
p
(
%p−1 − γ p−1

)
max

{
% −

∫
$
|fg| dμ

∫
$
|g|q dμ ,

∫
$
|fg| dμ

∫
$
|g|q dμ − γ

}
.

Finally, the following additive reverse of the Hölder inequality can be stated
as well:

Corollary 11 With the assumptions of Proposition 8 we have

0 ≤
(∫

$

|f |p dμ
)1/p (∫

$

|g|q dμ
)1/q

−
∫

$

|fg| dμ (4.31)

≤ 21/p ·
⎛

⎜
⎝

γ p+%p

2 −
(
γ+%

2

)p

% − γ

⎞

⎟
⎠

1/p

× max

{(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)1/p

,

(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)1/p
}∫

$

|g|q dμ

≤ 1

21/p p
1/p max

{(
% −

∫
$
|fg| dμ

∫
$
|g|q dμ

)1/p

,

(∫
$
|fg| dμ

∫
$
|g|q dμ − γ

)1/p
}

×
(
%p−1 − γ p−1

)1/p
∫

$

|g|q dμ.
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Remark 18 As a simpler, however coarser inequality we have the following result:

0 ≤
(∫

$

|f |p dμ
)1/p (∫

$

|g|q dμ
)1/q

−
∫

$

|fg| dμ

≤ 21/p ·
[
γ p + %p

2
−

(
γ + %

2

)p]1/p ∫

$

|g|q dμ,

where f and g are as above.

4.3 Applications for f -Divergence

The following result holds:

Proposition 10 (Dragomir [20]) Let f : (0,∞) → R be a convex function with
the property that f (1) = 0. Assume that p, q ∈ P and there exists the constants
0 < r < 1 < R < ∞ such that

r ≤ q (x)

p (x)
≤ R for μ-a.e. x ∈ $. (4.32)

Then we have the inequalities

If (p, q) ≤ (R − 1) (1 − r)

R − r
sup

t∈(r,R)
+f (t; r, R) (4.33)

≤ (R − 1) (1 − r)
f ′− (R)− f ′+ (r)

R − r

≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
,

and +f (·; r, R) : (r, R) → R is defined by

+f (t; r, R) = f (R)− f (t)

R − t
− f (t)− f (r)

t − r
.

We also have the inequality

If (p, q) ≤ 1

4
(R − r)

f (R) (1 − r)+ f (r) (R − 1)

(R − 1) (1 − r)
(4.34)

≤ 1

4
(R − r)

[
f ′− (R)− f ′+ (r)

]
.
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The proof follows by Theorem 6 by choosing w (x) = p (x) , f (x) = q(x)
p(x)

, m =
r and M = R and performing the required calculations. The details are omitted.

Utilising the same approach and Theorem 7 we can also state that:

Proposition 11 (Dragomir [20]) With the assumptions of Proposition 10 we have

If (p, q) ≤ 2 max

{
R − 1

R − r
,

1 − r

R − r

}[
f (r)+ f (R)

2
− f

(
r + R

2

)]
(4.35)

≤ 1

2
max {R − 1, 1 − r} [f ′− (R)− f ′+ (r)

]
.

The above results can be utilized to obtain various inequalities for the divergence
measures in Information Theory that are particular instances of f -divergence.

Consider the Kullback-Leibler divergence

DKL (p, q) :=
∫

$

p (x) ln

[
p (x)

q (x)

]
dμ (x) , p, q ∈ P,

which is an f -divergence for the convex function f : (0,∞) → R, f (t) = − ln t.
If p, q ∈ P such that there exists the constants 0 < r < 1 < R < ∞ with

r ≤ q (x)

p (x)
≤ R for μ-a.e. x ∈ $. (4.36)

then we get from (4.33) that

DKL (p, q) ≤ (R − 1) (1 − r)

rR
, (4.37)

from (4.34) that

DKL (p, q) ≤ 1

4
(R − r) ln

[
R− 1

R−1 r−
1

1−r
]

and from (4.35) that

DKL (p, q) ≤ 2 max

{
R − 1

R − r
,

1 − r

R − r

}
ln

(
A (r, R)

G (r, R)

)
(4.38)

≤ 1

2
max {R − 1, 1 − r}

(
R − r

rR

)
,

where A (r, R) is the arithmetic mean and G(r,R) is the geometric mean of the
positive numbers r and R.
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5 Superadditivity and Monotonicity Properties

5.1 General Results

For a μ-measurable function w : $ → R, with w (x) ≥ 0 for μ-a.e. x ∈ $ and∫
$
wdμ > 0 we consider the functional

J (w;', f ) :=
∫

$

w (' ◦ f ) dμ−'

(∫
$
wf dμ

∫
$
wdμ

)∫

$

wdμ ≥ 0, (5.1)

where ' : I → R is a continuous convex function on the interval of real numbers
I, f : $ → R is μ-measurable and such that f, ' ◦ f ∈ Lw ($,μ) .

Theorem 8 (Dragomir [17]) Let wi : $ → R, with wi (x) ≥ 0 for μ-a.e. x ∈ $

and
∫
$
widμ > 0, i ∈ {1, 2} . If ' : I → R is a continuous convex function

on the interval of real numbers I, f : $ → R is μ-measurable and such that f,
' ◦ f ∈ Lw1 ($,μ) ∩ Lw2 ($,μ) , then

J (w1 + w2;', f ) ≥ J (w1;', f )+ J (w2;', f ) ≥ 0 (5.2)

i.e., J is a superadditive functional of weights.
Moreover, if w2 ≥ w1 ≥ 0 μ-a.e. on $, then

J (w2;', f ) ≥ J (w1;', f ) ≥ 0, (5.3)

i.e., J is a monotonic nondecreasing functional of weights.

Proof Utilising the convexity property of ' we have successively

J (w1 + w2;', f ) (5.4)

=
∫

$

(w1 + w2) (' ◦ f ) dμ−'

(∫
$ (w1 + w2) f dμ∫
$ (w1 + w2) dμ

)∫

$

(w1 + w2) dμ

=
∫

$

w1 (' ◦ f ) dμ+
∫

$

w2 (' ◦ f ) dμ

−'

⎛

⎜
⎝

∫
$
w1dμ ·

∫
$ w1f dμ∫
$ w1dμ

+ ∫
$
w2dμ ·

∫
$ w2f dμ∫
$ w2dμ∫

$ (w1 + w2) dμ

⎞

⎟
⎠

∫

$

(w1 + w2) dμ

≥
∫

$

w1 (' ◦ f ) dμ+
∫

$

w2 (' ◦ f ) dμ

−
[ ∫

$
w1dμ∫

$ (w1 + w2) dμ
'

(∫
$
w1f dμ∫

$
w1dμ

)
+

∫
$
w2dμ∫

$ (w1 + w2) dμ
'

(∫
$
w2f dμ∫

$
w2dμ

)]
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×
∫

$

(w1 + w2) dμ

=
∫

$

w1 (' ◦ f ) dμ−'

(∫
$
w1f dμ∫

$
w1dμ

)∫

$

w1dμ

+
∫

$

w2 (' ◦ f ) dμ−'

(∫
$
w2f dμ∫

$
w2dμ

)∫

$

w2dμ

= J (w1;', f )+ J (w2;', f )

which proves the superadditivity property.
Now, if w2 ≥ w1 ≥ 0, then on applying the superadditivity property we have

J (w2;', f ) = J (w1 + (w2 − w1) ;', f ) ≥ J (w1;', f )+ J (w2 − w1;', f )
≥ J (w1;', f )

since by the Jensen’s inequality for the positive weights we have J (w2 − w1;', f )
≥ 0. ��

The above theorem has a simple however interesting consequence that provides
both a refinement and a reverse for the Jensen’s integral inequality:

Corollary 12 Let wi : $ → R, with wi (x) ≥ 0 for μ-a.e. x ∈ $,
∫
$
widμ > 0,

i ∈ {1, 2} and there exists the nonnegative constants γ, % such that

0 ≤ γ ≤ w2

w1
≤ % < ∞ μ-a.e. on $. (5.5)

If ' : I → R is a continuous convex function on the interval of real numbers I, f :
$ → R is μ-measurable and such that f, ' ◦ f ∈ Lw1 ($,μ) ∩ Lw2 ($,μ) , then

0 ≤ γ

[∫

$

w1 (' ◦ f ) dμ−'

(∫
$
w1f dμ∫

$
w1dμ

)∫

$

w1dμ

]
(5.6)

≤
∫

$

w2 (' ◦ f ) dμ−'

(∫
$
w2f dμ∫

$
w2dμ

)∫

$

w2dμ

≤ %

[∫

$

w1 (' ◦ f ) dμ−'

(∫
$
w1f dμ∫

$
w1dμ

)∫

$

w1dμ

]

or, equivalently,

0 ≤ γ

∫
$
w1dμ∫

$
w2dμ

[∫
$
w1 (' ◦ f ) dμ
∫
$
w1dμ

−'

(∫
$
w1f dμ∫

$
w1dμ

)]
(5.7)
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≤
∫
$
w2 (' ◦ f ) dμ
∫
$
w2dμ

−'

(∫
$
w2f dμ∫

$
w2dμ

)

≤ %

∫
$
w1dμ∫

$
w2dμ

[∫
$
w1 (' ◦ f ) dμ
∫
$
w1dμ

−'

(∫
$
w1f dμ∫

$
w1dμ

)]
.

Proof From (5.5) we have γw1 ≤ w2 ≤ %w1 < ∞ μ-a.e. on $ and by the
monotonicity property (5.3) we get

J (%w1;', f ) ≥ J (w2;', f ) ≥ J (γw1;', f ) . (5.8)

Since the functional is positive homogeneous, namely J (αw;', f ) =
αJ (w;', f ), then we get from (5.8) the desired result (5.6). ��
Remark 19 Assume that μ ($) < ∞ and let w : $ → R, with w (x) ≥ 0 for
μ-a.e. x ∈ $,

∫
$
wdμ > 0 and w is essentially bounded, i.e. essinfx∈$ w (x)

and essupx∈$ w (x) are finite. If ' : I → R is a continuous convex function on
the interval of real numbers I, f : $ → R is μ-measurable and such that f,
' ◦ f ∈ Lw ($,μ) ∩ L ($,μ) , then

0 ≤ essinfx∈$ w (x)

1
μ($)

∫
$
wdμ

[∫
$ (' ◦ f ) dμ

μ ($)
−'

(∫
$
f dμ

μ ($)

)]
(5.9)

≤
∫
$
w (' ◦ f ) dμ
∫
$
wdμ

−'

(∫
$
wf dμ

∫
$
wdμ

)

≤ essupx∈$ w (x)

1
μ($)

∫
$
wdμ

[∫
$ (' ◦ f ) dμ

μ ($)
−'

(∫
$
f dμ

μ ($)

)]
.

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1

b − a

∫ b

a

' (t) dt ≥ '

(
a + b

2

)

for any convex function ' : [a, b] → R.
Indeed , if w : [a, b] → [0,∞) is Lebesgue integrable, then we have

0 ≤ essinfx∈[a,b] w (x)

1
b−a

∫ b

a
w (t) dt

[
1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)]
(5.10)

≤
∫ b

a
w (t)' (t) dt
∫ b

a
w (t) dt

−'

(∫
$
w (t) tdt

∫ b

a
w (t) dt

)

≤ essupx∈[a,b] w (x)

1
b−a

∫ b

a
w (t) dt

[
1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)]
.
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Now we consider another functional depending on the weights

K (w;', f ) := J (w;', f )
∫
$
wdμ

=
∫
$
w (' ◦ f ) dμ
∫
$
wdμ

−'

(∫
$
wf dμ

∫
$
wdμ

)
≥ 0

and the composite functional

L (w;', f ) :=
(∫

$

wdμ

)
ln [K (w;', f )+ 1] ≥ 0,

where ' : I → R is a continuous convex function on the interval of real numbers I
and f : $ → R is μ-measurable and such that f, ' ◦ f ∈ Lw ($,μ) .

Theorem 9 (Dragomir [17]) With the assumptions of Theorem 8, L is a superad-
ditive and monotonic nondecreasing functional of weights.

Proof Let wi : $ → R, with wi (x) ≥ 0 for μ-a.e. x ∈ $ and
∫
$
widμ > 0,

i ∈ {1, 2} such that f, ' ◦ f ∈ Lw1 ($,μ) ∩ Lw2 ($,μ) .

Utilising the superadditivity property of J we have

L (w1 + w2;', f ) (5.11)

=
(∫

$

(w1 + w2) dμ

)
ln [K (w1 + w2;', f )+ 1]

=
(∫

$

(w1 + w2) dμ

)
ln

[
J (w1 + w2;', f )∫
$ (w1 + w2) dμ

+ 1

]

≥
(∫

$

(w1 + w2) dμ

)
ln

[
J (w1;', f )+ J (w2;', f )∫

$ (w1 + w2) dμ
+ 1

]

=
(∫

$

(w1 + w2) dμ

)

× ln

⎡

⎣

∫
$
w1dμ · J (w1;',f )∫

$ w1dμ
+ ∫

$
w2dμ · J (w2;',f )∫

$ w2dμ∫
$ (w1 + w2) dμ

+ 1

⎤

⎦

=
(∫

$

(w1 + w2) dμ

)

× ln

⎡

⎢
⎣

∫
$
w1dμ ·

(
J (w1;',f )∫

$ w1dμ
+ 1

)
+ ∫

$
w2dμ ·

(
J (w2;',f )∫

$ w2dμ
+ 1

)

∫
$ (w1 + w2) dμ

⎤

⎥
⎦

:= A.
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By the weighted arithmetic mean–geometric mean inequality we have

∫
$
w1dμ ·

(
J (w1;',f )∫

$ w1dμ
+ 1

)
+ ∫

$
w2dμ ·

(
J (w2;',f )∫

$ w2dμ
+ 1

)

∫
$ (w1 + w2) dμ

≥
(
J (w1;', f )∫

$
w1dμ

+ 1

)
∫
$ w1dμ∫

$(w1+w2)dμ
(
J (w2;', f )∫

$
w2dμ

+ 1

)
∫
$ w2dμ∫

$(w1+w2)dμ
,

therefore, by taking the logarithm and utilizing the definition of the functional K,

we get the inequality

A ≥
(∫

$

w1dμ

)
ln (K (w1;', f )+ 1)+

(∫

$

w2dμ

)
ln (K (w2;', f )+ 1)

(5.12)

= L (w1;', f )+ L (w2;', f ) .

Utilising (5.11) and (5.12) we deduce the superadditivity of the functional L as a
function of weights.

Since L (w;', f ) ≥ 0 for any weight w and it is superadditive, by employing
a similar argument to the one in the proof of Theorem 8 we conclude that it is also
monotonic nondecreasing as a function of weights. ��

The following result provides another refinement and reverse of the Jensen
inequality:

Corollary 13 Let wi : $ → R with wi (x) ≥ 0 for μ-a.e. x ∈ $,
∫
$
widμ > 0,

i ∈ {1, 2} and there exists the nonnegative constants γ, % such that

0 ≤ γ ≤ w2

w1
≤ % < ∞ μ-a.e. on $.

If ' : I → R is a continuous convex function on the interval of real numbers I, f :
$ → R is μ-measurable and such that f, ' ◦ f ∈ Lw1 ($,μ) ∩ Lw2 ($,μ) , then

0 ≤
[∫

$
w1 (' ◦ f ) dμ
∫
$
w1dμ

−'

(∫
$
w1f dμ∫

$
w1dμ

)
+ 1

]γ (
∫
$ w1dμ)

(
∫
$ w2dμ) − 1 (5.13)

≤
∫
$
w2 (' ◦ f ) dμ
∫
$
w2dμ

−'

(∫
$
w2f dμ∫

$
w2dμ

)

≤
[∫

$
w1 (' ◦ f ) dμ
∫
$
w1dμ

−'

(∫
$
w1f dμ∫

$
w1dμ

)
+ 1

]% (
∫
$ w1dμ)

(
∫
$ w2dμ) − 1.
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Proof Since L is monotonic nondecreasing and positive homogeneous as a function
of weights, we have

γL (w1;', f ) ≤ L (w2;', f ) ≤ %L (w1;', f ) ,
namely

[K (w1;', f )+ 1]γ (
∫
$ w1dμ) ≤ [K (w2;', f )+ 1](

∫
$ w2dμ)

≤ [K (w1;', f )+ 1]%(
∫
$ w1dμ) ,

which provides that

[K (w1;', f )+ 1]
γ
(
∫
$ w1dμ)

(
∫
$ w2dμ) − 1 ≤ K (w2;', f )

≤ [K (w1;', f )+ 1]
%
(
∫
$ w1dμ)

(
∫
$ w2dμ) − 1.

��
Remark 20 Assume that μ ($) < ∞ and let w : $ → R, with w (x) ≥ 0 for
μ-a.e. x ∈ $,

∫
$
wdμ > 0 and w is essentially bounded, i.e. essinfx∈$ w (x)

and essupx∈$ w (x) are finite. If ' : I → R is a continuous convex function on
the interval of real numbers I, f : $ → R is μ-measurable and such that f,
' ◦ f ∈ Lw ($,μ) ∩ L ($,μ) , then

0 ≤
[∫

$ (' ◦ f ) dμ
μ ($)

−'

(∫
$
f dμ

μ ($)

)
+ 1

] ess infx∈$ w(x)

1
μ($) (

∫
$ wdμ) − 1 (5.14)

≤
∫
$
w (' ◦ f ) dμ
∫
$
wdμ

−'

(∫
$
wf dμ

∫
$
wdμ

)

≤
[∫

$ (' ◦ f ) dμ
μ ($)

−'

(∫
$
f dμ

μ ($)

)
+ 1

] ess supx∈$ w(x)

1
μ($) (

∫
$ wdμ) − 1.

In particular, if w : [a, b] → [0,∞) is Lebesgue integrable, then we have the
following result related to the Hermite-Hadamard inequality for the convex function
' : [a, b] → R

0 ≤
[

1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)
+ 1

] essinfx∈[a,b] w(x)
1

b−a
∫ b
a w(t)dt − 1 (5.15)

≤
∫ b

a
w (t)' (t) dt
∫ b

a
w (t) dt

−'

(∫
$
w (t) tdt

∫ b

a
w (t) dt

)

≤
[

1

b − a

∫ b

a

' (t) dt −'

(
a + b

2

)
+ 1

] essupx∈[a,b] w(x)
1

b−a
∫ b
a w(t)dt − 1.
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5.2 Applications for the Hölder Inequality

Assume that p > 1. If h : $ → R is μ-measurable, μ ($) < ∞, |h| , |h|p ∈
Lw ($,μ) ∩ L ($,μ) , then by (5.9) we have the bounds

0 ≤ essinfx∈$ w (x)

1
μ($)

∫
$
wdμ

[
1

μ ($)

∫

$

|h|p dμ−
(

1

μ ($)

∫

$

|h| dμ
)p]

(5.16)

≤ 1
∫
$
wdμ

∫

$

w |h|p dμ−
(

1
∫
$
wdμ

∫

$

w |h| dμ
)p

≤ essupx∈$ w (x)

1
μ($)

∫
$
wdμ

[
1

μ ($)

∫

$

|h|p dμ−
(

1

μ ($)

∫

$

|h| dμ
)p]

.

Proposition 12 (Dragomir [17]) If f ∈ Lp ($,μ), g ∈ Lq ($,μ) with p > 1,
1
p
+ 1

q
= 1, μ ($) < ∞ and there exists the constants δ, & > 0 and such that

δ ≤ |g| ≤ & μ-a.e. on $, (5.17)

then we have

0 ≤ δq

1
μ($)

∫
$
|g|q dμ

[
1

μ ($)

∫

$

|f |p
|g|q dμ−

(
1

μ ($)

∫

$

|f |
|g|q−1 dμ

)p]
(5.18)

≤
∫
$
|f |p dμ

∫
$
|g|q dμ −

(∫
$
|fg| dμ

∫
$
|g|q dμ

)p

≤ &q

1
μ($)

∫
$
|g|q dμ

[
1

μ ($)

∫

$

|f |p
|g|q dμ−

(
1

μ ($)

∫

$

|f |
|g|q−1 dμ

)p]
.

Proof The inequalities (5.18) follows from (5.16) by choosing

h = |f |
|g|q−1

and w = |g|q .

The details are omitted. ��
Remark 21 We observe that for p = q = 2 we have from (5.18) the following
reverse of the Cauchy-Bunyakovsky-Schwarz inequality

0 ≤ δ2μ ($)

[
1

μ ($)

∫

$

∣∣
∣∣
f

g

∣∣
∣∣

2

dμ−
(

1

μ ($)

∫

$

∣∣
∣∣
f

g

∣∣
∣∣ dμ

)2
]∫

$

|g|2 dμ (5.19)

≤
∫

$

|g|2 dμ
∫

$

|f |2 dμ−
(∫

$

|fg| dμ
)2
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≤ &2μ ($)

[
1

μ ($)

∫

$

∣∣∣∣
f

g

∣∣∣∣

2

dμ−
(

1

μ ($)

∫

$

∣∣∣∣
f

g

∣∣∣∣ dμ
)2

]∫

$

|g|2 dμ,

provided that f, g ∈ L2 ($,μ) and g satisfies the bounds (5.17).

Similar results can be stated by utilizing the inequality (5.13), however the details
are not presented here.

5.3 Applications for f -Divergence Measures

The following result holds:

Proposition 13 (Dragomir [17]) Let f : (0,∞) → R be a convex function with
the property that f (1) = 0. Assume that p, q ∈ P and there exists the constants
0 < s < 1 < S < ∞ such that

s ≤ p (x)

q (x)
≤ S for μ-a.e. x ∈ $. (5.20)

Then we have the inequalities

s

[
I
f
(

1
·
) (q, p)− f

(
Dχ2 (p, q)+ 1

)]
(5.21)

≤ If (p, q)

≤ S

[
I
f
(

1
·
) (q, p)− f

(
Dχ2 (p, q)+ 1

)
]
.

Proof If we use the inequality (5.6) we get

s

[∫

$

qf

(
q

p

)
dμ− f

(∫

$

q2

p
dμ

)]
(5.22)

≤
∫

$

pf

(
q

p

)
dμ

≤ S

[∫

$

qf

(
q

p

)
dμ− f

(∫

$

q2

p
dμ

)]
.

Since

∫

$

q2

p
dμ = Dχ2 (p, q)+ 1
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and

∫

$

qf

(
q

p

)
dμ = I

f
(

1
·
) (q, p) ,

then from (5.22) we deduce the desired result (5.21). ��
Consider the Kullback-Leibler divergence

DKL (p, q) :=
∫

$

p (x) ln

[
p (x)

q (x)

]
dμ (x) , p, q ∈ P,

which is an f -divergence for the convex function f : (0,∞) → R, f (t) = − ln t.
If p, q ∈ P such that there exists the constants 0 < s < 1 < S < ∞ with

s ≤ p (x)

q (x)
≤ S for μ-a.e. x ∈ $. (5.23)

then we get from (5.21) that

s
[
ln

(
Dχ2 (p, q)+ 1

)−DKL (q, p)
]

(5.24)

≤ DKL (p, q)

≤ S
[
ln

(
Dχ2 (p, q)+ 1

)−DKL (q, p)
]
.

Similar results for f -divergence measures can be stated by utilizing the inequal-
ity (5.13), however the details are not presented here.

6 Inequalities for Selfadjoint Operators

6.1 Preliminary Facts

The above integral inequalities can be used to obtain various reverses of Jensen’s
inequality for convex functions of selfadjoint operators on complex Hilbert spaces.
In order to state these results, we need the following preparations.

Let A be a selfadjoint operator on the complex Hilbert space (H, 〈., .〉) with the
spectrum Sp (A) included in the interval [m,M] for some real numbers m < M and
let {Eλ}λ be its spectral family. Then for any continuous function f : [m,M] → R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see for instance [30, p. 257]):

〈f (A) x, y〉 =
∫ M

m−0
f (λ) d 〈Eλx, y〉 , (6.1)
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and

‖f (A) x‖2 =
∫ M

m−0
|f (λ)|2 d ‖Eλx‖2 , (6.2)

for any x, y ∈ H.

The function gx,y (λ) := 〈Eλx, y〉 is of bounded variation on the interval [m,M]
and gx,y (m− 0) = 0 while gx,y (M) = 〈x, y〉 for any x, y ∈ H. It is also well
known that gx (λ) := 〈Eλx, x〉 is monotonic nondecreasing and right continuous
on [m,M] for any x ∈ H .

The following result that provides an operator version for the Jensen inequality:

Theorem 10 (Mond-Pečarić [40]) Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) ⊆ [m,M] for some scalars m,M with m < M. If
' is a convex function on [m,M] , then

'(〈Ax, x〉) ≤ 〈'(A) x, x〉 (MP)

for each x ∈ H with ‖x‖ = 1.

As a special case of Theorem 10 we have the following Hölder-McCarthy
inequality:

Theorem 11 (Hölder-McCarthy [38]) Let A be a selfadjoint positive operator on
a Hilbert space H . Then for all x ∈ H with ‖x‖ = 1,

(i) 〈Arx, x〉 ≥ 〈Ax, x〉r for all r > 1;
(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for all 0 < r < 1;

(iii) If A is invertible, then 〈Arx, x〉 ≥ 〈Ax, x〉r for all r < 0.

The following reverse for the (MP) inequality that generalizes the scalar Lah-
Ribarić inequality for convex functions is well known, see for instance [26, p. 57]:

Theorem 12 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) ⊆ [m,M] for some scalars m,M with m < M. If ' is a convex function
on [m,M] , then

〈'(A) x, x〉 ≤ M − 〈Ax, x〉
M −m

'(m)+ 〈Ax, x〉 −m

M −m
'(M) (LR)

for each x ∈ H with ‖x‖ = 1.

In [22] we obtained the following weighted version of (MP) and (LR).

Theorem 13 (Dragomir [22]) Let A be a selfadjoint operator on the Hilbert space
H and assume that Sp (A) ⊆ [m,M] for some scalars m,M with m < M. If
' : [k,K] ⊂ R → R is a continuous convex function on the interval [k,K] , w :
[m,M] → [0,∞) is continuous on [m,M] , f : [m,M] ⊂ R → R is a continuous
function on the interval [m,M] and with the property that

k ≤ f (t) ≤ K for any t ∈ [m,M] , (6.3)
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then

'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.4)

≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉

≤
(
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
)
'(k)+

( 〈w(A)f (A)x,x〉
〈w(A)x,x〉 − k

)
'(K)

K − k
,

for any x ∈ H with 〈w (A) x, x〉 �= 0.

For various particular instances of (6.4) that are of interest being related to
Hölder-McCarthy’s inequalities mentioned above, see [22].

For classical and recent result concerning inequalities for continuous functions
of selfadjoint operators, see the recent monographs, [18, 26] and [19].

6.2 Reverses for Functions of Operators

We have the following results:

Theorem 14 (Dragomir [24]) Let A be a selfadjoint operator on the Hilbert space
H such that Sp (A) ⊆ [k,K] for some scalars k, K with k < K. Assume that
' : [k,K] ⊂ R → R is a continuous convex function on the interval [k,K] , w :
[k,K] → [0,∞) is continuous on [k,K] , f : [k,K] ⊂ R → R is a continuous
function on the interval [k,K] and satisfies the property (6.3)

(i) If ' is continuously differentiable on (k,K) , then we have

0 ≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉 −'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.5)

≤
〈(
'′ ◦ f ) (A) f (A)w (A) x, x

〉

〈w (A) x, x〉

−
〈(
'′ ◦ f ) (A)w (A) x, x

〉

〈w (A) x, x〉
〈f (A)w (A) x, x〉

〈w (A) x, x〉

≤ 1

2

[
'′− (K)−'′+ (k)

]
〈∣∣∣f (A)− 〈f (A)w(A)x,x〉

〈w(A)x,x〉 1H
∣∣∣ x, x

〉

〈w (A) x, x〉

≤ 1

2

[
'′− (K)−'′+ (k)

]
[ 〈
f 2 (A)w (A) x, x

〉

〈w (A) x, x〉 −
( 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)2

] 1
2

≤ 1

4

[
'′− (K)−'′+ (k)

]
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.
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(ii) If we consider the function +' (·; k,K) : (k,K) → R defined by

+' (t; k,K) = '(K)−'(t)

K − t
− '(t)−'(k)

t − k
,

then

0 ≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉 −'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.6)

≤
(
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
) ( 〈w(A)f (A)x,x〉

〈w(A)x,x〉 − k
)

K − k
sup

t∈(k,K)

+' (t; k,K)

≤
(
K − 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)( 〈w (A) f (A) x, x〉

〈w (A) x, x〉 − k

)
'′− (K)−'′+ (k)

K − k

≤ 1

4

[
'′− (K)−'′+ (k)

]
(K − k)

and

0 ≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉 −'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.7)

≤ 1

4
(K − k)+'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)

≤ 1

4

[
'′− (K)−'′+ (k)

]
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.
(iii) We have the inequalities

0 ≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉 −'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.8)

≤ 2 max

{
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
K − k

,

〈w(A)f (A)x,x〉
〈w(A)x,x〉 − k

K − k

}

×
[
'(k)+'(K)

2
−'

(
k +K

2

)]

and

0 ≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉 −'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.9)

≤ 2

[
'(k)+'(K)

2
−'

(
k +K

2

)]

for any x ∈ H with 〈w (A) x, x〉 �= 0.
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(iv) We also have the inequalities

0 ≤ 〈w (A) (' ◦ f ) (A) x, x〉
〈w (A) x, x〉 −'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
(6.10)

≤ 1

2
+'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
〈∣∣∣f (A)− 〈f (A)w(A)x,x〉

〈w(A)x,x〉 1H
∣
∣∣ x, x

〉

〈w (A) x, x〉

≤ 1

2
+'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)

×
[〈
f 2 (A)w (A) x, x

〉

〈w (A) x, x〉 −
( 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)2

] 1
2

≤ 1

4
+'

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.

Proof

(i) Let {Eλ}λ be the spectral family of the operator A. Let ε > 0 and write the
inequality (1.17) on the interval [k − ε,K] and for the monotonic nondecreas-
ing function g (t) = 〈Etx, x〉 , x ∈ H with 〈w (A) x, x〉 �= 0, to get

0 ≤
∫ K

k−ε (' ◦ f ) (t) w (t) d 〈Etx, x〉
∫ K

k−ε w (t) d 〈Etx, x〉
−'

(∫ K

k−ε f (t) w (t) d 〈Etx, x〉
∫ K

k−ε w (t) d 〈Etx, x〉

)

(6.11)

≤
∫ K

k−ε
(
'′ ◦ f ) (t) f (t) w (t) d 〈Etx, x〉

∫ K

k−ε w (t) d 〈Etx, x〉

−
∫ K

k−ε
(
'′ ◦ f ) (t) w (t) d 〈Etx, x〉
∫ K

k−ε w (t) d 〈Etx, x〉

∫ K

k−ε f (t) w (t) d 〈Etx, x〉
∫ K

k−ε w (t) d 〈Etx, x〉

≤ 1

2

[
'′− (K)−'′+ (k)

]

∫ K

k−ε w (t) d 〈Etx, x〉

×
∫ K

k−ε

∣∣∣∣∣
f (t)−

∫ K

k−ε f (s)w (s) d 〈Esx, x〉
∫ K

k−ε w (s) d 〈Esx, x〉

∣∣∣∣∣
w (t) d 〈Etx, x〉

≤ 1

2

[
'′− (K)−'′+ (k)

]
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×
⎡

⎣
∫ K

k−ε f
2 (t) w (t) d 〈Etx, x〉

∫ K

k−ε w (s) d 〈Esx, x〉
−

(∫ K

k−ε f (s)w (s) d 〈Esx, x〉
∫ K

k−ε w (s) d 〈Esx, x〉

)2
⎤

⎦

1
2

≤ 1

4

[
'′− (K)−'′+ (k)

]
(K − k) .

Letting ε → 0+ and using the spectral representation theorem summarized
in (6.1) we get the required inequality (6.5).

(ii) Follows by the first part of Theorem 6 , (iii) follows by Theorem 7 while (iv)
follows by the second part of Theorem 6. The details are omitted. ��

We have the following generalization and reverse for the Hölder-McCarthy
inequality:

Corollary 14 (Dragomir [24]) Let A be a selfadjoint operator on the Hilbert
space H such that Sp (A) ⊆ [k,K] for some scalars k, K with k < K. Assume
that w : [k,K] → [0,∞) is continuous on [k,K] , f : [k,K] ⊂ R → R is
a continuous function on the interval [k,K] and satisfies the property (6.3) with
k > 0. Assume also that p ∈ (−∞, 0) ∪ (1,∞) .

(i) We have

0 ≤ 〈w (A) f p (A) x, x〉
〈w (A) x, x〉 −

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)p

(6.12)

≤ p

[
〈f p (A)w (A) x, x〉

〈w (A) x, x〉 −
〈
f p−1 (A)w (A) x, x

〉

〈w (A) x, x〉
〈f (A)w (A) x, x〉

〈w (A) x, x〉

]

≤ 1

2
p
(
Kp−1 − kp−1

)
〈∣∣∣f (A)− 〈f (A)w(A)x,x〉

〈w(A)x,x〉 1H
∣∣∣ x, x

〉

〈w (A) x, x〉

≤ 1

2
p
(
Kp−1 − kp−1

)[〈
f 2 (A)w (A) x, x

〉

〈w (A) x, x〉 −
( 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)2

] 1
2

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.
(ii) If we consider the function +p (·; k,K) : (k,K) → R defined by

+p (t; k,K) = Kp − tp

K − t
− tp − kp

t − k
,
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then

0 ≤ 〈w (A) f p (A) x, x〉
〈w (A) x, x〉 −

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)p

(6.13)

≤
(
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
) ( 〈w(A)f (A)x,x〉

〈w(A)x,x〉 − k
)

K − k
sup

t∈(k,K)

+p (t; k,K)

≤ p
Kp−1 − kp−1

K − k

(
K − 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)( 〈w (A) f (A) x, x〉

〈w (A) x, x〉 − k

)

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k)

and

0 ≤ 〈w (A) f p (A) x, x〉
〈w (A) x, x〉 −

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)p

(6.14)

≤ 1

4
(K − k)+p

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.
(iii) We have the inequalities

0 ≤ 〈w (A) f p (A) x, x〉
〈w (A) x, x〉 −

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)p

(6.15)

≤ 2 max

{
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
K − k

,

〈w(A)f (A)x,x〉
〈w(A)x,x〉 − k

K − k

}

×
[
kp +Kp

2
−

(
k +K

2

)p]

and

0 ≤ 〈w (A) f p (A) x, x〉
〈w (A) x, x〉 −

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)p

(6.16)

≤ 2

[
kp +Kp

2
−

(
k +K

2

)p]

for any x ∈ H with 〈w (A) x, x〉 �= 0.
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(iv) We also have the inequalities

0 ≤ 〈w (A) f p (A) x, x〉
〈w (A) x, x〉 −

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)p

(6.17)

≤ 1

2
+p

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
〈∣∣∣f (A)− 〈f (A)w(A)x,x〉

〈w(A)x,x〉 1H
∣∣∣ x, x

〉

〈w (A) x, x〉

≤ 1

2
+p

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)

×
[〈
f 2 (A)w (A) x, x

〉

〈w (A) x, x〉 −
( 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)2

] 1
2

≤ 1

4
+p

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.

If p ∈ (0, 1) , then by taking '(t) = −tp we can get similar inequalities.
However the details are omitted.

If we take '(t) = − ln t, t > 0 in Theorem 14 then we get the following
logarithmic inequalities:

Corollary 15 (Dragomir [24]) Let A be a selfadjoint operator on the Hilbert
space H such that Sp (A) ⊆ [k,K] for some scalars k, K with k < K. Assume
that w : [k,K] → [0,∞) is continuous on [k,K] , f : [k,K] ⊂ R → R is
a continuous function on the interval [k,K] and satisfies the property (6.3) with
k > 0.

(i) We have

0 ≤ ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
− 〈w (A) ln f (A) x, x〉

〈w (A) x, x〉 (6.18)

≤
〈
f−1 (A)w (A) x, x

〉

〈w (A) x, x〉
〈f (A)w (A) x, x〉

〈w (A) x, x〉 − 1

≤ 1

2

K − k

kK

〈∣∣
∣f (A)− 〈f (A)w(A)x,x〉

〈w(A)x,x〉 1H
∣∣
∣ x, x

〉

〈w (A) x, x〉

≤ 1

2

K − k

kK

[〈
f 2 (A)w (A) x, x

〉

〈w (A) x, x〉 −
( 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)2

] 1
2

≤ 1

4

(K − k)2

kK

for any x ∈ H with 〈w (A) x, x〉 �= 0,
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(ii) If we consider the function +− ln (·; k,K) : (k,K) → R defined by

+− ln (t; k,K) = ln t − ln k

t − k
− lnK − ln t

K − t
,

then

0 ≤ ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
− 〈w (A) ln f (A) x, x〉

〈w (A) x, x〉 (6.19)

≤
(
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
) ( 〈w(A)f (A)x,x〉

〈w(A)x,x〉 − k
)

K − k
sup

t∈(k,K)

+− ln (t; k,K)

≤ 1

Kk

(
K − 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)( 〈w (A) f (A) x, x〉

〈w (A) x, x〉 − k

)
≤ 1

4

(K − k)2

kK

and

0 ≤ ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
− 〈w (A) ln f (A) x, x〉

〈w (A) x, x〉 (6.20)

≤ 1

4
(K − k)+− ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
≤ 1

4

(K − k)2

kK

for any x ∈ H with 〈w (A) x, x〉 �= 0.
(iii) We have the inequalities

0 ≤ ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
− 〈w (A) ln f (A) x, x〉

〈w (A) x, x〉 (6.21)

≤ 2 max

{
K − 〈w(A)f (A)x,x〉

〈w(A)x,x〉
K − k

,

〈w(A)f (A)x,x〉
〈w(A)x,x〉 − k

K − k

}

ln

(
k +K

2
√
kK

)

and

0 ≤ ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
− 〈w (A) ln f (A) x, x〉

〈w (A) x, x〉 ≤ ln

(
k +K

2
√
kK

)2

(6.22)
for any x ∈ H with 〈w (A) x, x〉 �= 0.

(iv) We also have the inequalities

0 ≤ ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉

)
− 〈w (A) ln f (A) x, x〉

〈w (A) x, x〉 (6.23)
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≤ 1

2
+− ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
〈∣∣∣f (A)− 〈f (A)w(A)x,x〉

〈w(A)x,x〉 1H
∣∣∣ x, x

〉

〈w (A) x, x〉

≤ 1

2
+− ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)

×
[〈
f 2 (A)w (A) x, x

〉

〈w (A) x, x〉 −
( 〈w (A) f (A) x, x〉

〈w (A) x, x〉
)2

] 1
2

≤ 1

4
+− ln

( 〈w (A) f (A) x, x〉
〈w (A) x, x〉 ; k,K

)
(K − k)

for any x ∈ H with 〈w (A) x, x〉 �= 0.

6.3 Some Examples

If we choose w(t) = 1 and f (t) = t with t ∈ [k,K] ⊂ [0,∞) then we get from
Corollary 14 that

0 ≤ 〈
Apx, x

〉− 〈Ax, x〉p ≤ p
[〈
Apx, x

〉−
〈
Ap−1x, x

〉
〈Ax, x〉

]
(6.24)

≤ 1

2
p
(
Kp−1 − kp−1

)
〈|A− 〈Ax, x〉 1H | x, x〉

≤ 1

2
p
(
Kp−1 − kp−1

) [〈
A2x, x

〉
− 〈Ax, x〉2

] 1
2

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k) ,

0 ≤ 〈
Apx, x

〉− 〈Ax, x〉p (6.25)

≤ (K − 〈Ax, x〉) (〈Ax, x〉 − k)

K − k
sup

t∈(k,K)

+p (t; k,K)

≤ p
Kp−1 − kp−1

K − k
(K − 〈Ax, x〉) (〈Ax, x〉 − k)

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k) ,

0 ≤ 〈
Apx, x

〉− 〈Ax, x〉p ≤ 1

4
(K − k)+p (〈Ax, x〉 ; k,K) (6.26)
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≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k) ,

0 ≤ 〈
Apx, x

〉− 〈Ax, x〉p (6.27)

≤ 2 max

{
K − 〈Ax, x〉

K − k
,
〈Ax, x〉 − k

K − k

}[
kp +Kp

2
−

(
k +K

2

)p]
,

0 ≤ 〈
Apx, x

〉− 〈Ax, x〉p ≤ 2

[
kp +Kp

2
−

(
k +K

2

)p]
(6.28)

and

0 ≤ 〈
Apx, x

〉− 〈Ax, x〉p ≤ 1

2
+p (〈Ax, x〉 ; k,K) 〈|A− 〈Ax, x〉 1H | x, x〉

(6.29)

≤ 1

2
+p (〈Ax, x〉 ; k,K)

[〈
A2x, x

〉
− 〈Ax, x〉2

] 1
2

≤ 1

4
+p (〈Ax, x〉 ; k,K) (K − k)

for any x ∈ H, ‖x‖ = 1.
If we choose w(t) = tq , q �= 0 and f (t) = t with t ∈ [k,K] ⊂ [0,∞) then we

get from Corollary 14 that

0 ≤
〈
Ap+qx, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)p

(6.30)

≤ p

[〈
Ap+qx, x

〉

〈Aqx, x〉 −
〈
Ap+q−1x, x

〉

〈Aqx, x〉
〈
Aq+1x, x

〉

〈Aqx, x〉

]

≤ 1

2
p
(
Kp−1 − kp−1

)

〈∣∣
∣∣A−

〈
Aq+1x,x

〉

〈Aqx,x〉 1H

∣∣
∣∣ x, x

〉

〈Aqx, x〉

≤ 1

2
p
(
Kp−1 − kp−1

)
⎡

⎣
〈
Aq+2x, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)2
⎤

⎦

1
2

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k) ,
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0 ≤
〈
Ap+qx, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)p

(6.31)

≤

(
K −

〈
Aq+1x,x

〉

〈Aqx,x〉
)(〈

Aq+1x,x
〉

〈Aqx,x〉 − k

)

K − k
sup

t∈(k,K)

+p (t; k,K)

≤ p
Kp−1 − kp−1

K − k

(

K −
〈
Aq+1x, x

〉

〈Aqx, x〉

)(〈
Aq+1x, x

〉

〈Aqx, x〉 − k

)

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k) ,

0 ≤
〈
Ap+qx, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)p

≤ 1

4
(K − k)+p

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)

(6.32)

≤ 1

4
p
(
Kp−1 − kp−1

)
(K − k) ,

0 ≤
〈
Ap+qx, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)p

(6.33)

≤ 2 max

⎧
⎨

⎩

K −
〈
Aq+1x,x

〉

〈Aqx,x〉
K − k

,

〈
Aq+1x,x

〉

〈Aqx,x〉 − k

K − k

⎫
⎬

⎭

[
kp +Kp

2
−

(
k +K

2

)p]
,

0 ≤
〈
Ap+qx, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)p

≤ 2

[
kp +Kp

2
−

(
k +K

2

)p]
(6.34)

and

0 ≤
〈
Ap+qx, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)p

(6.35)

≤ 1

2
+p

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)

〈∣∣
∣∣A−

〈
Aq+1x,x

〉

〈Aqx,x〉 1H

∣∣
∣∣ x, x

〉

〈Aqx, x〉

≤ 1

2
+p

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)⎡

⎣
〈
Aq+2x, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)2
⎤

⎦

1
2
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≤ 1

4
+p

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)

(K − k)

for any x ∈ H \ {0} .
If we choose w(t) = 1 and f (t) = t with t ∈ [k,K] ⊂ [0,∞) then we get from

Corollary 15 that

0 ≤ ln 〈Ax, x〉 − 〈lnAx, x〉 ≤
〈
A−1x, x

〉
〈Ax, x〉 − 1 (6.36)

≤ 1

2

K − k

kK
〈|A− 〈Ax, x〉 1H | x, x〉

≤ 1

2

K − k

kK

[〈
A2x, x

〉
− 〈Ax, x〉2

] 1
2 ≤ 1

4

(K − k)2

kK
,

0 ≤ ln 〈Ax, x〉 − 〈lnAx, x〉 (6.37)

≤ (K − 〈Ax, x〉) (〈Ax, x〉 − k)

K − k
sup

t∈(k,K)

+− ln (t; k,K)

≤ 1

Kk
(K − 〈Ax, x〉) (〈Ax, x〉 − k) ≤ 1

4

(K − k)2

kK
,

0 ≤ ln 〈Ax, x〉 − 〈lnAx, x〉 ≤ 1

4
(K − k)+− ln (〈Ax, x〉 ; k,K) (6.38)

≤ 1

4

(K − k)2

kK
,

0 ≤ ln 〈Ax, x〉 − 〈lnAx, x〉 (6.39)

≤ 2 max

{
K − 〈Ax, x〉

K − k
,
〈Ax, x〉 − k

K − k

}
ln

(
k +K

2
√
kK

)
,

0 ≤ ln 〈Ax, x〉 − 〈lnAx, x〉 ≤ ln

(
k +K

2
√
kK

)2

(6.40)

and

0 ≤ ln 〈Ax, x〉 − 〈lnAx, x〉 (6.41)

≤ 1

2
+− ln (〈Ax, x〉 ; k,K) 〈|f (A)− 〈Ax, x〉 1H | x, x〉
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≤ 1

2
+− ln (〈Ax, x〉 ; k,K)

[〈
A2x, x

〉
− 〈Ax, x〉2

] 1
2

≤ 1

4
+− ln (〈Ax, x〉 ; k,K) (K − k)

for any x ∈ H with ‖x‖ = 1.
If we choose w(t) = tq , q �= 0 and f (t) = t with t ∈ [k,K] ⊂ [0,∞) then we

get from Corollary 15 that

0 ≤ ln

(〈
Aq+1x, x

〉

〈Aqx, x〉

)

− 〈Aq lnAx, x〉
〈Aqx, x〉 (6.42)

≤
〈
Aq−1x, x

〉

〈Aqx, x〉
〈
Aq+1x, x

〉

〈Aqx, x〉 − 1 ≤ 1

2

K − k

kK

〈∣∣∣
∣A−

〈
Aq+1x,x

〉

〈Aqx,x〉 1H

∣∣∣
∣ x, x

〉

〈Aqx, x〉

≤ 1

2

K − k

kK

⎡

⎣
〈
Aq+2x, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)2
⎤

⎦

1
2

≤ 1

4

(K − k)2

kK
,

0 ≤ ln

(〈
Aq+1x, x

〉

〈Aqx, x〉

)

− 〈Aq lnAx, x〉
〈Aqx, x〉 (6.43)

≤

(
K −

〈
Aq+1x,x

〉

〈Aqx,x〉
)(〈

Aq+1x,x
〉

〈Aqx,x〉 − k

)

K − k
sup

t∈(k,K)

+− ln (t; k,K)

≤ 1

Kk

(

K −
〈
Aq+1x, x

〉

〈Aqx, x〉

)(〈
Aq+1x, x

〉

〈Aqx, x〉 − k

)

≤ 1

4

(K − k)2

kK
,

0 ≤ ln

(〈
Aq+1x, x

〉

〈Aqx, x〉

)

− 〈Aq lnAx, x〉
〈Aqx, x〉 (6.44)

≤ 1

4
(K − k)+− ln

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)

≤ 1

4

(K − k)2

kK
,

0 ≤ ln

(〈
Aq+1x, x

〉

〈Aqx, x〉

)

− 〈Aq lnAx, x〉
〈Aqx, x〉 (6.45)
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≤ 2 max

⎧
⎨

⎩

K −
〈
Aq+1x,x

〉

〈Aqx,x〉
K − k

,

〈
Aq+1x,x

〉

〈Aqx,x〉 − k

K − k

⎫
⎬

⎭
ln

(
k +K

2
√
kK

)
,

0 ≤ ln

(〈
Aq+1x, x

〉

〈Aqx, x〉

)

− 〈Aq lnAx, x〉
〈Aqx, x〉 ≤ ln

(
k +K

2
√
kK

)2

, (6.46)

and

0 ≤ ln

(〈
Aq+1x, x

〉

〈Aqx, x〉

)

− 〈Aq lnAx, x〉
〈Aqx, x〉 (6.47)

≤ 1

2
+− ln

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)

〈∣∣∣∣A−
〈
Aq+1x,x

〉

〈Aqx,x〉 1H

∣∣∣∣ x, x
〉

〈Aqx, x〉

≤ 1

2
+− ln

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)⎡

⎣
〈
Aq+2x, x

〉

〈Aqx, x〉 −
(〈
Aq+1x, x

〉

〈Aqx, x〉

)2
⎤

⎦

1
2

≤ 1

4
+− ln

(〈
Aq+1x, x

〉

〈Aqx, x〉 ; k,K
)

(K − k)

for any x ∈ H \ {0}.
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in Mathematics (Springer, New York, 2012), xii+121 pp. ISBN: 978-1-4614-1520-6

19. S.S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in
Mathematics (Springer, New York, 2012), x+112 pp. ISBN: 978-1-4614-1778-1

20. S.S. Dragomir, Some reverses of the Jensen inequality with applications. Bull. Aust. Math.
Soc. 87(2), 177–194 (2013). Preprint RGMIA Res. Rep. Coll. 14, Article 72 (2011). http://
rgmia.org/papers/v14/v14a72.pdf

21. S.S. Dragomir, Reverses of the Jensen inequality in terms of first derivative and applications.
Acta Math. Vietnam. 38(3), 429–446 (2013). Preprint RGMIA Res. Rep. Coll. 14, Article 71
(2011). http://rgmia.org/papers/v14/v14a71.pdf

22. S.S. Dragomir, Jensen type weighted inequalities for functions of selfadjoint and unitary
operators. Ital. J. Pure Appl. Math. 32, 247–264 (2014)

23. S.S. Dragomir, A refinement and a divided difference reverse of Jensen’s inequality with
applications. Rev. Colomb. Mat. 50(1), 17–39 (2016). Preprint RGMIA Res. Rep. Coll. 14,
Article 74 (2011). http://rgmia.org/papers/v14/v14a74.pdf

24. S.S. Dragomir, Weighted reverse inequalities of Jensen type for functions of selfadjoint
operators. Transylv. J. Math. Mech. 8(1), 29–44 (2016). Preprint RGMIA Res. Rep. Coll. 18,
Article 110 (2015). http://rgmia.org/papers/v18/v18a110.pdf

25. S.S. Dragomir, N.M. Ionescu, Some converse of Jensen’s inequality and applications. Rev.
Anal. Numér. Théor. Approx. 23(1), 71–78 (1994)
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Ordering Structures and Their
Applications

Gabriele Eichfelder and Maria Pilecka

1 Introduction

Order theory is one of the basic subjects in mathematics. Every time we need to
compare two elements of a given space with each other, we use special ordering
structures. Already in the space R

2 relations between two elements are not so
intuitive any more as it is for two elements of a real line. Defining which element
is smaller or greater than the other one leads to a binary relation which may
be a pre-order, partial order or total order depending on its properties. Ordering
structures are closely related to cones in the considered space. There are direct
connections between properties of a binary relation and a corresponding cone. The
basic definitions and results on this topic are depicted in Sects. 2 and 3.

In vector optimization, we need not only to compare two elements of a space
with each other but above all to find the best element of a set of candidates. Such
best elements can be defined in many different ways, but all of these definitions
are based on the given ordering structures in the so called “objective space”. In
set optimization even more general problems compared to vector optimization are
considered. Here, the aim is to find a best set in the set of candidate sets, which is a
subset of the power set of a given space. This leads to ordering structures which are
weaker than the ordering structures in vector optimization in the following sense:
if we consider a partially ordered space and generalize the binary relations to set
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relations, we may obtain only a pre-order or even only a reflexive or transitive binary
relation on the power set of this space. Examples of such relations are given in
Sect. 5.

Due to the connections between binary relations and cones, one may presume
that some special cones imply specific properties of the ordering structures. We
discuss this topic for two classes of cones: polyhedral cones (Sect. 3.3) and Bishop-
Phelps (BP) cones (Sect. 3.2). The BP cones possess a very rich structure and allow
for instance to define a scalarization which can be used to solve vector optimization
problems.

In the optimization theory, besides vector or set optimization another scientific
topic—cone programming, where some restrictions are defined based on a con-
sidered cone, make use of order theory. This is true especially for the copositive
or semidefinite optimization problems where the variables are matrices which are
completely positive or positive semidefinite, respectively, see [7, 23] and references
therein.

In many applications of vector optimization, e.g. in intensity-modulated radiation
therapy, modelling a binary relation in a usual way, i.e. assuming that the preferred
or dominated directions form a cone which is independent of an element of the
given space, seems not to be suitable. For such problems, the so called variable
ordering structure is considered. In this case, an ordering relation may depend on
the considered elements of the space, see Sect. 4. Due to this fact such a relation
may not possess some important properties as for instance transitivity in general.
However, it is still possible to derive conditions and algorithms helping to find the
best elements of the given set [19, 20]. The idea of a binary relation depending on
an element of the space is also used in decision theory [72], where the so called
domination sets are introduced, see Sect. 3.4.

2 Pre- and Partial Orders

In this section, we give the most basic definitions from linear algebra which we
need to define orders in a linear space. We start by introducing one of the most
fundamental notions in order theory—a binary relation.

Definition 1 Assume that S is a set and ≤ is a subset of S × S. Then ≤ is called a
binary relation on S. If we have (a, b) ∈≤, we use the notation a ≤ b.

Some properties which may characterize binary relations are given in the following
definition.

Definition 2 Let S be a nonempty set with a binary relation ≤. Let a, b, c ∈ S be
arbitrarily chosen. The binary relation ≤ is said to be

(i) reflexive if a ≤ a.
(ii) transitive if a ≤ b and b ≤ c imply a ≤ c.

(iii) symmetric if a ≤ b implies b ≤ a.
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(iv) antisymmetric if a ≤ b and b ≤ a imply a = b.
(v) complete (total) if a ≤ b or b ≤ a.

If we consider any set S, then the subset relation is a reflexive, transitive and
antisymmetric binary relation defined on the power set of S.

Depending on the satisfied properties, we distinguish the following binary
relations.

Definition 3 The binary relation ≤ on the set S is said to be

(i) a pre-order if it is reflexive and transitive.
(ii) a partial order if it is reflexive, transitive and antisymmetric or in other words,

if it is a pre-order that is antisymmetric.
(iii) a total order if it is reflexive, transitive, antisymmetric, and complete, and

hence, it is a partial order which is complete.
(iv) an equivalence relation if it is reflexive, transitive and symmetric.

When the relation ≤ is a pre-order/a partial/a total order, we say that S is a pre-
ordered/partially/totally ordered set.

Hence, the subset relation is a partial order on the power set of a set S. It is not a
total order as it is not complete: we can easily find two sets A,B ⊆ S satisfying
A �⊆ B and B �⊆ A in general. This reveals an important property of both pre-
ordered and partial ordered sets. Namely, two arbitrary elements of these sets cannot
be compared in terms of the binary relation in general. For a comprehensive survey
on the relevant properties of binary relations and the notions of a partial, pre- and
total order we refer to [27, Chapter 2]. For the definitions introduced above see for
instance the books [48, 66].

Example 1 Let us consider the set S = R
2. For real numbers x, y ∈ R, x ≤ y

denotes in the following y − x ∈ R+ as usual.

• ≤1:= {(x, y) ∈ R
2 × R

2 | x1 ≤ y1} is a pre-order since it is reflexive,
transitive, but neither antisymmetric nor symmetric. It is also complete since we
can compare any two elements of R2 using this relation with each other.

• ≤2:= {(x, y) ∈ R
2 × R

2 | x1 ≤ y1 ∧ x2 ≤ y2} is a partial order since it
is reflexive, transitive, and antisymmetric but not complete and not symmetric.
This partial order is also called the natural order since it intuitively generalizes
the usual total order ≤ on R. It is also called componentwise order.

• ≤lex := {(x, y) ∈ R
2 × R

2 | x1 < y1 ∨ (x1 = y1 ∧ x2 ≤ y2)} is a total order
which is not symmetric. It is called the lexicographic order.

• ∼1:= {(x, y) ∈ R
2 × R

2 | x ≤1 y ∧ y ≤1 x} is an equivalence relation which is
obviously neither antisymmetric nor complete.

Example 2 Let S be the set of all functions f : R2 → R. Then

≤F := {(f, g) ∈ S × S | ∀x ∈ R
2 : f (x) ≤ g(x)}

is a partial order which is not symmetric and not complete.
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For the relations ≤∗ in Example 1 where ∗ ∈ {1, 2, lex}, we can easily define so
called strict binary relations by <∗:= {(x, y) ∈ R

2 × R
2 | x ≤∗ y ∧ x �= y}. These

relations are obviously not reflexive.
The above definitions do not present all possible properties of binary relations

considered in the literature. To give one example, in [62, Def. 5.55] and [63, Def. 1],
Mordukhovich defines a general nonreflexive preference relation ≺ on a subset S of
a topological space Y by a binary relation which is locally satiated around z̄ ∈ S, i.e.
for an arbitrary element z ∈ S in a neighbourhood of z̄, it is required that z ∈ cl{u ∈
Y | u ≺ z} (where cl denotes the closure), and almost transitive, that means that for
z, v,w ∈ Y , if z ≺ w and v ∈ cl {u ∈ Y | u ≺ z} holds, then we have v ≺ w. A
vast majority of common strict binary relations (e.g. <1 and <2) are covered by this
definition. However, the relation<lex is not a preference relation in this sense. Let us
think of the elements (0, 0), (0, 1), (0, 2) ∈ R

2. Then we have (0, 0) <lex (0, 1) and
(0, 2) ∈ cl

{
u ∈ R

2 | u <lex (0, 0)
} = {

u ∈ R
2 | u1 ≤ 0

}
. However, (0, 2) �<lex

(0, 1) holds which shows that this relation is not almost transitive.
In decision theory, a binary relation is used in order to model mathematically the

preferences of a decision maker over the alternatives. Such binary relation is often
assumed to be complete. For further information on this application of order theory,
we refer to [34]. Other ideas related to decision theory will be described in Sect. 3.4.

3 Ordering Structures in Linear Spaces

In case the set S in the definitions from the previous section is a real linear space,
i.e. a vector space, then there is a helpful tool for working with pre-orders: they
have a representation as a convex cone. We will introduce the relevant definitions
in this section as well as their relation to the concepts of a pre- and a partial order.
Moreover, we will examine some special binary relations which are introduced by
Bishop-Phelps cones or by polyhedral cones. Finally, we present the concept of
ordering sets. Throughout this section let Y be an arbitrary real linear space.

3.1 Pre-orders, Partial Orders and Cones

In this subsection, we introduce a collection of standard notions and basic results
related to partially ordered real linear spaces which can be found in many introduc-
tory books on vector optimization as in the books by Göpfert and Nehse [32], Jahn
[48] and Luc [60] as well as in books on analysis and applications, see for instance
[44].

Definition 4 For S = Y , we say that the pre-order is

(i) compatible with addition if

∀x, y,w, z ∈ Y : x ≤ y ∧ w ≤ z ⇒ x + w ≤ y + z.
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(ii) compatible with multiplication with a nonnegative real number if

∀x, y ∈ Y : x ≤ y, α ∈ R+ ⇒ αx ≤ αy.

If a pre-order satisfies the axioms (i) and (ii) from the definition above, then we
say that it is compatible with the linear structure of the space. A real linear space
equipped with a partial order which is compatible with the linear structure of the
space is called a partially ordered linear space.

Example 3 The space R
m equipped with the componentwise partial order, defined

for all x, y ∈ R
m by

x ≤ y ⇔ xi ≤ yi for all i = 1, . . . , m,

is a partially ordered linear space.

Recall that a set S is called convex if λ ∈ [0, 1], x, y ∈ S imply

λx + (1 − λ) y ∈ S.

We write conv(S) for the convex hull of a set S.
In order to discuss the relations between pre- and partial orders and convex cones,

we introduce the following notations. We use here the definitions as given in [48].

Definition 5

(i) A nonempty set K ⊆ Y is called a cone if it holds

y ∈ K, λ ∈ R+ ⇒ λ y ∈ K.

(ii) A set S ⊆ Y is called pointed if

S ∩ (−S) = {0Y }.

(iii) A nonempty convex subset B of a convex cone K �= {0Y } is called a base for
K if each y ∈ K \ {0Y } has a unique representation of the form

y = λ b for some λ ∈ R+ \ {0} and some b ∈ B.

(iv) Let S ⊆ Y be a nonempty set. The cone

cone(S) := {λ y ∈ Y | λ ∈ R+, y ∈ S}

is called the cone generated by S.

Please note that also a slightly different definition is used in the literature for the
concept of a cone: for instance in [14] a set K ⊆ Y is called a cone if y ∈ K, λ ∈
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R+ \ {0} implies λ y ∈ K , i.e. in that definition the zero does not have to be an
element of a cone. In the definition which we use here, the zero is always included
in a cone.

Using the above definition, we obviously deduce that for a base B of a convex
cone K , it holds cone(B) = K . A cone K with K �= {0Y } and K �= Y is said to be
a nontrivial cone. It is easy to show that any convex cone with a base is pointed. We
have the following characterization of convex cones.

Lemma 1 A cone K ⊆ Y is convex if and only if K +K ⊆ K.

Example 4 The sets K1 := R
2+ and

K2 := {x ∈ R
2 | 2x1 + x2 ≤ 0, −0.5x1 − x2 ≤ 0}

are convex cones, while the set K1 ∪ K2 is a cone which is not convex. All cones
K1, K2, and K1 ∪K2 are pointed.

Now we are ready to give the relation between partial orders and convex cones:

Theorem 1

(i) If ≤ is a pre-order on Y which is compatible with the linear structure of the
space, then the set

K := {y ∈ Y | 0Y ≤ y}
is a convex cone. If, in addition, ≤ is antisymmetric, then K is pointed.

(ii) If K ⊆ Y is a convex cone, then the binary relation

≤K := {(y, z) ∈ Y × Y | z− y ∈ K}
is a pre-order on Y which is compatible with the linear structure of the space.
If, in addition, K is pointed, then ≤K is antisymmetric.

A convex cone which characterizes a partial order on a real linear space is called
an ordering cone.

For the componentwise partial order in R
m, cf. Example 3, the associated

ordering cone is

R
m+ := {

y ∈ R
m | yi ≥ 0 for all i = 1, . . . , m

}
.

Some important cones are depicted in the following example, where we illustrate
natural ordering cones in different spaces.

Example 5

(i) Let Sn be the space of symmetric matrices possessing n columns and rows.
Then the set

S
+
n :=

{
y ∈ Sn | ∀ x ∈ R

n : x/yx ≥ 0
}
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of all positive semidefinite matrices is a convex cone in this space. The set
{
y ∈ Sn | ∀ x ∈ R

n+ : x/yx ≥ 0
}

of all copositive matrices is another convex cone in this space.
(ii) Let Ω be any compact Hausdorff space. By C(Ω) we denote the real linear

space of real-valued functions which are continuous on Ω . The natural
ordering cone in this space is

C(Ω)+ := {y ∈ C(Ω) | y(ω) ≥ 0 for all ω ∈ Ω} .
This cone is closed w.r.t. the supremum norm and it has a nonempty topological
interior, see [48, Ex. 1.49].

(iii) Given a domain Ω ⊆ R
n, consider the real linear space of all (equiva-

lence classes of) p-th power Lebesgue-integrable real-valued functions on Ω

denoted by Lp(Ω) with 1 ≤ p < ∞. Then the natural ordering cone is

Lp(Ω)+ := {
y ∈ Lp(Ω) | y(ω) ≥ 0 f.a.a. ω ∈ Ω

}
.

The important property of this cone is the fact that the topological interior
of this cone is empty, cf. [48, Ex. 1.51], which makes such assumption very
restrictive while considering infinite dimensional spaces.

Engau studied in [27, 28] also properties which should be satisfied by a so-called
constant preference structure (in opposition to a local or variable ordering structure,
see Sect. 4) in the Euclidean space Y = R

m. He stated as basic assumption that the
binary relation should be compatible with scalar multiplication and with addition,
similar as in Definition 4, and showed that it can thus be represented by a convex
cone K , see our Theorem 1. In addition to that, he assumed monotonicity, i.e. for
some y ∈ R

m and ei the ith unit vector, it should hold that

y − ei ≤ y for all i = 1, . . . , m. (1)

This implies for the ordering cone K the assumption R
m+ ⊆ K .

For many examinations in vector optimization, elements of the dual cone play
an important role. Let Y be a partially ordered linear space with the ordering cone
K . The dual cone of K is a subset of the dual space and introduces a pre-order in
the dual space which is again compatible with the linear structure of the space. We
write Y ∗ for the algebraic dual space of Y , i.e. for the space of all linear functions
l : Y → R.

Definition 6 Let K ⊆ Y be a convex cone.

(i) The cone

K∗ := {l ∈ Y ∗ | l(y) ≥ 0 for all y ∈ K}
is the dual cone of the cone K .
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(ii) The set

K# := {l ∈ Y ∗ | l(y) > 0 for all y ∈ K \ {0Y }}

is the quasi interior of the dual cone K∗.

If we have K = K∗, we call K self-dual. Such a property characterizes some
important cones such as Rn+ and S

+
n .

Example 6 The dual cone of the cone of copositive matrices, see Example 5, w.r.t.
the inner product

〈y, z〉 = trace(yz) ∀ y, z ∈ Sn,

is the cone of completely positive matrices defined by

{
y ∈ Sn | y = zz/ for some z ∈ R

n×m+ , m ∈ N

}
,

see for instance [12].

Note that the quasi interior of the dual cone is a superset of the algebraic interior
of this cone under not too strong assumptions, see [48, Lem. 1.25]. Additionally,
there is an interesting characterization of the base of a cone K ⊆ Y and the quasi
interior of the corresponding dual cone, which we use in the next subsection.

Lemma 2 ([48, Lem. 1.28]) LetK ⊆ Y be a nontrivial convex cone. Then for every
l ∈ K# the set

B := {y ∈ K | l(y) = 1}

is a base of K .

3.2 Bishop-Phelps Cones

In this subsection, we study in more detail a special class of convex cones, the
so called Bishop-Phelps (BP) cones. Bishop-Phelps cones have been introduced
by Bishop and Phelps in 1962 in [6] and are characterized by a rich and useful
mathematical structure. For instance, they allow the formulation of special scalar-
ization functionals in vector optimization. Results on the usage of Bishop-Phelps
cones in optimization and on their properties can be found in [37, 47]. We base our
presentations mainly on these two papers.

As the definition of Bishop-Phelps cones requires a norm, we assume throughout
this subsection that (Y, ‖ · ‖) is a real normed space. We denote the topological dual
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space, i.e. the space of all continuous linear functionals f : Y → R, by Y ∗. Here,
‖ · ‖∗ denotes the induced norm in Y ∗, where

‖φ‖∗ := sup
y �=0Y

|φ(y)|
‖y‖ for all φ ∈ Y ∗.

A Bishop-Phelps cone is defined by an element φ from the dual space Y ∗ as follows:

Definition 7 For an arbitrary continuous linear functional φ ∈ Y ∗, the cone

C(φ) := {y ∈ Y | ‖y‖ ≤ φ(y)} (2)

is called Bishop-Phelps cone (BP cone).
A cone K ⊆ Y for which a functional φ ∈ Y ∗ and a norm ‖ · ‖ equivalent to the

norm of the space exist such that K can be written as in (2) is called representable
as a BP cone.

According to [47], the cone

Cp := {y ∈ R
n | ‖(y1, . . . , yn−1)‖p ≤ yn} ⊆ R

n

with ‖ · ‖p an lp norm with p ≥ 1 or p = ∞ is representable as a BP cone. It holds
Cp = C(

p
√

2en) for p ∈ [1,∞) and en := (0, . . . , 0, 1)/, and C∞ = C(en). The
cone C2 is the well-known Lorentz cone (see Example 11). Thus the Lorentz cone

C2 = {y ∈ R
3 | ‖(y1, y2)‖2 ≤ y3}

in Y = R
3 has the representation

C2 =
{
y ∈ R

3 | ‖y‖2 ≤ √
2(0, 0, 1)y

}
.

Note that the original concept of a BP cone is slightly different from the one
introduced in Definition 7. Originally, for an arbitrary ϑ ∈ Y ∗ with ‖ϑ‖∗ = 1 and
some scalar t ∈ (0, 1), the cone

{y ∈ Y | t ‖y‖ ≤ ϑ(y)} (3)

is considered. It is easy to see that any cone satisfying (3) is also a BP cone in the
sense of Definition 7 with φ = ϑ/t , and any BP cone in the sense of Definition 7
with ‖φ‖∗ > 1 satisfies (3) with ϑ = φ/‖φ‖∗ and t = 1/‖φ‖∗. Hence, Definition 7,
which we use in the following, generalizes the notion given in (3) also to the case
when t ≥ 1 is satisfied.

Example 7 Let Y = R
2 and assume that the space is equipped with the Manhattan

norm. Then for instance for (φ1, φ2) = (1, 1), we have C(φ1, φ2) = R
2+. Assume
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Fig. 1 BP cone C(φ1, φ2) of
Example 7 for φ1 = 2 and
φ2 = 3/2, as well as the unit
ball w.r.t. the Manhattan norm
and (in dashed line) the set
{(y1, y2) ∈ R

2 |
(φ1, φ2)

/(y1, y2) = 1}, cf.
[22]

C(φ)
yA

2
3

yB

1
2

φ1, φ2 ≥ 1, then R
2+ ⊆ C(φ1, φ2), (0, 1/φ2) ∈ C(φ1, φ2), (1/φ1, 0) ∈ C(φ1, φ2)

and

C(φ1, φ2) = cone conv
(
{yA, yB}

)

with

yA :=
(

1 − φ2

φ1 + φ2
,

1 + φ1

φ1 + φ2

)/
and yB :=

(
1 + φ2

φ1 + φ2
,

1 − φ1

φ1 + φ2

)/
,

see Fig. 1.

The most important properties of BP cones are collected in the following lemma.

Lemma 3 Let φ ∈ Y ∗ be given.

(i) C(φ) is a closed, pointed and convex cone.
(ii) If ‖φ‖∗ > 1, then C(φ) is nontrivial; if ‖φ‖∗ < 1 then C(φ) = {0Y }.

(iii) If ‖φ‖∗ = 1, then C(φ) = {y ∈ Y | ‖y‖ = φ(y)}; if, additionally, Y is a
reflexive Banach space, then C(φ) is nontrivial.

(iv) {y ∈ Y | ‖y‖ < φ(y)} ⊆ int(C(φ)), where int(A) denotes the topological
interior of a set A.
If ‖φ‖∗ > 1, then the interior of C(φ) is nonempty and

int(C(φ)) = {y ∈ Y | ‖y‖ < φ(y)}.

(v) φ ∈ C(φ)#.
(vi) If the set {y ∈ C(φ) | φ(y) = 1} is nonempty, then it is a closed and bounded

base for the cone C(φ).
(vii) C(φ)∗ = cl(cone(B(φ, 1))) with B(φ, 1) := {y∗ ∈ Y ∗ | ‖y∗ − φ‖∗ ≤ 1}.

As one can see, BP cones have a rich structure. They are always pointed convex
cones and thus introduce by Theorem 1 a partial order on Y which is compatible
with the linear structure of the space. Moreover, the interior of such cones can also
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be described easily provided ‖φ‖∗ > 1. Hence, it is important to know which cones
do belong to the class of BP cones. This result goes back to Petschke [64].

Theorem 2 A nontrivial cone K ⊆ Y is representable as a BP cone if and only if
K is a convex cone with a closed and bounded base. In the Euclidean space Y = R

n

a convex cone K ⊆ Y is representable as a BP cone if and only if K is closed and
pointed.

Note that there exist important classes of cones which do not have bounded bases.
For instance, the bases of the natural ordering cones in the spaces lp and Lp for
1 < p < ∞ are not bounded, see [5, 11]. Additional examples for BP cones can be
found in Sect. 4.3.

The following example illustrates how the special structure of the ordering cone
can be used for scalarization results in vector optimization.

Example 8 Let S ⊆ Y be a nonempty set and let Y be partially ordered by the
convex cone K with

K := C(φ) = {y ∈ Y | ‖y‖ ≤ φ(y)}

for some φ ∈ Y ∗ with ‖φ‖∗ > 1. By Lemma 3 (iv) we have int(C(φ)) = {y ∈ Y |
‖y‖ < φ(y)} �= ∅. An element ȳ ∈ S is denoted to be a weakly efficient element of
S in case it holds

({ȳ} − int(K)) ∩ S = ∅.

One can define a functional ξȳ : Y → R by

ξȳ(y) = φ(y − ȳ)+ ‖y − ȳ‖,

cf. [22]. Then it holds y ∈ {ȳ} − int(K) with K = C(φ) if and only if ‖ȳ − y‖ <

φ(ȳ − y), i.e. if and only if ξȳ(y) < 0. Hence, ȳ is a weakly efficient element of S
if and only if it holds for all y ∈ S

ξȳ(y) ≥ 0 = ξȳ(ȳ).

Bishop-Phelps cones are related to augmented dual cones which extend the usual
definition of a dual cone. In the following definition we use the notion of quasi
interior of the dual cone, see Definition 6.

Definition 8 ([55]) Let K ⊆ Y be a closed pointed convex cone.

(i) The set

Ka∗ :=
{
(φ, α) ∈ K# × R+ | φ(y)− α‖y‖ ≥ 0 for all y ∈ K

}

is called augmented dual cone.
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(ii) Let int(K) �= ∅. The set

Ka◦ :=
{
(φ, α) ∈ K# × R+ | φ(y)− α‖y‖ > 0 for all y ∈ int(K)

}

is called weak augmented dual cone.
(iii) The set

Ka# :=
{
(φ, α) ∈ K# × R+ | φ(y)− α‖y‖ > 0 for all y ∈ K \ {0Y }

}

is called augmented quasi interior of the dual cone.

Note that the weak augmented dual cone, despite of its name, is not a cone in the
sense of Definition 5 as it does not include the zero. It holds Ka# ⊆ Ka◦ ⊆ Ka∗ for
any closed pointed convex cone K . For instance for K = R

n+ and Y = R
n, we have

Ka∗ = {(φ, α) ∈ int(Rn+)× R+ | φi ≥ α, i = 1, . . . , n},
see [55, Ex. 4.7].

For the definition of the augmented dual cones, it is crucial that the quasi interior
of the dual cone K# is nonempty. For instance the Krein-Rutman theorem, below as
cited in [48, Thm 3.38] (see also [44]), gives conditions ensuring that:

Theorem 3 (Krein-Rutman Theorem) In a real separable normed space
(Y, ‖ · ‖) with a closed and pointed convex cone K ⊆ Y the quasi interior K#

of the topological dual cone is nonempty.

Thus, in the finite dimensional Euclidean space Y = R
n for any closed pointed

convex cone, the quasi interior of the dual cone is nonempty and according to [75],
it equals the interior of the dual cone, see also [39, p. 199]. The pointedness of K
is essential as for any convex cone K , the condition K# �= ∅ already implies the
pointedness of K [48, Lem. 1.27]. For BP cones C(φ), the quasi interior of the dual
cone is nonempty according to Lemma 3 (v).

We obtain the following relation of BP cones and elements of the augmented
dual cones [20, Lem. 1.21]:

Lemma 4 Let φ ∈ Y ∗ define a BP cone C(φ) = {y ∈ Y | ‖y‖ ≤ φ(y)}. Then

(φ, α) ∈ (C(φ))a∗ for all α ∈ [0, 1]
and (φ, 0) ∈ (C(φ))a#.

If ‖φ‖∗ > 1, then

(φ, α) ∈ (C(φ))a◦ for all α ∈ [0, 1].

BP cones are included in the class of supernormal cones (see the definition
below) and for closed pointed supernormal cones, the augmented dual cones are
known to be nontrivial, cf. [20]. We start by recalling the definition of supernormal
cones:
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Definition 9 ([33]) Let K ⊆ Y be a nontrivial convex cone. K is said to be
supernormal (or nuclear or has the angle property) if there exists φ ∈ Y ∗ such
that

K ⊆ {y ∈ Y | ‖y‖ ≤ φ(y)} = C(φ). (4)

For instance, in R
n every pointed convex cone is supernormal and every BP cone is

a supernormal cone [46, p. 635].

Lemma 5 ([20]) Let K ⊆ Y be a nontrivial closed pointed convex cone. Then the
following statements are equivalent:

(i) There exists (φ, α) ∈ Ka∗ with α �= 0.
(ii) K is supernormal.

There is the following relation between supernormal cones and BP cones:

Lemma 6 ([46]) Let K ⊆ Y be a nontrivial closed pointed convex cone. Then the
following is equivalent:

(i) K is representable as a BP cone.
(ii) K is supernormal.

Hence, the augmented dual cone of some nontrivial closed pointed convex cone
contains elements (φ, α) with α �= 0 if and only if the cone is representable as a BP
cone. The elements of the augmented dual cones can also be used for scalarization
results in vector optimization, see [55]:

Example 9 Let S ⊆ Y be a nonempty set and let Y be partially ordered by the
closed pointed convex cone K with int(K) �= ∅. Let (φ, α) ∈ Ka◦ and assume that
it holds

ȳ ∈ argmin{φ(y)+ α ‖y‖ | y ∈ S}.
Then ȳ is a weakly efficient element of S, i.e. ({ȳ}− int(K))∩S = ∅, cf. Example 8.
To see this, assume that there exists y ∈ S with ȳ− y ∈ int(K). By the definition of
the weak augmented dual cone, we get

φ(ȳ − y)− α‖ȳ − y‖ > 0

and thus by the triangle inequality

φ(ȳ)− φ(y) > α‖y‖ − α‖ȳ‖

or

φ(ȳ)+ α‖ȳ‖ > φ(y)+ α‖y‖,
which is a contradiction to the minimality of ȳ.
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3.3 Polyhedral Cones

Another special class of cones possessing many useful properties are polyhedral
cones. We present some of these properties in this subsection.

Definition 10 Let Y be a real locally convex linear space. A cone K ⊆ Y is
polyhedral if there exist y∗i ∈ Y ∗, i = 1, . . . , p, such that

K =
{
y ∈ Y | 〈y∗i , y〉 ≥ 0, i = 1, . . . , p

}
.

In other words a polyhedral cone can be represented as the intersection of a finite
number of closed half spaces or it is a solution set of a homogeneous system of
inequalities.

Such cones are convex and closed, and hence, they induce a pre-order on Y . If

we consider a linear operator L : Y → R
p given by L :=

(
y∗1, y∗2, . . . , y∗p

)

such that L(y) =
(
y∗1(y), y∗2(y), . . . , y∗p(y)

)/
, then the polyhedral cone

K = {y ∈ Y | 0
R
p
+ ≤

R
p
+ L(y)}

is pointed if and only if L is injective. In this case K induces a partial order on Y .
Assume that K is the cone from Definition 10. The dual cone to K is

K∗ =
{

p∑

i=1

λiy
∗i ∈ Y ∗ | λi ≥ 0, i = 1, . . . , p

}

.

Moreover, for a polyhedral cone K , we have K = K∗∗.
Let us now consider finite dimensional spaces, i.e. we set Y = R

n. Then we can
write a polyhedral cone K ⊆ R

n as

K = {x ∈ R
n | 0Rp ≤

R
p
+ Kx} (5)

for some matrix K ∈ R
p×n. If K has rank n then the cone is pointed. We get for

arbitrary points a, b ∈ R
n

a ≤K b ⇔ b − a ∈ K ⇔ K(b − a) ∈ R
p
+ ⇔ Ka ≤

R
p
+ Kb.

This observation may be also used for solving vector optimization problems, see
[15]. We illustrate this issue in the following example [15, Ex. 1.19].

Example 10 Let the Euclidean space R
3 be partially ordered by

K := {x ∈ R
3 | 0R4 ≤

R
4+

⎛

⎜⎜
⎝

1 0 1
−1 0 1
0 −1 1
0 1 1

⎞

⎟⎟
⎠ x}.
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The cone

K = {x ∈ R
3 | −x3 ≤ x1 ≤ x3, −x3 ≤ x2 ≤ x3, x3 ≥ 0}

is a pyramid with apex in the origin. The aim may now be to find the best element of
a set Ω ⊆ R

3 w.r.t. the relation induced by K . Equivalently, we may search for the
best element of the set S = {(x1 + x3,−x1 + x3,−x2 + x3, x2 + x3) ∈ R

4 | x ∈ Ω}
w.r.t. the natural order in R

4.

Let us use the notation from the example and discussion above. It is important
to note that due to the structure of the natural ordering cone it may be simpler to
determine the best element of the set S compared to searching for the best x within
the set Ω w.r.t. K . However, such transformation of the considered problem may
also have a drawback. It may happen that the dimension of the space R

p is much
greater than the dimension of the space R

n, what makes the new problem in R
p

more complex.
We have the following fundamental result of Weyl which relates polyhedral and

finitely generated cones. For a recent proof, see [53].

Lemma 7 A cone K ⊆ R
n is polyhedral if and only if K is finitely generated, i.e.

there are yi ∈ R
n, i = 1, . . . , k, k ∈ N such that we have

K =
{

y ∈ R
n | y =

k∑

i=1

λiy
i, λi ≥ 0, i = 1, . . . , k

}

.

Next we give an example of a cone which is not finitely generated.

Example 11 Let Y = R
n+1 and let ‖ · ‖2 denote the Euclidean norm in R

n. Then

C :=
{
(x, t) ∈ R

n+1 | ‖x‖2 ≤ t
}

is the Lorentz (second-order/ice-cream) cone, which is not finitely generated.

Using the formula from the previous lemma, we may deduce also another charac-
terization of a polyhedral cone K . For such a cone there is a matrix P ∈ R

n×k
with

K = {y ∈ R
n | y = Px, x ∈ R

k+}. (6)

If the matrix P has rank k then the cone K is pointed. For a cone K as in (6) we
have for arbitrary points a, b ∈ R

k

a ≤
R
k+ b ⇔ b − a ∈ R

k+ ⇔ P(b − a) ∈ K ⇔ Pa ≤K Pb,

where the second equivalence only holds in case the rank of P is k.
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The following example illustrates the usefulness of the structure of finitely
generated cones for the notion of set-semidefinite matrices, cf. [23].

Example 12 Let Y = R
n and K ⊆ R

n be some convex cone. The K-semidefinite
cone is defined by

CK := {A ∈ Sn | y/Ay ≥ 0 for all y ∈ K}.

For K = R
n we obtain the cone of positive semidefinite matrices and for K = R

n+
the cone of copositive matrices, see Example 5. If B is a base of K , then it holds

CK = {A ∈ Sn | y/Ay ≥ 0 for all y ∈ B}.

If K is a polyhedral cone with a representation as in (6), then

CK = {A ∈ Sn | P/AP is copositive}.

For testing a matrix on copositivity much more numerical methods have been
developed than for testing on general set-semidefiniteness, see for instance [7–9].

A detailed study of properties of polyhedral cones in finite dimensions can be
found in [4, 31]. See also [73] for examples of preference modelling using special
polyhedral cones.

3.4 Ordering Sets

Instead of defining a binary relation with the aid of a cone (see Theorem 1), it is
possible to use a more general set. In literature we can find different concepts of
such generalizations. In this subsection we present among others the idea of the
improvement and the domination sets.

Given a general ordering set Θ ⊆ Y for any y1, y2 ∈ Y , a binary relation ≤Θ is
defined by:

y1 ≤Θ y2 ⇔ y2 − y1 ∈ Θ.

Such idea was studied in [67] for strongly star-shaped conic sets. This class of sets
contains not only all convex cones but also nonconvex sets. To give one simple
example: a finite union of closed convex cones Ki, i ∈ I := {1, . . . , l}, l ∈ N, i.e.

K :=
⋃

i∈I
Ki,

satisfying the condition
⋂

i∈I int(Ki) �= ∅, is a strongly star-shaped conic set. In this
case, each cone Ki induces a pre-order ≤Ki

on Y . Moreover, we can interpret the
relation ≤K , generated by the cone K , in the following way: y1 ≤K y2 if and only
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if there exists i ∈ I such that y1 ≤Ki
y2. Hence, ≤K is obviously not a pre-order if

K is not convex. See [67] for the exact definition of a star-shaped conic set as well
as properties of such binary relations.

Binary relations which are no pre-orders are motivated by applications from
mathematical economics, see [61] and references therein as cited in [67]. A different
idea was introduced in [10], where the so-called improvement set is defined in finite
dimensional spaces equipped with the partial order given by the natural ordering
cone. This concept was generalized in [35] for infinite dimensional spaces and
general cones as follows.

Definition 11 Let Y be equipped with a pre-order induced by a nontrivial cone
K ⊆ Y . A nonempty set E ⊆ Y is said to be an improvement set with respect to K

if 0Y /∈ E and E = E +K holds.

For each set ∅ �= A ⊆ Y satisfying A ∩ (−K \ {0Y }) = ∅, the set A + (K \ {0Y })
is an improvement set. Another simple example of an improvement set provides the
interior of K if it is nonempty.

Improvement sets allow to generalize the definitions of the different best points
of a given set depending on the choice of the improvement set E.

Definition 12 Let Ω be a nonempty set and f : Ω → Y a vector valued map. Then
x̄ ∈ Ω is denoted an E-optimal solution of the vector optimization problem

min
x∈Ω f (x),

if

({f (x̄)} − E) ∩ f (Ω) = ∅.

For other binary relations based on ordering sets, see [62, Section 5.3], where also
generalized optimality conditions for vector optimization problems are given.

The last concept which we like to describe in this subsection is domination set
revealing a connection between decision theory and vector optimization based on
[72]. Consider a decision maker (DM) who wants to choose an element x from
the set of feasible decisions Ω ⊆ X. The choice is based on values of a function
f : Ω → Y giving outcomes of the decisions. The best decision depends on the
preferences of the DM within the set f (Ω). Assume now that the preference relation
0 illustrates the preferences of the DM in the following way: for a, b ∈ Y , a 0 b

means that a is better than b. Then the best decisions x̄ are those where f (x̄) is
contained in the set

Min(f (Ω)) := {y ∈ f (Ω) | ∀ỹ ∈ f (Ω) : ỹ 0 y ⇒ y 0 ỹ}.
A decision of the DM may require a few steps characterized by different preference
relations in each step. At the beginning of this decision process the set Min(f (Ω))

may contain more than one element. However, in the last step only one decision
should be chosen. We proceed now with the definition of a domination set.
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Definition 13 Let 0 be a binary relation on Y . Consider D(y) := {d ∈ Y | y+d 0
y} for each y ∈ Y . If there is D ⊆ Y satisfying D(y) = D for all y ∈ Y , then D is
the domination set of 0.

From this definition, we obtain the following properties of such a preference
relation.

Proposition 1 ([72]) Let 0 be a binary relation on Y and let D ⊆ Y . D is a
domination set of 0 if and only if

∀y1, y2 ∈ Y : y2 0 y1 ⇔ y2 ∈ {y1} +D.

There exists a domination set of 0 if and only if

∀y1, y2, y ∈ Y : y1 0 y2 ⇒ (y1 + y) 0 (y2 + y). (7)

If D is a domination set of 0, it follows:

(a) 0 is reflexive ⇔ 0Y ∈ D.
(b) 0 is asymmetric (i.e. y1 0 y2 ⇒ y2 �0 y1) ⇔ D ∩ (−D) = ∅.
(c) 0 is antisymmetric ⇔ D ∩ (−D) = {0Y }.
(d) 0 is transitive ⇔ D +D ⊆ D.
(e) 0 fulfills the condition

∀y1, y2 ∈ Y ∀λ ∈ R+ \ {0} : y1 0 y2 ⇒ (λy1) 0 (λy2), (8)

if and only if D ∪ {0Y } is a cone.
(f) 0 is a transitive relation which satisfies condition (8) if and only if D ∪ {0Y } is

a convex cone.
(g) 0 is a partial order which fulfills condition (8) if and only if D is a pointed

convex cone.

Note that if a binary relation is a pre-order, the condition (7) is equivalent to the
compatibility of this relation with addition, see Definition 4, which indeed may not
be satisfied for general binary relations. If we consider a preference relation for
eating cake during a coffee break, then three pieces of cake may be preferred to one.
However, five pieces may not be preferred to three. Similarly, six pieces may not
be preferred to two and hence, the condition (8) (compatibility with multiplication)
may also not be fulfilled.

Using the domination sets, we may also define the best elements of the
considered set in a following way.

Definition 14 Let S,D ⊆ Y . An element ȳ ∈ S is called an efficient element of S
w.r.t. D if

({ȳ} −D) ∩ S ⊆ {ȳ}.
The set of all efficient elements of S w.r.t. D is denoted by Eff(S,D).
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Now we are ready to give a relation between the best decisions of a DM (with
function values within the set Min(f (Ω))) and the efficient elements of the set
f (Ω), which are widely used in vector optimization, see [72].

Proposition 2 Suppose that 0 is a preference relation on Y with the domination
set D. Let Ω ⊆ X and f : Ω → Y be given. Then

Min (f (Ω)) = Eff (f (Ω),D \ (−D))

holds. Moreover, if 0 is asymmetric or antisymmetric, then we have

Min (f (Ω)) = Eff (f (Ω),D) .

In [72] also properties of the efficient set and the weak efficient set defined using
a general domination set D are discussed based on results from [71] and [70].
Moreover, a scalarization concept for characterizing the (weakly) efficient elements
by functionals with uniform sublevel sets is presented there as well.

Note that for y ∈ Y the set D(y) from Definition 13 is closely connected to the
image of the ordering map at y introduced in the forthcoming section.

4 Variable Ordering Structures

Next to partially ordered linear spaces, i.e. linear spaces with a pointed convex cone
which introduces a partial order, also other ordering concepts play an important role
in several applications. We collect in this section some basic definitions, properties
and results on variable ordering structures. More details as well as a literature survey
on this topic can be found in the book [20]. As before, in this section, let Y be a real
linear space.

4.1 Introduction to Variable Ordering Structures

In the last years, multiobjective optimization problems with a variable ordering
structure have gained interest motivated by several applications in such different
fields as economics or medical image registration, cf. [2, 17, 68, 69, 73]. The basic
idea is that instead of one fixed ordering cone for the whole image space, an
individual ordering cone is attached to each element of the space. This corresponds
to the interpretation that the preferences for the decision making in the objective
space and also the corresponding binary relation depend on the considered point in
the objective space.

Recall that in multiobjective optimization one optimizes several objective func-
tions at the same time. Thus one has to compare elements in a linear space (for
instance in R

m in case one minimizes m objective functions at the same time). That
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the importance of criteria may change during the decision-making process and that
it may depend on current objective values was already recognized by Karaskal and
Michalowski in [54]. Wiecek discussed this issue and gave some examples of such
a process in [73]. In [28], Engau examined the role of variable ordering structures
in preference modeling. He gave the following example which motivates that an
ordering cone and thus a pre-order might not always be appropriate to model a
decision making problem. We have discussed this issue also already in Sect. 3.4.

Example 13 ([28]) Let Y = R
2, and let the set

S = {y ∈ R
2 | y1 + y2 ≥ 1, y1 ≥ 0, y2 ≥ 0}

be given. Assume that K ⊆ R
2 is a convex cone with R

2+ ⊆ K . The latter
corresponds to the requirement of monotonicity, see (1). We define k1 := (−1, 1)
and k2 = (1,−1) and search for the efficient elements of S, i.e. for those elements
ȳ ∈ S for which

({ȳ} −K) ∩ S ⊆ {ȳ},

cf. Definition 14.
In case k1 ∈ K and k2 �∈ K hold, the only efficient element is z1 := (1, 0). In

case k1 �∈ K but k2 ∈ K , then the only efficient element is z2 := (0, 1). If k1 ∈ K

and k2 ∈ K , then there is no efficient element at all. If we have k1 �∈ K and k2 �∈ K ,
then all elements of the line segment L := {y ∈ R

2 | y1 + y2 = 1, y1 ∈ [0, 1]}
are efficient. In particular, it is not possible to define an ordering cone that excludes
the two extreme points z1 and z2 while maintaining a set of efficient elements in the
middle of the line segment L.

In case of a variable ordering structure and by defining optimal elements of a set
by using the binary relation ≤1 or ≤2 as defined below, the drawback of Example 13
can be overcome, see Example 15.

A variable ordering structure is mathematically defined by a set-valued map
which associates to each element y of the linear space Y an individual cone of
preferred or of dominated directions D(y) ⊆ Y . Based on this cone-valued map and
depending on the interpretation as set of preferred or of dominated/deteriorating
directions, one obtains two binary relations by

y ≤1 z :⇔ z− y ∈ D(y) (9)

and by

y ≤2 z :⇔ z− y ∈ D(z). (10)

In the literature one can find a large number of publications on theoretical results
for vector optimization problems with a variable ordering structure. Also more
general concepts are studied where D is assumed to be an arbitrary set-valued
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map. Some of these studies make use of the assumption that the zero is included
in the boundary of each image set D(y) and that a direction d ∈ Y exists with
{λ d ∈ Y | λ > 0} ⊆ D(y) for all y ∈ Y . See also page 293 for a short discussion
on this topic.

We start by the basic definition which clarifies what we mean by a variable
ordering structure in this section.

Definition 15 Let D : Y → 2Y be a set-valued map with D(y) a nonempty convex
cone for all y ∈ Y . If elements in the space Y are compared using the binary
relation (9) or (10), then the cone-valued map D is called an ordering map and
it is said that D defines a variable ordering (structure) on Y .

The following example illustrates the binary relations (9) and (10).

Example 14 Let Y = R
2 be equipped with a variable ordering structure defined by

the ordering map D : R2 → 2R
2

with

D(y) =
{
R

2+ for all y ∈ R
2 \ {(0, 0)}

cone conv ({(1, 1), (1, 0)}) if y = (0, 0).

Then for all y, z ∈ R
2 with y �= 0R2

y ≤1 z ⇔ yi ≤ zi for i = 1, 2.

For y = 0R2 and arbitrary z ∈ R
2, we obtain

y = 0R2 ≤1 z ⇔ z ∈ cone conv ({(1, 1), (1, 0)})
⇔ z1 ≥ z2 ≥ 0.

Hence,

(
0
0

)
≤1

(
1
1

)
,

(
1
1

)
≤1

(
1
2

)
but

(
0
0

)
�≤1

(
1
2

)
,

which shows that ≤1 is not transitive.
For the second relation, relation ≤2, we get for all y, z ∈ R

2 with z �= 0R2

y ≤2 z ⇔ yi ≤ zi for i = 1, 2.

For z = 0R2 and arbitrary y ∈ R
2, we obtain

y ≤2 z = 0R2 ⇔ −y ∈ cone conv ({(1, 1), (1, 0)})
⇔ y1 ≤ y2 ≤ 0.

Therefore, also for this relation, we can find an example showing that ≤2 is not
transitive as well.
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Of course, if D(y) = K for all y ∈ Y for some convex cone K , both binary
relations (9) and (10) define the same pre-order on Y . However, in general the
relations do not coincide with each other and do not define a pre-order as can be
seen in the example above.

Let us assume that for a given relation ≤∗, if we have a ≤∗ b, then a is
preferred to b. The binary relation defined in (9) represents the idea of domination:
all elements of the set

{y} +D(y) \ {0Y } = {z ∈ Y \ {y} | y ≤1 z}
are considered to be worse (less preferred) than the element y and are thus
dominated by y. The set D(y) collects the set of directions in which the elements
are worse compared to y, i.e. the deteriorating directions:

D(y) = {d ∈ Y | y + d is worse than y} ∪ {0Y }.
The binary relation (10) corresponds to the concept of preference, as all elements

of the set

{y} −D(y) \ {0Y } = {z ∈ Y \ {y} | z ≤2 y}
are considered to be better or more preferred than the element y. Therefore, it is
more natural to define in a first step a cone-valued map P : Y → 2Y with P(y) a
convex cone for all y ∈ Y and

P(y) = {d ∈ Y | y + d is preferred to y} ∪ {0Y }.
Then

y ≤P z ⇔ y ∈ {z} +P(z)

for all y, z ∈ Y . By defining D(y) := −P(y) for all y ∈ Y we get a unified
notation and the binary relation ≤2 by

y ≤2 z ⇔ y ∈ {z} −D(z)

for all y, z ∈ Y .
Note that the underlying concepts are fundamentally different and that in general

{d ∈ Y | y + d is worse than y} �= −{d ∈ Y | y + d is preferred to y}.
Finally, we give an example of a variable ordering structure for which the

drawback of Example 13 can be overcome. In order to do this, we need to introduce
the concept of optimal elements for sets based on variable ordering structures:

Remark 1 By using any of the binary relations ≤1 or ≤2, we may follow the well
known definition from vector optimization and define an optimal element of a
nonempty set S ⊆ Y : we say that ȳ ∈ S is an optimal element of S if there is
no y ∈ S \ {ȳ} with y ≤ ȳ. In case of ≤=≤1 we speak of a nondominated element
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of S w.r.t. the ordering map D . In case of ≤=≤2 of a minimal element of S w.r.t.
the ordering map D . Thus, given D , an element ȳ ∈ S is said to be nondominated
element of S w.r.t. D , if there is no y ∈ S with y �= ȳ and ȳ ∈ {y} + D(y). And
ȳ ∈ S is said to be a minimal element of S w.r.t. D if

({ȳ} −D(ȳ)) ∩ S = {ȳ}.

Example 15 Let Y = R
2 and S as in Example 13. Also, we use k1, k2, z1, and z2

as defined there. Now we define an ordering map on Y = R
2 in the following way:

D(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
2+ if y �∈ R

2+,

cone conv(R2+ ∪ {k2}) if y ∈ cone({λz2 + (1 − λ)z1})
for some λ ∈ [0, 0.3],

cone conv(R2+ ∪ {k1}) if y ∈ cone({λz2 + (1 − λ)z1})
for some λ ∈ [0.7, 1],

cone conv({(−λ, 1)} ∪ {(1,−λ)}) if y ∈ cone({λz2 + (1 − λ)z1})
for some λ ∈ (0.3, 0.7).

Then only the elements {λz2 + (1 − λ)z1 ∈ S | λ ∈ [0.3, 0.7]} are nondominated
elements of S.

A different ordering map for the set in Example 15 is proposed in Example 5 in
[28] which leads to the following set of minimal elements of S:

{
y ∈ S | y1 + y2 = 1, 1 − 1

2

√
2 < y1 <

1

2

√
2

}
.

That ordering map has images which are so called ideal-symmetric convex cones
and which are special classes of Bishop-Phelps cones. Such special ordering maps
are discussed in Sect. 4.3.

Variable ordering structures play also an important role for the theory of
consumer demand in economics:

Example 16 In the traditional theory of consumer demand, see [51, 52] by John
and the references therein, one assumes that a consumer’s choice is derived
from maximizing the utility. It is differentiated between the local and the global
preferences, where the local preferences in the space Y = R

m are expressed by the
following: Let y ∈ R

m be given. A direction d ∈ R
m is preferred if

w(y)/d < 0,

non-preferred if w(y)/d > 0, and indifferent if w(y)/d = 0 with w : Rm → R
m

some function. The concepts of [52] using the notation above reads as: to any
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element y ∈ R
m the cone of non-preferred elements, including the indifferent

elements, is given by

D(y) = {d ∈ R
m | w(y)/d ≥ 0},

which is a convex but not pointed cone. In fact, D(y) is a halfspace.
According to Allen [1] and Georgescu-Roegen [29, 30] a point ȳ ∈ R

m is defined
to be an equilibrium position, if no direction away from ȳ to any other alternative y
is preferred, i.e. if

w(ȳ)/(y − ȳ) ≥ 0.

This corresponds to y ∈ {ȳ} + D(ȳ) for all feasible y, i.e., using the notation from
[16], ȳ has to be a so-called strongly minimal element.

Additionally, to guarantee the equilibrium to be stable, the so-called principle of
persisting nonpreferences, it is required [30, 52] that for any y ∈ R

m it holds that

w(y)/d ≥ 0 implies w(y + d)/d ≥ 0 .

Equivalently, this can be written as

d ∈ D(y + d) for all d ∈ D(y).

This property corresponds to the map w being pseudomonotone. Additionally, w is
assumed to be continuous and is then called a local preference representation on Y .

4.2 Basic Properties of Variable Ordering Structures

First we study the assumptions which guarantee that a variable ordering structure is
a pre- or a partial order.

Lemma 8 ([19, Lem. 2.1])

(i) The relations defined in (9) and (10) are reflexive.
(ii) The binary relation ≤1 defined in (9) is transitive if

D(y + d) ⊆ D(y) for all y ∈ Y and for all d ∈ D(y). (11)

If D(y) is algebraically closed for all y ∈ Y , then (11) also is necessary for
the transitivity of ≤1.

(iii) The binary relation ≤2 defined in (10) is transitive if

D(y − d) ⊆ D(y) for all y ∈ Y and for all d ∈ D(y). (12)

If D(y) is algebraically closed for all y ∈ Y , then (12) also is necessary for
the transitivity of ≤2.
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(iv) The property given in Definition 4(i) (compatibility with addition) is satisfied
by any of the two relations ≤1 or ≤2 if and only if D is a constant map.

(v) The property given in Definition 4(ii) (compatibility with nonnegative scalar
multiplication) is satisfied by any of the two relations ≤1 or ≤2 if and only if

D(y) ⊆ D(α y) for all y ∈ Y and for all α > 0. (13)

(vi) The relations defined in (9) and (10) are antisymmetric if D(Y ) := ⋃
y∈Y D(y)

is pointed.

Proof

(i) The relations are both reflexive as the sets D(y) are assumed to be cones and
thus 0Y ∈ D(y) for all y ∈ Y .

(ii) We first show that the condition (11) is sufficient. Let x, y, z ∈ Y be arbitrarily
given. As x ≤1 y and y ≤1 z correspond to y − x ∈ D(x) and z − y ∈
D(y), (11) implies D(y) ⊆ D(x) and we get z − x = (z − y) + (y − x) ∈
D(y)+D(x) ⊆ D(x) and hence x ≤1 z.

Next, we show that condition (11) is also necessary if D(y) is algebraically
closed for all y ∈ Y . For that we assume ≤1 to be transitive, but (11) does not
hold. Then there exists some x ∈ Y and some d ∈ D(x) as well as some

k ∈ D(x + d) \ {0Y } with k �∈ D(x). (14)

For all s > 0 we obtain sk ∈ D(x + d) \ {0Y } and sk �∈ D(x). We set

y := x + d and zs := y + sk = x + d + sk for all s > 0.

Then y − x = d ∈ D(x) and zs − y = sk ∈ D(x + d) = D(y) for all s > 0.
Because ≤1 is transitive, it holds zs − x = d + sk ∈ D(x) for all s > 0, i.e.
1
s
d + k ∈ D(x) for s > 0 implying, because D(x) is algebraically closed,

k ∈ D(x) in contradiction to (14).
(iii) We first show that the condition (12) is sufficient. Let x, y, z ∈ Y be arbitrarily

given. As x ≤2 y and y ≤2 z correspond to y − x ∈ D(y) and z − y ∈
D(z), (12) implies D(y) ⊆ D(z) and we get z − x = (z − y) + (y − x) ∈
D(z)+D(y) ⊆ D(z) and hence x ≤1 z.

Next, we show that condition (12) is also necessary if D(y) is algebraically
closed for all y ∈ Y . For that we assume ≤2 is transitive, but (12) does not hold.
Then there exists some z ∈ Y and some d ∈ D(z) as well as some k ∈ Y \{0Y }
with

sk ∈ D(z− d) \ {0Y } and sk �∈ D(z) for all s > 0. (15)

We set y := z − d and xs := y − sk = z − d − sk for s > 0 and obtain
y−xs = sk ∈ D(z−d) = D(y) and z−y = d ∈ D(z) for all s > 0. Because
≤2 is transitive, it holds z − xs = d + sk ∈ D(z) for all s > 0 implying
k ∈ D(z) in contradiction to (15).
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(iv) The property given in Definition 4(i) corresponds for both relations to the
property D(y) + D(z) ⊆ D(y + z) for any y, z ∈ Y , i.e. to the subadditivity
of the cone-valued map D . Similar as in the proof of Lemma 2.21 in [18], we
show that this implies that D is a constant map.

Let y ∈ Y be arbitrarily chosen. By the subadditivity we have

D(y)+D(−y) ⊆ D(0Y )

and as 0Y ∈ D(−y) also

D(y) ⊆ D(0Y ) ⊆ D(Y ) ∀ y ∈ Y

and hence

D(0Y ) = D(Y ).

The subadditivity also implies D(y)+D(0Y ) ⊆ D(y) for all y ∈ Y , and hence

D(Y ) = D(0Y ) ⊆ D(y) ⊆ D(Y )

which leads to the assertion.
(v) As D(y) is a cone for all y ∈ Y it holds D(y) = αD(y) for all α > 0 and

thus the property given in Definition 4(ii) corresponds for both relations to the
property D(y) ⊆ D(α y) for all y ∈ Y and all α > 0.

(vi) y ≤1 z and z ≤1 y are equivalent to z ∈ {y} +D(y) and z ∈ {y} −D(z), thus
z− y ∈ D(Y ) ∩ (−D(Y )), i.e. z = y. Analogously for ≤2.

Hence, we speak of a variable ordering (structure) or just variable order given
by the ordering map D , even though the binary relations ≤1 and ≤2 are neither
transitive nor compatible with the linear structure of the space in general. By that
we emphasize that the partial order defined by a convex cone K is replaced by a
relation which is defined by the cone-valued map D .

Next we give examples of ordering maps which satisfy some of the assumptions
of Lemma 8.

Example 17 Let Y = R
2 and consider the ordering map D : R2 → 2R

2
with

D(y1, y2) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(
r cosϕ
r sinϕ

)
∈ R

2

∣∣
∣∣ r ≥ 0, ϕ ∈ [0, π8 ]

}
if y1 ≥ π

2 ,

{(
r cosϕ
r sinϕ

)
∈ R

2

∣∣
∣∣ r ≥ 0, ϕ ∈ [0, π2 + π

8 − y1]
}

if y1 ∈ (π8 ,
π
2 ),

R
2+ if y1 ≤ π

8 .

For an illustration of some of the cones D(y) see Fig. 2.
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Fig. 2 Some of the cones D(y) of Example 17, cf. [20]

It holds D(y) ⊆ R
2+ and D(y) is a closed pointed convex cone for all y ∈ R

2.
The cone D(y) depends on y1 only, and for z1 ≥ y1 for some y, z ∈ R

2, it holds
D(z) ⊆ D(y). As for any y ∈ R

2 and any d ∈ D(y) we have d1 ≥ 0 and thus
y1 + d1 ≥ y1, we conclude that (11) is satisfied and hence, ≤1 defined by D is
transitive.

Note that condition (11) can be written as

D(y + d)+D(y) ⊆ D(y) for all y ∈ Y and all d ∈ D(y),

as D(y) are convex cones for all y ∈ Y .
An ordering map D which defines a transitive binary relation ≤2 is given in the

next example:

Example 18 Let Y = R
2 and consider the ordering map D : R2 → 2R

2
with

D(y1, y2) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(
r cosϕ
r sinϕ

)
∈ R

2

∣∣
∣∣r ≥ 0, ϕ ∈ [0, π8 ]

}
if y1 ≤ π

8 ,

{(
r cosϕ
r sinϕ

)
∈ R

2

∣∣
∣∣r ≥ 0, ϕ ∈ [0, y1]

}
if y1 ∈ (π8 ,

π
2 ),

R
2+ if y1 ≥ π

2 .

Again, D(y) ⊆ R
2+ and D(y) is a closed pointed convex cone for all y ∈ R

2.
The cone D(y) depends on y1 only, and for z1 ≤ y1 for some y, z ∈ R

2, it holds
D(z) ⊆ D(y). As for any y ∈ R

2 and any d ∈ D(y) we have d1 ≥ 0 and thus
y1 − d1 ≤ y1, we conclude that (12) is satisfied.

Also, as y1 ≤ y1 + d1, we obtain that

D(y) ⊆ D(y + d) for all y ∈ Y and for all d ∈ D(y). (16)

Property (16) is similar to the f -inclusive condition defined by Huang et al. in
[43]. Example 18 is a modification of an example presented there.
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Fig. 3 Some of the cones D(y) of Example 19, cf. [18]

Next we recall an example from [20] for an ordering map D which satisfies
condition (13). Hence the corresponding relations ≤1 and ≤2 are compatible with
nonnegative scalar multiplication for such a map.

Example 19 Let Y = R
2 and consider the ordering map D : R2 → 2R

2
with

D(y) =

⎧
⎪⎪⎨

⎪⎪⎩

{(
r cosϕ
r sinϕ

)

∈ R
2

∣∣∣∣r ≥ 0, ϕ ∈ [
ϕ̄y − π

4 , ϕ̄y + π
4

] ∩ [
0, π2

]
}

if y �= 0R2 ,

R
2+ if y = 0R2 .

where ϕ̄y ∈ [0, π/2) is defined by

y = (ry cos(lϕ̄y), ry sin(lϕ̄y)) for some l ∈ N and some ry ∈ R, ry > 0.

For an illustration of some of these cones see Fig. 3. Then D(y) = D(y/‖y‖2) for
all y ∈ R

2 \ {0R2} and thus D(y) = D(αy) for all α > 0 and all y ∈ Y .

Practical requirements for variable ordering structures have already been studied
by Engau in [28]. He discussed basic properties of such ordering structures denoted
as local preferences, which we recall in the following.

Definition 16 Let S be an arbitrary nonempty set with a binary relation ≤. Let
y, d, d1, d2 ∈ S and λ > 0 be arbitrarily chosen. The binary relation ≤ is said
to be

(i) multiplicative, if y − d ≤ y implies y − λ d ≤ y.
(ii) additive, if y − d1 ≤ y and y − d2 ≤ y imply y − (d1 + d2) ≤ y.

(iii) Let Y = R
m be the Euclidean space. Let the ideal point z of S exist, i.e.

z ∈ R
m satisfies zi := inf{yi ∈ R | y ∈ S}, and denote ȳ := y − z. The binary

relation ≤ is said to be ideal-symmetric on S, if for (d1)/ȳ = (d2)/ȳ with
‖d1‖2 = ‖d2‖2 it holds:

y − d1 ≤ y ⇔ y − d2 ≤ y.

Note that the ideal point of a set S ⊆ R
m is a lower bound of this set w.r.t. Rm+, i.e.

it holds S ⊆ {z} + R
m+.
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Recall that for ≤=≤2, we can write

D(y) = {d ∈ Y | y − d ≤2 y}.

By [28, Proposition 3] multiplicativity and additivity imply that in this case D(y)

has to be a convex cone. Together with the assumption of monotonicity (1) one
obtains also that Rm+ ⊆ D(y).

For ≤=≤1, we have

D(y) = {d ∈ Y | y ≤1 y + d}.

A similar conclusion requires the following modification of Definition 16: in (i) it
hast to be that y ≤ y+ d implies y ≤ y+λ d and in (ii) it has to be that y ≤ y+ d1

and y ≤ y + d2 imply y ≤ y + (d1 + d2).
The assumption of ideal-symmetry motivates to use ordering maps D on R

m

where the images D(y) ⊆ R
m are symmetric w.r.t. some s ∈ R

m \ {0Rm}, i.e.
d ∈ D(y) implies d ′ ∈ D(y) for all d ′ ∈ R

m with d/s = (d ′)/s, ‖d‖2 = ‖d ′‖2.
At the end of this section, we give other basic assumptions on the ordering map

which are often used in literature.
Bao et al. [3] do not assume that the images of the ordering map C : Y → 2Y are

cones. However, C(y) is closed and 0Y ∈ bd(C(y)) holds for all y ∈ Y . Moreover,
there is a vector d ∈ Y which satisfies C(y)+ λd ⊆ C(y) for all y ∈ Y and λ ≥ 0.
The last condition means that there is a common (unbounded) direction which is
contained in all ordering sets in the considered space. In [13], also an ordering map
C : X → 2Y was considered, with X some linear space. This was done in the
context of a set optimization problem

min
x∈Ω F(x)

with feasible set Ω ⊆ X and set-valued objective map F : X → 2Y . Under the
assumption that C (x) is a closed, convex, nontrivial and pointed cone for each x ∈
X, optimality conditions are developed there. There are some theoretical advantages
if the ordering map acts between the same spaces as the objective map. However,
situations like C (x1) �= C (x2) but F(x1) = F(x2) might occur for some x1, x2 ∈
X.

4.3 Ordering Maps with BP Cones

We focus in the following on variable ordering structures which are defined by an
ordering map D where the images D(y) are (representable as) Bishop-Phelps cones,
see Sect. 3.2. For that reason, we assume within this subsection that (Y, ‖·‖) is a real
normed space. Moreover, we assume that to each y ∈ Y we can associate a norm
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‖ · ‖y which is equivalent to, but eventually different from, the norm of the space Y ,
as well as an element ly ∈ Y ∗ such that we can write

D(y) = C(ly) = {u ∈ Y | ‖u‖y ≤ ly(u)} for all y ∈ Y.

We will make use of the map � : Y → Y ∗ which is defined by �(y) := ly and thus
we can also write

D(y) = C(�(y)) = {u ∈ Y | ‖u‖y ≤ �(y)(u)} for all y ∈ Y.

We start with an example of such an ordering map:

Example 20 Let Y be the Euclidean space R
2, ‖ · ‖y := ‖ · ‖2 for all y ∈ R

2, and
define � : R2 → R

2 by

�(y1, y2) :=
(

3 + sin y1

2
,

3 + cos y2

2

)/
∈ [1, 2] × [1, 2]. (17)

Then R
2+ ⊆ C(�(y)) for all y ∈ R

2. The cones C(�(y)) can be visualized as follows:
The two extreme rays of the pointed convex cone C(�(y)) are given by two rays
starting in the origin being defined by the intersection points of the unit circle and
the line connecting the points

(
1

�1(y)
, 0

)
and

(
0,

1

�2(y)

)
,

see Fig. 4. For instance, C(�(3π/2, π)) = R
2+.

Recall that it is not a strong restriction to assume that the images of the ordering
map are representable as BP cones. In most literature, the convex cones appearing
in vector optimization problems are closed and pointed. According to Theorem 2,
in finite dimensions such cones are all representable as BP cones. However, already
in R

m one might need different equivalent norms to represent different nontrivial
closed pointed convex cones as BP cones. In R

2 it is enough to choose just one norm

Fig. 4 BP cone C(�(y)) of
Example 20 for �1 = �1(y)

and �2 = �2(y), as well as the
unit ball w.r.t. the Euclidean
norm and (in dashed line) the
line connecting the points
(1/�1, 0) and (0, 1/�2), cf.
[22]
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but already in R
3 one has to use different norms to model for instance a polyhedral

cone and the Lorentz cone. In applications however, there might be an ordering map
with different cones D(y) but presumably they will all be of the same type, for
instance all polyhedral, and can all be modelled with the same norm.

Examples for such ordering maps are provided by Engau in [27, 28]. The
properties which are assumed there for an ordering map imply that the images D(y)

are BP cones w.r.t. the Euclidean norm.

Example 21 Let the cone-valued map D : A → 2R
m

be defined on some bounded
set A ⊆ R

m by

D(y) :=
{
d ∈ R

m | d/(y − p) ≥ γ · ‖d‖2 · [y − p]min

}
for all y ∈ A

where γ ∈ (0, 1], pi := infy∈A yi for i = 1, . . . , m, and

[y − p]min := min
i=1,...,m

yi − pi,

compare [28, 42].
Here, γ ∈ (0, 1] is a scalar which controls the angle of the elements of the cone

with the vector y − p. These cones D(y) are Bishop-Phelps cones for each y ∈ A.
This can be seen by setting

�(y) := 1

γ [y − p]min
(y − p)

and thus

D(y) = C(�(y)) := {u ∈ Y | ‖u‖2 ≤ �(y)/u}. (18)

Moreover, it holds Rm+ ⊆ D(y) for all y ∈ A, because for any d ∈ R
m+ \ {0Rm}

one gets

d/(y − p)

γ ‖d‖2[y − p]min
≥ d/(y − p)

γ ‖d‖1[y − p]min
≥ ‖d‖1[y − p]min

γ ‖d‖1[y − p]min
= 1

γ
≥ 1,

i.e. d ∈ D(y).

In particular, when the norm ‖ · ‖y in the definition of the BP cones D(y) is
assumed to equal the norm ‖ · ‖ of the space Y and is thus equal for all y ∈ Y as in
the previous example, these cones reduce to the BP cones

D(y) = C(�(y)) = {u ∈ Y | ‖u‖ ≤ �(y)(u)}. (19)

Example 20 also provides such an ordering map. It shows that even if the norm ‖ · ‖
does not depend on y a wide range of different cones is covered by the images D(y)

in (19).
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As in Example 8, the representation of the cones D(y) as BP cones can be used
for scalarization results. Extensive examinations can be found in [22]. We give here
an example for a characterization of the nondominated elements of a set as defined
in Remark 1: ȳ ∈ S ⊆ Y is said to be a nondominated element of the set S w.r.t. the
ordering map D , if there is no y ∈ S with y �= ȳ and ȳ ∈ {y} +D(y).

Example 22 Let S ⊆ Y be a nonempty set and let Y be equipped with a variable
ordering which is defined by the ordering map D where the cones D(y) are defined
as in (19) with ‖�(y)‖∗ ≥ 1.

One can define a functional ξȳ : Y → R by

ξȳ(y) = �(y)(y − ȳ)+ ‖y − ȳ‖,

cf. [22]. Then it holds ȳ ∈ {y} +D(y) for some y ∈ Y if and only if

‖ȳ − y‖ ≤ �(y)(ȳ − y),

i.e. if and only if ξȳ(y) ≤ 0 = ξȳ(ȳ), as �(y) and �(ȳ) are linear maps. Hence, we
have that ȳ ∈ S is a nondominated element of the set S w.r.t. D if and only if

0 < ξȳ(y) for all y ∈ S \ {ȳ}, (20)

i.e. if and only if ȳ is the unique minimal solution of

min
y∈S ξȳ(y).

Now assume that Y = R
2 is the Euclidean space and that � : R2 → R

2 which
defines D(y) = C(�(y)) is given as in (17), i.e.

�(y1, y2) :=
(

3 + sin y1

2
,

3 + cos y2

2

)/
∈ [1, 2] × [1, 2],

and with ‖ · ‖y := ‖ · ‖2 for all y ∈ R
2. Further, let

S := {(y1, y2) ∈ R
2 | y1 ≥ 0, y2 ≥ 0, y2 ≥ π − y1}.

We show that ȳ = (0, π) is a nondominated element of S w.r.t. the ordering map D
by verifying that (20) holds.

Obviously, for all y ∈ S \ {ȳ} with y2 ≥ π , we have

ξȳ(y) = 3 + sin y1

2
(y1 − 0)+ 3 + cos y2

2
(y2 − π)+ ‖y − (0, π)/‖2 > 0.

For y ∈ S \ {ȳ} with y2 < π , we have 0 > y2 − π ≥ −y1 and thus
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ξȳ(y) ≥ 3 + sin y1

2
y1 + 3 + cos y2

2
(−y1)+

√
y2

1 + (y2 − π)2

>

(
sin y1 − cos y2

2

)

︸ ︷︷ ︸
∈[−1,1]

y1 + y1 ≥ 0.

Another possible scalarization which can be used when a representation as BP
cones is available was given in [21]. For some ȳ ∈ Y the functional

y  → �(y)(y − ȳ) ∀ y ∈ Y

is also a nonlinear scalarization functional which gives for instance with

�(y)(y − ȳ) > 0 ∀ y ∈ S \ {ȳ}

a sufficient condition for ȳ ∈ S to be a nondominated element of S w.r.t. D , cf. [21,
Thm 4.2].

We end this section with an example of an ordering map with BP cones as values
in the infinite dimensional Hilbert space L2([0, 1]), cf. [20]:

Example 23 Let Y = L2([0, 1]) denote the real linear space of all (equivalence
classes of) quadratic Lebesgue-integrable functions f : [0, 1] → R with inner
product

〈f, g〉 :=
1∫

0

f (x)g(x)dx ∀ f, g ∈ L2([0, 1]).

Then Y is a Hilbert space and we can set Y = Y ∗. Let a map � : Y → Y ∗ be
defined by

�(f ) = f + e ∀ f ∈ L2([0, 1])

with e ∈ L2([0, 1]), e(x) := 1 for all x ∈ [0, 1]. Then a cone-valued map D : Y →
2Y is defined by

D(f ) := C(�(f ))

= {
g ∈ L2([0, 1]) | 〈�(f ), g〉 ≥ √〈g, g〉}

=
{

g ∈ L2([0, 1])
∣∣∣∣

1∫

0
(f (x)g(x)+ g(x))dx ≥

√
1∫

0
(g(x))2dx

}

for all f ∈ L2([0, 1]).
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5 Set Relations

In this section, we introduce binary relations defined on the power set of a partially
ordered linear space Y , i.e. on the set of all nonempty subsets of the space Y .
Such relations generalize the relations considered before and are defined using
the ordering cone. At first, we introduce three relations which are widely used in
literature nowadays, cf. [48, 58, 74]. In the following, let the linear space Y be
partially ordered by the pointed convex cone K ⊆ Y .

Definition 17 Let A and B be nonempty subsets of Y . Then we define:

(i) the l-less order relation by

A �l B ⇔ B ⊆ A+K,

(ii) the u-less order relation by

A �u B ⇔ A ⊆ B −K,

(iii) the set less order relation by

A �s B ⇔ B ⊆ A+K and A ⊆ B −K.

The above relations are pre-orders on the power set of Y—they are reflexive and
transitive. However, none of these relations is antisymmetric in general. Hence, for
arbitrary sets A,B ⊆ Y , from the relations A �· B and B �· A, it does not follow
A = B. However, these two inequalities combined together define an equivalence
relation w.r.t. the considered pre-order �·, cf. [50],

A ∼�· B ⇔ A �· B and B �· A.

Therefore, for any pre-order from Definition 17, there is an equivalence class

[A]�· := {B ⊆ Y | A ∼�· B}.

All three relations from Definition 17 play an important role in set-valued
optimization using the so called set approach which means that in contrast to the
vector approach, where elements of the sets are considered, the whole sets are
compared with each other. Based on the above relations, solution notions can be
defined which generalize the notions used in vector optimization. In the literature, it
is possible to find papers regarding the existence of solutions [40, 50] or optimality
conditions [50, 59, 65]. For a comprehensive collection of results on set-valued
optimization, we refer the reader to the book [56] and the survey paper [38]. An
important application of set-valued optimization is for instance robust optimization
[26, 45] and mathematical finance [38, 56].
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In the next example (adapted from [24, Ex. 3.2]) we discuss a special situation
where there is no need to consider the set less order relation since it can be replaced
by the l-less order relation.

Example 24 Let K have a nonempty algebraic interior (cor(K) �= ∅). Then K is
reproducing, i.e. K − K = Y . Let M ⊆ 2Y be a family of nonempty sets with the
property A+K = A for all A ∈ M . Then, for arbitrary sets A,B ∈ M , it follows
that

A ⊆ Y = B + Y = B +K −K = B −K,

i.e. we have A �u B. Therefore, for arbitrary A,B ∈ M , A �s B holds if A �l B

is satisfied, and it suffices to study the l-less order relation.

Analogous argumentation can also be used to motivate the usefulness of the u-
less order relation. The u-less order relation plays also an important role in robust
multiobjective optimization. For instance optimality in case of decision uncertainty
can be defined by using set-valued optimization and the u-less order relation, see
[26].

Scalarization is another very important topic in set-valued optimization, see
[36, 41, 57]. Recently, some results on vectorization in set optimization combined
with two set relations—the set less and the minmax less order relation—have been
derived by Jahn [49].

There are a lot of other possibilities how to compare sets with each other.

Definition 18 Let A and B be nonempty subsets of the real linear space Y . Then
we define:

(i) the certainly less order relation by

A �c B ⇔ ∀a ∈ A ∀b ∈ B : a ≤K b.

(ii) the possibly less order relation by

A �p B ⇔ ∃a ∈ A ∃b ∈ B : a ≤K b.

The above relations are no pre-orders since the relation �c is not reflexive and
for �p, the transitivity fails in general. In [50] the definition of the relation �c

is slightly modified in order to obtain reflexivity. For an illustration of the relations
from Definitions 17 and 18 where Y = R

2 and K = R
2+, see Fig. 5.

Between the relations from Definitions 17 and 18 for two nonempty sets A and
B, we have the following implications:
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(a) (b) (c)

A

B

A

B

A

B

A�c B A�l B, A ��u B A�p B

Fig. 5 Illustration of: (a) the certainly less order relation, (b) the l-less and u-less order relation,
and (c) the possibly less order relation

Fig. 6 Sets of Example 25.
The gray circles are the
boundaries of those disks
which are larger than some
other disk w.r.t. the certainly
less order relation. Compare
[24, Fig. 3]
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It is well-known that the certainly less order relation is a very strong concept, and
that in practical applications it might happen that no sets can be compared using
this set relation. Therefore, defining a solution w.r.t. this relation seems not to be
reasonable at first glance. However, if there is a large number of sets, for instance
in a low-dimensional space such as R2, then there might be many sets which can be
compared. In this case, the certainly less order relation (or characterization results
for this relation) can be used to pre-select some sets. This is illustrated in the
following example which is taken from [24].

Example 25 Let the space R
2 be partially ordered by the natural ordering, i.e. Y =

R
2 and K = R

2+. Let M be a family of n nonempty closed disks with random radius
in the open interval ]0, 2[ and random center points (xi, yi) ∈]0, 10[×]0, 10[ with
i = 1, . . . , n. (The implementation uses the Matlab function rand, which constructs
pseudorandom values drawn from the standard uniform distribution on the open
interval ]0, 1[.) Figure 6 shows such a family of sets M with n = 100 disks. We
determined those disks, which are larger w.r.t. the certainly less order relation than
any other set and marked them in the figure in gray—these have been k = 72 disks.
So only the remaining 28 disks have to be considered for other set relations as the
l-less or the set less order relation, in case one wants to find the “minimal” sets. In
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a simulation, for families M of random disks with n = 5000 disks, repeated 100
times, the average result is that 79% of the disks are larger than any other of the n
sets w.r.t. the certainly less order relation, and thus, these sets can be deleted in a
pre-selection.

There are even more concepts for set relations which are based, for instance, on
comparing the sets of minimal or maximal elements of the considered sets as defined
in [50, Sec. 3.2]. Moreover, all relations from Definitions 17 and 18 are generalized
to the case where the considered linear space is equipped with a variable ordering
structure in [24, 25].
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An Overview on Singular Nonlinear
Elliptic Boundary Value Problems

Francesca Faraci and George Smyrlis

1 Introduction

The study of singular nonlinear problems started with the pioneering work of Fulks
and Maybee [6] as a mathematical model for describing the heat conduction in an
electric medium.

More precisely, if Ω ⊂ R
3 is a bounded region of the space occupied by an

electrical conductor and u(x, t) denotes the temperature at the point x ∈ Ω and
time t , then, u satisfies the equation

cut − kΔu = E2(x, t)

f (u)
,

where E(x, t) describes the local voltage drop, f (u) is the electrical resistivity
(which depends on the temperature) and c and k are the specific heat and the thermal
conductivity of the conductor respectively. The function f is positive, increasing
and tends to zero as the argument tends to zero. The model example is precisely
f (u) = uγ for some positive real number γ . The authors proved existence and
uniqueness results by using fixed point theory, and showed also that the solution
u(x, t) of the parabolic equation tends uniformly to the unique solution of the
corresponding elliptic problem as t → +∞. The study of stationary solutions of
such equations leads then to investigate semilinear elliptic equations of the type

−Δu = h(x)u−γ
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on a bounded domain Ω ⊂ R
N (N > 2), for suitable positive functions h(x) and

positive γ.
In general, if g : Ω×]0,+∞[→ R is a real function, the semilinear elliptic

boundary value problem

⎧
⎨

⎩

−Δu = g(x, u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

(1)

is said to be singular if g exhibits a singularity at zero, i.e.

lim
t→ 0+

g(x, t) = ∞ for almost all x ∈ Ω.

We say that u ∈ W
1,2
0 (Ω) is a weak solution of (1) if u > 0 almost everywhere in

Ω and

g(x, u)ϕ ∈ L1(Ω),

∫

Ω

∇u∇ϕ dx =
∫

Ω

g(x, u)ϕ dx

for all ϕ ∈ W
1,2
0 (Ω). A classical solution of (1) is a function u ∈ C2(Ω) ∩ C(Ω)

such that u > 0 in Ω , and

−Δu(x) = g(x, u(x)), for all x ∈ Ω.

We recall also that a generalized solution of (1) is a function u ∈ W
2,q
loc (Ω) ∩

C(Ω) (q being suitably selected in ]1,+∞[ ) such that u > 0 in Ω , and

−Δu(x) = g(x, u(x)), for almost all x ∈ Ω.

If f : Ω×[0,+∞[→ R is a Carathéodory function and g(x, t) = t−γ +f (x, t)

for every x ∈ Ω and t > 0, then problem (1) reads as

⎧
⎨

⎩

−Δu = u−γ + f (x, u), in Ω

u > 0, in Ω

u = 0, on ∂Ω.

(2)

If 0 < γ < 1 then, it is possible to associate to problem (2) an energy functional
on the Sobolev space W 1,2

0 (Ω) given by

E (u) = 1

2

∫

Ω

|∇u(x)|2dx − 1

1 − γ

∫

Ω

u(x)1−γ dx −
∫

Ω

∫ u(x)

0
f (x, t)dt dx.
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Although not continuously Gâteaux differentiable, E is continuous, and variational
methods (in the broad sense) are still applicable in order to produce weak solutions.

When γ ≥ 1, such kind of problems have been less investigated. Notice in fact
that the above functional is not defined on the whole space W 1,2

0 (Ω). However, the
existence of one or two solutions (classical or weak) can be still obtained by using
upper-lower arguments, suitable truncation methods or techniques from non-smooth
analysis.

Singular elliptic problems received a considerable attention after the seminal
paper of Crandall et al. [2] where the existence of a classical solution for singular
problems driven by general elliptic operators of second order was established.

For sake of simplicity, we will state the main theorems of [2] for boundary value
problems of the form (1), where Ω is a bounded domain in R

N (N > 2) with
boundary ∂Ω of class C3 and g ∈ C(Ω×]0,+∞[) satisfies the condition

lim
t→ 0+

g(x, t) = ∞ uniformly for x ∈ Ω. (3)

One of the main results in [2] is the following

Theorem 1.1 ([2, Theorem 1.1]) In addition to (3), assume that

g ∈ C1(Ω×]0,+∞[)

and

g(x, t) is non-increasing in t ∈]0,+∞[, for x ∈ Ω.

Then (1) possesses a unique classical solution u ∈ C2(Ω) ∩ C(Ω) .

Thus, in the particular case when g(x, t) = t−γ , the above result provides
existence and uniqueness of a classical solution for (1) for every γ > 0.

In the proof of Theorem 1.1, the authors used the upper-lower solution method
to solve, for every ε > 0 the approximate problems

{−Δuε = g(x, ε + uε), in Ω

uε = 0, on ∂Ω,

and then they showed the uniform convergence of {uε} as ε → 0+ to a solution
u of (1). The proof of the convergence exploits Sobolev embeddings theorems
which ensure both that {uε} is compact in C

1,α
loc (Ω) for some α ∈ (0, 1) and

g(x, uε(x)) → g(x, u(x)) uniformly in C1. It is worth noticing that Theorem 1.1
(existence part) still holds, if monotonicity of g is replaced by the assumption that
g is bounded from above.

For the case where g is merely continuous, the authors obtained generalized
positive solutions of (1). Namely, we have the following
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Theorem 1.2 ([2, Theorem 1.21]) In addition to (3), assume that

g ∈ C(Ω×]0,+∞[).

Then (1) possesses a generalized solution u ∈ W
2,q
loc (Ω) ∩ C(Ω) for some

q > N .

When g(x, t) does not depend on x, stronger global regularity properties than
continuity of solutions can be obtained (see [2]).

By using the upper-lower solution method combined with fixed point theory,
Coclite and Palmieri [1] established a bifurcation-type result for the parametric
problem

⎧
⎨

⎩

−Δu = u−γ + λur−1, in Ω

u > 0, in Ω

u = 0, on ∂Ω

(4)

where 2 < r < 2∗ (being 2∗ the critical Sobolev exponent), γ > 0 and λ > 0
is a real parameter.

Namely, they proved the following

Theorem 1.3 ([1, Corollary 4]) There exists a positive real number λ∗ such that
the problem (4) has at least one classical solution belonging to C2(Ω)∩C(Ω) for
0 ≤ λ < λ∗ and no solutions for λ > λ∗.

When f (x, t) = β(x)t−γ , i.e. the singularity is multiplied by a suitable positive
weight β, the result of [2] has been extended in the work of Lazer and McKenna
[14] who considered the problem

⎧
⎨

⎩

−Δu = β(x)u−γ , in Ω

u > 0, in Ω

u = 0, on ∂Ω.

(5)

Assuming that the function β is positive and sufficiently smooth on Ω and γ > 0
the authors ensured, again with the aid of upper-lower solution techniques, the
existence and uniqueness of a classical solution to (5). Moreover in [14], it is also
proved that the unique positive solution of (5) lies in W

1,2
0 (Ω) (thus, it is also a

weak solution) iff γ < 3.
A different approach is given in [10] where the problem is reduced to the

equivalent integral equation

u(x) =
∫

Ω

G(x, y)β(y)u(y)−γ dy.

Precise estimates of the Green function G and of its gradient near ∂Ω allow to apply
Schauder’s fixed point theorem in an appropriate setting.
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Extending the above work, Lair and Shaker [13] considered the equation

−Δu = β(x)g(u), in R
N (N > 2) (6)

and the boundary value problem

⎧
⎨

⎩

−Δu = β(x)g(u), in Ω

u > 0 in Ω

u = 0, on ∂Ω,

(7)

where g is a positive non-increasing continuously differentiable function on
]0,+∞[ and Ω ⊆ R

N (N > 2 ) is a bounded domain with sufficiently smooth
boundary ∂Ω .

It is shown that (6) has a unique positive classical solution in R
N that decays to

zero, if β is a nontrivial nonnegative continuous function on R
N satisfying

∫ ∞

0
t

(
max|x|=t β(x)

)
dt < ∞.

In the proof, the authors use the upper-lower solution method combined with
extended maximum principle and comparison principle results for singular pro-
blems to obtain an increasing sequence vk , k = 1, 2, . . . of positive classical
solutions of the approximate equations

−Δv(x) = β(x)g

(
v(x) + 1

k

)
, k = 1, 2, . . .

with vk(x) → 0, as |x| → ∞.
Then, by using the bootstrap argument, they prove that the pointwise limit of the

sequence {vk} is the desired solution of (6).
Regarding problem (7), it is shown that there exists a unique positive weak

solution u ∈ W
1,2
0 (Ω), provided that

β ∈ L2(Ω)+ \ {0},
∫ ε

0
g(t)dt < ∞, for some ε > 0.

The proof is made by minimizing the functional u → 1

2
||∇u||22 on a certain

weakly closed subset of W
1,2
0 (Ω) and by using the Lagrange multiplier rule.

For the perturbed problem

⎧
⎨

⎩

−Δu = β(x)u−γ + λur−1, in Ω

u > 0, in Ω

u = 0, on ∂Ω,

(8)
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where 0 < γ < 1, β : Ω → R is positive and smooth enough and λ > 0 is
real parameter, the existence and uniqueness of a classical solution was proved by
Shi and Yao in [19] when 1 < r < 2. In the presence of a superlinear nonlinearity,
a multiplicity theorem was proved by Sun et al. [20]. Inspired by the work of Lair
and Shaker [13], Sun, Wu and Long studied problem (8) assuming that 2 < r < 2∗,
β ∈ L2(Ω)+ \ {0} satisfies

||β||2 ≤ q

(
S

|Ω|a
) r−1+γ

r−2

, (9)

where |Ω| is the Lebesgue measure of Ω and

q = 1

|Ω| r−2+2γ
2r

· r − 2

r − 1 + γ
·
(

1 + γ

r − 1 + γ

) 1+γ
r−2

,

a = 2 · 2∗ − r

2∗ · r , S = inf

{
||∇u||22
||u||22∗

: u ∈ W
1,2
0 (Ω) \ {0}

}

.

By using Ekeland’ s variational principle, the authors established in [20] the
following multiple existence result:

Theorem 1.4 ([20, Theorem 1]) If (9) holds, then, there exists a positive real
number λ∗ such that for λ ∈]0, λ∗[, the problem (8) possesses at least two
positive weak solutions u1, u2 ∈ W

1,2
0 (Ω).

We also mention the work of Zhang [21], where, with the aid of critical point
theory on certain convex closed sets of C1

0(Ω) the existence of at least two positive
weak solutions for singular problems of the form

⎧
⎨

⎩

−Δu = β(x)u−γ + λf (u), in Ω,

u > 0, in Ω

u = 0, on ∂Ω,

was established under certain hypotheses on the nonsingular term f and when
0 < γ < 1. Here β ∈ L2(Ω)+ \ {0} satisfying

β · ϕ−γ ∈ Ls(Ω),
N

2
< s <

2N

N − 2
, N > 2,

where ϕ is a positive smooth principal eigenfunction of the Dirichlet operator
(−Δ,W

1,2
0 (Ω)).

Regarding semi-linear singular problems, we refer also to the work of Hirano
et al. [11] who considered problem (4) under the assumption that γ is an arbitrary
positive number. The main result produced in [11] is the following bifurcation-type
result:
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Theorem 1.5 ([11, Theorem 1]) There exists a positive real number λ∗ such that
for λ ∈]0, λ∗[, the problem (4) possesses at least two positive weak solutions
u1, u2 ∈ C∞(Ω) ∩ L∞(Ω); for λ = λ∗, it possesses at least one positive weak
solution u ∈ C∞(Ω) ∩ L∞(Ω); for λ > λ∗, it has no positive weak solutions.

The proof of Theorem 1.5 is based on nonsmooth analysis, seeking solutions
of (4) as critical points of the corresponding energy functional in some suitable
nonsmooth sense. The main tool is a linking theorem for functionals which are C1-
perturbations of convex functions.

Recently, several authors have paid attention to singular equations driven by p-
Laplacian (p > 1). In this connection, we mention the papers of Perera and Silva
[15] and Giacomoni et al. [9].

Perera and Silva [15] studied the parametric singular problem

⎧
⎨

⎩

−Δpu = β(x)u−γ + λf (x, u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

(10)

where γ > 0, f (x, s) is (p − 1)-superlinear with respect to s near ∞
and β(·) is a nontrivial nonnegative measurable function. In [15], f is allowed
to change sign (this fact extends previous similar results) and it is bounded from
below by integrable functions on bounded intervals of the variable s. Moreover, γ

does not necessarily lie in (0, 1) and this is a source of certain difficulties. For this
reason, in [15] it is also assumed that

(H) there exist q > N and ϕ0 ∈ C1
0(Ω) s.t. ϕ0 > 0 on Ω, βϕ

−γ
0 ∈

Lq(Ω).

Under certain hypotheses on f it is shown that (10) has two positive weak
solutions for small λ > 0. The approach is variational and it is based on the upper-
lower solution method and on classical critical point theory, namely, Mountain Pass
theorem, applied on certain truncations of the corresponding energy functional.

Giacomoni et al. [9] focused their attention on the singular boundary value
problem (0 < γ < 1)

⎧
⎨

⎩

−Δpu = λu−γ + ur−1, in Ω,

u > 0, in Ω

u = 0, on ∂Ω,

(11)

where p < r ≤ p∗ and p∗ is the critical Sobolev exponent.
In [9], the authors employed variational methods to prove a bifurcation-type

result for the positive solutions of (11). In particular, they produced two positive
smooth solutions of (11) for λ > 0 small. For this purpose, first they established
two new results of separate interest: a strong comparison principle for singular
problems and a regularity result for solutions to problem (11).
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The literature is not so rich when searching for three or more solutions. As far as
we know the only contribution in this direction is the paper by Zhao et al. [22], where
the existence of three weak solutions is proved via an application of an abstract
“three critical points” theorem.

In [22], the authors dealt with the problem

⎧
⎨

⎩

−Δpu = λβ(x)u−γ + λf (x, u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

(12)

where Ω ⊂ R
N , p > N , Δp is the p-Laplacian operator, γ > 0, f :

Ω × [0,+∞[→ R is a Carathéodory function, β is a nonnegative function with a
suitable summability (see assumption (H) above). The main theorem in [22] reads
as follows:

Theorem 1.6 ([22, Theorem 2.6]) Let γ > 0, f : Ω × [0,+∞[→ R be a
Carathéodory function and a : Ω → R a non-negative function satisfying the
following assumptions:

(i) there exists ū ∈ C1
0(Ω)+ and q > N such that βū−γ ∈ Lq(Ω);

(ii) there exist δ, c1 > 0 such that f (x, t) ≥ c1β(x) for all t ∈ [0, δ], a.e. x ∈ Ω;

(iii) lim
t→+∞

f (x, t)

|t |p−1 = 0;

(iv) there exists an open ball BN = BN(x0, R0) ⊂ Ω such that

∫

BN

∫ u1

c(RN
0 ωN)

1/p
[β(x)t−γ + f (x, t)]dtdx >

∫

Ω

∫ c(RN
0 ωN)

1/p

u2

[β(x)t−γ + f (x, t)]dtdx,

for suitable constant c > 0 and functions u1, u2, where ωN is the volume of
the ball BN(0, 1).

Then, there exist an open interval Σ ⊂]0,+∞[ and a constant ρ > 0 such that
for every λ ∈ Σ , the problem (12) has at least three distinct positive solutions in
W

1,p
0 (Ω) with their norms less than ρ.

The proof of the above result relies on an application of an abstract three critical
points theorem by Ricceri. It is crucial in this sense that p > N so that the
compactness of the embedding of W 1,p

0 (Ω) in C(Ω) can be exploited. On the other
hand, the parameter γ can be any positive number.

For an overview on singular elliptic problems we refer to [7] where existence
and uniqueness properties, but also qualitative properties, including bifurcation,
asymptotic analysis, blow-up of solutions are discussed.

The purpose of the present contribution is to give some new multiplicity results
for singular problems of the type (2). In Sect. 3 we will present first some results
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from [5] and [3] on the existence of three weak solutions under a sublinear at infinity
behaviour of the nonlinear term f . The existence of k solutions or even infinitely
many solutions will be discussed in Sect. 4 on the basis of the recent contribution [4].

2 Preliminaries

In this section, for the convenience of the reader, we briefly recall some of the
definitions and of the mathematical tools that we will use in this work.

Throughout the sequel Ω is a bounded domain in R
N (N > 2) with smooth

boundary ∂Ω , 0 < γ < 1, f : [0,+∞[→ R is a continuous function, such that
f (0) = 0. Without loss of generality we may assume that f (t) = 0 for every t < 0.
We assume that f exhibits a subcritical behaviour, i.e. there exist constants c > 0
and q < 2∗ (being 2∗ the Sobolev critical exponent) such that

f (t) ≤ c(1 + tq−1), for all t ≥ 0.

Denote by F : R → R the primitive of f , i.e. F(t) = ∫ t

0 f (s)ds.
Let us recall that, for λ > 0, a weak solution of

⎧
⎨

⎩

−Δu = λu−γ + f (u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

(Pλ)

is a function u ∈ W
1,2
0 (Ω) such that u > 0 almost everywhere in Ω and

u−γ ϕ ∈ L1(Ω),

∫

Ω

∇u∇ϕ dx =
∫

Ω

(λu−γ + f (u))ϕ dx

for all ϕ ∈ W
1,2
0 (Ω).

We can associate to problem (Pλ) the following energy functional

E (u) = 1

2

∫

Ω

|∇u(x)|2dx − λ

1 − γ

∫

Ω

u(x)1−γ dx −
∫

Ω

∫ u(x)

0
f (t)dt dx

which is well defined on the Sobolev space W
1,2
0 (Ω). Although not continuously

Gâteaux differentiable, E is continuous and under suitable assumptions on f it has
a global minimum. It is worth noticing (see Proposition 3.1) that local minima of E
are weak solutions of (Pλ) in the sense given above.

It is well known that in the ordered Banach space C1
0(Ω) the positive cone

C+ = {u ∈ C1
0(Ω) : u(x) ≥ 0 ∀ x ∈ Ω}



314 F. Faraci and G. Smyrlis

has a non empty interior given by

intC+ = {u ∈ C+ : u(x) > 0 ∀ x ∈ Ω,
∂u

∂n
(x) < 0 ∀ x ∈ ∂Ω}

(n being the outward unit normal to ∂Ω). Moreover, on the Sobolev space W 1,2
0 (Ω),

we consider the norm

‖u‖ =
(∫

Ω

|∇u(x)|2dx
)1/2

.

Denote by λ1 the first eigenvalue of the Laplace operator (−Δ,W
1,2
0 (Ω)) and by

ϕ1 ∈ intC+ the first positive normalized eigenfunction.
We recall that the problem

⎧
⎨

⎩

−Δu = λu−γ , in Ω

u > 0, in Ω

u = 0, on ∂Ω

admits a unique classical solution, i.e. a function uλ ∈ C2(Ω) ∩ C(Ω) for any
positive γ . Actually, there exists ελ > 0 with uλ ≥ ελϕ1 in Ω (see [8, Lemma A.4])
and uλ ∈ intC+ (see [8, Lemmas A.6, A.7, B.1]).

But if γ > 1, uλ /∈ C1(Ω) and uλ ∈ W
1,2
0 (Ω) if and only if γ < 3. Thus, for

singular problem a classical solution might not be a weak solution.
As usual, for u ∈ W

1,2
0 (Ω), u+ = max{u, 0} and u− = max{−u, 0} belong to

W
1,2
0 (Ω).
Let X be a Banach space, X∗ be its dual and F ∈ C1(X). We say that F satisfies

the Palais-Smale condition, if the following is true: “Every sequence {un}n≥1 ⊆ X

such that

{F (un)}n≥1 is bounded and F ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

3 Three Solutions

As far as we know the only contributions concerning the existence of three solutions
for singular problem is the paper by Zhao et al. [22], where the application of an
abstract “three critical points” theorem provides, under technical assumptions, the
existence of multiple solutions to a double parameter problem.
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Our contribution, in such framework, provides three solutions under more natural
assumptions, namely the superlinearity of f at zero and its sublinearity at infinity.
Also, our result holds in the higher dimensional case.

The proof is based on a very careful application of an abstract result of Ricceri
[17] ensuring the existence of two local minimizers which turn out to be weak
solutions of the problem according to the very general definition given here. The
existence of the third solution is obtained by applying the well known Mountain
Pass Theorem of Pucci and Serrin [16] to an appropriate truncation of the energy
functional.

For the double eigenvalue problem

⎧
⎨

⎩

−Δu = λu−γ + μf (u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

(Pλ,μ)

we prove the following:

Theorem 3.1 ([5, Theorem 1.2]) Let γ ∈]0, 1[ and f : [0,+∞[→ R be a
continuous function with f (0) = 0 and f (t) > 0 for all t > 0. Suppose that
there exist c > 0 and 1 < q < 2∗ such that

f (t) ≤ c(1 + tq−1), for all t ≥ 0. (13)

Let also assume the following conditions:

(H1) lim
t→0+

F(t)

t2
= 0;

(H2) lim
t→+∞

F(t)

t2
= 0.

Set

μ∗ = 1

2
inf

{∫
Ω
|∇u(x)|2 dx

∫
Ω
F(u(x)) dx

:
∫

Ω

F(u(x)) dx > 0

}

.

Then, for each compact interval [a, b] ⊂]μ∗,+∞[, there exists r > 0 with the
following property: for every μ ∈ [a, b], there exists λ∗ > 0 such that for each
λ ∈ [0, λ∗], the problem (Pλ,μ) has at least three weak solutions belonging to
int (C1

0(Ω)+) whose norms are less than r .

The proof of the above results relies on the following abstract result by Ricceri:

Theorem A ([17, Theorem 4]) Let (X, τ) be a Hausdorff topological space, and
P,Q : X → R two sequentially lower semicontinuous functions. Assume that there
is σ > infX P such that the set P−1(] −∞, σ [) is compact and first countable.
Moreover, assume that there is a strict local minimum of P , say x0 such that
infX P < P(x0) < σ . Then, there exists δ > 0 such that for each μ ∈ [0, δ],
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the function P +μQ has at least two τP local minimizers lying in P−1(] −∞, σ [),
where τP denotes the smallest topology on X which contains both τ and the family
of sets {P−1(] −∞, ρ[)}ρ∈R.

Denote by Φ, J,Ψ : W 1,2
0 (Ω) → R the functionals defined by

Φ(u) = 1

2
‖u‖2, Ψ (u) = 1

1 − γ

∫

Ω

u
1−γ
+ dx, J (u) =

∫

Ω

F(u)dx.

Define also the energy functional associated to the problem (Pλ,μ), i.e. the
functional E : W 1,2

0 (Ω) → R given by

E (u) = Φ(u)− λΨ (u)− μJ(u).

Proposition 3.1 ([5, Propositions 2.1, 2.2]) Assume (13) and let λ,μ > 0. If u is
a local minimum of E , then it is a weak solution of problem (Pλ,μ). Every weak
solution of problem (Pλ,μ) belongs to C1,β(Ω) ∩ intC+, for some β ∈ (0, 1).

Proof Let ρ > 0 such that E (u) ≤ E (v) for every v ∈ Bρ(u). We claim that u > 0
a.e. in Ω .

For t ∈]0, 1[ small enough, one has u + tu− ∈ Bρ(u) and (u + tu−)+ = u+.
So,

0 ≤ E (u+ tu−)− E (u)

t

= 1

2

(‖u+ tu−‖2 − ‖u‖2

t

)
− μ

∫

Ω

F(u+ tu−)− F(u)

t

− λ

1 − γ

∫

Ω

(u+ tu−)1−γ+ − u
1−γ
+

t

= 1

2

(‖u+ tu−‖2 − ‖u‖2

t

)
→

∫

Ω

∇u∇u− = −‖u−‖2, as t → 0+.

(Recall that f (z) = 0, for all z ≤ 0).
From the above computation, it follows that u− = 0, so u ≥ 0 a.e. in Ω .
Assume that there exists a set of positive measure A such that u = 0 in A. Let

ϕ : Ω → R be a function in W
1,2
0 (Ω), positive in Ω . For t > 0 small enough, the

function u+ tϕ ∈ Bρ(u) and (u+ tϕ)1−γ > u1−γ a.e. in Ω , so

0 ≤ E (u+ tϕ)− E (u)

t

= 1

2

(‖u+ tϕ‖2 − ‖u‖2

t

)
− μ

∫

Ω

F(u+ tϕ)− F(u)

t
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− λ

(1 − γ )tγ

∫

A

ϕ1−γ − λ

1 − γ

∫

Ω\A
(u+ tϕ)1−γ − u1−γ

t

<
1

2

(‖u+ tϕ‖2 − ‖u‖2

t

)
− μ

∫

Ω

F(u+ tϕ)− F(u)

t

− λ

(1 − γ )tγ

∫

A

ϕ1−γ → −∞ as t → 0+.

The contradiction ensures that u > 0. Let us prove now that

u−γ ϕ ∈ L1(Ω) for all ϕ ∈ W
1,2
0 (Ω) (14)

and
∫

Ω

∇u∇ϕ−μ
∫

Ω

f (u)ϕ−λ
∫

Ω

u−γ ϕ ≥ 0 for all ϕ ∈ W
1,2
0 (Ω), ϕ ≥ 0. (15)

Choose ϕ ∈ W
1,2
0 (Ω), ϕ ≥ 0. Fix a decreasing sequence {tn} ⊆]0, 1] with

limn tn = 0. The functions

hn(x) = (u(x)+ tnϕ(x))
1−γ − u(x)1−γ

tn

are measurable, non-negative and limn hn(x) = (1 − γ )u(x)−γ ϕ(x) for a.e. x ∈ Ω .
From Fatou’s lemma, we deduce

∫

Ω

u−γ ϕ ≤ 1

1 − γ
lim inf

n

∫

Ω

hn. (16)

As above,

0 ≤ E (u+ tnϕ)− E (u)

tn

= 1

2

‖u+ tnϕ‖2 − ‖u‖2

tn
− μ

∫

Ω

F(u+ tnϕ)− F(u)

tn
− λ

1 − γ

∫

Ω

hn

so, from (16) passing to the liminf in the above inequality we deduce at once
condition (14) (it is enough to prove the integrability for a nonnegative test function)
and

λ

∫

Ω

u−γ ϕ ≤
∫

Ω

∇u∇ϕ − μ

∫

Ω

f (u)ϕ,

which is claim (15).
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Let ε ∈]0, 1[ such that (1 + t)u ∈ Bρ for all t ∈ [−ε, ε]. The function ξ̃ (t) =
E ((1 + t)u) has a local minimum at zero and

0 = ξ̃ ′(0) = lim
t→0

E ((1 + t)u)− E (u)

t

=
∫

Ω

|∇u|2 − λ

∫

Ω

u1−γ − μ

∫

Ω

f (u)u.

So,

∫

Ω

|∇u|2 = λ

∫

Ω

u1−γ + μ

∫

Ω

f (u)u. (17)

Let ϕ ∈ W
1,2
0 (Ω) and plug into (15) the test function v = (u + εϕ)+. Hence, by

using (17) we have

0 ≤
∫

{u+εϕ≥0}
∇u∇(u+ εϕ)− λ

∫

{u+εϕ≥0}
u−γ (u+ εϕ)

−μ
∫

{u+εϕ≥0}
f (u)(u+ εϕ)

=
∫

Ω

|∇u|2 + ε

∫

Ω

∇u∇ϕ − λ

∫

Ω

u1−γ − ελ

∫

Ω

u−γ ϕ

−μ
∫

Ω

f (u)u− εμ

∫

Ω

f (u)ϕ

−
∫

{u+εϕ<0}
|∇u|2 − ε

∫

{u+εϕ<0}
∇u∇ϕ + λ

∫

{u+εϕ<0}
u−γ (u+ εϕ)

+μ
∫

{u+εϕ<0}
f (u)(u+ εϕ)

≤ ε

[∫

Ω

∇u∇ϕ − λ

∫

Ω

u−γ ϕ − μ

∫

Ω

f (u)ϕ

]

−ε
∫

{u+εϕ<0}
∇u∇ϕ.

Notice that as ε → 0, the measure of the set {u+ εϕ < 0} → 0, so

∫

{u+εϕ<0}
∇u∇ϕ → 0.

Hence, dividing by ε, and passing to the limit as ε → 0, we get that
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∫

Ω

∇u∇ϕ − λ

∫

Ω

u−γ ϕ − μ

∫

Ω

f (u)ϕ ≥ 0.

From the arbitrariness of ϕ, we get at once that u is a weak solution of (Pλ,μ).
The regularity of u and the fact that u ∈ intC+ follow easily from Theorem B.1

of [8] and from the Strong Maximum Principle respectively. ��
For λ > 0, let uλ be the unique global minimizer of the functional

u → 1

2
‖u‖2 − λ

1 − γ

∫

Ω

u
1−γ
+ dx.

Proposition 3.2 ([5, Proposition 2.3]) Assume (13) and let λ,μ > 0. Define g :
Ω × R → [0,+∞) and Ψ̃ , F : W 1,2

0 (Ω) → R by

g(x, t) =
⎧
⎨

⎩

t−γ , if x ∈ Ω and t ≥ uλ(x)

uλ(x)
−γ , if x ∈ Ω and t ≤ uλ(x),

Ψ̃ (u) =
∫

Ω

∫ u+(x)

0
g(x, t)dtdx,

and

F (u) = 1

2
‖u‖2 − λΨ̃ (u)− μJ(u)

respectively. Then, F ∈ C1(W
1,2
0 (Ω)) and the following hold:

(a) if u0 is a critical point of F , then u0 ≥ uλ a.e. in Ω;
(b) if u0 is a critical point of F , then it is a weak solution of (Pλ,μ);
(c) if u0 ∈ intC+ is a local minimizer of F in the C1

0(Ω)-topology, then u0 is also

a local minimizer of F in the W
1,2
0 (Ω)-topology.

Proof The fact that F ∈ C1(W
1,2
0 (Ω)) follows from the proof of Lemma A.3 of

[8] and its derivative at u is given by

〈F ′(u), ϕ〉 =
∫

Ω

∇u∇ϕ − μ

∫

Ω

f (x, u)ϕ − λ

∫

Ω

g(x, u)ϕ

for every ϕ ∈ W
1,2
0 (Ω).

(a) Let u0 be a critical point of F . Choosing (u0 − uλ)− as test function, one has

−
∫

{u0<uλ}
∇u0 · (∇u0 − ∇uλ)+

∫

{u0<uλ}
[μf (x, u0)+ λu

−γ
λ ](u0 − uλ) = 0.
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Bearing in mind that uλ is a global minimum of u → 1

2
‖u‖2 − λ

1 − γ

∫

Ω

u
1−γ
+ ,

we also obtain that

−
∫

{u0<uλ}
∇uλ · (∇u0 −∇uλ)+

∫

{u0<uλ}
λu

−γ
λ (u0 − uλ) = 0.

Hence, subtracting the two equalities,

∫

{u0<uλ}
(∇u0 −∇uλ) · (∇u0 − ∇uλ) =

∫

{u0<uλ}
μf (x, u0)(u0 − uλ) ≤ 0.

Thus, u0 ≥ uλ almost everywhere in Ω .
(b) It follows from (a).
(c) Assume that u0 ∈ intC+ is a local minimizer of F in the C1

0(Ω)-topology.
Then, for ϕ ∈ C1

0(Ω) and t small, one has

0 ≤ lim
t→0

F (u0 + tϕ)−F (u0)

t

=
∫

Ω

∇u0∇ϕ − μ

∫

Ω

f (x, u0)ϕ − λ

∫

Ω

g(x, u0)ϕ.

Rewriting the above inequality replacing ϕ with −ϕ we obtain

∫

Ω

∇u0∇ϕ − μ

∫

Ω

f (x, u0)ϕ − λ

∫

Ω

g(x, u0)ϕ = 0.

By density, u0 is a critical point of F in W
1,2
0 (Ω). Thus u0 ≥ uλ (see (a)).

Suppose on the contrary that u0 is not a local minimizer of F in the
W

1,2
0 (Ω)-topology.
Choose r ∈ (q, 2∗) and consider the closed convex sets

Sn = {u ∈ W
1,2
0 (Ω) : 1

r
||u− u0||rr ≤

1

n
}, n ≥ 1

(here || · ||r stands for the Lr(Ω)-norm). Since F is sequentially weakly lower
semi-continuous and coercive on Sn, we may find vn, n ≥ 1, such that

vn ∈ Sn, F (vn) = min
u∈Sn

F (u), F (vn) < F (u0), n ≥ 1. (18)

Claim vn ≥ uλ, for all n ≥ 1.
Arguing indirectly, suppose that for some n ≥ 1, we have (uλ − vn)+ �≡ 0. Set

wt = vn + t (uλ − vn)+, ξ(t) = F (wt ), t ∈ [0, 1].
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Then on {uλ > vn}, we have

wt − uλ = (1 − t)(vn − uλ) < 0, for all t ∈]0, 1[.

Therefore, for t ∈]0, 1[,

ξ ′(t) = 〈F ′(wt ), (uλ − vn)+〉

=
∫

{uλ>vn}
∇wt · (∇uλ −∇vn)− λ

∫

{uλ>vn}
f (x,wt )(uλ − vn)

− λ

∫

{uλ>vn}
g(x,wt )(uλ − vn) ≤

≤
∫

{uλ>vn}
∇wt · (∇uλ −∇vn)− λ

∫

{uλ>vn}
u
−γ
λ (uλ − vn)

= −
∫

{uλ>vn}
(∇wt − ∇uλ) · (∇vn −∇uλ) (due to the choice of uλ),

so,

(1 − t)ξ ′(t) ≤ −
∫

{uλ>vn}
(∇wt − ∇uλ) · (∇wt − ∇uλ)

< 0 (by the strong monotonicity of the Laplacian operator).

Consequently, ξ is strictly decreasing on [0, 1]. In particular, we have

ξ(1) < ξ(0) ⇒ F (w1) < F (vn).

But since u0 ≥ uλ, we may check that |w1 − u0| ≤ |vn − u0|. Thus, w1 ∈ Sn,

which contradicts the fact that vn is a global minimizer of F on Sn and finishes the
proof of the claim.

Then the Lagrange multiplier rule gives rise to a sequence kn, n ≥ 1 such that

F ′(vn) = knE
′(vn), n ≥ 1,

where E(u) = ||u− u0||rr/r , u ∈ W
1,2
0 (Ω).

Now the above claim combined with the definition of g yields that for all n ≥ 1,
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⎧
⎨

⎩

−Δvn(x) = λf (x, vn(x))+ λvn(x)
−γ + kn|vn(x)− u0(x)|r−2( vn(x)− u0(x) ),

a.e. in Ω,

vn |∂Ω= 0.

We also remark that kn ≤ 0, n ≥ 1. Indeed, for each n ≥ 1, the function

ζn(t) = F ((1 − t)vn + tu0), t ∈ [0, 1]

attains its minimum at t0 = 0 so, ζ ′n(0) ≥ 0 ⇒ 〈F ′(vn), u0 − vn〉 ≥ 0, which
implies kn||vn − u0||rr ≤ 0 and thus, kn ≤ 0.

Then we proceed as in the proof of Theorem 1.1 of [8, p. 701], to reach a
contradiction. ��
Proof of Theorem 3.1 We are going to apply Theorem A with X = W

1,2
0 (Ω) and τ

the weak topology on W
1,2
0 (Ω). Let us prove that

lim
u→0

J (u)

Φ(u)
= 0. (19)

Fix ε > 0. Hypothesis (H1) together with the subcritical growth of f imply that
for some constant cε > 0 and θ ∈]max{2, q}, 2∗[,

0 ≤ F(t) ≤ ε

2
|t |2 + cε|t |θ , for all t ∈ R.

It follows that for some c′ε > 0,

0 ≤ J (u)

Φ(u)
≤ ε

λ1
+ c′ε ||u||θ−2, for all u ∈ W

1,2
0 (Ω) \ {0}.

Then

lim sup
u→0

J (u)

Φ(u)
≤ ε

and since ε > 0 is arbitrary, (19) follows.
From (H2), we easily deduce that

lim‖u‖→+∞
J (u)

Φ(u)
= 0. (20)

Set, for all μ > 0,

Pμ = Φ − μJ.

The functional Pμ is sequentially weakly lower semicontinuous and coercive
(see (20)), whereas 0 turns out to be a (strong) strict local minimizer of Pμ (see (19)).
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From [18, Theorem C] we get that 0 is a local minimizer of Pμ in the weak topology.
Moreover, by the definition of μ∗ (see the statement of Theorem 3.1), we obtain that
for every μ > μ∗, 0 is not a global minimizer of Pμ. In fact, infX Pμ < Pμ(0) = 0.

We point out that μ∗ > 0. Indeed, there exists a constant c > 0 such that

F(t) ≤ c|t |2 for all t ∈ R.

Thus,

∫

Ω

F(u(x)) dx ≤ c‖u‖2
2 ≤ c′‖u‖2,

where c′ > 0 involves also the Sobolev embedding constant. This implies that
μ∗> 0.

To proceed, fix [a, b] ⊂]μ∗,+∞[ and choose σ > 0.

From the coercivity of Pμ it clearly follows that the sets P−1
μ (] −∞, σ [)w are

compact and metrizable (thus, first countable) with respect to the weak topology.
(Recall that the weak closure of a bounded subset of a separable reflexive Banach
space is compact and metrizable with respect to the weak topology.) Notice that

⋃

μ∈[a,b]
{u ∈ X : Pμ(u) < σ } ⊆ {u ∈ X : Φ(u)− bJ (u) < σ } ⊆ Bη,

for some positive radius η (this follows from the fact that J (u) ≥ 0 for every u ∈
W

1,2
0 (Ω) and the coercivity of Φ−bJ ). Put also c∗ = supBη

(Φ−aJ ) and let r > η

such that

⋃

μ∈[a,b]
{u ∈ X : Pμ(u) ≤ c∗ + 2} ⊆ Br. (21)

Next, choose μ ∈ [a, b]. Note that Ψ is sequentially weakly continuous but not
differentiable in X since 0 < γ < 1.

In order to obtain the uniform estimate of the norm of our solutions we need to
introduce a function α ∈ C1(R), bounded, such that α(t) = t for every t such that
|t | ≤ supB2r

Ψ . Therefore,

(α ◦ Ψ )(u) = Ψ (u) for every u ∈ B2r . (22)

Now Theorem A guarantees the existence of some δ = δ(μ) > 0 such that for every
λ ∈ [0, δ], Pμ − λ(α ◦Ψ ) has two local minimizers in the τPμ topology, say u1, u2,
such that

u1, u2 ∈ P−1
μ (] −∞, σ [) ⊆ Bη ⊆ Br . (23)
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Since Pμ is continuous, the topology τPμ is weaker than the strong topology and
u1, u2 turn out to be local minimizers of the functional

Eα : X → R, Eα(u) = 1

2
‖u‖2 − λ(α ◦ Ψ )(u)− μJ(u).

Notice that if ‖u− ui‖ < r , then, ‖u‖ < ‖ui‖ + r < 2r for i = 1, 2. Therefore,
since from (22), Eα = E in B2r , u1, u2 turn out to be local minimizers of E .

Put λ∗ = λ∗(μ) = min{δ, (supR α)
−1} and fix λ ∈ [0, λ∗].

From Proposition 3.1, u1 and u2 are weak solutions of (Pλ,μ) belonging to
intC+ ∩ C1,β(Ω) for some β ∈]0, 1[.

The existence of a third solution is obtained via regularization methods.
For λ ∈ [0, λ∗], let g, Ψ̃ ,F as in Proposition 3.2 and let

Fα : W 1,2
0 (Ω) → R, Fα(u) = 1

2
‖u‖2 − λ(α ◦ Ψ̃ )(u)− μJ(u).

It is clear that since g(x, t) ≤ t−γ for every t > 0, if ‖u‖ ≤ 2r , one has

Ψ̃ (u) ≤ Ψ (u) ≤ sup
B2r

Ψ,

and (α ◦ Ψ̃ )(u) = Ψ̃ (u), so that Fα coincides with F in B2r .
From the strong comparison principle for singular problems (Theorem 2.3 of

[9]), we deduce that u1 − uλ ∈ intC+ and u2 − uλ ∈ intC+. (Recall that f (t) > 0,
for t > 0.)

Moreover, u1 is a C1
0(Ω)-local minimizer of E and since u1 − uλ ∈ intC+ and

intC+ is open in the C1
0(Ω)-topology, there exists a neighborhood V of u1 in this

topology such that V ⊆ uλ + intC+ and E (u) ≥ E (u1) for all u ∈ V .
Notice that for every u ∈ uλ + intC+, we have that

E (u) = 1

2
‖u‖2 − λ

∫

Ω

∫ uλ(x)

0
t−γ dtdx − λ

∫

Ω

∫ u(x)

uλ(x)

t−γ dtdx −

λ

∫

Ω

∫ uλ(x)

0
uλ(x)

−γ dtdx + λ

∫

Ω

∫ uλ(x)

0
uλ(x)

−γ dtdx − μJ(u) =

F (u)− λ

∫

Ω

∫ uλ(x)

0
t−γ dtdx + λ

∫

Ω

∫ uλ(x)

0
uλ(x)

−γ dtdx =
F (u)+ const.

By virtue of the above equality we obtain that u1 is a C1
0(Ω)-local minimizer of F .

But then Proposition 3.2 implies that u1 is also a W 1,2
0 (Ω)-local minimizer of F .

Similarly, u2 turns out to be a W 1,2
0 (Ω)-local minimizer of F . Moreover, since for

every ‖u‖ < 2r one has F (u) = Fα(u), u1 and u2 are actually W
1,2
0 (Ω)-local

minimizers of Fα .
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The functional Fα is of class C1 in W
1,2
0 (Ω). Indeed, since uλ ≥ ελϕ1, the

functional Ψ̃ is of class C1 in W
1,2
0 (Ω). Therefore, α ◦ Ψ̃ ∈ C1(W

1,2
0 (Ω)) and the

same is true for Fα . Also, since Fα is coercive, it verifies in a standard way the
well known Palais-Smale condition.

By Theorem 1 of [16] there exists a critical point for Fα , say u3 such that

Fα(u3) = inf
γ∈S sup

t∈[0,1]
Fα(γ (t)),

where

S = {γ ∈ C0([0, 1],W 1,2
0 (Ω)) : γ (0) = u1, γ (1) = u2}.

In particular, if γ̃ (t) = tu1 + (1 − t)u2, t ∈ [0, 1], then γ̃ ∈ S and

γ̃ (t) ∈ Bη, for all t ∈ [0, 1].

(Recall that u1, u2 ∈ Bη (see (23)).)
So, by the definition of c∗ and λ∗, one has

Fα(u3) ≤ sup
t∈[0,1]

Fα(γ̃ (t))

≤ sup
u∈Bη

[Φ(u)− aJ (u)] + μ∗ sup
u∈Bη

(α ◦ Ψ̃ )(u)

≤ c∗ + 1.

Therefore,

Pμ(u3) = Φ(u3)− μJ(u3) ≤ c∗ + 1 + λ(α ◦ Ψ̃ )(u3) ≤ c∗ + 2,

and from (21)

u3 ∈ Br.

It is clear that u3 is a critical point of F and from Proposition 3.2, u3 ≥ uλ. Thus,
from Propositions 3.1 and 3.2, u3 ∈ intC+ is a positive solution of problem (Pλ,μ)

and the proof is concluded. ��
The above result has been extended in [3] with the aid of nonsmooth critical point

theory to any exponent γ provided that the nonlinearity is multiplied by a suitable
positive function a (see also assumption i) in Theorem 1.6).

Theorem 3.2 ([3, Theorem 1.1]) Let γ > 0, f : [0,+∞[→ R be a continuous
function with f (0) = 0 and f (t) > 0 for all t > 0 and a : Ω → R be a positive
measurable function. Suppose that there exist c > 0 and 1 < q < 2∗ such that
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f (t) ≤ c(1 + tq−1), for all t ≥ 0.

Let also assume conditions (H1), (H2) and

(H̃ ) there exists ū ∈ C1
0(Ω) such that ū > 0 on Ω and aū−γ ∈ L(2∗)′(Ω).

Set

μ∗ = 1

2
inf

{∫
Ω
|∇u(x)|2 dx

∫
Ω
F(u(x)) dx

:
∫

Ω

F(u(x)) dx > 0

}

.

Then, for each μ > μ∗ there exists λ∗ > 0 such that for each λ ∈ [0, λ∗], the
problem

⎧
⎨

⎩

−Δu = λa(x)u−γ + μf (u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

has at least three weak solutions.

In the proof of the above result we combine the abstract multiplicity result by Ricceri
with techniques from non smooth analysis. To the best of our knowledge, this is the
first contribution establishing three solutions in the higher dimensional case and for
any γ > 0. It is to be mentioned that in such framework we can not expect to
have solutions in C1(Ω). Also, the arbitrariness of γ does not allow us to prove the
uniform (with respect to λ) boundedness of the solutions.

4 Multiple Solutions

The existence of k solutions, with k > 3, as far as we know, has never been studied
in the literature. Because of the presence for singular boundary value problems of
the singular term, higher multiplicity results are not expected (when the perturbation
f is zero, problem (Pλ) has a unique solution for every λ). We follow the approach
of [12] where the existence of an arbitrarily big number of solutions is proved for
a nonsingular perturbed semilinear elliptic problem involving oscillatory term. We
propose here a multiplicity result under a suitable oscillatory behaviour of f at zero.
Since the singularity blows up as u → 0, we need to control it by reducing the range
of the parameter λ. Also,we prove the existence of infinitely many solutions when
the nonlinearity f exhibits an oscillatory behaviour at infinity. Such stronger result
is motivated by the fact that the singularity plays a “minor” role as it tends to zero
as u → ∞ (see [4]).

Theorem 4.1 ([4, Theorem 1.5]) Let γ ∈]0, 1[ and f : [0,+∞[→ R be a
continuous function. Assume the following conditions:
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(H3) there exists a sequence {tn} ⊂ R
+ such that tn → 0+ and f (tn) < 0 for every

n ∈ N;

(H4) −∞ < lim inf
t→0+

F(t)

t2
≤ lim sup

t→0+

F(t)

t2
= +∞.

Then, for each k ∈ N, there exists λ�k > 0 such that, for every 0 < λ < λ�k , problem
(Pλ) has at least k essentially bounded weak solutions.

The proof of the above theorem is based on the following preliminary result.

Lemma 4.1 ([4, Lemma 4.1]) Let f : [0,+∞[→ R be a continuous function. For
λ > 0 assume that there exist 0 < a < b such that

f (t)+ λt−γ ≤ 0 for every t ∈ [a, b].
Define hλ :]0,+∞[→ R by

hλ(t) =
{
f (t)+ λt−γ if 0 < t < a

f (a)+ λa−γ if t ≥ a

and set

Hλ(t) =
∫ t+

0
hλ(s)ds, t ∈ R.

Then, the functional Eλ : W 1,2
0 (Ω) → R defined by

Eλ(u) = 1

2
‖u‖2 −

∫

Ω

Hλ(u(x))dx

has a global minimizer uλ ∈ W
1,2
0 (Ω)

⋂
L∞(Ω) such that ‖uλ‖∞ ≤ a. Moreover,

uλ turns out to be a weak solution of problem (Pλ).

Proof Let F : [0,+∞[→ R, be the function F(s) = ∫ s+
0 f (t)dt . Since 0 < γ <

1, Hλ is well defined and continuous on R. In particular,

Hλ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ≤ 0

F(t)+ λ

1 − γ
t1−γ if 0 < t < a

Hλ(a)+ hλ(a)(t − a) if t ≥ a.

Moreover, Hλ(t+) = Hλ(t), for all t ∈ R and (Hλ)
′(t) = hλ(t), for all t > 0.

The functional Eλ is well defined on W
1,2
0 (Ω), sequentially weakly lower

semicontinuous and coercive. Thus, it has a global minimizer uλ.
We can assume that uλ ≤ a. Indeed, if

vλ =
{
uλ if 0 < uλ < a

a if uλ ≥ a,
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then vλ ∈ W
1,2
0 (Ω) and in view of hλ(a) ≤ 0 we have the following inequality

E (uλ) = 1

2

∫

Ω

|∇uλ|2 −
∫

{uλ≤a}
Hλ(u)−

∫

{uλ>a}
Hλ(a)

−hλ(a)
∫

{uλ>a}
(uλ − a) ≥ E (vλ).

The proof that uλ is a weak solution of problem (Pλ) follows as in Proposi-
tion 3.1. ��
Remark 4.1 If λ = 0, h can be defined in zero and the above conclusion holds with
u non negative weak solution of (P0).

Proof of Theorem 4.1 The proof of this result closely follows the idea of Theo-
rem 1.2 of [12]. For completeness we give the details.

From (H4) there exist M0 < 0 and δ > 0 such that

F(t)

t2
> M0, for every 0 < t < δ.

Fix x0 ∈ Ω and 0 < r < R such that B(x0, R) ⊂ Ω . Choose M1 > 0 large
enough such that

1

2
ωN

(RN − rN)

(R − r)2
−M1ωNr

N −M0ωN(R
N − rN) < 0,

where ωN is the volume of the unit ball in R
N .

Hypothesis (H4) also enables us to choose a sequence of positive numbers {ξn}
such that

ξn → 0+, F (ξn)

ξ2
n

> M1, for every n ∈ N.

By virtue of hypothesis (H3) and by continuity, we can construct three sequences
of positive numbers {an}, {bn} and {λn} such that an → 0+, bn → 0+, λn ↓ 0+,
an < bn < an−1, ξn ≤ an < δ for all n and

f (t)+ λt−γ ≤ 0 for every t ∈ [an, bn], λ ∈ [0, λn], n ∈ N.

In particular, we deduce that

f (t) ≤ 0 for every t ∈ [an, bn], n ∈ N.
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For every n ∈ N and for each λ ∈ [0, λn], define hn,λ :]0,+∞[→ R by

hn,λ(t) =
{
f (t)+ λt−γ if 0 < t < an

f (an)+ λa
−γ
n if t ≥ an

and

Hn,λ(t) =
∫ t+

0
hn,λ(s)ds, t ∈ R.

Denote by En,λ : W 1,2
0 (Ω) → R the functionals defined by

En,λ(u) = 1

2
‖u‖2 −

∫

Ω

Hn,λ(u(x))dx

and notice that, if ‖u‖∞ ≤ an,

En,λ(u) = En,0(u)− λ

1 − γ

∫

Ω

u1−γ .

From Lemma 4.1 we deduce that for each n ∈ N and for each λ ∈ [0, λn], there
exists a global minimizer of En,λ, denoted by un,λ, such that ‖un,λ‖∞ ≤ an, which
is also a weak solution of (Pλ). Notice that since an+1 < an, we have that for
λ < λn+1, En,λ(un,λ) ≤ En,λ(un+1,λ) = En+1,λ(un+1,λ).

Applying again Lemma 4.1 for λ = 0 and Remark 4.1, we deduce also the
existence of a sequence {un,0} of non negative weak solutions of the following
problem

{−Δu = f (u), in Ω

u = 0, in ∂Ω
(P0)

such that for each n ∈ N, un,0 is a global minimizer of the functional En,0 with
‖un,0‖∞ ≤ an.

We prove now that up to a subsequence, {un,0} has pairwise distinct terms.
Define on Ω the continuous functions wn, n ∈ N by

wn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ξn if x ∈ B(x0, r)

ξn
R − |x − x0|

R − r
if x ∈ B(x0, R) \ B(x0, r)

0 if x ∈ Ω \ B(x0, R).
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Then, wn ∈ W
1,2
0 (Ω), 0 ≤ wn ≤ ξn ≤ an < δ and ‖wn‖2 = ωN

(RN−rN )
(R−r)2 ξ2

n . Thus,

En,0(wn) = 1

2
ωN

(RN − rN)

(R − r)2
ξ2
n −

∫

Ω

F(wn)

= 1

2
ωN

(RN − rN)

(R − r)2
ξ2
n −

∫

B(x0,r)

F (ξn)−
∫

B(x0,R)\B(x0,r)

F (wn)

≤
[

1

2
ωN

(RN − rN)

(R − r)2
−M1ωNr

N −M0ωN(R
N − rN)

]
ξ2
n < 0

by the above choice of M1. Thus, En,0(un,0) ≤ En,0(wn) < 0 for every n ∈ N.
Moreover, from the inequalities

0 > En,0(un,0) ≥ −an max[0,a1]
|f ||Ω|,

we deduce that

lim
n

En,0(un,0) = lim
n

En,0(wn) = 0.

From above we conclude that there exists a subsequence which we still denote by
{un,0} of pairwise distinct solutions of (P0).

Choose now, as in [12], an increasing sequence {θn} of negative numbers tending
to zero, such that

θn < En,0(un,0) < θn+1, n ∈ N.

We notice that

En,λ(un,λ) ≤ En,λ(un,0) < En,0(un,0) < θn+1,

and

En,λ(un,λ)=En,0(un,λ)− λ

1 − γ

∫

Ω

(un,λ)
1−γ ≥En,0(un,0)− λ

1 − γ
|Ω|a1−γ

n , n∈N.

For each n ∈ N and since En,0(un,0) > θn, we can choose

λ < min{λn, λ̃n}

where

λ̃n = (1 − γ )
En(un,0)− θn

a
1−γ
n |Ω|



Singular BVP’s 331

to get

θn < En,λ(un,λ) < θn+1. (24)

Fix k ∈ N and set λ�k = min{λ1, λ2, . . . λk, λ̃1, λ̃2, . . . λ̃k}. If 0 < λ ≤ λ�k ,
then the functions u1,λ, u2,λ, . . . , uk,λ are weak solutions of problem (Pλ). They
are distinct. Indeed, if ui,λ = uj,λ for some i < j , then Ei,λ(ui,λ) = Ei,λ(uj,λ) =
Ej,λ(uj,λ), against (24). The proof is concluded. ��
Example Define

f (t) =
⎧
⎨

⎩

√
t max{0, sin 1

t
} + t2 min{0, sin 1

t
} if t > 0

0 if t = 0.

In the next result we prove the existence of a sequence of solutions avoiding the
parameter (i.e. putting λ = 1) as the singular term itself gives a small contribution
at infinity. However we need to strengthen the sign condition on f .

For the problem

⎧
⎨

⎩

−Δu = u−γ + f (u), in Ω

u > 0, in Ω

u = 0, on ∂Ω

(P)

we prove

Theorem 4.2 ([4, Theorem 1.6]) Let γ ∈]0, 1[, f : [0,+∞[→ R be a continuous
function. Assume the following conditions:

(H5) there exist l < 0 and a sequence {tn} ⊂ R
+ such that tn → +∞ and

f (tn) ≤ l;

(H6) −∞ < lim inf
t→+∞

F(t)

t2
≤ lim sup

t→+∞
F(t)

t2
= +∞.

Then, there exists a sequence {un} of essentially bounded weak solutions of (P)

such that limn ‖un‖∞ = +∞.

Proof From (H6) there exist M0 < 0 and δ > 0 such that

F(t)

t2
> M0 for every t > δ.

Fix x0 ∈ Ω and 0 < r < R such that B(x0, R) ⊂ Ω , and choose M1 and a sequence
{ξn} ⊂ R

+ with ξn → +∞ such that

1

2
ωN

(RN − rN)

(R − r)2
−M1ωNr

N −M0ωN(R
N − rN) < 0
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and

F(ξn)

ξ2
n

> M1 for every n ∈ N.

Eventually passing to a subsequence we can suppose that δ < ξn ≤ tn for every
n ∈ N and

f (tn)+ t
−γ
n < 0 for every n ∈ N

(see hypothesis (H5)).
By continuity we can construct two sequences of positive numbers {an} and {bn}

such that an → +∞, bn → +∞, an < bn < an+1, ξn ≤ an and

f (t)+ t−γ ≤ 0 for every t ∈ [an, bn], n ∈ N.

For every n ∈ N define hn :]0,+∞[→ R by

hn(t) =
{
f (t)+ t−γ if 0 < t < an

f (an)+ a
−γ
n if t ≥ an

and

Hn(t) =
∫ t+

0
hn(s)ds.

Then, according to Lemma 4.1, the functional En : W 1,2
0 (Ω) → R defined by

En(u) = 1

2
‖u‖2 −

∫

Ω

Hn(u(x))dx

has a global minimizer un such that ‖un‖∞ ≤ an. Also, un turns out to be a weak
solution of (P).

Let us prove that limn En(un) = −∞. Observe that the sequence {En(un)} is
decreasing. Indeed, for every n ∈ N, since ‖un‖∞ ≤ an < an+1,

En+1(un+1) ≤ En+1(un) = En(un).

As before, define on Ω the continuous functions wn, n ∈ N by

wn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ξn if x ∈ B(x0, r)

ξn
R − |x − x0|

R − r
if x ∈ B(x0, R) \ B(x0, r) = D

0 if x ∈ Ω \ B(x0, R).
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Then wn ∈ W
1,2
0 (Ω), 0 ≤ wn ≤ ξn ≤ an and ‖wn‖2 = ωN

(RN−rN )
(R−r)2 ξ2

n for all
n ∈ N.

Moreover, for all n ∈ N, we have

En(wn) = 1

2
‖wn‖2 −

∫

Ω

Hn(wn)dx

= 1

2
ωN

(RN − rN )

(R − r)2
ξ2
n −

∫

Ω

F(wn)− 1

−γ + 1

∫

Ω

w
−γ+1
n

<
1

2
ωN

(RN − rN )

(R − r)2
ξ2
n −

∫

B(x0,r)

F (ξn)−
∫

D∩{wn>δ}
F(wn)−

∫

D∩{wn≤δ}
F(wn)

≤
[

1

2
ωN

(RN − rN )

(R − r)2
−M1ωNr

N −M0ωN(R
N − rN )

]
ξ2
n + ωN(R

N − rN )max[0,δ] |F |.

By the choice of M1, limn En(wn) = −∞, which immediately implies
limn En(un) = −∞. In particular, by passing eventually to a subsequence, we
may assume that un, n ∈ N, are pairwisely distinct.

Finally, suppose that {‖un‖∞} is bounded, i.e. there exists a constant M2 such
that ‖un‖∞ ≤ M2 for all n ∈ N. Fix n̄ such that an̄ > M2. Then for every n ≥ n̄,
we have un < an̄ ≤ an, so Hn̄(un(·)) = Hn(un(·)) and hence,

En(un) = En̄(un) ≥ En̄(un̄),

which is in contradiction with the previous limit.
It follows that {‖un‖∞} is unbounded so, we may extract a subsequence which

tends to +∞, as n → ∞. The proof is concluded. ��
Example Define for t ≥ 0

f (t) = t2(1/2 + sin t).
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The Pilgerschritt (Liedl) Transform on
Manifolds

Wolfgang Förg-Rob

1 Introduction: The Main Idea

Starting point was the question of finding iterative roots respectively iteration
groups. Therefore, let X be an arbitrary set and f : X → X a bijective mapping.
The problem is to find an iteration group (ft : X → X)t∈R such that f0 = idX and
ft+s = ft ◦ fs for t, s ∈ R. As it is (and was) well known, in general this problem
has no solution.

Roman Liedl, a mathematician in Innsbruck, had an idea for topological groups
in the late seventies of the last century. He came up with an idea to solve the problem
of finding homomorphisms (one parameter subgroups through a given element) for
such groups and introduced a transform he called “Pilgerschritt transform”, because
it reminded to a method of medieval pilgrims to enlarge the way of pilgrimage (two
steps forward, one step back). The background for his ideas is given by the Volterra
product integral and questions in iteration theory.

In Lie groups for endpoints not ‘far away’ from the unit, there is a usual tool
available: The logarithm as the inverse of the exponential. However, the logarithm
is given by a (convergent) power series, and using this series up to a given power this
gives an approximation of the homomorphism through that point in the group G.

The new idea of Roman Liedl was the following: Choose an arbitrary path
ϕ : [0, 1] → G connecting the unit e with the given element g, and transform the
path in a deterministic way to a path ϕ̃, such that ϕ̃ is the restriction of the achieved
homomorphism h : R → G, or at least the sequence ϕ, ϕ̃, ˜̃ϕ, . . . converges to this
restriction.
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2 The Pilgerschritt Transform on Groups

Let G be a topological group, g ∈ G and ϕ : [0, 1] → G a (continuous) path
connecting the unit element e with the given element g, i.e., ϕ(0) = e and ϕ(1) = g.
Then we define a new path ϕ̃ by the following process (compare it with a similarity
deformation!).
Let Z = (0 = t0 < t1 < . . . < tm = 1) be a partition of the interval [0, 1], and
let τ ∈ [0, 1] be a real number. The Pilgerschritt product with respect to Z and τ is
given as the product

π(ϕ,Z , τ ) =
(
ϕ(tm−1 + τ(tm − tm−1)) · ϕ(tm−1)

−1
)
·. . .·

(
ϕ(t0 + τ(t1 − t0)) · ϕ(t0)−1

)

If the limit of this expression π(ϕ,Z , τ ) exists, when the mesh size of Z tends
to 0, this limit will be called the Pilgerschritt transform of ϕ, i.e.

ϕ̃(τ ) = lim
|Z |→0

π(ϕ,Z , τ ).

1/3

2/3

For a detailed description we refer to the original papers [4–6].
Of course, the question arises when this limit does exist. Suppose that the group G

has a differentiable structure (Lie group or Banach Lie group), and the path ϕ is
continuously differentiable. A Taylor expansion of the product terms in π gives

(
ϕ(tk−1 + τ(tk − tk−1)) · ϕ(tk−1)

−1
) =

= (
ϕ(tk−1)+ τ(tk − tk−1) ϕ

′(tk−1)+ R
) · ϕ(tk−1)

−1 =
= e + τ(tk − tk−1) ϕ

′(tk−1) ϕ(tk−1)
−1 + R1

where R respectively R1 denote remainder terms. An easy calculation shows that
for taking the limit |Z | → 0 these remainder terms are negligible, and we end
up with the product integral in the sense of Volterra and with coefficient function
t  → τϕ′(t) ϕ(t)−1.
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Another interpretation can be made by looking at the differential equation

y′ = τϕ′(t) ϕ(t)−1 · y.

A usual Euler method gives rise to the product above (without remainder terms).
Thus in Lie groups and Banach Lie groups the Pilgerschritt transform of a C 1-path
ϕ may be defined equivalently by the following process:

1. Solve the differential equation y′ = τϕ′(t) ϕ(t)−1 ·y for τ ∈ [0, 1] and the initial
condition y(0) = e.

2. Denote this solution by ϕ̂(t, τ ).
3. Put ϕ̃(τ ) = ϕ̂(1, τ ).

In order to give an answer to the question: Whenever ϕ is a C 1-path in a Lie group
or a Banach Lie group, the Pilgerschritt transform exists.
First results on properties of the transformed path ϕ̃ can be given as follows.

1. ϕ̃(0) = ϕ(0), ϕ̃(1) = ϕ(1)
2. If ϕ is the restriction of a homomorphism h : R → G to the interval [0, 1], then

ϕ̃ = ϕ

3. If ϕ is the restriction of a homomorphism h : R → G to the interval [0, 1] up to
a transform of the parameter, then ϕ̃ = h|[0, 1]

4. ϕ̃ is homotopic to ϕ in the group G

5. ϕ̃ is a C∞-function

Answers to the question whether the sequence ϕ, ϕ̃, ˜̃ϕ, . . . converges to the
restriction of a homomorphism could be given, here is a short overview:

1. If the group G is abelian, then ϕ̃ itself is the restriction of the homomorphism.
2. If the group G is nilpotent, then the sequence ends up with the restriction of a

homomorphism after a finite number of steps.
3. If the group G is solvable, then the sequence converges to the restriction of a

homomorphism under the condition that the endpoint ϕ(1) is ‘close’ to e.
4. In general, the sequence converges to the restriction of a homomorphism under

the condition that ϕ(t) is close to e and ϕ′(t) is small.

For results in detail on the Pilgerschritt transform on Lie groups see for example
the overview report [2] and the cited literature there.

3 The Pilgerschritt Transform on Manifolds

While working on the Pilgerschritt transform, R. Liedl asked the members of his
group at the university of Innsbruck, whether this method could be used also
to compute geodesic lines on manifolds. The background of his question was
very simple: One-parameter-subgroups of Lie groups are just the geodesic lines
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according to the connection on the Lie group defined by right resp. left translation.
In the paper [1] a suitable definition (according to the description of this method on
Lie groups) and the proof of (local) existence of this transform could be given.

The main questions which arise are the following:

• What are the properties of the path ϕ̃?
• Does the sequence ϕ, ϕ̃, ˜̃ϕ, ˜̃̃ϕ, . . . exist?
• Does the sequence ϕ, ϕ̃, ˜̃ϕ, ˜̃̃ϕ, . . . converge to a geodesic line connecting starting

point and endpoint of ϕ?

We need a manifold M (C∞) with a linear connection ∇. The manifold is
modelled over Rd—but it also may be over an arbitrary Banach space, the proofs
need not be changed in the later case. Furthermore, γ : [0, 1] → M is a given path
(we assume it to be continuously differentiable) on this manifold with starting point
s = γ (0) and endpoint p = γ (1). On R

d we use a norm ‖ − ‖ (all the norms
are equivalent), on a Banach space V the given norm, and on the space of (linear,
multilinear) operators the induced norm.

The original definition on groups was given:
Let Z = (0 = t0 < t1 < . . . < tm = 1) be a partition of the interval [0, 1], and
let τ ∈ [0, 1] be a real number. The Pilgerschritt product with respect to Z and τ is
given as the product

π(ϕ,Z , τ ) =
= (

ϕ(tm−1 + τ(tm − tm−1)) · ϕ(tm−1)
−1

) · . . . · (ϕ(t0 + τ(t1 − t0)) · ϕ(t0)−1
)
.

But there are several problems: What should the product be on a manifold?
Remembering that the right and left connection on a Lie group are defined by the
multiplication (i.e., transportation via multiplication), we must replace the product
of elements by parallel transport. On the other hand parallel transport can be defined
on manifolds by the connection ∇ along paths—which path should it be for the
multiplication?
Therefore we go back to the equivalent definition on groups via differential equation
and the parallel transport.

Let us remind the definition of ‘parallel’ on manifolds:
Let γ : [a, b] → M be a C 1-path and X : [a, b] → TM be a C 1-field tangent along
γ (that means that X(t) ∈ Tγ (t)M for all t ∈ [a, b]). Then X is called parallel along
γ , if ∇γ ′(t)X(t) = 0 for all t ∈ [a, b].

Using a local coordinate system mapping an open set inM to an open setU ⊆ R
d

the linear connection ∇ is given on U by the so called Christoffel symbols Γ k
ij .

As we do not need to have a Riemann connection, we assume that the functions
Γ k
ij : U → R are C∞, but they need not to be symmetric, i.e., in general we have

Γ k
ij (m) �= Γ k

ji(m) for m ∈ U .
For sake of simplicity (to avoid a lot of indices) we use the following terminol-

ogy: For each m ∈ U denote by G(m) the bilinear function

G(m) : Rd × R
d → R

d : (u,w)  →
⎛

⎝
d∑

i=1

d∑

j=1

Γ k
ij (p) uiwj

⎞

⎠

1≤k≤d
.
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If we now denote by η the expression of γ in coordinates and similarly v that one
of the vector field X, the condition of ‘parallel’ may be expressed as the differential
equation

v′(t) = −G(η(t))(η′(t), v(t)) for all t ∈ [a, b] such that η(t) is defined.

As for a given curve γ this equation locally is a linear differential equation (in
the coordinate expression v), usual theorems on linear differential equations give
rise to the following results:

(a) For any t0 ∈ [a, b] and any X0 ∈ Tγ (t)M there exists a unique parallel vector
field X along γ , such that X(t0) = X0.

(b) The mapping (parallel displacement along γ )
Pγ,t1,t0 : Tγ (t0)M → Tγ (t1)M : X0  → X(t1)—where X is the unique vector
field parallel along γ with X(t0) = X0—is a linear isomorphism, whose inverse
is given by Pγ,t0,t1 .

With this notation we use an idea of Kobayashi-Nomizu (cf. [3]) and define

Definition Let γ : [0, 1] → M be a C 1-path. Then define

der(γ ) : [0, 1] → Tγ (0)M : t  → Pγ,0,t (γ
′(t)).

Of course, der(γ ) is a continuous function. The notion ‘der’ has been chosen
according to the expression ‘derivative’.

A first interesting result is the following:

Theorem 1 Let γ1, γ2 : [0, 1] → M be C 1-paths such that γ1(0) = γ2(0). If
der(γ1)(t) = der(γ2)(t) for all t ∈ [0, 1], then γ1(t) = γ2(t) for all t ∈ [0, 1].
Proof By the usual arguments on compactness and connectedness of the interval
[0, 1] it suffices to show that γ1 and γ2 coincide in a neighbourhood of 0. Thus
choose a coordinate system near γ1(0) = γ2(0). We use the expressions η1
respectively η2 for the paths in these coordinates,
f (t) = der(γ1)(t) = der(γ2)(t) ∈ Tγ1(0)M with coordinate expression g(t), and
let R1(t) be the coordinate expression for the parallel displacement Pγ1,t,0 along γ1
and similarly R2(t) for γ2.
Then in a neighbourhood of 0 we have the equations (for i ∈ {1, 2})

η′i (t) = Ri(t)(g(t))

R′
i (t) = −G(ηi(t))(η

′
i (t),−) ◦ Ri(t)

that is, we have

η′i (t) = Ri(t)(g(t))

R′
i (t) = −G(ηi(t))(Ri(t)(g(t)),−) ◦ Ri(t)
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But this means, that both pairs (η1, R1) and (η2, R2) fulfill the same system of
differential equation (with differentiable right hand side) to the same initial values,
as η1(0) = η2(0) and R1(0) = Id = R2(0). Therefore, the functions are equal.

This result just gave uniqueness. On the other hand, suppose that for some point
s ∈ M a continuous function f : [0, 1] → TsM is given. Does there exist a C 1-path
γ such that γ (0) = s and der(γ ) = f ? In general the answer will be “no”, but
locally we can state the following

Theorem 2 Let s ∈ M . Then there exists a neighbourhood W of 0 ∈ TsM such that
for all continuous functions f : [0, 1] → W a C 1-path γ exists with the properties
γ (0) = s and der(γ ) = f .

Proof Fix a coordinate system x of M around s—and let U denote the image in R
d .

We may assume that s is mapped to 0 ∈ U , and G describes the linear connection
∇ on U .
We use the notation of the preceding theorem. Then we have to show that for ‘small’
continuous functions g : [0, 1] → R

d the system of differential equations

η′(t) = R(t)(g(t))

R′(t) = −G(η(t))(R(t)(g(t)),−) ◦ R(t)
has a solution to the initial value η(0) = 0, R(0) = Id which is defined on the whole
interval [0, 1].
The usual proofs of the theorem by Picard-Lindelöf give information about the
interval of existence of the solutions if we know bounds and Lipschitz constants
for the right hand side: Let r > 0 be such that the ball Br(0) is contained in U , the
function G is bounded on Br(0) by a constant M1 and the derivative G′ is bounded
by M2. Furthermore, let K be the ball with radius 1

2 around Id in the space of linear
functions from R

d to R
d . Then all the elements of K are invertible and their norm

is bounded by 3
2 . Now we have a look on the set Br(0)×K and the right hand side

of the differential equation

(σ,  )  → ( (g(t)),−G(σ)( (g(t))) ◦  ).
Using the sum norm on R

d × L(Rd ,Rd) and the mean value theorem we get
L = max({1+3M1,

9
4 M2})·‖g‖∞ as a Lipschitz constant (according to the theorem

of Picard-Lindelöf) and

M =
(

3

2
+ 9

4
M1

)
· ‖g‖∞ as an upper bound for the right hand side.

Thus if we choose

ε = 1
3
2 + 9

4 M1
· min({r, 1

2
}),

for any continuous function g such that ‖g‖∞ < ε, a solution of the differential
equation exists which is defined on [0, 1].
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The system of differential equations we just dealt with gives rise to two
interesting applications:

1. A C 1-path γ : [0, 1] → M is a geodesic line iff the function der(γ ) is constant.
2. Suppose that (γn)n∈N : [0, 1] → M is a sequence of C 1-paths starting at the same

point s = γn(0) (for all n) such that all the images of these paths are contained in
a neighbourhood of s homeomorphic to a ball in the R

d via a coordinate system
and the sequence (der(γn))n∈N converges uniformly to a function

f : [0, 1] → TsM . Then the sequence (γn)n∈N converges uniformly to a path
γ : [0, 1] → M , and der(γ ) = f .

After this preparation we are able to define the Pilgerschritt transform of a path—
according to the definition in Lie groups via a differential equation:

Definition Let γ : [0, 1] → M be a C 1-path, and let be

f = der(γ ) : [0, 1] → Tγ (0)M.

If there exists a C 1-path γ̂ (τ,−) : [0, 1] → M for each τ ∈ [0, 1] such that

γ̂ (τ, 0) = γ (0) and der(γ̂ (τ,−)) = τ · f

then we call the function

γ̃ : [0, 1] → M : τ  → γ̂ (τ, 1)

the Pilgerschritt transform of the path γ .

In order to proof that the Pilgerschritt sequence γ , γ̃ , ˜̃γ , . . . converges (under
suitable conditions) to a geodesic line, we will show that the sequence (fn)n∈N with
f = f0 = der(γ ), f1 = f̃ = der(γ̃ ), f2 = f̃1 = der(˜̃γ ), . . . converges uniformly
to a constant.

First of all we start with some elementary properties of the transformed path:

Theorem 3 Let γ : [0, 1] → M be a C 1-path such that γ̂ (τ, t) exists for all
t, τ ∈ [0, 1]. Then we have

1. γ̃ (0) = γ (0) and γ̃ (1) = γ (1).
2. γ̃ is a C∞-function.
3. If γ is a geodesic line, then γ̃ = γ .

These properties follow immediately from the defining differential equations.
From now on we want to deal with the sequence (f0 = f, f1 = f̃ , f2 = f̃1, . . . ).

Therefore, s ∈ M is our starting point for the paths, f : [0, 1] → TsM is continuous,
and we use the notation as in Theorem 2 in order to guarantee the existence of paths
according to f . Furthermore, η denotes the coordinate expression of a path γ , and
g the coordinate expression of f .

Thus we will deal with the coordinate expressions of our functions.



342 W. Förg-Rob

The proof of Theorem 2 gives us a constant ε, such that for any continuous
function g : [0, 1] → R

d with the property ‖g‖∞ < ε there exists a C 1-path η with
g = der(η) (here and in the further we mix up the ‘der’-notation with its coordinate
expression, but there should be no reason of confusion).

If such a function g : [0, 1] → R
d fulfills the property ‖g‖∞ < ε, then this

inequality also holds for each of the functions τ · g for τ ∈ [0, 1] which implies
that the Pilgerschritt transform exists, and we may compute g̃. As we know from
Theorem 3, g̃ is a C∞-function. In order to study the behaviour of the sequence
g1 = g, g2 = g̃, g3 = ˜̃g, . . . without loss of generality we may assume that g itself
is a C∞-function.

Now we want to compute g̃ in some sense “directly” from g. In Theorem 2 we
had used the system of differential equations

η′(t) = R(t)(g(t))

R′(t) = −G(η(t))(R(t)(g(t)),−) ◦ R(t)

in order to compute the path η from the function g. Now we add a parameter
τ ∈ [0, 1] in order to describe the construction of η̂ from τ · g:

∂

∂t
η̂(τ, t) = τ R(τ, t)(g(t))

∂

∂t
R(τ, t) = −τ G(η(t))(R(τ, t)(g(t)),−) ◦ R(τ, t)

This is just to produce η̂. At the end, we have to transport back parallel along the

curve τ  → η̂(τ, t) the vector
∂

∂τ
η̂(τ, t), especially for t = 1, because this will give

the Pilgerschritt transform g̃.
In order to distinguish between parallel transport along lines τ = const., which

we denoted by R(τ, t), we use the notation S(τ, t) to denote the parallel transport
along the lines t = const. Thus we get

ĝ(τ, t) = S(τ, t)−1
(
∂

∂τ
η̂(τ, t)

)
and finally g̃(τ ) = ĝ(τ, 1).

As a first result we get an expression for g̃(0):

Theorem 4 Let g : [0, 1] → R
d fulfill the property ‖g‖∞ < ε. Then the

Pilgerschritt transform g̃ exists, and g̃(0) =
1∫

0
g(t) dt .

Proof The existence of g̃ was just discussed before.
Now η̂(0, t) = 0 = η(0), and therefore S(0, t) = Id for t ∈ [0, 1]. Thus

g̃(0) = ∂

∂τ
η̂(0, 1).
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Now we use the differential equations

∂

∂t
η̂(τ, t) = τ R(τ, t)(g(t))

∂

∂t
R(τ, t) = −τ G(η(t))(R(τ, t)(g(t)),−) ◦ R(τ, t)

Differentiating the first equation with respect to τ we get

∂2

∂t ∂τ
η̂(τ, t) = R(τ, t)(g(t))+ τ

∂

∂τ
R(τ, t)(g(t))

Inserting τ = 0 we get

∂

∂t

(
∂

∂τ
η̂

)
(0, t) = R(0, t)(g(t)) = g(t), becauseR(0, t) = Id for t ∈ [0, 1].

As η̂(τ, 0) = 0 we have
∂

∂τ
η̂(0, 0) = 0, and an easy integration gives the desired

result.

Now we can come to the convergence theorem. At first we proof the convergence
under a special hypothesis, and in the following theorem we proof that this
hypothesis is satisfied. As we have seen that the Pilgerschritt transform is a C∞-
function, without loss of generality we may assume that the original function g

is C 1.

Theorem 5 Suppose that there exists a real number δ, 0 < δ ≤ ε, such that for all
C 1-functions g : [0, 1] → R

d with the property ‖g(0)‖+‖g′‖∞ < δ we have that g̃

exists and, furthermore, ‖g̃′‖∞ ≤ 1

2
‖g′‖∞. Then the following list of propositions

are true for functions g that fulfill ‖g(0)‖ + ‖g′‖∞ < δ:

(a) The transform g̃ exists (and the existence is not only an assumption).
(b) We have ‖g̃(0)‖ + ‖g̃′‖∞ < δ.
(c) The sequence (g(0), g̃(0),˜̃g(0), . . .) is a Cauchy sequence.
(d) The sequence (g, g̃,˜̃g, . . .) = (g0, g1, g2, . . . ) converges uniformly to a

constant.

Proof These are easy computations. For sake of simplicity let us abbreviate
ω = ‖g′‖∞.

(a) For t ∈ [0, 1] we have g(t) = g(0)+
t∫

0
g′(ξ) dξ and therefore

‖g(t)‖ ≤ ‖g(0)‖ +
t∫

0

‖g′(ξ)‖ dξ ≤ ‖g(0)‖ + tω < δ, thus

‖g‖∞ ≤ δ ≤ ε. Thus g̃ exists by Theorem 4.
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(b)

‖g̃(0)‖ + ‖g̃′‖∞ ≤
∥
∥∥∥∥

1∫

0
g(ξ) dξ

∥
∥∥∥∥
+ 1

2
‖g′‖∞ ≤

1∫

0
(‖g(0)‖ + ξω) dξ + 1

2
ω =

= ‖g(0)‖ + 1

2
ω + 1

2
ω < δ.

(c) By induction, we have ‖g′n‖∞ ≤ 1

2n
‖g′0‖∞, and, therefore,

‖gn+1(0)− gn(0)‖ ≤ 1

2
‖g′n‖∞ ≤ 1

2n+1
‖g′0‖∞.

Summing up shows that the sequence (gn(0))n∈N is a Cauchy sequence and
therefore convergent.

(d) As the sequence (g′n)n∈N uniformly tends to 0 and the sequence (gn(0))n∈N is
convergent, we know that the sequence (gn)n∈N uniformly tends to a constant,
and this constant is just the limit of the sequence (gn(0))n∈N.

The only problem we now have to solve is to show the existence of such a number
δ as stated above.

Theorem 6 There exists a number δ, 0 < δ ≤ ε, such that for all C 1-functions
g : [0, 1] → R

d with the property ‖g(0)‖ + ‖g′‖∞ < δ the transform g̃ exists and

we have ‖g̃′‖∞ ≤ 1

2
‖g′‖∞.

Proof These are the ‘hard’ (but straightforward) computations:
Like in Theorem 2 let r > 0 be a radius such that G and G′ are bounded on Br(0) by
constants M0 and M1. Furthermore, we suppose that also G′′ and G′′′ are bounded
by constants M2 and M3. Let K be the ball around id in L(Rd ,Rd) with radius 1

2 ,
and let the number ε be chosen 0 < ε < r according to Theorem 2 such that all the
paths and Pilgerschritt transforms exist.
Furthermore, suppose that we are given a number δ, 0 < δ ≤ ε, and our original
function g fulfills the condition ‖g(0)‖ + ‖g′‖∞ < δ. Now we will find bounds for

‖g̃′‖∞ and show that δ can be chosen such that ‖g̃′‖∞ ≤ 1

2
‖g′‖∞.

According to the notation before, we have to ‘compute’ the pathes η̂(τ, t) for

t, τ ∈ [0, 1] and then the function ĝ(τ, t) = S(τ, t)−1
(
∂η̂

∂τ
(τ, t)

)
in order to get an

estimate for
∂ĝ

∂τ
(τ, 1).

η̂ is given by the differential equations

∂

∂t
η̂(τ, t) = τ R(τ, t)(g(t))

∂

∂t
R(τ, t) = −τ G(η(t))(R(τ, t)(g(t)),−) ◦ R(τ, t)
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To make the problem ‘easier’ (it does not seem so, but it really is) we introduce a

new variable for
∂

∂t
η̂ and get a system of three differential equations—for sake of

simplicity let us denote the variables by a1 = η̂(τ, t), a2 = ∂

∂t
η̂(τ, t), a3 = R(τ, t):

∂a1

∂t
(τ, t) = a2(τ, t)

∂a2

∂t
(τ, t) = −G(a1(τ, t))(a2(τ, t), a2(τ, t))+ τ a3(τ, t) g

′(t)
∂a3

∂t
(τ, t) = −G(a1(τ, t))(a2(τ, t),−) ◦ a3(τ, t)

to the initial value (0, τg(0), id) ∈ R
d × R

d × L(Rd ,Rd).
For sake of simplicity we use the notation A = (a1, a2, a3) in order to treat these
functions simultaneously.
Let us split the right hand side of the differential equation:

We denote Z1(t,

⎛

⎝
x

y

z

⎞

⎠) =
⎛

⎝
y

−G(x)(y, y)

−G(x)(y,−) ◦ z

⎞

⎠ and Z2(t,

⎛

⎝
x

y

z

⎞

⎠) =
⎛

⎝
0

τ zg′(t)
0

⎞

⎠.

Thus, shortly speaking, our differential equation is given by

A′(τ, t) = Z1(t, A(τ, t))+ Z2(t, A(τ, t))

We also take into account the ‘short’ differential equation

B ′(τ, t) = Z1(t, B(τ, t))

with the solution B = (b1, b2, b3) to the same initial value (0, τg(0), id).
By the perturbation formula of Gröbner and Alekseev (see [7] e.g.) we get

A(τ, t) = B(τ, t)+
t∫

0

Ψ (t, ξ, A(τ, ξ))Z2(ξ, A(τ, ξ)) dξ,

where Ψ is the fundamental matrix to the linear system of ODEs with matrix
∂Z1

∂(x, y, z)
at the time t with initial value A(τ, ξ) at time ξ . For further investigations

we need this matrix:

P(x, y, z) = ∂Z1

∂(x, y, z)
=

=
⎛

⎝
0 Id 0

−G′(x)(−)(y, y) −G(x)(−, y)−G(x)(y,−) 0
−G′(x)(−)(y,∼) ◦ z −G(x)(−,∼) ◦ z −G(x)(y,−)

⎞

⎠
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Abbreviating the integral by I = I (τ, t) = (I1, I2, I3) and using the notation S(τ, t)
as before we get

∂ĝ

∂τ
(τ, t) = ∂

∂τ

(
S(τ, t)−1 ∂η̂

∂τ
(τ, t)

)
=

= S(τ, t)−1
(
∂2η̂

∂τ 2 (τ, t)−
∂S

∂τ
(τ, t) ◦ S(τ, t) ∂η̂

∂τ
(τ, t)

)
=

= S(τ, t)−1
(
∂2η̂

∂τ 2 (τ, t)+G(̂η(τ, t))

(
∂η̂

∂τ
(τ, t),

∂η̂

∂τ
(τ, t)

))
=

= S(τ, t)−1
(
∂2a1

∂τ
+G(a1)

(
∂a1

∂τ
,
∂a1

∂τ

))
=

= S(τ, t)−1
(
∂2b1

∂τ
+ ∂2I1

∂τ
+G(a1)

(
∂b1

∂τ
,
∂b1

∂τ

)
+G(a1)

(
∂I1

∂τ
,
∂b1

∂τ

)
+

+ G(a1)

(
∂b1

∂τ
,
∂I1

∂τ

)
+G(a1)

(
∂I1

∂τ
,
∂I1

∂τ

))
=

= S(τ, t)−1
(
∂2b1

∂τ
+G(b1)

(
∂b1

∂τ
,
∂b1

∂τ

)
+ ∂2I1

∂τ

+
(
G(a1)

(
∂b1

∂τ
,
∂b1

∂τ

)
−G(b1)

(
∂b1

∂τ
,
∂b1

∂τ

))
+

+ G(a1)

(
∂I1

∂τ
,
∂b1

∂τ

)
+G(a1)

(
∂b1

∂τ
,
∂I1

∂τ

)
+G(a1)

(
∂I1

∂τ
,
∂I1

∂τ

))

Now the equation for B is the equation of a geodesic line. Thus we have
∂2b1

∂τ
+G(b1)

(
∂b1

∂τ
,
∂b1

∂τ

)
= 0, as it was stated in Theorem 3. Our duty is to give

estimates for the remaining terms.
First let us shrink the ball in which the paths should run: Let  , 0 <  ≤ r be
the radius for η (for a1 and b1), σ > 0 be a radius for the derivative (for a2 and
b2), and μ a radius for a3 and b3, 0 < μ ≤ 1

2 . Furthermore, let δ > 0 at the
moment be so small that for ‖g(0)‖ + ‖g′‖∞ < δ the solution A and B run in the
set W = B (0)× Bσ (0)× Bμ(id) in R

d ×R
d ×L(Rd ,Rd). We use the sum norm

on this space.
We go to find the estimates in several steps:

1. The matrix
∂Z1

∂(x, y, z)
is bound on the set W by

L0( , σ, μ) = max{M1σ(1 + σ + μ), 1 +M0(1 + 2σ + μ),M0σ }
Using the constant initial value (0, τg(0), id) as an approximate solution of B,
we just take the difference
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∥∥∥
∥∥∥

0 − Z1

⎛

⎝
0

τg(0)
id

⎞

⎠

∥∥∥
∥∥∥
=

∥∥∥
∥∥∥

⎛

⎝
τg(0)

−G(0)(τg(0), τg(0))
−G(0)(τg(0),−)

⎞

⎠

∥∥∥
∥∥∥
≤

≤ δ(1 +M0δ +M0) = L1( , σ, μ, δ).

From these two bounds by Gronwall’s Lemma we get

∥
∥∥∥∥∥

⎛

⎝
b1(τ, t)

b2(τ, t)

b3(τ, t)

⎞

⎠−
⎛

⎝
0

τg(0)
id

⎞

⎠

∥
∥∥∥∥∥
≤ L1( , σ, μ, δ)

L0( , σ, μ)

(
etL0 − 1

)
.

2.
∂B

∂τ
:

For this function we have the differential equation
∂

∂t

∂B

∂τ
= ∂Z1

∂(x, y, z)
(B) · ∂B

∂τ
with the initial value

∂B

∂τ
(τ, 0) = (0, g(0), 0). Thus

∥
∥∥∥
∂B

∂τ
(τ, t)

∥
∥∥∥ ≤ δ etL0

3. The difference G(a1)−G(b1) is bounded (‘mean value theorem’) by M1 ‖I1‖.

As the matrix
∂Z1

∂(x, y, z)
is bounded by L0( , σ, μ), the fundamental solution

Ψ (t, ξ) is bounded by e(t−ξ)L0 , and therefore we get

‖I1‖ ≤ ‖I‖ ≤ etL0 − 1

L0
(1 + μ)‖g′‖∞.

4.
∂I1

∂τ
: We have

I = I (τ, t) =
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dξ .

Now
∂Ψ (t, ξ, A(τ, ξ))

∂τ
=

t∫

ξ

Ψ (t, ζ, A(τ, ξ))
∂P (A(τ, ζ ))

∂τ
Ψ (ζ, ξ, A(τ, ξ)) dζ
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As P has L0 as an upper bound, Ψ (t, ξ, A(τ, ξ)) is bounded by e(t−ξ)L0 , and we

have to find an estimate for
∂P (A(τ, ζ ))

∂τ
.

P(A(τ, ζ )) =

=
⎛

⎝
0 Id 0

−A′(a1)(−)(a2, a2) −A(a1)(a2,−)− A(a1)(−, a2) 0
−A′(a1)(−)(a2,∼) ◦ a3 −A(a1)(−,∼) ◦ a3 −A(a1)(a2,∼)

⎞

⎠

Thus, by elementary differentiation (using linearity of many expressions) we

get a linear operator acting on the vector
∂A

∂τ
, and in norm this linear operator

(matrix) can be majorized (by doing it componentwise) by the constant
L2( , σ, μ, δ) = max{M2 σ (1+ σ +μ)+M1(1+ 2σ +μ),M1(1+ 2σ +μ)+
2M0,M0 +M1 σ }, and so we have

∥
∥∥∥
∂P (A(τ, ζ ))

∂τ

∥
∥∥∥ ≤ L2 ·

∥
∥∥∥
∂A

∂τ

∥
∥∥∥ .

In order to give an estimate for
∂A

∂τ
we go back to the defining differential

equation

∂a1

∂t
(τ, t) = a2(τ, t)

∂a2

∂t
(τ, t) = −G(a1(τ, t))(a2(τ, t), a2(τ, t))+ τ a3(τ, t) g

′(t)
∂a3

∂t
(τ, t) = −G(a1(τ, t))(a2(τ, t),−) ◦ a3(τ, t)

to the initial value (0, τg(0), id).
So we get

∂

∂t

∂a1

∂τ
= ∂a2

∂τ
∂

∂t

∂a2

∂τ
= −G′(a1)

(
∂a1

∂τ

)
(a2, a2)−G(a1)

(
∂a2

∂τ
, a2

)

−G(a1)

(
a2,

∂a2

∂τ

)
+ τ

∂a3

∂τ
g′ + a3 g

′

∂

∂t

∂a3

∂τ
= −G′(a1)

(
∂a1

∂τ

)
(a2,−) ◦ a3 −G(a1)

(
∂a2

∂τ
,−

)
◦ a3

−G(a1)(a2,−) ◦ ∂a3

∂τ
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a linear inhomogenous equation for
∂A

∂τ
to the initial value (0, g(0), 0). Let us

denote the linear operator in this equation by Φ and its fundamental solution by
Ω . Thus by the formula of variation of constants we get

∂A

∂τ
(τ, t) = Ω(τ, t) ·

⎛

⎝
0

g(0)
0

⎞

⎠+
t∫

0

Ω(τ, ξ)

⎛

⎝
0

a3(τ, ξ) g
′(ξ)

0

⎞

⎠ dξ

which gives the estimate

∥
∥∥∥
∂A

∂τ

∥
∥∥∥ ≤ δ ·

(
etL3 + etL3 − 1

L3
(1 + μ)

)
, where

L3( , σ, μ, δ) = max{M1σ(1 + σ + μ), 1 +M0(1 + 2σ + μ), δ +M0σ }.

Now we are able to estimate
∂I

∂τ
:

I =
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dξ .

Thus we have

∂I

∂τ
=

t∫

0

t∫

ξ

Ψ (t, ζ, A(τ, ξ))
∂P (A(τ, ζ ))

∂τ
Ψ (ζ, ξ, A(τ, ξ))

×
⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dζ dξ+

+
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎝
0

a3(τ, ξ)g
′(ξ)

0

⎞

⎠ dξ+

+
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎜⎜
⎝

0

τ
∂a3

∂τ
(τ, ξ)g′(ξ)

0

⎞

⎟⎟
⎠ dξ,

and we can give an estimate
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∥
∥∥∥
∂I

∂τ

∥
∥∥∥ ≤

t∫

0

t∫

ξ

e(t−ζ )L0L2 ·
(
δ ·

(
etL3 + etL3

L3
(1 + μ)

))

×e(ζ−ξ)L0(1 + μ)‖g′‖∞ dζ dξ+

+
t∫

0

e(t−ξ)L0(1 + μ)‖g′‖∞ dξ +
t∫

0

e(t−ξ)L0δ ·
(

etL3+etL3

L3
(1+μ)

)
‖g′‖∞ dξ .

5.
∂2I1

∂τ 2 :

Once more we use the expression

∂I

∂τ
=

t∫

0

t∫

ξ

Ψ (t, ζ, A(τ, ξ))
∂P (A(τ, ζ ))

∂τ

×Ψ (ζ, ξ, A(τ, ξ))

⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dζ dξ+

+
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎝
0

a3(τ, ξ)g
′(ξ)

0

⎞

⎠ dξ+

+
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎜
⎜
⎝

0

τ
∂a3

∂τ
(τ, ξ)g′(ξ)

0

⎞

⎟
⎟
⎠ dξ,

and hence we get

∂2I

∂τ 2 =

=
t∫

0

t∫

ξ

t∫

ζ

Ψ (t, ω,A)
∂P (A(τ, ω))

∂τ
Ψ (ω, ζ,A)

∂P (A(τ, ζ ))

∂τ
Ψ (ζ, ξ, A)·

·
⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dω dζ dξ+

+
t∫

0

t∫

ξ

ζ∫

ξ

Ψ (t, ξ, A)
∂P (A(τ, ζ ))

∂τ
Ψ (ζ, ω,A)

∂P (A(τ, ω))

∂τ
Ψ (ω, ξ,A)·

·
⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dω dζ dξ+
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+
t∫

0

t∫

ξ

Ψ (t, ζ, A)
∂2P(A(τ, ζ ))

∂τ 2
Ψ (ζ, ξ, A)

⎛

⎝
0

τa3(τ, ξ)g
′(ξ)

0

⎞

⎠ dζ dξ+

+2

t∫

0

t∫

ξ

Ψ (t, ζ, A)
∂P (A(τ, ζ ))

∂τ
Ψ (ζ, ξ, A)

⎛

⎝
0

a3(τ, ξ)g
′(ξ)

0

⎞

⎠ dζ dξ+

+2

t∫

0

t∫

ξ

Ψ (t, ζ, A)
∂P (A(τ, ζ ))

∂τ
Ψ (ζ, ξ, A)

⎛

⎜⎜
⎝

0

τ
∂a3

∂τ
(τ, ξ)g′(ξ)

0

⎞

⎟⎟
⎠ dζ dξ+

+2

t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎜⎜
⎝

0
∂a3

∂τ
(τ, ξ)g′(ξ)

0

⎞

⎟⎟
⎠ dξ+

+
t∫

0

Ψ (t, ξ, A(τ, ξ))

⎛

⎜⎜
⎝

0

τ
∂2a3

∂τ 2 (τ, ξ)g′(ξ)
0

⎞

⎟⎟
⎠ dξ

To give bounds for these seven terms almost all estimates are present—except

bounds for
∂2P(A)

∂τ 2
and

∂2a3

∂τ 2
. We have to find now:

(a)
∂2a3

∂τ 2
:

For
∂A

∂τ
we had the differential equation

∂

∂t

∂A

∂τ
= Φ(A) · ∂A

∂τ
+

⎛

⎝
0

a3 g
′

0

⎞

⎠

From this we derive the equation for
∂2A

∂τ 2
:

∂

∂t

∂2A

∂τ 2
= Φ(A) · ∂

2A

∂τ 2
+ ∂Φ(A)

∂τ
· ∂A
∂τ

+

⎛

⎜
⎜
⎝

0
∂a3

∂τ
g′

0

⎞

⎟
⎟
⎠.

This is an inhomogenous equation with matrix of coefficients Φ and initial
condition (0, 0, 0), the inhomogeneity is given by

∂Φ(A)

∂τ
· ∂A
∂τ

+

⎛

⎜⎜
⎝

0
∂a3

∂τ
g′

0

⎞

⎟⎟
⎠
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According to the initial condition we get
∂2A

∂τ 2 =
t∫

0

Ω(τ, ξ) · inhomog. dξ ,

and so we have (the constant L4 depends on the bilinear part of
∂Φ(A)

∂τ
)

∥∥∥∥
∂2A

∂τ 2

∥∥∥∥ ≤
t∫

0

eξL3 dξ

(

L4( , σ, μ, δ)

∥∥∥∥
∂A

∂τ

∥∥∥∥

2

+ 2

∥∥∥∥
∂a3

∂τ

∥∥∥∥ ‖g′‖∞
)

≤ δ2 · L5

for some constant L5.

(b)
∂2P(A)

∂τ 2 :

The matrix P(A) is just the matrix we used to estimate
∂2A

∂τ 2 except the term

a3 g
′ in the second line. Therefore we get the estimate

∥∥
∥∥
∂2P(A)

∂τ 2

∥∥
∥∥ ≤ δ2 · L5.

We had seen that
∂P (A)

∂τ
is bounded by δ ·L6 for some constant L6 depending

on  , σ and μ. Thus for such constants L7 . . . L13 we have the following
estimates

• δ2 ‖g′‖∞ · L7 for the first and the second integral
• δ2 ‖g′‖∞ · L8 for the third integral
• 2 δ ‖g′‖∞ · L9 for the fourth integral
• 2 δ2 ‖g′‖∞ · L10 for the fifth integral
• 2 δ ‖g′‖∞ · L11 for the sixth integral
• δ2 ‖g′‖∞ · L12 for the seventh integral

Summing up, we find a constant L13 such that
∂2I

∂τ 2 is bound by δ ‖g′‖∞ L13.

6. We also need an estimate for S(τ, t):
S(τ, t) is a solution of the differential equation
∂S(τ, t)

∂τ
= −G(a1)(

∂a1

∂τ
,−) ◦ S(τ, t) to the initial value S(0, t) = id.

As we had the estimate

∥
∥∥∥
∂A

∂τ

∥
∥∥∥ ≤ δ · L14 for some constant, we get

‖S(τ, t)− id‖ ≤ eδ M0 L14 − 1.
Thus a suitable small choice of δ guarantees that S(τ, t) ∈ Bμ(id) and also
S(τ, t)−1 ∈ Bμ(id).

7. Combining all these results and using the bilinearity of G(x)(−,∼) we see that
‖g̃′‖∞ is bounded by a constant times δ times ‖g′‖∞. A suitable small choice of
δ gives the desired result when constant times δ is smaller than 1

2 .
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4 Summary

Theorem 2 shows that if we choose the starting path γ close to the initial point
s (in the sense that ‖der(γ )‖∞ is small) then the Pilgerschritt transform γ̃ exists.
Furthermore, Theorem 6 shows the existence of a number δ > 0, such that for all
starting paths γ with f = der(γ ) the Pilgerschritt sequence γ , γ̃ , ˜̃γ , . . . converges
to a geodesic line if the function f : [0, 1] → TsM fulfills the condition
‖f (0)‖ + ‖f ′‖∞ < δ.
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On Some Mathematical Models Arising
in Lubrication Theory

D. Goeleven and R. Oujja

1 Introduction

The lubrication theory is the source of many mathematical problems [1, 3, 6, 7,
12, 14, 17, 20, 21, 30]. The problems studied in these papers are related to the
study of the free boundary problem of hydrodynamic lubrication from mechanical
engineering. Both models describe the flow of a lubricant in some thin space and
the mechanism of cavitation, i.e. the formation of air bubbles inside the lubricant.

The three-dimensional displacement of a Newtonian fluid in a laminar flow is
governed by the Navier-Stokes equations. However, in the case of displacement in a
privileged direction, i.e. when a dimension (the thickness in this case) is very small
compared to other dimensions, Navier-Stokes equations are considerably simplified
and reduce to two-dimensional Reynolds equation (see [7]).

Among hydrodynamic lubrication mechanisms we consider the shaft-bearing
system formed by a cylindrical shaft which rotates with an angular velocity ω within
a cylindrical fixed bush. The bush and the shaft are separated by a very thin layer of
lubricant which role is to cushion the effects of friction or heating. Theses effects
can cause damages on the contact surfaces. To ensure the correct functioning of the
mechanism, a lubricant supply is kept constant through a circumferential groove
(Fig. 1).

The narrow gap between the cylinders is occupied by a lubricant and the pressure
p of this lubricant satisfy the Reynolds equation. Let r, θ, x be the cylindrical
coordinates with origin in the bottom of the cylinder and suppose that θ is measured
from the line of maximum clearance of the centers. As a consequence of the thin-
film hypothesis, the pressure depends on the angular coordinate θ and the height of
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Fig. 1 Schematic
representation of the bearing

Fig. 2 A cross of the bearing and the domain Ω

the cylinders x and does not depend on the normal coordinate r . Therefore, the
mathematical model can be formulated on the set Ω = [0, 2π ] × [0, 1] which
represents the lateral area of the shaft.

Let rs be the radius of the shaft and rb the radius of the bush, e the distance
between the axes of the cylinders and η = e

rs−rb , 0 ≤ η < 1 the eccentricity ratio of
the bearing. The thickness of the thin fluid film is represented by the function

h(θ) = (rs − rb)(1 − η cos(θ − α)), (1)

where α is the angle of vector
−−→
OO ′ (

−−→
OO ′ = (e cosα, e sinα)) (Fig. 2).

When considering the non-coincidence of the axes of the cylinders (i.e. η > 0),
overpressure areas and low pressure areas are produced and this results in the
appearance of bubbles phenomenon known as cavitation. Mathematical models
of the phenomenon of cavitation consider that the lubricant pressure satisfies the
following Reynolds equation in the lubricated area Ω+:

− 1

rb

∂

∂θ

( h3

12μrb

∂p

∂θ

)− ∂

∂x

( h3

12μ

∂p

∂x

) = − rbω

2

dh

dθ
, (2)

where μ is a constant viscosity coefficient, while in the remaining areaΩ0 (cavitated
zone) the pressure vanishes. Equation (2) is based on heuristic reasoning [30] and
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mathematics [7]. By taking rb = 1, h := h
rs−rb and p := (rs−rb)2p

6μω we can write the
Reynolds equation in the dimensionless form

∂

∂θ

(
h3 ∂p

∂θ

)+ ∂

∂x

(
h3 ∂p

∂x

) = dh

dθ
, (3)

where h(θ) = 1 − η cos(θ − α).

2 Reynolds Free Boundary Problem

The Reynolds free boundary problem consists to find the pressure p(X) (X =
(θ, x)) and the regions Ω+ and Ω0 such that

∂

∂θ

(
h3 ∂p

∂θ

)+ ∂

∂x

(
h3 ∂p

∂x

) = dh

dθ
, p > 0 in Ω+, (4)

p = 0 in Ω0, (5)

p = ∂p

∂n
= 0 on Σ = Ω0 ∩Ω+, (6)

p(θ, 0) = p(θ, 1) = 0, 0 ≤ θ ≤ 2π (7)

and

p(2π, x)) = p(0, x), 0 ≤ x ≤ 1. (8)

Note that the free boundary Σ is an additional unknown of the problem. Equa-
tions (4)–(6) may be summarized as

p ≥ 0 and p(div(h3∇p)− dh

dθ
) = 0 in Ω.

We set

V = {ϕ ∈ H 1(Ω) : ϕ(., 0) = ϕ(., 1) = 0, ϕ is 2π -periodic}

and

K = {ϕ ∈ V, ϕ ≥ 0}.

Problem (4)–(8) can be formulated as the following variational inequality:
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Find p ∈ K such that

∫

Ω

h3∇p · ∇(ϕ − p) dX ≥
∫

Ω

h
∂

∂θ
(ϕ − p) dX, ∀ϕ ∈ K. (9)

Existence and uniqueness results of (9) are now well known. There exists a unique
p(θ, x) satisfying (9) and a no empty cavitated area Ω0 �= ∅ (see [22]).

Numerical approach of inequality (9) can be placed in the frame of some
approximation methods for variational inequalities based on classical results for
monotone operators given in [11, 29]. For this purpose we give the following
formulation of (9):

Find p ∈ V such that

∫

Ω

h3∇p.∇(ϕ−p) dX+IK(ϕ)−IK(p) ≥
∫

Ω

h
∂

∂θ
(ϕ−p) dX,∀ϕ ∈ V, (10)

where IK is the indicatrix function of the non empty closed and convex set K .
From the definition of the sub-differential ∂IK we have

β ∈ ∂IK(p) ⇐⇒ IK(ϕ)− IK(p) ≥< β, ϕ − p >, ∀ϕ ∈ V.

It follows then from (10) that

β = Div(h3∇p)− ∂h

∂θ
∈ ∂IK(p) (11)

and we obtain the following equivalent formulation:
Find p ∈ V such that

∫

Ω

h3∇p.∇ϕ dX +
∫

Ω

βϕ dX = −
∫

Ω

dh

dθ
ϕ dX,∀ϕ ∈ V (12)

and

β ∈ ∂IK(p). (13)

Following [10] we introduce the multiplier γ = β − ωp where ω > 0 is a positive
parameter and we get the formulation:

Find p ∈ V such that

∫

Ω

h3∇p.∇ϕ dX + ω

∫

Ω

pϕ dX = −
∫

Ω

γϕ dX −
∫

Ω

∂h

∂θ
ϕ dX,∀ϕ ∈ V

(14)
and

γ ∈ ∂IK(p)− ωp. (15)
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Let λ > 0, suppose that λω < 1 and set T = ∂IK − ωI . We have

I + λT = (1 − λω)I + λ∂IK. (16)

It can be proved that for all f ∈ V there exists a unique y ∈ V such that

f ∈ (I + λT )(y).

The single-valued map

J T
λ = (I + λT )−1

is the resolvent operator of T and the map

Tλ = I − J T
λ

λ

is the Moreau-Yosida approximation of T . The map Tλ is single-valued and 1
λ

-
Lipschitz continuous. Moreover it satisfies the following property:

Lemma 1 For all y and u in V , we have the equivalence property:

u ∈ T (y) ⇐⇒ u = Tλ(y + λu). (17)

Taking into account (17) in (14)–(15) we get the final formulation:
Find p ∈ V such that

∫

Ω

h3∇p.∇ϕ dX + ω

∫

Ω

pϕ dX = −
∫

Ω

γϕ dX −
∫

Ω

dh

dθ
ϕ dX,∀ϕ ∈ V

(18)
and

γ = Tλ(p + λγ ). (19)

2.1 Iterative Algorithm

To compute the solution (p, γ ) of (18)–(19), we apply the following iterative
method:

(0) Start with some arbitrary value of the multiplier γ0.
(1) For γj known, compute pj solution to
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∫

Ω

h3∇pj .∇ϕ dX + ω

∫

Ω

pjϕ dX = −
∫

Ω

γjϕ dX −
∫

Ω

dh

dθ
ϕ dX,∀ϕ ∈ V.

(20)
(2) Update multiplier γj as

γj+1 = Tλ(pj + λγj ). (21)

(3) Go to (1) until stop criterion is reached.

Theorem 1 For λ ≥ 1

2ω
we have:

lim
j→∞‖pj − p‖ = 0.

Proof The mapping Tλ is
1

λ
-Lipschitz and thus

‖γ − γj+1‖2 = ‖Tλ(p + λγ )− Tλ(pj + λγj )‖2 ≤ 1

λ2 ‖(p + λγ )− (pj + λγj )‖2

= 1

λ2 ‖(p − pj )+ λ(γ − γj )‖2

= 1

λ2 ‖p − pj‖2 + 2

λ
(p − pj , γ − γj )+ ‖γ − γj‖2.

Therefore

‖γ − γj‖2 − ‖γ − γj+1‖2 ≥ − 1

λ2
‖p − pj‖2 − 2

λ
(p − pj , γ − γj ). (22)

From (14) and (20) we have

∫

Ω

h3∇(p − pj ).∇ϕ dX + ω

∫

Ω

(p − pj )ϕ dX = −
∫

Ω

(γ − γj )ϕ dX, ∀ϕ ∈ V.

And by taking ϕ = p − pj we obtain

ω‖p − pj‖2 ≤
∫

Ω

h3|∇(p − pj )|2 dX + ω

∫

Ω

(p − pj )
2 dX

= −
∫

Ω

(γ − γj )(p − pj ) dX.

Now by substituting this inequality in (22) we obtain
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‖γ − γj‖2 − ‖γ − γj+1‖2 ≥ − 1

λ2 ‖p − pj‖2 + 2ω

λ
‖p − pj‖2

= 1

λ
(2ω − 1

λ
)‖p − pj‖2.

If λ ≥ 1

2ω
then we get

‖γ − γj‖2 − ‖γ − γj+1‖2 ≥ 0.

The sequence (‖γ − γj‖2)j≥0 is then decreasing and positive. Therefore

lim
j→∞‖γj − γ ‖2 = 0

and finally

lim
j→∞‖pj − p‖2 = 0.

�
Remark 1 Note that for 1

2 ≤ λω < 1, the condition in (16) and the hypothesis of
Theorem 1 are satisfied.

2.2 An Adaptive Finite Element Method

Our purpose in this section is to apply a P1-Galerkin finite element method so as
to discretize Eq. (20) (see [13]). Let be T a regular triangulation of the domain
into triangles and h an abstract discretization parameter. The discretization method
consists in the construction of a finite-dimensional space

Vh := {ψ ∈ C (Ω) ∩ V : T ∈ T , ψ |T is affine}.

The discrete solution ph ∈ Vh is defined as

∫

Ω

h3∇ph.∇ϕ dX + ω

∫

Ω

phϕ dX = −
∫

Ω

γjϕ dX −
∫

Ω

dh

dθ
ϕ dX,∀ϕ ∈ Vh.

(23)

As mentioned above, high pressure variations occur in the bearing and cause the
appearance of cavitated areas. The accuracy of discrete solution ph depends then on
the triangulation T in the sense that singularities and high variations of ph have to
be resolved by the triangulation. For this purpose we apply an adaptive method
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where triangulation T is improved automatically by use of a mesh-refinement
where high variations occur. Moreover, the solution ph can become smoother in
some area of domain when iteration proceeds and in this case, certain elements
from T are removed and mesh coarsening is done.

More precisely to get a refined triangulation from the current triangulation,
we first solve the equation to get the solution on the current triangulation. The
error is estimated using the solution and used to mark a set of triangles that are
to be refined or coarsened. Triangles are refined or coarsened in such a way to
keep regularity of the triangulations. This method is based on the following error
estimator introduced by Babuska and Rheinboldt [4] and used in most works on
convergence and optimality.

Theorem 2 Given a triangulation T and let be ph the solution of the discrete
problem. There exists a constant C > 0 and an error estimator ηh > 0 depending
on ph such that

‖pj − ph‖H 1(Ω) ≤ Cηh.

Proof Let ϕ ∈ V be given. We have with arbitrary ϕh ∈ Vh

∫

Ω

h3∇(pj − ph).∇ϕ dX + ω

∫

Ω

(pj − ph)ϕ dX =
∫

Ω

h3∇(pj − ph).∇(ϕ − ϕh) dX + ω

∫

Ω

(pj − ph)(ϕ − ϕh) dX

= −
∫

Ω

γj (ϕ − ϕh) dX −
∫

Ω

dh

dθ
(ϕ − ϕh) dX

−
∫

Ω

h3∇ph.∇(ϕ − ϕh) dX − ω

∫

Ω

ph(ϕ − ϕh) dX

=
∑

T ∈T

[
−
∫

T

γj (ϕ−ϕh) dX−
∫

T

dh

dθ
(ϕ−ϕh) dX+

∫

T

Div(h3∇ph)(ϕ−ϕh) dX

−ω
∫

T

ph(ϕ − ϕh) dX + 1

2

∫

∂T \∂Ω
[∂(h

3ph)

∂n
](ϕ − ϕh)dS

]

=
∑

T ∈T

[ ∫

T

(
Div(h3∇ph)− ωph − γj − dh

dθ

)
(ϕ − ϕh) dX

+1

2

∫

∂T \∂Ω

[∂(h3ph)

∂n

]
(ϕ − ϕh)dS

]
.
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We obtain two kinds of residuals. Indeed Div(h3∇ph)−ωph − γj − dh
dθ

is a point-

wise residual and
[
∂(h3ph)

∂n

]
is a measure of regularity of the discrete solution. By

applying the Cauchy Schwarz inequality we get

∫

Ω

h3∇(pj − ph).∇ϕ dX + ω

∫

Ω

(pj − ph)ϕ dX ≤

∑

T ∈T

[
‖Div(h3∇ph)−ωph−γj−∂h

∂θ
‖T ‖ϕ−ϕh‖T+‖1

2

[∂(h3ph)

∂n

]
‖∂T ∗‖ϕ−ϕh‖∂T ∗

]

where ∂T ∗ = ∂T \ ∂Ω . We now chose ϕh = Chϕ with Clement interpolation
operator Ch : V → Vh (see [15]) which verifies the interpolation estimate

‖ϕ − Chϕ‖T + d
1/2
T ‖ϕ − Chϕ‖∂T ≤ CdT ‖∇ϕ‖ΩT

,

with ΩT denoting the set of neighboring elements of T and dT its diameter.
It follows that

∫

Ω

h3∇(pj − ph).∇ϕdX + ω

∫

Ω

(pj − ph)ϕdX

≤
∑

T ∈T
C
[
dT ‖Div(h3∇ph)−ωph−γj − ∂h

∂θ
‖T + d

1/2
T

2
‖
[∂(h3ph)

∂n

]
‖∂T ∗

]
‖∇ϕ‖ΩT

≤
∑

T ∈T
2C

[
d2
T ‖Div(h3∇ph)−ωph−γj−∂h

∂θ
‖2
T+

dT

4
‖
[∂(h3ph)

∂n

]
‖2
∂T ∗

]1/2‖∇ϕ‖ΩT

≤ C
( ∑

T ∈T
η2
T

)1/2( ∑

T ∈T
‖∇ϕ‖2

ΩT

)1/2 ≤ Cηh‖∇ϕ‖,

where η2
T =

[
4d2

T ‖Div(h3∇ph)− ωph − γj − ∂h

∂θ
‖2
T + dT ‖

[∂(h3ph)

∂n

]
‖2
∂T ∗

]
. We

have used in the last step that the number of neighbors of any triangle T is bounded
due to the uniform shape-regularity of the meshes. Taking ϕ = pj − ph we obtain
the global upper bounded:

min((1 − η)3, ω)‖pj − ph‖H 1(Ω) ≤ Cηh,

with the residual-based error estimator ηh = (
∑

T ∈T
η2
T )

1/2 �
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Fig. 3 Initial triangulation T0

2.3 Numerical Results

For our numerical simulations, we take ω = 0.1 and λ = 5. Then both the
approximation condition (16) and Theorem 1 convergence hypothesis are satisfied.
We start algorithm (20)–(21) with γ0 = 0 and take triangulation given in Fig. 3 as
initial mesh for the adaptive finite element method in the first step. At each step
j +1 we take the final triangulation Tj obtained in the step j as initial triangulation
for the adaptive method.

Let T be a given triangulation. If the error estimator ηh < δ, where δ is a fixed
tolerance then the corresponding solution ph is accepted and the adaptive method
stopped. Otherwise, we apply the Dorfler criterion [16] to mark elements T ∈ T
for refinement. This criterion seeks to determine the minimal set M ⊂ T such that

θ

⎛

⎝
∑

T ∈T
η2
T

⎞

⎠ ≤
∑

T ∈M
η2
T ,

for some parameter θ ∈]0, 1[.
For coarsening we mark elements T ∈ T such that η2

T < σ
δ2

N
, where σ ∈]0, 1[,

δ is a fixed tolerance and NT the number of nodes of triangulation T . We take
here σ = δ = 1. A stop criterion ε is fixed also for the algorithm (20)–(21). We
summarize the method in the diagram below. We give in Figs. 4 and 5 the numerical
simulations for α = π and α = 0 respectively.
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3 Elrod-Adams Free Boundary Problem

The difference between the models introduced in modeling the phenomenon of
cavitation resides in the condition imposed on the interface that separates the cavity
from the lubricated zone [6, 17, 32]. The Reynolds model is based on the continuity
of the flow across the free boundary.

Another model supposed more realistic in the majority of situations is the
Elrod-Adams one [1, 5, 18, 33]. This model considers that the cavitation zone
Ω0 = {(x, y) ∈ Ω| p(x, y) = 0} is a mixture of air and fluid. It introduces a
new variable γ (x, y) which represents the concentration of lubricant existing in a
neighborhood of (x, y). That is a saturation function that takes values between 0 and
1 in cavitation and is equal to 1 in the active part Ω+ = {(x, y) ∈ Ω| p(x, y) >

0}. We denote by Γ0 = (0, 2π) × {0} and Γ1 = (0, 2π) × {1} the upper and lower
parts of the boundary of the domain. The problem is to find (p, γ ) defined on the
domain Ω , with p(x, y) is a 2πx-periodic function, p ≥ 0 and 0 ≤ γ ≤ 1 such that

∂

∂x
(h3 ∂p

∂x
)+ ∂

∂y
(h3 ∂p

∂y
) = dh

dx
, p > 0, γ = 1 sur Ω+, (24)

∂(hγ )

∂x
= 0, p = 0, 0 ≤ γ ≤ 1 on Ω0, (25)

h3 ∂p

∂n
= (1 − γ )h cos(n, x), p = 0 on Σ = ∂Ω+ ∩ ∂Ω0 (26)

and

p = 0 on Γ0, p = pa > 0 on Γ. (27)

Where n is the normal outside vector on Σ . The free boundary Σ is another
unknown problem. For more details on how to obtain theses equations see [17, 31].

Let be the following subsets:

V0 = {ξ ∈ H 1(Ω), ξ |Γ0 = 0, ξ |Γ1 = 0, et ξ 2πx-periodic} (28)

and

Va = {ξ ∈ H 1(Ω), φ|Γ0 = 0, φ|Γ1 = pa, et φ 2πx-periodic}.
(29)

In [1] the following weak formulation is established:
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Problem Q
Find p ∈ Va and γ ∈ L∞(Ω) such that

∫

Ω

h3∇p∇ξ =
∫

Ω

hγ ξx, ∀ξ ∈ V0, (30)

H(p) ≤ γ ≤ 1 a.e. in Ω (31)

and

p ≥ 0. (32)

where H is the Heaviside graph:

H(x) =
⎧
⎨

⎩

1 if x > 0
(0, 1) if x = 0
0 if x < 0.

(33)

The existence and uniqueness of a weak solution is proved in [3]. Note that some
qualitative properties of the free boundary have also been obtained in [2].

We are here interested in the numerical approximation of the problem Q. For
this purpose, we apply a numerical method which approaches the pressure p and
the free boundary through a process of successive approximations. At each stage
of this process, a linear equation is solved and the non-homogeneous term of this
linear equation “seeks” the free boundary of the problem.

3.1 A One-Dimensional Problem

This formulation corresponds to a long bearing. In such systems pressure variations
with respect to the vertical variable can be neglected and the free boundary problem
can be formulated on the interval I = [0, 2π ] (see [26]).

Problem M Find p ∈ H 1(I ) and γ ∈ L∞(I ), 2π− periodic such that

∫ 2π

0
h3p′ξ ′ =

∫ 2π

0
hγ ξ ′, ∀ξ ∈ H 1(I ), (34)

p ≥ 0, H(p) ≤ γ ≤ 1 a.e. in I (35)
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and
∫ 2π

0
p = a (a > 0). (36)

Equation (36) is a load condition introduced to have uniqueness of the solution p.
The numerical method that we apply is based on the property (25) of the second
member hγ in the Eq. (34). Let p0 be the solution of he linear problem:

d

dx
(h3 dp0

dx
) = dh

dx
in Ω,

p0(0) = p0(2π)

and
∫ 2π

0
p0 = a (a > 0).

Let a0 and b0 be two points in the interval [0, 2π ] satisfying π < a0 < b0, p′
0(a0) =

0 (modulo 2π ) and p0(b0) = 0. Let us set

g1(x) = h(x)+ (h(a0)− h(x))χ(a0, b0),

where χ(a0, b0) is the characteristic function of interval [a0, b0]. We consider the
problem:

Find p1 ∈ V1 such that

∫ 2π

0
h3p′

1(x)ξ
′(x)dx =

∫ 2π

0
g1(x)ξ

′(x)dx, ∀ξ ∈ V1 (37)

and
∫ 2π

0
p1 = a, (38)

where V1 = {ξ ∈ H 1(I ), ξ is 2π − periodic}.
Proposition 1 There exist π < a1 < a0 and b1 > b0 (modulo 2π ) such that
p′

1(a1) = 0, p1(b1) = 0 and the solution p1 is an increasing function in the interval
[a1, b1].
Suppose that for n ∈ N there exist two points an and bn such that π < an < bn
(modulo 2π ) and pn is an increasing function on the interval [An, bn] with p′

n(an) =
0 and pn(bn) = 0. Let us set

gn+1(x) = h(x)+ (h(an)− h(x))χ(an, bn)
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and let us consider the variational problem:

Find pn+1 ∈ V1 such that

∫ 2π

0
h3p′

n+1(x)ξ
′(x)dx =

∫ 2π

0
gn+1(x)ξ

′(x)dx, ∀ξ ∈ V1 (39)

and

∫ 2π

0
pn+1 = a. (40)

Proposition 2 There exist π < an+1 < an and bn+1 > bn (modulo 2π ) such that
p′
n+1(an+1) = 0, pn+1(bn+1) = 0 and the solution pn+1 is an increasing function

on [an+1, bn+1].
We thus construct a decreasing, minimized sequence (an)n≤0 and a growing
sequence (bn)n≤0 (Modulo 2π ). Then we obtain the following main result:

Theorem 3 The sequence (pn)n≥0 converges uniformly towards the solution p of
the free boundary problem M .

As an example, we show in Fig. 6 the evolution of the sequence (pn)n≥0 for a
separation function h(x) = 1 + 0.7 cos(x) and a mass constant a = 0.5.

3.2 Approximation of the Elrod-Adams Problem

In this section we extend the above method to the general problem (30). Let q ∈ Va
be the solution of the variational equation

∫

Ω

h3∇q∇ξ =
∫

Ω

hξx, ∀ ξ ∈ V0. (41)

The solution q exists and is unique moreover q ∈ C1,α(Ω) for some α > 0 (see
[23]). We prove that this solution q satisfies the following conservation condition of
load with respect to the variable y:

∫ 2π

0
h3(x)q(x, y)dx = pay, ∀y ∈ (0, 1). (42)

We begin by approaching the problem by the line method. We Discretize the interval
[0, 1] in N equal parts yi = iΔy, (i = 0, 1, . . . , N+1) of equal step Δy = 1/N .
The space V0 is approximated by a finite dimension subspace of linear functions
with respect to the variable y on each interval (yi, yi+1). By setting qi(x) =
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Fig. 6 Pressure evolution

qN(x, yi), (i = 1, . . . , N) we obtain the solution of Eq. (42) for the resolution of
the following system:

∫ 2π

0
h3q ′iξ ′ +

2

Δy2

∫ 2π

0
h3qiξ =

∫ 2π

0
hξ ′ + 1

Δy2

∫ 2π

0
h3[qi+1+qi−1]ξ, (43)

∫ 2π

0
h3qi = ipay

∫ 2π

0
h3, (i = 1, . . . , N) (44)

and

q0(x) = 0, qN+1(x) = pa. (45)

We apply Gauss-Seidel’s iterative method to solve the system (43)–(45). We start
with q0

i (x) = paiΔy (i = 0, 1, . . . , N + 1) and for k = 1, 2, . . ., we solve the
system:



On Some Mathematical Models Arising in Lubrication Theory 373

∫ 2π

0
h3qk

′
i ξ

′ + 2

Δy2

∫ 2π

0
h3qki ξ =

∫ 2π

0
hξ ′ + 1

Δy2

∫ 2π

0
h3[qk−1

i+1 + qki−1]ξ,
(46)∫ 2π

0
h3qki = ipay

∫ 2π

0
h3, (i = 1, . . . , N) (47)

and

qk0 (x) = 0, qkN+1(x) = pa. (48)

To compute an approximation of the solution of the problem (30), we apply a
combination of the above Gauss-Seidel method and the method presented in the
previous section related to the one-dimensional case. For this, we take q0

i (x) =
q(x, yi), (i = 1, . . . , N), where q is the solution of the system (46)–(48) and for
k = 1, 2, . . ., we solve the system:

∫ 2π

0
h3qk

′
i ξ

′ + 2

Δy2

∫ 2π

0
h3qki ξ =

∫ 2π

0
hk−1ξ

′ + 1

Δy2

∫ 2π

0
h3[qk−1

i+1 + qki−1]ξ,
(49)∫ 2π

0
h3qki = ipay

∫ 2π

0
h3, (i = 1, . . . , N) (50)

and

qk0 (x) = 0, qkN+1(x) = pa, (51)

where hk−1(x) = h(x) + (h(ak−1) − h(x))χ([ak−1, bk−1]), with ak−1 ∈ (π, 2π)
and bk−1 > ak−1 (modulo 2π ) such that (qk−1

i )′(ak−1) = 0, qk−1
i (bk−1) = 0 and

qk−1
i is an increasing function on the interval (ak−1, bk−1). Here χ([ak−1, bk−1]) is

the characteristic function of interval [ak−1, bk−1].
Let us set

Wi = {ξ ∈ H 1(0, 2π), ξ 2π -periodic and

∫ 2π

0
h3ξ = ipay

∫ 2π

0
h3}

and W = W1 × . . . ×WN endowed with norm ‖U‖ = max1≤i≤N ‖Ui‖i . We have
stated in [28] the following proposition:

Proposition 3 There exist q∗ = (q∗1 , . . . , q∗N) ∈ W and h∗ = (h∗1, . . . , h∗N) ∈
(L∞(0, 2π))N such that

qk ⇁ q∗ weakly in W (52)

and

hk → h∗ weakly-* in (L∞(0, 2π))N . (53)
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Fig. 7 Initial and final pressure by method (49)–(50)

We consider in the following example the function h(x) = 1 + 0.9 cos(x) and
a power supply pa = 0.1. For each iteration k we compute the relative error
|qk − qk−1 |

|qk | . Here |. | denotes the norm of the space L2(Ω) (Figs. 7 and 8).

3.3 Elasto-Hydrodynamic Problem

In several devices used in mechanical engineering, elastic cushions are used and
high pressures can cause deformations of the pad. Therefore an additional variable
is added to the problem and the separation function is in this case written as

h(x, y) = h0(x)+ w(x, y),

where h0(x) is the initial separation and w(x, y) is a function that represents the
deformation of the pad. This function satisfies the classical equation of deformable
plates (see [14])



On Some Mathematical Models Arising in Lubrication Theory 375

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 8 Evolution of the relative error ‖qk−qk−1‖
‖qk‖

ηΔ2w = p in Ω, (54)

where p is the pressure and η a parameter that represents the elasticity of the pad.
The following boundary conditions are also considered

w = Δw = 0 on Γ0 ∪ Γ1, w and Δw 2π -periodic. (55)

These conditions have been introduced in [8] in order to guarantee the positivity of
the deformation w. To solve (54)–(55) we propose the following mixed formulation
applied in [19]:

−Δψ = p in Ω, (56)

ψ = 0 on Γ0 ∪ Γ1, ψ 2π -periodic, (57)

− ηΔw = ψ in Ω (58)

and

w = 0 on Γ0 ∪ Γ1, w 2π -periodic. (59)

In addition to the spaces introduced in (28) and (29), we define the set

M0 = {ϕ ∈ H 2(Ω) : ϕ = Δϕ = 0 on Γ0 ∪ Γ1, ϕ and Δϕ 2π -periodic}.

A general formulation of the elasto-hydrodynamic coupled problem is given by:
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Find (p, θ, ψ,w) ∈ H 1(Ω)× L∞(Ω)×M0 ×M0 such that

∫

Ω

h3∇p∇ξ =
∫

Ω

hθξx, ξ ∈ V0, (60)

θ ∈ H(p), h = h0 + w, p ∈ Va, (61)

∫

Ω

∇φ∇ϕ =
∫

Ω

pϕ, ∀ϕ ∈ M0 (62)

and

η

∫

Ω

∇w∇ϕ =
∫

Ω

φϕ, ∀ϕ ∈ M0. (63)

Equations (60)–(61) represent the hydro-dynamic part and (62)–(63) the elastic one.
The solution of (60)–(63) is approximated by an iterative method which consists

in decoupling the hydro-dynamic and elastic parts of the system:

• Start the algorithm with initial values p0, θ0, w0.
• At each step n and for a given thickness function hn−1, we compute the solution

pn, θn of the problem (60)–(61).
Then we solve successively the linear problems (62) and (63).

• We update the thickness function with the formula hn = h0 + wn and return in
the next step.

By the principle of the low maximum taking into account the boundary conditions
we show that wn ≥ 0. It is shown that the sequences (pn)n≥0, (θn)n≥0 and (wn)n≥0
are bounded in their respective spaces and by applying the compactness arguments
we prove their convergences (see [24]).

We apply a variant of the algorithm introduced in (49)–(50). The separation in
this case is a function of two variables x and y. Starting from q0

i (x) = paiΔy, ∀i =
0, 1, . . . , N + 1, at each step k we solve the system

∫ 2π

0
h3
i q

k′
i ξ

′ + 1

2Δy2

∫ 2π

0

(
h3
i+1 + 2h3

i + h3
i−1

)
qki ξ (64)

=
∫ 2π

0
hk−1
i ξ ′ + 1

2Δy2

∫ 2π

0
[(h3

i + h3
i+1

)
qk−1
i+1 + (

h3
i + h3

i−1

)
qki−1]ξ, (65)

∫ 2π

0
h3qki = ipay

∫ 2π

0
h3, (i = 1, . . . , N) (66)

and

q0(x) = 0, qN+1(x) = pa. (67)
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Fig. 9 Pressure p and the separation for a parameter η = 1000

as in (49)–(50) we take hk−1
i (x) = hi(x) + (hi(ak−1) − hi(x))χ([ak−1, bk−1]),

where ak−1 and bk−1 are two points in the interval (π, 2π) satisfying bk−1 > ak−1
(modulo 2π ), (qk−1

i )′(ak−1) = 0, qk−1
i (bk−1) = 0 and qk−1

i is an increasing
function in (ak−1, bk−1). Here χ([ak−1, bk−1]) is the characteristic function of
[ak−1, bk−1].

We apply the Gauss-Seidel method to solve the systems (62) and (63). So for a
pressure (pi)0≤i≤N+1, obtained by (64)–(67), one solves successively

∫ 2π

0
φk

′
i ϕ

′ + 2

Δy2

∫ 2π

0
φki ϕ =

∫ 2π

0
piϕ

′ + 1

Δy2

∫ 2π

0
[φk−1

i+1 + φki−1]ϕ, (68)

φ0(x) = 0, φN+1(x) = 0, (69)

η

∫ 2π

0
wk′
i ϕ

′ + 2η

Δy2

∫ 2π

0
wk
i ϕ =

∫ 2π

0
φiϕ

′ + η

Δy2

∫ 2π

0
[wk−1

i+1 +wk
i−1]ϕ (70)

and

w0(x) = 0, wN+1(x) = 0. (71)

Here the test function ϕ belongs to H 1(0, 2π) and is 2π -periodic.
We present in Figs. 9 and 10 the numerical simulations of the pressure and the

deformation for a rigid device which corresponds to a coefficient η = 1000 and then
for a device which corresponds to a coefficient η = 0.01.

4 The Evolution Free Boundary Problem

The free evolution boundary problem is based on a mathematical formulation in the
domainQ = [0, T ]×Ω with T > 0 andΩ = [0, 2π ]×[0, 1]. The device is supplied
across the border Σa = [0, 2π ] × {1} × [0, T ] where we suppose p = pa > 0. We
put p = 0 on the boundary Σ0 = [0, 2π ] × {0} × [0, T ] (Fig. 11).
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Fig. 11 The domain Q
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In the part occupied by the fluid, the pressure satisfies the dynamic equation of
Reynolds:

∂h

∂t
− div(h3∇p) = −∂h

∂x
and γ = 1 if p > 0. (72)

The saturation function γ satisfies the following conservation law in the cavitation
area:

∂(hγ )

∂x
+ ∂(hγ )

∂t
= 0 and 0 ≤ γ ≤ 1 if p = 0. (73)

On the free boundary Σ = [p = 0] ∩ [p > 0], we take p = 0 and the flux satisfies
the conservation condition:

h3 ∂p

∂n
= (1 − γ )h cos(n, i), (74)

where n is the unit normal vector at the free boundary and (n, i) the angle between
n and the unit vector i. The function h(x, y, t) represents the separation between the
surfaces. We suppose that h ∈ C∞(Q) is periodic in x and satisfies

h(x, y, 0) = h(x, y, T ), ∀(x, y) ∈ (0, 2π)× (0, 1).
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The strong formulation above can be supplemented by considering an initial value
for γ . Let p0 ∈ L2(Ω) with p0 ≥ 0 and let γ0 ∈ H(p0) (see formula (33)). The
following weak formulation of the problem is given:

Problem P

Find (p, γ ) ∈ L2(0, T ;H 1(Ω))× L∞(Q) such that

p ≥ 0, γ ∈ H(p) a.e. in Q, (75)

−
∫

Q

hγ ξt +
∫

Q

h3∇p∇ξ =
∫

Q

hγ ξx +
∫

Ω

h(., ., 0)γ0ξ(., ., 0), (76)

∀ξ ∈ H 1(Q) 2πx-periodic, ξ(x, y, T ) = 0 a.e. in Ω, ξ = 0 on Σ0 ∪Σa

and

p = 0 on Σ0, p = pa on Σa. (77)

4.1 Existence, Uniqueness and Continuity of the Solution

Theorem 4 Problem P has a unique solution (p, γ ) ∈ L2(0, T ;H 1(Ω)) ×
L∞(Ω).

The proof of this result is given in [1, 25]. It is based on classical elliptic
regularization techniques. The function of HeavisideH is approximated by a regular
function and the related regularized problem is studied. A priori estimates are stated
by applying compactness arguments and we obtain the convergence to the solution
of the problem P .

To complete the study of the problem, we established in [25] the following
monotonic property of hγ :

Theorem 5 Let (p, γ ) be the solution of P and χ the characteristic function of
the set [p > 0], then

(
hγ

)
t
+ (

hγ
)
x1

− (hx1 + ht )χ ≥ 0.

We use this theorem to demonstrate the following strong continuity of γ :

Theorem 6 Let (p, γ ) be the solution of problem P , then

hγ ∈ C0([0, T ], Lq(Ω)), ∀q ∈ [1,∞).

The main result established in [25] concerns the uniqueness of the solution of the
problem P . To state this result we have first demonstrated the following comparison
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result which makes it possible to compare tow solutions of P when we can compare
their initial values and their values on the boundary Σa . Concretely, if (p1, γ1) and
(p2, γ2) are two pairs satisfying

(pi, γi) ∈ L2(0, T ,H 1(Ω))× L∞(Q), pi is 2π -periodic, (78)

pi ≥ 0, γi ∈ H(pi) a.e. in Q, (79)

−
∫

Q

hγiξt +
∫

Q

h3∇pi∇ξ =
∫

Q

hγiξx, ∀ξ ∈ V, (80)

pi |Σa = pia, pi |Σ0 = 0 (81)

and

p1
a ≤ p2

a on Σa and γ1(., 0) ≤ γ2(., 0) a.e. Ω. (82)

Theorem 7 Let (pi, γi)(i = 1, 2) be two pairs such that (78)–(82) hold, then for
all ξ ∈ D+(0, 1) we have

∫

Q

h3 ∂(p1 − p2)
+

∂y
ξ ′dxdydt ≤ 0

and then

p1 ≤ p2 a.e. in Q.

Theorem 8 Let (pi, γi)(i = 1, 2) be two pairs such that (78)–(82) hold, then

∫

Q

h(γ1 − γ2)
+(ξt + ξx)dxdydt = 0

for all ξ ∈ H 1(Q) 2π -periodic and ξ(x, y, 0) = ξ(x, y, T ) = 0 a.e. in Ω .

From theses results we obtain finally the uniqueness of the solution of prob-
lem P:

Theorem 9 There exist a unique solution (p, γ ) of problem P .

See [25] for details.
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4.2 A Semi-Discretised Euler Scheme

We applied in [27] an implicit Euler scheme to discretize time variable of problem
P . For a step τ = T/N we consider the family of discretized problems:

Problem Pn

Find (pn, γn) ∈ H 1(Ω)× L∞(Ω) such that

∫

Ω

h3∇pn∇ξ + 1

τ

∫

Ω

hγnξ −
∫

Ω

hγnξx = 1

τ

∫

Ω

hγn−1ξ, ∀ξ ∈ V0, (83)

pn ∈ Va, pn ≥ 0 (84)

and

γn ∈ H(pn). (85)

By applying the elliptic regularization techniques, we show the existence of
solution for problem Pn. It is then shown that the sequences of solutions (pn)n≥0
and (γn)n≥0 are bounded in their spaces respectively. Then by the compactness
arguments one obtains the weak convergences of the two sequences. Nevertheless,
these weak convergences are insufficient to reach the limit in the nonlinear term
of (83). A monotonic property of these sequences has been established for this
purpose:

Let be (p1, γ1) and (p2, γ2) such that

(pi, γi) ∈ H 1(Ω)× L∞(Ω), (86)

1

τ

∫

Ω

hγiξ +
∫

Ω

h3∇pi∇ξ −
∫

Ω

hγiξx = 1

τ

∫

Ω

hfiξ, ∀ξ ∈ V0, (87)

pi ≥ 0, H(pi) ≤ γi ≤ 1, a.e. in Ω (88)

and

fi ∈ L∞(Ω)(i = 1, 2). (89)

Then we have

Theorem 10 For all ξ ∈ D(0, 1) such that ξ ≥ 0 a.e. in (0, 1) we have

∫

Ω

h3(x)(p1 − p2)
+ξ ′′dxdy ≥ −1/τ

∫

Ω

h(f1 − f2)χ([p1 > p2])ξ(y)dxdy
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and then

f1 ≤ f2 a.e. in Ω 2⇒ p1 ≤ p2 a.e. in Ω

Theorem 11 For all n ∈ N we have

pn ≤ pn+1

moreover if γn−1 ≤ γn−2 a.e. in Ω then

pn = pn−1 and γn ≤ γn−1a.e. in Ω.

We get finally

Corollary 1 If γ0 = 1 a.e. in Ω then pn = p1, ∀n ≥ 1 and the sequence (γn)

converges to some limit (γ∗)in L∞(Ω).

The condition γ0 = 1 means that the bearing is full and there is no cavitated
region. It seems natural to take this as an initial value. By other hand, convergence
of the sequences (pn)n≥0 and (γn)n≥0 does not depend on the parameter τ . This
property is very important for the numerical approach of the problem.

For the numerical simulation of the problem Pn we apply a duality method
introduced in [9] in the context of variational inequalities. To do this, we introduce
the multiplier βn = γn − ωpn and the problem is written as:

Find (pn, βn) ∈ H 1(Ω)× L∞(Ω) such that

∫

Ω

h3∇pn∇ξ + ω

τ

∫

Ω

hpnξ − ω

∫

Ω

hpnξx = 1

τ

∫

Ω

hβnξ

+
∫

Ω

hβnξx + 1

τ

∫

Ω

hγn−1ξ, (90)

pn ∈ Va, pn ≥ 0 (91)

and

βn ∈ H(pn)− ωpn. (92)

In [9], the following equivalence is stated:

βn ∈ H(pn)− ωpn ≡ βn = Hω
λ (pn + λβn), (93)

where Hλ
ω is the Yosida approximation of operator H − ωI .
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We start the iterations with p0
n = pn−1 and β0

n = βn−1 −ωpn−1. At each step

• The multiplier is updated by β
j
n = Hω

λ (p
j−1
n + λβ

j−1
n )

• We solve the equation
∫

Ω

h3∇pjn∇ξ + ω

τ

∫

Ω

hp
j
nξ − ω

∫

Ω

hp
j
nξx = 1

τ

∫

Ω

hβ
j
nξ

+
∫

Ω

hβ
j
nξx + 1

τ

∫

Ω

hγn−1ξ. (94)

At each step, the error |βjn − β
j−1
n |∞ is given (Figs. 12 and 13).
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On the Spectrum of a Nonlinear Two
Parameter Matrix Eigenvalue Problem

Michael Gil’

1 Introduction and Statement of the Main Result

The present paper is concerned with the problem

T1v1 = (λ1A11 + λ2A12 + λ1λ2A13)v1, (1.1)

T2v2 = (λ1A21 + λ2A22 + λ1λ2A23)v2, (1.2)

where λ1, λ2 ∈ C; vp ∈ Cnp ; Tp,Apj ∈ Cnp×np (p = 1, 2; j = 1, 2, 3).
Denote problem (1.1), (1.2) by Λ. If for some λ1, λ2 problem Λ has a solution

v1 �= 0 and v2 �= 0, then the pair λ = (λ1, λ2) and (v1, v2) is called the eigenvalue of
Λ and eigenvector corresponding to λ, respectively. Besides, λ1 and λ2 are the first
coordinate and second one of λ. The set of all the eigenvalues of Λ is the spectrum
and is denoted by Σ(Λ); the set of all the p-th coordinates (p = 1, 2) is denoted by
σp(Λ). So Σ(Λ) is the pair (σ1(Λ), σ2(Λ)). In the general case, Σ(Λ) can be an
infinite set.

Multiparameter eigenvalue problems (linear and nonlinear) arise in numerous
applications, cf. [8, 9, 14, 17]. The classical results on that problem can be found in
the books [1, 16]. For some recent presentations of multiparameter spectral theory
problems we refer the interested reader to [13, 14, 18, 19]. Problem (1.1), (1.2)
has been deeply investigated in the paper [17] in connection with stability theory
of delay-differential equations. In [17] it was also shown that a wide class of
polynomial two parameter problems can be reduced to problem (1.1), (1.2).
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In the present paper we estimate the quantity r
(p)
s (Λ) = max{|s| : s ∈ σp(Λ)},

which will be called the spectral radius, corresponding to σp(Λ). To the best of
our knowledge, bounds for the spectral radius have been obtained only in the case
of linear two parameter eigenvalue problems, cf. [6, 7, 12, 24]. We also investigate
perturbations of the considered problem and extend the Gershgorin type bounds for
spectra to problem (1.1), (1.2).

Although problem (1.1), (1.2) can be reduced to a linear problem, cf. [14, 22] and
references given therein, in appropriate situations it is preferable do not linearize it,
since the linearization leads to large-dimensional matrices. In addition, nonlinear
problems with “good” matrices, such as such as selfadjoint, unitary or diagonally
dominant ones, are reduced to linear problems which do not have these properties.
Because of this we do not linearize the considered problem.

Put

Kp = A13 ⊗ A2p − A1p ⊗ A23 (p = 1, 2),

Z11 = T1 ⊗A23 −A13 ⊗T2 −A11 ⊗A22 +A12 ⊗A21, Z12 = T1 ⊗A22 −A12 ⊗T2,

(1.3)

where ⊗ means the Kronecker product, cf. [15]. Similarly,

Z21 = T1 ⊗A23 −A13 ⊗T2 −A12 ⊗A21 +A11 ⊗A22, Z22 = T1 ⊗A21 −A11 ⊗T2.

(1.4)

Our main tool in this paper is the norm estimate for the operator inverse to Kp.
Introduce the notations. Let Cn be the complex n-dimensional Euclidean space

with a scalar product (., .), the Euclidean norm ‖.‖ = √
(., .) and the unit matrix I .

For a linear operator A in Cn (matrix), ‖A‖ = maxx∈Cn ‖Ax‖/‖x‖ is the spectral
(operator) norm, A∗ is the adjoint operator, ‖A‖F is the Frobenius norm: ‖A‖2

F =
tr(A∗A), σ(A) denotes the spectrum, λk(A) (k = 1, . . . , n) are the eigenvalues
with their multiplicities, A−1 is the inverse operator, and Rλ(A) = (A − λI)−1

(λ �∈ σ(A)) is the resolvent, rs(A) denotes the upper spectral radius and rlow(A)

denotes the lower spectral radius: rlow(A) := mink |λk(A)|.
By Schur’s theorem [21, Section I.4.10.2], for any operator A in Cn, there is

an orthogonal normal basis (Schur’s basis) {ek}nk=1 in which A is represented by a
triangular matrix:

Aek =
k∑

j=1

ajkej with ajk = (Aek, ej ) (j = 1, . . . , n),

and ajj = λj (A). So A = DA + VA (σ(A) = σ(DA)) with a normal (diagonal)
matrix DA defined by DAej = λj (A)ej (j = 1, . . . , n) and a nilpotent (strictly
upper-triangular) matrix VA defined by

VAek =
k−1∑

j=1

ajkej (k = 2, . . . , n), VAe1 = 0.
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As it is well-known the Schur basis is not unique. Let |A| mean the operator, whose
entries in some its Schur basis {ek} are the absolute values of the entries of operator
A in that basis. That is,

|A|ek =
k∑

j=1

|ajk|ej (j = 1, . . . , n).

We will call |A| the absolute value of A with respect to its Schur basis {ek}. The
smallest integer νA ≤ n, such that |VA|νA = 0 will be called the nilpotency index
of A.

Denote

g0(Kp) := 1√
2
‖K∗

p −Kp‖F (p = 1, 2).

It is simple to see that

‖K∗
1 −K1‖F ≤ ‖A13 − A∗

13‖F ‖A21‖F + ‖A23 − A∗
23‖F ‖A11‖F

+‖A13‖F ‖A21 − A∗
21‖F + ‖A23‖F ‖A11 − A∗

11‖F .
Similarly ‖K∗

2 −K2‖F can be estimated. In addition, put

γ0(Kp) :=
νKp−1∑

j=0

g
j

0 (Kp)√
j !rj+1

low (Kp)
.

In the next section we show that γ0(Kp) gives us the bound for the norm of K−1
p .

Obviously, νKp < n1n2. So we can write

γ0(Kp) ≤
n1n2−1∑

j=0

g
j

0 (Kp)√
j !rj+1

low (Kp)
.

Below we show that under additional conditions that inequality can be improved.
If all the operators Ajk are Hermitian, then g0(Kp) = 0 (p = 1, 2) and therefore,
γ0(Kp) = 1/rlow(Kp).

Now we are in a position to formulate the main result of this paper.

Theorem 1 Let rlow(Kp) > 0. Then

r
(p)
s (Λ) ≤ 1

2
γ0(Kp)‖Zp1‖+

(
1

4
γ 2

0 (Kp)‖Zp1‖2 + γ0(Kp)‖Zp2‖
)1/2

(p = 1, 2).

(1.5)

This theorem is proved in the next section.
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If all the operators Ajk are Hermitian, then as it was above mentioned, γ0(Kp) =
1/rlow(Kp). In this case

r
(p)
s (Λ) ≤ ‖Zp1‖

2rlow(Kp)
+

(
‖Zp1‖2

4r2
low(Kp)

+ ‖Zp2‖
rlow(Kp)

)1/2

. (1.6)

Below we discuss the sharpness of Theorem 1.

2 Proof of Theorem 1

For an A ∈ Cn×n put

g(A) :=
(

‖A‖2
F −

n∑

k=1

|λk(A)|2
)1/2

.

Usually g(A) is called the measure of nonnormality. It was introduced by Henrici
in 1962, cf. [2, p. 102].

The following relations are checked in [10, Section 2.1]:

g2(A) ≤ ‖A‖2
F − |tr (A2)|, (2.1)

g(A) ≤ 1√
2
‖A− A∗‖F . (2.2)

If matrices A1 and A2 have a joint Schur’s basis, then g(A1+A2) ≤ g(A1)+g(A2).
In addition, by the inequality between the geometric and arithmetic mean values,

(
1

n

n∑

k=1

|λk(A)|2)n ≥ (

n∏

k=1

|λk(A)|)2.

Hence,

g2(A) ≤ ‖A‖2
F − n(det(A))2/n. (2.3)

Lemma 1 For any A ∈ Cn×n one has

‖(A− λI)−1‖ ≤
νA−1∑

j=0

gj (A)√
j !ρj+1(A, λ)

(λ �∈ σ(A)),

where ρ(A, λ) = mink |λ− λk(A)|.
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For the proof see [12, Lemma 2.2]. The later lemma implies

‖K−1
p ‖ ≤ γ (Kp), (2.4)

where

γ (Kp) :=
νKp−1∑

j=0

gj (Kp)√
j !rj+1

low (Kp)
.

Due to (2.2) g(Kp) ≤ 1√
2
‖Kp −K∗

p‖F = g0(Kp), and, consequently,

‖K−1
p ‖ ≤ γ0(Kp). (2.5)

Furthermore, we need the following result proved in [17, Theorem 3].

Theorem 2 If (λ1, λ2) is a solution of (1.1), (1.2) with corresponding eigenvector
(v1, v2), then: λ1 is an eigenvalue of the problem

[λ2
1(A13 ⊗A21 −A11 ⊗A23)+λ1(T1 ⊗A23 −A13 ⊗T2 −A11 ⊗A22 +A12 ⊗A21)

(2.6)
+T1 ⊗ A22 − A12 ⊗ T2](v1 ⊗ v2) = 0

and λ2 is an eigenvalue with of the problem

[λ2
2(A13 ⊗A22 −A12 ⊗A23)+λ2(T1 ⊗A23 −A13 ⊗T2 −A12 ⊗A21 +A11 ⊗A22)

(2.7)
+T1 ⊗ A21 − A11 ⊗ T2](v1 ⊗ v2) = 0.

To finish the proof of Theorem 1 rewrite Eqs. (2.6), (2.7) as

[λ2
pKp + λpZp1 + Zp2](v1 ⊗ v2) = 0 (p = 1, 2). (2.8)

Hence it follows

|λp|2 ≤ |λp|‖K−1
p Z11‖ + ‖K−1

p Zp2‖

and therefore

|λp| ≤ 1

2
‖K−1

p Zp1‖ + (
1

4
‖K−1

p Zp1‖2 + ‖K−1
p Zp2‖)1/2. (2.9)

Now (2.5) implies the required result. Q.E.D.
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Remark 1 Consider the problem

T1v1 = λ1

m∑

k=0

λk2B1kv1 +
m∑

k=1

λk2C1kv1, (2.10)

T2v2 = λ1

m∑

k=0

λk2B2kv1 +
m∑

k=1

λk2C2kv2, (2.11)

where Bpj , Cpj ∈ Cnp×np (p = 1, 2; j = 1, 2, 3). That problem plays an
essential role in the theory of differential equations with several delays; as it is
shown in [17, Theorem 4], by Theorem 2 problem (2.10), (2.11) can be reduced to
the problem

[T1 ⊗ B20 − B10 ⊗ T2 +
m∑

k=1

λk2(T1 ⊗ B2k − B1k ⊗ T2 − C1k ⊗ B20 + B10 ⊗ C2k)

+
m∑

j,k=1

λ
k+j
2 (B1k ⊗ C2j − C1k ⊗ B2j )](v1 ⊗ v2).

3 Matrices with Joint Schur Basis

We will say that two operators are simultaneously triangularizable if they can be
reduced to the triangular form by the same unitary operator. That is, they have a joint
Schur basis. In this section we considerably improve Theorem 1 in the case when the
matrices simultaneously triangularizable. In appropriate situations given problems
can be considered as perturbations of problems with triangularizable matrices.

Throughout this section it is supposed that

A1p and A13 are simultaneously triangularizable, as well as
(3.1)

A2p and A23 are simultaneously triangularizable (p = 1, 2).

An important example of Kp under condition (3.1) is the Kronecker sum A1 ⊗ I +
I ⊗ A2. It should be noted that the Kronecker sum plays an essential role in the
theory of matrix equations. For more details on matrix and operator equations see
[3] and references given therein.

Simple calculations show that the eigenvalues of Kp are

λst (Kp) = λs(A13)λt (A2p)− λs(A1p)λt (A23) (s = 1, . . . , n1; t = 1, . . . , n2),

(3.2)
provided condition (3.1) holds. Again it is assumed that
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rlow(Kp) = min
t,s

|λst (Kp)| > 0 (p = 1, 2). (3.3)

Put

ĝ(Kp) := (τ2p + g(A2p))g(A13)+ τ(A13)g(A2p)+ (τ (A23)+ g(A23))g(A1p)

+τ(A1p)g(A23),

where

τ(A) := (

n∑

k=1

|λk(A)|2)1/2 (A ∈ Cn×n).

It is clear that

τ(A) ≤ rs(A)
√
n and τ(A) ≤ ‖A‖F . (3.4)

Theorem 3 Let conditions (3.1) and (3.3) hold. Then

νKp ≤ n1 + n2 + min{n1, n2} − 2 (3.5)

and ‖K−1
p ‖ ≤ γ̂ (Kp), where

γ̂ (Kp) :=
νKp−1∑

j=0

ĝj (Kp)√
j !rj+1

low (Kp)
. (3.6)

This result is a direct application of Theorem 3 from [12]. Theorems 1 and 3 imply

Corollary 1 Let conditions (3.1) and (3.3) hold. Then

r
(p)
s (Λ) ≤ 1

2
γ̂ (Kp)‖Zp1‖ +

(
1

4
γ̂ 2(Kp)‖Zp1‖2 + γ̂ (Kp)‖Zp2‖

)1/2

.

Recall that g(A) = 0 if A is normal. In particular cases, inequality (3.5) can be
improved. Namely, the following two lemma are valid.

Lemma 2 Under condition (3.1), let one of the following conditions hold: either
operators A13 and A2p are normal, or operators A1p and A23 (p = 1, 2) are
normal. Then νKp ≤ n1 + n2 − 1.

This result is due to Lemma 3.5 from [12].

Lemma 3 Let condition (3.1) hold. Assume, in addition, that A13 and A1p (p =
1, 2) are normal. Then νKp ≤ n2.

Similarly, if under condition (3.1) A2p and A23 are normal, then νKp ≤ n1.

This result is due to Lemma 3.6 from [12].
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4 Bounds Via Determinants

In this section we suggest a bound for the spectral radius via the corresponding
determinant. In appropriate situations it can be more convenient than Theorem 1.

We need the following simple result: let A be an invertible n× n-matrix. Then

‖A−1 det A‖ ≤ ‖A‖n−1
F

(n− 1)(n−1)/2
(4.1)

and

‖A−1 det A‖ ≤ ‖A‖n−1. (4.2)

For the details see Corollary 3.2 from [11].
From (4.1) it follows

‖K−1
p ‖ ≤ θF (Kp) (4.3)

where

θF (Kp) := ‖Kp‖n1n2−1
F

(n1n2 − 1)(n1n2−1)/2| det Kp| .

Note that

‖K1‖F ≤ ‖A13‖F ‖A21‖F + ‖A11‖F ‖A23‖F .

Similarly ‖K2‖F can be estimated. Moreover, (4.2) implies

‖K−1
p ‖ ≤ θ2(Kp), (4.4)

where

θ2(Kp) := ‖Kp‖n1n2−1

| det Kp| .

Making use inequality (2.9) from (4.3) and (4.4), we get

Lemma 4 Let det(Kp) �= 0 (p = 1, 2). Then

r
(p)
s (Λ) ≤ 1

2
θF (Kp)‖Zp1‖ +

(
1

4
θ2
F (Kp)‖Zp1‖2 + θF (Kp)‖Zp2‖

)1/2

(4.5)
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and

r
(p)
s (Λ) ≤ 1

2
θ2(Kp)‖Zp1‖ +

(
1

4
θ2

2 (Kp)‖Zp1‖2 + θ2(Kp)‖Zp2‖
)1/2

. (4.6)

This lemma enables us to consider perturbations of problem (1.1), (1.2).

5 Perturbation of Problem (1.1), (1.2)

Together with problem Λ defined by (1.1), (1.2) consider the problem

T̃1x = (λ̃1Ã11 + λ̃2Ã12 + λ̃1λ̃2A13)ṽ1, (5.1)

T̃2y = (λ̃1A21 + λ̃2A22 + λ̃1λ̃2A23)ṽ2, (5.2)

where λ̃1, λ̃2 ∈ C; ṽ1 ∈ Cn1, ṽ2 ∈ Cn2 ; T̃1, Ã1j ∈ Cn1×n1 and T̃2, Ã2j ∈
Cn2×n2 (j = 1, 2, 3). Put

K̃p = Ã13 ⊗ Ã2p − Ã1p ⊗ Ã23 (p = 1, 2),

and define Z̃pk by (1.3), (1.4) replacing Tp,Apk by T̃p, Ãpk .
Let us estimate θF (K̃p) and θ2(K̃p). To this end recall the following well-known

inequality [2, p. 107]:

| det A− det Ã| ≤ nMn−1
2 (A, Ã)‖A− Ã‖ (A, Ã ∈ Cn×n), (5.3)

where M2(A, Ã) := max{‖A‖, ‖Ã‖}. Consequently,

| det Ã| ≥ | det A| − nMn−1
2 (A, Ã)‖A− Ã‖.

Hence,

| det K̃p| ≥ | det Kp| − n1n2M
n1n2−1
2 (Kp, K̃p)‖Kp − K̃p‖ > 0, (5.4)

provided

| det Kp| > n1n2M
n1n2−1
2 (Kp, K̃p)‖Kp − K̃p‖. (5.5)

Thus,

θ2(K̃p) = ‖K̃p‖n1n2−1

| det K̃p|
≤ θ̂2(K̃p,Kp),
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where

θ̂2(K̃p,Kp) := ‖K̃p‖n1n2−1

| det Kp| − n1n2M
n1n2−1
2 (Kp, K̃p)‖Kp − K̃p‖

.

Now (4.6) yields

Corollary 2 Let condition (5.5) hold. Then

r
(p)
s (Λ̃) ≤ 1

2
θ̂2(K̃,Kp)‖Z̃p1‖+

(
1

4
θ̂2

2 (K̃p,Kp)‖Z̃p1‖2 + θ̂2(K̃p,Kp)‖Z̃p2‖
)1/2

.

This corollary gives us a bound for the spectral radius of the perturbed problem,
provided the spectral norm of K̃p − Kp is sufficiently small with respect to
| det Kp|. It can be more convenient for applications to the perturbed problem,

than Theorem 1, if we know r
(p)
s (Λ).

The spectral norm is unitarily invariant, but often it is not easy to compute that
norm. To get the perturbation result in the the Frobenius norm we use the inequality

| det A− det Ã| ≤ Δn(A, Ã) (A, Ã ∈ Cn×n),

where

Δn(A, Ã) := nn

2n−1nn/2(n− 1)n−1 ‖A− Ã‖F (‖A− Ã‖F + ‖A+ Ã‖F )n−1,

cf. Corollary 3.4 from [11]. So we have

| det Kp − det K̃p| ≤ Δn1n2(Kp, K̃p) > 0,

and therefore

| det Kp − det K̃p| ≥ | det Kp| −Δn1n2(Kp, K̃p) > 0,

provided

| det Kp| > Δn1n2(Kp, K̃p). (5.6)

Thus,

θF (K̃p) = ‖K̃p‖n1n2−1
F

| det K̃p|
≤ θ̂F (K̃p,Kp),
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where

θ̂F (K̃p,Kp) := ‖K̃p‖n1n2−1
F

| det Kp| −Δn1n2(Kp, K̃p)
.

Now (4.5) yields

Corollary 3 Let condition (5.6) hold. Then

r
(p)
s (Λ̃) ≤ 1

2
θ̂F (K̃p,Kp)‖Z̃p1‖+

(
1

4
θ̂2
F (K̃p,Kp)‖Z̃p1‖2 + θ̂F (K̃p,Kp)‖Z̃p2‖

)1/2

.

This corollary, as the previous one, provides a bound for r(p)s (Λ̃) of the perturbed
problem, provided the Frobenius norm of K̃p−Kp is sufficiently small with respect
to the absolute value of the determinant of Kp. It also can be more convenient for

application to the perturbed problem than Theorem 1, if we know r
(p)
s (Λ).

6 Gerschgorin Type Bounds for Spectra

In this section we derive a simple lower bound for rlow(Kl) and an upper bound for
r
(p)
s (Λ) in the case of diagonally dominant matrices. Our reasonings in this section

are similar to the ones from [20, 23] (see also the references given therein).
Let {ωlk}nlk=1 (l = 1, 2) be an orthonormal basis in Cnl and H = Cn1 ⊗ Cn2 .
Put djk = ω1j ⊗ ω2k . So

x =
∑

1≤j≤n1,1≤k≤n2

xjkdjk (x ∈ H)

with xjk = (x, djk)H . Let M be a bilinear operator in H defined by

Mdjk =
∑

t,s

mtjskdts . (6.1)

Then

Mx =
∑

t,s

∑

j,k

mtjskxjkdts .

Application of the Gerschgorin circle theorem [15] in the considered case implies
the following result.
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Lemma 5 All the eigenvalues of operator M defined by (4.1) lie in the union of the
sets

{z ∈ C : |mttss − z| ≤
∑

j �=t,k �=s
|mtjsk| (1 ≤ j, t ≤ n1, 1 ≤ k, s ≤ n2)}.

We say that M is diagonally-dominant, if the inequality

|mttss | >
∑

j �=t,k �=s
|mtjsk|

holds for all t = 1, . . . , n1; s = 1, . . . , n2.
Now let c(p)tjsk (1 ≤ t, j ≤ n1, 1 ≤ s, k ≤ n2;p = 1, 2) be the entries of Kp

in an orthonormal basis. Assume that Kp is diagonally-dominant. Then due to the
previous lemma we can write

rlow(Kp) ≥ min
1≤t≤n1,1≤s≤n2

(|c(p)ttss | −
∑

j �=t,k �=s
|c(p)tjsk|).

Now let us estimate r(p)s (Λ). To this end we need the following result.

Lemma 6 Let M be defined by (6.1), and P and Q be bilinear operator defined on
H by

Pdjk =
n1∑

t=1

n2∑

s=1

ptjskdts

and

Qdjk =
n1∑

t=1

n2∑

s=1

qtjskdts .

Then all the characteristic values of the pencil M − zP − z2Q lie in the union of
the sets

{z ∈ C : |mttss − zpttss − z2qttss | ≤
∑

j �=t,k �=s
|mtjsk − zptjsk − z2qtjsk|}

(1 ≤ t ≤ n1, 1 ≤ s ≤ n2).

Proof Let x be an eigenvector of the pencil M − zP − z2Q corresponding to a
characteristic value λ: Mx − λPx − λ2Qx = 0 (x = (xjk) ∈ H). We can write
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∑

1≤j≤n1,1≤k≤n2

(mtjsk − λptjsk − λ2qtjsk)xjk = 0 (1 ≤ t ≤ n1, 1 ≤ s ≤ n2).

(6.2)

Hence

|mttss − λpttss − λ2qttss ||xts | ≤
∑

j �=t,k �=s
|mtjsk − λptjsk − λ2qttsk||xjk|.

Deleting by the largest |xts | we have

|mttss − λpttss − λ2qttss |
≤

∑

j �=t,k �=s
|mtjsk − λptjsk − λ2qtjsk| (1 ≤ t ≤ n1, 1 ≤ s ≤ n2), (6.3)

as claimed. Q.E.D.

Assume that

ξts(Q) := min
t,s

(|qttss | −
∑

j �=t,k �=s
|qtjsk|) > 0. (6.4)

That is Q is diagonally dominant. From (6.3), for any characteristic value λ of the
pencil Mx − λPx − λ2Q with r = |λ| we have

r2ξts(Q) ≤ rχts(P )+ χts(M) (1 ≤ t ≤ n1, 1 ≤ s ≤ n2),

where

χts(M) :=
∑

1≤j≤n1,1≤k≤n2

|mtjsk|, χts(P ) :=
∑

1≤j≤n1,1≤k≤n2

|ptjsk|

and therefore,

r ≤ max
t,s

χt,s(P )

2ξt,s(Q)
+

(
χ2
t,s (P )

4ξ2
t,s (Q)

+ χt,s(M)

ξt,s(Q)

)1/2

(6.5)

provided Q is diagonally-dominant. Assume that Kp is diagonally-dominant. Then
due to (6.5) we can write

r
(p)
s (Λ) ≤ max

t,s

χt,s(Zp1)

2ξt,s(Kp)
+

(
χ2
t,s (Zp1)

4ξ2
t,s (Kp)

+ χt,s(Zp2)

ξt,s(Kp)

)1/2

(p = 1, 2). (6.6)
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7 Sharpness of Theorem 1

Recall that problems (1.1), (1.2) and (2.8) are equivalent. For some p = 1, 2, let
Kp,Zp1 and Zp2 be mutually commuting Hermitian matrices. Then (2.8) implies

λ2
pk(Λ)μk(Kp)+ λpk(Λ)μk(Zp1)+ μk(Zp2) = 0 (k = 1, . . . , n1n2),

where μk(Kp) and μk(Zpj ) are the eigenvalues of Kp, and Zpj , respectively;
λpk(Λ) are the eigenvalues of problem Λ corresponding to μk(Kp) and μk(Zpj ).
Then the spectrum of Λ consists of

λpk+(Λ) = − μk(Zp1)

2μk(Kp)
+

(
μ2
k(Zp1)

4μ2
k(Kp)

+ μk(Zp2)

μk(Kp)

)1/2

and

λpk−(Λ) = − μk(Zp1)

2μk(Kp)
−

(
μ2
k(Zp1)

4μ2
k(Kp)

+ μk(Zp2)

μk(Kp)

)1/2

.

Assume that Kp and Zp2 are positive definite, and Zp1 is negative definite. In
addition, for some index j , let

μj (Kp) = min
k

μk(Kp) = rlow(Kp) (> 0), |μj (Zp1)| = max
k

|μk(Zp1)| = ‖Zp1‖,

and μj (Zp2) = maxk μk(Zp2) = ‖Zp2‖. Then

r
(p)
s (Λ) = ‖Zp1‖

2rlow(Kp)
+

(
‖Zp1‖2

4r2
low(Kp)

+ ‖Zp2‖
rlow(Kp)

)1/2

.

So in the considered case inequality (1.6) is attained and therefore, Theorem 1 is
sharp.

Example 1 Let n1 = n2 = 2,

A13 =
(

9 0.5
0.5 9

)
, A23 =

(
20 1
1 20

)
, A11 = A22 = A21 = T2 = T1 = I.

So

λ1,2(A13) = 9 ± 0.5, λ1,2(A23) = 20 ± 1.
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We have K1 = A13 ⊗ I − I ⊗ A23 and therefore

λjk(K1) = λj (A13)− λk(A23) (j, k = 1, 2).

Consequently, rlow(K1) = 19 − 9.5 = 9.5. Since the matrices are selfadjoint, we
have g0(K1) = 0. In addition,

Z11 = I ⊗ A23 − A13 ⊗ I − I ⊗ I + I ⊗ I = I ⊗ A23 − A13 ⊗ I

and Z12 = 0 Besides,

‖Z11‖ = max
jk

|λj (A13)− λk(A23)| = 12.5.

Thus Theorem 1 implies,

r(1)s (Λ) ≤ ‖Z11‖/rlow ≤ 12.5/9.5 ≈ 1.315.

According to (2.6) the direct calculations show that r(1)s (Λ) = 1.

8 Conclusion

The present paper has been inspired by the paper [17]. The spectral radius is a
maximal absolute values of the eigenvalues and thus it gives us the radius of the
disc in which all the eigenvalues of the considered problem lie.

In Sects. 1 and 2 we have derived a bound for the spectral radius in the general
case. In Sect. 3 the results of Sects. 1 and 2 have been improved in the cases when
some matrices of the problem have a joint Schur basis. To investigate perturbations
of problem (1.1), (1.2) in Sect. 4 we suggest additional bounds for the spectral radius
by virtue of determinants and apply them in Sect. 5 to derive a bound for the spectral
radius of the perturbed problem.

In Sect. 6 we investigate the problem with diagonally dominant matrices. In
that case by the Geschgorin approach we obtained a simple bound for the spectral
radius. In Sect. 7 it was shown that Theorem 1 is sharp, namely inequality (1.6) is
attained under the conditions pointed in that section. In addition, Sect. 7 contains an
illustrative example.

Recently Bindel and Hood [4, 5] have proved localization theorems for the
pseudospectra of nonlinear eigenvalue problems. Besides, they generalized the
Gershgorin and Bauer-Fike theorems. Our Sect. 6 is connected with the results of
Bindel and Hood but we investigate the spectrum, not the pseudospectrum.
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On the Properties of a Nonlocal
Nonlinear Schrödinger Model
and Its Soliton Solutions

Theodoros P. Horikis and Dimitrios J. Frantzeskakis

1 Introduction

Many physically different subjects can be brought together through their common
modeling and mathematical description. Perhaps the most common (and rather
unlike) example is water waves and nonlinear optics. Two systems are inextricably
linked with both subjects: the universal Korteweg-de Vries (KdV) and nonlinear
Schrödinger (NLS) equations [1]. Remarkable as these systems may be, for several
physically relevant contexts their standard form turns out to be an oversimplified
description as it cannot model, for example, higher dimensionality; for instance, the
Kadomtsev-Petviashvilli (KP) equation is used as a generalization of the KdV to
two spatial dimensions. Furthermore, these systems can be reduced from one to the
other [74]. Importantly, all the above models are completely integrable by means
of the Inverse Scattering Transform (IST) [2] and support soliton solutions, namely
robust localized waves that have always been a central element in numerous studies
in physics [17], applied mathematics [2] and engineering [24]. A unique property of
solitons is that they feature a particle-like character, which enables them to interact
elastically, preserving their shapes and velocities after colliding with each other.

In general, the theory of nonlinear waves, is governed by problems where several
different temporal and/or spatial scales are present. Thus, asymptotic multiscale
expansion methods are usually applied to derive nonlinear evolution equations more
manageable to the problem at hand [30]. These asymptotic methods are used to
establish connections between different systems, as mentioned above, which allows
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for the construction of approximate solutions of the original models by means of
the exact solutions of the reduced models. A prominent example is the connection
of the defocusing nonlinear Schrödinger (NLS) equation with the KdV equation,
which allowed for the description of shallow dark solitons of the former in terms of
KdV solitons. Relevant studies started in the early 1970s [71] and continue to date
[27]; importantly, they have also been extended to the case of nonintegrable systems,
providing extremely useful information on the existence, stability and dynamics
of solutions in various physical settings, such as nonlinear optics [40] and Bose-
Einstein condensates [22, 37].

Multiscale expansion methods become even more useful when the original
system is not integrable, without known solutions in explicit form. For several phys-
ically relevant contexts the standard NLS equation turns out to be an oversimplified
description as it cannot model, for example, loss and gain which are inevitable
in any real system [4]. Hence, in order to model important classes of physical
systems in a relevant way, it is necessary to go beyond the standard NLS description.
For instance, nematic liquid crystals [9, 16], atomic vapors [69] and other thermal
nonlinear optical media [45, 65], as well as plasmas [48, 73] and dipolar bosonic
quantum gases [60], constitute a class of systems that display nonlocal nonlinear
response. The effect of the nonlocality on the NLS equation is rather profound. The
integrable nature of the equation is generally lost and while soliton solutions may
also be found, they lack the freedom of various parameters describing the soliton’s
properties (amplitude, velocity, etc). Nevertheless, nonlocal nonlinear systems may
feature quite interesting properties. In particular, in the case of focusing nonlocal
nonlinearities, collapse is arrested in higher-dimensions [45, 72], which results in
stable solitons, as observed in experiments of, say [65, 69], even in the (3 + 1)-
dimensional setting [55]—see, e.g., reviews [45, 54] and references therein. On the
other hand, in the case of defocusing nonlocal nonlinearities, dark solitons that are
supported in such settings [19, 26, 36, 63], may exhibit an attractive interaction [19],
rather than a repulsive one, as is the situation in the case of a local nonlinearity—cf.
the reviews [22, 37, 40] and references therein. Furthermore, dark solitons which are
known to be prone to the transverse (or “snaking”) instability in higher-dimensional
settings [37, 41, 47, 62], can be stabilized due to the presence of the nonlocal
nonlinearity [8].

Here, motivated by the above—and particularly by the fact that nonlocal
nonlinearities have a profound effect on the form and stability properties of non-
linear excitations—we study a physically relevant nonlocal NLS model. Different
versions of this model are studied: a (1 + 1)-dimensional scalar system, its vector
generalization, as well as a scalar, fully (3 + 1)-dimensional model, in both
the focusing and the defocusing regimes. We first present the simplest nontrivial
solution, namely the continuous-wave (cw), and study its stability. We show that in
the focusing (defocusing) version of the model the cw is modulationally unstable
(stable). Then, we study soliton solutions of the model and present bright soliton
solutions in a closed analytical form, for both the scalar and the vector versions
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of the nonlocal system in the focusing regime. In the defocusing regime, we use
multiscale expansion methods to derive effective nonlinear evolution equations that
describe a variety of approximate soliton solutions of the original model.

For the (1 + 1)-dimensional scalar model, we derive an effective KdV equation,
which describes either dark or antidark solitons of the nonlocal NLS. In the vector
version of the model, our analysis is performed for different boundary conditions:
for nonvanishing conditions for both fields, and nonvanishing-vanishing conditions
for each field. In the former case, we derive a KdV model, which describes dark-
dark solitons solutions of the original problem, while in the second case, we
derive a Mel’nikov system—namely a KdV equation with a self-consistent source
satisfying a time-independent Schrödinger equation; this system describes dark-
antidark solitons of the original nonlocal NLS.

For the fully (3 + 1)-dimensional scalar version of the nonlocal NLS model in
the defocusing regime, we use again multiple scale expansion techniques, both in
Cartesian and cylindrical geometries. This way, first we derive, at an intermediate
stage of the asymptotic analysis, a 3D Boussinesq equation. Then, we consider cases
corresponding to spatial or temporal structures and, upon introducing relevant scales
and asymptotic expansions, we reduce the Boussinesq model to KP-type equations
for right- and left-propagating waves. These models include various integrable and
non-integrable equations at different dimensions and geometries, such as the KdV
and the cKdV equation, the KP-I and KP-II equations, Johnson’s equation, as well
as the CI and CII equations. We thus predict the existence and stability of various
solitary waves, namely spatial—planar or cylindrical (ring-shaped)—and dark or
anti-dark (for weak or strong nonlocality, respectively). Furthermore, our analysis
suggests the existence of temporal solitary waves, which become unstable in higher
dimensions. Regarding approximate two-dimensional solitary wave solutions, it
is found that they may exist in the form of weakly localized (i.e., algebraically
decaying) dark “lumps”, which satisfy effective KP-I models; such structures may
be either of the spatial or temporal type and are supported in the weak nonlocality
regime.

Moreover, we use direct numerical simulations to confirm our analytical findings.
Indeed, our predictions are found to be in very good agreement with the numerical
results: using the analytical forms of the spatial soliton solutions as initial conditions
for the direct numerical integration of the original problem(s), we find that the soli-
tons propagate undistorted. This holds at least for relatively small and intermediate
propagation distances, while, even for longer propagation distances, instabilities are
not observed in our simulations. This suggests that the solitons found have a good
chance to be observed in experiments.
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2 The 1D Scalar Nonlocal System

2.1 Modulation Instability and Bright Solitons

We consider the following system, expressed in normalized form, that governs
propagation in nonlocal media [9, 39]:

i
∂u

∂z
+ d

∂2u

∂x2
+ 2gθu = 0, (1a)

ν
∂2θ

∂x2
− 2qθ = −2|u|2. (1b)

Depending on the physical situation, the system and its coefficients correspond to
different physical quantities. For example, in the context of nematic liquid crystals,
u is the complex valued, slowly-varying envelope of the optical electric field and θ is
the optically induced deviation of the director angle. Note that u and θ depend on the
propagation distance z (which is the evolution variable in this setting) and transverse
coordinate x; thus solitons of system (1) are so-called spatial solitons, i.e., non-
diffracting beams [39]. Furthermore, in Eq. (1), diffraction is represented by d and
nonlinear coupling by g. The effect of nonlocality ν measures the strength of the
response of the nematic in space, with a highly nonlocal response when ν(> 0) is
large. The parameter q > 0 is related to the square of the applied static field which
pre-tilts the nematic dielectric [59]. In this context, d, g, q are O(1) while ν is large,
i.e., ν = O(102) [9, 59].

In order to investigate the stability properties of system (1) consider its simplest
nontrivial solution, i.e., a continuous-wave (cw) of the form:

u(z) = u0e
2igθ0z, θ0 = 1

q
u2

0,

where u0 is a real constant. To investigate if this cw solution is subject to modula-
tional instability (MI), consider a small perturbation u1(x, z) (with max|u1| 5 u0).
Then, substituting the ansatz:

u(x, z) = [u0 + u1(x, z)]e2igθ0z,

into Eq. (1) and linearizing with respect to u1, which is assumed to behave as
exp[i(kx − ωz)], we obtain the following dispersion relation for the frequency ω

and wavenumber k of the perturbation:

ω2 = dk2
(
dνk4 + 2dqk2 − 8gu2

0

)

νk2 + 2q
. (2)
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Fig. 1 Left: Growth rates for different values of the nonlocal parameter ν. Right: The change of
critical values Im{ωmax} and kc with the nonlocality ν

It is clear that in the self-focusing case with dg > 0 the system is unstable,
whereas in the self-defocusing case with dg < 0 the system is stable (i.e., ω ∈ R∀k).
Also, in the local case (i.e., for ν = 0) the equation reduces to the dispersion relation
of the respective NLS equation with local cubic nonlinearity, which features the
same stability criteria (see, e.g., Ref. [39]). From this dispersion relation we can
identify three critical values that characterize the instability, namely the maximum
growth rate, Im{ωmax}, its location kmax, and the width of the instability region (alias
“instability band”), kc. The value Im{ωmax} is a measure of the propagation distance
needed for the instability to occur (the larger its value the faster the instability
occurs) and kc, defines the range of possible wavenumbers that can yield instability;
the larger its value, the more unstable the system is, as more wave numbers can lead
to unstable propagation. By differentiating (2), with respect to k, we find that kmax
is the solution of the algebraic equation:

d
(
νk3 + 2qk

)2 − 8gqu2
0 = 0,

while kc satisfies

dνk4 + 2dqk2 − 8gu2
0 = 0.

Both equations can be solved in closed form (they are bi-quadratics) to give the
relative dependance of Im{ωmax} and kc with the nonlocality ν. We illustrate this in
Fig. 1. Hereafter, we fix d = 1/2 and g = q = u0 = 1.

This figure agrees with the findings of Ref. [44]: nonlocality has an increasingly
stabilizing effect on the system. Indeed, both critical values that characterize the
instability, Im{ωmax} and kc, decrease as ν increases. This means that the effect
of MI will need more distance to be exhibited; and if ν is large enough, this
distance can be larger than the experimentally relevant scales. Further, a smaller
range of wavenumbers will cause an instability. Notice, again, that while both values
decrease, the effect, in the focusing case, is always present, just more suppressed
as ν increases. The limiting NLS system is, by these values, significantly more
unstable.
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Fig. 2 The evolution of the single soliton of Eq. (1) with ν = 10

Fig. 3 Typical nonlocal
solitons for various values of
ν. The dashed curves
correspond to the relative
NLS soliton of the same
amplitude

It is now straightforward to find the soliton solution of Eq. (1), namely [49]:

u(x, z) = 3q

2

√
d

gν
sech2(

√
q/2νx)e2idq/νz.

This soliton solution, while it obviously depends on ν, it has fixed amplitude (much
like χ(2) materials [13, 34]) which decays with ν. Notice that the relative (ν = 0)
single NLS soliton solution reads:

us(x, z) = u0sech(u0
√
g/dqx)eiu

2
0gz/q .

The immediate comparison reveals that the nonlocal solitons luck the freedom of
various parameters describing the soliton’s properties (amplitude, velocity, etc), but
maintain the property of undistorted evolution, as shown in Fig. 2.

In fact, solutions with a free parameter for this system have been found but only
in the defocusing case and under a small-amplitude approximation technique [26];
these solutions will be presented in the next section.

Finally, to illustrate how the nonlocality affects the corresponding solitons we
shown in Fig. 3 below, the soliton solution for different values of ν as well as the
relative NLS soliton for the same amplitude.
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2.2 Dark and Anti-Dark Solitons

We now turn our attention to the defocusing system by setting g = −1 so that
Eq. (1) become:

i
∂u

∂z
+ d

∂2u

∂x2 − 2θu = 0, (3a)

ν
∂2θ

∂x2 − 2qθ = −2|u|2. (3b)

Both functions u = u(z, x) and θ = θ(z, x) are assumed to be non-zero at the
boundaries (infinities). The MI analysis above indicates that the system is now stable
and, as such, it is convenient to introduce the concept of a background function [3]
such that the electric field and the angle can be written in the form:

u(z, x) = ub(z)U(z, x), θ(z, x) = θb(z)v(z, x), (4)

where the subscript b denotes the background functions, which are clearly functions
of z only. Note that at the boundaries (|x| → ∞),

u = u(z) = ub(z), θ = θ(z) = vb(z).

Taking the limit of Eq. (3), we find that these functions satisfy the following set of
equations:

i
dub

dz
− 2θbub = 0

−2qθb = −2|ub|2

⎫
⎬

⎭
⇔

⎧
⎪⎨

⎪⎩

i
dub

dz
= 2θbub

θb = |ub|2
q

By writing ub = u0e
iϕ one finally obtains the form of the background functions:

u0(z) = u0, ϕ(z) = −2u2
0

q
z+ ϕ(0), θb(z) = u2

0

q
,

where u0 ∈ R is a constant. Next substitute Eq. (4) into Eq. (3) to obtain the
evolution equations for U(z, x) and v(z, x):

i
∂U

∂z
+ 1

2

∂2U

∂x2
− 2

u2
0

q
(v − 1)U = 0,

ν
∂2v

∂x2 − 2qv = −2q|U |2.
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It is trivial to check that these are also satisfied at the boundaries where

U = v = 1,

and any evolution of the boundary conditions has been absorbed by the background
functions. The resulting equations have now fixed boundary conditions. We, then,
employ the so-called Madelung transformation U(z, x) = ρ(z, x) exp[iφ(z, x)] so
that

∂ρ

∂z
+ 1

2
ρ
∂2φ

∂x2 + ∂ρ

∂x

∂φ

∂x
= 0,

ρ
∂φ

∂z
+ 1

2

[

ρ

(
∂φ

∂x

)2

− ∂2ρ

∂x2

]

+ 2u2
0

q
(v − 1)ρ = 0,

ν
∂2v

∂x2
− 2qv = −2qρ2,

since v(z, x) ∈ R and define new scales such that

Z = ε3z, X = ε(x − Cz),

where C is a constant; this is actually the speed of sound, namely the velocity of
small-amplitude and long-wavelength waves propagating along the background. Its
value(s) will be determined—in a self-consistent manner—later in the analysis.

Additionally, expand amplitude and phase in powers of ε as follows:

ρ = ρ0 + ε2ρ2 + ε4ρ4 + · · · ,
φ = εφ1 + ε3φ3 + ε5φ5 · · · ,
v = v0 + ε2v2 + ε4v4 + · · · .

Substituting back to Eq. (3) we obtain at different order of ε:

O(1) : ρ2
0 = v0,

v0 = 1,

O(ε2) :
∂φ1

∂X
= 4u2

0ρ0

Cq
ρ2,

v2 = 2ρ0ρ2,

(5)

O(ε3) : C
∂ρ2

∂X
= ρ0

2

∂2φ1

∂X2
. (6)
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The compatibility between Eqs. (5) and (6) suggests:

C2 = 2u2
0ρ

2
0

q
= 2u2

0

q
.

The fact that C may have two signs implies that the KdV, cf. Eq. (9) below, may
describe waveforms propagating either to the left or to the right. We will return to
this with more comments below. Hereafter we will be using ρ0 = 1. Also note
that Eq. (5) is a simple equation connecting φ1 and ρ2 and will be used below to
determine the phase φ1.

At the next orders in ε we have:

O(ε4) :

ρ0
∂φ1

∂Z
+ 2u2

0ν

q2

∂2ρ2

∂X2 − 1

2

∂2ρ2

∂X2 − C
∂φ3

∂X
+ 1

2

(
∂φ1

∂X

)2

−Cρ2
∂φ1

∂X
+ 4u2

0

q
ρ4 + 6u2

0

q
ρ2

2 = 0,

v4 = 2ρ4 + ρ2
2 + ν

q

∂2ρ2

∂X2 ,

(7)

O(ε5) : ∂ρ2

∂Z
+ 1

2

∂2φ3

∂X2
+ 1

2
ρ2

∂2φ1

∂X2
+ ∂ρ2

∂X

∂φ1

∂X
− C

∂ρ4

∂X
= 0. (8)

Equations (7) and (8) are compatible iff:

∂ρ2

∂Z
+ C(4u2

0ν − q2)

16u2
0q

∂3ρ2

∂X3
+ 6u2

0

Cq
ρ2

∂ρ2

∂X
= 0. (9)

This compatibility condition is found upon differentiating Eq. (7) with respect to X

(also using equations of lowest order in ε) and adding with Eq. (8).
Clearly Eq. (9) is a KdV equation and possesses soliton solutions which can be

given in explicit form. Indeed, denoting

α = C(4u2
0ν − q2)

16u2
0q

, β = u2
0

Cq
,

the soliton solution of Eq. (9) is given by:

ρ2 = 2α

β
η2 sech2(ηX − 4η3αZ +X0),

where η is a free parameter. The relative phase can be retrieved from Eq. (5):

φ1 = 8u2
0α

Cqβ
η tanh(ηX − 4η3αZ +X0),
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while

v2 = 2ρ0ρ2 = 4α

β
η2 sech2(ηX − 4η3αZ +X0).

Then, the amplitude of the solution of Eq. (3) up to O(ε2) is

ρ = ρ0 + ε2ρ2,

and since ρ0 = 1 the sign of ρ2 will determine whether the solution is an
intensity dip (dark soliton) or an intensity hump (anti-dark soliton) off of a constant
background. This is determined by the sign of the quantity

α

β
= C2(4u2

0ν − q2)

16u4
0

.

Then it is evident that when

γ = u2
0ν

q2 <
1

4
,

the equation supports dark solitons (termed “dark nematicons” in the context of
nematic liquid crystals), while when the inequality is reversed anti-dark humps are
exhibited. It is also worth mentioning that these results do not depend on the sign
of C. However, the sign of C affects the direction of propagation and the speed of
the nematicon. Indeed, notice that the speed is dependent on the parameter α and as
such the direction of propagation depends on the sign of C. While the ratio of the
coefficient of the linear dispersion to the coefficient of the nonlinear term determines
the type of nematicon its speed and direction are determined by the sign of the linear
term. The speed of sound only affects the latter.

The resulting solutions obtained by the above method can be now written as:

u(z, x) = u0(z)

[
1 + ε2 2α

β
η2 sech2(ηX − 4η3αZ +X0)

]
ei[θ(z)+εφ1],

φ1 = 8u2
0α

Cqβ
η tanh(ηX − 4η3αZ +X0),

with an additional higher order, O(ε3), correction to the speed. Note that when
ν = 0 the amplitude ρ2 is always negative as α/β = −q/8u2

0 < 0 and as such this
is always a dip, i.e., a dark soliton and never a hump or anti-dark soliton.

We can summarize these results as follows:

• Dark nematicons are obtained when γ < 1/4 and propagate to the left if C > 0
or to the right if C < 0.
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• Anti-dark nematicons are obtained when γ > 1/4 and propagate to the left if
C > 0 or to the right if C < 0.

The critical point when γ = 1/4 marks the point where the linear dispersion of
Eq. (9) changes sign. It has been shown that a soliton decays as it passes this point
[50].

3 The 1D Vector Nonlocal System

We now turn our attention on another version of the nonlocal NLS system, namely
to its vector counterpart in (1 + 1)-dimensions. In this case, physically speaking,
the system is composed by three equations: two of them refer to polarised, coherent
light beams of two different wavelengths propagating through a cell filled with a
nematic liquid crystal; these equations are coupled to each other, and also coupled
with a diffusion-type equation describing the evolution of the director angle (or
the refractive index in the context of, e.g., media with thermal nonlinearities). This
system is expressed in non-dimensional form as follows [7, 67]:

i
∂u

∂z
+ d1

2

∂2u

∂x2
+ 2g1θu = 0, (10)

i
∂v

∂z
+ d2

2

∂2v

∂x2 + 2g2θv = 0, (11)

ν
∂2θ

∂x2 − 2qθ = −2(g1|u|2 + g2|v|2). (12)

The variables u and v are the complex valued, slowly varying envelopes of the
optical electric fields and θ is the optically induced deviation of the director
angle, as before. Diffraction is represented by d1, d2 and nonlinearity by g1, g2.
Importantly, these variables are allowed to vary their signs while all other constants
are taken positive. When the signs of diffraction and nonlinearity are opposite, i.e.,
d1g1, d2g2 < 0, the system is termed defocusing and focusing otherwise. The
location of the relative signs is not important: multiplying Eqs. (10) and (11) by −1
and changing z → −z moves the sign difference from one place to the other.

In order to investigate the MI of a pair of coupled waves we first consider the
continuous-wave (cw) solution of Eqs. (10)–(12), i.e.,

u = u0e
2ig1θ0z, v = v0e

2ig2θ0z, θ0 = g1u
2
0 + g2v

2
0

q
,

where u0 and v0 are real constants. Now consider a small perturbation to this cw
solution

u(z, x) = [u0 + u1(z, x)]e2ig1θ0z, v(z, x) = [v0 + v1(z, x)]e2ig2θ0z
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which we insert into the system (10)–(12). In order to simplify the analysis we first
solve Eqs. (10) and (11) for θ and substitute in Eq. (12). While this eliminates one
dependent variable it raises the overall order of the system and, as such, it only
proves useful in the MI analysis where plane wave solutions are investigated (as
solutions of a linear system). When solitons or exact solutions are the object of the
analysis this is not recommended. The linearized equations (where terms of order
u2

1 and v2
1 or higher have been neglected) for the small perturbing terms are found

to be:

4iq
∂u1

∂z
− 2iν

∂3u1

∂z∂x2
− d1ν

∂4u1

∂x4
+ 2d1q

∂2u1

∂x2
+ 8g2

1u
2
0(u1 + u∗1)

+ 8g1g2u0v0(v1 + v∗1) = 0,
(13)

4iq
∂v1

∂z
− 2iν

∂3v1

∂z∂x2
− d2ν

∂4v1

∂x4
+ 2d2q

∂2v1

∂x2
+ 8g2

2v
2
0(v1 + v∗1)

+ 8g1g2u0v0(u1 + u∗1) = 0.
(14)

Notice that the terms involving ν, that induce the nonlocality, are higher order
derivatives; without these terms the problem simply reduces to the linearized NLS
problem. This means that their contribution is expected to be highly nontrivial, as
they produce higher order polynomials in the dispersion relation; the effect of these
terms will become more prominent below. Equations (13) and (14) admit solutions
of the form

u1(z, x) = c1e
i(kx−ωz) + c2e

−i(kx−ωz), v1(z, x) = c3e
i(kx−ωz) + c4e

−i(kx−ωz),
(15)

provided the dispersion relationship

p1(k)ω
4 + p2(k)ω

2 + p3(k) = 0, (16)

with

p1(k) = 16
(
k2ν + 2q

)
,

p2(k) = −4ν
(
d2

1 + d2
2

)
k6 − 8q

(
d2

1 + d2
2

)
k4 + 64

(
d1g

2
1u

2
0 + d2g

2
2v

2
0

)
k2,

p3(k) = d2
1d

2
2νk

10 + 2d2
1d

2
2qk

8 − 16d1d2

(
d2g

2
1u

2
0 + d1g

2
2v

2
0

)
k6.

Equation (16) is a bi-quadratic and can be solved analytically to produce ω = ω(k)

as:
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ω = ±

√√√
√−p2(k)±

√
p2

2(k)− 4p1(k)p3(k)

2p1(k)
. (17)

The system is subject to MI as long as ω has complex solutions: the imaginary
part, Im{ω}, will give the relative growth rate, as suggested by Eq. (15). To classify
the nature of ω (real or complex) we need to solve a system of inequalities to
ensure Eq. (16) only admits real solutions, thus avoiding any exponential growth.
In particular, there are three polynomials in k which one needs to prove are positive.
This will provide the appropriate conditions for stability. These are:

Δ(k) = 65536k14(2q + νk2)[ν2(d2
1 − d2

2 )
2k8 + 4qν(d2

1 − d2
2 )

2k6

+ 4(d2
1 − d2

2 )(d
2
1q

2 − 8d1g
2
1νu

2
0 + d2(−d2q

2 + 8g2
2v

2
0ν)k

4

− 64q(d2
1 − d2

2 )(d1g
2
1u

2
0 − d2g

2
2v

2
0)k

2 + 256(d1g
2
1u

2
0 + d2g

2
2v

2
0)

2]2Q1(k),

P (k) = 128(2q + νk2)Q2(k),

D(k) = 64(2q + νk2)[−4ν(d2
1 + d2

2 )k
6 − 8q(d2

1 + d2
2 )k

4

+ 64(d1g
2
1u

2
0 + d2g

2
2v

2
0)k

2]2Q3(k).

Hence it is sufficient to show that the polynomials

Q1(k) = (d2
1d

2
2ν)k

4 + (2d2
1d

2
2q)k

2 − 16d1d2(d2g
2
1u

2
0 + d1g

2
2v

2
0),

Q2(k) = ν(d2
1 + d2

2 )k
4 + 2q(d2

1 + d2
2 )k

2 − 16(d1g
2
1u

2
0 + d2g

2
2v

2
0),

Q3(k) = ν2(d2
1 − d2

2 )
2k8 + 4qν(d2

1 − d2
2 )

2k6

+ 4(d2
1 − d2

2 )[d2
1q

2 − 8d1g
2
1u

2
0ν + d2(−d2q

2 + 8νg2
2v

2
0)]k4

− 64(d12 − d22)q(d1g
2
1u

2
0 − d2g

2
2v

2
0)k

2 + 256(d1g
2
1u

2
0 − d2g

2
2v

2
0)

2,

are always positive. This is obtained through Sturm’s theorem [68]; since the
coefficients of the highest order terms are positive and of even degree, it is sufficient
to demand that these polynomials do not exhibit real roots. This happens when:

(i)
g2

1u
2
0

d1
+ g2

2v
2
0

d2
< 0, and (ii) d1g

2
1u

2
0 + d2g

2
2v

2
0 < 0.

It is now trivial to show that for both conditions to hold it is sufficient to pose that
both d1 and d2 are negative. As such, the coupled system also follows the condition
of stability of the single-component nonlocal equation, and stability is achieved iff
the system is fully defocusing.

As mentioned above, the nonlocal term involving ν seems to have a stabilizing
effect in the sense that growth rates, in the scalar case, are significantly smaller and
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Fig. 4 The growth rate,
Im{ω} of Eq. (17), of the
focusing system for different
values of the nonlocality
factor ν. The black solid line
corresponds to the maximum
growth rate. All other
parameters are kept equal to
unity
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Fig. 5 Comparison of the
growth rates to the relative
NLS equations
(Eqs. (10)–(12) with ν = 0).
All other parameters are kept
equal to unity
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MI will need more propagating distance to occur. This feature is preserved here as
well, as seen in Fig. 4. In all figures, the growth rate is defined as Im{ω}, while ω is
obtained from Eq. (17). We return to this shortly.

The nonlocal term ν has a profound effect on the dynamics of plane waves. While
the system is still unstable for large values of ν the range of wavenumbers that
cause instability is significantly narrower and in addition the maximum growth rate
is smaller. That means that for nematic crystals in particular, where ν = O(102),
MI may be suppressed by increasing the value of the nonlocality or by choosing
wavenumbers outside this narrow band that result in unstable propagation.

However, the coupling provides significantly higher growth rates as seen in Fig. 5
than the scalar system. As also expected, following this observation, the pure NLS
system (ν = 0) has the higher growth rates, so much so that even the single equation
surpasses the coupled nonlocal system—cf. Fig. 5 (right). Furthermore, and contrary
to the NLS, it has been shown, for the scalar case, that nonlocality of arbitrary shape
can indeed eliminate collapse in all physical dimensions [12].

In the MI analysis above, one can identify some critical numbers that play a key
role in the understanding of these results. First and foremost, we identify the so-
called maximum growth rate. This value corresponds to the maxima of Fig. 4 and
can be found by differentiating Eq. (17), solving the equation ω′(k) = 0 for k =
kmax and substituting back to ωmax = ω(kmax). The change of Im{ωmax} with ν is
shown both in Figs. 4 and 6. However, there is another value that may be interpreted
in two ways. We define a critical wavenumber, kc, which is essentially the greatest
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Fig. 6 Critical wavenumbers
and growth rates and their
dependence on the
nonlocality
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wavenumber for which instabilities can occur. To find this critical value one needs
to solve the inequality below for k:

−p2(k)±
√
p2

2(k)− 4p1(k)p3(k)

2p1(k)
< 0.

Then the critical value can be identified as the solution of

d1d2νk
4 + 2d1d2qk

2 − 16(d2g
2
1u

2
0 + d1g

2
2v

2
0) = 0. (18)

In Fig. 6, we show the dependence of these critical values with the nonlocality ν.
In particular, for the values of the figures above we find that

kc =
√√

32ν + 1

ν
− 1

ν
,

which also demonstrates the way this value is affected by the nonlocality. The
relative kmax (and from that ωmax) value can be obtained from the solution of the
equation ν2k6 + 4νk4 + 4k2 − 32 = 0.

Finally, and following the analysis of Ref. [14] one can seek the critical value
of the nonlocality parameter that stabilizes a cw of particular wavenumber. This is
retrieved again from Eq. (18) only now we solve for ν, i.e.,

ν = 2
−d1d2qk

2 + 8(d2g
2
1u

2
0 + d1g

2
2v

2
0)

d1d2k4
.

For example, for the values as above, the wave number k = 1 will always correspond
to a stable cw iff ν ≥ 30, as also confirmed by Figs. 4 and 6. This critical value
is not a general criterion for stability as it depends on the particular wavenumber.
This means that while the particular critical value of ν may stabilize a specific
wavenumber another value will render the system unstable, consistently with the
analysis above. Only when the system is full defocusing MI is absent.
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3.1 Vanishing Boundary Conditions

The dynamics of two-color nematicons propagation and interactions in the nonlocal
limit is usually studied using variational method based on an appropriate trial
function/anzatz whose parameters (amplitude, width, etc) are chosen so that the
Lagrangian of the system is minimized [11, 66, 67]. However, since these are
not exacts solutions they are expected to shed diffractive radiation much like the
solutions of the regular NLS system. We intend to remedy this by finding exact
solutions to Eqs. (10)–(12) and the conditions associated with these solutions.

As seen above the coupled system is, in the focusing case, unstable. This means
that any initial condition is subject to instability. Thus, it is natural to seek conditions
under which soliton solutions may exist that will not undergo the instability process.
To find these solutions (if they exist), we assume that the stationary solutions of the
system (10)–(12) take the form

u(z, x) = a1 sech2(bx)eiμ1z, v(z, x) = a2 sech2(bx)eiμ2z, θ(x) = a3 sech2(bx).

Substituting directly into Eqs. (10)–(12), we obtain the expressions for the soliton
parameters:

μ1 = qd1

ν
, μ2 = qd2

ν
, b =

√
q

2ν
, a3 = 3qλ

4ν
.

The solitons’ amplitudes are related through

g1a
2
1 + g2a

2
2 = λ

9q2

8ν
, (19)

subject to the condition:

d1

g1
= d2

g2
= λ.

Although the freedom of one free parameter (which also relates amplitude and
velocity in the NLS case) is not redeemed, another property is obtained. We are now
able to control the amplitude of one of the components through Eq. (19). However,
this is again a fundamental difference with the NLS system. Indeed, in the NLS
equations it is straightforward to obtain a variety of different cases and soliton types
(bright and/or dark). Here, only the focusing case can produce bright solitons while
we where not able to find dark solitons in this manner [15]. They may, however, be
obtained, in the small amplitude limit, using the methods of Ref. [26]. One final
comment is that this procedure may also be used for more than two equations
relating the relative amplitudes through an equation of the form of Eq. (19).

The role of the nonlocal term ν is profound here as well. In particular, when
ν # 1, as is the case for liquid crystals, it may become (experimentally) more
difficult to obtain soliton solutions and radiation free propagation. Indeed, from
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Fig. 7 A typical soliton evolution. Here we use d1 = g1 = 1, d2 = g2 = 2, ν = 1, q = 1, a1 = 1
and a2 = 1.5 and a2 is obtained from Eq. (19)

Eq. (19) the smaller the right hand side becomes the more difficult it becomes to
obtain amplitudes for soliton propagation. In fact, when this term vanishes it results
in a1 = a2 = 0, i.e. no soliton solutions exist. Furthermore, Eq. (19) suggests that

a2
1 ≤ λ

9q2

8νg1
, a2

2 ≤ λ
9q2

8νg2
,

meaning that even with the freedom to choose one of the amplitudes that cannot
exceed this maximum value. With ν # 1 it is further implied that solitons can only
exist in the small amplitude limit, which we will explore further below. On the other
hand if we choose initial conditions that obey the amplitude condition, Eq. (19), the
result is a stable typical solitonic evolution as shown in Fig. 7.

3.2 Non-vanishing Boundary Conditions

Our analysis is now focused on soliton pairs that rely on the existence of a stable cw
background and hence on the defocusing system where d1g1, d2g2 < 0. As such,
we only consider Eq. (12). Write the solutions of this system in the form
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E1 = ub(z)u(z, x), (20a)

E2 = vb(z)v(z, x), (20b)

θ = θbw(z, x), (20c)

where the functions ub(z) and vb(z) correspond to the relative cw backgrounds so
that

iu′b − 2g1θbub = 0
iv′b − 2g2θbvb = 0

}
⇒

{
ub(z) = u0e

−2ig1θbz+ic1

vb(z) = v0e
−2ig2θbz+ic2

where u0, v0, c1, c2 ∈ R and θb = 1
q
(g1u

2
0 + g2v

2
0). Substituting back to Eq. (12)

gives

i
∂u

∂z
+ d1

2

∂2u

∂x2 − 2g1θb(w − 1)u = 0, (21a)

i
∂v

∂z
+ d2

2

∂2v

∂x2
− 2g2θb(w − 1)v = 0, (21b)

ν
∂2w

∂x2
− 2qw = − 2

θb
(g1u

2
0|E1|2 + g2v

2
0 |E2|2), (21c)

It is trivial to check that these are also satisfied at the boundaries where u = v =
w = 1, and any evolution of the boundary conditions has been absorbed by the
background functions. This way, the resulting equations have now fixed boundary
conditions. Next, we employ the Madelung transformation:

u(x, z) = ρ1(x, z) exp[iφ1(x, z)],
v(x, z) = ρ2(x, z) exp[iφ2(x, z)],

so that:

dj
∂2ρj

∂x2 − 2ρj
∂φj

∂z
− djρj

(
∂φj

∂x

)2

− 4gj θbρj (w − 1) = 0, (22a)

∂ρj

∂z
+ 1

2
djρj

∂2φj

∂x2 + dj
∂ρj

∂x

∂φj

∂x
= 0, (22b)

ν
∂2w

∂x2 − 2qw = − 2

θb
(g1u

2
0ρ

2
1 + g2v

2
0ρ

2
2), (22c)

where j = 1, 2, and recall that w(z, x) ∈ R.
To analytically study system (22), and determine the unknown functions ρj ,

φj and w, we now employ the the reductive perturbation method [30]. We thus
introduce the stretched variables:
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Z = ε3z, X = ε(x − Cz), (23)

where C is the speed of sound (to be determined later in the analysis), namely
the velocity of small-amplitude and long-wavelength waves propagating along the
background. Additionally, we expand amplitudes and phases in powers of ε as
follows:

ρj = ρj0 + ε2ρj2 + ε4ρj4 + · · · , (24a)

φj = εφj1 + ε3φj3 + ε5φj5 + · · · , (24b)

w = 1 + ε2w2 + ε4w4 + · · · , (24c)

where ρj0 = 1 and the rest of the unknown fields depend on the stretched vari-
ables (23). These values for ρj0 is not only a result obtained from the perturbation
analysis but is also anticipated from Eqs. (20) and (21). Recall, that the background
has been removed, absorbed by the functions ub and vb, which, in general, are not
equal.

Substituting back to Eq. (22) we obtain the following results. First, in the linear
limit, i.e., at the lowest-order approximation in ε, we derive equations connecting
the unknown fields, namely:

w2 = 2

qθb
(g1u

2
0ρ21 + g2v

2
0ρ22), φ21 = g2

g1
φ11, (25a)

ρ22 = d2g2

d1g1
ρ21,

dj

2

∂φj2

∂X
= Cρj2, (25b)

as well as the speed of sound

C2 = 2

q
(d1g1u

2
0 + d2g2v

2
0). (26)

Obviously, Eq. (25) suggest that only one equation for one of these fields will suffice
to determine the rest of the unknown fields ρj2, φj1 and w2. This equation is derived
to the next order of approximation, and turns out to be the following nonlinear
equation for the field ρ12:

∂ρ12

∂Z
+ A1

∂3ρ12

∂X3 + 6A2ρ12
∂ρ12

∂X
= 0, (27)

where coefficients A1 and A2 are given by:

A1 = νC4 − (d3
1g

2
1u

2
0 + d3

2g
2
2v

2
0)

4C2q
,
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A2 = d2
1g

3
1u

2
0 + d2

2g
3
2v

2
0

Cd1g1q
.

Equation (27) is the renowned KdV equation, which is completely integrable by
means of the IST [2], and finds numerous applications in a variety of physical
contexts [1, 17]. More recently, a KdV equation was derived from the single-
component version of Eq. (12), and used to describe small-amplitude nematicons
[26]; notice that the KdV model derived in [26] is identical with Eq. (27) when
the coupling constants are set to zero. Notably, the same procedure can result in
other integrable forms of the KdV in higher dimensions, such as the Kadomtsev-
Petviashvilli (KP) equation, Johnson’s equation, and others [27, 28].

These asymptotic reductions provide information on the type of the soliton
solutions the original system may exhibit up to (and including) O(ε2). Indeed, first
we note that the soliton solution of Eq. (27) takes the form (e.g., Ref. [1]),

ρ12(Z,X) = 2A1

A2
η2 sech2(ηX − 4η3A1Z +X0),

where η and X0 are free parameters, setting the amplitude/width and initial position
of the soliton, respectively. Then, it is straightforward to retrieve the pertinent phase,

φ11 = −4A1C

A2d1
η tanh(ηX − 4η3A1Z +X0),

so that, finally, the solutions for the two components may be written as:

E1(z, x) ≈ ub(z)(1 + ε2ρ12) exp(iεφ12), (28)

E2(z, x) ≈ vb(z)

(
1 + ε2 d2g2

d1g1
ρ12

)
exp

(
iε
g2

g1
φ12

)
. (29)

It is now important to notice that the type of the solitons (28) and (29) depends
crucially on the sign of the ratio A1/A2; this quantity changes sign according to the
critical value νc, given by:

νc = q2
(
d3

1g
2
1u

2
0 + d3

2g
2
2v

2
0

)

4
(
d1g1u

2
0 + d2g2v

2
0

)2
.

Indeed, if the nonlocality parameter ν is such that ν < νc (i.e., A1/A2 > 0),
the solitons are dark, namely are intensity dips off of the cw background. On the
other hand, if ν > νc (i.e., A1/A2 < 0) the solitons are antidark, namely intensity
elevations on top of the cw background. Notice that Eq. (19) suggest that the relative
signs between the modes are the same and, as such, the only allowed pairs are
solitons of the same kind. It should also be mentioned that if A1 = 0, modification
of the asymptotic analysis and inclusion of higher-order terms is needed. This has
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been addressed, to a certain extent, in Ref. [20], where, it was found that higher
order dispersive terms can lead to resonant interactions with radiation, as expected,
for the higher (fifth) order KdV equation.

To demonstrate the validity of our analysis, we perform direct numerical
simulations we thus integrate Eq. (12) employing a high accuracy spectral integrator,
and using initial conditions (at z = 0) taken from Eqs. (28) and (29), for both
the dark and the antidark soliton pairs. The results are shown in Fig. 8, where a
typical evolution of a dark soliton pair is depicted. Here, we choose parameter values
d1 = d2/1.5 = g1 = g2 = 1, u0 = v0 = 1 and q/5 = ν = 1. Similarly, in Fig. 9,
we show a typical evolution of an antidark soliton pair; all parameters remain the
same except q = 1. In both cases, it is clear that the solitons, not only exist, but
also propagate undistorted on top of the cw background. It is also observed that the
solitons propagate with constant speed, with the antidark soliton pair traveling faster
than the dark one, as expected from Eq. (26).

3.3 Vanishing and Non-vanishing Boundary Conditions

Apart from soliton pairs of the same type, it is also possible to derive vector soliton
solutions composed by different types of solitons. This can be done upon seeking
solutions of the system of Eq. (12) such that one of the components decays to zero

Fig. 8 The evolution of a typical dark soliton pair. Left and right columns depict the two
components, while top and bottom panels show three-dimensional plots, and spatiotemporal
contour plots, respectively
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Fig. 9 Similar to Fig. 8, but now for a typical antidark soliton pair

at infinity, while the other tends to a constant, as before. In such a case, solutions of
Eq. (12) are again taken to be of the form of Eq. (20), but now we assume that the
background functions are given by:

ub(x, z) = exp
[
ikx − i(ω − ε2Ω)z

]
,

ω = 1

2q
(d1k

2q + 4g1g2v
2
0),

vb(z) = v0exp(−2ig2θbz+ iψ1), θb = g2v
2
0

q
.

Then, the system (12) is reduced to the form:

iuz + d1

2
uxx − 2g1θb(w − 1)u− id1kux = 0,

ivz + d2

2
vxx − 2g2θb(w − 1)v = 0,

νwxx − 2qw = − 2

θb
(g1|u|2 + g2v

2
0 |v|2).

Then, using the stretched variables (23) and the asymptotic expansions (24), and
following the procedure of the previous section, we obtain the following results.
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First, at the leading order, O(1), we get ρ10 = 0 and ρ20 = w0 = 1, while in the
linear limit, i.e., at the orders O(ε2) and O(ε3), we derive equations connecting the
unknown fields, namely:

w2 = 2ρ22, C
∂φ21

∂X
= 4g2

2v
2
0

q
ρ22,

d2

2

∂2φ21

∂X2 = C
∂ρ22

∂X
, k = C

d1
.

The above equations suggest that, now, the speed of sound is given by:

C2 = 2g2
2v

2
0d2

q
.

Next, in the nonlinear regime, namely at O(ε4) and O(ε5), we obtain the following
system for the fields ρj2:

8g2
2v

2
0

Cq

∂ρ22

∂Z
−

(
d2q

2 − 4g2
2v

2
0ν

)

2q2

∂3ρ22

∂X3
+ 24g2

2v
2
0

q
ρ22

∂ρ22

∂X

+2g1g2

q

∂

∂X

(
ρ2

12

)
= 0, (30a)

d1

2

∂2ρ12

∂X2
− 4g1g2v

2
0

q
ρ12ρ22 = Ωρ12, (30b)

as well as equations connecting fields that can be determined at a higher-order
approximation. The system of Eqs. (30) is the so-called Mel’nikov system [51–53],
and is apparently composed of a KdV equation with a self-consistent source, which
satisfies a stationary Schrödinger equation. This system has been derived in earlier
works to describe dark-bright solitons in nonlinear optical systems [21] and in Bose-
Einstein condensates [5, 70]. The Mel’nikov system is completely integrable by the
inverse scattering transform, and possesses a soliton solution of the form [52]:

ρ22(Z,X) = − d1q

4g1g2v
2
0

η2sech2(ηX + bZ +X0),

ρ12(Z,X) = Asech(ηX + bZ +X0),

where Ω = (1/2)η2d1, while parameters η, A, and b are connected through the
following equation:

Cd1

(
4νg2

2v
2
0 − d2q

2
)
η4 + 4qd1g

2
2v

2
0bη − 4Cg2

1g
2
2v

2
0A

2 = 0.

Using the above expressions, we can now express the relevant approximate [valid up
to O(ε2)] solutions of the original system for the two components E1,2 as follows:
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Fig. 10 Similar to Fig. 8, but now for a typical dark-bright soliton pair

E1(z, x) ≈ ε2ub(z)ρ12 exp(iεφ12), (31)

E2(z, x) ≈ vb(z)
(

1 + ε2ρ22

)
exp (iεφ22) . (32)

It is clear that the above solution represents a dark-bright soliton pair, for the
components E2 and E1, respectively.

As in the case of the dark and antidark soliton pairs, we numerically integrate
Eq. (12), using initial conditions (at z = 0) taken from Eqs. (31) and (32). The
results are shown in Fig. 10, where a typical evolution of a dark-bright soliton pair
is depicted. Here we choose all parameters equal to unity, except v0 = 1/2. In this
case too, the dark-bright soliton, not only exist, but also propagates undistorted with
constant velocity, in excellent agreement with our analytical predictions.

4 The Fully 3D Scalar Nonlocal System

We now consider a natural, (3 + 1)-dimensional generalization of the nonlocal
NLS model, which is again composed by a system of two coupled equations: one
for the complex field amplitude u, and one for the nonlinear correction to the
refractive index n (which is a real function). Here, in the present higher-dimensional
setting, we focus on the defocusing nonlinearity, since the setting with the focusing
nonlinearity is generally subject to collapse. The defocusing model applies to light
propagation in nematic liquid crystals [9, 16], but also to thermal nonlinear optical
media [45] (see also relevant theoretical and experimental work in [56]). The system
under consideration is expressed in the following dimensionless form [54, 55]:
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iuz + 1

2
(Δu−Dutt )− 2nu = 0, (33)

dΔn− 2qn+ 2|u|2 = 0, (34)

where subscripts denote partial derivatives, z is as before the evolution variable
(propagation coordinate normalized to the diffraction length), t is retarded time,
and Δ is the transverse Laplacian. Below, we consider both physically relevant
geometries, Cartesian and cylindrical, for which the Laplacian respectively reads:

Δ = ∂2
x + ∂2

y , Δ = 1

r
∂r (r∂r )+ 1

r2 ∂
2
θ ,

with transverse coordinates r⊥ = (x, y) or r⊥ = (r, θ), respectively, normalized
with respect to the beam width. Additionally, the real constants D, d, and q in
Eqs. (33) and (34), which are assumed to be O(1) parameters in our analysis below,
have the following physical significance. First, D represents the ratio of diffraction
and dispersion lengths, with D > 0 (D < 0) corresponding to anomalous (normal)
group-velocity dispersion (GVD). Second, in the context of nematic liquid crystals,
and similarly to the 1D setting, the parameter q is related to the square of the applied
static electric field that pre-tilts the nematic dielectric [6, 10, 59]. Third, parameter
d measures the relative width of the response of the medium to the light field, and is
connected to the nonlocality scale of the nonlinear response of the medium: in the
limit d → 0, the system of Eqs. (33) and (34) decouples and is reduced to a local
(3 + 1)-dimensional NLS equation with a cubic defocusing nonlinearity.

To start our analysis, we use the Madelung transformation

u = u0
√
ρ exp(iφ), (35)

(u0 being an arbitrary complex constant) to separate the real functions for the
amplitude ρ and phase φ of u in Eq. (33), and derive from Eqs. (33) and (34) the
following system:

φz + 2n+ 1

2

[
(∇φ)2 −Dφ2

t

]
− 1

2
ρ−1/2

[
Δρ1/2 −D

(
ρ1/2

)

t t

]
= 0, (36)

ρz + ∇ · (ρ∇φ)−D(ρφt )t = 0, (37)

dΔn− 2qn+ 2|u0|2ρ = 0, (38)

where ∇ is the gradient operator, given by:

∇ = (∂x, ∂y), ∇ =
(
∂r ,

1

r
∂θ

)

for the Cartesian or the cylindrical geometry, respectively.
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It is readily observed that the above system possesses an exact steady-state
solution of the form:

φ = − 2

q
|u0|2z, ρ = 1, n = 1

q
|u0|2,

which corresponds to the continuous-wave (cw) solution

u = u0 exp

(
−2i

q
|u0|2z

)
, n = 1

q
|u0|2, (39)

of Eqs. (33) and (34). Note that the constant amplitude u0 can be absorbed into ρ

in the Madelung transformation; nevertheless, for convenience, we opt to use u0 in
Eq. (35) so that no extra free phase appears on the solutions that we present below,
thus making presentation more clear. To further elaborate on this point, and also
to underline the importance of this cw solution in our analysis (because the cw
defines the background on top of which our solutions will propagate), let us write
the solution of Eqs. (33) and (34) as:

u = U0(z)ū, n = n0n̄,

where the background (cw) solution satisfies

i
dU0

dz
= 2n0U0, n0 = |U0|

q
.

Obviously, the solution of the above equations is given in Eq. (39), while ū and n̄

satisfy the system

iūz + 1

2
(Δū−Dūtt )− 2

|u0|2
q

(1 − n̄)ū = 0,

d

q
Δn̄− 2n̄+ 2|ū|2 = 0.

This system possesses a cw solution of unit amplitude, as would be the case if u0
was not used in the Madelung transformation (i.e., in other words, u0 will inevitably
appear in the cw background solution).

Below we seek nonlinear excitations (e.g., solitary waves) which propagate on
top of this cw background. It is, thus, relevant to investigate if this solution is subject
to modulational instability (MI): evidently, nonlinear excitations corresponding to
an unstable background do not have any physical purport. The stability of the cw
solution can be investigated upon employing Eqs. (36)–(38) as follows. Let

ρ = 1 + ρ̃, φ = − 2

q
|u0|2z+ φ̃, n = 1

q
|u0|2 + ñ,
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where small perturbations ρ̃, φ̃ and ñ are assumed to be ∝ exp[i(kzz+k⊥·r⊥−ωt)].
Here, we should recall that the evolution variable in our problem is the propagation
distance z and, thus, the MI analysis is performed with respect to this variable;
as such, kz and its roots (real or imaginary) will determine the stability of the cw
solution. To this end, substituting the above ansatz into Eqs. (36)–(38), we find that
small-amplitude linear waves obey a dispersion relation of the following form,

k2
z = 2|u0|2

q
(k2⊥ −Dω2)

(

1 + dk2⊥
2q

)−1

+ 1

4
(k2⊥ −Dω2)2. (40)

The results stemming from the above equation are as follows. First, Eq. (40) shows
that the cw solution is always modulationally stable, i.e., kz ∈ R ∀ k⊥, ω, provided
D < 0. Note, that in the (1+1)-dimensional case (corresponding to ky = 0 and D =
0, or k⊥ = 0 and D = −1), this result recovers the one presented in the previous
section, also obtained in Ref. [45]. Second, if D = |D| > 0, the cw solution is
unstable: in this case, perturbations grow exponentially, with the instability growth
rate given by Im(kz). Thus, hereafter, we focus on this case, and assume that D =
−|D|, corresponding to the anomalous GVD regime. It is, therefore, clear that the
asymptotic analysis and results that we present in the following sections are only
valid in this regime; in the opposite case, of D = |D| > 0, since the cw background
is unstable, any small perturbations on top of it will result in collapsing solutions.

Another physically relevant information stemming from Eq. (40) is that, in the
long-wavelength and low-frequency limit (i.e., |k⊥|, ω → 0), small-amplitude
spatial or temporal waves propagate on top of the cw background with “sound
velocities” C2 or V 2, respectively, which are given by:

C2 = 2|u0|2
q

, V 2 = C2|D|. (41)

These characteristic velocities can also be determined, in a self-consistent manner,
in the framework of the reductive perturbation method (see, e.g., previous section
and Ref. [23]). It is also noted that in the unstable case of D = |D| > 0, the velocity
V becomes imaginary, a fact that also indicates that perturbations of the cw solution
grow exponentially in the propagation distance z.

4.1 The Boussinesq Equation

Observing that the dispersion relation (40) resembles the one of a Boussinesq
equation [1, 32], we now derive from Eqs. (36)–(38) a Boussinesq equation, for
either Cartesian or cylindrical geometry. We thus seek solutions of Eqs. (36)–(38) in
the form of the following asymptotic expansions:
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φ = − 2

q
|u0|2z+ε1/2Φ, ρ = 1+ερ1+ε2ρ2+· · · , n = 1

q
|u0|2+εn1+ε2n2+· · · ,

(42)

where ε is a formal small parameter (0 < ε 5 1), while unknown real functions
Φ, ρj and nj are assumed to depend on “slow variables”. In particular, for the
Cartesian geometry, Φ, ρj and nj depend on {Z, X, Y, T }, while, for the
cylindrical geometry, on {Z, R, θ, T } (the angular coordinate θ is assumed to
remain unchanged); these slow variables are defined as:

Z = ε1/2z, X = ε1/2x, Y = ε1/2y, R = ε1/2r, T = ε1/2t. (43)

Substituting the expansions (42) into Eqs. (36)–(38), and using the variables in
Eq. (43), we obtain the following results. First, Eq. (36) reads:

ΦZ + 2n1 + ε

{
1

2

[
(∇̃Φ)2 + |D|Φ2

T

]
− 1

4

(
Δ̃ρ1 + |D|ρ1T T

)
+ 2n2

}
= O(ε2),

(44)

where

Δ̃ = ∂2
X + ∂2

Y , ∇̃ = (∂X, ∂Y ),

for the Cartesian case, while

Δ̃ = 1

R
∂R(R∂R)+ 1

R2
∂2
θ , ∇̃ =

(
∂R,

1

R
∂θ

)
,

for the cylindrical case. Second, Eq. (37) leads, at orders O(ε3/2) and O(ε5/2), to
the following equations, respectively:

ρ1Z + Δ̃Φ + |D|ΦTT = 0,

ρ2Z + ∇̃ · (ρ1∇̃Φ)+ |D|(ρ1ΦT )T = 0.

Finally, Eq. (38), at orders O(ε) and O(ε2), lead, respectively, to the equations:

−2qn1 + 2|u0|2ρ1 = 0, (45)

dΔ̃n1 − 2qn2 + 2|u0|2ρ2 = 0. (46)

The leading-order part of Eq. (44), together with Eq. (45), provides the following
connection between functions Φ, n1 and ρ1:

ΦZ = −2n1 = −C2ρ1. (47)
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Furthermore, from the system of Eqs. (44)–(46), it is possible to eliminate ρ1,2 and
n1,2, and derive the following equation for Φ:

ΦZZ − C2
(
Δ̃Φ + |D|ΦTT

)
+ ε

{
1

4C2

(
αΔ̃Φ + |D|ΦTT

)

ZZ

+
[
(∇̃Φ)2 + |D|Φ2

T

]

Z
+ΦZ

(
Δ̃Φ + |D|ΦTT

)}
= O(ε2), (48)

where the parameter α is given by:

α = 1 − 4d|u0|2
q2 . (49)

It is clear that, to leading-order, Eq. (48) is a linear wave equation indicating
that the velocities of spatial or temporal waves are indeed those given in Eq. (41).
In addition, at order O(ε), Eq. (48) incorporates fourth-order dispersion terms and
quadratic nonlinear terms. Obviously, Eq. (48) is a Boussinesq-type equation, either
in Cartesian or cylindrical coordinates. The Boussinesq equation has been originally
proposed for studies of waves in shallow water [1, 32, 35], but later it was also
used in different contexts, ranging from ion-acoustic waves in plasmas [29, 35] to
mechanical lattices and electrical transmission lines [64].

A Boussinesq equation, similar to that in Eq. (48), was derived from a (2 + 1)-
dimensional NLS equation, in Cartesian coordinates, with a local defocusing
nonlinearity [62]; analysis of the Boussinesq model [61] was used in [62] to
investigate self-focusing and transverse instability of plane dark solitons (see also
the review [41] and references therein). In fact, the Cartesian version of the
Boussinesq model (48) is reduced to the one derived in [62] in the limit of d → 0,
corresponding to the local nonlinearity case.

4.2 Kadomtsev-Petviashvilli-Type Equations

We now proceed to derive the far-field equations stemming from the Boussinesq
model (48), in the framework of multiscale asymptotic expansions. As is known,
the far-field of the Boussinesq equation in (1 + 1)-dimensions is a pair of two KdV
equations [1], while in (2 + 1)-dimensions, it is a pair of KP equations [62], for
right- and left-going waves. Below we show that Eq. (48) gives rise to (3 + 1)-
dimensional KP-type models for such waves. In addition, we will distinguish cases
corresponding to two different types of solitary waves that may be supported either
in Cartesian or cylindrical geometry: one, is oblique tube-shaped, oriented under a
uniquely determined angle to the propagation axis, i.e., a spatial solitary wave; the
other, is a constant-shape localized perturbation propagating along the z-axis, i.e., a
temporal solitary wave.
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4.2.1 Spatial Solitary Waves

First, we consider spatial solitary waves, which may have either the form of stripes
propagating on the XZ plane (Cartesian geometry), or exhibit an annular shape,
with the ring radius varying with the propagation distance (cylindrical geometry).
We thus introduce the variables:

χ = X − CZ, χ̃ = X + CZ, Z = εZ, Y = ε1/2Y, T = ε1/2T ,

and

ρ = R − CZ, ρ̃ = R + CZ, Z = εZ, Θ = ε−1/2θ, T = ε1/2T ,

for the two geometries, respectively. We also look for solutions of Eq. (48) in the
form of the asymptotic expansion:

Φ = Φ0 + εΦ1 + · · · . (50)

Substituting Eq. (50) into Eq. (48), we obtain the following results. At leading-order,
O(1):

4C2Φ0χχ̃ = 0,

for the Cartesian and cylindrical geometry, respectively. The above equations imply
that, in each case, Φ0 can be expressed as a superposition of a right-going wave,
Φ

(R)
0 , depending on χ or ρ, and a left-going one, Φ(L)

0 , depending on χ̃ or ρ̃,
namely:

Φ0 = Φ
(R)
0 +Φ

(L)
0 . (51)

Second, at order O(ε):

4C2Φ1χχ̃ = −C
(
Φ

(R)
0χχΦ

(L)

0χ̃ −Φ
(R)
0χ Φ

(L)

0χ̃ χ̃

)

+
[(

−2CΦ(R)

0Z + α

4
Φ

(R)
0χχχ − 3C

2
Φ

(R)2
0χ

)

χ

− C2
(
Φ

(R)

0Y Y + |D|Φ(R)

0T T

)]

+
[(

2CΦ(L)

0Z + α

4
Φ

(L)

0χ̃ χ̃ χ̃ + 3C

2
Φ

(L)2
0χ̃

)

χ̃

− C2
(
Φ

(L)

0Y Y + |D|Φ(L)

0T T

)]

,

(52)
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for the Cartesian geometry, and

4C2Φ1ρρ̃ = −C
(
Φ

(R)
0ρρΦ

(L)

0ρ̃ −Φ
(R)
0ρ Φ

(L)

0ρ̃ρ̃

)

+
[(

−2CΦ(R)

0Z + α

4
Φ

(R)
0ρρρ − 3C

2
Φ

(R)2
0ρ − C

Z
Φ

(R)
0

)

ρ

− 1

Z 2Φ
(R)
0ΘΘ − V 2Φ

(R)

0T T

]

+
[(

2CΦ(L)

0Z + α

4
Φ

(L)

0ρ̃ρ̃ρ̃ + 3C

2
Φ

(L)2
0ρ̃ − C

Z
Φ

(L)
0

)

ρ̃

− 1

Z 2
Φ

(R)
0ΘΘ − V 2Φ

(L)

0T T

]

.

(53)

for the cylindrical geometry. Upon integrating Eq. (52) in χ or χ̃ [Eq. (53) in ρ or
ρ̃], it is obvious that the terms in square brackets in the right-hand side are secular,
because are functions of χ or χ̃ (of ρ or ρ̃) alone. Removal of these terms leads
to two uncoupled nonlinear evolution equations for Φ(R)

0 and Φ
(L)
0 . Furthermore,

employing Eq. (47), it is straightforward to find that the amplitude ρ1 can also be
decomposed to a left- and a right-going wave, i.e., ρ1 = ρ

(R)
1 + ρ

(L)
1 , with

Φ
(R)
0χ = Cρ

(R)
1 , Φ

(L)

0χ̃ = −Cρ(L)1 , and Φ
(R)
0ρ = Cρ

(R)
1 , Φ

(L)

0ρ̃ = −Cρ(L)1 .

Then, using the above expressions, the equations for Φ(R)
0 and Φ

(L)
0 yield, in each

geometry, two uncoupled equations for ρ(R)1 and ρ
(L)
1 . In Cartesian geometry, these

equations are:

(
ρ
(R)

1Z − α

8C
ρ
(R)
1χχχ + 3C

2
ρ
(R)
1 ρ

(R)
1χ

)

χ

+ C

2

(
ρ
(R)

1Y Y + |D|ρ(R)1T T

)
= 0, (54)

(
ρ
(L)

1Z + α

8C
ρ
(L)

1χ̃ χ̃ χ̃ − 3C

2
ρ
(L)
1 ρ

(L)

1χ̃

)

χ̃

− C

2

(
ρ
(L)

1Y Y + |D|ρ(L)1T T

)
= 0. (55)

On the other hand, equations for ρ(R,L)1 in cylindrical geometry, are:

(
ρ
(R)
1Z − α

8C
ρ
(R)
1ρρρ + 3C

2
ρ
(R)
1 ρ

(R)
1ρ + 1

2Z
ρ
(R)
1

)

ρ

+ 1

2C

(
1

Z 2
ρ
(R)
1ΘΘ + V 2ρ

(R)
1T T

)
= 0,

(56)
(
ρ
(L)
1Z + α

8C
ρ
(L)

1ρ̃ρ̃ρ̃ − 3C

2
ρ
(L)
1 ρ

(L)

1ρ̃ − 1

2Z
ρ
(L)
1

)

ρ̃

− 1

2C

(
1

Z 2 ρ
(L)
1ΘΘ + V 2ρ

(L)
1T T

)
= 0.

(57)
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4.2.2 Temporal Solitary Waves

We now proceed with the case of temporal solitary waves. First, introduce the
variables:

τ = T − VZ, τ̃ = T + VZ, Z = εZ,

as well as

X = ε1/2X, Y = ε1/2Y, and R = ε1/2R, Θ = ε−1/2θ,

for the Cartesian and cylindrical geometry, respectively. Then, in each case, utilizing
the above variables and the asymptotic expansion (50), we obtain from Eq. (48) the
leading-order equation:

4V 2Φ0τ τ̃ = 0,

which yields again Eq. (51). Furthermore, working as in the previous case, we obtain
at order O(ε):

4V 2Φ1τ τ̃ = −V |D|
(
Φ

(R)
0ττΦ

(L)

0τ̃ −Φ
(R)
0τ Φ

(L)

0τ̃ τ̃

)

+
[(

−2VΦ(R)

0Z + D2

4
Φ

(R)
0τττ −

3|D|V
2

Φ
(R)2
0τ

)

τ

− C2Δ̂Φ
(R)
0

]
,

+
[(

2VΦ(L)

0Z + D2

4
Φ

(L)

0τ̃ τ̃ τ̃ +
3|D|V

2
Φ

(L)2
0τ̃

)

τ̃

− C2Δ̂Φ
(L)
0

]
, (58)

where

Δ̂ = ∂2
X + ∂2

Y , Δ̂ = 1

R
∂R(R∂R)+ 1

R2
∂2
Θ,

for the two geometries, respectively. Then, employing Eq. (47), the amplitude ρ1 is
again expressed as ρ1 = ρ

(R)
1 + ρ

(L)
1 , with

Φ
(R)
0τ = C2

V
ρ
(R)
1 , Φ

(L)

0τ̃ = −C2

V
ρ
(L)
1 . (59)

Using Eqs. (59), we obtain from Eq. (58) the following equations for ρ(R,L)1 :

(
ρ
(R)

1Z − D2

8V
ρ
(R)
1τττ +

3V

2
ρ
(R)
1 ρ

(R)
1τ

)

τ

+ V

2|D| Δ̂ρ
(R)
1 = 0, (60)
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(
ρ
(L)

1Z + D2

8V
ρ
(L)

1τ̃ τ̃ τ̃ −
3V

2
ρ
(L)
1 ρ

(L)

1τ̃

)

τ̃

− V

2|D| Δ̂ρ
(L)
1 = 0. (61)

We conclude this section with the observation that all equations that were derived
for ρ(R,L)1 are of the KP type, in both geometries. Below we elaborate more on
these effective models, and focus on limiting cases corresponding to their lower-
dimensional versions. For simplicity, we only consider the right-going waves, ρ(R)1Z ,

since ρ(L)1 (Z ) = ρ
(R)
1 (−Z ). In addition, we will present examples of solitary wave

solutions of Eqs. (33) and (34) arising from these KP models.

5 Versions of the KP Equations and Solitary Waves

5.1 Classification of the Effective KP Models

First of all, it is convenient to further normalize the effective KP equations derived
in the previous section in order to express them in their “standard” form [2, 29].

Consider, first, equations for spatial solitary waves, and introduce the transfor-
mations:

Z → − α

8C
Z , T →

√
3|α|
4V 2

T ,

as well as

Y →
√

3|α|
4C2

Y , ρ
(R)
1 = − α

2C2
U and Θ →

√
3|α|

4
Θ, ρ

(R)
1 = − α

2C2
W,

for the Cartesian and cylindrical geometry, respectively. This way, Eq. (54) is
expressed as:

(
UZ + 6UUχ + Uχχχ

)
χ
+ 3σ 2 (UY Y + UT T ) = 0, (62)

while Eq. (56) reads:

(
WZ + 6WWρ +Wρρρ + 1

2Z
W

)

ρ

+ 3σ 2
(

1

Z 2WΘΘ +WT T

)
= 0. (63)

In the above equations, parameter σ 2 is given by

σ 2 = −sign{α},

and it is reminded that α is given by Eq. (49).
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The (1 + 1)-dimensional versions of Eqs. (62) and (63), i.e., the ones referring
to the Z χ and Z ρ plane, have respectively the form of a KdV and a cylindrical
KdV (cKdV) equation. Both models are completely integrable by means of the IST
[2], and find numerous applications in a variety of physical contexts [1, 29, 32, 64].
The KdV and cKdV equations have been derived by means of multiscale expansion
methods from local NLS models, with the aim to describe shallow planar dark
solitons in Bose gases [71] and ring dark solitons in nonlinear optical media [42]
(see also reviews [22, 40] and references therein). More recently, a KdV equation
was derived from the (1 + 1)-dimensional version of Eqs. (33) and (34) for D = 0,
and used to describe small-amplitude nematicons [26]; in fact, the KdV model
derived in [26] is identical with the (1+1)-dimensional version of Eq. (54) [or (62)].

Furthermore, there are two distinct (2 + 1)-dimensional versions of Eq. (62): a
spatial one, in the Z χY space, and a spatio-temporal one, in the Z χT space.
These effective models can be used to describe either spatial optical solitons in
nematic liquid crystals [9], or dispersion-induced dynamics of spatial solitons in
thermal media [45]. Both these (2 + 1)-dimensional equations, are completely
integrable by means of the IST [2].

Importantly, the (2 + 1)-dimensional versions, as well as the complete Eq. (62),
include both versions of the KP equation, KP-I and KP-II [2]. Indeed, for σ = 1,
i.e., α < 0 ⇒ d > (q/2|u0|)2, Eq. (62) is a KP-II equation; on the other hand, for
σ = i, i.e., α > 0 ⇒ d < (q/2|u0|)2, Eq. (62) is a KP-I equation. Recalling that d is
the degree of nonlocality of the system at hand (for d → 0 nonlocal NLS Eqs. (33)
and (34) become local), it is evident that relatively weak (strong) nonlocality, as
defined by the above regimes of d, corresponds to a KP-I (KP-II) model. This fact
has also important implications on the type and the stability of low-dimensional
solitary waves that can be supported in the system (see below).

Similarly, we observe that there are two distinct (2 + 1)-dimensional versions of
Eq. (63): a spatial one, in the Z ρΘ space, and a spatio-temporal one, in the Z ρT
space, which find applications in the contexts discussed above in the Cartesian case.
The spatial version of Eq. (63) is a cylindrical KP (cKP) equation, which is also
known as the Johnson’s equation [31], and describes nearly-concentric solitons in
an ideal, inviscid fluid [32]. This model is, also, completely integrable by means of
the IST [58]. On the other hand, in the Z ρT space, Eq. (56) reduces to the so-called
CI equation, which describes weak cylindrical ion-acoustic solitons in plasmas [29].
Unlike the Johnson’s equation, the CI equation is not considered to be integrable, as
it fails to pass the Painlevé test [2].

It is interesting to point out that there exist transformations mapping solutions of
the KP and cKP equations [32]. Indeed, the map:

U(Z , χ, Y ) → W(Z , ρ, Θ) := U

(
Z , ρ − Z Θ2

12σ 2 , Z Θ

)
,

transforms any solution of the KP equation (62) into a solution of the cKP
equation (63); conversely, the map:
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W(Z , χ, Θ) → U(Z , χ, Y ) := W

(
Z , χ + Y 2

12σ 2Z
,
Y

Z

)
,

transforms any solution of the cKP equation (63) into a solution of the KP
equation (62). Here, we should also note that the spatial (2+1)-dimensional versions
of KP equation (62) and cKP equation (63) are also connected with another relevant
model, the elliptic cKP (ecKP), that was recently presented and studied in [38]. In
this work, it was shown that the ecKP model describes surface gravity waves of
nearly elliptic fronts, and it is completely integrable. Based on the similarities of the
hydrodynamic form (36)–(38) of the nonlocal NLS Eqs. (33) and (34) to the problem
formulation of [38], we conjecture that, adopting an elliptic cylindrical coordinate
system and following the lines of the analysis presented here, one could derive a
(3 + 1)-dimensional version of the ecKP equation. Nevertheless, such a derivation
is beyond the scope of the present work.

We now turn our attention to the KP models that describe temporal waves.
As before, first we put Eq. (60) in the “standard” form. We thus introduce the
transformations:

Z → −D2

8V
Z , {X , Y , R} →

√
3|D|3
4V 2 {X , Y , R}, ρ

(R)
1 = − D2

2V 2Q,

(64)
and obtain from Eq. (60) the models:

(QZ + 6QQτ +Qτττ )τ − 3Δ̂Q = 0, (65)

and it is reminded that the Laplacian Δ̂ refers to either the Cartesian or the
cylindrical geometry. Obviously, the (1 + 1)-dimensional version of Eq. (65) is the
KdV equation. On the other hand, it is observed that, unlike the case of spatial
solitary waves, the Cartesian version of Eq. (65) is solely of the KP-I type; in fact,
in this case, transverse effects are not governed by the sign of parameter α. The
(2 + 1)-dimensional version of Eq. (65) is completely integrable by means of the
IST [2]. Finally, the cylindrical version of Eq. (65) is known as the CII equation,
and describes cylindrical ion-acoustic solitons in plasmas [29].

5.2 Solitary Wave Solutions

The asymptotic reduction of the nonlocal NLS equations to the effective equations
above, allows for the derivation of approximate solutions of Eqs. (33) and (34),
valid up to—and including—order O(ε). Of particular interest are solitary wave
solutions, which can be constructed from solutions of Eqs. (62), (63) and (65). These
asymptotic reductions provide information on the type of the solitary wave, as well
as on the stability of lower-dimensional solutions in higher-dimensional settings.
Below, we showcase some characteristic examples along those lines.
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Let us first consider the case of spatial solitary waves. The (1 + 1)-dimensional
version of Eq. (62) is a KdV equation which possesses the commonly known soliton
solution:

U = 2κ2sech2[κ(χ − 4κ2Z − χ0)], (66)

where κ and χ0 are constants. Using this solution, and reverting transformations for
the independent variables and fields, we find the following approximate solution to
Eqs. (33) and (34):

u ≈ u0

[
1 − εκ2

C2
αsech2(ξ)

]
exp

[
−2i

q
|u0|2z− i

ε1/2κ

C
α tanh(ξ)

]
, (67)

n ≈ 1

q
+ 1

2
εκ2αsech2(ξ), (68)

ξ ≡ ε1/2κ(x − υsz− x0), υs ≡ C

(
1 − 1

2

εη2

C2
|α|

)
. (69)

The solution for u has the form of either a density dip (for α > 0) or a density hump
(for α < 0) on top of the cw background, with a tanh-shaped phase jump across
the density minimum or maximum, respectively. It is thus either a dark soliton (for
α > 0) or an anti-dark soliton (for α < 0); note that the soliton velocity υs is
slightly below the speed of sound, as is the case of shallow dark solitons in local
media [22, 40]. Note that if d → 0, then α > 0, which means that in the case of
the local system the soliton is always dark. In other words, anti-dark solitons are
only supported due to the presence of nonlocality, in accordance with the analysis
of [26].

In Fig. 11, we depict the soliton solutions in Cartesian geometry according to
Eq. (66). Here, solutions’ profiles are plotted at z = 0; all parameter values are kept
equal to unity, and we vary parameter q so that to obtain a dark and an anti-dark
soliton, for q = 1 and q = 5, respectively. Furthermore, we use these profiles as
initial conditions, and perform a direct numerical integration of Eqs. (33) and (34)
to determine their evolution. For the simulations, we used a high accuracy spectral
integrator in Cartesian coordinates. The results are shown in the contour plots of
Fig. 12, where it is verified that these solutions maintain their stability—at least
for relatively short propagation distances (see discussion below)—and propagating
characteristics. Notice that, as expected from the analysis, the anti-dark soliton
propagates at higher, though constant, velocity from its dark soliton counterpart.

The fact that Eq. (62) is either a KP-I (for α < 0) or a KP-II (for α > 0) equation,
can be used to deduce stability of the approximate solitons in (2 + 1)-dimensions.
Indeed, as is well known [2], line soliton solutions of KP-I are unstable, while those
of KP-II are stable. This leads to the prediction that, in the context of the original
problem, dark soliton stripes of the nonlocal problem will be unstable in the 2D
setting, while anti-dark soliton stripes will be stable. Note that the instability in
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Fig. 11 Typical dark (left) and anti-dark soliton (right) profiles, at z = 0, in Cartesian geometry,
for q = 1 and q = 5, respectively. All other parameter values are equal to unity

Fig. 12 Contour plots showing the evolution of the dark (top) and anti-dark (bottom) solitons of
Fig. 11. Results have been obtained from direct numerical integration of Eqs. (33) and (34)

the context of the KP-I model was analyzed [61] and connected to the context
of self-focusing and transverse instability of plane dark solitons in media with
local defocusing nonlinearity [47, 62] (see also [41] for a review and references
therein). It should also be mentioned that in the case of KP-I (for α < 0), there
exist “lump” solitons which are stable in the 2D setting [2]; these structures can
be used to construct approximate solutions of the original problem which, in our
case, will be 2D dark solitary waves, featuring an algebraic decay. These “lump”
solitons, however (along with the planar ones discussed above), are unstable in the
full (3 + 1)-dimensional setting [46].

We now turn to the case of the cylindrical geometry, and consider the (1 + 1)-
dimensional version of Eq. (63), namely the cKdV equation. As mentioned above,
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this model is completely integrable by means of the IST. The solitary wave solution,
which is expressed in terms of the Airy function [25], is composed of a primary
wave and a shelf. An asymptotic analysis [33, 43] in the regime |Z | # |ρ| shows
the following: to leading-order approximation, the primary wave W(ρ,Z ), that
decays to zero at both upstream and downstream infinity, has a form similar to that
of Eq. (66), with the obvious changes χ → ρ and χ0 → ρ0, but with an important
difference: κ now becomes a slowly-varying function of Z , due to the presence of
the term W/(2Z ). In fact, according to the analysis of Refs. [33, 43], and using the
original coordinates, the following result can be obtained,

κ2 = κ2
0

(
z0

z

)2/3

, (70)

where κ2
0 is a constant setting the solitary wave amplitude at z = z0. Then, it is

straightforward to express an approximate solution of Eqs. (33) and (34), but now
for the cylindrical geometry, and for the primary solitary wave. This is of the form of
Eqs. (67)–(69), but with the solitary wave amplitude and velocity varying as z−2/3,
and the width varying as z1/3, as follows from Eqs. (66) and (70).

Obviously, this approximate solution is a ring-shaped solitary wave, on top of the
cw background, which is either of the dark type (for α > 0) or of the anti-dark type
(for α < 0). Note that ring dark solitons were predicted to occur in optical media
exhibiting either Kerr [42] or non-Kerr [23] nonlinearities, and were later observed
in experiments [18]. On the other hand, ring anti-dark solitons were only predicted to
occur in non-Kerr—e.g., saturable media [23, 57]. This picture is complemented by
our analysis, according to which a relatively strong [i.e., d > (q/2|u0|)2] nonlocal
nonlinearity can also support ring anti-dark solitary waves.

In Fig. 13, typical ring dark and anti-dark soliton profiles, with parameter values
identical to those used in the Cartesian case, are shown at z = 0; both solitons
have an initial radius of r0 = 10. In addition, in Fig. 14, contour plots depicting
the evolution of the solitons’ densities are shown; these results, as before, have
been obtained via direct numerical integration of Eqs. (33) and (34). Much like
the Cartesian case, the solitons propagate undistorted, i.e., the initial rings expand
outwards, keeping their shapes during the evolution—at least for relatively short
propagation distances (see below). It is also observed that the solitons expand
(propagate) with constant speed, with the anti-dark soliton expanding faster than
the dark soliton: indeed, the anti-dark soliton’s radius is larger than that of the dark
one, at the same propagation distance.

As in the Cartesian case, the effective equation (63) can also be used to predict
(in)stability of the ring dark or anti-dark solitary waves in the (2 + 1)-dimensional
setting. In particular, and similarly to the case of the planar solitons of Eq. (62), the
case of α < 0 (α > 0), where ring dark (anti-dark) solitary waves exist, corresponds
to a KP-I (KP-II) type model. It is, thus, clear that ring dark solitary waves are
expected to be unstable, while ring anti-dark ones are predicted be stable.
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Fig. 13 Typical ring dark (left) and anti-dark soliton profiles, at z = 0. Both solitons have an
initial radius r0 = 10, while other parameter values are as in the Cartesian case

Fig. 14 Contour plots showing the evolution of the ring dark (top) and anti-dark (bottom) ring
solitons of Fig. 13. Results have been obtained from direct numerical integration of Eqs. (33)
and (34)

Finally, let us briefly discuss the case of temporal solitary waves described by
Eq. (65). In the (1 + 1)-dimensional setting, the underlying KdV equation has a
soliton solution similar to that in Eq. (66), with the obvious changes χ → τ and
χ0 → τ0. However, when expressed in terms of the original fields and variables
of Eqs. (33) and (34), it is clear that the corresponding approximate solitary wave
solution is solely of the dark type: this is due to the fact that parameter α is not
involved in the normalization of the field Q [cf. Eq. (64)]. For the same reason,
as was also mentioned in the previous section, the higher-dimensional versions of
Eq. (65) are solely of the KP-I type. As a result, in the Cartesian (2+1)-dimensional
setting corresponding to the usual KP-I model, one expects the existence of stable
dark “lump” solitary wave solutions of the original model; these, however, are



442 T. P. Horikis and D. J. Frantzeskakis

unstable in the full 3D setting [46]. Finally, regarding the cylindrical geometry, to
the best of our knowledge, two-dimensional soliton solutions of the CII model are
not known.

6 Summary and Conclusions

In this chapter we have studied the properties of a nonlocal nonlinear Schrödinger
(NLS) model and focused, more specifically, on its soliton solutions. The considered
nonlocal NLS is relevant to many physical contexts, as it describes the dynamics
of optical beams in nematic liquid crystals, plasmas, and optical media exhibiting
thermal nonlinearities. Generally, this nonlocal NLS consists of one (or more—in
the vector version of the model) paraxial wave equation, describing the evolution of
the optical field, coupled with a diffusion-type equation for the medium’s effective
refractive index.

We have studied various versions of this model: a (1 + 1)-dimensional scalar
model, its vector generalization, as well as a scalar, fully (3 + 1)-dimensional
model. We have also considered both the focusing and defocusing versions of the
nonlocal NLS system. Our analysis started with the elementary solution—in the
form of a continuous-wave (cw)—and the study of its stability. We have shown that
in the focusing (defocusing) version of the model the cw is modulationally unstable
(stable), and we have determined the relevant instability band and maximum growth
rate. We found that the instability band and growth rate decrease due to nonlocality,
which is a generic feature of nonlocal media.

Then, we have studied soliton solutions of the model. In the focusing regime, we
have found bright soliton solutions in a closed analytical form, for both the scalar
and the vector versions of the nonlocal system. In the defocusing regime, we have
used multiscale expansion methods to derive effective nonlinear evolution equations
that describe a variety of approximate soliton solutions of the original model. This
is particularly important since, generally, nonlocal systems—and also the particular
system considered in our work—do not possess solutions in closed analytical form.
Our findings are summarized as follows.

For the (1+1)-dimensional scalar model, we derived an effective KdV equation,
which describes either dark or antidark solitons of the nonlocal NLS. These are
obtained, respectively, for relatively weak or strong nonlocality, with the relevant
regimes discriminated by the sign of a physically relevant parameter. In the
vector version of the model, our analysis was performed for different boundary
conditions: for nonvanishing conditions for both fields, and nonvanishing-vanishing
conditions for each field. In the former case, we derived a KdV model, which
describes dark-dark solitons solutions of the original problem. In the second case,
we derived a Mel’nikov system—namely a KdV equation with a self-consistent
source satisfying a time-independent Schrödinger equation; this system describes
dark-antidark solitons of the original nonlocal NLS.
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We have also studied the fully (3 + 1)-dimensional scalar version of the
nonlocal NLS model in the defocusing regime (the focusing one is generally subject
to collapse). In this case too, it was found that the elementary cw solution is
modulationally stable, which allowed us to find approximate soliton solutions on
top of his stable background. Using again multiple scale expansion techniques,
we have found various effective nonlinear evolution equations describing a wealth
of approximate soliton solutions of the original problem, both in Cartesian and
cylindrical geometries.

This way, first we derived, at an intermediate stage of the asymptotic analysis,
a 3D Boussinesq equation. Then, we considered two cases, corresponding to
spatial or temporal structures and, upon introducing relevant scales and asymptotic
expansions, we reduced the Boussinesq model to KP-type equations that govern
right- and left-propagating waves. These models include various integrable and non-
integrable equations at different dimensionalities and geometries, such as the KdV
and the cKdV equation, the KP-I and KP-II equations, Johnson’s equation, as well
as the CI and CII equations. Furthermore, useful results were deduced on the type
and the stability of lower-dimensional solitary waves in higher-dimensional settings.
In that regard, we identified parameter regimes, corresponding to relatively weak or
strong nonlocality, for which we predicted the existence and stability of various
solitary waves. Thus, we predicted the existence of spatial, planar or cylindrical
(ring-shaped), dark or anti-dark solitary waves, for weak or strong nonlocality,
respectively, and that dark (anti-dark) solitary waves are unstable (stable) in the
(1 + 1)-dimensional setting. Furthermore, our analysis suggested the existence of
temporal solitary waves, which become unstable in higher dimensions. Regarding
approximate two-dimensional solitary wave solutions, it was found that they may
exist in the form of algebraically decaying dark “lumps”, which satisfy effective
KP-I models; such structures may be either of the spatial or temporal type and are
supported in the weak nonlocality regime.

Our analytical predictions were also corroborated by results of direct numerical
simulations. Indeed, we have used the analytical forms of the spatial soliton profiles,
in both the 1D and 2D (Cartesian and cylindrical) settings, and studied their
evolution stemming from the direct numerical integration of the original nonlocal
NLS model. We have thus found that all types of solitons propagate undistorted, as
per the effective nonlinear evolution equation proper, at least for short propagation
distances. Notice that, even for longer propagation distances, instabilities were not
observed in our simulations, which suggests that the solitons presented here have a
good chance to be observed in experiments.

Our analysis suggests various interesting directions for future studies. For
instance, it would be relevant to extend our considerations to nonlocal models with
a higher number of components in the higher-dimensional setting. In that case, it
would be important to identify vector solitary wave structures and vortices in these
models, extending previous studies in media with local nonlinearity [37].
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Stability of a Cauchy-Jensen Additive
Mapping in Various Normed Spaces

Hassan Azadi Kenary, Choonkil Park, Themistocles M. Rassias,
and Jung Rye Lee

1 Introduction

A classical question in the theory of functional equations is the following: When
is it true that a function which approximately satisfies a functional equation must
be close to an exact solution of the equation? If the problem accepts a solution,
we say that the equation is stable. The first stability problem concerning group
homomorphisms was raised by Ulam [57] in 1940. In the next year, Hyers [22] gave
a positive answer to the above question for additive groups under the assumption
that the groups are Banach spaces. In 1978, Rassias [43] proved a generalization of
Hyers’s theorem for additive mappings.

Theorem 1 ([43]) Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

‖f (x + y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p)
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for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1. Then the
limit L(x) = limn→∞ f (2nx)

2n exists for all x ∈ E and L : E → E′ is the unique
linear mapping which satisfies

‖f (x)− L(x)‖ ≤ 2ε

2 − 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f (tx) is continuous in t ∈ R,
then L is linear.

Furthermore, in 1994, a generalization of Rassias’ theorem was obtained by
Gǎvruta [20] by replacing the bound ε(‖x‖p + ‖y‖p) by a general control function
ϕ(x, y). In 1983, a Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [56] for mappings f : X → Y , where X is a
normed space and Y is a Banach space. In 1984, Cholewa [9] noticed that the
theorem of Skof is still true if the relevant domain X is replaced by an Abelian
group and, in 2002, Czerwik [11] proved the Hyers-Ulam stability of the quadratic
functional equation. The reader is referred to [1–54] and references therein for
detailed information on stability of functional equations.

In 1897, Hensel [21] introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many nice
applications (see [12, 27, 30, 31, 36]).

Katsaras [26] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view (see [19, 32, 40]). In particular, Bag
and Samanta [3], following Cheng and Mordeson [8], gave an idea of fuzzy norm
in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek
type [25]. They established a decomposition theorem of a fuzzy norm into a family
of crisp norms and investigated some properties of fuzzy normed spaces [4].

Definition 1 By a non-Archimedean field we mean a field K equipped with a
function (valuation) | · | : K → [0,∞) such that, for all r, s ∈ K , the following
conditions hold:

(a) |r| = 0 if and only if r = 0;
(b) |rs| = |r||s|;
(c) |r + s| ≤ max{|r|, |s|}.

Clearly, by (b), |1| = | − 1| = 1 and so, by induction, it follows from (c) that
|n| ≤ 1 for all n ≥ 1.

Definition 2 Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · |.
(1) A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies

the following conditions:

(a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;
(b) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
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(c) the strong triangle inequality (ultra-metric) holds, that is,

‖x + y‖ ≤ max{‖x‖, ‖y‖}

for all x, y ∈ X.

(2) The space (X, ‖ · ‖) is called a non-Archimedean normed space.

Note that ||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n − 1} for all m, n ∈ N

with n > m.

Definition 3 Let (X, ‖ · ‖) be a non-Archimedean normed space.

(a) A sequence {xn} is a Cauchy sequence in X if {xn+1 − xn} converges to zero in
X.

(b) The non-Archimedean normed space (X, ‖ · ‖) is said to be complete if every
Cauchy sequence in X is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A
key property of p-adic numbers is that they do not satisfy the Archimedean axiom:
for all x, y > 0, there exists a positive integer n such that x < ny.

Example 1 Fix a prime number p. For any nonzero rational number x, there exists
a unique positive integer nx such that x = a

b
pnx , where a and b are positive integers

not divisible by p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The
completion of Q with respect to the metric d(x, y) = |x − y|p is denoted by Qp,
which is called the p-adic number field. In fact, Qp is the set of all formal series
x = ∑∞

k≥nx akp
k , where |ak| ≤ p−1. The addition and multiplication between any

two elements of Qp are defined naturally. The norm |∑∞
k≥nx akp

k|p = p−nx is a
non-Archimedean norm on Qp and Qp is a locally compact filed.

In Sect. 3, we adopt the usual terminology, notions and conventions of the theory
of random normed spaces as in [55].

Throughout this paper, let '+ denote the set of all probability distribution
functions F : R ∪ [−∞,+∞] → [0, 1] such that F is left-continuous and
nondecreasing on R and F(0) = 0, F (+∞) = 1. It is clear that the set D+ =
{F ∈ '+ : l−F(−∞) = 1}, where l−F(x) = limt→x− F(t), is a subset of '+.
The set '+ is partially ordered by the usual point-wise ordering of functions, that
is, F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R. For any a ≥ 0, the element
Ha(t) of D+ is defined by

Ha(t) =
{

0, if t ≤ a,

1, if t > a.

We can easily show that the maximal element in '+ is the distribution function
H0(t).
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Definition 4 A function T : [0, 1]2 → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (x, 1) = x for all x ∈ [0, 1];
(d) T (x, y) ≤ T (z,w) whenever x ≤ z and y ≤ w for all x, y, z,w ∈ [0, 1].

Three typical examples of continuous t-norms are as follows: T (x, y) =
xy, T (x, y) = max{a+b−1, 0}, T (x, y) = min(a, b). Recall that, if T is a t-norm
and {xn} is a sequence in [0, 1], then T n

i=1xi is defined recursively by T 1
i=1x1 = x1

and T n
i=1xi = T (T n−1

i=1 xi, xn) for all n ≥ 2. T∞
i=nxi is defined by T∞

i=1xn+i .

Definition 5 A random normed space (briefly, RN -space) is a triple (X,μ, T ),
where X is a vector space, T is a continuous t-norm and μ : X → D+ is a mapping
such that the following conditions hold:

(a) μx(t) = H0(t) for all t > 0 if and only if x = 0;

(b) μαx(t) = μx

(
t
|α|

)
for all α ∈ R with α �= 0, x ∈ X and t ≥ 0;

(c) μx+y(t + s) ≥ T (μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ‖·‖) defines a random normed space (X,μ, TM), where
μu(t) = t

t+‖u‖ for all t > 0 and TM is the minimum t-norm. This space X is called
the induced random normed space.

If the t-norm T is such that sup0<a<1 T (a, a) = 1, then every RN -space
(X,μ, T ) is a metrizable linear topological space with the topology τ (called the
μ-topology or the (ε, δ)-topology, where ε > 0 and λ ∈ (0, 1)) induced by the base
{U(ε, λ)} of neighborhoods of θ , where

U(ε, λ) = {x ∈ X : μx(ε) > 1 − λ}.

Definition 6 Let (X,μ, T ) be an RN-space.

(a) A sequence {xn} in X is said to be convergent to a point x ∈ X (write xn → x

as n → ∞) if

lim
n→∞μxn−x(t) = 1

for all t > 0.
(b) A sequence {xn} in X is called a Cauchy sequence in X if

lim
n→∞μxn−xm(t) = 1

for all t > 0.
(c) The RN -space (X,μ, T ) is said to be complete if every Cauchy sequence in X

is convergent.
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Theorem 2 If (X,μ, T ) is an RN -space and {xn} is a sequence such that xn → x,
then limn→∞ μxn(t) = μx(t).

Definition 7 Let X be a real vector space. A function N : X×R → [0, 1] is called
a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N
(
x, t

|c|
)

if c �= 0;

(N4) N(x + y, c + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x �= 0, N(x, .) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

Example 2 Let (X, ‖.‖) be a normed linear space and α, β > 0. Then

N(x, t) =
{

αt
αt+β‖x‖ t > 0, x ∈ X

0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 8 Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is
said to be convergent or converge if there exists an x ∈ X such that limt→∞N(xn−
x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence {xn} in X

and we denote it by N − limt→∞ xn = x.

Definition 9 Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is
called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for
all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1 − ε.

It is well known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and
Y is continuous at a point x ∈ X if for each sequence {xn} converging to x0 ∈ X,
then the sequence {f (xn)} converges to f (x0). If f : X → Y is continuous at each
x ∈ X, then f : X → Y is said to be continuous on X.

Definition 10 Let X be a set. A function d : X × X → [0,∞] is called a
generalized metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X.

Theorem 3 Let (X,d) be a complete generalized metric space and J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X,
either d(J nx, J n+1x) = ∞ for all nonnegative integers n or there exists a positive
integer n0 such that



452 H. Azadi Kenary et al.

(a) d(J nx, J n+1x) < ∞ for all n0 ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(J n0x, y) < ∞};
(d) d(y, y∗) ≤ d(y,Jy)

1−L for all y ∈ Y .

2 Non-Archimedean Stability of the Functional Equation (1)

In this section, we deal with the stability problem for the Cauchy-Jensen additive
functional equation (1) in non-Archimedean normed spaces.

2.1 Fixed Point Method

Theorem 4 Let X is a non-Archimedean normed space and that Y be a complete
non-Archimedean space. Let ϕ : X3 → [0,∞) be a function such that there exists
an α < 1 with

ϕ
(x

2
,
y

2
,
z

2

)
≤ αϕ (x, y, z)

|2| (1)

for all x, y, z ∈ X. Let f : X → Y be a mapping with f (0) = 0 satisfying

∥∥∥∥f
(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z)

∥∥∥∥
Y

≤ ϕ(x, y, z) (2)

for all x, y, z ∈ X. Then there exists a unique additive mapping L : X → Y such
that

‖f (x)− L(x)‖Y ≤ αϕ(x, 2x, x)

|2| − |2|α (3)

for all x ∈ X.

Proof Putting y = 2x and z = x in (2), we get

‖f (2x)− 2f (x)‖Y ≤ ϕ(x, 2x, x) (4)

for all x ∈ X. So

∥∥
∥f (x)− 2f

(x
2

)∥∥
∥
Y
≤ ϕ

(x
2
, x,

x

2

)
≤ αϕ(x, 2x, x)

|2| (5)
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for all x ∈ X. Consider the set S := {h : X → Y } and introduce the generalized
metric on S:

d(g, h) = inf
{
μ ∈ (0,+∞) : ‖g(x)− h(x)‖Y ≤ μϕ(x, 2x, x), ∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete (see [33]).
Now we consider the linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)

for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖Y ≤ εϕ(x, 2x, x)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖Y =
∥∥∥2g

(x
2

)
− 2h

(x
2

)∥∥∥
Y
= |2|

∥∥∥g
(x

2

)
− h

(x
2

)∥∥∥
Y

≤ |2|ϕ
(x

2
, x,

x

2

)
≤ α · εϕ(x, 2x, x)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means that
d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from (5) that d(f, Jf ) ≤ α

|2| .
By Theorem 3, there exists a mapping L : X → Y satisfying the following:

(1) L is a fixed point of J , i.e.,

L(x)

2
= L

(x
2

)
(6)

for all x ∈ X. The mapping L is a unique fixed point of J in the set M = {g ∈
S : d(h, g) < ∞}. This implies that L is a unique mapping satisfying (6) such
that there exists a μ ∈ (0,∞) satisfying ‖f (x) − L(x)‖Y ≤ μϕ(x, 2x, x) for
all x ∈ X;

(2) d(J nf, L) → 0 as n → ∞. This implies the equality

lim
n→∞ 2nf

( x

2n

)
= L(x) (7)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−α d(f, Jf ), which implies the inequality d(f, L) ≤ α
|2|−|2|α . This

implies that the inequalities (3) holds.
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It follows from (2) and (6) that
∥
∥∥∥L

(
x + y + z

2

)
+ L

(
x − y + z

2

)
− L(x)− L(z)

∥
∥∥∥
Y

= lim
n→∞ |2|n

∥∥∥
∥f

(
x + y + z

2n+1

)
+ f

(
x − y + z

2n+1

)
− f

( x

2n

)
− f

( z

2n

)∥∥∥
∥
Y

≤ lim
n→∞ |2|nϕ

( x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞ |2|n.α
nϕ(x, y, z)

|2|n = 0

for all x, y, z ∈ X . So

L

(
x + y + z

2

)
+ L

(
x − y + z

2

)
= L(x)+ L(z)

for all x, y, z ∈ X. Hence L : X → Y is a Cauchy-Jensen mapping. It follows
from (1), (5) and (7) that

∥
∥∥2L

(x
2

)
− L(x)

∥
∥∥
Y
= lim

n→∞|2|n
∥
∥∥
∥2f

(
x

2n+1

)
− f

( x

2n

)∥∥∥
∥
Y

≤ lim
n→∞|2|nϕ

(
x

2n+1
,
x

2n
,

x

2n+1

)
≤ lim

n→∞|2|n.α
nϕ(x, 2x, x)

|2|n = 0

for all x ∈ X. So

2L
(x

2

)
− L(x) = 0

for all x ∈ X. Hence L : X → Y is additive and we get the desired result.

Corollary 1 Let θ be a positive real number and r is a real number with 0 < r < 1.
Let f : X → Y be a mapping with f (0) = 0 satisfying

∥∥∥∥f
(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z)

∥∥∥∥
Y

≤ θ
(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X . Then there exists a unique additive mapping L : X → Y such
that

‖f (x)− L(x)‖Y ≤ |2|θ(2 + |2|r )‖x‖r
|2|r+1 − |2|2

for all x ∈ X.

Proof The proof follows from Theorem 4 by taking

ϕ(x, y, z) = (‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then we can choose α = |2|1−r and we get the desired result.
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Theorem 5 Let X is a non-Archimedean normed space and that Y be a complete
non-Archimedean space. Let ϕ : X3 → [0,∞) be a function such that there exists
an α < 1 with

ϕ (x, y, z) ≤ |2|αϕ
(x

2
,
y

2
,
z

2

)

for all x, y, z ∈ X. Let f : X → Y be a mapping with f (0) = 0 satisfying (2).
Then there exists a unique additive mapping L : X → Y such that

‖f (x)− L(x)‖Y ≤ ϕ(x, 2x, x)

|2| − |2|α (8)

for all x ∈ X.

Proof Let (S, d) be the generalized metric space defined in the proof of Theorem 4.
Now we consider the linear mapping J : S → S such that

Jg(x) := g(2x)

2

for all x ∈ X. Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖Y ≤ εϕ(x, 2x, x)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖Y =
∥∥∥
∥
g(2x)

2
− h(2x)

2

∥∥∥
∥
Y

= ‖g(2x)− h(2x)‖Y
|2|

≤ ϕ (2x, 4x, 2x)

|2| ≤ |2|α · εϕ(x, 2x, x)

|2|
for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ αε. This means that
d(Jg, Jh) ≤ αd(g, h) for all g, h ∈ S. It follows from (4) that d(f, Jf ) ≤ 1

|2| .
By Theorem 3, there exists a mapping L : X → Y satisfying the following:

(1) L is a fixed point of J , i.e.,

L(2x) = 2L (x) (9)

for all x ∈ X. The mapping L is a unique fixed point of J in the set M = {g ∈
S : d(h, g) < ∞}. This implies that L is a unique mapping satisfying (9) such
that there exists a μ ∈ (0,∞) satisfying ‖f (x) − L(x)‖Y ≤ μϕ(x, 2x, x) for
all x ∈ X;
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(2) d(J nf, L) → 0 as n → ∞. This implies the equality

lim
n→∞

f (2nx)

2n
= L(x)

for all x ∈ X;
(3) d(f, L) ≤ 1

1−α d(f, Jf ), which implies the inequality d(f, L) ≤ 1
|2|−|2|α . This

implies that (8) holds. The rest of the proof is similar to the proof of Theorem 4.

Corollary 2 Let θ be a positive real number and r is a real number with r > 1. Let
f : X → Y be a mapping with f (0) = 0 satisfying

∥
∥∥∥f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z)

∥
∥∥∥
Y

≤ θ
(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X . Then there exists a unique Then there exists a unique additive
mapping L : X → Y such that

‖f (x)− L(x)‖Y ≤ θ(2 + |2|r )‖x‖r
|2| − |2|r

for all x ∈ X.

Proof The proof follows from Theorem 5 by taking

ϕ(x, y, z) = (‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then we can choose α = |2|r−1 and we get the desired result.

2.2 Direct Method

In this section, using direct method, we prove the Hyers-Ulam stability of the
Cauchy-Jensen additive functional equation (1) in non-Archimedean spaces.

Theorem 6 Let G is an additive semigroup and that X is a non-Archimedean
Banach space. Assume that ζ : G3 → [0,+∞) is a function such that

lim
n→∞ |2|nζ

( x

2n
,
y

2n
,
z

2n

)
= 0 (10)

for all x, y, z ∈ G. Suppose that, for any x ∈ G, the limit

Ψ (x) = lim
n→∞ max

0≤k<n
|2|k ζ

( x

2k+1
,
x

2k
,

x

2k+1

)
(11)

exists and f : G → X is a mapping with f (0) = 0 satisfying
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∥∥∥∥f
(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z)

∥∥∥∥
X

≤ ζ(x, y, z) (12)

Then the limit A(x) := limn→∞ 2nf
(
x
2n
)

exists for all x ∈ G and defines an
additive mapping A : G → X such that

‖f (x)− A(x)‖ ≤ Ψ (x). (13)

Moreover, if

lim
j→∞ lim

n→∞ max
j≤k<n+j

|2|k ζ
( x

2k+1 ,
x

2k
,

x

2k+1

)
= 0

then A is the unique additive mapping satisfying (13).

Proof Putting y = 2x and z = x in (12), we get

‖f (2x)− 2f (x)‖Y ≤ ζ(x, 2x, x) (14)

for all x ∈ G. Replacing x by x
2n+1 in (14), we obtain

∥∥∥2n+1f
( x

2n+1

)
− 2nf

( x

2n

)∥∥∥ ≤ |2|n ζ
( x

2n+1 ,
x

2n
,

x

2n+1

)
. (15)

Thus, it follows from (10) and (15) that the sequence
{
2nf

(
x
2n
)}

n≥1 is a Cauchy

sequence. Since X is complete, it follows that
{
2nf

(
x
2n
)}

n≥1 is convergent. Set

A(x) := lim
n→∞ 2nf

( x

2n

)
. (16)

By induction on n, one can show that

∥
∥∥2nf

( x

2n

)
− f (x)

∥
∥∥ ≤ max

{
|2|k ζ

( x

2k+1
,
x

2k
,

x

2k+1

)
; 0 ≤ k < n

}
(17)

for all n ≥ 1 and x ∈ G. By taking n → ∞ in (17) and using (11), one obtains (13).
By (10), (12) and (16), we get

∥∥∥∥A
(
x + y + z

2

)
+ A

(
x − y + z

2

)
− A(x)− A(z)

∥∥∥∥

= lim
n→∞ |2|n

∥
∥∥∥f

(
x + y + z

2n+1

)
+ f

(
x − y + z

2n+1

)
− f

( x

2n

)
− f

( z

2n

)∥∥∥∥

≤ lim
n→∞ |2|nζ

( x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ X . So
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A

(
x + y + z

2

)
+ A

(
x − y + z

2

)
= A(x)+ A(z) (18)

for all x, y, z ∈ G. Letting y = 0 in (18), we get

2L

(
x + z

2

)
= L(x)+ L(z) (19)

for all x, z ∈ G. Since

L(0) = lim
n→+∞ 2nf

(
0

2n

)
= lim

n→+∞ 2nf (0) = 0,

by letting y = 2x and z = x in (18), we get

A(2x) = 2A(x)

for all x ∈ G. Replacing x by 2x and z by 2z in (19), we get

A(a + z) = A(x)+ A(z)

for all x, z ∈ G. Hence A : G → X is additive.
To prove the uniqueness property of A, let L be another mapping satisfying (13).

Then we have
∥
∥∥A(x)− L(x)

∥
∥∥
X

= lim
n→∞ |2|n

∥
∥∥A

( x

2n

)
− L

( x

2n

)∥∥∥
X

≤ lim
k→∞ |2|n max

{∥∥∥A
( x

2n

)
− f

( x

2n

)∥∥∥
X
,

∥∥∥f
( x

2n

)
− L

( x

2n

)∥∥∥
X

}

≤ lim
j→∞ lim

n→∞ max
j≤k<n+j

|2|k ζ
( x

2k+1 ,
x

2k
,

x

2k+1

)
= 0

for all x ∈ G. Therefore, A = L. This completes the proof.

Corollary 3 Let ξ : [0,∞) → [0,∞) be a function satisfying

ξ

(
t

|2|
)
≤ ξ

(
1

|2|
)
ξ(t), ξ

(
1

|2|
)
<

1

|2|
for all t ≥ 0. Assume that κ > 0 and f : G → X is a mapping with f (0) = 0 such
that
∥∥∥∥f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z)

∥∥∥∥
Y

≤ κ (ξ(|x|)+ ξ(|y|)+ ξ(|z|))
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for all x, y, z ∈ G. Then there exists a unique additive mapping A : G → X such
that

‖f (x)− A(x)‖ ≤ (2 + |2|)ξ(|x|)
|2|

for all x ∈ G.

Proof If we define ζ : G3 → [0,∞) by ζ(x, y, z) := κ (ξ(|x|)+ ξ(|y|)+ ξ(|z|)),
then we have

lim
n→∞ |2|n ζ

( x

2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ G. On the other hand,

Ψ (x) = ζ
(x

2
, x,

x

2

)
= (2 + |2|)ξ(|x|)

|2|
exists for all x ∈ G. Also, we have

lim
j→∞ lim

n→∞ max
j≤k<n+j

|2|k ζ
( x

2k+1
,
x

2k
,

x

2k+1

)
= lim

j→∞ |2|j ζ
( x

2j+1
,
x

2j
,

x

2j+1

)
= 0.

Applying Theorem 6, we have the conclusion.

Theorem 7 Let G is an additive semigroup and that X is a non-Archimedean
Banach space. Assume that ζ : G3 → [0,+∞) is a function such that

lim
n→∞

ζ (2nx, 2ny, 2nz)

2n
= 0 (20)

for all x, y, z ∈ G. Suppose that, for any x ∈ G, the limit

Ψ (x) = lim
n→∞ max

0≤k<n
ζ
(
2kx, 2k+1x, 2kx

)

|2|k (21)

exists and f : G → X is a mapping with f (0) = 0 and satisfying (12). Then the
limit A(x) := limn→∞ f (2nx)

2n exists for all x ∈ G and

‖f (x)− A(x)‖ ≤ Ψ (x)

|2| . (22)
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for all x ∈ G. Moreover, if

lim
j→∞ lim

n→∞ max
j≤k<n+j

ζ
(
2kx, 2k+1x, 2kx

)

|2|k = 0,

then A is the unique mapping satisfying (22).

Proof It follows from (14), we get

∥∥∥∥f (x)−
f (2x)

2

∥∥∥∥
X

≤ ζ(x, 2x, x)

|2| (23)

for all x ∈ G. Replacing x by 2nx in (23), we obtain

∥∥∥∥
f (2nx)

2n
− f (2n+1x)

2n+1

∥∥∥∥
X

≤ ζ
(
2nx, 2n+1x, 2nx

)

|2|n+1 . (24)

Thus it follows from (20) and (24) that the sequence
{
f (2nx)

2n

}

n≥1
is convergent. Set

A(x) := lim
n→∞

f (2nx)

2n
.

On the other hand, it follows from (24) that

∥
∥
∥
∥
f (2px)

2p
− f (2qx)

2q

∥
∥
∥
∥=

∥∥
∥
∥
∥∥

q−1∑

k=p

f (2k+1x)

2k+1
− f (2kx)

2k

∥∥
∥
∥
∥∥
≤ max

p≤k<q

{∥∥
∥
∥
∥
f (2k+1x)

2k+1
− f (2kx)

2k

∥
∥
∥
∥
∥

}

≤ 1

|2| max
p≤k<q

ζ
(

2kx, 2k+1x, 2kx
)

|2|k

for all x ∈ G and p, q ≥ 0 with q > p ≥ 0. Letting p = 0, taking q → ∞ in the
last inequality and using (21), we obtain (22).

The rest of the proof is similar to the proof of Theorem 6.

Corollary 4 Let ξ : [0,∞) → [0,∞) be a function satisfying

ξ (|2| t) ≤ ξ (|2|) ξ(t), ξ (|2|) < |2|

for all t ≥ 0. Let κ > 0 and f : G → X be a mapping with f (0) = 0 satisfying

∥∥∥∥f
(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z)

∥∥∥∥ ≤ κ (ξ(|x|) · ξ(|y|) · ξ(|z|))



Stability of a Cauchy-Jensen Additive Mapping in Various Normed Spaces 461

for all x, y, z ∈ G. Then there exists a unique additive mapping A : G → X such
that

‖f (x)− A(x)‖ ≤ κξ(|x|)3

for all x ∈ G.

Proof If we define ζ : G3 → [0,∞) by

ζ(x, y, z) := κ (ξ(|x|) · ξ(|y|) · ξ(|z|))

and apply Theorem 7, then we get the conclusion.

3 Random Stability of the Functional Equation (1)

In this section, using the fixed point and direct methods, we prove the Hyers-Ulam
stability of the functional equation (1) in random normed spaces.

3.1 Direct Method

Theorem 8 Let X be a real linear space, (Z,μ′,min) be an RN-space and ϕ :
X3 → Z be a function such that there exists 0 < α < 1

2 such that

μ′
ϕ( x2 ,

y
2 ,

z
2 )
(t) ≥ μ′

ϕ(x,y,z)

(
t

α

)
(25)

for all x, y, z ∈ X and t > 0 and limn→∞ μ′
ϕ( x

2n ,
y

2n ,
z

2n )

(
t

2n
) = 1 for all x, y, z ∈ X

and t > 0. Let (Y, μ,min) be a complete RN-space. If f : X → Y is a mapping
with f (0) = 0 such that

μ
f
(
x+y+z

2

)
+f

(
x−y+z

2

)
−f (x)−f (z)(t) ≥ μ′

ϕ(x,y,z)(t) (26)

for all x, y, z ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(
x
2n
)

exists for
all x ∈ X and defines a unique additive mapping A : X → Y such that

μf (x)−A(x)(t) ≥ μ′
ϕ(x,2x,x)

(
(1 − 2α)t

α

)
. (27)

for all x ∈ X and t > 0.
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Proof Putting y = 2x and z = x in (26), we see that

μf (2x)−2f (x)(t) ≥ μ′
ϕ(x,2x,x)(t). (28)

Replacing x by x
2 in (28), we obtain

μ2f ( x2 )−f (x)(t) ≥ μ′
ϕ( x2 ,x,

x
2 )
(t) ≥ μ′

ϕ(x,2x,x)

(
t

α

)
(29)

for all x ∈ X. Replacing x by x
2n in (29) and using (25), we obtain

μ
2n+1f

(
x

2n+1

)
−2nf

(
x

2n
)(t) ≥ μ′

ϕ
(

x

2n+1 ,
x

2n ,
x

2n+1

)

(
t

2n

)
≥ μ′

ϕ(x,2x,x)

(
t

2nαn+1

)

and so

μ2nf
(
x

2n
)−f (x)

(
n−1∑

k=0

2kαk+1t

)

= μ∑n−1
k=0 2k+1f

(
x

2k+1

)
−2kf

(
x

2k

)

(
n−1∑

k=0

2kαk+1t

)

≥ T n−1
k=0

(
μ

2k+1f
(

x

2k+1

)
−2kf

(
x

2k

)(2kαk+1t)

)

≥ T n−1
k=0

(
μ′
ϕ(x,2x,x)(t)

)

= μ′
ϕ(x,2x,x)(t).

This implies that

μ2nf
(
x

2n
)−f (x)(t) ≥ μ′

ϕ(x,2x,x)

(
t

∑n−1
k=0 2kαk+1

)

. (30)

Replacing x by x
2p in (30), we obtain

μ
2n+pf

(
x

2n+p
)
−2pf

(
x

2p

)(t) ≥ μ′
ϕ(x,2x,x)

⎛

⎝ t
∑n+p−1

k=p 2kαk+1

⎞

⎠ . (31)

Since limp,n→∞ μ′
ϕ(x,2x,x)

(
t

∑n+p−1
k=p 2kαk+1

)
= 1, it follows that

{
2nf ( x

2n )
}∞
n=1 is

a Cauchy sequence in a complete RN-space (Y, μ,min) and so there exists a point
A(x) ∈ Y such that limn→∞ 2nf

(
x
2n
) = A(x). Fix x ∈ X and put p = 0 in (31).

Then, for any ε > 0,
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μA(x)−f (x)(t + ε) ≥ T
(
μA(x)−2nf

(
x

2n
)(ε), μ2nf

(
x

2n
)−f (x)(t)

)

≥ T

(

μA(x)−2nf
(
x

2n
)(ε), μ′

ϕ(x,2x,x)

(
t

∑n−1
k=0 2kαk+1

))

. (32)

Taking n → ∞ in (32), we get

μA(x)−f (x)(t + ε) ≥ μ′
ϕ(x,2x,x)

(
(1 − 2α)t

α

)
. (33)

Since ε is arbitrary, by taking ε → 0 in (33), we get

μA(x)−f (x)(t) ≥ μ′
ϕ(x,2x,x)

(
(1 − 2α)t

α

)
.

Replacing x, y and z by x
2n ,

y
2n and z

2n in (26), respectively, we get

μ
2nf

(
x+y+z
2n+1

)
+2nf

(
x−y+z
2n+1

)
−2nf

(
x

2n
)−2nf

(
z

2n
)(t) ≥ μ′

ϕ
(
x

2n ,
y

2n ,
z

2n
)

(
t

2n

)

for all x, y, z ∈ X and t > 0. Since limn→∞ μ′
ϕ
(
x

2n ,
y

2n ,
z

2n
)
(
t

2n
) = 1, we conclude

that A satisfies (1). On the other hand,

2A
(x

2

)
− A(x) = lim

n→∞ 2n+1f
( x

2n+1

)
− lim

n→∞ 2nf
( x

2n

)
= 0.

This implies that A : X → Y is an additive mapping.
To prove the uniqueness of the additive mapping A, assume that there exists

another additive mapping L : X → Y which satisfies (27). Then we have

μA(x)−L(x)(t) = lim
n→∞μ2nA

(
x

2n
)−2nL

(
x

2n
)(t)

≥ lim
n→∞ min

{
μ2nA

(
x

2n
)−2nf

(
x

2n
)
(
t

2

)
, μ2nf

(
x

2n
)−2nL

(
x

2n
)
(
t

2

)}

≥ lim
n→∞μ′

ϕ
(

x
2n ,

2x
2n ,

x
2n

)

(
(1 − 2α)t

2n

)
≥ lim

n→∞μ′
ϕ(x,2x,x)

(
(1 − 2α)t

2nαn

)
.

Since limn→∞ μ′
ϕ(x,2x,x)

(
(1−2α)t

2nαn

)
= 1, μA(x)−L(x)(t) = 1 for all t > 0 and so

A(x) = L(x). This completes the proof.

Corollary 5 Let X be a real normed linear space, (Z,μ′,min) be an RN-space and
(Y, μ,min) be a complete RN-space. Let r be a positive real number with r > 1,
z0 ∈ Z and f : X → Y be a mapping with f (0) = 0 satisfying
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μ
f
(
x+y+z

2

)
+f

(
x−y+z

2

)
−f (x)−f (z)(t) ≥ μ′

(‖x‖r+‖y‖r+‖z‖r )z0
(t) (34)

for all x, y ∈ X and t > 0. Then the limit A(x) = limn→∞ 2nf
(
x
2n
)

exists for all
x ∈ X and defines a unique additive mapping A : X → Y such that and

μf (x)−A(x)(t) ≥ μ′‖x‖pz0

(
(2r − 2)t

2r + 2

)

for all x ∈ X and t > 0.

Proof Let α = 2−r and ϕ : X3 → Z be a mapping defined by ϕ(x, y, z) =
(‖x‖r + ‖y‖r + ‖z‖r )z0. Then, from Theorem 8, the conclusion follows.

Theorem 9 Let X be a real linear space, (Z,μ′,min) be an RN-space and ϕ :
X3 → Z be a function such that there exists 0 < α < 2 such that μ′

ϕ(2x,2y,2z)(t) ≥
μ′
αϕ(x,y,z)(t) for all x ∈ X and t > 0 and

lim
n→∞μ′

ϕ(2nx,2ny,2nz)(2
nx) = 1

for all x, y, z ∈ X and t > 0. Let (Y, μ,min) be a complete RN-space. If f : X →
Y is a mapping with f (0) = 0 satisfying (26). Then the limitA(x) = limn→∞ f (2nx)

2n

exists for all x ∈ X and defines a unique additive mapping A : X → Y such that

μf (x)−A(x)(t) ≥ μ′
ϕ(x,2x,x)((2 − α)t). (35)

for all x ∈ X and t > 0.

Proof It follows from (28) that

μf(2x)
2 −f (x)(t) ≥ μ′

ϕ(x,2x,x)(2t). (36)

Replacing x by 2nx in (36), we obtain that

μf(2n+1x)
2n+1 − f (2nx)

2n
(t) ≥ μ′

ϕ(2nx,2n+1x,2nx)(2
n+1t) ≥ μϕ(x,2x,x)

(
2n+1t

αn

)
.

The rest of the proof is similar to the proof of Theorem 8.

Corollary 6 Let X be a real normed linear space, (Z,μ′,min) be an RN-space and
(Y, μ,min) be a complete RN-space. Let r be a positive real number with 0 < r < 1,
z0 ∈ Z and f : X → Y be a mapping with f (0) = 0 satisfying (34). Then the limit
A(x) = limn→∞ f (2nx)

2n exists for all x ∈ X and defines a unique additive mapping
A : X → Y such that and
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μf (x)−A(x)(t) ≥ μ′‖x‖pz0

(
(2 − 2r )t

2r + 2

)

for all x ∈ X and t > 0.

Proof Let α = 2r and ϕ : X3 → Z be a mapping defined by ϕ(x, y, z) = (‖x‖r +
‖y‖r + ‖z‖r )z0. Then, from Theorem 9, the conclusion follows.

3.2 Fixed Point Method

Theorem 10 Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ

be a mapping from X3 to D+( Φ(x, y, z) is denoted by Φx,y.z ) such that there exists
0 < α < 1

2 such that

Φ2x,2y,2z(t) ≤ Φx,y,z(αt) (37)

for all x, y, z ∈ X and t > 0. Let f : X → Y be a mapping with f (0) = 0
satisfying

μ
f
(
x+y+z

2

)
+f

(
x−y+z

2

)
−f (x)−f (z)(t) ≥ Φx,y,z(t) (38)

for all x, y, z ∈ X and t > 0. Then, for all x ∈ X, A(x) := limn→∞ 2nf
(
x
2n
)

exists
and A : X → Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ Φx,2x,x

(
(1 − 2α)t

α

)
(39)

for all x ∈ X and t > 0.

Proof Putting y = 2x and z = x in (38), we have

μ2f ( x2 )−f (x)(t) ≥ Φx
2 ,x,

x
2
(t) ≥ Φx,2x,x

(
t

α

)
(40)

for all x ∈ X and t > 0. Consider the set S := {g : X → Y } and the generalized
metric d in S defined by

d(f, g) = inf
u∈(0,∞)

{
μg(x)−h(x)(ut) ≥ Φx,2x,x(t), ∀x ∈ X, t > 0

}
, (41)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [33], Lemma 2.1).
Now, we consider a linear mapping J : (S, d) → (S, d) such that
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Jh(x) := 2h
(x

2

)
(42)

for all x ∈ X. First, we prove that J is a strictly contractive mapping with the
Lipschitz constant 2α. In fact, let g, h ∈ S be such that d(g, h) < ε. Then we have
μg(x)−h(x)(εt) ≥ Φx,2x,x(t) for all x ∈ X and t > 0 and so

μJg(x)−Jh(x)(2αεt) = μ2g( x2 )−2h( x2 )
(2αεt) = μg( x2 )−h( x2 )(αεt)

≥ Φx
2 ,x,

x
2
(αt)

≥ Φx,2x,x(t)

for all x ∈ X and t > 0. Thus d(g, h) < ε implies that d(Jg, Jh) < 2αε. This
means that d(Jg, Jh) ≤ 2αd(g, h) for all g, h ∈ S. It follows from (40) that

d(f, Jf ) ≤ α.

By Theorem 3, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A
(x

2

)
= 1

2
A(x) (43)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that A is a unique mapping satisfying (43)
such that there exists u ∈ (0,∞) satisfying μf (x)−A(x)(ut) ≥ Φx,2x,x(t) for all
x ∈ X and t > 0.

(2) d(J nf,A) → 0 as n → ∞. This implies the equality

lim
n→∞ 2nf

( x

2n

)
= A(x)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf )

1−2α with f ∈ Ω , which implies the inequality d(f,A) ≤ α
1−2α

and so

μf (x)−A(x)
(

αt

1 − 2α

)
≥ Φx,2x,x(t)

for all x ∈ X and t > 0. This implies that the inequality (39) holds. On the
other hand

μ
2nf

(
x+y+z
2n+1

)
+2nf

(
x−y+z
2n+1

)
−2nf

(
x

2n
)−2nf

(
z

2n
)(t) ≥ Φ x

2n ,
y

2n ,
z

2n

(
t

2n

)
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for all x, y, z ∈ X, t > 0 and n ≥ 1. By (37), we know that

Φ x
2n ,

y

2n ,
z

2n

(
t

2n

)
≥ Φx,y,z

(
t

(2α)n

)
.

Since limn→∞Φx,y,z

(
t

(2α)n

)
= 1 for all x, y, z ∈ X and t > 0, we have

μ
A
(
x+y+z

2

)
+A

(
x−y+z

2

)
−A(x)−A(z)(t) = 1

for all x, y, z ∈ X and t > 0. Thus the mapping A : X → Y satisfying (1).
Furthermore

A(2x)− 2A(x) = lim
n→∞ 2nf

( x

2n−1

)
− 2 lim

n→∞ 2nf
( x

2n

)

= 2
[

lim
n→∞ 2n−1f

( x

2n−1

)
− lim

n→∞ 2nf
( x

2n

)]

= 0.

This completes the proof.

Corollary 7 Let X be a real normed space, θ ≥ 0 and r be a real number with
r > 1. Let f : X → Y be a mapping with f (0) = 0 satisfying

μ
f
(
x+y+z

2

)
+f

(
x−y+z

2

)
−f (x)−f (z)(t) ≥

t

t + θ
(‖x‖r + ‖y‖r + ‖z‖r) (44)

for all x, y, z ∈ X and t > 0. Then A(x) = limn→∞ 2nf
(
x
2n
)

exists for all x ∈ X

and A : X → Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ (2r − 2)t

(2r − 2)t + (2r + 2)θ‖x‖r

for all x ∈ X and t > 0.

Proof The proof follows from Theorem 10 if we take

Φx,y,z(t) = t

t + θ
(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X and t > 0. In fact, if we choose α = 2−r , then we get the desired
result.

Theorem 11 Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ

be a mapping from X3 to D+ (Φ(x, y, z) is denoted by Φx,y,z) such that for some
0 < α < 2

Φx
2 ,

y
2 ,

z
2
(t) ≤ Φx,y,z(αt)



468 H. Azadi Kenary et al.

for all x, y, z ∈ X and t > 0. Let f : X → Y be a mapping with f (0) = 0
satisfying (38). Then the limit A(x) := limn→∞ f (2nx)

2n exists for all x ∈ X and
A : X → Y is a unique additive mapping such that

μf (x)−A(x)(t) ≥ Φx,2x,x((2 − α)t) (45)

for all x ∈ X and t > 0.

Proof Putting y = 2x and z = x in (38), we have

μf(2x)
2 −f (x)(t) ≥ Φx,2x,x(2t) (46)

for all x ∈ X and t > 0. Let (S, d) be the generalized metric space defined in the
proof of Theorem 8. Now, we consider a linear mapping J : (S, d) → (S, d) such
that

Jh(x) := 1

2
h(2x) (47)

for all x ∈ X. It follows from (46) that d(f, Jf ) ≤ 1
2 . By Theorem 3, there exists a

mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A(2x) = 2A(x) (48)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that A is a unique mapping satisfying (48)
such that there exists u ∈ (0,∞) satisfying μf (x)−A(x)(ut) ≥ Φx,2x,x(t) for all
x ∈ X and t > 0.

(2) d(J nf,A) → 0 as n → ∞. This implies the equality

lim
n→∞

f (2nx)

2n
= A(x)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf )

1− α
2

with f ∈ Ω , which implies the inequality

μf (x)−A(x)
(

t

2 − α

)
≥ Φx,2x,x(t)

for all x ∈ X and t > 0. This implies that the inequality (45) holds.

The rest of the proof is similar to the proof of Theorem 10.

Corollary 8 Let X be a real normed space, θ ≥ 0 and r be a real number with
0 < r < 1. Let f : X → Y be a mapping with f (0) = 0 satisfying (44). Then
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the limit A(x) = limn→∞ f (2nx)
2n exists for all x ∈ X and A : X → Y is a unique

additive mapping such that

μf (x)−A(x)(t) ≥ (2 − 2r )t

(2 − 2r )t + (2r + 2)θ‖x‖r

for all x ∈ X and t > 0.

Proof The proof follows from Theorem 11 if we take

Φx,y(t) = t

t + θ(‖x‖r + ‖y‖r + ‖z‖r )
for all x, y, z ∈ X and t > 0. In fact, if we choose α = 2r , then we get the desired
result.

4 Fuzzy Stability of the Functional Equation (1)

Throughout this section, using the fixed point and direct methods, we prove the
Hyers-Ulam stability of functional equation (1) in fuzzy normed spaces.

4.1 Direct Method

In this section, using the direct method, we prove the Hyers-Ulam stability of the
functional equation (1) in fuzzy Banach spaces. Throughout this section, we assume
that X is a linear space, (Y,N) is a fuzzy Banach space and (Z,N ′) is a fuzzy
normed space. Moreover, we assume that N(x, .) is a left continuous function on R.

Theorem 12 Assume that a mapping f : X → Y with f (0) = 0 satisfies the
inequality

N

(
f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z), t

)

≥ N ′(ϕ(x, y, z), t) (49)

for all x, y, z ∈ X, t > 0 and ϕ : X3 → Z is a mapping for which there is a
constant r ∈ R satisfying 0 < |r| < 1

2 such that

N ′ (ϕ
(x

2
,
y

2
,
z

2

)
, t
)
≥ N ′

(
ϕ(x, y, z),

t

|r|
)

(50)
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for all x, y, z ∈ X and all t > 0. Then we can find a unique additive mapping
A : X → Y satisfying (1) and the inequality

N(f (x)− A(x), t) ≥ N ′
( |r|ϕ(x, 2x, x)

1 − 2|r| , t

)
(51)

for all x ∈ X and all t > 0.

Proof It follows from (50) that

N ′ (ϕ
( x

2j
,
y

2j
,
z

2j

)
, t
)
≥ N ′

(
ϕ(x, y, z),

t

|r|j
)
. (52)

So N ′
(
ϕ
(
x
2j
,
y

2j
, z

2j

)
, |r|j t

)
≥ N ′ (ϕ(x, y, z), t) for all x, y, z ∈ X and all t > 0.

Substituting y = 2x and z = x in (49), we obtain

N (f (2x)− 2f (x), t) ≥ N ′(ϕ(x, 2x, x), t) (53)

So

N
(
f (x)− 2f

(x
2

)
, t
)
≥ N ′ (ϕ

(x
2
, x,

x

2

)
, t
)

(54)

for all x ∈ X and all t > 0. Replacing x by x
2j

in (54), we have

N
(

2j+1f
( x

2j+1

)
− 2j f

( x

2j

)
, 2j t

)
≥ N ′ (ϕ

( x

2j+1 ,
x

2j
,

x

2j+1

)
, t
)

≥ N ′
(
ϕ (x, 2x, x) ,

t

|r|j+1

)
(55)

for all x ∈ X, all t > 0 and any integer j ≥ 0. So

N

⎛

⎝f (x)− 2nf
( x

2n

)
,

n−1∑

j=0

2j |r|j+1t

⎞

⎠

= N

⎛

⎝
n−1∑

j=0

[
2j+1f

( x

2j+1

)
− 2j f

( x

2j

)]
,

n−1∑

j=0

2j |r|j+1t

⎞

⎠

≥ min
0≤j≤n−1

{
N

(
2j+1f

( x

2j+1

)
− 2j f

( x

2j

)
, 2j |r|j+1t

)}

≥ N ′(ϕ(x, 2x, x), t)

which means
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N

⎛

⎝2n+pf
( x

2n+p
)
− 2pf

( x

2p

)
,

n−1∑

j=0

2j |r|j+1t

⎞

⎠ ≥ N ′
(
ϕ

(
x

2p
,

2x

2p
,
x

2p

)
, t

)

≥ N ′
(
ϕ(x, 2x, x),

t

|r|p
)

for all x ∈ X, t > 0 and all integers n > 0, p ≥ 0. So

N

⎛

⎝2n+pf
( x

2n+p
)
− 2pf

( x

2p

)
,

n−1∑

j=0

2j+p|r|j+p+1t

⎞

⎠ ≥ N ′(ϕ(x, 2x, x), t)

for all x ∈ X, t > 0 and all integers n > 0, p ≥ 0. Hence one obtains

N
(

2n+pf
( x

2n+p
)
− 2pf

( x

2p

)
, t
)

(56)

≥ N ′
(

ϕ(x, 2x, x),
t

∑n−1
j=0 2j+p|r|j+p+1

)

for all x ∈ X, t > 0 and all integers n > 0, p ≥ 0. Since the series

∞∑

j=0

2j |r|j

is convergent series, we obtain by taking the limit p → ∞ in the last inequality that

a sequence
{

2nf
(
x
2n
) }

is a Cauchy sequence in the fuzzy Banach space (Y,N)

and so it converges in Y . Therefore a mapping A : X → Y defined by A(x) :=
N − limn→∞ 2nf

(
x
2n
)

is well defined for all x ∈ X. It means that

lim
n→∞N

(
A(x)− 2nf

( x

2n

)
, t
)
= 1 (57)

for all x ∈ X and all t > 0. In addition, it follows from (56) that

N
(

2nf
( x

2n

)
− f (x), t

)
≥ N ′

(

ϕ(x, 2x, x),
t

∑n−1
j=0 2j |r|j+1

)

for all x ∈ X and all t > 0. So

N(f (x)− A(x), t)

≥ min
{
N

(
f (x)− 2nf

( x

2n

)
, (1 − ε)t

)
, N

(
A(x)− 2nf

( x

2n

)
, εt

)}
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≥ N ′
(

ϕ(x, 2x, x),
t

∑n−1
j=0 2j |r|j+1

)

≥ N ′
(
ϕ(x, 2x, x),

(1 − 2|r|)εt
|r|

)

for sufficiently large n and for all x ∈ X, t > 0 and ε with 0 < ε < 1. Since ε is
arbitrary and N ′ is left continuous, we obtain

N(f (x)− A(x), t) ≥ N ′
(
ϕ(x, 2x, x),

(1 − 2|r|)t
|r|

)

for all x ∈ X and t > 0. It follows from (49) that

N

(
2nf

(
x + y + z

2n+1

)
+ 2nf

(
x − y + z

2n+1

)
− 2nf

( x

2n

)
− 2nf

( z

2n

)
, t

)

≥ N ′
(
ϕ
( x

2n
,
y

2n
,
z

2n

)
,
t

2n

)
≥ N ′

(
ϕ(x, y, z),

t

2n|r|n
)

for all x, y, z ∈ X, t > 0 and all n ∈ N . Since

lim
n→∞N ′

(
ϕ(x, y, z),

t

2n|r|n
)
= 1,

N

(
2nf

(
x + y + z

2n+1

)
+ 2nf

(
x − y + z

2n+1

)
− 2nf

( x

2n

)
− 2nf

( z

2n

)
, t

)
→ 1

for all x, y, z ∈ X and all t > 0. Therefore, we obtain, in view of (57),

N

(
A

(
x + y + z

2

)
+ A

(
x − y + z

2

)
− A(x)− A(z), t

)

≥ min

{
N

(
A

(
x + y + z

2

)
+ A

(
x − y + z

2

)
− A(x)− A(z)

−2nf

(
x + y + z

2n+1

)
+ 2nf

(
x − y + z

2n+1

)
− 2nf

( x

2n

)
− 2nf

( z

2n

)
,
t

2

)
,

N

(
2nf

(
x + y + z

2n+1

)
+ 2nf

(
x − y + z

2n+1

)
− 2nf

( x

2n

)
− 2nf

( z

2n

)
,
t

2

)}

= N

(
2nf

(
x + y + z

2n+1

)
+ 2nf

(
x − y + z

2n+1

)
− 2nf

( x

2n

)
− 2nf

( z

2n

)
,
t

2

)

≥ N ′
(
ϕ(x, y, z),

t

2n+1|r|n
)
→ 1 as n → ∞
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which implies

A

(
x + y + z

2

)
+ A

(
x − y + z

2

)
= A(x)+ A(z)

for all x, y, z ∈ X. Thus A : X → Y is a mapping satisfying (1) and (51).
To prove the uniqueness, assume that there is another mapping L : X → Y

which satisfies (51). Since L(2nx) = 2nL(x) for all x ∈ X, we have

N(A(x)− L(x), t)

= N
(

2nA
( x

2n

)
− 2nL

( x

2n

)
, t
)

≥ min

{
N

(
2nA

( x

2n

)
− 2nf

( x

2n

)
,
t

2

)
, N

(
2nf

( x

2n

)
− 2nL

( x

2n

)
,
t

2

)}

≥ N ′
(
ϕ

(
x

2n
,

2x

2n
,
x

2n

)
,
(1 − 2|r|)t
|r|2n+1

)
≥ N

(
ϕ(x, 2x, x),

(1 − 2|r|)t
|r|n+12n+1

)
→ 1

as n → ∞

for all t > 0. Therefore, A(x) = L(x) for all x ∈ X, which completes the proof.

Corollary 9 Let X be a normed spaces and that (R,N ′) a fuzzy Banach space.
Assume that there exists real number θ ≥ 0 and 0 < p < 2 such that a mapping
f : X → Y with f (0) = 0 satisfying the following inequality

N

(
f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z), t

)

≥ N ′ (θ
(‖x‖p + ‖y‖p + ‖z‖p) , t)

for all x, y, z ∈ X and t > 0. Then there is a unique additive mapping A : X → Y

that satisfying (1) and the inequality

N(f (x)− A(x), t) ≥ N ′
(
(2r + 2)θ‖x‖p

2
, t

)

Proof Let ϕ(x, y, z) := θ(‖x‖p+‖y‖p+‖z‖p) and |r| = 1
4 . Applying Theorem 12,

we get the desired result.

Theorem 13 Assume that a mapping f : X → Y with f (0) = 0 satisfies the
inequality (49) and ϕ : X2 → Z is a mapping for which there is a constant r ∈ R

satisfying 0 < |r| < 2 such that

N ′ (ϕ(x, y, z), |r|t) ≥ N ′ (ϕ
(x

2
,
y

2
,
z

2

)
, t
)

(58)
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for all x, y, z ∈ X and all t > 0. Then we can find a unique additive mapping
A : X → Y that satisfying (1) and the following inequality

N(f (x)− A(x), t) ≥ N ′
(
ϕ(x, 2x, x)

2 − |r| , t

)
(59)

for all x ∈ X and all t > 0.

Proof It follows from (53) that

N

(
f (2x)

2
− f (x),

t

2

)
≥ N ′(ϕ(x, 2x, x), t) (60)

for all x ∈ X and all t > 0. Replacing x by 2nx in (60), we obtain

N

(
f (2n+1x)

2n+1 − f (2nx)

2n
,

t

2n+1

)
≥ N ′(ϕ(2nx, 2n+1x, 2nx), t)

≥ N ′
(
ϕ(x, 2x, x),

t

|r|n
)
. (61)

So

N

(
f (2n+1x)

2n+1 − f (2nx)

2n
,
|r|nt
2n+1

)
≥ N ′(ϕ(x, 2x, x), t) (62)

for all x ∈ X and all t > 0. Proceeding as in the proof of Theorem 12, we obtain
that

N

⎛

⎝f (x)− f (2nx)

2n
,

n−1∑

j=0

|r|j t
2j+1

⎞

⎠ ≥ N ′(ϕ(x, 2x, x), t)

for all x ∈ X, all t > 0 and any integer n > 0. So

N

(
f (x)− f (2nx)

2n
, t

)
≥ N ′

⎛

⎝ϕ(x, 2x, x),
t

∑n−1
j=0

|r|j
2j+1

⎞

⎠

≥ N ′ (ϕ(x, 2x, x), (2 − |r|)t) . (63)

The rest of the proof is similar to the proof of Theorem 12.

Corollary 10 Let X be a normed spaces and that (R,N ′) a fuzzy Banach space.
Assume that there exists real number θ ≥ 0 and 0 < p = p1 + p2 + p3 < 2 such
that a mapping f : X → Y with f (0) = 0 satisfying the following inequality
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N

(
f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z), t

)

≥ N ′ (θ
(‖x‖p1 · ‖y‖p2 · ‖z‖p3

)
, t
)

for all x, y, z ∈ X and t > 0. Then there is a unique additive mapping A : X → Y

that satisfying (1) and the inequality

N(f (x)− A(x), t) ≥ N ′ ((2r + 2)θ‖x‖p, t)

for all x ∈ X and t > 0.

Proof Let ϕ(x, y, z) := θ (‖x‖p1 · ‖y‖p2 · ‖z‖p3) and |r| = 1. Applying
Theorem 13, we get the desired result.

4.2 Fixed Point Method

Throughout this subsection, using the fixed point alternative approach we prove the
Hyers-Ulam-Rassias stability of the functional equation (1) in fuzzy Banach spaces.

In this subsection, assume that X is a vector space and that (Y,N) is a fuzzy
Banach space.

Theorem 14 Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1
with

ϕ
(x

2
,
y

2
,
z

2

)
≤ Lϕ(x, y, z)

2

for all x, y, z ∈ X. Let f : X → Y with f (0) = 0 be a mapping satisfying

N

(
f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z), t

)
(64)

≥ t

t + ϕ(x, y, z)

for all x, y, z ∈ X and all t > 0. Then the limit A(x) := N − limn→∞ 2nf
(
x
2n
)

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f (x)− A(x), t) ≥ (2 − 2L)t

(2 − 2L)t + Lϕ(x, 2x, x)
(65)

for all x ∈ X and t > 0.
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Proof Putting y = 2x and z = x in (64) and replacing x by x
2 , we have

N
(

2f
(x

2

)
− f (x), t

)
≥ t

t + ϕ
(
x
2 , x,

x
2

) (66)

for all x ∈ X and t > 0. Consider the set S := {g : X → Y } and the generalized
metric d in S defined by

d(f, g) = inf
{
μ ∈ R+ : N(g(x)− h(x), μt) ≥ t

t + ϕ(x, 2x, x)
,∀x ∈ X, t > 0

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [33, Lemma 2.1]).
Now, we consider a linear mapping J : S → S such that

Jg(x) := 2g
(x

2

)

for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ϕ(x, 2x, x)

for all x ∈ X and t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(

2g
(x

2

)
− 2h

(x
2

)
, Lεt

)

= N

(
g
(x

2

)
− h

(x
2

)
,
Lεt

2

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 , x,

x
2

)

≥
Lt
2

Lt
2 + Lϕ(x,2x,x)

2

= t

t + ϕ(x, 2x, x)

for all x ∈ X and t > 0. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that d(Jg, Jh) ≤ Ld(g, h) for all g, h ∈ S. It follows from (66) that

N
(
f (x)− 2f

(x
2

)
, t
)
≥ t

t + ϕ
(
x
2 , x,

x
2

) ≥ t

t + Lϕ(x,2x,x)
2

=
2t
L

2t
L
+ ϕ(x, 2x, x)

.

Therefore

N

(
f (x)− 2f

(x
2

)
,
Lt

2

)
≥ t

t + ϕ(x, 2x, x)
. (67)

This means that d(f, Jf ) ≤ L
2 . By Theorem 3, there exists a mapping A : X → Y

satisfying the following:
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(1) A is a fixed point of J , that is,

A
(x

2

)
= A(x)

2
(68)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that A is a unique mapping satisfying (68) such
that there exists μ ∈ (0,∞) satisfying

N(f (x)− A(x), μt) ≥ t

t + ϕ(x, 2x, x)

for all x ∈ X and t > 0.
(2) d(J nf,A) → 0 as n → ∞. This implies the equality N− limn→∞ 2nf

(
x
2n
) =

A(x) for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf )

1−L with f ∈ Ω , which implies the inequality d(f,A) ≤ L
2−2L.

This implies that the inequality (65) holds. Furthermore,

N

(
A

(
x + y + z

2

)
+ A

(
x − y + z

2

)
− A(x)− A(z), t

)

≥ N − lim
n→∞

(
2nf

(
x + y + z

2n+1

)
+ 2nf

(
x − y + z

2n+1

)
− 2nf

( x

2n

)
− 2nf

( z

2n

)
, t

)

≥ lim
n→∞

t
2n

t
2n + ϕ

(
x
2n ,

y
2n ,

z
2n
) ≥ lim

n→∞

t
2n

t
2n + Lnϕ(x,y,z)

2n
→ 1

for all x, y, z ∈ X, t > 0. So

N

(
A

(
x + y + z

2

)
+ A

(
x − y + z

2

)
− A(x)− A(z), t

)
= 1

for all x, y, z ∈ X and all t > 0. Thus the mapping A : X → Y is additive, as
desired.

Corollary 11 Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed
vector space with norm ‖.‖. Let f : X → Y with f (0) = 0 be a mapping satisfying

N

(
f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z), t

)

≥ t

t + θ (‖x‖p + ‖y‖p + ‖z‖p)
for all x, y, z ∈ X and all t > 0. Then, the limit

A(x) := N − lim
n→∞ 2nf

( x

2n

)
(69)
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exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f (x)− A(x), t) ≥ (2p+1 − 2)t

(2p+1 − 2)t + (2r + 2)θ‖x‖p

for all x ∈ X and t > 0.

Proof The proof follows from Theorem 14 by taking ϕ(x, y, z) := θ(‖x‖p+‖y‖p+
‖z‖p) for all x, y, z ∈ X. Then we can choose L = 2−p and we get the desired
result.

Theorem 15 Let ϕ : X3 → [0,∞) be a function such that there exists an L < 1
with

ϕ(x, y, z) ≤ 2Lϕ
(x

2
,
y

2
,
z

2

)

for all x, y, z ∈ X. Let f : X → Y be a mapping with f (0) = 0 satisfying (64).
Then

A(x) := N − lim
n→∞

f (2nx)

2n

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f (x)− A(x), t) ≥ (2 − 2L)t

(2 − 2L)t + ϕ(x, 2x, x)
(70)

for all x ∈ X and all t > 0.

Proof Let (S, d) be the generalized metric space defined as in the proof of
Theorem 14. Consider the linear mapping J : S → S such that Jg(x) := g(2x)

2
for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t + ϕ(x, 2x, x)

for all x ∈ X and t > 0 . Hence

N(Jg(x)− Jh(x), Lεt) = N

(
g(2x)

2
− h(2x)

2
, Lεt

)

= N
(
g(2x)− h(2x), 2Lεt

)
≥ 2Lt

2Lt + ϕ(2x, , 4x, 2x)

≥ 2Lt

2Lt + 2Lϕ(x, 2x, x)
= t

t + ϕ(x, 2x, x)
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for all x ∈ X and t > 0. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S. It follows from (66) that

N

(
f (2x)

2
− f (x),

t

2

)
≥ t

t + ϕ(x, 2x, x)
.

Therefore

d(f, Jf ) ≤ 1

2
.

By Theorem 3, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

2A(x) = A(2x) (71)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that A is a unique mapping satisfying (71) such
that there exists μ ∈ (0,∞) satisfying

N(f (x)− A(x), μt) ≥ t

t + ϕ(x, 2x, x)

for all x ∈ X and t > 0.
(2) d(J nf,A) → 0 as n → ∞. This implies the equality N − limn→∞ f (2nx)

2n for
all x ∈ X.

(3) d(f,A) ≤ d(f,Jf )
1−L with f ∈ Ω , which implies the inequality d(f,A) ≤ 1

2−2L.

This implies that the inequality (70) holds.

The rest of the proof is similar to that of the proof of Theorem 14.

Corollary 12 Let θ ≥ 0 and let p be a real number with 0 < p < 1
3 . Let X be a

normed vector space with norm ‖.‖. Let f : X → Y be a mapping with f (0) = 0
satisfying

N

(
f

(
x + y + z

2

)
+ f

(
x − y + z

2

)
− f (x)− f (z), t

)

≥ t

t + θ (‖x‖p.‖y‖p.‖z‖p)
for all x, y, z ∈ X and all t > 0. Then
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A(x) := N − lim
n→∞

f (2nx)

2n

exists for each x ∈ X and defines a unique additive mapping A : X → Y such that

N(f (x)− A(x), t) ≥ (21+3p − 2)t

(21+3p − 2)t + 23pθ‖x‖3p .

for all x ∈ X.

Proof The proof follows from Theorem 15 by taking

ϕ(x, y, z) := θ
(‖x‖p.‖y‖p.‖z‖p)

for all x, y, z ∈ X. Then we can choose L = 2−3p and we get the desired result.
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NAN-RN Approximately Generalized
Additive Functional Equations

Hassan Azadi Kenary and Themistocles M. Rassias

1 Introduction and Preliminaries

A classical question in the theory of functional equations is the following: When is
it true that a function which approximately satisfies a functional equation must be
close to an exact solution of the equation?

If the problem accepts a solution, we say that the equation is stable. The first
stability problem concerning group homomorphisms was raised by Ulam [45] in
1940.

In the next year, Hyers [15] gave a positive answer to the above question for
additive groups under the assumption that the groups are Banach spaces. In 1978,
Rassias [31] proved a generalization of Hyers’s theorem for additive mappings.

Theorem 1 (Th.M. Rassias) Let f be an approximately additive mapping from a
normed vector space E into a Banach space E′, i.e., f satisfies the inequality

|f (x + y)− f (x)− f (y)| ≤ ε(‖x‖r + ‖y‖r )
for all x, y ∈ E, where ε and r are constants with ε > 0 and 0 ≤ r < 1. Then
the mapping L : E → E′ defined by L(x) := limn→∞ 2−nf (2nx) is the unique
additive mapping which satisfies
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|f (x)− L(x)| ≤ 2ε|x|r
2 − 2r

for all x ∈ E.

The result of Rassias has influenced the development of what is now called
the Hyers-Ulam-Rassias stability problem for functional equations. In 1994, a
generalization of Rassias’ theorem was obtained by Gǎvruta [13] by replacing the
bound ε(‖x‖p + ‖y‖p) by a general control function φ(x, y).

The functional equation

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. In 1983, a
generalized Hyers-Ulam stability problem for the quadratic functional equation was
proved by Skof [44] for mappings f : X → Y , where X is a normed space and Y is
a Banach space. In 1984, Cholewa [6] noticed that the theorem of Skof is still true
if the relevant domain X is replaced by an Abelian group and, in 2002, Czerwik [7]
proved the generalized Hyers-Ulam stability of the quadratic functional equation.

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concern-
ing this problem [1–5, 9–12, 16–19, 23–25, 27–42].

In 1897, Hensel [14] has introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many nice
applications (see [8, 20, 21, 26]).

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique
element having the 0 valuation, |rs| = |r||s| and the triangle inequality holds, i.e.,

|r + s| ≤ max{|r|, |s|}.

A field K is called a valued field if K carries a valuation. The usual absolute values
of R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}

for all r, s ∈ K, then the function | · | is called a non-Archimedean valuation and the
field is called a non-Archimedean field. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all
n ≥ 1. A trivial example of a non-Archimedean valuation is the function | · | taking
everything except for 0 into 1 and |0| = 0.

Definition 1 Let X be a vector space over a field K with a non-Archimedean
valuation | · |. A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if
the following conditions hold:
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(a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;
(b) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
(c) the strong triangle inequality holds:

‖x + y‖ ≤ max{‖x‖, ‖y‖}

for all x, y ∈ X.

Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 2 Let {xn} be a sequence in a non-Archimedean normed space X.

(a) A sequence {xn}∞n=1 in a non-Archimedean space is a Cauchy sequence iff, the
sequence {xn+1 − xn}∞n=1 converges to zero.

(b) The sequence {xn} is said to be convergent if, for any ε > 0, there are a positive
integer N and x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then the point x ∈ X is called the limit of the sequence {xn},
which is denote by limn→∞ xn = x.

(c) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

In the sequel, we adopt the usual terminology, notions and conventions of the theory
of random normed spaces as in [43].

Throughout this paper (in random stability section), let Γ + denote the set of all
probability distribution functions F : R ∪ [−∞,+∞] → [0, 1] such that F is left-
continuous and nondecreasing on R and F(0) = 0, F (+∞) = 1. It is clear that the
set

D+ = {F ∈ Γ + : l−F(−∞) = 1},

where l−f (x) = limt→x− f (t), is a subset of Γ +. The set Γ + is partially ordered by
the usual point-wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t)

for all t ∈ R. For any a ≥ 0, the element Ha(t) of D+ is defined by

Ha(t) =
{

0, if t ≤ a,

1, if t > a.

We can easily show that the maximal element in Γ + is the distribution function
H0(t).

Definition 3 A function T : [0, 1]2 → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
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(c) T (x, 1) = x for all x ∈ [0, 1];
(d) T (x, y) ≤ T (z,w) whenever x ≤ z and y ≤ w for all x, y, z,w ∈ [0, 1].
Three typical examples of continuous t-norms are as follows:

T (x, y) = xy, T (x, y) = max{a + b − 1, 0}, T (x, y) = min(a, b).

Recall that, if T is a t-norm and {xn} is a sequence in [0, 1], then T n
i=1xi is defined

recursively by T 1
i=1x1 = x1 and T n

i=1xi = T (T n−1
i=1 xi, xn) for all n ≥ 2. T∞

i=nxi is
defined by T∞

i=1xn+i .

Definition 4 A random normed space (briefly, RN -space) is a triple (X,μ, T ),
where X is a vector space, T is a continuous t-norm and μ : X → D+ is a mapping
such that the following conditions hold:

(a) μx(t) = H0(t) for all x ∈ X and t > 0 if and only if x = 0;
(b) μαx(t) = μx(

t
|α| ) for all α ∈ R with α �= 0, x ∈ X and t ≥ 0;

(c) μx+y(t + s) ≥ T (μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ‖ · ‖) defines a random normed space (X,μ, TM), where
μu(t) = t

t+‖u‖ for all t > 0 and TM is the minimum t-norm. This space X is called
the induced random normed space.

If the t-norm T is such that sup0<a<1 T (a, a) = 1, then every RN -space
(X,μ, T ) is a metrizable linear topological space with the topology τ (called the
μ-topology or the (ε, δ)-topology, where ε > 0 and λ ∈ (0, 1)) induced by the base
{U(ε, λ)} of neighborhoods of θ , where

U(ε, λ) = {x ∈ X : μx(ε) > 1 − λ}.

Definition 5 Let (X,μ, T ) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X (write xn → x

as n → ∞) if limn→∞ μxn−x(t) = 1 for all t > 0.
(2) A sequence {xn} in X is called a Cauchy sequence in X if limn→∞ μxn−xm(t) =

1 for all t > 0.
(3) The RN -space (X,μ, T ) is said to be complete if every Cauchy sequence in X

is convergent.

Theorem 2 ([43]) If (X,μ, T ) is an RN-space and {xn} is a sequence such that
xn → x, then limn→∞ μxn(t) = μx(t).

Definition 6 Let X be a set. A function d : X×X → [0,∞] is called a generalized
metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X.
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Theorem 3 Let (X,d) be a complete generalized metric space and J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X,
either

d(J nx, J n+1x) = ∞ (1)

for all nonnegative integers n or there exists a positive integer n0 such that

(a) d(J nx, J n+1x) < ∞ for all n0 ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(J n0x, y) < ∞};
(d) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the follow-
ing functional equation:

f
( m∑

i=1

αixi

)
=

[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1

(2)

for arbitrary but fixed real numbers (α1, α2, · · · , αm) �= (0, 0, · · · , 0), so that α =∑m
i=1 αi > 1 and |α| �= 1, in various spaces.

2 Non-Archimedean Stability of Eq. (2)

In this section, using the fixed point alternative approach, we prove the general-
ized Hyers-Ulam stability of functional equation (2) in non-Archimedean Spaces.
Throughout this paper, assume that X is a non-Archimedean normed vector space
and that Y is a non-Archimedean Banach space.

Theorem 4 Let ζ : Xm → [0,∞) be a function such that there exists L < 1 with

ζ
(x1

α
,
x2

α
, · · · , xm

α

)
≤ |α|Lζ(x1, x2, · · · , xm) (3)

for all x1, x2, · · · , xm ∈ X. If f : X → Y is a mapping satisfying

∥∥∥∥f
( m∑

i=1

αixi

)
−

[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1∥∥∥∥

≤ ζ(x1, x2, · · · , xm). (4)

for all x1, x2, · · · , xm ∈ X, then there is a unique mapping C : X → Y such that

‖f (x)− C(x)‖ ≤ |α|Lζ(x, x, · · · , x)
1 − L

. (5)
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Proof Putting x1 = x2 = · · · = xm = x in (4), we get

∥∥
∥

1

α
f
(x
α

)
− f (x)

∥∥
∥ ≤ ζ

(x
α
,
x

α
, · · · , x

α

)
(6)

for all x ∈ G. Consider the set

S := {g : X → Y }

and the generalized metric d in S defined by

d(f, g) = inf
μ∈(0,+∞)

{
‖g(x)− h(x)‖ ≤ μζ(x, x, · · · , x), ∀x ∈ X

}
, (7)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [22], Lemma 2.1).
Now, we consider a linear mapping J : S → S such that

Jh(x) := 1

α
h
(x
α

)
(8)

for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then we have

‖g(x)− h(x)‖ ≤ εζ(x, x, · · · , x) (9)

for all x ∈ X and so

‖Jg(x)− Jh(x)‖ =
∥∥∥

1

α
g
(x
α

)
− 1

α
h
(x
α

)∥∥∥

≤ 1

|α|εζ
(x
α
,
x

α
, · · · , x

α

)

≤ Lε

for all x ∈ X. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that
d(Jg, Jh) ≤ Ld(g, h) for all g, h ∈ S. It follows from (6) that

d(f, Jf ) ≤ |α|L. (10)

By Theorem 3, there exists a mapping C : X → Y satisfying the following:

(1) C is a fixed point of J , that is,

C
(x
α

)
= αC(x) (11)
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for all x ∈ X. The mapping C is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) < ∞}.

This implies that C is a unique mapping satisfying (11) such that there exists
μ ∈ (0,∞) satisfying

‖f (x)− C(x)‖ ≤ μζ(x, x, · · · , x) (12)

for all x ∈ X.
(2) d(J nf, C) → 0 as n → ∞. This implies the equality

lim
n→∞

1

αn
f
( x

αn

)
= C(x) (13)

for all x ∈ X.
(3) d(f, C) ≤ d(f,Jf )

1−L with f ∈ Ω , which implies the inequality

d(f, C) ≤ |α|L
1 − L

.

This implies that the inequality (5) holds.
It follows from (3) and (4) that

∥
∥
∥
∥∥
∥
C
( m∑

i=1

αixi

)
−

[ m∏

i=1

C(xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
C(xj )

)]]−1
∥
∥
∥
∥∥
∥

= lim
n→∞

1

|α|n

∥
∥
∥∥
∥
∥
f

⎛

⎝
m∑

i=1

αixi

αn

⎞

⎠−
[ m∏

i=1

f
( xi

αn

) ]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f
( xj
αn

) )]]−1
∥
∥
∥∥
∥
∥

≤ lim
n→∞

1

|α|n ζ
( x1

αn
,
x2

αn
, · · · , xm

αn

)

≤ lim
n→∞

1

|α|n · |α|nLnζ(x1, x2, · · · , xm)

= 0

for all x1, x2, · · · , xm ∈ X. So

C
( m∑

i=1

αixi

)
−

[ m∏

i=1

C(xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
C(xj )

)]]−1

= 0

for all x1, x2, · · · , xm ∈ X. Hence C : X → Y satisfying (2). This completes
the proof.
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Corollary 1 Let θ ≥ 0 and r be a real number with 0 < r < 1. Let f : X → Y be
a mapping satisfying

∥
∥∥∥f

( m∑

i=1

αixi

)
−

[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1∥∥∥∥ ≤ θ
( m∑

i=1

‖xi‖r
)

(14)
for all x1, x2, · · · , xm ∈ X. Then the limit

C(x) = lim
n→∞

1

αn
f
( x

αn

)

exists for all x ∈ X and defines a unique mapping C : X → Y such that

‖f (x)− C(x)‖ ≤

⎧
⎪⎨

⎪⎩

m|α|2θ‖x‖r
|α|r−|α| if |α| < 1,

m|α|r+1θ‖x‖r
|α|−|α|r if |α| > 1.

(15)

for all x ∈ X.

Proof The proof follows from Theorem 4 if we take

ζ(x1, x2, · · · , xm) = θ
( m∑

i=1

‖xi‖r
)

(16)

for all x1, x2, · · · , xm ∈ X. In fact, if we choose L =
{ |α|1−r if |α| < 1
|α|r−1 if |α| > 1

, then we

get the desired result.

Corollary 2 Let θ ≥ 0 and ri be positive real numbers with 0 < r = ∑m
i=1 ri < 1.

Let f : X → Y be a mapping satisfying

∥∥∥∥f
( m∑

i=1

αixi

)
−

[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1∥∥∥∥ ≤ θ
( m∏

i=1

‖xi‖ri
)

(17)
for all x1, x2, · · · , xm ∈ X. Then the limit

C(x) = lim
n→∞

1

αn
f
( x

αn

)

exists for all x ∈ X and defines a unique mapping C : X → Y such that

‖f (x)− C(x)‖ ≤

⎧
⎪⎨

⎪⎩

|α|θ‖x‖r
|α|r−1−1

if |α| < 1

|α|r θ‖x‖r
1−|α|r−1 if |α| > 1

(18)

for all x ∈ X.
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Proof The proof follows from Theorem 4 if we take

ζ(x1, x2, · · · , xm) = θ
( m∏

i=1

‖xi‖ri
)

(19)

for all x1, x2, · · · , xm ∈ X. In fact, if we choose L =
{ |α|1−r if |α| < 1
|α|r−1 if |α| > 1

, then we

get the desired result.

Theorem 5 Let ζ : Xm → [0,∞) be a function such that there exists an L < 1
with

ζ(αx1, αx2, · · · , αxm) ≤ L

|α|ζ(x1, x2, · · · , xm) (20)

for all x1, x2, · · · , xm ∈ X. Let f : X → Y be a mapping satisfying

∥∥∥∥f
( m∑

i=1

αixi

)
−
[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1∥∥∥∥ ≤ ζ(x1, x2, · · · , xm).
(21)

Then the limit

C(x) := lim
n→+∞αnf (αnx)

exists for all x ∈ X and defines a unique mapping C : X → Y such that

‖f (x)− C(x)‖ ≤ |α|ζ(x, x, · · · , x)
1 − L

(22)

for all x ∈ X.

Proof It follows from (6) that

‖f (x)− αf (αx)‖ ≤ |α|ζ(x, x, · · · , x) (23)

for all x ∈ X. Let (S, d) be the generalized metric space defined in the proof of the
Theorem (4). Consider a linear mapping J : S → S such that

Jh(x) := αh(αx) (24)

for all x ∈ X. It follows from (23) that

d(f, Jf ) ≤ |α| < +∞. (25)
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By Theorem (3), there exists a mapping C : X → Y satisfying the following:

(1) C is a fixed point of J , that is,

C(αx) = 1

α
C(x) (26)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) < ∞}.

This implies that C is a unique mapping satisfying (26) such that there exists
μ ∈ (0,∞) satisfying

‖f (x)− C(x)‖ ≤ μζ(x, x, · · · , x) (27)

for all x ∈ X.
(2) d(J nf, C) → 0 as n → ∞. This implies the equality

lim
n→∞αnf (αnx) = C(x) (28)

for all x ∈ X.
(3) d(f, C) ≤ d(f,Jf )

1−L with f ∈ Ω , which implies the inequality

d(f, C) ≤ |α|
1 − L

.

This implies that the inequality (22) holds. This completes the proof.

Corollary 3 Let θ ≥ 0 and r be a real number with r > 1. Let f : X → Y be a
mapping satisfying

∥
∥∥∥f

( m∑

i=1

αixi

)
−

[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1∥∥∥∥ ≤ θ
( m∑

i=1

‖xi‖r
)

(29)
for all x1, x2, · · · , xm ∈ X. Then it follows that, for all x ∈ X,

C(x) = lim
n→∞αnf (αnx) (30)

exists and defines a unique mapping C : X → Y such that

‖f (x)− C(x)‖ ≤

⎧
⎪⎨

⎪⎩

m|α|r+1θ‖x‖r
|α|r−|α| if |α| > 1

m|α|2θ‖x‖r
|α|−|α|r if |α| < 1

(31)

for all x ∈ X.
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Proof The proof follows from Theorem 5 if we take

ζ(x1, x2, · · · , xm) = θ
( m∑

i=1

‖xi‖r
)

(32)

for all x1, x2, · · · , xm ∈ X. In fact, if we choose L =
{ |α|1−r if |α| > 1
|α|r−1 if |α| < 1

, then we

get the desired result.

Corollary 4 Let θ ≥ 0 and r be positive real number with r ∈ ( 1
m
,∞). Let f :

X → Y be a mapping satisfying

∥∥∥∥f
( m∑

i=1

αixi

)
−

[ m∏

i=1

f (xi)

]
.

[ m∑

i=1

[
αi

( m∏

j=1, j �=i
f (xj )

)]]−1∥∥∥∥ ≤ θ
( m∏

i=1

‖xi‖r
)

(33)
for all x1, x2, · · · , xm ∈ X. Then the limit

C(x) = lim
n→∞αnf (αnx) (34)

exists for all x ∈ X and defines a unique mapping C : X → Y such that

‖f (x)− C(x)‖ ≤

⎧
⎪⎨

⎪⎩

|α|mr+1θ‖x‖r
|α|mr−|α| if |α| > 1

|α|2θ‖x‖mr
|α|−|α|mr if |α| < 1

(35)

for all x ∈ X.

Proof The proof follows from Theorem 4 if we take

ζ(x1, x2, · · · , xm) = θ
( m∏

i=1

‖xi‖r
)

(36)

for all x1, x2, · · · , xm ∈ X. In fact, if we choose L =
{ |α|mr−1 if |α| < 1
|α|1−mr if |α| > 1

, then

we get the desired result.

3 Random Stability of Eq. (2)

In this section, we prove the generalized Hyers-Ulam stability of the functional
equation (2) in random normed spaces by using direct and fixed point alternative
methods.
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3.1 Direct Method

Theorem 6 Let X be a real linear space, (Z,μ′,min) be an RN-space and φ :
Xm → Z be a function such that there exists 0 < β < α such that

μ′
φ
(
x1
α
,
x2
α
,··· , xm

α

)(t) ≥ μ′
φ(x1,x2,··· ,xm)

(
t

β

)
(37)

for all x1, x2, · · · , xm ∈ X and t > 0 and

lim
n→∞μ′

φ
(
x1
αn

,
x2
αn

,··· , xm
αn

)(αnt) = 1

for all x1, x2, · · · , xm ∈ X and t > 0. Let (Y, μ,min) be a complete RN-space. If
f : X → Y be a mapping such that

μ
f(

∑m
i=1 αixi)−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ μ′

φ(x1,x2,··· ,xm)(t)

(38)
for all x1, x2, · · · , xm ∈ X and t > 0. Then the limit

C(x) = lim
n→∞

1

αn
f
( x

αn

)

exists for all x ∈ X and defines a unique mapping C : X → Y such that

μf (x)−C(x)(t) ≥ μ′
φ(x,x,··· ,x)

(
(α − β)t

α2

)
. (39)

for all x ∈ X and t > 0.

Proof Putting x1 = x2 = · · · = xm = x in (38), we see that

μ
f (αx)− 1

α
f (x)

(t) ≥ μ′
φ(x,x,··· ,x)(t) (40)

for all x ∈ X. Replacing x by x
αn

in (40) and using (37), we obtain

μ 1
αn−1 f (

x

αn−1 )− 1
αn

f ( x
αn

)
(t) ≥ μ′

φ( x
αn

, x
αn

,··· , x
αn

)
(αn−1t) (41)

≥ μ′
φ(x,x,··· ,x)

(
αn−1t

βn

)
.

Since
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1

αn
f
( x

αn

)
− f (x) =

n−1∑

k=0

1

αk+1
f
( x

αk+1

)
− 1

αk
f
( x

αk

)

therefore

μ 1
αn

f
(
x
αn

)−f (x)

(
n−1∑

k=0

tβk

αk−1

)

= μ∑n−1
k=0

1
αk+1 f

(
x

αk+1

)
− 1

αk
f
(

x

αk

)

(
n−1∑

k=0

tβk

αk−1

)

≥ T n−1
k=0

(
μ 1

αk+1 f
(

x

αk+1

)
− 1

αk
f
(

x

αk

)
(

tβk

αk−1

))
(42)

≥ T n−1
k=0

(
μ′
φ(x,x,··· ,x)(t)

)

= μ′
φ(x,x,··· ,x)(t).

This implies that

μ 1
αn

f
(
x
αn

)−f (x)(t) ≥ μ′
φ(x,x,··· ,x)

⎛

⎝ t
∑n−1

k=0
βk

αk−1

⎞

⎠ . (43)

Replacing x by x
αp

in (43), we obtain

μ 1
αn+p f

(
x

αn+p
)
− 1

αp
f
(

x
αp

)(t) ≥ μ′
φ(x,x,··· ,x)

⎛

⎝ t
∑n+p−1

k=p
βk

αk−1

⎞

⎠ . (44)

Since

lim
p,n→∞μ′

φ(x,x,··· ,x)
(

t
∑n+p−1

k=p
βk

αk−1

)
= 1,

it follows that
{

1
αn
f ( x

αn
)
}+∞
n=1

is a Cauchy sequence in complete RN-space

(Y, μ,min) and so there exists a point C(x) ∈ Y such that

C(x) = lim
n→∞

1

αn
f
( x

αn

)
.

Fix x ∈ X and put p = 0 in (44). Then we obtain

μ 1
αn

f
(
x
αn

)−f (x)(t) ≥ μ′
φ(x,x,··· ,x)

⎛

⎝ t
∑n−1

k=0
βk

αk−1

⎞

⎠ (45)
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and so, for any ε > 0,

μC(x)−f (x)(t + ε) ≥ T
(
μ
C(x)− 1

αn
f
(
x
αn

)(ε), μ 1
αn

f
(
x
αn

)−f (x)(t)
)

(46)

≥ T

⎛

⎝μ
C(x)− 1

αn
f
(
x
αn

)(ε), μ′
φ(x,x,··· ,x)

⎛

⎝ t
∑n−1

k=0
βk

αk−1

⎞

⎠

⎞

⎠ .

Taking n → ∞ in (46), we get

μC(x)−f (x)(t + ε) ≥ μ′
φ(x,x,··· ,x)

(
(α − β)t

α2

)
. (47)

Since ε is arbitrary, by taking ε → 0 in (47), we get

μC(x)−f (x)(t) ≥ μ′
φ(x,x,··· ,x)

(
(α − β)t

α2

)
. (48)

Replacing x1, x2, · · · , xm by x1
αn
, x2
αn
, · · · , xm

αn
, respectively, in (38), we get

μ
1
αn

[
f
(∑m

i=1 αi(
xi
αn

)
)−

[∏m
i=1 f (

xi
αn

))
]
.
[∑m

i=1

[
αi

(∏m
j=1, j �=i f (

xj

αn
))
)]]−1

](t)

≥ μ′
φ
(
x1
αn

,
x2
αn

,··· , xm
αn

)(αnt) (49)

for all x1, x2, · · · , xm ∈ X and t > 0. Since

lim
n→∞μ′

φ
(
x1
αn

,
x2
αn

,··· , xm
αn

)(αnt) = 1

we conclude that C satisfies (2).
To prove the uniqueness of the mapping C, assume that there exist another

mapping D : X → Y which satisfies (39). Then we have

μC(x)−D(x)(t) = lim
n→∞μ 1

αn
C
(
x
αn

)− 1
αn

D
(
x
αn

)(t) (50)

≥ lim
n→∞ min

{
μ 1

αn
C
(
x
αn

)− 1
αn

f
(
x
αn

)
(
t

2

)
, μ 1

αn
f ( x

αn
)− 1

αn
D
(
x
αn

)
(
t

2

)}

≥ lim
n→∞μ′

φ
(
x
αn

, x
αn

,··· , x
αn

)

(
αn(α − β)

2α2

)

≥ lim
n→∞μ′

φ(x,x,··· ,x)
(
αn(α − β)t

2α2βn

)
.

Since limn→∞ αn(α−β)
2α2βn

= ∞ we get
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lim
n→∞μ′

φ(x,x,··· ,x)
(
αn(α − β)t

2α2βn

)
= 1.

Therefore, it follows that μC(x)−D(x)(t) = 1 for all t > 0 and so C(x) = D(x).
This completes the proof.

Corollary 5 Let X be a real linear space, (Z,μ′,min) be an RN-space and
(Y, μ,min) be a complete RN-space. Let p be a real number with 0 < p < 1
and z0 ∈ Z. If f : X → Y be a mapping such that

μ
f(

∑m
i=1 αixi)−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ μ′

(
∑m

i=1 ‖xi‖p)z0
(t)

(51)
for all x1, x2, · · · , xm ∈ X and t > 0. Then the limit

C(x) = lim
n→∞

1

αn
f
( x

αn

)
(52)

exists for all x ∈ X and defines a unique mapping C : X → Y such

μf (x)−C(x)(t) ≥ μ′‖x‖pz0

(
(α − αp)t

mα2

)
(53)

for all x ∈ X and t > 0.

Proof Let β = αp and φ : Xm → Z be a mapping defined by φ(x1, x2, · · · , xm) =
(
∑m

i=1 ‖xi‖p)z0. Applying Theorem 6, we get desired result.

Corollary 6 Let X be a real linear space, (Z,μ′,min) be an RN-space and
(Y, μ,min) be a complete RN-space. Let z0 ∈ Z and f : X → Y be a mapping
such that

μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ μ′

δz0
(t) (54)

for all x1, x2, · · · , xm ∈ X and t > 0. Then the limit

C(x) = lim
n→∞

1

αn
f
( x

αn

)
(55)

exists for all x ∈ X and defines a unique mapping C : X → Y such

μf (x)−C(x)(t) ≥ μδz0

(
t

2α

)
(56)

for all x ∈ X and t > 0.
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Proof Let β = α
2 and φ : Xm → Z be a mapping defined by φ(x1, x2, · · · , xm) =

δz0. Applying Theorem 6, we get desired result.

Theorem 7 Let X be a real linear space, (Z,μ′,min) be an RN-space and φ :
Xm → Z be a function such that there exists 0 < β < 1

α
such that

μ′
φ(αx1,αx2,··· ,αxm)(t) ≥ μ′

βφ(x1,x2,··· ,xm)(t) (57)

for all x1, x2, · · · , xm ∈ X and t > 0 and

lim
n→∞μ′

φ(αnx1,α
nx2,··· ,αnxm)

(
t

αn

)
= 1

for all x1, x2, · · · , xm ∈ X and t > 0. Let (Y, μ,min) be a complete RN-space. If
f : X → Y be a mapping such that

μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ μ′

φ(x1,x2,··· ,xm)(t)

(58)
for all x1, x2, · · · , xm ∈ X and t > 0. Then the limit

C(x) = lim
n→∞αnf (αnx)

exists for all x ∈ X and defines a unique mapping C : X → Y such that

μf (x)−C(x)(t) ≥ μ′
φ(x,x,··· ,x)

(
(1 − αβ)t

α

)
. (59)

for all x ∈ X and t > 0.

Proof By (40), we find that

μαf (αx)−f (x)(t) ≥ μ′
φ(x,x,··· ,x)

( t
α

)
(60)

Replacing x by αnx in (60) and using (57), we obtain

μαn+1f (αn+1x)−αnf (αnx)(t) ≥ μ′
φ(x,x,··· ,x)

( t

α(αβ)n

)
. (61)

The rest of the proof is similar to the proof of the Theorem 6.

Corollary 7 Let X be a real linear space, (Z,μ′,min) be an RN-space and
(Y, μ,min) be a complete RN-space. Let pi ∈ R

+ with p = ∑m
i=1 pi > 1 and

z0 ∈ Z. If f : X → Y be a mapping such that
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μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ μ′

(
∏m

i=1 ‖xi‖pi )z0
(t)

(62)
for all x1, x2, · · · , xm ∈ X and t > 0. Then the limit

C(x) = lim
n→∞αnf (αnx) (63)

exists for all x ∈ X and defines a unique mapping C : X → Y such

μf (x)−C(x)(t) ≥ μ′‖x‖pz0

(
(αp − α)t

αp+1

)
(64)

for all x ∈ X and t > 0.

Proof Let β = α−p and φ : Xm → Z be a mapping defined by
φ(x1, x2, · · · , xm) = (

∏m
i=1 ‖xi‖pi )z0. Applying Theorem 7, we get desired result.

3.2 Fixed Point Method

Theorem 8 Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ

be a mapping from Xm to D+( Φ(x1, x2, · · · , xm) is denoted by Φx1,x2,··· ,xm ) such
that there exists 0 < β < 1

α
such that

Φx1
α
,
x2
α
,··· , xm

α
(t) ≤ Φx1,x2,··· ,xm(βt) (65)

for all x1, x2, · · · , xm ∈ X and t > 0. Let f : X → Y be a mapping satisfying

μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ Φx1,x2,··· ,xm(t)

(66)
for all x1, x2, · · · , xm ∈ X and t > 0. Then it follows that, for all x ∈ X,

A(x) := lim
n→∞αnf (αnx)

exists and A : X → Y is a unique mapping such that

μf (x)−A(x)(t) ≥ Φx,x,··· ,x
( (1 − αβ)t

α

)
(67)

for all x ∈ X and t > 0.
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Proof Putting x1 = x2 = · · · = xm = x in (66), we obtain

μαf (αx)−f (x)(t) ≥ Φx,x,··· ,x
( t
α

)
(68)

for all x ∈ X and t > 0. Consider the set

S := {g : X → Y } (69)

and the generalized metric d in S defined by

d(f, g) = inf{u ∈ R
+ : μg(x)−h(x)(ut) ≥ Φx,x,··· ,x(t), ∀x ∈ X, t > 0}, (70)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [22], Lemma 2.1).
Now, we consider a linear mapping J : S → S such that

Jh(x) := αh(αx) (71)

for all x ∈ X.
First, we prove that J is a strictly contractive mapping with the Lipschitz constant

αβ. In fact, let g, h ∈ S be such that d(g, h) < ε. Then we have

μg(x)−h(x)(εt) ≥ Φx,x,··· ,x(t) (72)

for all x ∈ X and t > 0 and so

μJg(x)−Jh(x)(αβεt) = μαg(αx)−αh(αx)(αβεt)

= μg(αx)−h(αx)(βεt) (73)

≥ Φαx,αx,··· ,αx(βt)

≥ Φx,x,··· ,x(t)

for all x ∈ X and t > 0. Thus d(g, h) < ε implies that d(Jg, Jh) < αβε. This
means that

d(Jg, Jh) ≤ αβd(g, h) (74)

for all g, h ∈ S. It follows from (68) that

d(f, Jf ) ≤ α. (75)

By Theorem (3), there exists a mapping A : X → Y satisfying the following:
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(1) A is a fixed point of J , that is,

A(αx) = 1

α
A(x) (76)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) < ∞}. (77)

This implies that A is a unique mapping satisfying (76) such that there exists
u ∈ (0,∞) satisfying

μf (x)−A(x)(ut) ≥ Φx,x,··· ,x(t) (78)

for all x ∈ X and t > 0.
(2) d(J nf,A) → 0 as n → ∞. This implies the equality

lim
n→∞αnf (αnx) = A(x) (79)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf )

1−αβ with f ∈ Ω , which implies the inequality

d(f,A) ≤ α

1 − αβ
(80)

and so

μf (x)−A(x)
( αt

1 − αβ

)
≥ Φx,x,··· ,x(t) (81)

for all x ∈ X and t > 0. This implies that the inequality (67) holds. Replacing
x1, x2, · · · , xm by αnx1, α

nx2, · · · , αnxm, respectively in (66), we obtain

μ
αn

[
f (

∑m
i=1 αi(α

nxi ))−
[
∏m

i=1 f (α
nxi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (αnxj )
)]]−1](t)

≥ Φαnx1,α
nx2,··· ,αnxm

( t

αn

)
(82)

for all x1, x2, · · · , xm ∈ X, t > 0 and n ≥ 1 and so, from (65), it follows that

Φαnx1,α
nx2,··· ,αnxm

( t

αn

)
≥ Φx1,x2,··· ,xm

( t

(αβ)n

)
(83)

Since

lim
n→∞Φx1,x2,··· ,xm

( t

(αβ)n

)
= 1
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for all x1, x2, · · · , xm ∈ X and t > 0, then we have

μ
A(

∑m
i=1 αixi )−

[
∏m

i=1 A(xi)

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i A(xj )
)]]−1(t) = 1

for all x1, x2, · · · , xm ∈ X and t > 0. Thus the mapping A : X → Y satisfy (2).
This completes the proof.

Corollary 8 Let θ ≥ 0 and p be a real number with p > 1. Let f : X → Y be a
mapping satisfying

μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ t

t + θ
(∑m

i=1 ‖xi‖p
)

(84)
for all x1, x2, · · · , xn ∈ X and t > 0. Then the limit

A(x) = lim
n→∞αnf (αnx) (85)

exists for all x ∈ X and A : X → Y is a unique mapping such that

μf (x)−A(x)(t) ≥ (αp − α)t

(αp − α)t +mαp+1θ‖x‖p (86)

for all x ∈ X and t > 0.

Proof The proof follows from Theorem 8 if we take

Φx1,x2,··· ,xm(t) =
t

t + θ
(∑m

i=1 ‖xi‖p
) (87)

for all x1, x2, · · · , xm ∈ X and t > 0. In fact, if we choose β = 1
αp

, then we get the
desired result.

Theorem 9 Let X be a linear space, (Y, μ, TM) be a complete RN-space and Φ be
a mapping from Xm to D+ (Φ(x1, x2, · · · , xm) is denoted by Φx1,x2,··· ,xm ) such that
for some 0 < β < α

Φαx1,αx2,··· ,αxm(t) ≤ Φx1,x2,··· ,xm(βt) (88)

for all x1, x2, · · · , xm ∈ X and t > 0. Let f : X → Y be a mapping satisfying

μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ Φx1,x2,··· ,xm(t)

(89)
for all x, y ∈ X and t > 0. Then the limit
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A(x) := lim
n→∞

1

αn
f
( x

αn

)
(90)

exists for all x ∈ X and A : X → Y is a unique mapping such that

μf (x)−A(x)(t) ≥ Φx,x,··· ,x
( (α − β)t

αβ

)
. (91)

for all x ∈ X and t > 0.

Proof Substituting x1 = x2 = · · · , xm = x in (89), we obtain

μ
f (x)− 1

α
f ( x

α
)
(t) ≥ Φx

α
, x
α
,··· , x

α
(t) ≥ Φx,x,··· ,x

(
t

β

)
(92)

for all x ∈ X. Let (S, d) be the generalized metric space defined in the proof of the
Theorem 8. Consider a linear mapping J : S → S such that

Jh(x) := 1

α
h
(x
α

)
(93)

for all x ∈ X. It follows from (92) that

d(f, Jf ) ≤ β. (94)

By Theorem 3, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

αA(x) = A
(x
α

)
(95)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) < ∞}.

This implies that A is a unique mapping satisfying (95) such that there exists
u ∈ (0,∞) satisfying

μf (x)−A(x)(ut) ≥ Φx,x,··· ,x(t) (96)

for all x ∈ X.
(2) d(J nf,A) → 0 as n → ∞. This implies the equality

lim
n→∞

1

αn
f
( x

αn

)
= A(x) (97)

for all x ∈ X.
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(3) d(f,A) ≤ d(f,Jf )
1−L with f ∈ Ω , which implies the inequality

d(f,A) ≤ αβ

α − β
.

So and so

μf (x)−A(x)
( αβt

α − β

)
≥ Φx,x,··· ,x(t) (98)

This implies that the inequality (91) holds. The rest of the proof is similar to the
proof of Theorem 8.

Corollary 9 Let θ ≥ 0 and p be a real number with 0 < p < 1. Let f : X → Y

be a mapping satisfying

μ
f (

∑m
i=1 αixi )−

[
∏m

i=1 f (xi )

]
.

[
∑m

i=1

[
αi

(
∏m

j=1, j �=i f (xj )
)]]−1(t) ≥ t

t + θ
(∑m

i=1 ‖xi‖p
)

(99)
for all x1, x2, · · · , xm ∈ X and t > 0. Then the limit

A(x) = lim
n→∞

1

αn
f
( x

αn

)
(100)

exists for all x ∈ X and A : X → Y is a unique mapping such that

μf (x)−A(x)(t) ≥ (α − αp)t

(α − αp)t +m.αp+1θ‖x‖p (101)

for all x ∈ X and t > 0.

Proof The proof follows from Theorem 9 if we take

Φx1,x2,··· ,xm(t) =
t

t + θ
(∑m

i=1 ‖xi‖p
) (102)

for all x1, x2, · · · , xm ∈ X and t > 0. In fact, if we choose β = αp, then we get the
desired result.
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On the HUR-Stability of Quadratic
Functional Equations in Fuzzy Banach
Spaces

Hassan Azadi Kenary and Themistocles M. Rassias

1 Introduction and Preliminaries

Let X be a real vector space. A function N : X×R → [0, 1] is called a fuzzy norm
on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N
(
x, t

|c|
)

if c �= 0;

(N4) N(x + y, c + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x �= 0, N(x, .) is continuous on R.

Example 1 Let (X, ‖.‖) be a normed linear space and α, β > 0. Then

N(x, t) =
{

αt
αt+β‖x‖ t > 0, x ∈ X

0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 1 Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is
said to be convergent or converge if there exists an x ∈ X such that limt→∞N(xn−
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x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence {xn} in X

and we denote it by N − limt→∞ xn = x.

Definition 2 Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is
called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for
all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1 − ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and
Y is continuous at a point x ∈ X if for each sequence {xn} converging to x0 ∈ X,
then the sequence {f (xn)} converges to f (x0). If f : X → Y is continuous at each
x ∈ X, then f : X → Y is said to be continuous on X (see [2]).

Definition 3 Let X be a set. A function d : X×X → [0,∞] is called a generalized
metric on X if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X.

Theorem 1 Let (X,d) be a complete generalized metric space and J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X,
either

d(J nx, J n+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(J nx, J n+1x) < ∞ for all n0 ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(J n0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

The stability problem of functional equations was originated from a question of
Ulam [37] concerning the stability of group homomorphisms. Hyers [13] gave a
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Th. M. Rassias [29] for linear mappings by considering
an unbounded Cauchy difference.

Theorem 2 (Th.M. Rassias) Let f : E → E′ be a mapping from a normed vector
space E into a Banach space E′ subject to the inequality ‖f (x + y) − f (x) −
f (y)‖ ≤ ε(‖x‖p + ‖y‖p) for all x, y ∈ E, where ε and p are constants with ε > 0
and 0 ≤ p < 1. Then the limit L(x) = limn→∞ f (2nx)

2n exists for all x ∈ E and L :
E → E′ is the unique linear mapping which satisfies ‖f (x)− L(x)‖ ≤ 2ε

2−2p ‖x‖p
for all x ∈ E. Also, if for each x ∈ E the function f (tx) is continuous in t ∈ R,
then L is linear.
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The functional equation f (x+y)+f (x−y) = 2f (x)+2f (y) is called a quadratic
functional equation. In particular, every solution of the quadratic functional equation
is said to be a quadratic mapping. The Hyers-Ulam stability of the quadratic
functional equation was proved by Skof [36] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [5] noticed that the theorem of
Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik
[6] proved the Hyers-Ulam stability of the quadratic functional equation.

In this paper, we consider the following quadratic functional equations

f

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

f (aixi ± ajxj ) = (3n− 2)
n∑

i=1

a2
i f (xi), (1)

where a1, · · · , an ∈ Z − {0} and some l ∈ {1, 2, · · · , n − 1}, al �= 1 and an = 1,
where n is a positive integer greater or at lease equal to two, in fuzzy Banach spaces.

The stability problems of several functional equations have been extensively
investigated by a number of authors, and there are many interesting results
concerning this problem (see [4, 7–10, 12, 14–16, 21–28, 30–35]).

Katsaras [18] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view (see [11, 19, 28]).

In particular, Bag and Samanta [1], following Cheng and Mordeson [3], gave
an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of
Karmosil and Michalek type [17]. They established a decomposition theorem of a
fuzzy norm into a family of crisp norms and investigated some properties of fuzzy
normed spaces [2].

2 Fuzzy Stability of Quadratic Functional Equation (1):
A Fixed Point Method

In this section, using the fixed point alternative approach we prove the Hyers-Ulam-
Rassias stability of functional equation (1) in fuzzy Banach spaces. Throughout this
paper, assume that X is a vector space and that (Y,N) is a fuzzy Banach space.

Theorem 3 Let ϕ : Xn → [0,∞) be a function such that there exists an L < 1
with

ϕ

(
x1

a1
,
x2

a2
, · · · , xn

an

)
≤ Lϕ(a1, a2, · · · , an)

a2
1
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for all x1, x2, · · · , xn ∈ X and all a1 �= 1. Let f : X → Y with f (0) = 0 is a
mapping satisfying

N

⎛

⎝f

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

f (aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i f (xi), t

⎞

⎠

≥ t

t + ϕ(x1, · · · , xn) (2)

for all x1, · · · , xn ∈ X and all t > 0 . Then, the limit

Q(x) := N - lim
m→∞ a2m

1 f

(
x

am1

)

exists for each x ∈ X and defines a unique quadratic mapping Q : X → Y such
that

N(f (x)−Q(x), t) ≥ (a2
1(3n− 2)− a2

1(3n− 2)L)t

(a2
1(3n− 2)− a2

1(3n− 2)L)t + Lϕ(x, 0, · · · , 0)
. (3)

for all x ∈ X and all t > 0.

Proof Putting x1 = x and x2 = · · · = xn = 0 in (2) and using f (0) = 0, we have

N

(
f (a1x)− a2

1f (x),
t

3n− 2

)
≥ t

t + ϕ(x, 0, · · · , 0)
. (4)

Replacing x by x
a1

in (4), we obtain

N

(
a2

1f

(
x

a1

)
− f (x),

t

3n− 2

)
≥ t

t + ϕ
(
x
a1
, 0, · · · , 0

) (5)

for all x ∈ X and t > 0. Consider the set S := {g : X → Y ; g(0) = 0} and the
generalized metric d in S defined by

d(f, g)= inf

{
μ ∈ R

+ : N(g(x)− h(x), μt)≥ t

t + ϕ(x, 0, · · · , 0)
,∀x ∈ X, t >0

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [20]). Now, we

consider a linear mapping J : S → S such that Jg(x) := a2
1g

(
x
a1

)
for all x ∈ X.

Let g, h ∈ S be such that d(g, h) = ε. Then N(g(x)− h(x), εt) ≥ t
t+ϕ(x,0,··· ,0) for

all x ∈ X and t > 0. Hence
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N(Jg(x)− Jh(x), Lεt) = N

(
a2

1g

(
x

a1

)
− a2

1h

(
x

a1

)
, Lεt

)

= N

(

g

(
x

a1

)
− g

(
x

a1

)
,
Lεt

a2
1

)

≥
Lt

a2
1

Lt

a2
1
+ ϕ

(
x
a1
, 0, · · · , 0

)

≥
Lt

a2
1

Lt

a2
1
+ Lϕ(x,0,··· ,0)

a2
1

= t

t + ϕ(x, 0, · · · , 0)

for all x ∈ X and t > 0. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that d(Jg, Jh) ≤ Ld(g, h) for all g, h ∈ S. It follows from (5) that

N

(

a2
1f

(
x

a1

)
− f (x),

Lt

a2
1(3n− 2)

)

≥ t

t + ϕ (x, 0, · · · , 0)
(6)

for all x ∈ X and t > 0. This implies that d(f, Jf ) ≤ L

a2
1(3n−2)

. By Theorem 2.1,

there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , that is,

Q

(
x

a1

)
= Q(x)

a2
1

(7)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that Q is a unique mapping satisfying (7) such
that there exists μ ∈ (0,∞) satisfying N(f (x)−Q(x), μt) ≥ t

t+ϕ(x,0,··· ,0) for
all x ∈ X and t > 0.

(2) d(Jmf,Q) → 0 as m → ∞. This implies the equality

N - lim
m→∞ a2m

1 f

(
x

am1

)
= Q(x)

for all x ∈ X.
(3) d(f,Q) ≤ d(f,Jf )

1−L with f ∈ Ω , which implies the inequality d(f,Q) ≤
L

a2
1(3n−2)−a2

1(3n−2)L
. This implies that the inequality (3) holds. Furthermore,

since

N

⎛

⎝Q

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

Q(aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i Q(xi), t

⎞

⎠
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= N − lim
m→∞

⎛

⎝a2m
1 f

(
n∑

i=1

aixi

am1

)

+
n−1∑

i=1

n∑

j=i+1

a2m
1 f

(
aixi ± ajxj

am1

)

−(3n− 2)
n∑

i=1

a2
i a

2m
1 f

(
xi

am1

)
, t

)

≥ lim
m→∞

t

a2m
1

t

a2m
1

+ ϕ
(
x1
am1
, x2
am1
, · · · , xn

am1

) ≥ lim
m→∞

t

a2m
1

t

a2m
1

+ Lmϕ(x1,x2,··· ,xn)
a2m

1

→ 1

for all x1, x2, · · · , xn ∈ X, t > 0 and all m ∈ N. Hence

N

⎛

⎝Q

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

Q(aixi ± ajxj )−(3n−2)
n∑

i=1

a2
i Q(xi), t

⎞

⎠ = 1

for all x1, x2, · · · , xn ∈ X and all t > 0. Thus the mapping Q : X → Y is
quadratic, as desired. This completes the proof.

Corollary 1 Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm ‖.‖. Let f : X → Y with f (0) = 0 be a mapping satisfying
the following inequality

N

⎛

⎝f

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

f (aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i f (xi), t

⎞

⎠

≥ t

t + θ
(∑n

i=1 ‖xi‖p
)

for all x1, x2, · · · , xn ∈ X and all t > 0. Then, the limit Q(x) :=
N - limm→∞ a2m

1 f
(

x
am1

)
exists for each x ∈ X and defines a unique quadratic

mapping Q : X → Y such that

N(f (x)−Q(x), t) ≥ a2
1(3n− 2)(|a1|p − a2

1)t

a2
1(3n− 2)(|a1|p − a2

1)t + a2
1θ‖x‖p

for all x ∈ X and t > 0.

Proof The proof follows from Theorem 3.1 by taking ϕ(x1, x2, · · · , xn) :=
θ
(∑n

i=1 ‖xi‖p
)

for all x1, x2, · · · , xn ∈ X. Then we can choose L = |a1|2−p and
we get the desired result.

Theorem 4 Let ϕ : Xn → [0,∞) be a function such that there exists an L < 1

with ϕ(x1, x2, · · · , xn) ≤ a2
1Lϕ

(
x1
a1
, x2
a1
, · · · , xn

a1

)
for all x, y ∈ X. Let f : X → Y
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be a mapping with f (0) = 0 satisfying (2). Then Q(x) := N - limm→∞
f (am1 x)

a2m
1

exists

for each x ∈ X and defines a unique quadratic mapping Q : X → Y such that

N(f (x)−Q(x), t) ≥ (a2
1(3n− 2)− a2

1(3n− 2)L)t

(a2
1(3n− 2)− a2

1(3n− 2)L)t + ϕ(x, 0, · · · , 0)
(8)

for all x ∈ X and all t > 0.

Proof Let (S, d) be the generalized metric space defined as in the proof of
Theorem 2.1. Consider the linear mapping J : S → S such that Jg(x) := g(a1x)

a2
1

for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then N(g(x) − h(x), εt) ≥
t

t+ϕ(x,0,··· ,0) for all x ∈ X and t > 0 . Hence

N(Jg(x)− Jh(x), Lεt) = N

(
g(a1x)

a2
1

− h(a1x)

a2
1

, Lεt

)

= N
(
g(a1x)− h(a1x), a

2
1Lεt

)
≥ a2

1Lt

a2
1Lt + ϕ(a1x, , 0, · · · , 0)

≥ a2
1Lt

a2
1Lt + a2

1Lϕ(x, 0, · · · , 0)
= t

t + ϕ(x, 0, · · · , 0)

for all x ∈ X and t > 0. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This
means that d(Jg, Jh) ≤ Ld(g, h) for all g, h ∈ S. It follows from (4) that

N

(

f (x)− f (a1x)

a2
1

,
t

a2
1(3n− 2)

)

≥ t

t + ϕ(x, 0, · · · , 0)
(9)

for all x ∈ X and t > 0. Therefore

d(f, Jf ) ≤ 1

a2
1(3n− 2)

.

By Theorem 2.1, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , that is,

22Q(x) = Q(2x) (10)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set Ω = {h ∈
S : d(g, h) < ∞}. This implies that Q is a unique mapping satisfying (10) such
that there exists μ ∈ (0,∞) satisfying N(f (x)−Q(x), μt) ≥ t

t+ϕ(x,0,··· ,0) for
all x ∈ X and t > 0.
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(2) d(Jmf,Q) → 0 as m → ∞. This implies the equality Q(x) =
N - limm→∞

f (am1 x)

a2m
1

for all x ∈ X.

(3) d(f,Q) ≤ d(f,Jf )
1−L with f ∈ Ω , which implies the inequality d(f,Q) ≤

1
a2

1(3n−2)−a2
1(3n−2)L

. This implies that the inequality (8) holds. The rest of the

proof is similar to that of the proof of Theorem 2.1.

Corollary 2 Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a
normed vector space with norm ‖.‖. Let f : X → Y be a mapping with f (0) = 0
satisfying

N

⎛

⎝f

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

f (aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i f (xi), t

⎞

⎠

≥ t

t + θ
(∑n

i=1 ‖xi‖p
)

for all x1, x2, · · · , xn ∈ X and all t > 0. Then, the limit Q(x) :=
N - limm→∞

f (am1 x)

a2m
1

exists for each x ∈ X and defines a unique quadratic mapping

Q : X → Y such that

N(f (x)−Q(x), t) ≥ a2
1(3n− 2)(a2

1 − |a1|p)t
a2

1(3n− 2)(a2
1 − |a1|p)t + a2

1θ‖x‖p

for all x ∈ X.

Proof The proof follows from Theorem 2.2 by taking ϕ(x1, · · · , xn) :=
θ
(∑n

i=1 ‖xi‖p
)

for all x1, · · · , xn ∈ X. Then we can choose L = |a1|p−2 and
we get the desired result.

3 Fuzzy Stability of Functional Equation (1): A Direct
Method

In this section, using direct method, we prove the Hyers-Ulam-Rassias stability of
functional equation (1) in fuzzy Banach spaces. Throughout this section, we assume
that X is a linear space, (Y,N) is a fuzzy Banach space and (Z,N ′) is a fuzzy
normed spaces. Moreover, we assume thatN(x, .) is a left continuous function on R.

Theorem 5 Assume that a mapping f : X → Y with f (0) = 0 satisfies the
inequality
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N

⎛

⎝f

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

f (aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i f (xi), t

⎞

⎠

≥ N ′(ϕ(x1, · · · , xn), t) (11)

for all x1, · · · , xn ∈ X, t > 0 and ϕ : Xn → Z is a mapping for which there is a
constant r ∈ R satisfying 0 < a2

1 |r| < 1 such that

N ′
(
ϕ

(
x1

a1
,
x2

a1
, · · · , xn

a1

)
, t

)
≥ N ′

(
ϕ(x1, · · · , xn), t

|r|
)

(12)

for all x1, · · · , xn ∈ X and all t > 0. Then there exists a unique quadratic mapping
Q : X → Y satisfying (1) and the inequality

N(f (x)−Q(x), t) ≥ N ′
(

ϕ(x, 0, · · · , 0),
(3n− 2)(1 − a2

1 |r|)t
|r|

)

(13)

for all x ∈ X and all t > 0.

Proof It follows from (12) that

N ′
(

ϕ

(
x1

a
j

1

,
x2

a
j

1

, · · · , xn
a
j

1

)

, t

)

≥ N ′
(
ϕ(x1, · · · , xn), t

|r|j
)

for all x1, · · · , xn ∈ X and all t > 0. Putting x1 = x and x2 = · · · = xn = 0 in (11),
using f (0) = 0 and then replacing x by x

2 , we have

N

(
a2

1f

(
x

a1

)
− f (x),

t

3n− 2

)
≥ N ′

(
ϕ

(
x

a1
, 0, · · · , 0

)
, t

)
(14)

for all x ∈ X and all t > 0. Replacing x by x

a
j
1

in (14), we have

N

(

a
2j+2
1 f

(
x

a
j+1
1

)

− a
2j
1 f

(
x

a
j

1

)

,
a

2j
1 t

3n− 2

)

≥ N ′
(

ϕ

(
x

a
j+1
1

, 0, · · · , 0

)

, t

)

≥ N ′
(
ϕ(x, 0, · · · , 0),

t

|r|j+1

)

(15)
for all x ∈ X, all t > 0 and any integer j ≥ 0. So
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N

⎛

⎝f (x)− a2m
1 f

(
x

am1

)
,

m−1∑

j=0

a
2j
1 |r|j+1t

3n− 2

⎞

⎠

= N

⎛

⎝
m−1∑

j=0

a
2j+2
1 f

(
x

a
j+1
1

)

− a
2j
1 f

(
x

a
j

1

)

,

m−1∑

j=0

a
2j
1 |r|j+1t

3n− 2

⎞

⎠

≥ min
0≤j≤n−1

{

N

(

a
2j+2
1 f

(
x

a
j+1
1

)

− a
2j
1 f

(
x

a
j

1

)

,
a

2j
1 |r|j+1t

3n− 2

)}

≥ N ′(ϕ(x, 0, · · · , 0), t)

which yields

N

⎛

⎝a2m+2p
1 f

(
x

a
m+p
1

)

− a
2p
1 f

(
x

a
p

1

)

,

m−1∑

j=0

a
2j+2p
1 |r|j+1t

3n− 2

⎞

⎠

≥ N ′
(

ϕ

(
x

a
p

1

, 0, · · · , 0

)

, t

)

≥ N ′
(
ϕ(x, 0, · · · , 0),

t

|r|p
)

for all x ∈ X, t > 0 and any integers n > 0, p ≥ 0. So

N

⎛

⎝a2m+2p
1 f

(
x

a
m+p
1

)

− a
2p
1 f

(
x

a
p

1

)

,

m−1∑

j=0

a
2j+2p
1 |r|j+p+1t

3n− 2

⎞

⎠

≥ N ′ (ϕ(x, 0, · · · , 0), t)

for all x ∈ X, t > 0 and any integers n > 0, p ≥ 0. Hence one obtains

N

(

a
2m+2p
1 f

(
x

a
m+p
1

)

− a
2p
1 f

(
x

a
p

1

)

, t

)

≥ N ′

⎛

⎜
⎝ϕ(x, 0, .., 0),

t

∑m−1
j=0

a
2j+2p
1 |r|j+p+1

3n−2

⎞

⎟
⎠ (16)

for all x ∈ X, t > 0 and any integers n > 0, p ≥ 0. Since, the series
∑+∞

j=0 a
2j
1 |r|j

is convergent series, we see by taking the limit p → ∞ in the last inequality that

the sequence
{
a2m

1 f
(

x
am1

) }
is a Cauchy sequence in the fuzzy Banach space (Y,N)

and so it converges in Y . Therefore a mapping Q : X → Y defined by

Q(x) := N − lim
m→∞ a2m

1 f

(
x

am1

)
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is well defined for all x ∈ X. It means that

lim
m→∞N

(
Q(x)− a2m

1 f

(
x

am1

)
, t

)
= 1 (17)

for all x ∈ X and all t > 0. In addition, it follows from (16) that

N

(
f (x)− a2m

1 f

(
x

am1

)
, t

)
≥ N ′

⎛

⎜
⎝ϕ(x, 0, .., 0),

t

∑m−1
j=0

a
2j
1 |r|j+1

3n−2

⎞

⎟
⎠

for all x ∈ X and all t > 0. So

N(f (x)−Q(x), t)

≥ min

{
N

(
f (x)− a2m

1 f

(
x

am1

)
, (1 − ε)t

)
, N

(
A(x)a2m

1 f

(
x

am1

)
, εt

)}

≥ N ′

⎛

⎜
⎝ϕ(x, 0, .., 0),

t

∑m−1
j=0

a
2j
1 |r|j+1

3n−2

⎞

⎟
⎠ ≥ N ′

(

ϕ(x, 0, · · · , 0),
(3n− 2)(1 − a2

1 |r|)εt
|r|

)

for sufficiently large m and for all x ∈ X, t > 0 and ε with 0 < ε < 1. Since ε is
arbitrary and N ′ is left continuous, we obtain

N(f (x)−Q(x), t) ≥ N ′
(

ϕ(x, 0, · · · , 0),
(3n− 2)(1 − a2

1 |r|)t
|r|

)

for all x ∈ X and t > 0. It follows from (11) that

N

⎛

⎝a2m
1 f

(
n∑

i=1

aixi

am1

)

+
n−1∑

i=1

n∑

j=i+1

a2m
1 f

(
aixi ± ajxj

am1

)

−(3n− 2)
n∑

i=1

a2
i a

2m
1 f

(
xi

am1

)
, t

)

≥ N ′
(

ϕ

(
x1

am1
,
x2

am1
, · · · , xn

am1

)
,

t

a2m
1

)

≥ N ′
(

ϕ(x1, x2, · · · , xn), t

a2m
1 |r|m

)

for all x1, x2, · · · , xn ∈ X, t > 0 and all n ∈ N. Since

lim
m→∞N ′

(

ϕ(x1, x2, · · · , xn), t

a2m
1 |r|m

)

= 1
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and so

N

⎛

⎝a2m
1 f

(
n∑

i=1

aixi

am1

)

+
n−1∑

i=1

n∑

j=i+1

a2m
1 f

(
aixi ± ajxj

am1

)

−(3n− 2)
n∑

i=1

a2
i a

2m
1 f

(
xi

am1

)
, t

)

→ 1

for all x1, x2, · · · , xn ∈ X and all t > 0. Therefore, we obtain in view of (17)

N

⎛

⎝Q

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

Q(aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i Q(xi), t

⎞

⎠

≥ min

{
N

(
Q

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

Q(aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i Q(xi)

−a2m
1 f

(
n∑

i=1

aixi

am1

)

−
n−1∑

i=1

n∑

j=i+1

a2m
1 f

(
aixi ± ajxj

am1

)

+(3n− 2)
n∑

i=1

a2
i a

2m
1 f

(
xi

am1

)
,
t

2

)
,

N

(
a2m

1 f

(
n∑

i=1

aixi

am1

)

+
n−1∑

i=1

n∑

j=i+1

a2m
1 f

(
aixi ± ajxj

am1

)

−(3n− 2)
n∑

i=1

a2
i a

2m
1 f

(
xi

am1

)
,
t

2

)}

≥ N

⎛

⎝a2m
1 f

(
n∑

i=1

aixi

am1

)

+
n−1∑

i=1

n∑

j=i+1

a2m
1 f

(
aixi ± ajxj

am1

)

−(3n− 2)
n∑

i=1

a2
i a

2m
1 f

(
xi

am1

)
,
t

2

)

≥ N ′
(

ϕ(x1, x2, · · · , xn), t

2a2m
1 |r|m

)

→ 1 as m → ∞

which implies
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Q

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

Q(aixi ± ajxj ) = (3n− 2)
n∑

i=1

a2
i Q(xi)

for all x1, x2, · · · , xn ∈ X. Thus Q : X → Y is a mapping satisfying the Eq. (1)
and the inequality (13). Thus the mapping Q : X → Y is quadratic, as desired. To
prove the uniqueness, let there is another mapping R : X → Y which satisfies the

inequality (13). Since R(x) = a2m
1 R

(
x
am1

)
for all x ∈ X, we have

N(Q(x)− R(x), t)

= N

(
a2m

1 Q

(
x

am1

)
− a2m

1 R

(
x

am1

)
, t

)

≥ min

{
N

(
a2m

1 Q

(
x

am1

)
− a2m

1 f

(
x

am1

)
,
t

2

)
,

N

(
a2m

1 f

(
x

am1

)
− a2m

1 R

(
x

am1

)
,
t

2

)}

≥ N ′
(

ϕ

(
x

am1
, 0, · · · , 0

)
,
(3n− 2)(1 − a2

1 |r|)t
a2m

1 |r|

)

≥ N

(

ϕ(x, 0, · · · , 0),
(3n− 2)(1 − a2

1 |r|)t
a2m

1 |r|m+1

)

→ 1

as m → ∞ for all t > 0. Therefore Q(x) = R(x) for all x ∈ X. This completes the
proof.

Corollary 3 Let X be a normed spaces and that (R, N ′) a fuzzy Banach space.
Assume that there exists real number θ ≥ 0 and p > 1 such that a mapping f :
X → Y with f (0) = 0 satisfies the following inequality

N

⎛

⎝f

(
n∑

i=1

aixi

)

+
n−1∑

i=1

n∑

j=i+1

f (aixi ± ajxj )− (3n− 2)
n∑

i=1

a2
i f (xi), t

⎞

⎠

≥ N ′
(

θ

(
n∑

i=1

‖xi‖p
)

, t

)

(18)

for all x1, x2, · · · , xn ∈ X and t > 0. Then there is a unique quadratic mapping
Q : X → Y that satisfying (1) and the inequality

N(f (x)−Q(x), t) ≥ N ′
(

θ‖x‖p
(3n− 2)(a2p

1 − a2
1)
, t

)
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Proof Let ϕ(x1, x2, · · · , xn) := θ
(∑n

i=1 ‖xi‖p
)

and |r| = |a1|−2p. Apply
Theorem 5, we get desired results.

Theorem 6 Assume that a mapping f : X → Y with f (0) = 0 satisfies the
inequality (11) and ϕ : Xn → Z is a mapping for which there is a constant r ∈ R

satisfying 0 < |r| < a2
1 such that

N ′
(
ϕ(x1, x2, · · · , xn)

|r| , t

)
≥ N ′

(
ϕ

(
x1

a1
,
x2

a1
, · · · , xn

a1

)
, t

)
(19)

for all x, y ∈ X and all t > 0. Then there exists a unique quadratic mapping
Q : X → Y that satisfying (1) and the following inequality

N(f (x)−Q(x), t) ≥ N ′
(

ϕ(x, 0, · · · , 0)

(3n− 2)(a2
1 − |r|) , t

)

(20)

for all x ∈ X and all t > 0.

Proof Putting x1 = x and x2 = · · · = xn = 0 in (11), using f (0) = 0, we have

N

(
f (a1x)

a2
1

− f (x),
t

a2
1(3n− 2)

)

≥ N ′(ϕ(x, 0, · · · , 0), t) (21)

for all x ∈ X and all t > 0. Replacing x by am1 x in (21), we obtain

N

(
f (am+1

1 x)

a2m+2
1

− f (am1 x)

a2m
1

,
t

a2m+2
1 (3n− 2)

)

≥ N ′(ϕ(am1 x, 0, · · · , 0), t) (22)

≥ N ′
(
ϕ(x, 0, · · · , 0),

t

|r|m
)
.

So

N

(
f (am+1

1 x)

a2m+2
1

− f (am1 x)

a2m
1

,
|r|mt

a2m+2
1 (3n− 2)

)

≥ N ′(ϕ(x, 0, · · · , 0), t) (23)

for all x ∈ X and all t > 0. Proceeding as in the proof of Theorem 5, we obtain that

N

⎛

⎝f (x)− f (am1 x)

a2m
1

,

m−1∑

j=0

|r|j t
a

2j+2
1 (3n− 2)

⎞

⎠ ≥ N ′(ϕ(x, 0, · · · , 0), t)
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for all x ∈ X, all t > 0 and any integer n > 0. So

N

(

f (x)− f (am1 x)

a2m
1

, t

)

≥ N ′

⎛

⎜
⎝ϕ(x, 0, · · · , 0),

t
∑m−1

j=0
|r|j

a
2j+2
1 (3n−2)

⎞

⎟
⎠

≥ N ′
(

ϕ(x, 0, · · · , 0)

(3n− 2)(a2
1 − |r|) , t

)

.

The rest of the proof is similar to the proof of Theorem 5.

Corollary 4 Let X be a normed spaces and that (R, N ′) a fuzzy Banach space.
Assume that there exists real number θ ≥ 0 and 0 < p < 1 such that a mapping
f : X → Y with f (0) = 0 satisfies (18). Then there is a unique quadratic mapping
Q : X → Y that satisfying (1) and the inequality

N(f (x)−Q(x), t) ≥ N ′
(

θ‖x‖p
(3n− 2)(a2

1 − a
2p
1 )

, t

)

Proof Let ϕ(x1, x2, · · · , xn) := θ
(∑n

i=1 ‖xi‖p
)

and |r| = |a1|2p. Apply Theo-
rem 6, we get desired results.
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Asymptotic Orbits in Hill’s Problem
When the Larger Primary is a Source
of Radiation

Vassilis S. Kalantonis, Angela E. Perdiou, and Christos N. Douskos

1 Introduction

The dynamics around the collinear libration points of the restricted three-body
problem or its Hill limiting case has attracted the interest of many researchers in the
last decades both from theoretical and practical point of view (see, e.g., [9, 22, 26]
and references therein). A special case of motion around these points is when the
third body of negligible mass tracks orbits which asymptotically depart from and
arrive at the collinear equilibrium points themselves or the Lyapunov periodic orbits
existing in their vicinity (see, for example, [3, 5, 6, 14]).

Orbits which start asymptotically from an equilibrium point (or a Lyapunov orbit)
and terminate asymptotically at the same point (or orbit) are called homoclinic while
orbits which asymptotically start from an equilibrium point (or a Lyapunov orbit)
and terminate, in the same way, at another equilibrium point (or another periodic
orbit) are called heteroclinic. Asymptotic orbits at a collinear equilibrium point can
be considered as the limiting case of asymptotic orbits to a Lyapunov periodic orbit
since they are orbits which emanate from the collinear point and terminate at it
or another equilibrium point, instead of from finite periodic orbits around them.
This means that, an asymptotic orbit at a collinear equilibrium point can be used
as a reference orbit since its existence indicates the existence, in its immediate
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neighbourhood, of an infinity of orbits asymptotic to the Lyapunov periodic orbits
[10]. These orbits have been studied by Deprit and Henrard [4] and Perdios and
Markellos [19], in the framework of the restricted three-body problem. On the
other hand, orbits asymptotic to the Lyapunov periodic orbits emanating from the
collinear equilibrium points are important from both theoretical and practical point
of view since they cause the destruction of invariant tori while they can also be used
for the design of trajectories for space missions [1, 7, 11, 25].

In the present work, we study homoclinic orbits at both the collinear equilibrium
points and the Lyapunov periodic orbits in a modification of Hill’s problem where
the larger primary, i.e. the Sun, is a source of radiation. A similar study but only
for the case of asymptotic orbits to periodic orbits has been done by Papadakis
[17] for the corresponding photogravitational restricted three-body problem. To
determine orbits which asymptotically terminate at these points we use fourth order
expansions with respect to a small orbital parameter while for the determination
of asymptotic orbits to the Lyapunov periodic orbits we compute the corresponding
unstable manifolds by applying a similar analysis based on the iso-energetic stability
indices. These analytical solutions have been used for obtaining appropriate initial
conditions for the numerical integration of the equations of motion and the accurate
computation of the asymptotic orbits. Finally, in the case of homoclinic orbits to
the Lyapunov periodic orbits, certain Poincaré surface of section portraits have been
constructed in order to detect transversality of the stable and unstable manifolds
and several asymptotic orbits have been determined for the specific value of the
radiation factor Q1 = 0.5. Our paper is organized as follows: In Sect. 2, we recall
the equations of motion of the model-problem as well as we discuss its equilibrium
points. In Sect. 3, we present our results for homoclinic orbits at the collinear
equilibria while the corresponding homoclinic orbits to the Lyapunov periodic orbits
are shown and described in Sect. 4. Finally, in Sect. 5, we conclude.

2 Equations of Motion and Equilibrium Points

The Hill problem where the primary is a source of radiation is derived from the
corresponding restricted three-body problem in a similar way as the classical Hill
problem is derived from the classical restricted problem [15]. The restricted three-
body problem with radiation [23] describes a different point of view for the motion
of small particles than that of the classical restricted problem and many researchers
have studied it (see [2, 12, 16, 18, 24], among others). This extended model takes into
account only the radiation pressure component of the radiation drag, this being the
most powerful component besides the gravitational forces and has been proposed,
for example, for the consideration of the mass loss process from very luminous stars
(see [13, 20, 21]).
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In rotating coordinates, the Hill problem in which the larger primary is a source
of radiation is described by the following equations of motion:

ẍ − 2ẏ = ∂W

∂x
= 3x − x

r3 −Q1, ÿ + 2ẋ = ∂W

∂y
= − y

r3 , (1)

where the potential function W is:

W = 3x2

2
−Q1x + 1

r
, r =

√
x2 + y2, (2)

and the equation of the Jacobi integral is 2W − (ẋ2 + ẏ2) = Γ , where Γ is
the Jacobi constant. These equations result from the restricted three-body problem
with radiation by placing the origin at the smaller primary, appropriate rescaling of
lengths and applying the transformation q1 = 1 −Q1μ

1/3 for the radiation factor,
where μ is the usual mass parameter.

The problem admits two collinear equilibrium points; L1 on the negative axis
and L2 on the positive axis. The x-axis is an axis of symmetry but, contrary to the
classical Hill problem, the y-axis is not. The positions of these equilibria are given
by the following exact formula [15]:

xLi
= σ

9

[

f (Q1)+ σQ1 + Q2
1

f (Q1)

]

, (3)

where

f (Q1) = 35/3

21/3

[
1 + g(Q1)+

√
1 + 2g(Q1)

]1/3
, g(Q1) = 2σ

9
(
Q1

3
)3,

(4)
with σ = (−1)i , i = 1, 2. To study the stability of the equilibrium points, we
transfer the origin to the equilibrium point Li by setting x = xLi

+ ξ , y = η,
i = 1, 2, and linearize the equations of motion obtaining the system:

ẋ = Ax, A =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
A1 0 0 2
0 B1 −2 0

⎤

⎥⎥
⎦ , (5)

where x = (ξ, η, ξ̇ , η̇)T and:

A1 = 3 + 2

r3
0

, B1 = − 1

r3
0

. (6)
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The characteristic equation of System (5) has two real and two pure imaginary roots,
so, due to the real roots the equilibrium points are unstable. Of interest here, for our
next section, are the real roots λ0 generating the stable and unstable manifolds of
the equilibrium points:

λ0 = ±
√

w1 +
√
w2

1 − w2, w1 = A1 + B1 − 4

2
, w2 = A1B1. (7)

3 Asymptotic Orbits at Collinear Equilibria

The equations of motion to fourth order terms are:

ξ̈ − 2η̇ = A1ξ + A2ξ
2 + A3η

2 + A4ξη
2 + A5ξ

3 + A6ξ
4 + A7η

4 + A8ξ
2η2,

η̈ + 2ξ̇ = B1η + B2ξη + B3ξ
2η + B4η

3 + B5ξη
3 + B6ξ

3η,

(8)
where the higher order coefficients of the right-hand sides are expressions depending
on the radiation factor, through the distance r0 = |xLi

|, i = 1, 2 of the equilibrium
point, and are given by:

A2 = −σ 3

r4
0

, A3 = σ
3

2r4
0

, A4 = − 6

r5
0

, A5 = 4

r5
0

,

A6 = −σ 5

r6
0

, A7 = −σ 15

8r6
0

, A8 = σ
15

r6
0

, B2 = σ
3

r4
0

,

B3 = − 6

r5
0

, B4 = 3

2r5
0

, B5 = −σ 15

2r6
0

, B6 = σ
10

r6
0

.

(9)

We now express the solution of the above system in the form of series expansions
in terms of a small orbital parameter ε:

ξ(t) =
4∑

j=1

εjφj (t), η(t) =
4∑

j=1

εjωj (t). (10)

By substituting this formal solution into System (8) the following systems are
derived:

φ̈1 − 2ω̇1 = A1φ1,

ω̈1 + 2φ̇1 = B1ω1,
(11)

φ̈2 − 2ω̇2 = A1φ2 + A2φ
2
1 + A3ω

2
1,

ω̈2 + 2φ̇2 = B1ω2 + B2φ1ω1,
(12)
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φ̈3 − 2ω̇3 = A1φ3 + 2A2φ1φ2 + 2A3ω1ω2 + A4φ1ω
2
1 + A5φ

3
1 ,

ω̈3 + 2φ̇3 = B1ω3 + B2φ1ω2 + B2φ2ω1 + B3φ
2
1ω1 + B4ω

3
1,

(13)

φ̈4 − 2ω̇4 = A1φ4 + A2φ
2
2 + 2A2φ1φ3 + A3ω

2
2 + 2A3ω1ω3 + A4φ2ω

2
1+

+2A4φ1ω1ω2 + 3A5φ
2
1φ2 + A6φ

4
1 + A7ω

4
1 + A8φ

2
1ω

2
1,

ω̈4 + 2φ̇4 = B1ω4 + B2φ2ω2 + B2φ1ω3 + B2φ3ω1 + 2B3φ1φ2ω1+
+B3φ

2
1ω2 + 3B4ω

2
1ω2 + B5φ1ω

3
1 + B6φ

3
1ω1.

(14)
In order to determine an asymptotic orbit to the collinear equilibrium point Li ,
i = 1, 2, we consider the solutions which correspond to the real eigenvalues. The
solution of the first-order System (11), corresponding to λ0 > 0, is directly obtained
in the form ξ(t) = εh1e

λ0t , η(t) = εg1e
λ0t , where:

h1 = 1, g1 = λ2
0 − A1

2λ0
= 2λ0

B1 − λ2
0

. (15)

To first order, the corresponding eigenvectors are [4]:

I : ξ = εeλ0t , η = εg1e
λ0t , outgoing eigenvector,

II : ξ = −εeλ0t , η = −εg1e
λ0t , outgoing eigenvector,

III : ξ = εe−λ0t , η = −εg1e
−λ0t , incoming eigenvector,

IV : ξ = −εe−λ0t , η = εg1e
−λ0t , incoming eigenvector,

and homoclinic solutions at the collinear equilibrium points can be formed by
combining the outgoing eigenvector I with the incoming eigenvector III, or by
combining the outgoing eigenvector II with the incoming eigenvector IV. The orbits
arising from the above eigenvectors are called asymptotic orbits of kind I, II, III, IV,
respectively. The fourth order solution corresponding to the positive eigenvalue is
found in the form:

ξ(t) =
4∑

j=1

εjhj e
jλ0t , η(t) =

4∑

j=1

εjgj e
jλ0t , (16)

where the coefficients hj , gj , j = 2, 3, 4, are obtained by solving successively
Systems (12)–(14). The initial conditions for an outgoing asymptotic orbit of kind I
up to fourth order terms are given by:

x0,I = xL2 +
4∑

j=1
εjhj , y0,I =

4∑

j=1
εjgj ,

ẋ0,I =
4∑

j=1
jεjhjλ0, ẏ0,I =

4∑

j=1
jεjgjλ0,

(17)

while the initial conditions for an outgoing asymptotic orbit of kind II are given
by the same expressions by changing the value of ε to −ε. Due to the symmetry
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Fig. 1 The function ẋ(Q1)

for the first five cuts of the
orbit with the x-axis in the
case of the negative
equilibrium point L1

0.2 0.4 0.6 0.8 Q1

0.5

0.25

0.25

0.5

x

1

2

3

4

5

of the problem w.r.t. the x-axis we are able to determine the initial conditions
of the incoming asymptotic orbits III, IV from those of the outgoing orbits I, II,
respectively, by changing the signs of y0 and ẋ0.

Due to the same symmetry, transversality of the unstable with the stable manifold
of the equilibrium point is detected when the orbit reaches this axis perpendicularly,
i.e. with ẋ(Q1) = 0. Therefore, we scan the Q1-axis and for each value of Q1
integrate the equations of motion using the initial conditions (17) up to the n-th
crossing of the orbit with the x-axis. The roots of the function ẋ(Q1) will indicate
the existence of homoclinic orbits at the collinear equilibrium point. In Fig. 1 we
show the behaviour of this function for the first five crossings of the orbit with
the x-axis in the case of the “negative” equilibrium point L1. When a homoclinic
orbit has been detected, we can determine it accurately by applying well-known
differential corrections procedures or by a more refined scanning. Numerical data of
many homoclinic orbits are available for the readers. In Fig. 2 we show homoclinic
orbits (continuous lines) at the positive collinear equilibrium point for the values of
the radiation factor Q1 = 0.01471899, Q1 = 0.03551808 and Q1 = 0.72629021
(from left to right) together with the corresponding zero-velocity curves (dashed
lines).

4 Asymptotic Orbits to Lyapunov Periodic Orbits

In order to detect homoclinic orbits to periodic orbits of the Lyapunov family
we shall use again the symmetry property of the problem w.r.t. the x-axis. For a
particular Lyapunov orbit, the initial four-dimensional phase space is reduced to a
three-dimensional subspace of iso-energetic orbits due to the equation of the Jacobi
integral, for the specific value of the Jacobi constant of the Lyapunov orbit. The
final reduction of the phase space to a two-dimensional sub-space is carried out
by considering the cuts of the unstable manifold of the Lyapunov orbit with the
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Fig. 2 Homoclinic orbits at collinear equilibrium point L2

y = 0 plane, i.e. the x-axis. If the unstable manifold of the Lyapunov orbit has
a perpendicular intersection with the x-axis, i.e. the horizontal component of the
velocity is zero (ẋ = 0), then transversality is achieved and a homoclinic orbit to
the Lyapunov orbit exists. The numerical construction of the corresponding stable–
unstable manifolds is based on a linear analysis [22] and can be briefly described as
follows.

Let that, for a specific value Γ0 of the Jacobi constant, (x0, ẋ0) is a fixed point
on the Poincaré surface of section y = 0 for positive direction of the flow, i.e.
ẏ0 > 0. This fixed point corresponds to a periodic orbit with initial conditions
(x, y, ẋ, ẏ) = (x0, 0, ẋ0, [2W(x0, 0)− ẋ2

0 −Γ0]1/2). The differential of the Poincaré
map is given by:

Ẋ = BX0, B =
[
ah bh

ch dh

]
, X = (x, ẋ)T, X0 = (x0, ẋ0)

T, (18)

where ah = ∂x/∂x0, bh = ∂x/∂ẋ0, ch = ∂ẋ/∂x0 and dh = ∂ẋ/∂ẋ0 are the iso-
energetic horizontal stability parameters as these were defined by Hénon [8] with
ahdh − bhch = 1 for the area preservation of the map. The eigenvalues of the linear
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map (18) are determined by the characteristic equation |B − λI| = 0 which, due to
symmetry of the problem with respect to the Ox-axis as well as the area preservation
property, takes the following form:

λ2 − 2ahλ+ 1 = 0, (19)

therefore, obviously the motion is in general bounded when |ah| < 1 while
is unbounded when |ah| > 1. In order to determine suitable initial conditions
for the computation of the unstable manifold we take its linear approximation
Ẋ = X0 + εΘu in the direction of the eigenvector which corresponds to the real
eigenvalue λu = ah+ (a2

h− 1)1/2 with modulus larger than one. The corresponding
linear approximation may be written in the form:

(
x

ẋ

)
=

(
x0

ẋ0

)
+ ε

(
θ1

θ2

)
, (20)

where ε = ε0λ
δ
u = ε0e

−δ ln λs , with λs = ah − (a2
h − 1)1/2 being the smallest

real eigenvalue, ε0 is a sufficiently small constant in order to ensure the validity
of the above linear approximation and δ ∈ [0, 1). Also, the components of the
corresponding eigenvector associated to the eigenvalue λu can be easily found to be:

θ1 = 1 and θ2 = λu − ah

bh
= ch

λu − dh
. (21)

Thus, the suitable initial conditions for the unstable manifold will be:

x = x0 + ε0λ
δ
u,

y = 0,
ẋ = ẋ0 + ε0λ

δ
uθ2,

ẏ = [2W(x0, 0)− ẋ2
0 − Γ0]1/2,

(22)

while the density of the unstable manifold in the phase space is succeeded by
obtaining several values of δ in the interval [0, 1).

In Fig. 3a we show the unstable manifold of a Lyapunov periodic orbit around
L1, up to its third cut with the x-axis, for the Jacobi constant value Γ = 4.967021.
In Fig. 3b the phase portraits, in the (x, ẋ) plane, of the unstable manifolds (first cuts
with the x-axis) for various Lyapunov orbits are presented. Each curve corresponds
to a specific periodic orbit and the points of the curve located on the x-axis, i.e.
with ẋ = 0, denote the existence of homoclinic orbits. The tangential curve (dashed
line) marks the onset of homoclinic orbits. Note that the “center” of the innermost
elliptic curve represents the limiting case of the unstable manifolds of the Lyapunov
orbits, i.e. the one-dimensional unstable manifold of the equilibrium point L1. In
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Fig. 3 (a) The unstable manifold of a Lyapunov orbit around L1. The phase portraits of the
unstable manifolds of various Lyapunov orbits around L1 for the (b) n = 1 cuts, (c) n = 2
cuts and (d) n = 3 cuts

Fig. 3c and d we show the phase portraits of the second and third cuts of the
unstable manifolds for various Lyapunov orbits together with the portraits of the
corresponding stable manifolds (dotted lines). In these two cases we observe that
transversality of the stable with the unstable manifolds occurs also outside the x-axis
indicating the existence of non-symmetric homoclinic orbits. Similarly, in Fig. 4a
the unstable manifold of a Lyapunov periodic orbit around the positive equilibrium
pointL2, up to its third cut with the x-axis, for Γ = 3.591264, is shown. In Fig. 4b, c
and d we show the phase portraits of the first, second and third cuts of the unstable
manifolds for various Lyapunov orbits around L2. As we see, in the case of the
Lyapunov family emanating from L2, homoclinic orbits exist only for the n = 1
cuts. In Fig. 5 several homoclinic orbits to Lyapunov periodic orbits are shown.
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Fig. 4 (a) The unstable manifold of a Lyapunov orbit around L2. The phase portraits of the
unstable manifolds of various Lyapunov orbits around L2 for the (b) n = 1 cuts, (c) n = 2
cuts and (d) n = 3 cuts

5 Conclusions

Asymptotic orbits at collinear equilibrium points were studied in a special version
of the well-known Hill problem where the larger primary, representing the Sun, is a
source of radiation. In particular, orbits which start asymptotically from a collinear
equilibrium point and terminate at the same point asymptotically were determined.
This kind of motion is a special case of non-escape motion in Celestial Mechanics
since the moving particle (e.g. a natural or an artificial satellite) is trapped in the
vicinity of an unstable equilibrium point for infinite time. In addition, asymptotic
orbits at the highly unstable periodic orbits emanating from the collinear equilibrium
points (the so-called Lyapunov orbits) were also computed. The corresponding
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Fig. 5 Homoclinic orbits to Lyapunov orbits around L1 and L2 (last orbit)

asymptotic orbits are also of special importance from a practical point of view
(e.g. for the design of low energy transfer) since they are used to connect the
initial and final orbit of a space mission design which belong to their unstable
and stable manifold, respectively. In both cases of the aforementioned homoclinic
orbits, semi-analytical solutions were obtained which were used for the numerical
computation of the corresponding unstable manifolds. Especially, for the latter case
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of asymptotic orbits, we additionally used appropriate Poincaré surface of sections
in order to detect transversality of the stable and unstable manifolds and locate the
corresponding homoclinic orbits.

Natural extensions of the present work would be to study the way where the
homoclinic orbits to the Lyapunov periodic orbits vary with respect to the unique
parameter of the problem Q1 as well as to consider also possible heteroclinic
connections at both Lyapunov periodic orbits and collinear equilibrium points.

Acknowledgement The authors would like to thank Prof. V.V. Markellos for valuable discussions
during this work.
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Computations for Minors of Weighing
Matrices with Application to the Growth
Problem

Christos D. Kravvaritis

1 Introduction

Weighing matrices constitute a special type of combinatorial matrices that have
attracted scientific interest for many years. After giving the necessary preliminary
material, we present and highlight the role of weighing matrices in two research
fields. We survey the effort made for calculating principal minors of weighing
matrices. Furthermore, the significance of such a study and its contribution to a
well known problem in numerical analysis, the growth problem, are explored.

As a matter of fact, the renowned Hadamard matrices are a special case of
weighing matrices W(n, n − k) for k = 0. It can be proved that n is a multiple
of 4. Moreover, weighing matrices constitute a special class of a broader class
of real orthogonal matrices called orthogonal designs. There exist also the more
generalized complex variants of the three aforementioned mathematical notions.
For the shake of brevity and simplicity, only the real counterparts will be exposed
and analyzed here.

Especially in the area of Numerical Analysis it is worth mentioning that weighing
matrices are the only matrices known so far that exhibit growth factor close to
their order, or generally moderate growth [9, 12]. This is associated with the well
known growth conjecture [8]. Several strategies have been developed therefor even
for specific small, non general orders, which is still a challenging issue due to the
high computational costs involved in the required exhaustive searches [14, 46, 51].
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The numerous real-life applications of weighing matrices evoke interest for the
study of their structure and of properties, cf., e.g., [3, 20, 22, 39, 54, 58, 61, 68].
Besides, the consideration of their mathematical features has its own intrinsic
theoretical beauty.

1.1 Notations

Throughout this work the entries of an (0, 1,−1) matrix will be denoted by
(0, 1,−). In and Jn stand for the identity matrix of order n and the matrix with ones
of order n, respectively. We write A(j) for the absolute value of the determinant
of the j × j principal submatrix in the upper left corner of the matrix A, i.e.
the magnitude of the j × j leading principal minor. Similarly, A[j ] denotes the
magnitude of the determinant of the lower right j × j principal submatrix of A.

We write Jb1,b2,··· ,bz for the all ones matrix with diagonal blocks of sizes b1 ×
b1, b2 × b2 · · · bz × bz, and aij Jb1,b2,··· ,bz for the matrix, for which the elements
of the block with corners

(i + b1 + b2 + · · · + bj−1, i + b1 + b2 + · · · + bi−1),
(i + b1 + b2 + · · · + bj−1, b1 + b2 + · · · + bi),
(b1 + b2 + · · · + bj , i + b1 + b2 + · · · + bi−1),
(b1 + b2 + · · · + bj , b1 + b2 + · · · + bi)

are the integers aij . We write (ki − aii)Ib1,b2,··· ,bz for the matrix direct sum
(k1 − a11)Ib1 + (k2 − a22)Ib2 + · · · + (kz − azz)Ibz .

2 Weighing Matrices

Definition 1 A (0, 1,−1) matrix W = W(n, n − k), k = 1, 2, . . ., of order n
satisfying WTW = WWT = (n − k)In is called a weighing matrix of order n and
weight n− k or simply a weighing matrix.
A W = W(n, k) for which WT = −W is called a skew-weighing matrix.
A W(n, n), n ≡ 0 (mod 4), is a Hadamard matrix of order n.
A W = W(n, n − k) for which WT = −W,n ≡ 0 (mod 4), is called a skew-
weighing matrix.
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Example 1

W(7, 4) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1 1 1 1 0 0 0
1 − 0 0 1 1 0
1 0 − 0 − 0 1
1 0 0 − 0 − −
0 1 − 0 0 1 −
0 1 0 − 1 0 1
0 0 1 − − 1 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

, W(10, 8) =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 1 1 1 − 0 1 1 − 1
− 0 1 1 1 1 0 1 1 −
1 − 0 1 1 − 1 0 1 1
1 1 − 0 1 1 − 1 0 1
1 1 1 − 0 1 1 − 1 0
0 1 − 1 1 0 1 − − −
1 0 1 − 1 − 0 1 − −
1 1 0 1 − − − 0 1 −
− 1 1 0 1 − − − 0 1
1 − 1 1 0 1 − − − 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

W(12, 5) =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 1 1 1 1 0 0 0 0 0 0 0
1 1 − − 0 1 0 0 0 0 0 0
1 − 0 0 0 0 1 1 1 0 0 0
1 − 0 0 0 0 − − 0 1 0 0
1 0 0 0 − − 0 0 − − 0 0
0 1 0 0 − − 0 0 1 1 0 0
0 0 1 − 0 0 1 − 0 0 1 0
0 0 1 − 0 0 − 1 0 0 0 1
0 0 1 0 − 1 0 0 0 0 − −
0 0 0 1 − 1 0 0 0 0 1 1
0 0 0 0 0 0 1 0 − 1 − 1
0 0 0 0 0 0 0 1 − 1 1 −

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

Further examples of weighing matrices can be found in [20, 30, 54].

Definition 2 A W = W(n, n − 1), n even, with zeros on the diagonal satisfying
WWT = (n−1)In is called a conference matrix. If n ≡ 0 (mod 4), thenW = −WT

and W is called a skew-conference matrix. If n ≡ 2 (mod 4), then W = WT and W
is called a symmetric conference matrix and such a matrix cannot exist unless n− 1
is the sum of two squares; thus they cannot exist for orders 22, 34, 58, 70, 78, 94.

Remark 1 Symmetric or antisymmetric conference matrices are also known in the
literature as C-matrices [5].

Example 2

W(6, 5) =

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

0 1 1 1 1 1
1 0 1 − − 1
1 1 0 1 − −
1 − 1 0 1 −
1 − − 1 0 1
1 1 − − 1 0

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

.
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Remark 2 Sometimes a conference matrix of order n is just defined as a weighing
matrix W(n, n− 1). For example, the matrix

W(4, 3) =

⎡

⎢⎢
⎣

1 0 1 1
0 − − 1
1 − 0 −
1 1 − 0

⎤

⎥⎥
⎦

satisfies this relaxed definition, but not the more strict one requiring the zero
elements to be on the diagonal.

For more details and constructions of weighing matrices the reader can refer the
book by Geramita and Seberry [20, 28].

Definition 3 If a Hadamard matrix H of order n can be written as H = I+S where
ST = −S then H is called skew–Hadamard. S is also a conference matrix; we call
it a skew conference matrix.

Definition 4 Two matrices are said to be Hadamard equivalent or H-equivalent if
one can be obtained from the other by a sequence of the operations:

1. interchange any pairs of rows and/or columns;
2. multiply any rows and/or columns through by −1.

Lemma 1 ([23]) Every weighing matrix W(n, n− 1), with n even, is H-equivalent
to a conference matrix.

Definition 5 The entries of the first row and column of a weighing matrix can
always be +1 (normalized form). Indeed, this can be achieved easily by the H-
equivalence operation of multiplying columns and/or rows with −1 and leaves
unaffected the properties of the matrix.

So, without loss of generality, one may assume that weighing matrices can be
considered in normalized form. Weighing matrices belong to a wider class of
orthogonal matrices called orthogonal designs [20].

Definition 6 An orthogonal design of order n and type (s1, s2, . . . , st ), si > 0 inte-
gers, denoted as OD(n; s1, s2, . . . , st ), on the commuting variables x1, x2, . . . , xt
is an n× n matrix O with entries from the set {0,±x1,±x2, . . . ,±xt } such that

OOT = OTO =
(

t∑

i=1

six
2
i

)

In.

Two important properties, which follow from this definition, are that every two
distinct rows or columns of O are orthogonal and each row and column of O has
precisely si entries of the type ±xi, i = 1, . . . , t. If

∑t
i=1 si = n, the OD is called

full. For instance, a Hadamard matrix of order n is a full OD(n; n) with entries
{±1}.



Computations for Minors of Weighing Matrices with Application to the Growth. . . 541

Example 3 As examples for ODs are given the followingOD(2; 1, 1),OD(4; 2, 2),
OD(4; 2, 2), OD(4; 1, 1, 1) and OD(4; 1, 1, 1, 1), respectively.

[
x y

y −x
]
,

⎡

⎢
⎢
⎣

a b a b

−b a b −a
−a −b a b

−b a −b a

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

x x y y

x −x y −y
y y −x −x
y −y −x x

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

a −b −c 0
b a 0 c

c 0 a −b
0 −c b a

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

x y z w

−y x w −z
−z −w x y

−w z −y x

⎤

⎥
⎥
⎦ .

Lemma 2 ([21, 22]) The existence of an orthogonal design of order n and type
(s1, . . . , st ) is equivalent to the existence of weighing matrices A1, . . . At of order
n, where Ai has weight si and the matrices Ai, i = 1, . . . t , satisfy the matrix
equation

XYT + YXT = O

in pairs.

2.1 Hadamard Matrices

The renowned Hadamard matrices are a special class of weighing matricesW(n, n−
k) for k = 0, i.e. a W(n, n), n ≡ 0 (mod 4), is a Hadamard matrix. Additionally,
Hadamard matrices are associated with many real-life applications, conjectures and
scientific research open problems [20, 29, 34, 55, 63, 69, 75].

Definition 7 A Hadamard matrix H ≡ Hn of order n (denoted by Hn) has entries
±1 and satisfies HHT = HTH = nIn.

Example 4

H1 = [1] , H2 =
[

1 1
1 −

]
, H4 =

⎡

⎢
⎢
⎣

1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

⎤

⎥
⎥
⎦ .

In 1893 Hadamard [27] specified quadratic matrices of orders 12 and 20 with
entries ±1 having all their rows and columns mutually orthogonal. These matrices
satisfied the following famous Hadamard inequality.

Theorem 1 ([27],[10, p. 496] Hadamard’s Inequality) For any matrix A =
(aij )1≤i,j≤n with entries on the unit disc

| detA| ≤
n∏

j=1

(
n∑

i=1

|aij |2
) 1

2

=
n∏

j=1

‖aj‖2 ≤ n
n
2 ,

where aj denotes the j -th column of A. The equalities hold if and only if |aij | = 1
for all i, j and the rows of A are mutually orthogonal.
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However, these matrices for every order being a power of 2 have been first
discovered in 1867 by Sylvester [59]. The following well known result describes
the possible order n of a Hadamard matrix.

Theorem 2 ([27]) IfH is an n×nHadamard matrix and n > 2, then n is a multiple
of 4.

Theorem 2 is usually proved by describing the sign patterns in three rows of a
Hadamard matrix like

x
︷ ︸︸ ︷
1 . . . 1

y
︷ ︸︸ ︷
1 . . . 1

z
︷ ︸︸ ︷
1 . . . 1

w
︷ ︸︸ ︷
1 . . . 1

1 . . . 1 1 . . . 1 − · · ·− − · · · −
1 . . . 1 − · · ·− 1 . . . 1 − · · ·−

,

where x, y, z,w denote the number of columns of the respective form. Another
elegant proof for Theorem 2 is given in [10].

One more recent proof for Theorem 2 can be found in [6]. Theorem 2 does
not assure the existence of Hadamard matrices for every n being a multiple of 4.
However, it is conjectured whether there exists a Hadamard matrix of order n for
every n being a multiple of 4. This conjecture seems very realistic but is not proved
yet. The smallest order, for which a Hadamard matrix has not been found, is 668
[34]. Recently a Hadamard matrix of order 428 was found [38]. Other orders smaller
than 1000, for which Hadamard matrices have not been found yet, are 716, 764, 892.

3 Gaussian Elimination and the Growth Problem

Consider a linear system of the form A · x = b, where A = [aij ] ∈ R
n×n

is nonsingular. Gaussian elimination (GE) [9, 24, 31, 32, 65] is the simplest way
to solve such a system by hand, and also the standard method for solving it on
computers. GE without pivoting fails if any of the pivots is zero and it behaves
worse if any pivot becomes close to zero. In this case the method can be carried
out to completion but it is totally unstable and the obtained results may be totally
wrong, as it is already demonstrated in a famous example by Forsythe and Moler
[16].

Therefore, a search for the element with maximum absolute value is performed.
If the search is done in the respective column, then we have GE with partial pivoting,
else if it is done in the respective lower right submatrix we have GE with complete
pivoting. Let A(k) = [a(k)ij ] denote the matrix obtained after the first k pivoting

operations, so A(n−1) is the final upper triangular matrix. A diagonal entry of that
final matrix will be called a pivot.

Traditionally, backward error analysis for GE is expressed in terms of the growth
factor

g(n,A) = maxi,j,k |a(k)ij |
maxi,j |aij | , (1)
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which involves all the elements a
(k)
ij , k = 1, 2, . . . , n that occur during the

elimination. The growth factor actually measures how large the entries become
during the process of elimination.

In 1991 Gould reported on matrices that exhibited, in presence of roundoff
error, growth larger than n [13, 25]. These matrices were created by simulating the
process of GE as an appropriate optimization problem. Thus the first part of Cryer’s
conjecture was shown to be false. The second part of the conjecture concerning the
growth factor of Hadamard matrices still remains an open problem.

The following classic theorem illustrates the accuracy of the computed solution.

Theorem 3 (Wilkinson [31, p. 165]) Let A ∈ R
n×n and suppose GE with partial

pivoting produces a computed solution x̂ to A · x = b. Then there exists a matrix
ΔA and a constant c3n such that

(A+ΔA)x̂ = b, ‖ΔA‖∞ ≤ c3nn
2g(n,A)‖A‖∞.

It is clear that the stability of GE depends on the growth factor. If g(n,A) is of
order 1, not much growth has taken place, and the elimination process is stable. If
g(n,A) is bigger than this, we must expect instability. If GE can be unstable, why is
it so famous and so popular? The answer seems to be that although some matrices
cause instability, these represent such an extraordinarily small proportion of the set
of all matrices that they “never” arise in practice simply for statistical reasons. This
explanation gives rise to a statistical approach to the growth factor and motivates
the study of its behavior for random matrices [12, 66]. In practice the growth factor
is usually of order 10 and therefore most numerical analysts regard the occurrence
of serious element growth in GE with partial pivoting as highly unlikely in practice.
So, the method can be used with confidence and constitutes a stable algorithm in
practice [64].

The determination of g(n,A) in general remains a mystery. Regarding the
possible magnitude of the growth factor for partial pivoting, it is easy to show
that g(n,A) ≤ 2n−1. Wilkinson in [71, p. 289] and [72, p. 212] has reported of
special form matrices attaining this upper bound. Higham and Higham characterize
all matrices attaining this upper bound in the following theorem.

Theorem 4 ([33]) All real n× n matrices A, for which g(n,A) = 2n−1 for partial
pivoting, are of the form

A = DM

⎡

⎣T
... θd

0
...

⎤

⎦ ,

where D = diag(±1), M is unit lower triangular with mij = −1 for i > j ,
T is an arbitrary nonsingular upper triangular matrix of order n − 1, d =
(1, 2, 4, . . . , 2n−1)T , and θ is a scalar such that θ := |a1n| = maxi,j |aij |.
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Table 1 Values of f (n) for
Wilkinson’s bound

n 10 20 50 100 200 1000

f (n) 19 67 530 3300 26,000 79,00,000

Although the growth factor can be as large as 2n−1 for an n × n matrix, the
occurrence of a growth factor even as large as n is rare. However, later than the early
1990s some applications with large growth factors have been published [15, 17, 74].
Efforts have been made to explain this phenomenon with some success [33, 65, 66],
yet the matter is far from completely understood.

For complete pivoting, Wilkinson has showed in [71, pp. 282–285] that

g(n,A) ≤ [n 2 31/2 . . . n1/(n−1)]1/2 ≡ f (n) ∼ cn1/2n
1
4 log n

and that this bound is not attainable. The bound is a much more slowly growing
function than 2n−1, but it can still be quite large, cf. Table 1.

Definition 8 Matrices with the property that no exchanges are actually needed
during Gaussian Elimination (GE) with complete pivoting (GECP) are called
completely pivoted (CP) or feasible.

Equivalently, a matrix is CP if its rows and columns have been permuted so that
GE without pivoting satisfies the requirements for complete pivoting, hence the
maximum elements on each elimination step appear on the diagonal position.

For a CP matrix A we have

g(n,A) = max{p1, p2, . . . , pn}
|a11| , (2)

where p1, p2, . . . , pn are the pivots of A. The study of the values appearing for
g(n,A) and the specification of pivot patterns are referred to as the growth problem.

Cryer [8] defined

g(n) = sup{ g(n,A) | A ∈ R
n×n ,CP}.

The function g(n) plays a role in the analysis of roundoff errors in GE ([16, p. 103]
and [72, p. 213]). Wilkinson in [72, p. 213] noted that there were no known examples
of matrices for which g(n,A) > n. The problem of determining g(n) for various
values of n is called the growth problem. The following results are known:

• g(2) = 2 (trivial)
• g(3) = 2 1

4 [7, 8, 10, 62]
• g(4) = 4 [7, 8, 62]
• g(5) < 5.005 [7]
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4 The Importance of Determinant Calculations

In this expository work, the principal techniques used in the majority of the works
for calculating pivot structures of weighing matrices have been described. The core
strategy is to evaluate principal minors, i.e. determinants, efficiently. The idea takes
advantage of Lemma 3, which constitutes a powerful tool for this research, since it
offers a possibility for calculating pivots in connection with minors.

So, it is obvious that the calculation of minors is important in order to study pivot
structures, and moreover the growth problem for CP weighing matrices.

Lemma 3 ([8, 10, 14, 19, 51]) Let A be a CP matrix.

(i) The magnitude of the pivots appearing after application of GE operations on A
is given by

pj = A(j)

A(j − 1)
, j = 1, 2, . . . , n, A(0) = 1. (3)

(ii) The maximum j × j leading principal minor of A, when the first j − 1 rows
and columns are fixed, is A(j).

The second part of Lemma 3 assures that the maximum j × j minor appears
in the upper left j × j corner of A. So, if the existence of a matrix with maximal
determinant is proved for a CP weighing matrix, we can indeed assume that it always
appears in the upper left corner.

Furthermore, the evaluation of principal minors of a matrix can be useful for
calculating pivots by taking advantage of the following results. Lemma 4 associates
leading principal minors of the upper left corners with the respective ones of the
lower right corners of a generic orthogonal matrix. As a result, Corollary 1 offers
the possibility of specifying pivots from the end of the pivot pattern in terms of
principal minors of lower right corners of the matrix.

Lemma 4 ([10, Proposition 5.2]) Let A be an invertible n × n matrix satisfying
AAT = cIn. If 1 ≤ k < n, then

A(k) = ck−
n
2 A[n− k].

Corollary 1 If A satisfies AAT = cIn, then the jth pivot from the end is

pn+1−j = cA[j − 1]
A[j ] .

All in all, it is important to calculate principal minors of weighing matrices
because one can compute pivots with their aid based on 3. Furthermore, the
respective growth factors can be established via (2).
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Generally, numerous applications in the mathematical sciences require determi-
nants and principal minors. For example, note worthy are the detection of P matrices
[26], self validating algorithms and interval matrix analysis.

The derivation of analytical formulas is useful whenever this is possible. In
general it is very difficult to prove analytical formulas for the determinant of a given
matrix or for its minors. However, when we have matrices with special structure,
such as Hadamard matrices, Vandermonde or Hankel matrices, analytical formulae
can be demonstrated.

Definition 9 Let A be an n× n matrix. The determinant of the k × k submatrix of
A formed by deleting n− k rows of A, and the corresponding n− k columns of A,
is called principal minor of A.

If the resulting matrix is a quadratic upper-left part of the larger matrix A (i.e.,
it consists of matrix elements in rows and columns from 1 to k), then the principal
minor is called a leading principal minor (of order k) of A and is denoted by A(k).

Specifically, with regard to the results presented here, Eq. (3) provides a pow-
erful tool for computing pivots in terms of leading principal minors. Hence, the
knowledge and appropriate combination of values of minors provides pivots and
pivot sequences. The computations of minors offer an essential assistance in view
of the specification of pivot patterns because the direct approach for evaluating
all principle minors of a matrix of order n by applying LU factorizations entails
high complexity of O(2nn3) [67]. In addition, the trivial implementation of the
aforementioned task includes also the exhaustive search for all possible weighing
matrices of the same order before applying LU to each one of them. This cannot
be achieved within a sensible and realistic time period. Hence, more sophisticated
techniques should be elaborated to that end.

5 The First Four Pivots

Since pivots are strictly connected with minors (cf. Eq. (3)), we start our study with
an effort of computing principal minors of skew and symmetric conference matrices.
The following lemma specifies the possible values of determinants of small order.
The results for orders 6 and 7 are new.

Lemma 5 ([50]) All possible and the maximum determinant of all n × n matrices
with elements ±1 or 0, where there is at most one zero in each row and column are

Considering the fact that the submatrices [1] and [ 1
1

1
−1 ] can always occur in the

upper lefthand corner of a CP skew and symmetric conference matrix of order n ≥
6, the required pivots are computed via (3).

Lemma 6 ([50]) Let W be a CP skew and symmetric matrix, of order n ≥ 6. Then
if GE is performed on W the first two pivots are 1, and 2.
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Order Maximum determinant Possible determinantal values

2 × 2 2 0, 1, 2

3 × 3 4 0, 1, 2, 3, 4

4 × 4 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16

5 × 5 48 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 36, 40, 48

6 × 6 160 160, 144, 136, 132, 130, 128, 120, 112, 108, 106, 105, 104,

102, 100, . . .

7 × 7 528 528, 504, 480, 468, 456, 444, 432, 420, 408, 396, 384, 372,

366, 360, 354, 348, 342, 336, 330, 324, . . .

Working in a similar fashion like before and extending the idea for higher orders,
the following results determine the existence of specific submatrices in weighing
matrices of small orders.

Lemma 7 ([50]) H-equivalence operations can be used to ensure the following
submatrices always occur in the upper lefthand corner of aW(8, 7) and aW(10, 9):

B1 =
⎡

⎣
1 1 1
1 − 1
1 1 −

⎤

⎦ or B2 =
⎡

⎣
1 1 1
1 − 0
1 1 −

⎤

⎦ ,

and

A1 =

⎡

⎢⎢
⎣

1 1 1 1
1 − 1 −
1 − − 1
1 1 − −

⎤

⎥⎥
⎦ or A2 =

⎡

⎢⎢
⎣

1 1 0 −
1 − − −
1 − 1 1
1 1 − 1

⎤

⎥⎥
⎦ .

This result can be generalized for every skew and symmetric matrix W(n, n −
1). The proof is carried out by performing appropriate combinatorial techniques
regarding the possible form of the first three and four rows of a W(n, n − 1) for
various cases of n and the existence of the respective submatrices there.

Lemma 8 ([50]) H-equivalence operations can be used to ensure the submatrices
B1, B2, A1 and A2 of Lemma 7 always occur in a skew and symmetric W(n, n−1).

Combining appropriately the results of Lemmas 8 and 3 yields the third pivot of a
skew and symmetric conference matrix.

Proposition 1 ([50]) Let W be a CP skew and symmetric conference matrix, of
order n ≥ 12 then if GE is performed on W the third pivot is 2.

Proposition 2 presents the fourth pivot and is proved by extending the 3×3 matrices
B1 and B2 to all possible 4× 4 matrices with entries 0, ±1 and afterwards applying
appropriately Lemmas 8, 3 and Proposition 1.
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Proposition 2 ([50]) Let W be a CP skew and symmetric conference matrix, of
order n ≥ 12 then if GE is performed on W the fourth pivot is 3 or 4.

Next, one should try to extend the 4 × 4 matrices A1 and A2 to all possible
5 × 5 matrices with elements 0, ± 1. It is interesting to specify the 5 × 5 matrices
that contain the matrices A1 or A2 and also have the maximum possible values of
the determinant (because of the CP property), which for the 5 × 5 matrices with
specific requirements are given in Lemma 5. However, it becomes obvious that the
computational time for all these exhaustive trials rises together with the rising of the
order of the matrices and the algorithms cannot be implemented fast enough. Hence,
more sophisticated strategies should be employed.

6 Extension of Specific Matrices with Elements 0,±1 to
W(n, n − 1) Matrices

Algorithm for extending a k × k matrix with elements 0,±1 to W(n, n− 1)
Let a k × k matrix A = [r1, r2, . . . , rk]T . The following algorithm specifies its
extension, if it exists, to a W(n, n− 1).

Algorithm Extend [50]
Step 1
read the k × k matrix A

Step 2
complete the first row of the matrix without loss of generality: it has exactly one 0
complete the first column of the matrix without loss of generality: it has exactly
one 0
Step 3
complete (almost) the second row of the matrix without loss of generality:

r2 · rT1 = 0
every row and column has exactly one zero

complete (almost) the second column of the matrix without loss of generality:
it is orthogonal to the first column
every row and column has exactly one zero

Step 4
Procedure Extend Rows
find all possible entries a3,k+1, a3,k+2, . . . , a3,n:

r3 · rT1 = 0 and r3 · rT2 = 0
every row and column has exactly one zero

store the results in a new matrix B3 whose rows are all the possible entries
for i = 4, . . . , k

for every possible extension of the rows rj , j = 3, . . . , i − 1
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find all possible entries ai,k+1, ai,k+2, . . . , ai,n:
ri is orthogonal with all the previous rows
every row and column has exactly one zero

store the results in a new matrix Bi whose rows are all the possible entries
end

end
extend the k-th row of A with the first row of Bk

extend the k − 1, . . . , 2 rows of A with the corresponding rows of
the appropriate matrices Bi, i = k − 1, . . . , 3

end {of Procedure Extend Rows}
Step 5
extend columns 3 to k following a similar procedure as the one used to the rows.
Step 6
for i = k + 1, . . . , n

find all possible entries ai,k+1, ai,k+2, . . . , ai,n:
ri is orthogonal with all the previous rows
every row and column has exactly one zero

end
complete rows k + 1 to n.
if columns k + 1 to n are orthogonal with all the previous columns

A is extended to W(n, n− 1).

Remark 3 In Step 3 by writing “complete almost” we mean that the second row can
be completed in at most two ways up to permutation of columns. If the first row in
the k × k part of the matrix contains a zero, then we complete the second row in a
unique way without loss of generality. If the first row in the k × k part of the matrix
doesn’t contain a zero, then we complete the second row in two ways by setting the
element below the 0 of the first row to 1 or −1, respectively. The same is done with
the columns.

Implementation of the Algorithm Extend
We apply the algorithm for k=5, n=10 .
Steps of the algorithm

1. We start with

A =

⎡

⎢⎢⎢⎢
⎢
⎣

1 − 0 1 1
− − 1 1 0
1 1 1 1 −
− 1 − 1 1
1 − − 0 −

⎤

⎥⎥⎥⎥
⎥
⎦
.

2. The first row and column is completed, without loss of generality, so that the
property of a W(10, 9) having exactly one zero in each row and column is
preserved. The software package fills with zeros the rest of the entries of the
required 10 × 10 matrix;
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A =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

1 − 0 1 1 1 − − 1 1
− − 1 1 0 0 · · · 0

1 1 1 1 − ...
...

− 1 − 1 1
1 − − 0 − 0 · · · 0

− 0 · · · . . . 0

0
...

...

−
1
1 0 · · · 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

.

3. As before, the algorithm completes the second row in a unique way and the
second column in two ways, because the element a beside the 0 of the first
column below can take both values ±1;

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 − 0 1 1 1 − − 1 1
− − 1 1 0 − 1 − 1 −
1 1 1 1 − 0 · · · 0
− 1 − 1 1 0 · · · 0
1 − − 0 − 0 · · · 0
− − 0 · · · 0

0 a
...

. . .
...

− 1
1 0
1 1 0 · · · 0

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

4. The algorithm takes as input this matrix A and finds all possible completions for
rows 3–5 (columns 6–10), so that every row has exactly one zero, every column
has at most one zero and the inner product of every two distinct rows is zero.
If many ways have been found to complete rows 3–5, the algorithm keeps as a
result the first solution found;

A =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

1 − 0 1 1 1 − − 1 1
− − 1 1 0 − 1 − 1 −
1 1 1 1 − 1 0 1 1 −
− 1 − 1 1 − − 1 1 0
1 − − 0 − − 1 1 1 1
− − 0 · · · 0

0 a
...

. . .
...

− 1
1 0
1 1 0 · · · 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

.
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5. The algorithm finds all possible completions for columns 3–5 (rows 6–10) in the
same way it has done with the rows 3–5;

A =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 − 0 1 1 1 − − 1 1
− − 1 1 0 − 1 − 1 −
1 1 1 1 − 1 0 1 1 −
− 1 − 1 1 − − 1 1 0
1 − − 0 − − 1 1 1 1
− − − − − 0 · · · 0

0 − − 1 1
...
. . .

...

− 1 − 1 −
1 0 − 1 −
1 1 − − 1 0 0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

6. The algorithm tries to complete,if possible, the rows 6–10 (columns 6–10) in the
same way as before;

A =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

1 − 0 1 1 1 − − 1 1
− − 1 1 0 − 1 − 1 −
1 1 1 1 − 1 0 1 1 −
− 1 − 1 1 − − 1 1 0
1 − − 0 − − 1 1 1 1
− − − − − 1 − 0 1 −
0 − − 1 1 1 1 1 − −
− 1 − 1 − 1 1 − 0 1
1 0 − 1 − − − − − −
1 1 − − 1 0 1 − 1 −

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

.

7. Finally, if matrix A could be extended, the algorithm gives the completed matrix
W(10, 9) and verifies whether the relationship AAT = 9I10 is valid.

Applying algorithm Extend subsequently for the appropriate matrices that occur as
possible extensions of the matrices of smaller orders, one can prove the following
proposition.

Proposition 3 ([50]) The leading principal minors of orders 5, 6 and 7 are given
for the weighing matrices W(8, 7) and W(10, 9) as follows.

• W(5) = 28 for a W(8, 7)
• W(5) = 48, 36 or 30 for a W(10, 9)
• W(6) = 144 or 108 for a W(10, 9)
• W(7) = 432 or 324 for a W(10, 9)
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7 A New Algorithm Extending (0,±1) Matrices to
W(n, n − 1)

In the literature, cf., e.g., [14, 51], effort has been made to compute the pivot
structures for weighing matrices even of small orders. Although it might seem trivial
to compute the pivot pattern, and thus the growth factor, of a weighing matrix of
small order, actually it is not. When searching for the growth factor of a weighing
matrix of order n, one should form all possible W(n, n − k) and additionally
specify the growth factor of each one of them. This task involves a remarkably high
complexity and computational cost even for small orders. Therefore, it is important
to emphasize that it is intriguing, nontrivial and challenging to determine growth
factors even for weighing matrices of small orders. An essential idea for computing
pivots is to take advantage of relationship (3), as it was done in the previous works
for small n.

For proceeding to the order 12, after the smaller ones have been presented
previously [50], it is necessary to find a way to demonstrate that specific k × k

matrices with known determinant can always exist in a W(12, 11). The conception
is to create an algorithm, which extends a k × k (0,+,−) matrix to a W(n, n −
1), if possible. In [50] the Algorithm Extend was proposed for this purpose.
This algorithm was applied to show the pivot structures of the unique weighing
matrices W(8, 7) and W(10, 9). The application of this algorithm for the W(12, 11)
encounters difficulties due to the higher order, and therefore higher complexity. The
algorithm can be developed in a more sophisticated way by using the notions of
parallel processing and data structures. So it can be applied for the W(12, 11). Here
we illustrate an improved version of Algorithm Extend, Algorithm Extend 2, and an
example of its application for W(12, 11). Thus, by making use of Algorithm Extend
2, one can infer if a matrix can or can’t be extended to a W(12, 11).
Algorithm for extending a k × k (0, 1,−) matrix to W(n, n− 1)
For a k × k matrix A = [r1, r2, . . . , rk]T the following algorithm specifies its
extension, if it exists, to a W(n, n− 1).

Algorithm Extend 2 [51]
Step 1
read the k × k matrix A

Step 2
complete the first row of the matrix, columns k + 1, . . . , n, without loss of
generality:

it has exactly one 0
complete the first column of the matrix, rows k + 1, . . . , n, without loss of
generality:

it has exactly one 0
Step 3
Extend Rows (2, k)
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Step 4
Extend Columns (2, k)
Step 5
Extend Rows (k + 1, n)
if columns k + 1 to n are orthogonal with all the previous columns

A is extended to W(n, n− 1).
end {of Algorithm Extend 2}

Procedure Extend Rows (m, z)
find all possible entries am,k+1, am,k+2, . . . , am,n:

rm is orthogonal with all the previous rows
every row and column has exactly one zero

store the results in a new matrix Bm whose rows are all the possible rows rm
for i = m+ 1, . . . , z

for every possible extension of the rows rj , j = m, . . . , i − 1
find all possible entries ai,k+1, ai,k+2, . . . , ai,n:

ri is orthogonal with all the previous rows
every row and column has exactly one zero

store the results in a new matrix Bi whose rows are all the possible rows ri
end

end
extend the z-th row of A with the first row of Bz

for i = z− 1, . . . , m
complete row ri with the row of Bi , from which ri+1 occurs

end
end {of Procedure Extend Rows}

Application of the Algorithm Extend 2

In this example, the Algorithm Extend 2 is applied for k=5 and n=12.
Steps of the algorithm

1. One may start with

A =

⎡

⎢
⎢⎢⎢⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 1
1 1 − − 1
1 1 − 1 −

⎤

⎥
⎥⎥⎥⎥
⎦
.

2. The first row and column are completed, without loss of generality, with entries
0,±1 taking into account the property of the weighing matrix W(12, 11) to have
exactly one zero in each row and column. The software package fills with zeros
the rest of the entries of the sought 12 × 12 matrix;
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A =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎣

1 1 1 1 1 1 1 0 1 1 − −
1 − 1 − −
1 − − 1 1
1 1 − − 1
1 1 − 1 −
1
1
0
−
−
1
−

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎦

.

3. The algorithm takes as input this matrix A and finds all possible completions for
rows 2–5 (columns 6–12), so that every row has exactly one zero, every column
has at most one zero and the inner product of every two distinct rows is zero.
If many ways have been found to complete rows 2–5, the algorithm keeps as a
result the first solution found;

A =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 1 1 1 1 1 1 0 1 1 − −
1 − 1 − − − − − 1 1 − 0
1 − − 1 1 1 − − 0 − − 1
1 1 − − 1 − 0 − 1 − 1 −
1 1 − 1 − − − 1 − 0 − −
1
1
0
−
−
1
−

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

4. The algorithm finds all possible completions for columns 2–5 (rows 6–12) in the
same way it has done with the rows 2–5;

A =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 0 1 1 − −
1 − 1 − − − − − 1 1 − 0
1 − − 1 1 1 − − 0 − − 1
1 1 − − 1 − 0 − 1 − 1 −
1 1 − 1 − − − 1 − 0 − −
1 1 − − −
1 − − 1 0
0 1 1 1 1
− 1 0 1 −
− − − 0 1
1 − 1 1 −
− 0 − 1 −

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

.
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5. The algorithm tries to complete, if possible, the rows 6–12 (columns 6–12) in the
same way as before;

A =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1 1 1 1 1 1 1 0 1 1 − −
1 − 1 − − − − − 1 1 − 0
1 − − 1 1 1 − − 0 − − 1
1 1 − − 1 − 0 − 1 − 1 −
1 1 − 1 − − − 1 − 0 − −
1 1 − − − 1 1 − − 1 0 1
1 − − 1 0 − 1 1 1 1 1 1
0 1 1 1 1 − − − − 1 1 1
− 1 0 1 − − 1 − 1 − − 1
− − − 0 1 − 1 − − 1 − −
1 − 1 1 − 0 1 − − − 1 −
− 0 − 1 − 1 − − 1 1 1 −

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

6. Finally, if the matrix A could be extended, the algorithm gives the completed
matrix W(12, 11) and verifies whether the relationship AAT = 11I12 is valid.

The following Proposition of Delsarte et al. [11] is a very helpful tool, which
excludes many matrices by determining if they can or cannot be extended to a
W(n, n − 1). This strategy constitutes actually a test for possible completion of
a W(n, n− 1) matrix.

Proposition 4 ([11]) Let A be a W(n, n−1). Then A is H-equivalent with a matrix
B, which has zero diagonal and satisfies

BBT = (−1)
n+2

2 I.

In the sequel, one should examine if a matrix of order k with entries 0,±1 can be
extended to a W(n, n− 1). This can be done by carrying out the following steps.

1. Exchange rows and columns so that the 0’s are on the diagonal;
2. Multiply columns by −1 so that all the entries of the first row are +1;

3. Multiply rows by −1 so that all the entries of the first column are (−1)
n+2

2 ;
4. Check if the resulting matrix C, which contains all the 0’s on the diadonal,

satisfies CCT = (−1)
n+2

2 I.

If the matrix C doesn’t satisfy this relationship, it can’t be completed to a
W(n, n − 1). If the matrix C satisfies the test, then it is possible that it can be
completed to a W(n, n − 1). This test is used in [51] for determining that some
matrices definitely cannot be extended to a W(12, 11). So, there is saved time by
excluding these specific matrices from the application of Algorithm Extend 2 and
the whole process becomes faster.

Utilizing Algorithm Extend 2 in combination with Proposition 4 yields the
following result concerning the magnitude of the leading principal minors of the
weighing matrix W(12, 11).
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Proposition 5 ([51]) Let W be a W(12, 11) weighing matrix. Then the following
hold:

1. W(5) = 48 or 40 or 36;
2. W(6) = 160 or 144 or 136 or 120;
3. W(7) = 528 or 440;
4. W(8) = 1936 or 1452.

8 An Algorithm Specifying the Existence of k × k(0,±1)

Submatrices in a W(n, n − 1)

A new idea for computing n − j minors of Hadamard matrices was proposed in
2001 [41]. First of all, the notion of a matrix denoted as Uj , containing all possible
columns of a normalized Hadamard matrix clustered together for some number of
rows j , was introduced as follows.

Definition 10 ([41]) Let yTβ+1 be the vectors containing the binary representation

of each integer β + 2j−1 for β = 0, . . . , 2j−1 − 1. Replace all zero entries of
yTβ+1 by −1 and define the j × 1 vectors uk = y2j−1−k+1, k = 1, . . . , 2j−1. Uj

shall denote all the matrices with j rows and the appropriate number of columns, in
which uk occurs uk times. In other words, Uj is the matrix containing all possible
2j−1 columns of size j with elements ±1 starting with +1. So,

Uj =

u1︷ ︸︸ ︷
1 . . . 1

u2︷ ︸︸ ︷
1 . . . 1 . . .

u2j−1−1
︷ ︸︸ ︷
1 . . . 1

u2j−1
︷ ︸︸ ︷
1 . . . 1

1 . . . 1 1 . . . 1 . . . − . . .− − . . .−
. . . . . . .

. . . . . . .

1 . . . 1 1 . . . 1 . . . − . . .− − . . .−
1 . . . 1 − . . .− . . . 1 . . . 1 − . . .−

=

u1 u2 . . . u2j−1−1 u2j−1

1 1 . . . 1 1
1 1 . . . − −
.
.
.

.

.

.
.
.
.

.

.

.

1 1 . . . − −
1 − . . . 1 −

.

Example 5

U3 =
u1 u2 u3 u4

1 1 1 1
1 1 − −
1 − 1 −

, U4 =

u1 u2 u3 u4 u5 u6 u7 u8

1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − 1 1 − −
1 − 1 − 1 − 1 −

.

The matrix Uj is important in the present study because it is used to depict a general
form for the first j rows of a normalized weighing matrix.

The following algorithm determines if a k × k matrix A exists embedded within
a W(n, n − 1), provided that the upper left (k − 1) × (k − 1) submatrix B of A
always exists in the W(n, n− 1).
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Algorithm Exist 1 [49]
Step 1
Read the k × k matrix A and the (k − 1)× (k − 1) matrix B

Step 2
Create the matrix Z

Z =

⎡

⎢⎢⎢⎢
⎣

0 1 1 · · · · · · 1
y21 0 y23 · · · · · · y2k

B Uk y31 y32 0 y34 · · · y3k
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 z2 · · · zk−1 yk1 yk2 yk3 · · · yk,k−1 0

⎤

⎥⎥⎥⎥
⎦
,where zi, yij = ±1

If B contains columns with 0
they are excluded from the matrix Z(:, n− k + 1 : n)

Step 3
If A has r 0’s

Demand that the r columns of Z(:, n− k + 1 : n), in which the 0’s are in
the same position as in A, take the appropriate values yij :

they are identical with the r columns of A containing the 0’s
Step 4
Procedure Solve
For all possible values of zi ,i = 2, . . . , k − 1

Form the system of 1 +
(
k

2

)
equations and 2k−1 variables which results

from counting of columns and the inner products of every two distinct rows
Solve the system for all xi
Find the minimum values for the xi which correspond to the columns of
A, given that the number of columns appearing in Z(:, 1 : k − 1) is ≥ 1
Formulate (if necessary) conditions and/or restrictions for the order n
or for some xi :

the columns of A appear (the corresponding xi are all ≥ 1)
End{of Procedure Solve}
Else

Do Procedure Solve

The algorithm Exist 1 can be used, for example, to confirm that the matrices
B1, B2, A1 and A2 of Lemma 7 always exists in a W(n, n− 1).
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8.1 Another Algorithm Specifying the Existence of k × k

(0,+,−) Submatrices in a W(n, n − 1)

Notation We denote by Uk,3 the first three rows of the previously defined
matrix Uk .

Uk,3 =
x1 x2 . . . x2k−1−1 x2k−1

1 1 . . . 1 1
1 1 . . . − −
1 1 . . . − −

.

Example 6

U3,3 =
x1 x2 x3 x4

1 1 1 1
1 1 − −
1 − 1 −

= U3 , U4,3 =
x1 x2 x3 x4 x5 x6 x7 x8

1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − 1 1 − −

.

The following algorithm specifies the existence of a k × k submatrix A in a
W(n, n − 1), given that the upper left (k − 1) × (k − 1) submatrix B of A always
exists in a W(n, n− 1).

Algorithm Exist 2 [49]
Step 1
Read the k × k matrix A and the (k − 1)× (k − 1) matrix B

Step 2
Denote with C the upper left 3 × (k − 1) submatrix of B
Step 3
Create the matrix Y

Yk =
[

0 1 1 1 · · · 1
C Uk,3 y21 0 y23 y24 · · · y2k

y31 y32 0 y34 · · · y3k

]

,where yij = ±1

Step 4
Formulate a Lemma for the number of columns of Yk
Step 5
Find the maximum values for the xi which correspond to the columns of A
Step 6
Formulate (if necessary) conditions for the order n:

the columns of A appear (the corresponding xi are all ≥ 1)
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Applying algorithm Exist 2 and taking into account also the Distribution Lemma,
one can prove the following result regarding the existence of 5 × 5 submatrices in
W(n, n− 1) matrices.

Lemma 9 ([49]) One of the following matrices

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 1
1 1 − − 1
1 1 − 1 −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 0
1 1 − − 1
1 1 − 1 −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 1
1 1 − − 1
1 1 − 0 −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 −
1 1 − − −
1 1 1 1 −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 −
1 1 − − 0
1 1 − 1 −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 −
1 1 − − 1
1 1 0 − −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 1 1 1
1 − 1 − −
1 − − 1 1
1 1 − − 1
1 1 − 1 0

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 0 − 1
1 − − − −
1 − 1 1 1
1 1 − 1 −
1 1 1 − −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 0 − 1
1 − − − −
1 − 1 1 0
1 1 − 1 −
1 1 1 − −

⎤

⎥
⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢
⎢
⎣

1 1 0 − 1
1 − − − −
1 − 1 1 1
1 1 − 1 0
1 1 1 0 −

⎤

⎥
⎥⎥
⎥
⎦

always exists in a W(n, n− 1) with n ≥ 8.

Manipulating appropriately the outcomes of Lemma 9 in combination with relation-
ship (3) one derives the next Theorem.

Theorem 5 ([49]) Let W be a CP skew and symmetric conference matrix, of order
n ≥ 8 then if GE is performed on W the fifth pivot is 2 or 3 or 9

4 or 10
3 or 10

4 .

9 Theoretical Results

The target is to calculate first the (n− 1)× (n− 1) minors of a skew and symmetric
conference matrix of order n. The usage of a variation of a clever proof used by
combinatorialists was exploited. This tool evaluates the determinant of a matrix
satisfying AAT = (k − λ)I + λJ , where I is the v × v identity matrix, J is the
v × v matrix of ones and k, λ are integers to simplify our proofs. The determinant
is k + (v − 1)λ(k − λ)v−1.

Lemma 10 ([9, p. 239]) Let A = (k − λ)Iv + λJv , where k, λ are integers. Then,

detA = [k + (v − 1)λ](k − λ)v−1 (4)

and for k �= λ,−(v − 1)λ, A is nonsingular with

A−1 = 1

k2 + (v − 2)kλ− (v − 1)λ2 {[k + (v − 1)λ]Iv − λJv}. (5)
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The first part of Lemma 10 is straightforward to show. The second part is a special
case of the Sherman-Morrison formula, which computes the inverse of a rank-one-
correction of a nonsingular matrix B as

(B − uvT )−1 = B−1 + B−1uvT B−1

1 − vT B−1u
,

where u, v are vectors and vT B−1u �= 1. Indeed, (5) occurs for B = (κ − λ)Iv and
u = −λ[1 1 . . . 1]T and v = [1 1 . . . 1]T .

Lemma 11 (Schur Determinant Formula [35, p. 21]) Let B =
[
B1 B2

B3 B4

]
, B1

nonsingular. Then

detB = detB1 · det(B4 − B3B
−1
1 B2). (6)

The auxiliary results of Lemmas 10 and 11 can be used for determining the (n−1)
minors of a skew and symmetric conference matrix of order n.

Proposition 6 ([37, 40, 44, 50]) Let W be a CP skew and symmetric or conference
matrix of order n. Then all possible minors of W of the respective orders are given
by:

1) The (n− 1)× (n− 1) minors of W are 0 and (n− 1)
n
2 −1.

2) The (n− 2)× (n− 2) minors of W are 0, (n− 1)
n
2 −2 and 2(n− 1)

n
2 −2.

3) The (n− 3)× (n− 3) minors of W are

(i) 0, 2(n− 1)
n
2 −3 and 4(n− 1)

n
2 −3 for n ≡ 0 (mod 4).

(ii) 2(n− 1)
n
2 −3 and 4(n− 1)

n
2 −3 for n ≡ 2 (mod 4).

Applying the previous results in appropriate combination with Eq. (3) leads to
Theorem 6.

Theorem 6 ([50]) When Gaussian Elimination is applied on a CP skew and
symmetric conference matrix W of order n the last two pivots are n− 1, and n−1

2 .

Theorem 7 ([50]) When Gaussian Elimination is applied on a CP W(n, n− k) the
last two pivots are (in backward order) n− k and n−k

2 .

10 Specification of Pivot Patterns

One can proceed the study by demonstrating the pivot structure of some small
weighing matrices. Later on, the respective growth factors can be calculated with
substitution of the results in (1).
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Lemma 12 ([40, 50]) The unique pivot structure of W(6, 5) is {1, 2, 2, 5
2 ,

5
2 , 5}.

The pivot patterns of W(8, 7) are {1, 2, 2, 4, 7
4 ,

7
2 ,

7
2 , 7} or {1, 2, 2, 3, 7

3 ,
7
2 ,

7
2 , 7}. The pivot patterns of W(10, 9) are {1, 2, 2, 3, 3, 4, 9

4 ,
9
2 ,

9
2 , 9} or

{1, 2, 2, 4, 3, 3, 9
4 ,

9
2 ,

9
2 , 9} or {1, 2, 2, 3, 10

4 ,
18
5 ,

9
3 ,

9
2 ,

9
2 , 9}.

One can establish pivots from the beginning and from the end of the pivot
pattern of the W(12, 11) by deploying appropriately the acquainted outcomes of
the application of Algorithm Extend 2 with the respective input values, combined
with careful substitution in (3). After the first 9 and he last 2 pivots are declared, the
10th pivot can be calculated using the property

p10 = det (W(12, 11))
∏12

i=1i �=10
pi

= 116

1 · 2 · 2 · 3 · 10
3 · 17

5 · 11
17/5 · 11

5/2 · 11
4 · 11

2 · 11
or

116

1 · 2 · 2 · 4 · 3 · 10
3 · 11

10/3 · 11
3 · 11

4 · 11
2 · 11

or

116

1 · 2 · 2 · 3 · 3 · 4 · 11
3 · 11

3 · 11
4 · 11

2 · 11
⇒ p10 = 11

2
.

Lemma 13 ([51]) The pivot patterns of the W(12, 11) are (1, 2, 2, 3, 10
3 ,

17
5 ,

11
17/5 ,

11
5/2 ,

11
4 ,

11
2 ,

11
2 , 11) or (1, 2, 2, 4, 3, 10

3 ,
11

10/3 ,
11
3 ,

11
4 ,

11
2 ,

11
2 , 11) or (1, 2, 2, 3, 3, 4,

11
3 ,

11
3 ,

11
4 ,

11
2 ,

11
2 , 11).

Lemma 13, the definitions of the growth factor (1) and (2) yield Theorem 8.

Theorem 8 ([51]) The growth factor of W(12, 11) is 11.

11 General Results for W(n, n − k)

In the sequel, the computation of all possible minors of orders n − 1, n − 2, . . .
within a weighing matrix of order n and weight n − k, i.e. W(n, n − k), is studied
for k ≥ 1 [44]. The respective proofs are carried out by separating all possible k× k

blocks in the upper left corner of a W(n, n− k). Then, after considering the form of
the first k rows and columns k + 1 to n and with the aid of the representation of the
aforementioned matrix Uj , Lemmas 10 and 11, one derives the requested results.
Writing “all possible k × k blocks” refers to exhaustive searches over the possible
entries 0,±1 that can appear in the k× k corner and taking the specifications of the
weighing matrix into account.

Proposition 7 ([40]) Let W be a W(n, n− k), k ≥ 1. Then all possible (n− 1)×
(n− 1) minors of W are: 0 and (n− k)

n
2 −1.
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Working in a similar fashion, one can proceed by specifying all possible minors
of order (n − 2) × (n − 2) of a W(n, n − k), k ≥ 1. Additionally, the following
structural features of a W(n, n− k) should be established.

Lemma 14 ([40]) If one specific row of a W(n, n − k) is fixed, k ≥ 1, we can
always find a second row, so that the two rows have the form:

j
︷ ︸︸ ︷
0 0 . . . 0

k−j
︷ ︸︸ ︷
0 . . . 0

k−j
︷ ︸︸ ︷
1 . . . 1

s
︷ ︸︸ ︷
1 . . . 1

s
︷ ︸︸ ︷
1 . . . 1

0 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 − . . . − , (P )

for some j even, 0 ≤ j ≤ k. This can be always achieved by performing the
appropriate H-equivalence operations. Particularly for k = 1, the result holds
trivially for j = 0.

Corollary 2 ([40]) If one specific row of a W(n, n− 2) is fixed, we can always find
a second row so that the two rows have the form

0 0

s
︷ ︸︸ ︷
1 . . . 1

s
︷ ︸︸ ︷
1 . . . 1

0 0 1 . . . 1 − . . . − .

This can be always achieved by performing the appropriate H-equivalent opera-
tions.

Proposition 8 ([40]) Let W be a W(n, n− k), k ≥ 1. Then all possible (n− 2)×
(n− 2) minors of W are: 0, (n− k)

n
2 −2 and 2(n− k)

n
2 −2.

Proposition 9 ([40]) Let W be a W(n, n− 2). Then all possible (n− 3)× (n− 3)
minors of W are: 0, (n− 2)

n
2 −3, 2(n− 2)

n
2 −3, 3(n− 2)

n
2 −3 and 4(n− 2)

n
2 −3.

Appropriate application of Algorithm Exist 1 assures that the matrices B1 and B2
of Lemma 7 can exist embedded in a W(n, n− 2).

Lemma 15 ([40]) H-equivalence operations can be used to ensure that the subma-
trices B1 and B2 always occur in a W(n, n− 2) for large enough n.

Lemma 16 ([40]) H-equivalence operations can be used to ensure that the follow-
ing submatrices always occur in a W(n, n− 2) for large enough n:

A1 =

⎡

⎢
⎢
⎣

1 1 1 1
1 − − 1
1 1 − −
1 − 1 −

⎤

⎥
⎥
⎦ or A2 =

⎡

⎢
⎢
⎣

1 1 1 1
1 − − 0
1 1 − −
1 − 1 −

⎤

⎥
⎥
⎦ or A3 =

⎡

⎢
⎢
⎣

1 1 1 1
1 − − 0
1 1 − −
1 0 1 −

⎤

⎥
⎥
⎦ .

Theorem 9 ([42, 43] The most Generalized Version of the Determinant Simpli-
fication Theorem) Let A = (ki − aii)Ib1,b2,··· ,bz + aij Jb1,b2,··· ,bz , i, j = 1, . . . , z.
Then

det A =
z∏

i=1

(ki − aii)
bi−1 det D,
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where

D =

⎡

⎢
⎢⎢
⎣

k1 + (b1 − 1)a11 b2a12 b3a13 · · · bza1z

b1a21 k2 + (b2 − 1)a22 b3a23 · · · bza2z
.
.
.

.

.

.
.
.
.

.

.

.

b1az1 b2az2 b3az2 · · · kz + (bz − 1)azz

⎤

⎥
⎥⎥
⎦
.

Furthermore, for the needs of the study in consideration, an algorithm for
computing minors of W(n, n − 2) was developed in [44]. The following algorithm
calculates the value of the determinant of the (n−j)×(n−j) lower right submatrix
of a W(n, n− 2).

Let us consider the following two possible representations of W ≡ W(n, n− 2).
The requested (n− j)× (n− j) minor of W is the determinant of the submatrix C.
Any matrix W = W(n, n − 2) can be written according to the following two cases
(it follows from an extension of the result of Corollary 2), cf. also Example 7.
Example 7

W(6, 4) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

0 0 1 1 1 1
0 0 1 1 − −
1 1 0 0 1 −
1 1 0 0 − 1
1 − 1 − 0 0
1 − − 1 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

.

Considering the above W(6, 4) we see that for j even there are j/2 2 × 2 blocks
with zeros in the upper left j × j corner M , while for j odd there are (j − 1)/2 and
there is also a zero entry in its lower right corner.

First Case, j ≡ 0 (mod 2) (j even). W =
[
M Uj

UT
j C

]

.

M, C are j × j and (n− j)× (n− j) matrices, respectively. M has j/2 2 × 2
blocks of zeros on the diagonal. The elements in the (n− j)× (n− j) matrix CCT

can be permuted to appear in the form

CCT = (n− 2 − j − aii)Iu1,u2,··· ,u2j−1 + aikJu1,u2,··· ,u2j−1 ,

where (aik) = (−ui ·uk), aii = (−ui ·ui) = −j , with · the inner product (ui denotes
the i-th column of Uj ). By the Determinant Simplification Theorem (Theorem 9)

det CCT = (n− 2)n−2j−1−j det D,

where D, of order 2j−1, is given by

D =

⎡

⎢
⎢⎢
⎣

n− 2 − ju1 u2a12 u3a13 · · · uza1z

u1a21 n− 2 − ju2 u3a23 · · · uza2z
.
.
.

.

.

.
.
.
.

.

.

.

u1az1 u2az2 u3az2 · · · n− 2 − juz

⎤

⎥
⎥⎥
⎦
,

with z = 2j−1.



564 C. D. Kravvaritis

The (n− j)× (n− j) minor of W is the determinant of C, for which we have

det C = ((n− 2)n−2j−1−j det D)1/2. (7)

Second Case, j ≡ 1 (mod 2) (j odd). W =
⎡

⎢
⎣

M v Uj

vT

UT
j C

⎤

⎥
⎦ .

M, C are j × j and (n − j) × (n − j) matrices respectively. M has (j − 1)/2
2 × 2 blocks of zeros on the diagonal and one zero element in the lower right entry.
The vector v of order j × 1 is of the form [v(j−1) 0]T , where v(j−1) is a possible
column of Uj−1. The elements in the (n−j)×(n−j) matrix CCT can be permuted
to appear in the form

CCT =
[
n− 1 − j y

yT E

]

,

where E = (n− 2 − j − aii)Iu1,u2,··· ,u2j−1 + aikJu1,u2,··· ,u2j−1 , (aik) = (−ui · uk),
with · the inner product, and y is a vector of order 1 × (n− j − 1), whose elements
are obtained from the inner products of v with ui . Precisely, we have

y = [−(v · u1) . . .− (v · u1)︸ ︷︷ ︸
u1 t imes

−(v · u2) . . .− (v · u2)︸ ︷︷ ︸
u2 t imes

. . . −(v · u2j−1) . . .− (v · u2j−1)
︸ ︷︷ ︸

u2j−1 t imes

]

= [b1 . . . b1︸ ︷︷ ︸
u1

b2 . . . b2︸ ︷︷ ︸
u2

. . . bz . . . bz︸ ︷︷ ︸
uz

],

where bi = (−v · ui) and z = 2j−1.
We want to calculate det CCT with help of formula (6). So, we have

det CCT = (n− 1 − j) · det (E − 1

n− 1 − j
yT y).

We have yT y = γikJu1,u2,...,uz , where γik = bibk .

X ≡ E − 1

n− 1 − j
yT y

= (n− 2 − j − aii)Iu1,u2,··· ,u2j−1 + aikJu1,u2,··· ,u2j−1 − 1

n− 1 − j
γikJu1,u2,...,uz

= (n− 2 − j − aii)Iu1,u2,··· ,u2j−1 + (aik − 1

n− 1 − j
γik)Ju1,u2,··· ,u2j−1
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We set δik = 1

n− 1 − j
γik . For the sake of simplicity we omit the subscripts

u1, · · · , u2j−1 . Hence

X = (n− 2 − j − aii)I + (aik − δik)J

= [n− 2 − j − δii − (aii − δii)]I + (aik − δik)J

= (λi − εii)I + εikJ,

where λi = n− 2 − j − δii and εik = aik − δik .
By the Determinant Simplification Theorem (Theorem 9)

det X =
z∏

i=1

(λi − εii)
ui−1 det D, (8)

where

D =

⎡

⎢
⎢⎢
⎣

λ1 + (u1 − 1)ε11 u2ε12 u3ε13 · · · uzε1z

u1ε21 λ2 + (u2 − 1)ε22 u3ε23 · · · uzε2z
.
.
.

.

.

.
.
.
.

.

.

.

u1εz1 u2εz2 u3εz2 · · · λz + (uz − 1)εzz

⎤

⎥
⎥⎥
⎦
.

Finally

det C = ((n− 1 − j) det X)1/2. (9)

Remark 4 For the appropriate implementation of the algorithm the following notion
is required. The most practical way to manage the variables, which represent the
unknown number of columns of Uj , is to denote with u

(s)
l , l = 1, . . . , 2k−1, k =

3, . . . , j, s = 1, . . . , j − 2, the number of columns starting with the same vectors
of order s + 2. For example, for j = 5, the matrix U5 will be of the form (here +
and − stand for +1 and −1, respectively):

u
(1)
1︷ ︸︸ ︷

u
(2)
1︷ ︸︸ ︷

u
(3)
1 u

(3)
2

u
(2)
2︷ ︸︸ ︷

u
(3)
3 u

(3)
4

u
(1)
2︷ ︸︸ ︷

u
(2)
3︷ ︸︸ ︷

u
(3)
5 u

(3)
6

u
(2)
4︷ ︸︸ ︷

u
(3)
7 u

(3)
8

u
(1)
3︷ ︸︸ ︷

u
(2)
5︷ ︸︸ ︷

u
(3)
9 u

(3)
10

u
(2)
6︷ ︸︸ ︷

u
(3)
11 u

(3)
12

u
(1)
4︷ ︸︸ ︷

u
(2)
7︷ ︸︸ ︷

u
(3)
13 u

(3)
14

u
(2)
8︷ ︸︸ ︷

u
(3)
15 u

(3)
16

+ + + + + + + + + + + + + + + +
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + − − − + −
+ + − − + + − − + + − + − + − −
+ − + − + − + − + − + + + − − −
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We see easily that the following relation connects the above numbers of columns:

u
(s+1)
2l−1 + u

(s+1)
2l = u

(s)
l , l = 1, 2, . . . , 2j−1, s ≥ 1. (10)

The following algorithm calculates the value of the determinant of the (n− j)×
(n− j) lower right submatrix of a W(n, n− k).

Algorithm Minors [44]

Step 1: Read all j × j matrices M , which can exist in the upper left corner of a
W(n, n− k)

Step 2: For every matrix M

Create the j × n matrix N = [M Uj ], if j even, or N = [M v Uj ], if j
odd
Step 3: s := 0

For k = 3, 4, . . . , j
Step 4: Consider the first k rows of N

s := s + 1
Set u(s)l the number of columns starting with the vectors ul , l = 1, . . . , 2k−1

Form the system resulting from orthogonality of rows and counting of
columns, with unknowns u(s)l

Solve the system taking into account (10)
End {for k = 3, . . . , j}

Step 5: For every acceptable solution (u
(j−2)
1 , . . . , u

(j−2)
2j−1 ) of the system calcu-

late the
values of the (n− j)× (n− j) minors, using (7), or (8) and (9).

End {for every matrix M}
End {of Algorithm}

Application of the Algorithm Minors

We want to calculate the n− 4 minor of a W(n, n− 2). After finding all possible
22 = 4 matrices M , we create N = [M U4], where M is of the form

⎡

⎢⎢
⎣

0 0 1 1
0 0 1 a

1 1 0 0
1 b 0 0

⎤

⎥⎥
⎦ ,

with a, b = ±1.
For k = 3 the system is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u
(1)
1 + u

(1)
2 + u

(1)
3 + u

(1)
4 = n− 4

u
(1)
1 + u

(1)
2 − u

(1)
3 − u

(1)
4 = −1 − a

u
(1)
1 − u

(1)
2 + u

(1)
3 − u

(1)
4 = 0

u
(1)
1 − u

(1)
2 − u

(1)
3 + u

(1)
4 = 0
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with solution (u
(1)
1 , u

(1)
2 , u

(1)
3 , u

(1)
4 ) = ( 1

4 (n − 5 − a), 1
4 (n − 5 − a), 1

4 (n − 3 +
a), 1

4 (n− 3 + a)).
For k = 4 the system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(2)
1 + u

(2)
2 + u

(2)
3 + u

(2)
4 + u

(2)
5 + u

(2)
6 + u

(2)
7 + u

(2)
8 = n− 4

u
(2)
1 + u

(2)
2 + u

(2)
3 + u

(2)
4 − u

(2)
5 − u

(2)
6 − u

(2)
7 − u

(2)
8 = −1 − a

u
(2)
1 − u

(2)
2 − u

(2)
3 + u

(2)
4 + u

(2)
5 − u

(2)
6 − u

(2)
7 + u

(2)
8 = 0

u
(2)
1 − u

(2)
2 + u

(2)
3 − u

(2)
4 + u

(2)
5 − u

(2)
6 + u

(2)
7 − u

(2)
8 = 0

u
(2)
1 + u

(2)
2 − u

(2)
3 − u

(2)
4 − u

(2)
5 − u

(2)
6 + u

(2)
7 + u

(2)
8 = 0

u
(2)
1 − u

(2)
2 + u

(2)
3 − u

(2)
4 − u

(2)
5 + u

(2)
6 − u

(2)
7 + u

(2)
8 = 0

u
(2)
1 − u

(2)
2 − u

(2)
3 + u

(2)
4 + u

(2)
5 − u

(2)
6 − u

(2)
7 + u

(2)
8 = −1 − b

with solution (u
(2)
1 , u

(2)
2 , u

(2)
3 , u

(2)
4 , u

(2)
5 , u

(2)
6 , u

(2)
7 , u

(2)
8 ) = ( 1

4 (n − 5 − b) −
u
(2)
8 , u

(2)
8 , u

(2)
8 , 1

4 (n−5−b)−u
(2)
8 , u

(2)
8 , 1

4 (n−3+a)−u
(2)
8 , 1

4 (n−3+a)−u
(2)
8 , u

(2)
8 ).

Since u(2)7 + u
(2)
8 = u

(1)
4 and thus u(2)8 = u

(1)
4 − u

(2)
7 ≤ u

(1)
4 (u(2)7 is always a non

negative number), the range of values for u(2)8 is from 0 to u
(1)
4 . We now compute

for all the possible values of u(2)8 the acceptable solutions for the remaining u(2)i and
calculate the requested minor from (7).

For example, for n = 12, we have 0 ≤ u
(2)
8 ≤ 1

4 (9 + a). For all possible values

of a the upper bound is 2 (u(2)8 must be an integer), so for u(2)8 = 0, 1, 2 we find the

possible values for the rest of u(2)i and finally apply formula (7). The resulting value
for the 8 × 8 minor of the W(12, 10), if we have 2 × 2 blocks with zeros on the
diagonal of M , is always 400.

Proposition 10 ([37]) Let W be a weighing matrix W(n, n − 1) of order n > 6,
with zeros on the diagonal. Then the (n−1)×(n−1) minors of W are W(n−1) = 0.

Proposition 11 ([37]) Let W be a weighing matrix W(n, n − 1) of order n > 6,
with zeros on the diagonal. Then the (n−2)× (n−2) minors of W are W(n−2) =
(n− 1)

n
2 −2.

We see that, when we have zeros on the diagonal, we get the lowest value from
those presented in Proposition 6, , that is W(n, n − 1) = 0. This agrees with the
result of Lemma 17, as n − 1 is odd and the submatrix C is skew-symmetric with
real elements.

Furthermore, for W(n, n − 2) we get the lowest non-zero value W(n − 2) =
(n − 1)

n
2 −2. For the case n ≡ 0 (mod 4), this agrees with the result of Lemma 17,

as n− 2 is even and the submatrix C is skew-symmetric with real elements.
Additionally, when we have zeros on the diagonal, we get the lowest values for

n−3, from those presented in Proposition 6, that is W(n−3) = 0 for n ≡ 0 (mod 4)
and 2(n − 1)

n
2 =3 for n ≡ 2 (mod 4). The zero value for n ≡ 0 (mod 4) agrees

with the result of Lemma 17. Since all the matrices found by removing an l × l

submatrix, l odd, from a skew-symmetric weighing matrix of order n ≡ 0 (mod 4)
while preserving the skew-symmetry satisfy the previous sentence, we have that all
the (n− l)× (n− l) minors are zero. Indeed, for the determinant of skew-symmetric
matrices we have the following result.
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Lemma 17 ([36])

1) If n is odd and A is a skew-symmetric matrix with real elements then detA = 0.
If n is odd and the elements of the matrix A of order n are not from the field of
characteristic 2 , then detA = 0.

2) If n is even and A is a skew-symmetric matrix with real elements then detA is
PF(A)2, where PF(A) is the Pfaffian of A, a polynomial in the entries of A.

Proposition 12 ([44]) (n− 2)× (n− 2) minors of a weighing matrix W(n, n− 1),
where n is even, are

0, (n− 1)
n
2 −2, 2(n− 1)

n
2 −2.

In [37] was introduced a nobel approach for calculating minors of weighing
matrices. It is based principally on the techniques described before for the same
purpose, on appropriate partitioning of the matrices in blocks. The proofs take
advantage of Lemma 11 and of a fundamental feature of orthogonal matrices
presented in [60].

Lemma 18 ([37, 60]) Given any unitary matrix

U =
[
A B

C D

]
,

where A and D are square matrices not necessarily of the same size, then we have
| det(A)| = | det(D)|.

Lemma 18 was proved in [60] by utilizing appropriate algebraic manipulations
of the blocks of the unitary matrix. In [37] was proposed a novel approach based on
the eigenvalues of particular products of blocks for the same purpose, which offers
possibilities for further processing. Both proofs take the orthogonality of the initial
matrices appropriately into account.

Corollary 3 ([37]) Let

W ≡ W(n, n− 1) =
[
A B

C D

]
.

be a weighing matrix partitioned as above with l ≤ n
2 . Then the lower right (n −

l)× (n− l), l ≥ 1, minor of W is

W [n− l] = detD = (n− 1)
n
2 −l detA.

Proposition 13 ([37]) Let W be a weighing matrix W(n, n − 1) of order n ≥
8,where n is even, with zeros on the diagonal. Then,

W(n− 3) =
{

0, for n ≡ 0 (mod 4),
2(n− 1)

n
2 −3, for n ≡ 2 (mod 4).
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Theorem 10 ([44]) When Gaussian Elimination is applied on a CP W(n, n − k)

the last two pivots are (in backward order) n− k and n−k
2 .

Proposition 14 ([44]) Let W be a CP W(n, n − 2), of order n ≥ 6, then if GE is
performed on W the third pivot is 2.

Proposition 15 ([44]) Let W be a CP W(n, n − 2), of order n ≥ 10, then if GE is
performed on W the fourth pivot is 3 or 4 or 5

2 .

Theorem 11 ([44]) When GE is applied on a CP W(n, n− 2) the last three pivots
are (in backward order) n− 2, n−2

2 and n−2
2 .

Proposition 16 ([37]) Let W be a weighing matrix, W(n, n− 1), of order n ≥ 10,
with zeros on the diagonal. Then the (n− 4)× (n− 4) minors of W are

W(n− 4) =
{

16(n− 1)
n
2 −4, for n ≡ 0 (mod 4),

12(n− 1)
n
2 −4, for n ≡ n ≡ 2 (mod 4).

Proposition 17 ([37]) Let W be a CP skew and symmetric conference matrix,
W(n, n − 1), of order n > 10. Then the (n − 4) × (n − 4) minors of W are
W(n− 4) = 16(n− 1)

n
2 −4 or W(n− 4) = 12(n− 1)

n
2 −4.

Theorem 12 ([37]) Let W be a weighing matrix W(n, n−1) of order n > 6, where
n is even and the zeros are on the diagonal. Then, the (n − r) × (n − r), r ≥ 1,
minor of W is

W(n− r) = [(n− 1)n−r−2r−1
detM]1/2,

where

M =

⎡

⎢⎢⎢
⎣

n− 1 − ru1 u1c1,2 u1c1,3 . . . u1c1,2r−1

u2c1,2 n− 1 − ru2 u2c2,3 . . . u2c2,2r−1

...
...

...

u2r−1c1,2r−1 u2r−1c2,2r−1 u2r−1c3,2r−1 . . . n− 1 − ru2r−1

⎤

⎥⎥⎥
⎦

2r−1×2r−1

,

ci,j = −ũiT · ũj , i, j = 1, . . . , 2r−1, ũj are the columns of the matrix Uj of
Definition 10 appearing uj times.

For completing the proof of Theorem 12, an algorithm was devised. It operates
similarly to the algorithm Minors presented before. However, it dodges the compu-
tational difficulties occurring because it requires mainly the computation of inner
products of the form ci,j = −ũiT · ũj . Indeed, for a given matrix W(n, n − 1) we
can directly specify the vectors ũi and the quantities ui . Then ci,j are computed by
simple inner products of the form ci,j = −ũiT · ũj requiring only O(l) flops. Thus
this algorithm achieves the evaluation of minors attaining lower complexity than
a computing program. For example, the evaluation of W(n − 3) for the weighing
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matrix W(24, 23) using the proposed algorithm demands a complexity of order 43

in order to evaluate the determinant of the 4×4 matrix M , while a program that uses
LU factorization for the direct evaluation of the determinant of CCT would demand
a complexity of order 213.

After having demonstrated the above results, one can now specify explicitly pivot
sequences of specific weighing matrices W(n, n − k) for various n and k. These
analytical computations are completed (and facilitated) by the property that the
product of the pivots of a matrix is equal to its determinant. The following numerical
results are derived in [44].

Lemma 19 If GE with complete pivoting is applied on a W(6, 4) the pivot pattern
is (1, 2, 2, 4, 4, 6).

Lemma 20 If GE with complete pivoting is applied on a W(8, 6) the pivot patterns

are (1, 2, 2, 4,
3

2
, 3, 3, 6) or (1, 2, 2,

5

2
,

12

5
, 3, 3, 6).

Lemma 21 If GE with complete pivoting is applied on a W(10, 8), then the
possible pivot patterns appearing are those given in Table 2.

Lemma 22 ([44]) If GE with complete pivoting is applied on a W(12, 10), then the
possible pivot patterns appearing are those given in Table 3.

Theorem 13 ([44]) The growth factors of the W(6, 4), W(8, 6), W(10, 8) and
W(12, 10) are 4, 6, 8 and 10, respectively.

The results presented above in this section, together with extensive numerical
experiments performed in [44] for calculating growth factors of W(n, n − k) for
several n and k, give rise to the growth conjecture for W(n, n− k).

Table 2 All possible pivot
patterns of W(10, 8)

Pivot patterns of W(10, 8)

1 (1,2,2, 5
2 , 16

5 ,4,2,4,4,8) or

2 (1,2,2, 5
2 ,2, 24

7 ,2,4,4,8) or

3 (1,2,2, 5
2 ,2,4,2,4,4,8) or

4 (1,2,2, 5
2 , 8

3 ,4,2,4,4,8) or

5 (1,2,2,3, 8
3 ,4,2,4,4,8) or

6 (1,2,2,3, 14
5 ,4,2,4,4,8) or

7 (1,2,2,4,2,4,2,4,4,8) or

8 (1,2,2,4, 14
5 ,4,2,4,4,8) or

9 (1,2,2,4, 14
5 ,4, 8

3 ,4,4,8) or

10 (1,2,2,4, 16
5 ,4, 8

3 ,4,4,8)
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Table 3 All possible pivot
patterns of W(12, 10)

Pivot patterns of W(12, 10)

1 (1,2,2, 5
2 , 5

2 ,4,3,4, 10
3 ,5,5,10) or

2 (1,2,2, 5
2 , 5

2 ,5,2,4,4,5,5,10) or

3 (1,2,2, 5
2 , 14

5 , 26
7 , 40

13 ,5, 5
2 ,5,5,10) or

4 (1,2,2, 5
2 , 14

5 ,4, 45
14 , 40

9 , 5
2 ,5,5,10) or

5 (1,2,2, 5
2 ,3, 10

3 ,3,4, 10
3 ,5,5,10) or

6 (1,2,2, 5
2 , 18

5 , 28
9 , 45

14 , 40
9 , 5

2 ,5,5,10) or

7 (1,2,2, 5
2 , 18

5 , 65
18 , 36

13 , 40
9 , 5

2 ,5,5,10) or

8 (1,2,2,3, 5
2 , 10

3 ,3,4, 10
3 ,5,5,10) or

9 (1,2,2,3, 5
2 ,4,3, 40

9 , 5
2 ,5,5,10) or

10 (1,2,2,3, 8
3 , 13

4 , 40
13 , 28

9 , 15
4 , 10

3 ,5,5,10) or

11 (1,2,2,3, 8
3 , 13

4 , 40
13 ,5, 5

2 ,5,5,10) or

12 (1,2,2,3, 8
3 , 7

2 , 45
14 , 40

9 , 5
2 ,5,5,10) or

13 (1,2,2,3, 8
3 ,4, 7

2 , 15
4 , 10

3 ,5,5,10) or

14 (1,2,2,3, 8
3 ,4, 7

2 ,5, 5
2 ,5,5,10) or

15 (1,2,2,3,3, 28
9 , 45

14 , 40
9 , 5

2 ,5,5,10) or

16 (1,2,2,3,3, 65
18 , 36

13 , 40
9 , 5

2 ,5,5,10) or

17 (1,2,2,3,3,4, 10
3 , 10

3 , 5
2 ,5,5,10) or

18 (1,2,2,4,2, 7
2 , 45

14 , 40
9 , 5

2 ,5,5,10) or

19 (1,2,2,4,2,4, 5
2 , 15

4 , 10
3 ,5,5,10) or

20 (1,2,2,4,2,4, 5
2 ,5, 5

2 ,5,5,10) or

21 (1,2,2,4, 9
4 , 28

9 , 45
14 , 40

9 , 5
2 ,5,5,10) or

22 (1,2,2,4,3, 10
3 ,3, 10

3 , 5
2 ,5,5,10)

Conjecture 1

The growth conjecture for W(n, n− k)

Let W be a CP W(n, n− k). Reduce W by GE. Then, for large enough n,

(i) g(n,W) = n− k.
(ii) The three last pivots are equal to n−k

2 , n−k2 , n− k.
(iii) Every pivot before the last has magnitude at most n− k.
(iv) The first three pivots are equal to 1, 2, 2. The fourth pivot can take the

values 3 or 4 or 5
2 .

11.1 Sharpe’s Results

The first known effort for calculating minors of Hadamard matrices is estimated to
be accomplished in 1907 by Sharpe [57]. The essence of these results is summarized
in the next Theorem.
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Theorem 14 ([57]) Let H be a Hadamard matrix of order n. The cofactor of any
element of H is ±nn

2 −1, the sign being the same as the sign of that element. The
second minors of H are 2n

n
2 −2 or 0, according as the complementary minor is 2 or

0. The third minors of H are 4n
n
2 −3 or 0, according as the complementary minor is

4 or 0.

Theorem 14 actually gives all possible values of n − j , j = 1, 2, 3, minors of
Hadamard matrices according to the determinant of the respective excluded j × j

matrix. Sharpe’s idea, which leads to short, elegant proofs, is based on considering a
special arrangement of the entries in a Hadamard matrix. It takes appropriately into
account the definition HHT = nIn by observing that when comparing any pair of
rows or columns, there is always an equal number of changes and permanences of
sign amongst the corresponding elements. But unfortunately, it doesn’t seem to be
applicable for calculating minors of orders n− j for j > 3.

11.2 An Algorithm to Find Minors of Conference Matrices

In [48] was proposed a useful method for finding the (n − 3) × (n − 3) minors
of skew Hadamard and conference matrices. This strategy can be generalized for
finding (n− j)× (n− j) minors.

Firstly, a useful result is proved, which gives the number of columns having all
possible forms that can be contained in the first 3 rows. To that end, the possible
upper left 3 × 3 corners of the conference matrix are examined and for everyone of
them the distribution of the columns is determined with the aid of the notion of the
matrix U)j .

Lemma 23 ([48] The Distribution Lemma for W(n, n − 1)) Let W be any

W(n, n− 1) of order n > 2. Then, writing ε = (−1)
n+2

2 and with a, b, c ∈ {1,−1}
for every triple of rows containing

0 a b

εa 0 c

εb εc 0

the number of columns which are

(a) (1, 1, 1)T or (−,−,−)T is 1
4 (n− 3 − bc − εac − ab)

(b) (1, 1,−)T or (−,−, 1)T is 1
4 (n− 3 − bc + εac + ab)

(c) (1,−, 1)T or (−, 1,−)T is 1
4 (n− 3 + bc − εac + ab)

(d) (1,−,−)T or (−, 1, 1)T is 1
4 (n− 3 + bc + εac − ab).

The Distribution Lemma and the Determinant Simplification Theorem (The-
orem 9) were utilized in [48] for developing an algorithm that computes the
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(n − j) × (n − j) minors of a conference matrix of order n. The core idea is to
consider the following representation of a conference matrix. Any W = W(n, n−1)
can be written as

W =
[

M Uj

εUT
j C

]

, (11)

where M, C are j × j and (n− j)× (n− j) matrices respectively, with diagonal
entries all 0, such thatM = εMT andC = εCT . The elements in the (n−j)×(n−j)
matrix CCT obtained by removing the first j rows and columns of the weighing
matrix W can be permuted to appear in the form

CCT = (n− 1)Iu1,u2,··· ,u2j−1 + aikJu1,u2,··· ,u2j−1 ,

where (aik) = (−ui ·uk), with · the inner product. By the Determinant Simplification
Theorem (9) it follows

det CCT = (n− 1)n−2j−1−j det D,

where D, of order 2j−1 is given by

D =

⎡

⎢⎢⎢
⎣

n− 1 − ju1 u2a12 u3a13 · · · uza1z

u1a21 n− 1 − ju2 u3a23 · · · uza2z
...

...
...

...

u1az1 u2az2 u3az2 · · · n− 1 − juz

⎤

⎥⎥⎥
⎦
.

Finally, the (n − j) × (n − j) minor of a W(n, n − 1) is the determinant of C, for
which it holds

det C = ((n− 1)n−2j−1−j det D)1/2.

12 Conclusions and Relevant Open Problems

This expository work presented a wide range of possibilities for computing minors
of weighing matrices. These theoretical approaches have their own intrinsic the-
oretical algebraic beauty and challenge. Additionally they are particularly useful
and applicable in view of a renowned problem in numerical analysis, the growth
problem. The terminology refers to the study of the growth factor, which arises at
the backward error analysis of Gaussian Elimination with complete pivoting. The
growth factor appears in the upper bound of the norm of the error matrix. Hence, it
constitutes a measure of stability of the method.
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For studying these features, one can take advantage of the result (3) that
associates pivot magnitudes with minors. The condition (constraint) that the initial
matrix in this respect is CP, is actually equivalent to the impact of GE with complete
pivoting on the matrix. So, even if a matrix is not CP initially, it is guaranteed that
the effect of GE with complete pivoting transforms it into the requested CP form
and (3) can be applied with confidence.

So the target is to devise efficient and effective approaches for calculating
leading principal minors of weighing matrices. It is important to emphasize that
this problem is computationally non trivial and a common implementation of the
required algorithms involves high complexity for the following reasons:

• When wanting to compute the growth factor of a weighing matrix W of specific
order n and weight n − k, one has firstly to generate all possible H-equivalent
W(n, n− k).

• Then GECP should be applied separately on each one of the W ’s. The final upper
triangular matrix yields the pivot pattern and moreover the growth factor for
every W with respect to Eqs. (1) and (2).

• Finally, GE should be applied again on the respective submatrices of the
weighing matrices kept for calculating the determinants of each one with the
standard numerical method to that end.

Summarizing, it becomes evident that fast, practical and robust algorithms should
be elaborated for calculating the aforementioned minors and substitute the values
in (3). At the same time, they should dodge the above numerous challenging
computational difficulties. The algorithms were implemented numerically as well
as in a symbolical computing environment.

We may encounter the notion of weighing matrices also in diverse disciplines
associated with nonlinear analysis. For instance, weighing matrices arise from the
derivation of a recursive algorithm identifying nonlinear multivariable systems [4].
In such a study, particular emphasis is laid on the design of a weighing matrix
that ensures consistency of the estimated parameters with the input-output data and
the noise constraints, and improves convergence properties. Sufficient conditions
for local asymptotic convergence of the algorithm can be examined. The proposed
algorithm achieves effectiveness demonstrated through a numerical example.

Additionally, if one manages to implement a version of algorithm Minors (or
another technique with the same purpose) up to the n − 15 case, then it would
be possible to obtain an estimation for the maximum determinant of a 15 × 15
matrix with entries ±1, which is an unsolved problem so far. Related problems
about determinants of (0,±1) matrices can be found in [5, 27, 56].

It is also interesting to mention that the values of the pivots depend on the choice
of the maximum element at each elimination step, when there are at least two equal
maximum entries in the respective submatrix. More pivoting strategies involving
several choices of the maximum entry are described in [15, 31]. For example, it
is known that the D-optimal design of order 5 can exist embedded inside an H16,
leading to the value of the fifth pivot p5 = 3. We attempt to find the pivot pattern of
an H16, which is equivalent to the one constructed with the command hadamard(16)
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in Matlab. If we use a straightforward selection of the maximum element, i.e. to
choose the first maximum entry of every respective lower right matrix as pivot, we
get p5 = 2. But if we select as pivot the last maximum entry we might be led to
p5 = 3. Hence, it is challenging to investigate furthermore this phenomenon and to
determine the choices of maximum entries that lead to specific pivot values.

In conclusion, the study of the growth factor is an intriguing and important issue
in Numerical Analysis because it characterizes the roundoff estimates of Gaussian
Elimination and captures the stability properties of the method. Particularly, the
investigation of the growth factor for Hadamard matrices led to the formulation
of the open Complete Pivoting conjecture for GE [8] and to the publication of
several relevant articles. It would be also interesting to study the growth factors
for other matrix factorizations, e.g. as it was done recently in [70] for the modified
Gram-Schmidt algorithm by deriving upper bounds for growth factors arising at the
solution of least squares problems.

Research on the values of minors of Hadamard matrices is ongoing, cf., e.g.,
[60] and the references therein. This work provides a distribution for any minors of
orders j of Hadamard matrices in relation to the minors of orders n−j , up to a factor
nj− n

2 . This issue is closely related to the specification of the possible determinant
values of matrices with entries ±1. A survey on this problem and current updates
and results can be found in [53], cf. also [10, 44]. Further progress on this issue can
help in the study of Cryer’s growth conjecture for Hadamard matrices, since Eq. (3)
provides a powerful tool for computing pivots in terms of leading principal minors.

Furthermore, recent noteworthy scientific results and applications involving
weighing matrices, which are given from diverse viewpoints and without necessarily
any reference to their minors and the current presentation, include, for example,
[58]. In this work, circulant weighing matrices are under consideration. The
study and detection of their existence and their classification is characterized
as a “demanding challenge for parallel optimization metaheuristics”. Scientific
computing, theoretical algebraic techniques and high-performance computational
optimization approaches in a parallel computing environment are employed. The
respective algorithms are applied on a hard circulant weighing matrix existence
problem and give encouraging outcomes. More results on circulant weighing
matrices can be found also in [2].

The significance of developing efficient algorithms for the computation of
principal minors of a matrix is highlighted, e.g., in [26]. Further similar templates
to the ones presented here for weighing matrices can be developed also for other
classes belonging to the broad range of orthogonal designs as well, cf., e.g.,
[11, 20, 22, 23, 45]. For instance, binary Hadamard matrices [45] are just a little
studied in the sense of the current presentation. Moreover, in [47] was proposed a
novel and highly efficient technique for computing growth factors of Hadamard
matrices, which avoids the explicit computation of the pivot pattern. It involves
principally the evaluations and appropriate combinations of upper left and lower
right principal minors of the matrices under consideration. A similar approach
could be also developed for weighing matrices. Further determinant calculations
for matrices with elements 0 and 1 are presented in [73].
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The methodology presented here for weighing matrices with respect to GECP
can be investigated also for other pivoting strategies within GE [52]. For example,
the application of the GE method with rook pivoting [18, 31] to special classes
of orthogonal matrices and with respect to the computation of minors, pivots and
growth factors is unexplored.

A further interesting handling of algebraic properties of weighing matrices is
done in [3]. A special type of weighing matrix, called block weighing matrix,
is introduced. Motivated by questions arising in optical quantum computing,
the authors demonstrate that infinite families of anticirculant and Hankel block
weighing matrices can be constructed from known generic weighing matrices. An
important remark of this study claims that the existence of block Hankel weighing
matrices is parallel to the implementability of specific schemes for optical quantum
computing. Furthermore, the consideration of block weighing matrices allows for
a more refined classification of combinatorial designs. A basic open problem is
to investigate the existence of specific anticirculant and Hankel block weighing
matrices that can not be obtained from weighing matrices of smaller orders.

A subject of further research can be the introduction of other theoretical
approaches for the evaluation of minors of weighing matrices. Subsequently, the
respective computational algorithms should be developed taking into account the
high complexity of the problem. For example, in [37] a method was introduced
for evaluating minors of matrices. The core idea is based on algebraic eigenvalue
properties. The corresponding theoretical tools and numerical techniques gave the
results described previously. The algorithms achieve an improvement with a lower
complexity than the methods developed before for the same purpose. The respective
algorithms were designed and provided results for W(n, n− 1), as it was discussed
before. The generalizations to W(n, n−k) and other orthogonal designs are matters
under consideration. A similar treatment was carried out in [60] for Hadamard
matrixes.

In [1] the authors study the determinants of skew-symmetric (±1)-matrices
via a cocyclic approach. These matrices have a specific distribution of the entries
±1. The specification of the largest possible determinant of such a matrix is
an interesting problem. The approach proposed in [1] for handling this question
proposes construction of special cocyclic matrices. Also upper bounds on the
maximal determinant of skew-symmetric (±1)-matrices of special orders have been
improved. An intermediate useful tool is a procedure deciding whether a given ±1
matrix is equivalent to a matrix of skew type. An analogous processing could be
eventually elaborated for weighing matrices as well with respect to calculations of
their minors in regard to the current presentation.
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Robots That Do Not Avoid Obstacles

Kyriakos Papadopoulos and Apostolos Syropoulos

1 Introduction

According to Latombe [9], “the ultimate goal of robotics is to create autonomous
robots”. Farber [4] adds that

. . . such robots should be able to accept high-level description of tasks and execute them
without further human intervention. The input description specifies what should be done
and the robot decides how to do it and performs the task. One expects robots to have sensors
and actuators.

Typically, robots should be programmed so to be able to plan collision-free motions
for complex bodies from some point A to another point B while having a collection
of static obstacles in between. This task is called motion planning. Naturally, motion
planning is very interesting but there are many cases where this is not even desirable.
For example, a rover moving on the surface of a planet should be able to go above
obstacles or to even pass through obstacles.

Dynamical systems are characterized by equations that describe their evolution.
A dynamical system is called linear when its evolution is a linear process. A process
is linear when a change in any variable at some initial time produces a change in
some variable at some later time, however, if the initial variable changes n times,
then the new variable will change n times at the later time. In other words, any
change propagates without any alterations. Any system that is not linear is called a
nonlinear dynamical system [14]. A basic characteristic of these systems is that any
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change in a variable at some initial moment leads to a change to some variable at a
later time, which is not proportional to the initial change. For example, the logistic
map [12]

xn+1 = rxn(1 − xn),

where xn ∈ [0, 1] is the magnitude of population in generation n and xn+1 the
magnitude of population at generation n + 1, is a typical example of an equation
that describes a nonlinear system. In this case, the system is the population of some
species and the dynamics the changes from one generation to another.

Although a robotic system can be either linear or nonlinear, it seems that
nonlinear systems are more interesting in terms of applications. A robotic system
is called nonlinear when its control is not nonlinear. In particular, a control system
is called nonlinear when it contains at least one nonlinear component [15]. For
example, a soft robot [8], that is, a robotic system that consists of several deformable
spherical components, is a nonlinear robotic system [5]. Unlike (some) rigid robots,
a soft robot can in general go through or above an obstacle. Consider a robot, rigid
or soft, that moves on a specific path. Assume that we assign to each obstacle which
is on this path a penetrability degree. Then, the degree to which the robot will not
deviate from its path to avoid the obstacle will depend on this degree. If the robot
can go through the obstacle or above it, then we have a nonlinear system moving
on a “vague” environment. Thus one can say that the motion of a soft robot can
be described also by using fuzzy “mathematics” (i.e., a very popular mathematical
formulation of vagueness).

The central problem of robotics is how to go from point A to point B. As
explained above, avoiding obstacles by deviating from a “predetermined” path is the
“classical” way to solve this problem. However, this is not an interesting problem
for us. We are interested in systems that can use an extended form of the motion
planning algorithm able to describe robots tat go through or above obstacles. But
first, let us examine what is the “classical” motion planning algorithm.

2 Obstacle Avoiding: An Up-to-Date Mathematical
Formulation

Given a vehicle V , a starting point A (usually called an initial configuration) and an
ending point B (called a final configuration), one can form the set P of all paths that
V can follow, starting from A and ending in B. Clearly, one can define a number
of fuzzy subsets of P , for example, the fuzzy subset of easy paths, the fuzzy subset
of smooth paths, etc. Obviously, the problem is how to chose a path in order to go
from A to B. This problem is called the motion planning problem [9].
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A motion-planing algorithm [9] is a solution to the motion planning problem.
Before giving a formal definition to this problem and to its solution, we describe
these notions intuitively. The main task is to find a path starting at a point A and
ending at point B. The path has to avoid collisions with a known set of stationary
obstacles. At any given moment, a robot moving on this path is on a specific robot
configuration (i.e., a point of this path). In order to solve this problem one needs a
geometric description of both the vehicle and the space where the vehicle moves.
The configuration q of a vehicle is a specification of the positions of all vehicle
points relative to a fixed coordinate system. The configuration space is the space of
all possible configurations.

Assume that W ⊂ R
3 is the configuration space on which the vehicle moves,

where R
3 is the Euclidean space of dimension 3, and denote by O ∈ W the set of

all possible obstacles that the vehicle can meet. Such obstacles will be presented
in terms of neighborhoods in R

3. The expression A(q) is used to denote that the
vehicle is in configuration q ∈ C ⊆ W . Then,

Cfree =
{
q ∈ C

∣∣∣A(q) ∩O = ∅
}

Cobs = C/Cfree.

Let qS be the initial configuration and qG the final configuration. Then, the motion
planning problem is the process of finding a continuous path p : [0, 1] → Cfree,
where p(0) = qS and p(1) = qG.

One approaches the motion planning problem using different tools and method-
ologies and, thus, there are different solutions to it. For example, Lozano-Pérez [10]
presented a simple solution, Ashiru and Czarnecki [1] discussed motion planning
using genetic algorithms and Farber [4] presented a probabilistic solution. Most
of all these approaches assume that the vehicle should always avoid obstacles, but
there has not been a study of cases where the vehicle can pass through (penetrate)
an obstacle.

2.1 A Mathematical Formulation

We will use Farber’s [4] notation and mathematical description of robot motion
planning algorithm. For topological notions like path-connected spaces, compact-
open topology, etc., see [3].

Let X be a path-connected topological space and denote by PX the space of
all continuous paths. PX is supplied with the compact open topology. Consider the
map π : PX → X×X, which assigns to a path the pair (γ (0), γ (1)) of the so-called
initial-final configurations. π is a fibration in the sense of Serre.
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Definition 1 A motion planning algorithm is a section s : X × X → PX of
fibration, that is, π ◦ s = 1X×X.

One of Farber’s research goals was to predict the character of instabilities of the
behavior of the robot, knowing several topological properties of the configuration
space, such as its cohomology algebra. Here we will not concern ourselves
with this approach. We will stick in Farber’s declaration that there may exist a
better mathematical notion of a configuration space, describing a partially known
topological space, whose (geometric and topological) properties are being gradually
revealed. We believe that fuzzy set theory is the key tool for this.

Farber introduced four numerical invariants TCi (X), i = 1, 2, 3, 4, measuring
the complexity of the problem of navigation of a robot configuration space. These
invariants coincide for “good” spaces, such us for simplicial polyhedra. We will now
present TC4(X), for our purposes, since it is linked with random motion planning
algorithms.

Definition 2 A random n-valued path σ , on a path-connected topological space X,
starting at A ∈ X and ending at B ∈ X is given by an ordered sequence of paths
γ1, · · · , γn ∈ PX and an ordered sequence of real numbers p1, · · · , pn ∈ [0, 1],
such that each γj : [0, 1] → X is a continuous path in X starting at A = γj (0) and
ending at B = γj (1), such that pj ≥ 0 and Σn

i=1γi = 1.

The notation PnX, of Farber, refers to the set of all n-valued random paths in
X. This set is a factor-space of a subspace of the Cartesian product of n copies of
PX × [0, 1].
Definition 3 TC4(X) is defined as the minimal integer n, such that there exists an
n-valued random motion planning algorithm s : X ×X → PnX.

Remark 2.1 It has been proved that TCn+1(X) = cat(Xn), for n ≥ 1, where
cat(Xn) is the Lusternik-Schnirelmann category [11]. These categories have been
used to solve problems in nonlinear analysis (e.g., see [2]).

2.2 Remarks on This Formulation

No one can doubt the usefulness of Farber’s approach, both in the field of Topology
and in Robotics. The instabilities in the robot motion planning algorithm are linked
to topological invariants and the universe where the robot moves is seen through the
eyes of a topologist who sees configuration spaces. When it comes to engineering
though, an interpretation of the invariant T C4(X) is tough. What does it mean for a
vehicle to take a random path? Is it better to talk about a plausible path? Moreover,
instead of bypassing obstacles, can we assume that a robot can go through obstacles?

In what follows, we describe a fuzzy motion planing problem and explain how
it can be solved. These ideas are explained practically and we conclude with some
questions and problems related to this approach.
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3 Questioning an Even More Theoretical Approach to
Motion Planning Problem

Here we ask for the possibility of investigating purely topological properties of
robot motion planning algorithms via function spaces, based on the study in [6] and
on the results by Farber. Considering a function space F(X, Y ), there are several
topological problems one can study. Knowing topological properties of X (or Y ),
what are the topological properties of F(X, Y ) and vice versa.

Let X be an arbitrary topological space. Let PX = C([0, 1], X) be the function
space of all continuous paths γ : [0, 1] → X, supplied with the compact-
open topology. Let π : PX → X × X be the map which assigns to a path
γ the pair (γ (0), γ (1)) ∈ X × X of the so-called “initial-final configurations”.
Consider the function space F(PX,X × X). A motion planning algorithm is a
map s : X × X → PX, such that π ◦ s = 1X×X. Consider the function space
FM(X × X,PX), consisting of motion planning algorithms. Notice that this is a
subspace of the function space F(X ×X,PX).

Question 1

Farber questions under what conditions there exist motion planing algorithms which
are continuous, and gives an answer through contractibility. More generally, add (the
minimum number of) topological conditions on the function space C(X ×X,PX),
so that its functions to be motion planning algorithms, and thus study topological
properties of the function space CM(X × X,PX) of continuous motion planning
algorithms. Here we should remark that we did not recommend X to be path-
connected (which practically means that one can fully control the system by
bringing it to an arbitrary state from a given state) as an initial condition.

Question 2

Start with a topological space X, as the configuration space of a mechanical system,
with no explicit information about its local or global topological properties. Apply
Step 0 to Step n of the construction given in [6], to the motion planning algorithms
space F(X × X,PX). Study the possibility for the existence of a minimal integer
n “revealing as much as possible topological information about X”. This will give a
partial answer to Farber’s question on robot motion planning algorithms, on whether
there exists a way to study very complex configuration spaces which are gradually
revealing their topological properties.
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Question 3

Given answers to our Question 1, a further theory can be developed, studying the
topological complexity of tame motion planning algorithms, in the language of
function spaces (see [4])

Question 4

If a space X is path-connected, one can “fully control it”, in a sense that for any two
fixed points there is a path joining them. One could define a topological space, so
that for any two points A and B there exists a linear ordered topological space (lots)
starting from A and ending at B, and this would generalize path-connected spaces
and furthermore motion planning algorithms.

Can one achieve this in a different way rather than refining the definition of a
continuous path γ , by adding the extra property that the path γ should be also order
preserving (taking in [0, 1] the natural order <)?

One can consider the space of all such lots on X, say PX, mapped to X×X as a
fibration π , and define a section s : X × X → PX, such that π ◦ s = idX×X. One
could then study its Schwartz genus, as a notion of a topological complexity of X,
and link notions of order theory and general topology to algebraic topological ideas.

There will be a problem if one considered an arbitrary lots. Consider for example
the lots consisting of just two points can be mapped into any space

X with two points A and B and that mpa will be a homeomorphic embedding,
if and only if X is T1. One does not want this sort of “teleporting” behavior to be
possible, that perhaps one wants there to be many points linking A to B along what
“resembles a path”. A general way to achieve this is to require that the lots to be a
dense order. If one follows this route, it would be most natural to require paths to
be closed subsets and the map to be a homeomorphic embedding. Alternatively, one
could fix a lots L that is to work for all pairs of points in the space:

1. when L = {0, 1} then we have a T1 space and
2. when L = [0, 1], then we have a path-connected space.

What if Y = Q∩[0, 1]? What if Y is the Cantor set C? What if Y = ω+1. In either
cases, the “interesting” spaces are going to be totally disconnected

4 Further Topological Remarks

For a more detailed discussion, see [4]. Here we add a few more questions of
topological nature.
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Consider a path-connected topological space X. A random n-valued path σ , in
X, which starts at point A and ends at point B, is given from a sequence of paths
γ1, γ2, . . . , γn which belong to PX (the space of all continuous paths on X) and a
sequence of real numbers p1, p2, . . . , pn in [0, 1], such that every path γj : [0, 1] →
X is continuous, where γj (0) = A and γj (1) = B and also pj ≥ 0 and p1 +
p2 + · · · + pn = 1. From the third Axiom of probability theory, one induces that
σ = p1γ1 + p2γ2 + · · · + pnγn.

Consider now the map π : PnX → X × X, where PnX denotes the set of all
random n-valued paths on X. An n-valued random algorithm is a map s : X×X →
PX, such that π ◦ s = 1X×X.

In other words, if one considers the pair (A,B) in X × X (input), the output is
an ordered probability distribution s(A,B) = p1γ1 +p2γ2 + · · ·+pnγn, that is the
algorithm s induces the path γj with probability pj .

A first question, is which probability distributions are outputs of such motion
planning algorithms. It would be of a theoretical interest to characterize probability
distributions via motion planning algorithms. What about if the number of paths is
not countable? If one can define such motion planning algorithm, then what kind
of probability distribution can one expect as an output? This is a good point to pass
into the next section, which is the approach to the motion planning problem through
fuzzy logic.

5 Obstacle Avoiding: A Fuzzy Logic Approach

A fuzzy motion planning problem is a problem that asks how a vehicle can move
from a point A to a point B by possibly going through/climb over/penetrate and
so on, a number of obstacles, instead of avoiding them. All obstacles, which
are represented mathematically by neighborhoods, are associated with a traversal
difficulty degree that specifies how difficult it is to go over a specific obstacle. This
degree is a number drawn from [0, 1] and when it is equal to 1 for a given obstacle
O, this implies that O is actually not an obstacle. On the other hand, a traversal
difficulty degree equal to 0 means that it is impossible to go over O, so the robot
will have to find ways to avoid it.

Definition 4 A fuzzy continuous path is a map pλ,� : [0, 1] → C that goes over
obstacles O1, . . . , On ∈ Cobs, where the traversal difficulty degree of each obstacle
Oi is λi , has a plausibility degree that equals λ = mini=0 λi and its length is �.

Clearly, the smaller the value of λ is, the less plausible a specific path is.
Figure 1 depicts a terrain with some obstacles. The vehicle’s task is to go from A

to B. Obviously, the dotted path is one that avoids all obstacles but it is quite long.
On the other hand, the straight line is a path that goes over three obstacles but it is
the shortest possible path. Thus, the ideal path is the one that it will be as short as
possible and as easy to traverse as possible.
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Fig. 1 The problem of
moving a vehicle from A to B

and two possible solutions

Definition 5 A fuzzy n-valued path σ , on X, starting at A ∈ X and ending at B ∈ X

is an ordered sequence of paths pλ1,�1
1 , p

λ2,�2
2 , · · · , pλn,�nn ∈ PX, where

σ = min
�i

max
λi

p
λi ,�i
i ,∀i = 1, 2, . . . , n.

Assume that PnX is the set of all fuzzy n-valued paths. Then, the function:

π : PnX → X ×X

maps to a fuzzy path its starting and end points.

Definition 6 An n-valued fuzzy motion planning algorithm is defined as the map:

s : X ×X → PnX.

Thus, the algorithm is a twofold process: first it identifies n distinct paths and it then
chooses the most plausible one, not just someone “in random”.

Remark 5.2 The function s is a continuous section of the fibration π .

Having given the above definition of an n-valued fuzzy motion planning algo-
rithm, we now have a clearer picture of how one can define an invariant, similar
to TC4(X) but more realistic, describing its navigational complexity. Let us call
such an invariant TC∗

4(X). This invariant will depend on both parameters λ and � of
Definition 5. So, it will be sufficient to declare it as the “smallest integer n, such that
an n-valued fuzzy motion planning algorithm exists”. TC∗

4(X) certainly describes a
wider range or properties of the configuration space. Sometimes, in real situations,
it will be better to go through an obstacle, e.g. a vehicle towards water, provided that
in such a way � is small, even if λ is small too. A mission running out of time, for
example, will put a vehicle into such a risk. In other cases, it might be better for �
to be big in order λ to be big, too; for instance, a short distance and a harsh obstacle
might put the vehicle into a great risk or might force it to spend a sufficiently big
amount of fuel, etc.
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5.1 An Example

Imagine that a vehicle, like NASA’s Curiosity, is on the surface of planet Mars.
Assume that this vehicle can recognize obstacles and it can assess whether it is
possible to go over an obstacle or not. For example, the rover might have access to an
on-board databank with pictures of obstacles, which have been rated somehow (e.g.,
by a human expert), and using some sort of object recognition algorithm, then it can
assign traversal difficulty degrees to various objects and so it can “deduce” whether
a specific path is traversable or not. More generally, the vehicle can perform this
action several times to find different traversable paths and to choose the best path.
Of course, the system should be able to retract and make another choice since it is
quite possible that some initial estimation was more vague than expected.

6 Soft Robots or Fuzzy Motion Planning Algorithms?

On the one hand each obstacle in the path of a robot can be associated with a number
that will show to what extend it is possible to go through or above the obstacle but
on the other hand we have soft robots that are able to go through obstacles. What
is really missing here is that even for soft robots it would not be absolutely sure
that one can go through a specific obstacle. Thus even for soft robots, each obstacle
should be associated with a number whose value would indicate to what degree it
is possible to go through it. In different words, the behavior of soft robots can be
better described with the use of fuzzy set theory. Let us roughly describe how this
can be realized.

First we chose the path our robot with follow. Then we assign to each obstacle an
“absolute” traversal degree, as if our robot is a rigid one. Depending on the shape of
the robot and how flexible it is, we modify the absolute traversal degree so to take
into account the capabilities of the soft robot. The modified traversal degrees can be
used to define a fuzzy motion planning algorithm. The interest thing here is that the
dynamics of the robot are nonlinear and we can use fuzzy sets to described a motion
planning algorithm.

7 Conclusions and Open Questions

After describing the motion planning problem problem, we briefly discussed a
more “realistic” solution and commented on its unsuitability. Next, we presented
a formulation of the problem that uses “vagueness” and proposed a solution that
makes use of fuzzy set theory. The result is more natural as it coincides with the
procedure that humans follow in order to choose the most suitable path. We then
gave a first comparison of the fuzzy formulation with that one that uses soft robots.
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Here we list a list of open problems which, in our own opinion, are interesting both
from a theoretical perspective as well as in applications.

1. Implement the methodology given in the section “Obstacle Avoiding: a Fuzzy
Logic approach” with simulation(s) and (an) experiment(s), and see how it works
in practice, comparing it with a similar methodology referring to soft-robots.

2. Nonlinear analysis has been used to analyze fuzzy systems (e.g., see [7]). Also,
tools used to analyze fuzzy systems have been used to analyze nonlinear systems
(e.g., see [13]). The question is: Can use use both methodologies to assist us to
build and test a flexible robot?
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On the Exact Solution of Nonlinear
Integro-Differential Equations

I. N. Parasidis and E. Providas

1 Introduction

Differential equations and integral equations are mainly employed to model phys-
ical phenomena and processes in most disciplines of science, engineering and
economics. Integro-differential equations are those equations which contain both
differential and integral operators. They appear in modeling many situations in
areas such as mechanics [7], electromagnetic theory [3], population dynamics [4],
pharmacokinetic studies [13], forestry [6] and many others [10]. The nonlinear
integro-differential equations are characterized by the fact that the integrand is a
nonlinear function of the unknown function and its derivatives, and that they can
have many solutions which can be complex in addition to the real ones. For such
equations with a high degree of complexity, usually numerical methods and iterative
techniques are utilized to find an approximate solution as it can be verified in the vast
literature on the subject, see for example [1, 2] and [8], and the references therein.

Exact solutions may be obtained for a class of nonlinear integro-differential
equations where the integrand can be factored in kernels which are degenerate or
separable. The procedure used in this case always leads to a nonlinear system of
algebraic (transcendental) equations [12, 15]. This system has to be solved exactly
and then each solution is properly exploited to produce the corresponding solution
to the integro-differential equation in closed form. This in general is difficult and
sometimes it may be even impossible to solve the nonlinear system of algebraic
equations, while the whole process requires tedious algebra. Therefore, care should
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be taken to confine the number of the nonlinear algebraic equations to a minimum
and to organize the solution process in an efficient way. The main benefit in pursuing
the exact methods for solving nonlinear integro-differential equations, apart from
producing the solution in an explicit form, is that they can provide all possible
solutions compared to analytical and numerical techniques which can deliver only
one approximate, or exact in some cases, solution [14].

In this paper, by using the case of Fredholm nonlinear integro-differential
equations as a vehicle, we develop a method for constructing exact solutions to
problems involving in general a nonlinear operator B defined as a perturbation
of a linear correct operator Â with linear bounded functionals and nonlinear
continuous functionals. The operator Â : X → Y , where X, Y are complex Banach
spaces, is correct if R(Â) = Y and its inverse Â−1 exists and is continuous. The
proposed technique is an advancement of the extension operator method introduced
by the authors for the exact solution of linear integro-differential equations [10].
The method is applicable to several types of nonlinear problems, it is easily
programmable in a computer algebra system and it is suitable for large scale
problems.

The rest of the paper is organized in four sections. In Sect. 2, the nonlinear
Fredholm integro-differential equations are formulated in an operator form as
outlined above. In Sect. 3, the extension operator method for nonlinear problems
is expounded. Several example problems are considered in Sect. 4 to demonstrate
the efficiency of the method. Finally, some conclusions are quoted in Sect. 5.

2 Nonlinear Integro-Differential Equations of Fredholm
Type

Nonlinear Fredholm integro-differential equations of the second kind assume the
general form

ν∑

κ=0

pκ(x)u
(κ)(x) = f (x)+

∫ β

α

K
(
x, t, u(t), u(1)(t), . . . , u(ν)(t)

)
dt, (1)

with the initial conditions

u(κ)(α) = ακ, 0 ≤ κ ≤ ν − 1, (2)

or the boundary conditions

u(κ)(α) = ακ, u(ι)(β) = βι, 0 ≤ κ, ι ≤ ν − 1, 0 ≤ κ + ι ≤ ν − 1, (3)

or nonlocal conditions, e.g. u(α) = cu(β) with c being an arbitrary constant,
where pκ(x), κ = 0, 1, . . . , ν and f (x) are continuous functions on [α, β], u(x)
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is the unknown function to be determined, u(κ)(x) denotes the κth derivative of
u(x), the integrand K

(
x, t, u, u(1), . . . , u(ν)

)
is a continuous nonlinear function of

u, u(1), . . . , u(ν) and ακ and βι are given constants that determine the initial or
boundary conditions. An interesting class of nonlinear integro-differential equations
is that when the integrand in Eq. (1) can be factored as

K
(
x, t, u(t), u(1)(t), . . . , u(ν)(t)

)
=

n∑

j=1

K̆j (x, t)Fj

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)
, (4)

or

K
(
x, t, u(t), u(1)(t), . . . , u(ν)(t)

)
=

m∑

i=1

K̄i (x, t)Pi

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)

+
n∑

j=1

K̆j (x, t)Fj

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)
, (5)

where Pi
(
t, u, u(1), . . . , u(ν)

)
, i = 1, . . . , m and Fj

(
t, u, u(1), . . . , u(ν)

)
, j =

1, . . . , n are linear and nonlinear functions of u, u(1), . . . , u(ν), respectively. The
kernels K̄i(x, t) and K̆j (x, t) are considered to be separable and with no loss of
generality we may assume

K̄i(x, t) = gi(x)hi(t), i = 1, . . . , m ,

K̆j (x, t) = qj (x)rj (t), j = 1, . . . , n . (6)

Substituting (6) in Eq. (5) and then into Eq. (1), we have

ν∑

κ=0

pκ(x)u
(κ)(x) = f (x)+

m∑

i=1

gi(x)

∫ β

α

hi(t)Pi

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)
dt

+
n∑

j=1

qj (x)

∫ β

α

rj (t)Fj

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)
dt. (7)

Furthermore, we assume that Eq. (7) is accompanied by the homogeneous initial
conditions

u(κ)(α) = 0, 0 ≤ κ ≤ ν − 1, (8)

or the homogeneous boundary conditions

u(κ)(α) = 0, u(ι)(β) = 0, 0 ≤ κ, ι ≤ ν − 1, 0 ≤ κ + ι ≤ ν − 1. (9)
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Notice that nonhomogeneous conditions can be converted to homogeneous ones by
making the substitution u(x) = v(x) + z(x), where z(x) ∈ Cν−1[α, β] satisfying
the given conditions, and solving the problem for v(x). For example, in the case
of Eq. (7) with the nonhomogeneous conditions (2), we can define the function
z(x) = ∑ν−1

κ=0
aκ
κ! (x − α)κ . Correspondingly, for Eq. (7) with, for example, the

nonhomogeneous boundary conditions u(α) = α0 and u(β) = β0, we may specify
the function z(x) = α0

β−x
β−α + β0

x−α
β−α .

Let us now define the linear correct operator Â : C[α, β] → C[α, β] by

Âu(x) =
ν∑

κ=0

pκ(x)u
(κ)(x),

D(Â) = {u ∈ Cν[α, β] : u(κ)(α) = 0, 0 ≤ κ ≤ ν − 1}, (10)

if initial conditions are specified or

D(Â) = {u ∈ Cν[α, β] : u(κ)(α) = 0, u(ι)(β) = 0,

0 ≤ κ, ι ≤ ν − 1, 0 ≤ κ + ι ≤ ν − 1}, (11)

when boundary conditions are prescribed. Additionally, let the linear bounded
functionals ψi ∈ (Cν[α, β])∗ and the continuous nonlinear functionals φj :
Cν[α, β] → C defined as follows

ψi(u) =
∫ β

α

hi(t)Pi

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)
dt, i = 1, . . . , m ,

φj (u) =
∫ β

α

rj (t)Fj

(
t, u(t), u(1)(t), . . . , u(ν)(t)

)
dt, j = 1, . . . , n, (12)

Finally, designate Ψ = col(ψ1, . . . , ψm), Φ = col(φ1, . . . , φn), g =
(g1(x), . . . , gm(x)) and q = (q1(x), . . . , qn(x)) and let f (x) ∈ C[α, β]. We
may now write the νth-order integro-differential equation of Fredholm type in
Eq. (7) under the homogeneous initial (8) or boundary conditions (9) in the operator
form

Bu(x) = Âu(x)− gΨ (u)− qΦ(u) = f (x), D(B) = D(Â), (13)

where B : C[α, β] → C[α, β] is defined as a perturbation of the linear correct
operator Â with the vectors of linear functionals Ψ and the nonlinear functionals
Φ. For completeness we quote that the operator B is an extension of the minimal
operator A0 defined by

A0u = Âu, D(A0) = {u ∈ D(Â) : Ψ (u) = 0, Φ(u) = 0}, (14)

as it is stated in [9] and [5].
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3 Extension Operator Method for Nonlinear Problems

In a recent work [10], the authors of the present article considered the linear operator
B : X → Y ,

Bu = Âu− gΨ (u), D(B) = D(Â), (15)

where X, Y and Z are complex Banach spaces, Â : X → Y is a linear correct
operator with D(Â) ⊂ Z ⊆ X, Ψ = col(ψ1, . . . , ψm) is a vector of complex-
valued bounded linear functionals on Z, g = (g1, . . . , gm) is a vector with gi ∈
Y, i = 1, . . . , m and u ∈ D(Â), and provided the exact solution for the linear
problem

Bu = Âu− gΨ (u) = f, f ∈ Y. (16)

In particular, it has been shown [10, Theorem 1, p. 476] that the linear operator B is
correct if and only if

det W = det
[
Im − Ψ (Â−1g)

]
�= 0, (17)

where Im stands for the m×m identity matrix. Moreover, for any f ∈ Y the unique
solution of Eq. (16) is given by

u = B−1f = Â−1f + Â−1gW−1Ψ (Â−1f ). (18)

The procedure used for deriving Eq. (18) is based on the knowledge of the solution
of the simpler linear problem

Âu = f, f ∈ Y. (19)

Here, we advance the method presented in [10] to handle nonlinear problems.
Let X, Y and Z be complex Banach spaces and Â : X → Y be a linear correct

operator with D(Â) ⊂ Z ⊆ X. Consider first the nonlinear operator B : X → Y

defined by

Bu = Âu− qΦ(u), D(B) = D(Â), (20)

where Φ = col(φ1, . . . , φn) is a vector of complex-valued continuous nonlinear
functionals on Z, q = (q1, . . . , qn) is a vector of elements qj ∈ Y and u ∈ D(Â).
Without any loss of generality, we may assume that each of the sets {φj } and {qj } is
linearly independent; otherwise, we could reduce the number of their elements.

Theorem 1 Let B : X → Y be the nonlinear operator in Eq. (20). Then the exact
solution to the problem

Bu = Âu− qΦ(u) = f, f ∈ Y, (21)
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is given by

u = Â−1f + Â−1qb∗, (22)

for every vector b∗ = Φ(u) that solves the nonlinear algebraic (transcendental)
system of n equations

b = Φ
(
Â−1f + Â−1qb

)
. (23)

Proof Since the operator Â is correct, there exists the inverse operator Â−1.
Applying this inverse operator on both sides of Eq. (21) we get

u = Â−1f + Â−1qΦ(u). (24)

Employing the vector Φ on Eq. (24), we obtain

Φ(u) = Φ
(
Â−1f + Â−1qΦ(u)

)
. (25)

Setting b = Φ(u), we acquire the nonlinear system of n equations in n unknowns
in Eq. (23). Let b∗ be a solution of this system satisfying b∗ = Φ(u). Substitution
of b∗ into Eq. (24) produces Eq. (22). ��

Consider next the more general nonlinear operator B : X → Y defined by

Bu = Âu− gΨ (u)− qΦ(u), D(B) = D(Â), (26)

where X, Y and Z are complex Banach spaces and Â : X → Y is a linear correct
operator with D(Â) ⊂ Z ⊆ X, Ψ = col(ψ1, . . . , ψm) is a vector of bounded linear
functionals ψi : Z → C, Φ = col(φ1, . . . , φn) is a vector of continuous nonlinear
functionals φj : Z → C, g = (g1, . . . , gm) ∈ Ym and q = (q1, . . . , qn) ∈ Yn. We
may assume without any loss of generality that each of the four sets {ψi}, {gi}, {φj }
and {qj } is linearly independent; otherwise, we could diminish the number of their
corresponding elements.

Theorem 2 Let B : X → Y be the nonlinear operator in Eq. (26). Then the exact
solution to the problem

Bu = Âu− gΨ (u)− qΦ(u) = f, f ∈ Y, (27)

is provided by

u = Â−1f + Â−1ga∗ + Â−1qb∗, (28)

where the set of the vectors a∗ = Ψ (u) and b∗ = Φ(u) is a solution of the m + n

nonlinear algebraic (transcendental) equations
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Wa −Qb = Ψ
(
Â−1f

)
, (29)

b = Φ
(
Â−1f + Â−1ga + Â−1qb

)
, (30)

with the m×m matrix W = Im−Ψ
(
Â−1g

)
and the m×n matrix Q = Ψ

(
Â−1q

)
.

Proof Applying the inverse operator Â−1 on both sides of Eq. (27), we get

u− Â−1gΨ (u)− Â−1qΦ(u) = Â−1f. (31)

Acting by the vector of the linear functionals Ψ on both sides of Eq. (31) and using
its linearity properties, we have

Ψ
(
u− Â−1gΨ (u)− Â−1qΦ(u)

) = Ψ
(
Â−1f

)
,

Ψ (u)− Ψ
(
Â−1gΨ (u)

)− Ψ
(
Â−1qΦ(u)

) = Ψ
(
Â−1f

)
,

Ψ (u)− Ψ
(
Â−1g

)
Ψ (u)− Ψ

(
Â−1q

)
Φ(u) = Ψ

(
Â−1f

)
,

[
Im − Ψ

(
Â−1g

)]
Ψ (u)− Ψ

(
Â−1q

)
Φ(u) = Ψ

(
Â−1f

)
, (32)

or in a compact form

WΨ(u)−QΦ(u) = Ψ
(
Â−1f

)
, (33)

where we have set W = Im − Ψ
(
Â−1g

)
and Q = Ψ

(
Â−1q

)
. Likewise,

implementation of the vector of the nonlinear functionals Φ on Eq. (31) yields

Φ(u) = Φ
(
Â−1f + Â−1gΨ (u)+ Â−1qΦ(u)

)
. (34)

Setting a = Ψ (u) and b = Φ(u) into Eqs. (33) and (34), we obtain the nonlinear
system of m + n equations in m + n unknowns in Eqs. (29) and (30). Let a∗ =
Ψ (u), b∗ = Φ(u) be a compatible solution of this nonlinear system of equations.
Substitution then into Eq. (31) produces Eq. (28). ��

Theorem 2 is a general theorem that involves the exact solution of a system of
a total of m + n nonlinear algebraic (transcendental) equations. This, in cases of
large problems can be a challenge or an impossible task even for the best available
computer algebra systems. The following three corollaries deliver the solution of
Eq. (27) more efficiently since the system of the nonlinear equations to be solved is
reduced to n equations in n unknowns.

Corollary 1 If the m×m matrix W in Eq. (29) is nonsingular, i.e.

det W = det
[
Im − Ψ (Â−1g)

]
�= 0, (35)
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then the exact solution of Eq. (27) may be obtained conveniently by

u = Â−1f + Â−1gW−1Ψ (Â−1f )+
[
Â−1q + Â−1gW−1Q

]
b∗, (36)

where the vector b∗ = Φ(u) is a solution of the system of the n nonlinear algebraic
(transcendental) equations

b = Φ
(
Â−1f + Â−1gW−1Ψ (Â−1f )+

[
Â−1q + Â−1gW−1Q

]
b
)
. (37)

Proof Working as for the proof of Theorem 2, we can arrive at Eqs. (31) and (33).
Suppose that Eq. (35) holds true. This means that the matrix W = Im − Ψ

(
Â−1g

)

is nonsingular and consequently Eq. (33) can be solved uniquely with respect to the
vector Ψ (u) to get

Ψ (u) = W−1
[
Ψ

(
Â−1f

)
+QΦ(u)

]
. (38)

Substituting Eq. (38) into Eq. (31), we obtain

u = Â−1f + Â−1gW−1Ψ (Â−1f )+
[
Â−1q + Â−1gW−1Q

]
Φ(u). (39)

Acting by the vector Φ on both sides of Eq. (39), we acquire

Φ(u) = Φ
(
Â−1f + Â−1gW−1Ψ (Â−1f )+

[
Â−1q + Â−1gW−1Q

]
Φ(u)

)
.

(40)
Setting b = Φ(u), we get the nonlinear system in Eq. (37). Let b∗ = Φ(u) be an
admissible solution vector of this nonlinear system. Substitution of b∗ into Eq. (39)
provides Eq. (36). ��
Remark 1 Observe that Eq. (36), the solution of the nonlinear problem (27), can be
written equivalently in the following explicit form

u = Â−1f + Â−1gW−1Ψ (Â−1f )

+
n∑

j=1

(
Â−1qj + Â−1gW−1Ψ (Â−1qj )

)
b∗j . (41)

In addition, notice that Eq. (27) by removing the nonlinear terms degenerates to the
linear problem (16), namely

Bu = Âu− gΨ (u) = f, f ∈ Y, (42)

whose exact solution is given by

uf = Â−1f + Â−1gW−1Ψ (Â−1f ). (43)
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If in Eq. (42), f is replaced by a qj ∈ Y, j = 1, . . . , n then the associated solution
is provided by

uqj = Â−1qj + Â−1gW−1Ψ (Â−1qj ). (44)

Consequently, the solution (36) of the original nonlinear Eq. (27) can alternatively
assume the form

u = uf +
n∑

j=1

uqj b
∗
j . (45)

Corollary 2 Suppose that det W = 0 but the rank of the m × (m + n) matrix
[W −Q] in Eq. (29) is rank [W −Q] = m. Further, let us assume without any
loss of generality that the first k < m columns of W and the first r = m−k columns
of Q are linearly independent and express Eq. (29) as follows

V

(
ak
br

)
+ U

(
ar
bl

)
= Ψ (Â−1f ), (46)

where l = n − r , the m × m matrix V = [Wk −Qr ] is nonsingular, the
m × n matrix U = [Wr −Ql], ak = col(a1, . . . , ak), ar = col(ak+1, . . . , am),
br = col(b1, . . . , br ) and bl = col(br+1, . . . , bn). Then, the solution of Eq. (27) is
provided aptly in closed form by

u = Â−1f + Â−1g

(
ak
a∗r

)
+ Â−1q

(
br
b∗
l

)
, (47)

with

(
ak
br

)
= V −1

(
Ψ (Â−1f )− U

(
a∗r
b∗
l

))
, (48)

for every solution a∗r = Ψr(u) and b∗
l = Φl(u) of the nonlinear system of n

equations

(
br
bl

)
= Φ

(
Â−1f + Â−1g

(
ak
ar

)
+ Â−1q

(
br
bl

))
, (49)

where

(
ak
br

)
= V −1

(
Ψ (Â−1f )− U

(
ar
bl

))
. (50)
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Proof Repeating the same steps as in the proof of Theorem 2 we obtain Eqs. (31)
and (33). Since rank [W −Q] = m there are exist m columns of the m× (m+ n)

matrix [W −Q] which are linearly independent. We assume without any loss of
generality that the first k < m columns of W and the first r = m−k < n columns of
Q are linearly independent; otherwise, we could change the order of the m = k + r

and n = r + l columns, respectively. We partition Eq. (33) as follows

[
Wk Wr

]
Ψ (u)− [

Qr Ql

]
Φ(u) = Ψ

(
Â−1f

)
,

[
Wk −Qr

]
(

ak
br

)
+ [

Wr −Ql

]
(

ar
bl

)
= Ψ

(
Â−1f

)
,

V

(
ak
br

)
+ U

(
ar
bl

)
= Ψ (Â−1f ), (51)

where we have set

Ψ (u) = a =
(

ak
ar

)
, Φ(u) = b =

(
br
bl

)
, (52)

and V = [Wk −Qr ] is the m × m matrix containing the m linearly independent
columns, while U = [Wr −Ql] is the m× n matrix that consists of the remaining
n columns of [W −Q]. Accordingly, Eq. (31) is written

u = Â−1f + Â−1g

(
ak
ar

)
+ Â−1q

(
br
bl

)
, (53)

where by means of Eq. (51)

(
ak
br

)
= V −1

(
Ψ (Â−1f )− U

(
ar
bl

))

=
[(

V −1
)
k(

V −1
)
r

](
Ψ (Â−1f )− U

(
ar
bl

))
. (54)

Applying the vector Φ on both sides of (53), we get

(
br
bl

)
= Φ

(
Â−1f + Â−1g

(
ak
ar

)
+ Â−1q

(
br
bl

))
, (55)

which is the nonlinear system in Eq. (49) with ak, br given by (50) and ar , bl
being the n unknowns. Let a∗r , b∗

l be a solution of this nonlinear system compatible
with (52). Substituting into Eqs. (54) and (53) we obtain Eq. (47). ��
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Corollary 3 In Theorem 2, if m = n then the matrix Q in Eq. (29) becomes a
square matrix. If this matrix is nonsingular, i.e.

det Q = det
[
Ψ (Â−1q)

]
�= 0, (56)

then the exact solution to the problem (27) is given readily by

u = Â−1
[
g + qQ−1W

]
a∗ + Â−1

[
f − qQ−1Ψ (Â−1f )

]
, (57)

where the vector a∗ = Ψ (u) is a solution to the system of m nonlinear algebraic
(transcendental) equations

Q−1[Wa − Ψ (Â−1f )] =
Φ

(
Â−1

[
g + qQ−1W

]
a + Â−1

[
f − qQ−1Ψ (Â−1f )

])
. (58)

Proof By employing the inverse operator Â−1 on both sides of Eq. (27) we get

u− Â−1gΨ (u)− Â−1qΦ(u) = Â−1f. (59)

Acting by the vector Ψ on both sides of Eq. (59), we have

Ψ
(
Â−1q

)
Φ(u) = [

Im − Ψ
(
Â−1g

)]
Ψ (u)− Ψ

(
Â−1f

)
,

QΦ(u) = WΨ(u)− Ψ
(
Â−1f

)
, (60)

where we have put Q = Ψ (Â−1q) and W = Im − Ψ
(
Â−1g

)
. By hypothesis

det Q �= 0 and hence

Φ(u) = Q−1
[
WΨ(u)− Ψ

(
Â−1f

)]
. (61)

Application of the vector Φ on Eq. (59) yields

Φ(u) = Φ
[
Â−1gΨ (u)+ Â−1qΦ(u)+ Â−1f

]
. (62)

Substituting Eq. (61) into Eq. (62) we obtain

Q−1
[
WΨ(u)− Ψ

(
Â−1f

)]
=

Φ
(
Â−1

[
g + qQ−1W

]
Ψ (u)+ Â−1

[
f − qQ−1Ψ (Â−1f )

])
. (63)
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Setting a = Ψ (u), we obtain the system of m nonlinear equations (58). Let a∗ =
Ψ (u) be a vector that solves this nonlinear system. Substitution of a∗ along with
Eq. (61) into Eq. (59) yields Eq. (57). ��

Finally, we quote the next corollary that provides a sufficient condition for the
solvability of the nonlinear problem (27).

Corollary 4 If the rank
[
W −Q Ψ(Â−1f )

]
> rank [W −Q] then Eq. (27) has

no solutions.

Proof If the rank of the augmented matrix
[
W −Q Ψ(Â−1f )

]
is greater than that

of [W −Q], it is known that no solution exists to the linear system in Eq. (29). This
is to say that there are not any a and b which satisfy simultaneously both Eq. (29)
and Eq. (30). Therefore, it is concluded that the nonlinear equation (27) does not
possess any solution. ��

4 Example Problems

In this section we solve some selected initial value problems and boundary value
problems with nonlinear integro-differential equations of Fredholm type of the
second kind to reveal the capabilities of the method proposed and to highlight all
concepts postulated in the theory in Sect. 3.

Problem 1 Consider the boundary value problem with nonlocal boundary condi-
tions

u′′(x)− 70x2
∫ 1

0
t2u3(t)dt = 89x2 + 24x,

u(0) = −u(1), u′(0) = −u′(1), x ∈ [0, 1]. (64)

Imitating the procedure outlined in Sect. 2, the problem can be put in the operator
form

Bu(x) = Âu(x)− qΦ(u) = f (x),

D(B) = {u ∈ C2[0, 1] : u(0) = −u(1), u′(0) = −u′(1)}. (65)

where the operators B, Â : C[0, 1] → C[0, 1] with

Âu(x) = u′′(x), D(Â) = D(B),

Φ(u) = φ(u) =
∫ 1

0
t2u3(t)dt,

q = q(x) = 70x2,

f (x) = 89x2 + 24x. (66)
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The linear operator Â is correct and its inverse, see e.g. [11], is given by

Â−1f (x) =
∫ x

0
(x−t)f (t)dt−1

2

∫ 1

0

(
x − t + 1

2

)
f (t)dt, for all f (x) ∈ C[0, 1].

(67)
The nonlinear functional φ : C[0, 1] → C is continuous and hence Theorem 1 can
be applied. By using the inverse operator Â−1, we get

Â−1q(x) = 70

24
(2x4 − 4x + 1),

Â−1f (x) = 1

24
(178x4 + 96x3 − 500x + 113), (68)

and after substituting into Eq. (23), we obtain a third-degree polynomial equation
that possesses one real root, namely b∗ = − 89

70 , which when is put in Eq. (22) yields
the exact real solution to the problem (64), viz.

u(x) = 4x3 − 6x + 1. (69)

Problem 2 From [15], solve the second order integro-differential equation of
Fredholm type with initial conditions,

u′′(x)− 1

2

∫ 1

−1
(xt + x2t2)(u(t)− u2(t))dt = 19

35
x2 + 11

15
x + 2,

u(0) = u′(0) = 1, x ∈ [−1, 1]. (70)

Setting

v(x) = u(x)− x − 1, (71)

carries Eq. (70) into

v′′(x)+ x

2

∫ 1

−1
t (2t + 1)v(t)dt + x2

2

∫ 1

−1
t2(2t + 1)v(t)dt

+x

2

∫ 1

−1
tv2(t)dt + x2

2

∫ 1

−1
t2v2(t)dt = 12

35
x2 + 2

5
x + 2,

v(0) = v′(0) = 0, x ∈ [−1, 1], (72)

with homogeneous initial conditions. Let the operator B : C[−1, 1] → C[−1, 1] be
defined by

Bv(x) = Âv(x)− gΨ (v)− qΦ(v) = f (x),

D(B) = {v ∈ C2[−1, 1] : v(0) = v′(0) = 0}, (73)
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where

Âv(x) = v′′(x), D(Â) = D(B),

Ψ (v) =
(
ψ1(v)

ψ2(v)

)
=

( ∫ 1
−1 t (2t + 1)v(t)dt

∫ 1
−1 t

2(2t + 1)v(t)dt

)

,

Φ(v) =
(
φ1(v)

φ2(v)

)
=

( ∫ 1
−1 tv

2(t)dt
∫ 1
−1 t

2v2(t)dt

)

,

g = (
g1(x) g2(x)

) =
(
− x

2 − x2

2

)
,

q = (
q1(x) q2(x)

) =
(
− x

2 − x2

2

)
,

f (x) = 12

35
x2 + 2

5
x + 2. (74)

It is known that the operator Â is correct with its inverse being

Â−1f (x) =
∫ x

0
(x − t)f (t)dt, for all f ∈ C[−1, 1], (75)

while the linear functionals ψi, i = 1, 2 are bounded and the nonlinear functionals
φj , j = 1, 2 are continuous on C[−1, 1] and thus we can compute the matrices W
and Q as follows

Â−1g = (
Â−1g1 Â

−1g2
) =

(
− x3

12 − x4

24

)
,

Â−1q = (
Â−1q1 Â

−1q2
) =

(
− x3

12 − x4

24

)
,

Â−1f = x4

35
+ x3

15
+ x2,

W =
(

1 − ψ1(Â
−1g1) −ψ1(Â

−1g2)

−ψ2(Â
−1g1) 1 − ψ2(Â

−1g2)

)
=

( 31
30

1
42

1
21

85
84

)
,

Q =
(
ψ1(Â

−1q1) ψ1(Â
−1q2)

ψ2(Â
−1q1) ψ2(Â

−1q2)

)
=

(− 1
30 − 1

42
− 1

21 − 1
84

)
,

Ψ (Â−1f ) =
(
ψ1(Â

−1f )

ψ2(Â
−1f )

)
=

( 3098
3675
328
735

)
. (76)

Since det W = 3098
3528 �= 0, we employ Corollary 1. By means of (76), we construct

the nonlinear system of two equations in two unknowns in Eq. (37). This system has
the exact solution b∗ = col(0, 2

7 ). From Eq. (36), we get the solution v(x) = x2 for
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the transformed problem (72), and subsequently from (71) the exact solution to the
original problem (70), specifically

u(x) = x2 + x + 1. (77)

Problem 3 Consider the following initial value problem implicating a second order
integro-differential equation of Fredholm type

u′′ − 96

7
x

∫ 1

0
u(t)dt −

∫ 1

0
tu′(t)dt − 35x2

∫ 1

0
u2(t)dt = −71

3
x2 − 2x + 7

12
,

u(0) = u′(0) = 0, x ∈ [0, 1]. (78)

Working as in Sect. 2, the operator B : C[0, 1] → C[0, 1] is defined by

Bu(x) = Âu(x)− gΨ (u)− qΦ(u) = f (x),

D(B) = {u ∈ C2[0, 1] : u(0) = u′(0) = 0}, (79)

where

Âu(x) = u′′(x), D(Â) = D(B),

Ψ (u) =
(
ψ1(u)

ψ2(u)

)
=

( ∫ 1
0 u(t)dt∫ 1

0 tu′(t)dt

)

,

Φ(u) = φ(u) =
∫ 1

0
u2(t)dt,

g = (
g1(x) g2(x)

) = (
96x

7 1
)
,

q = q(x) = 35x2,

f (x) = − 1

12
(284x2 + 24x − 7). (80)

By employing the inverse operator Â−1f (x) = ∫ x

0 (x − t)f (t)dt and by observing
that ψi, i = 1, 2 are bounded and φ is continuous on C1[0, 1], we construct the
matrices W and Q, viz.

Â−1g = (
Â−1g1 Â

−1g2
) =

(
16x3

7
x2

2

)
,

Â−1q = 35

12
x4,

Â−1f = − 1

12

(
71

3
x4 + 4x3 − 7

2
x2

)
,
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W =
[

1 − ψ1(Â
−1g1) −ψ1(Â

−1g2)

−ψ2(Â
−1g1) 1 − ψ2(Â

−1g2)

]
=

[ 3
7 − 1

6
− 12

7
2
3

]
,

Q =
[
ψ1(Â

−1q)

ψ2(Â
−1q)

]
=

[ 7
12
7
3

]
,

Ψ (Â−1f ) =
(
ψ1(Â

−1f )

ψ2(Â
−1f )

)
=

(− 137
360

− 49
30

)
.

(81)

Since det W = 0 but rank [W −Q] = 2 we implement the Corollary 2.
Accordingly, we assemble the matrices V and U in Eq. (46), namely

V =
[ 3

7 − 7
12

− 12
7 − 7

3

]
, U =

[− 1
6

2
3

]
, (82)

from Eq. (50) we find

(
a1

b

)
=

( 84a2+7
216
71

105

)
, (83)

and by substituting in Eq. (49), we get the nonlinear equation

507888a2
2 + 58296a2 − 1101889 = 0. (84)

This equation has two real roots a∗2 = 17
12 and a∗2 = − 64817

42324 . Putting each of them
into Eqs. (48) and (47), we get the two solutions of the nonlinear problem (78) in
the explicit form

u1(x) = x3 + x2, u2(x) = −17147

10581
x3 − 5016

10581
x2. (85)

Problem 4 Find the exact solution of the following first order integro-differential
equation of Fredholm type

u′ − 12x2
∫ 1

0
u(t)dt − x

∫ 1

0
u2(t)dt = −10x2 + 29

30
x + 1,

u(0) = 0, x ∈ [0, 1]. (86)

We begin by formulating (86) in the operator form

Bu(x) = Âu(x)− gΨ (u)− qΦ(x) = f (x),

D(B) = {u(x) ∈ C1[0, 1] : u(0) = 0}, (87)
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where the operator B : C[0, 1] → C[0, 1] and

Âu(x) = u′(x), D(Â) = D(B),

Ψ (u) = ψ(u) =
∫ 1

0
u(t)dt, Φ(u) = φ(u) =

∫ 1

0
u2(t)dt,

g = g(x) = 12x2, q = q(x) = x,

f (x) = −10x2 + 29

30
x + 1. (88)

It is known that the inverse operator Â−1f (x) = ∫ x

0 f (t)dt for all f ∈ C[0, 1]
while ψ is bounded and φ is continuous on C[0, 1], and therefore we can easily
compute

W = 1 − Ψ (Â−1g) = 0, Q = Ψ (Â−1q) = 1

6
, Ψ (Â−1f ) = − 31

180
. (89)

Because m = n = 1, det W = 0 and det Q = 1
6 �= 0, Corollary 3 applies.

Substituting into Eq. (58), we get the nonlinear equation

120a2 − 46a − 45 = 0, (90)

which possesses two real roots, a∗ = 5
6 and a∗ = −9

20 . Putting these roots into
Eq. (57), we obtain in closed form the two solutions to the nonlinear problem (86),
viz.

u1(x) = x2 + x, u2(x) = −77

15
x3 + x2 + x. (91)

Problem 5 As a last example, consider the first order integro-differential initial
value problem of Fredholm type

u′ − 12x2
∫ 1

0
u(t)dt − (6x − 2)

∫ 1

0
u2(t)dt = 3x2 − 2x + 1,

u(0) = 0, x ∈ [0, 1]. (92)

Let the nonlinear operator B : C[0, 1] → C[0, 1] and formulate the problem (92) as
follows

Bu(x) = Âu(x)− gΨ (u)− qΦ(x) = f (x),

D(B) = {u ∈ C1[0, 1] : u(0) = 0}, (93)
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where

Âu(x) = u′(x), D(Â) = D(B),

Ψ (u) = ψ(u) =
∫ 1

0
u(t)dt, Φ(u) = φ(u) =

∫ 1

0
u2(t)dt,

g = g(x) = 12x2, q = q(x) = 6x − 2,

f (x) = 3x2 − 2x + 1. (94)

By making use of the inverse operator Â−1f (x) = ∫ x

0 f (t)dt , for all f ∈ C[0, 1],
and the fact that ψ is bounded and φ is continuous on C[0, 1], we have

W = 1 − Ψ (Â−1g) = 0, Q = Ψ (Â−1q) = 0, Ψ (Â−1f ) = 5

12
. (95)

Observe that rank
[
W −Q Ψ(Â−1f )

]
> rank [W −Q] and hence Eq. (92)

does not possess any solutions by Corollary 4.

5 Conclusions

The extension operator method has been presented for constructing exact solutions
to a class of initial and boundary value problems involving a nonlinear operator
B defined as a perturbation of a linear correct operator Â with linear bounded
functionals and nonlinear continuous functionals.

The method has been applied for solving exactly nonlinear integro-differential
equations of Fredholm type with separable kernels and has been proved to be very
efficient.

It can also be employed equally well for the exact solution of linear and nonlinear
integral equations, differential equations with loads and difference equations.
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Qualitative, Approximate and Numerical
Approaches for the Solution of Nonlinear
Differential Equations

Eugenia N. Petropoulou and Michail A. Xenos

1 Introduction

During a standard undergraduate course in differential equations (DEs), ordinary
(ODEs) or partial (PDEs), we are taught several methods in order to find their
exact solutions, i.e. their solutions in terms of elementary or special functions,
or even in the form of power series in their independent variable(s), provided
that the corresponding coefficients can be uniquely determined. All these methods
refer mostly to linear equations and a “small” amount of specific classes of
nonlinear equations. Unfortunately, most differential equations describing real life
problems are nonlinear and the vast majority of these cannot be solved explicitly.
In these cases, we are obliged to use other, more advanced techniques widely
used in research, some of which are also taught in some undergraduate and many
postgraduate courses. In several cases not even these methods can give satisfactory
results and the need for new methods is required.

The aim of this chapter is to describe some of these more advanced techniques
which can be characterized as (a) qualitative, (b) approximate or (c) numerical.
Qualitative methods are employed in order to obtain information about the qualita-
tive characteristics of the solution of a DE. As a consequence, they provide answers
to questions such as:

• Do they exist solutions in specific spaces of interest? If yes, are they unique?
• Is the solution bounded? Can we find explicit bounds for it?
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• Do they exist positive/negative solutions?
• Do they exist periodic solutions?
• Can we describe the limiting behavior of the solution in the neighborhood of

infinity, or in the neighborhood of specific points of interest?
• In the case of ODEs, can we describe their trajectories?

Such kind of topics as the ones raised by the previous questions are covered in
various books. Indicatively we mention [6, 40, 43] and [57] for ODEs and [71–73]
for PDEs. Especially the last three questions, are connected with what is called the
analysis of dynamics of an ODE, which includes bifurcation analysis and the theory
of chaos.

Approximate methods may be considered as the next best thing after the methods
which calculate explicitly the solution of a DE. Their aim is to analytically calculate
several approximations of the true solution of the DE under consideration, each
of which is better than the previous one. One typical example of such a method
is Picard’s iteration technique, which is included in almost all standard textbooks
regarding ODEs. Another class of approximate methods are the perturbation
methods, the differential transform method, the Adomian decomposition method,
as well as the homotopy analysis method (HAM). We shall confine ourselves to
perturbation methods, which are covered in various books such as [3, 8, Lectures
17 and 18], [50, Chapter 2] and [56], as well as the HAM, for which a thorough
presentation can be found in [46]. For the Adomian decomposition method we refer
to [1, 2], whereas for the differential transform method, we refer to the recent book
[29].

Finally, numerical methods are our last hope when none of the aforementioned
two categories of methods can provide us with satisfactory results. Numerical
methods calculate numerically the approximate solution of a DE and they are
based on discretizing the physical domain, i.e. the domain where the dependent and
independent variables are defined. There is a large number of numerical methods.
One class of these are the Runge-Kutta (RK) methods, which are used as a reference
methodology for comparison with other analytical or numerical approaches. RK
methods were initially introduced a century ago but still are a golden-standard
approach for the numerical solution of ODEs. Several scientists used the RK method
to numerically solve the Duffing oscillator and the van der Pol equation [14, 55, 68].
Another class of these methods are the finite differences methods (FDM), which
are based on replacing the derivatives appearing in a DE with finite difference
approximations. In this way, instead of the DE under consideration, it is necessary
to solve a finite system of algebraic equations, which is called the corresponding
numerical scheme. See for example [45]. Dal used the FDM for the numerical
solution of the van der Pol oscillator with small fractional damping [19]. Two similar
in philosophy, but different in the implementation techniques, are the finite volumes
(FVM) and the finite elements (FEM) methods. With the help of FEM we are able to
construct an approximate solution of the initial value problem under consideration.
The Duffing equation was studied with the use of the FEM in [18, 63]. Finally,
another class of numerical methods are the spectral methods. See for example [11].
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Apart from these numerical methods, there also exist numerical techniques based
on nonstandard finite differences schemes, which tend to minimize or even vanish
problems associated with the numerical instabilities of a numerical scheme. We shall
not deal with such kind of schemes here and instead we refer to [53] and [54].

In many cases a problem must be “attacked” with a combination of methods. For
example, we may use specific theorems describing the qualitative properties of the
trajectories of an ODE, but then we’ll probably apply a FDM in order to actually
visualize some of these trajectories. Also, in many cases approximate techniques are
combined with numerical ones. For example, the differential transform method was
recently combined with the method of steps in [65, 66], in order to solve differential
and functional differential equations with delay. Many methods may also fall in
more than one of the aforementioned categories. For example, the method that we’ll
present in Sect. 5, is a functional-analytic technique (FAT) developed in [59, 60] and
[58], which gives information regarding the existence and uniqueness of bounded
solutions of an ODE in a specified Banach space of analytic functions defined in the
open unit disc. In this sense, it can be regarded as a qualitative method. However,
it can be implemented with the aid of a computer in order to calculate the solution
of the ODE in a far greater domain. In this sense, it can also be regarded as an
approximate technique.

In this chapter, some of the aforementioned methods will be presented by
applying them to the nonlinear ODE

x′′ + a
(
x2 − 1

)
x′ + βx + γ x3 = f (t), where x = x(t), (1)

subject to the initial conditions

x(0) = X0, x′(0) = X1. (2)

Equation (1) is referred to as a Duffing-van der Pol equation, since for β = 1,
γ = 0 and f (t) ≡ 0 reduces to the well-known van der Pol equation, whereas
for a = 0 and f (t) ≡ 0, it reduces to a special form of the famous Duffing
equation. Equation (1) is a basic model for self-excited oscillations arising in various
problems, including nonlinear vibrations [64] and nonlinear analysis of structures
[67]. As mentioned in [33], it is also “important in problems of “stall” instability
in the operation of air compressors and industrial fans or centrifugal pumps”.
With respect to the oscillatory problems that (1) describes, the term a

(
x2 − 1

)
x′

represents the nonlinear damping effect, the term f (t) stands for the applied external
force, whereas the term γ x3 represents the nonlinearity of the oscillation. Due to its
practical applications, we’ll mostly confine ourselves, with respect to the included
graphs, to values of the parameters a, β and γ which give rise to periodic solutions
of (1).

Qualitative methods for the study of (1) are employed in Sect. 2, whereas (1)–(2)
is solved using approximate techniques in Sect. 3, numerical techniques in Sect. 4
and a functional-analytic technique in Sect. 5. More precisely, in Sect. 2.1 some
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elementary special cases are treated and various results are given regarding the
integrability, the periodic character and the chaotic behavior of (1). In Sect. 2.2, (1)–
(2) is connected with a Green function. In Sect. 3.1, the classical perturbation
method is applied, whereas in Sect. 3.2, the initial value problem (IVP) (1)–(2) is
solved using HAM. In Sect. 4.1, (1)–(2) is solved using the explicit RK method of
fourth order, whereas in Sect. 4.2 a standard FDM method is used. In Sect. 4.3, a
Galerkin FEM method is applied. Finally, in Sect. 5, a functional-analytic method
is implemented for the solution of (1)–(2), not only for t ∈ R but also for t ∈ C.
Section 6 contains a discussion of the presented methods regarding their advantages
and limitations.

This chapter has an expository character. However, it also includes some new
results, such as the ones included in Sect. 5, as well as the application of multi-
parameter perturbation techniques to (1)–(2) included in Sect. 3.1.

2 Qualitative Results

2.1 Dynamic Properties

As already mentioned in the previous section, Eq. (1) reduces to van-der Pol or
Duffing equation for a specific choice of (a, β, γ, f (t)). It also includes of course
the simple harmonic oscillator, for a = γ = 0 and f (t) ≡ 0. In this case (1)
becomes

x′′ + βx = 0, where x = x(t), (3)

and the solution of (3), (2) is easily found to be

x(t) =

⎧
⎪⎨

⎪⎩

X1t +X0 for β = 0
X0 cosh(t

√−β)+ X1√−β sinh(t
√−β) for β < 0

X0 cos(t
√
β)+ X1√

β
sin(t

√
β) for β > 0

. (4)

Thus,

x′(t) =
⎧
⎨

⎩

X1 for β = 0
X0

√−β sinh(t
√−β)+X1 cosh(t

√−β) for β < 0
−X0

√
β sin(t

√
β)+X1 cos(t

√
β) for β > 0

. (5)

By eliminating t from (4) and (5) in the case when β �= 0 it is straightforward to find

βx2 + (
x′
)2 = βX2

0 +X2
1. (6)
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Relation (6) describes the trajectories of (3) in the phase plane (x, x′). Thus, the
trajectories of (3) are ellipses when β > 0 and hyperbolas when β < 0.

Relation (6) can also be obtained directly from (3) without explicitly knowing
x(t) in the following way: Multiply (3) by x′ to obtain

x′′x′ + βxx′ = 0

and then integrate the preceding equation with respect to t . This gives

(
x′
)2

2
+ β

x2

2
= c1 ⇒ (

x′
)2 + βx2 = c2, (7)

where c2 = 2c1 is an arbitrary constant. Taking into consideration (2) we find of
course c2 = X2

1 + βX2
0.

Relation (7) (or (6)) is a first integral of (3). A first integral of (1) can easily be
found also in the case when a = 0 and f (t) ≡ 0, i.e. in then case when (1) reduces
to a Duffing equation. In this case (1) becomes

x′′ + βx + γ x3 = 0

from which we find as before

x′′x′ + βxx′ + γ x3x′ = 0 ⇒ (
x′
)2 + βx2 + γ

x4

2
= c,

where c = X2
1 + βX2

0 + γ
X4

0
2 after taking (2) into account.

However, finding a first integral of (1) in the general case is not an easy task.
Actually, there is not much progress in this direction for (1), mainly because it fails
to pass the Painlevé test, which states that (see [69, p. 9]) “An ODE in the complex
domain is said to be of Painlevé type if the only movable singularities its solution
can exhibit are poles.” Lately though, there exist a few results in this direction at
least for some sets of values for (a, β, γ ). In [15] it was proved that equation

x′′ +
(
a1 + β1x

2
)
x′ − γ1x + x3 = 0, where x = x(t), (8)

which is very similar to (1), possesses the first integral

x′ + 1

β1
x + β1

3
x3 = I1e

− 3
β1
t
, (9)

where I1 an arbitrary constant, for

a1 = 4

β1
, γ1 = − 3

β2
1

.
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Moreover, for the above choice of parameters, the authors provide the general
solution of (8). For the specific choice I1 = 0, (9) gives easily

x = −
√

3

β1

√
t0e

2
β1
t − 1

, t0 > 1,

which is a particular solution of (8).
More recently, in [23] the more general than (1), with respect to the left hand

side, equation

x′′ + (
a2 + β2x

m
)
x′ − γ2x + δ2x

n = 0, where x = x(t),

was considered and it was proved that under the parametric conditions

a2 = δ2

β2
− γ2β2

δ2
, n = m+ 1

it admits the first integral

y′ + δ2

β2
y + β2

m+ 1
ym+1 = I2e

− δ2(m+1)
β2

w
,

where y = xt1/m, w = − β2
δ2m

ln t and I2 an arbitrary constant. It worths mentioning
that in [22], the first integral of

x′′ + (
a3 + β3x

m
)
x′ − γ3x + δ3x

m+1 + δ4x
n = 0, where x = x(t),

was obtained under certain parametric conditions.
Finally, it should be mentioned that the singularity analysis in complex t of (1)

can provide evidence for its integrability or not. In [10], the non-integrability of (1)
for β = 1 and f (t) = δ cos(ωt) was investigated by numerically studying the
analytic properties of its solution for complex t .

Another approach for studying the trajectories of (1), for f (t) ≡ 0, is be rewriting
it in the form of the system

x1 = x

x2 = x′
}

(1)⇒ x′1 = x2 = f1(x1, x2)

x′2 = ax2
(
1 − x2

1

)− βx1 − γ x3
1 = f2(x1, x2)

}
, (10)

where x1 = x1(t), x2 = x2(t) and performing a standard phase plane analysis. The
equilibrium points of (10) are obtained as the solutions of the algebraic system

f1(x1, x2) = 0
f2(x1, x2) = 0

}
.
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If γ = 0 or β/γ > 0, the only equilibrium point of (10) is (0, 0), whereas for β/γ <

0, (10) has the three equilibrium points (0, 0),
(
±
√
− β

γ
, 0

)
. The corresponding

Jacobian matrix is

J (x1, x2) =
(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)

=
(

0 1
−2ax1x2 − β − 3γ x2

1 a − ax1
2

)
.

Thus, by computing the eigenvalues of J (x1, x2) at (0, 0) and
(
±
√
− β

γ
, 0

)
,

the corresponding equilibrium points can be characterized (see for example [43,
Chapter 2]). It can be easily found that

• (0, 0) is

– a saddle point for β < 0,

– a node for 0 < β < a2

4 , stable if a < 0 and unstable if a > 0,

– a spiral point for β > a2

4 , stable if a < 0 and unstable if a > 0.

•
(
±
√
− β

γ
, 0

)
are

– spiral points for Δ = a2
(

1 + β
γ

)2+8β < 0, stable when a
(

1 + β
γ

)
< 0 and

unstable when a
(

1 + β
γ

)
> 0,

– saddle points for Δ > 0 and β > 0,

– nodes for Δ > 0 and β < 0, stable when a
(

1 + β
γ

)
< 0 and unstable when

a
(

1 + β
γ

)
> 0.

The characterization of the equilibrium points (10) gives a first understanding of
how its trajectories are formed in the phase plane (x1, x2). For example, periodic
solutions are expected in the cases where the equilibrium points of (10) are
characterized as spiral points. Periodic solutions of (10) are also predicted by
specific standard theorems which can be found in almost all standard textbooks on
nonlinear ODEs. One such theorem is the following:

Theorem 1 ([43, p. 299]) The ODE

x′′ + h1(x, x
′)x′ + h2(x) = 0, x = x(t),

where h1, h2 are continuous, has at least one periodic solution under the following
conditions:

(i) ∃ c > 0 such that h1(x, y) > 0 when
√
x2 + y2 > c

(ii) h1(0, 0) < 0
(iii) h2(0) = 0, h2(x) > 0 when x > 0 and h2(x) < 0 when x < 0
(iv)

∫ x

0 h2(u)du → ∞, x → ∞.

Another similar theorem is the following:
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Theorem 2 ([43, p. 306]) The ODE

x′′ + h3(x)x
′ + h4(x) = 0, x = x(t),

where h3, h4 are continuous, has a unique periodic solution if

(i) H(x) = ∫ x

0 h3(u)du is an odd function
(ii) H(x) is zero only at x = 0, x = ±c for some c > 0

(iii) H(x) → ∞ as x → ∞, monotonically for x > c.
(iv) h4(x) is an odd function and h(x) > 0 for x > 0.

It is a simple exercise to show that both Theorems 1 and 2 hold for (1), in the case
when f (t) ≡ 0, for a, β, γ > 0.

Apart from these first, almost elementary results regarding the trajectories
of (10), Eq. (1) exhibits a far more interesting and exotic dynamic behavior. It
is considered after all, as one of the simplest nonlinear ODEs for which strange
attractors, limit cycles and chaos have been observed. Indeed we can see some
examples in Fig. 1, where the trajectories of (10) are depicted for specific values of
(a, β, γ ). The appearance of a limit cycle is obvious from the graphs in some cases.
However, proving it rigorously is not an easy task. We shall not discuss such kind of
topics here. Instead, we refer to [7, 42, 44, 51, 52, 61, 70, 74, 78, 79], where topics
concerning the occurrence of chaos, strange attractors, limit cycles and bifurcations
of ODEs of the form (1) were studied.

2.2 The Green Function

One of the most useful tools for the study and construction of the solution of a DE is
its corresponding Green function. But what is it a Green function? In order to give
a rough description, let’s consider the non-homogeneous, linear ODE of order n of
the general form:

y(n)(t)+ an−1(t)y
(n−1)(t)+ . . .+ a1(t)y

′(t)+ a0(t)y(t)︸ ︷︷ ︸
Ly

= h(t), (11)

where h(t) and ai(t), i = 1, . . . , n−1 known functions, accompanied with suitable
initial at t = t0 or boundary at t = t1 and t = t2 conditions. If the solution of (11)
can be written in the integral form

y(t) =
∫

I

G(t, τ )h(τ)dτ, (12)

where I = [t0, t] or I = [t1, t2] ⊂ R, the function G(t, τ ) is called the Green
function of the corresponding initial or boundary value problem. Of course there
exists a rigorous mathematical definition for Green function (see for example [28,
Chapter 2]), but we do not need it for the purposes of this chapter.
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Fig. 1 Trajectories of (10) for various values of (a, β, γ )

The solution of (11) in the form (12) is quite useful, since it provides us with
a way of finding the solution of (11) for any choice of h(t) without resolving it
every time. We just need to compute the integral on the right hand side of (12), even
numerically if it cannot be expressed in terms of elementary or special functions.

Apart from being an important mathematical “object”, Green function is also
a very popular tool among engineers. It is associated with the boundary element
method in numerical analysis and it has been used in the study of problems of
practical interest, such as problems of structures, hydrology, fluid mechanics and
elasticity (indicatively see [9, 26, 34, 75, 77]). With respect to strictly mathematical
problems, the Green function has been associated mostly with positive solutions
of boundary value problems. There is a large number of mathematical papers with
results connected with Green function. It suffices to mention that MathSciNet search
engine machine gives (today) approximately 4000 results for papers having the
words “Green function” at their title.

There are several ways of constructing the Green function for a linear problem.
Generally speaking, the Green function G(t, τ ) for (11) satisfies the ODE

LG(t, τ ) = δ(t − τ), (13)
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where δ the Dirac delta function and the initial or boundary conditions that
accompany (11). For further details and techniques see [3, 20, Lecture 16] or [50,
Chapter 5]. For reasons of demonstration, we’ll construct the Green function for (1)–
(2) in the case when a = γ = 0 and β > 0, i.e. for the classical problem
consisting of

x′′ + βx = f (t), x = x(t) (14)

and the homogeneous initial conditions

x(0) = x′(0) = 0, (15)

which describes forced, undamped oscillations with no initial displacement or
velocity.

Instead of using (13), we’ll use a simpler way to construct the Green function
of (14)–(15) by actually solving it and then rewriting the formula for its solution in
the form (12). Of course this way may not work with more complicated ODEs. The
corresponding to (14) homogeneous equation is (3) and its general solution is

xh(t) = c1 cos(t
√
β)+ c2 sin(t

√
β),

where c1, c2 arbitrary constants. Using the method of variation of parameters, we
seek a particular solution of (14) of the form

xp(t) = c1(t) cos(t
√
β)+ c2(t) sin(t

√
β),

where

c′1(t) cos(t
√
β)+ c′2(t) sin(t

√
β) = 0

−√
βc′1(t) sin(t

√
β)+√

βc′2(t) cos(t
√
β) = f (t)

}
.

Solving the preceding algebraic with respect to c′1(t) and c′2(t) system we find

c′1(t) = − 1√
β
f (t) sin(t

√
β), c′2(t) =

1√
β
f (t) cos(t

√
β)

from where we obtain

c1(t) = − 1√
β

∫ t

0
f (τ) sin(τ

√
β)dτ, c2(t) = 1√

β

∫ t

0
f (τ) cos(τ

√
β)dτ.

As a consequence, the general solution of (14) is

x(t) = xh(t)+ xp(t) = c1 cos(t
√
β)+ c2 sin(t

√
β)

+ 1√
β

sin(t
√
β)

∫ t

0
f (τ) cos(τ

√
β)dτ − 1√

β
cos(t

√
β)

∫ t

0
f (τ) sin(τ

√
β)dτ
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which after taking (15) into consideration becomes

x(t) = 1√
β

∫ t

0
f (τ)[sin(t

√
β)cos(τ

√
β)dτ − cos(t

√
β) sin(τ

√
β)]dτ

⇒ x(t) =
∫ t

0

1√
β
f (τ)sin[(t − τ)

√
β]dτ. (16)

Thus, the Green function of (14)–(15) is

G1(t, τ ) = 1√
β

sin[(t − τ)
√
β].

From (16), we can immediately find the solution of (14)–(15) in two special cases
of interest:

• when f (t) = f1(t) = δ cos(ωt), ω �= ±√
β and

• when f (t) = f2(t) = δ cos(t
√
β).

In both cases, we have a periodic external force, but in the second case, resonance
is present. In the first case it is

x1(t) = δ√
β

∫ t

0
cos(ωτ) sin[(t − τ)

√
β]dτ = δ

β − ω2

[
cos(ωt)− cos(t

√
β)

]
,

whereas in the second case it is

x2(t) = δ√
β

∫ t

0
cos(τ

√
β) sin[(t − τ)

√
β]dτ = δ

2
√
β
t sin(t

√
β).

Let’s return to (1)–(2) and consider the auxiliary linear problem

x′′ = f (t), x = x(t)

x(0) = x′(0) = 0.
(17)

As in the case of (14)–(15), we can construct the Green function for (17) and we
find it to be

G2(t, τ ) = t − τ.

It is now a simple exercise (similar to exercise 16.7 p. 125 of [3]) to prove the
following:

Proposition 1 The function x(t) is a solution of (1)–(2) if and only if

x(t) = X0 +X1t +
∫ t

0
G2(t, τ )F (τ, x, x

′)dτ, (18)
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where F(t, x, x′) = f (t) + a(1 − x2)x′ − γ x3 − βx and G2(t, τ ) is the Green
function of (17).

Proof

(⇐) Suppose (18) holds. We’ll show that (18) satisfies (1)–(2). Differentiating (18)
twice with respect to t we find

x′(t) = X1 +G2(t, t)F (t, x, x
′)+

∫ t

0

∂G2(t, τ )

∂t
F (τ, x, x′)dτ

⇒ x′(t) = X1 +
∫ t

0
F(τ, x, x′)dτ (19)

⇒ x′′(t) = F(t, x, x′),

which is (1). Moreover, from (18) and (19) we find the initial conditions (2).
(⇒) Suppose (1)–(2) holds. Then

∫ t

0
x′′(τ )dτ =

∫ t

0
F(τ, x, x′)dτ ⇒ x′(t)−X1 =

∫ t

0
F(τ, x, x′)dτ

⇒
∫ t

0
x′(τ )dτ =

∫ t

0
X1dτ +

∫ t

0

∫ t

0
F(τ, x, x′)dτdτ

⇒ x(τ)−X0 = X1t +
∫ t

0
(t − τ)F (τ, x, x′)dτ,

which is (18).

Proposition 1 enables us to rewrite (1)–(2) as an integrodifferential equation of
Volterra type. Several fixed point theorems may be applied to (18), in order to ensure
the existence and/or uniqueness of solutions of (18) and consequently of (1)–(2) in
specific spaces. Especially in the case when a = 0, (1)–(2) is equivalent to the
integral equation

x(t) = X0 +X1t +
∫ t

0
G2(t, τ )F1(τ, x)dτ,

where F1(t, x) = f (t)− γ x3 − βx.
Apart from the fact that (18) is a convenient form to rewrite (1)–(2) in order

to obtain some qualitative type of results, it also gives an alternative way to
obtain the solution of (1)–(2) numerically. Instead of applying a numerical method
to the IVP (1)–(2), we may apply a numerical method to the integrodifferential
equation (18). This is expected to decrease the errors when using an FDM method as
discussed in Sect. 4.2. Moreover, (18) is called the “weak form” of (1)–(2). Having
the weak form of a problem for a DE is the first step in the attempt to solve it using
a FEM method.
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3 Approximate Techniques

3.1 Classical Perturbation Method

Perturbation techniques are a very popular tool for approximately solving a DE
providing that a small positive parameter 0 < ε << 1 appears in the DE.
Sometimes, when no such parameter appears, it is artificially enforced at the DE,
in such a way so that the new DE with the ε, to be reduced to the initial DE for
a specific value of ε. The fact that a parameter must be present in the DE under
consideration is one limitation of the perturbation methods. Another limitation is
that this parameter must be much smaller than 1.

When we apply the classical perturbation technique to an ODE of the form

G(ε; t, y, y′, y′′, . . . , yn) = 0, (20)

where y = y(t) and 0 < ε << 1, we seek for solutions of (20) of the form

y(t) =
∞∑

m=0

ym(t)ε
m, (21)

where the coefficients ym(t) are functions to be determined. The series (21) is called
a perturbation series. The first coefficient y0(t) is called the leading order term,
whereas the terms ym(t)εm, m �= 0 are called the mth correction of the solution
of (20). Usually, it suffices to consider just the first few (two or three) terms of the
perturbation series in order to obtain a good approximation of the solution of (20).
In this case the solution of (20) is given by the approximate expression

ya(t) = y0(t)+ y1(t)ε + y2(t)ε
2 + . . .+ yi(t)ε

i +O
(
εi+1

)

⇒ ya(t) 9 y0(t)+ y1(t)ε + y2(t)ε
2 + . . .+ yi(t)ε

i .

In the case when the approximate solution ya(t) converges to the exact solution
of (20) at some well-defined rate as ε → 0, the approximation is said to be uniform
and the perturbation is successful.

In order to compute the coefficients of (21), we substitute (21) to (20) and equate
the coefficients of the εm appearing in both sides of the new equation. In this way,
instead of solving (20), we need to solve a series (usually two or three) of new
ODEs, in each of which the unknown function is ym(t), m = 0, 1, 2, . . .. In order
for the classical perturbation to be successful, the ODE with unknown the leading
order term y0(t) must satisfy the following criteria:
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• It should be the same with (20) for ε = 0. Actually the ODE

G(0; t, y, y′, y′′, . . . , yn) = 0

is called the unperturbed equation.
• It should be easier than (20).
• It should be of the same order as (20).
• We should be able to find its solution in closed form.

Such kind of problems, where the classical perturbation method is successful, are
characterized as regular. If the preceding criteria are not fulfilled, then the classical
perturbation technique fails and other methods should be used. Special care is
needed in the cases when a power of ε is multiplied with y(n)(t). In these cases, the
ODE for y0(t) is not of the same order as (20) and singular perturbation techniques
must be employed.

In the IVP (1)–(2), three parameters appear, namely a, β and γ . Let’s take 0 <

a << 1 and assume that (1)–(2) has a solution of the form

x(t) = x0(t)+ ax1(t)+ a2x2(t)+O
(
a3

)
. (22)

Substituting (22) into (1) and equating the coefficients of the am, m = 0, 1, 2
appearing in both sides of the new equation, we find after some manipulations that
the leading order term satisfies the IVP

x′′0 (t)+ βx0(t)+ γ x3
0(t) = f (t),

x0(0) = X0, x′0(0) = X1.
(23)

If we choose 0 < β << 1 and assume that (1)–(2) has a solution of the form

x(t) = x̃0(t)+ βx̃1(t)+ β2x̃2(t)+O
(
β3

)
,

we find as before that the leading order term satisfies the IVP

x̃′′0 + a
(
x̃2

0 − 1
)
x̃′0 + γ x̃3

0 = f (t),

x̃0(0) = X0, x̃′0(0) = X1.
(24)

Finally, if we choose 0 < γ << 1 and assume that (1)–(2) has a solution of the
form

x(t) = x̂0(t)+ γ x̂1(t)+ γ 2x̂2(t)+O
(
γ 3

)
,

we find in the same way that the leading order term satisfies the IVP

x̂′′0 + a
(
x̂2

0 − 1
)
x̂′0 + βx̂0 = f (t),

x̂0(0) = X0, x̂′0(0) = X1.
(25)
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All three problems (23)–(25) consist of nonlinear ODEs (the corresponding unper-
turbed ones) which cannot be solved analytically in closed form for all values of a,
β and γ . Thus, the classical perturbation technique fails for (1)–(2). However, by
assuming all three parameters very small, we may seek solutions of the form

x(t) =
∞∑

i=0

∞∑

j=0

∞∑

k=0

xi,j,k(t)a
iβj γ k. (26)

Such a series is a three-parameter perturbation series and the corresponding method
is a three-parameter perturbation method. Assuming i, j, k taking only the first two
values, i.e. 0 and 1, we seek for solutions of (1)–(2) of the form:

x(t) =
1∑

i=0

1∑

j=0

1∑

k=0

xi,j,k(t)a
iβj γ k + . . . = x0,0,0(t)+ ax1,0,0(t)+ βx0,1,0(t)

+γ x0,0,1(t)+ aβx1,1,0(t)+ aγ x1,0,1(t)+ βγ x0,1,1(t)+ aβγ x1,1,1(t)+ . . . .

(27)
Substituting (27) into (1)–(2), keeping only terms of aiβj γ k as those appearing
in (27) and equating the coefficients of the corresponding terms appearing in both
sides of the new equations, we end up with the IVPs of Table 1.

Table 1 IVPs for xi,j,k(t) of (27)

IVP1 x′′0,0,0(t) = f (t),

x0,0,0(0) = X0, x′0,0,0(0) = X1

IVP2 x′′1,0,0(t) = x′0,0,0(t)− x2
0,0,0(t)x

′
0,0,0(t),

x1,0,0(0) = 0, x′1,0,0(0) = 0

IVP3 x′′0,1,0(t) = −x0,0,0(t),

x0,1,0(0) = 0, x′0,1,0(0) = 0

IVP4 x′′0,0,1(t) = −x3
0,0,0(t),

x0,0,1(0) = 0, x′0,0,1(0) = 0

IVP5 x′′1,1,0(t) = −x1,0,0(t)− x2
0,0,0(t)x

′
0,1,0(t)

+x′0,1,0(t)− 2x0,0,0(t)x0,1,0(t)x
′
0,0,0(t),

x1,1,0(0) = 0, x′1,1,0(0) = 0

IVP6 x′′1,0,1(t) = −x2
0,0,0(t)x

′
0,0,1(t)− 3x2

0,0,0(t)x1,0,0(t)

+x′0,0,1(t)− 2x0,0,0(t)x0,0,1(t)x
′
0,0,0(t),

x1,0,1(0) = 0, x′1,0,1(0) = 0

IVP7 x′′0,1,1(t) = −x0,0,1(t)− 3x2
0,0,0(t)x0,1,0(t),

x0,1,1(0) = 0, x′0,1,1(0) = 0

IVP8 x′′1,1,1(t) = −x1,0,1(t)− 3x2
0,0,0(t)x1,1,0(t)− x2

0,0,0(t)x
′
0,1,1(t)

+x′0,1,1(t)− 6x0,0,0(t)x0,1,0(t)x1,0,0(t)− 2x0,0,1(t)x0,1,0(t)x
′
0,0,0(t)−

2x0,0,0(t)x0,1,1(t)x
′
0,0,0(t)− 2x0,0,0(t)x0,0,1(t)x

′
0,1,0(t)− 2x0,0,0(t)x0,1,0(t)x

′
0,0,1(t),

x1,1,1(0) = 0, x′1,1,1(0) = 0
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Table 2 Solutions of the IVP1–IVP8 for X0 = 0 = X1 and f (t) = cos t

x0,0,0(t) = 1 − cos t

x1,0,0(t) = 1

36
[6t + 9 sin t − 9 sin(2t)+ sin(3t)]

x0,1,0(t) = 1

2

(
2 − t2 − 2 cos t

)

x0,0,1(t) = 1

72

[
245 − 90t2 − 270 cos t + 27 cos(2t)− 2 cos(3t)

]

x1,1,0(t) = 1

648

[
−1059t + 36t3 − 1296t cos t + 81t cos(2t)

+3240 sin t − 648t2 sin t − 567 sin(2t)+ 81t2 sin(2t)+ 56 sin(3t)
]

x1,0,1(t) = 1

172800

[
−1296420t + 14400t3 − 1036800t cos t + 64800t cos(2t)

+3232800 sin t − 432000t2 sin t − 612000 sin(2t)+ 54000t2 sin(2t)

+96800 sin(3t)− 8175 sin(4t)+ 384 sin(5t)]

x0,1,1(t) = 1

1296

[
40936 − 7065t2 + 378t4 − 42768 cos t + 3888t2 cos t + 1944 cos(2t)

+486t sin(2t)− 243t2 cos(2t)− 112 cos(3t)− 15552t sin t
]

x1,1,1(t) = 1

74649600

[
−7770555660t + 385632000t3 − 20113920t5 − 9839232000t cos t

+1082160000t cos(2t)+ 559872000t3 cos t − 9331200t3 cos(2t)− 136166400t cos(3t)

+3385800t cos(4t)+ 22184064000 sin t − 4100544000t2 sin t + 136857600t4 sin t

+901238400t2 cos t sin t − 3380508000 sin(2t)− 5443200t4 sin(2t)+ 439014400 sin(3t)

+847872 sin(5t)− 41817600t2 sin(3t])− 20980575 sin(4t)+ 1765800t2 sin(4t)
]

Notice that the ODEs involved in the IVPs 1–8 are linear with respect to their
unknown functions xi,j,k(t) and thus, can be solved explicitly. Let’s find in this
way, the approximate solution of (1)–(2) in the case when X0 = 0 = X1 and
f (t) = cos t . In this case, the solutions of the IVPs 1–8 are given in Table 2. Thus,
the approximate solution of (1)–(2) is (27) for xi,j,k(t) i, j, k = 0, 1 as in Table 2.
This solution is depicted in Fig. 2, with dashed line, for a = 0.002, β = 0.008 and
γ = 0.003. At the same figure, the corresponding numerical solutions of (1)–(2)
obtained with the fourth order RK and FEM are also depicted. We can easily verify
in this case, that the approximate solution obtained by the three-parameter classical
perturbation method is in very good agreement with the corresponding numerical
ones, although we considered very few terms of the perturbation series (26).

In Fig. 3, we see with dashed line again, the graph of (27) in the case when
X0 = 0 = X1 and f (t) = cos t and the parameters a, β and γ are larger than
before, namely for a = 0.02, β = 0.08 and γ = 0.03. The corresponding fourth
order RK numerical solution of (1)–(2) in this case is also depicted with a continuous
line. We notice that now the two solutions are in good agreement up to t 9 4.5 and
after that point, the approximate solution slowly but steadily, is drawn away from the
corresponding numerical one. This may be due to the fact that we have considered
only very few terms of the perturbation series (26). Another reason for this diver-
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Fig. 2 Graph of (27) (dashed line), numerical solution with RK4 (continuous line) and numerical
solution with FDM (dotted line) of (1)–(2), for X0 = X1 = 0, f (t) = cos t , a = 0.002, β = 0.008
and γ = 0.003

2 4 6 8 10
t

–2

–1

1

x(t)

Fig. 3 Graph of (27) (dashed line) and numerical solution (continuous line) of (1)–(2), for X0 =
X1 = 0, f (t) = cos t , a = 0.02, β = 0.08 and γ = 0.03
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2 4 6 8 10
t

–15

–10

–5

5
x(t)

Fig. 4 Graph of (27) (dashed line) and numerical solution (continuous line) of (1)–(2), for X0 =
X1 = 0, f (t) = cos t , a = 0.02, β = 1 and γ = 0.03

gence, is the appearance of terms like tm cos(φ1t) or tn sin(φ2t) in the approximate
solution. Such kind of terms are called secular terms and they may increase rapidly
with t , regardless of the fact that a, β, γ , cos(φ1t) and sin(φ2t) are small. One way
to deal with this problem is to “refine” the perturbation method in such a way so
that secular terms do not appear in the solution. This may be done for example with
the Lindstedt-Poincaré method (see for example [50, Chapter 2] and [56]).

Now let’s “forget” for a moment that all parameters were assumed much smaller
than 1 and consider the case when a = 0.02, β = 1 and γ = 0.03 again for
X0 = X1 = 0, f (t) = cos t . In this case, the graph (dashed line) of (27) is shown
in Fig. 4. With the continuous line the corresponding fourth order RK numerical
solution is also depicted at the same figure. It’s obvious that the classical three-
parameter perturbation method for (1)–(2) fails “triumphantly” and this is due to
the violation of the assumption that β must be much smaller than 1.

However, not all parameters need to be simultaneously small. Let’ assume β = 1,
0 < a, γ << 1 and seek solutions of (1)–(2) of the form

x(t) =
∞∑

i=0

∞∑

j=0

xi,j (t)a
iγ j + . . . = x0,0(t)+ax1,0(t)+γ x0,1(t)+aγ x1,1(t)+ . . . .,

(28)
i.e. we apply a two-parameter classical perturbation method. As before, we are led
to the IVPs of Table 3.

For f (t) = cos t and X0 = 0 = X1, the graph of (28) of (1)–(2) for
the aforementioned values of parameters is shown in Fig. 5 with dashed line.
With the continuous line we graph again the corresponding fourth order RK
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Table 3 IVPs for xi,j (t)
of (28)

IVP1 x′′0,0(t)+ x0,0(t) = f (t),

x0,0(0) = X0, x′0,0(0) = X1

IVP2 x′′1,0(t)+ x1,0(t) = x′0,0(t)− x2
0,0(t)x

′
0,0(t),

x1,0(0) = 0, x′1,0(0) = 0

IVP3 x′′0,1(t)+ x0,1(t) = −x3
0,0(t),

x0,1(0) = 0, x′0,1(0) = 0

IVP4 x′′1,1(t)+ x1,1(t) = −3x2
0,0(t)x1,0(t)− x2

0,0(t)x
′
0,1(t)

+x′0,1(t)− 2x0,0(t)x0,1(t)x
′
0,0(t)

x1,1(0) = 0, x′1,1(0) = 0

5 10 15
t

–50

–40

–30

–20

–10

x(t)

Fig. 5 Graph of (28) (dashed line) and numerical solution (continuous line) of (1)–(2), for X0 =
X1 = 0, f (t) = cos t , a = 0.02, β = 1 and γ = 0.03

numerical solution of (1)–(2). It is obvious, that now the two-parameter classical
perturbation method gives an approximate solution which is in good agreement
with the corresponding numerical solution up to t 9 13, but after that point the
approximate solution diverges from the numerical one. This is again due to the
few terms of (28) considered or/and due to the appearance of secular terms in the
approximate solution.

It would be natural to think that a two-parameter perturbation method with
perturbation parameters (a, β) or (β, γ ) could be successfully applied to (1)–(2).
However, this is not true, because in these cases the IVP for the leading order term
x0,0(t) is nonlinear and cannot be solved analytically, at least not for all values of a,
β and γ .
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3.2 Homotopy Analysis Method

The homotopy analysis method is similar to perturbation methods, in the sense that
instead of the original problem, a series of simpler linear problems are solved.
(Remember that when using a perturbation method, the simpler problems for the
leading order term and the first, second, etc corrections may still be nonlinear.)
However, HAM does not require the existence of a small parameter in the equation
under consideration and thus is more flexible and can be used in a greater amount
of problems compared to perturbation methods. It has already been successfully
applied to a variety of problems such as problems of nonlinear oscillations,
deformation of beams, boundary layer flows in fluid mechanics, solitary waves, etc.

As its name suggests, HAM is based on the notion of homotopy. In topology, a
homotopy is a map H : X × I → Y , where I = [0, 1], such that H(t, 0) = g0(t)

and H(t, 1) = g1(t), where g0, g1 : X → Y (see [32, p. 1]). The basic idea of HAM
for ODEs can be summarized as follows:

Given a nonlinear ODE

A [y(t)] = 0, (29)

where A a nonlinear differential operator and y(t) the unknown function, find a
homotopy H [Φ(t; q), q] , q ∈ [0, 1] and an initial approximation y0(t) of y(t), in
such a way that

H [Φ(t; q), q]|q=0 = 0

has as solution the function y0(t) and

H [Φ(t; q), q]|q=1 = 0

has as solution, the function y(t), i.e. the solution of (29). The parameter q is often
referred to as embedding parameter.

In most cases, (29) is accompanied by initial or/and boundary conditions. Thus,
y0(t) is a suitable function (the word suitable will be soon clarified) satisfying the
accompanying conditions.

One suitable homotopy proposed by He in [30] is the following:

H1[Φ(t; q), q] = (1 − q)L1[Φ(t; q)− y0(t)] + qA [Φ(t; q)], (30)

where L1 is a linear operator “inspired” by (29) with the property

L1[g] = 0 when g = 0. (31)

Another, more general, suitable homotopy proposed by Liao (see for example [46])
is the following:

H2[Φ(t; q), q] = (1 − q)L2[Φ(t; q)− y0(t)] − qh̄H(t)A [Φ(t; q)], (32)
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where L2 is again a linear operator “inspired” by (29) with the property (31), h̄ is a
nonzero auxiliary parameter also called convergence control parameter and H(t) is
a nonzero auxiliary function. Notice that (30) can be obtained from (32) for h̄ = −1
and H(t) ≡ 1. Observe also that for i = 1, 2 it is

Hi[Φ(t; q), q]|q=0 = 0 ⇒ Li [Φ(t; q)− y0(t)]|q=0 = 0
(31)⇒ Φ(t; 0) = y0(t)

(33)
and

Hi[Φ(t; q), q]|q=1 = 0 ⇒ A [Φ(t; q)]|q=1 = 0, (34)

which is (29). This means that as q varies from 0 to 1, the solution Φ(t; q) of
Hi[Φ(t; q), q] = 0, i = 1, 2 varies from y0(t) to y(t).

Since H1 is a specific case of H2, we shall further proceed with explaining HAM
as proposed by Liao, see for example [46]. In order to further connect Φ(t; q) with
y(t), let’s use Taylor’s theorem to write

Φ(t; q) = Φ(t; 0)+
∞∑

k=1

1

k!
∂k[Φ(t; q)]

∂qk

∣
∣∣∣

qk

q=0

or after introducing the notation yk(t) = 1
k!

∂k[Φ(t;q)]
∂qk

∣∣∣
q=0

(yk(t) are called k-th

order deformation derivatives)

Φ(t; q) = Φ(t; 0)+
∞∑

k=1

yk(t)q
k (33)= y0(t)+

∞∑

k=1

yk(t)q
k. (35)

Assuming that:

(A1) H2[Φ(t; q), q] = 0 has a solution for all q ∈ [0, 1],
(A2) yk(t) exist for all k = 1, 2, 3, . . . and
(A3) the power series on the right hand side of (33) converges for q = 1,

we can write

y(t) = y0(t)+
∞∑

k=1

yk(t), (36)

which is obtained from (35) for q = 1 after taking into consideration (34) and (29).
Now the “only thing” left is a way to find yk(t). It can be shown [46, Chapter 3],
that these are obtained by solving the linear ODEs, called high-order deformation
equations

L2[yk(t)− χkyk−1(t)] = h̄H(t)Rk[y0(t), . . . yk−1(t), t] (37)
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where

χk =
{

0, k = 1
1, k = 2, 3, . . .

,

Rk[y0(t), . . . , yk−1(t), t] = 1

(k − 1)!
∂k−1[A (Φ(t; q)]

∂qk−1

∣
∣∣∣
q=0

(38)

and yk(t) satisfy suitable initial or/and boundary conditions. Since y0(t) is known,
y1(t) can be obtained from (37) for k = 1, then y2(t) for k = 2 and so on. It can
be proved that as long as the series in the right hand side of (36) converges, where
yk(t) are obtained from (37), (36) is a solution of (29).

Up to now, we have said nothing about how L2, h̄ and H(t) are chosen.
Generally speaking, they should be chosen in such a way that assumptions (A1)–
(A3) are satisfied. Thus, HAM provides us with great freedom on how to choose
all these. However, for practical reasons we need to follow some fundamental rules.
First of all, we must choose a set of base functions, for example SB = {ei(t), i =
0, 1, 2, . . .}, which will “guide” us throughout the implementation of HAM. The
first rule, called the rule of solution expression, states that the solution y(t) of (29)
should be represented by ei(t), i.e. we should be able to write y(t) as a series of
ei(t), i.e.

y(t) =
∞∑

i=0

ciei(t), (39)

where ci , i = 0, 1, 2, . . . coefficients. The same rule tells us how to choose y0(t) and
L2: y0(t) can be any function expressed as a combination of some ei(t) satisfying
the conditions accompanying (29) and L2, should be such that the solution of (37),
i.e. yk(t) to be able to be expressed as a combination of ei(t). Furthermore, H(t)

should be chosen in such a way so that the solutions yk(t), k = 1, 2, . . . of (37) to be
again expressed as a combination of ei(t). At this stage, H(t) may not be uniquely
determined.

The second rule, called the rule of coefficient ergodicity, states that each coeffi-
cient ck,i of yk(t) should be able to be modified as the order of the approximation
tends to infinity. This rule, together with the first rule, gives us a unique H(t) in
many cases. The third and last rule, called the rule of solution existence, states that
y0(t), H(t) and L2 should be chosen in such way that all Eq. (37) can be solved and
their solutions are in closed form.

In practice, the implementation of HAM involves many calculations, since the
ODEs (37) must be solved for as many k as possible. However, this is not a
problem nowadays that programs like Mathematica or Maple are available. The
whole procedure is facilitated if SB contains relatively simple functions. There
also exist some packages for automatic derivation of HAM solutions for nonlinear
periodic oscillators (see [48] and [49]).
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Finally, how do we choose h̄? Suppose yap(t) = y0(t) +
K∑

k=1

yk(t) is an

approximation of the solution y(t) of (29) obtained by HAM. This yap(t) depends
also on h̄. One simple way to determine h̄ is the following: If the order of (29)
is n, find y

(n)
ap (t0) for some t0 and plot it against h̄. This graph is called h̄-curve.

Assuming (36) convergent, it should be the solution of (29). Thus, y(n)ap (t0) should
always have the same value. This means that we should be able to see a horizontal
line segment at the h̄-curve. The region of h̄ for which this horizontal line segment
appears is called the valid region of h̄ and if we choose a value of h̄ from this region,
we’re quite sure that (36) converges. The quantity y

(n+1)
ap (t0) may have a physical

meaning in certain applications. Moreover, there may exist more than one important
quantities with physical meaning. Thus, we can plot all of them against h̄ and find
more h̄-curves. The more h̄-curves we plot, the clearer should be how to choose
the value of h̄. Another way to choose h̄ is by finding the optimum h̄ for which
the residual or the average residual error between yap(t) and y(t) is minimum, but
we’ll confine ourselves here to the use of h̄-curves. For some recent developments
on HAM we refer to [31] and [47].

In [16], He’s HAM was applied to an equation similar to (1), namely equation

x′′ + a1x + a3x
3 = a2

(
1 − x2 − x′2

)
x′, x = x(t),

where ai , i = 1, 2, 3 are constant parameters. Also, in [17], the limit cycle of (1) for
f (t) ≡ 0 and β = 1 was studied using Liao’s HAM.

In order to demonstrate Liao’s HAM, we’ll apply it to (1)–(2) in the simple case
when a = 0, β = 1, f (t) ≡ 0, X0 = 1, X1 = 0 and γ = 100, i.e. for the IVP

x′′ + x + 100x3 = 0, x = x(t), (40)

x(0) = 1, x′(0) = 0. (41)

The only reason to choose such a large value for γ is in order to show that HAM
is not at all affected by it. Actually the same problem for any value of γ (and
other more general) is already solved by HAM in various papers and also in [46,
p. 171]. Moreover, in order (a) to keep SB simple and (b) to gain further information
regarding the frequency ω of the oscillations described by (40)–(41), we first of all
make the simple change of variables:

τ = ωt, x(t) = x
( τ
ω

)
= u(τ). (42)

Then (40)–(41) becomes:

ω2u′′ + u+ 100u3 = 0, u = u(τ), (43)

u(0) = 1, u′(0) = 0. (44)
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It has been found in several papers that a good set of base functions that can describe
oscillation problems is the set

SB = {cos(mτ) m = 1, 2, 3, . . .} .

Having this in mind, as well as (43), we choose the corresponding linear operator
to be

L3[Φ(τ ; q)] = ω2
0

[
Φ ′′(τ ; q)+Φ(τ ; q)]

where the ′ denotes differentiation with respect to t and ω0 is a coefficient to
be determined. Also, taking this SB into consideration, we choose the initial
approximation of u(τ) to be

u0(τ ) = cos τ, (45)

which of course satisfies (44). Finally, we choose A to be

A [Φ(τ ; q),Ω(q)] = Ω2(q)Φ ′′(τ ; q)+Φ(τ ; q)+ 100Φ3(τ ; q),

where as already mentioned

Φ(τ ; q) = u0(τ )+
∞∑

k=1

uk(τ )q
k (46)

and in an analogous way

Ω(q) = ω0 +
∞∑

k=1

ωkq
k, (47)

with uk(τ ) = 1
k!

∂k[Φ(τ ;q)]
∂qk

∣∣
∣
q=0

and ωk = 1
k!

∂k[Ω(q)]
∂qk

∣∣
∣
q=0

.

With the aid of A we can find Rk defined by (38). Actually it is

Rk = 1

(k − 1)!
∂k−1

[
Ω2(q)Φ ′′(τ ; q)+Φ(τ ; q)+ 100Φ3(τ ; q)]

∂qk−1

∣∣∣
∣∣
q=0

= 1

(k − 1)!

[
∂k−1

∂qk−1
[Ω2(q)Φ ′′(τ ; q)] + ∂k−1

∂qk−1
[Φ(τ ; q)] + 100

∂k−1

∂qk−1
[Φ3(τ ; q)]

]∣∣
∣∣
∣
q=0

or after taking into consideration Leibnitz rule for the derivative of a product of
functions
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Rk = 1

(k − 1)!
[
∂k−1[Φ(τ ; q)]

∂qk−1

+100
k−1∑

m=0

m∑

�=0

(
k − 1
m

)(
m

�

)
∂�Φ(τ ; q)

∂q�

∂m−�Φ(τ ; q)
∂qm−�

∂k−1−mΦ(τ ; q)
∂qk−1−m

+
k−1∑

m=0

m∑

�=0

(
k − 1
m

)(
m

�

)
∂�Ω(q)

∂q�

∂m−�Ω(q)

∂qm−�
∂k−1−mΦ ′′(τ ; q)

∂qk−1−m

]∣∣∣∣∣
q=0

= uk−1(τ )+100
k−1∑

m=0

m∑

�=0

u�(τ )um−�(τ )uk−1−m(τ)+
k−1∑

m=0

m∑

�=0

ω�ωm−�(τ )u′′k−1−m(τ).

Choosing H(t) ≡ 1, (37) becomes:

ω2
0

(
u′′1 + u1

) = h̄R1[u0(τ ), τ ], (48)

ω2
0

(
u′′k + uk

) = h̄Rk[u0(τ ), . . . , uk−1(τ ), τ ], k = 2, 3, . . . (49)

and we choose the accompanying conditions to be

uk(0) = u′k(0) = 0, k = 1, 2, 3, . . . . (50)

Thus,

u(τ) = u0(τ )+
∞∑

k=1

uk(τ ) (51)

is the solution of the IVP (42)–(43) and the frequency of the oscillations is given by

ω = ω0 +
∞∑

k=1

ωk. (52)

This is indeed guaranteed by the following:

Theorem 3 As long as the series (51) converges, it is a solution of (42)–(43), where
u0(τ ) is given by (45) and uk(τ ), k = 1, 2, 3, . . . are the solutions of (48), (50)
and (49), (50).

Proof First of all, (51) satisfies (43), due to (50) since

u(0) = u0(0) = 1 and u′(0) = u′0(0) = 0.
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It remains to show that (51) satisfies (42) as well. In order to prove this, suppose
that (51) converges. Then

lim
m→∞ um(τ) = 0. (53)

Notice that

h̄

m∑

k=1

Rk =
m∑

k=1

L3 [uk(τ )− χkuk−1(τ )] = L3 [u1(τ )]+
m∑

k=2

L3 [uk(τ )− uk−1(τ )]

⇒ h̄

m∑

k=1

Rk = L3

[

u1(τ )+
m∑

k=2

[uk(τ )− uk−1(τ )]

]

= L3 [um(τ)]

⇒ h̄

∞∑

k=1

Rk = 0, (54)

due to (53) and the linearity of L3. Moreover,

∞∑

k=1

Rk =
∞∑

k=1

uk−1(τ )+ 100
∞∑

k=1

k−1∑

m=0

m∑

�=0

u�(τ )um−�(τ )uk−1−m(τ)

+
∞∑

k=1

k−1∑

m=0

m∑

�=0

ω�ωm−�(τ )u′′k−1−m(τ)

=
∞∑

n=0

un(τ)+ 100
∞∑

n=0

n∑

m=0

m∑

�=0

u�(τ )um−�(τ )un−m(τ)

+
∞∑

n=0

n∑

m=0

m∑

�=0

ω�ωm−�(τ )u′′n−m(τ)

⇒
∞∑

k=1

Rk = u(τ)+ 100u3(τ )+ ω2u′′(τ ). (55)

Combining (54), (55) and taking into account that h̄ �= 0, we end up with (42),
which completes the proof.

By solving iteratively (48), (50) and (49), (50), we find (51) and as a consequence
x(t). When solving (48), (50), a term of the form t sin t appears in its solution. The
appearance of such a term disobeys the rule of solution expression, since this term
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doesn’t belong to the SB we chose. In order for this rule to be satisfied we force the
coefficient of this term to be 0. This gives us the algebraic equation:

38h

ω2
0

− h

2
= 0,

from which ω0 is found to be

ω0 = 2
√

19.

The term t sin t appears also in u2(τ ). Thus, we find in the same way the linear now
algebraic equation

1875h2

92416
− hω1

2
√

19
= 0

from which ω1 is found to be

ω1 = 1875h

2432
√

19
.

Similarly we find for ω2

343044375h3

17081434112
+1875h2

92416
− hω2

2
√

19
= 0 ⇒ ω2 = 1875h(2927312h+ 2957312)

7192182784
√

19
, etc.

For this simple case it suffices to calculate only uk(τ ), k = 1, 2, 3 to obtain
satisfactory results. This is shown at Fig. 6, where the solution of (40)–(41) (with
dotted line), obtained by HAM for h̄ = −1.2 is depicted. At the same figure,
the corresponding fourth order RK numerical solution of (40)–(41) is shown with
a continuous line. We can easily verify that the HAM solution is in very good
agreement with the corresponding numerical one. The value of h̄ was chosen after
obtaining the h̄-curves for u′′(0) and u′′′′(0)which are shown at Fig. 7. For h̄ = −1.2
the frequency is ω = ω0 + ω1 + ω2 + . . . 9 8.54542, whereas the exact frequency
in this case is known to be ωexact = 8.53359. The agreement between the exact
and the approximate by HAM frequency improves as we increase k, but it may also
be improved by choosing another value of h̄ within the valid region. If we choose
h̄ = −1, Fig. 6 remains the same, but the approximate by HAM frequency becomes
ω 9 8.53913 which is in better agreement with ωexact .

When h̄ ∈ [−1, 0), the series (52) converges in all R (see [46, p. 172]). For other
cases, the series (52) and/or (51) may converge in smaller regions of R. However,
their convergence region as well as their speed of convergence can be improved by
using the Padé technique. For this technique combined with HAM we refer to [46,
p. 64].
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Fig. 6 Graph of x(t) of (40)–(41) obtained by HAM (dotted line) and corresponding numerical
solution (continuous line)
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Fig. 7 h̄-curves for u′′(0) (left) and u′′′′(0) (right) for (42)–(43)

4 Numerical Techniques

4.1 The Runge-Kutta Method

The Runge-Kutta methods are a class of iterative methods implicit or explicit, used
in temporal discretization for the approximate solutions of ODEs. These methods
were developed 100 years ago, around 1900, by the German mathematicians C.
Runge and M.W. Kutta. The most widely known member of the Runge-Kutta family
is generally referred to as “RK4” or “classical Runge-Kutta method”, and it is an
explicit method with fourth order accuracy [62]. Runge-Kutta (RK) methods are
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one-step methods, such as the Euler method, and increase their accuracy at the price
of an increase of functional evaluations at each time level. RK methods are widely
utilized for the numerical solution of nonlinear ODEs, such as the one discussed in
this chapter.

To specify a particular RK method, one needs to provide q ∈ N, the number of
stages, and the coefficients aij ∈ R, i, j = 1, . . . , q, bi ∈ R, i = 1, . . . , q and
τi , i = 1, . . . , q. The matrix A = (aij ) is called the RK matrix, while the bi and
τi are known as the weights and the nodes [41]. The RK method that provides the
approximate solution for a first order ODE with initial condition, x(0) = X0 is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kn,i = f (tn,i , xn + h

q∑

j=1

aij kn,j ), i − 1, . . . , q,

xn+1 = xn + h

q∑

i=1

bikn,i ,

x0 = X0,

(56)

where, kn,i = f (tn,j , xn,j ), n = 0, 1, . . . , N − 1 is the domain partition, and h the
step size. The coefficients, aij , bi and τi are usually arranged as a Butcher tableau
[4, 13],

a11 a12 . . . a1q τ1

a21 a22 . . . a2q τ2
...

...
...

...

aq1 aq2 . . . aqq τq

b1 b2 . . . bq

It should be mentioned that an RK method can be extended to systems of ODEs.
However, the order of an RK method in the scalar case does not necessarily coincide
with that in the vector case [62].

The following theorem concerns the stability of RK method and the uniqueness
of the obtained numerical solution.

Theorem 4 ([4]) For a system of m–ODEs, e.g.

{
x̄′ = f̄ (t, x̄), t ∈ [a, b],
x̄(a) = X̄0,

(57)

where, x̄ and f̄ ∈ R
m, are smooth functions, and f̄ satisfies the Lipschitz condition,

∃L � 0, ∀ x̄1, x̄2 ∈ R
m : ∥∥f̄ (t, x̄1)− f̄ (t, x̄2)

∥∥∞ � L ‖x̄1 − x̄2‖∞ ,
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where ‖x̄‖∞ = max
t

max
i

|xi(t)|, i = 1, . . . , m and t ∈ [a, b]. We assume that

γ h < 1, where γ = Lmax
i

∑

j

∣∣aij
∣∣, and h = b−a

N
, N ∈ N is the partition step.

Under these assumptions the discrete system has a unique solution.
Additionally, if ȳn, ȳn,i ∈ R

m satisfy relation (56) with known ȳ0 ∈ R
m, then,

max
1�n�N

‖x̄n − ȳn‖∞ � C ‖x̄0 − ȳ0‖∞ ,

where C does not depend on the partition step, h.

Remark 1 It can be shown that RK methods for systems are stable for every norm,
‖.‖ of Rm, meaning that there exists C2 that does not depend on h such that,

max
1�n�N

‖x̄n − ȳn‖ � C2 ‖x̄0 − ȳ0‖ .

Remark 2 The RK method is of p order if,

max
0≤n≤N−1

‖yn+1 − y(tn+1)‖∞ ≤ C3h
p+1

where C3 does not depend on h. The previous inequality gives us the local error of
an RK method.

Remark 3 The RK method is consistent if and only if
q∑

i=1
bi = 1. An extended

mathematical analysis about RK methods can be found in [4, 41, 62]

Remark 4 In explicit RK methods, such the RK4, the matrix A in Butcher tableau
is strictly lower triangular, as shown for the RK4,

0 0 0 0 0
1/2 0 0 0 1/2
0 1/2 0 0 1/2
0 0 1 0 1

1/6 1/3 1/3 1/6

Similarly to (10), the IVP (1)–(2) can be reduced to the following system

{
x′ = y = g1(t, x, y),

y′ = −a(x2 − 1)y − βx − γ x + f (t) = g2(t, x, y),
(58)

where t ∈ [0, T ] and x = x(t), y = y(t) smooth functions. The RK4 for (58),
subject to the initial conditions x(0) = 0, y(0) = 0 has the form
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xn+1 = xn+1 +K and yn+1 = yn + L,

where K = 1
6 (k1 + 2k2 + 2k3 + k4), L = 1

6 (l1 + 2l2 + 2l3 + l4) and

k1 = hg1(tn, xn, yn), l1 = hg2(tn, xn, yn),

k2 = hg1(tn + 0.5h, xn + 0.5k1, yn + 0.5l1), l2 = hg2(tn + 0.5h, xn + 0.5k1, yn + 0.5l1),
k3 = hg1(tn + 0.5h, xn + 0.5k2, yn + 0.5l2), l3 = hg2(tn + 0.5h, xn + 0.5k2, yn + 0.5l2),
k4 = hg1(tn + h, xn + k3, yn + l3), l4 = hg2(tn + h, xn + k3, yn + l3)

(59)

Then (58) is solved utilizing the function ode45 in Matlab (MathWorks, Natick,
MA, USA). The corresponding numerical solution for f (t) = cos t , a = 0.002,
β = 0.008 and γ = 0.003 is shown in Fig. 2.

4.2 The Finite Difference Method

The finite difference method (FDM) is the dominated approach to numerical
solutions of ODEs as well as PDEs. This is due to the fact that as a method is very
easy to implement in a numerical code and most times provides very reliable results
in good agreement with analytical solutions. FDM was mainly developed during
the period of 1940–1960 and it can be used for linear and nonlinear differential
equations [4, 24]. Newer developments of the FDM is the finite volume method
(FVM) usually applied in fluid mechanics applications.

In order to demonstrate FDM we’ll apply it to (1)–(2), where x ∈ C2[0, T ] for
f (t) = δ cos(ωt). The main idea of the FDM is to replace (1) with a difference
equation by partitioning the domain [0, T ], in N equidistant sub-domains, such that
h = T/N is the partition step.

The values of the unknown function, x, at the partition points ti , with ti = (i −
1)h, i = 1, 2, . . . , N + 1, is x(ti) = xi . For three neighboring points of the domain
[0, T ], e.g. ti−1, ti , ti+1 we can approximate the first and second order derivatives
of the unknown function, x, as in Eq. (60), and both schemes have a second order
truncation error.

⎧
⎪⎪⎨

⎪⎪⎩

x′i =
xi+1 − xi−1

2h
+O(h2),

x′′i = xi+1 − 2xi + xi−1

h2 +O(h2).

(60)

Introducing formulae (60) to (1) the difference equation

ci1 xi+1 + ci2 xi + ci3 xi−1 = ci4, (61)
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is obtained, where the coefficients, cij , j = 1, . . . , 4 are functions of x and t , namely

ci1 = 1

h2 + a

2h
x2
i −

a

2h
, ci2 = − 2

h2 + β + γ x2
i ,

ci3 =
(

1

h2
− a

2h
x2
i +

a

2h

)
, ci4 = g cos(ωti).

The obtained algebraic system of equations that arise from (61) is nonlinear and
of the form Ax̄ = b̄, where the matrix of the coefficients A = (aij ) contains
the unknown variable x and it is an N × N matrix. To numerically solve this
system, nonlinear algorithms such as Newton–like methods, can be used. Newton–
like methods are faster with a good initial guess but may suffer from local minima.
To solve the nonlinear discretized algebraic system of equations, the Levenberg–
Marquardt algorithm (LMA) is used [76]. The LMA interpolates between the
Gauss–Newton algorithm and the method of Gradient Descent [62]. The LMA
tends to be slightly slower than the Gauss–Newton method, but it is a more robust
algorithm compared with the classical Gauss–Newton method.

The matrix A is either a diagonal (tridiagonal, pentadiagonal etc.) or a block–
diagonal matrix. It is also symmetric and positive definite. These properties of A
enable its inversion, which leads to the existence and uniqueness of the obtained
numerical solution [24, 62].

The invertibility of A is connected with its condition number. Namely, at every
iteration of the LMA the matrix A should not be “ill–conditioned”. Since A is
hermitian and positive definite, its condition number is given by the expression,
K(λ) = λmax

λmin
, where λmax is its largest and λmin its smallest eigenvalue. In order for

A to be invertible, it is important its condition number to remain “small” [24, 62].
In other FDM or FVM approaches, the unknown variables are evaluated using

iterative schemes [24, 25]. The iterative solution approach seems to have an advan-
tage compared to the straightforward adoption of the direct matrix methodology
used in this section. However, the coupling between the equations should be taken
under consideration for achieving faster convergence of the solution. Implementing
the direct approach in a Matlab script (MathWorks, Natick, MA, USA) the nonlinear
system of equations obtained from (61) is solved. The corresponding numerical
solution for f (t) = cos t , a = 0.002, β = 0.008 and γ = 0.003 is shown in
Fig. 2.

Instead of applying a numerical method to the IVP (1)–(2), we may apply
a numerical method to (18). Comparing the standard FDM, described in this
subsection, with the FDM as applied to (18) for X0 = X1 = 0, f (t) = cos t ,
a = 0, β = 0.008 and γ = 0.003, we observe that the two solutions are in very
good agrement, as depicted in Fig. 8. This approach seems to decrease the errors.
Actually, the FDM solution of (18) gives a numerical solution that is closer (almost
coincides) to the analytical solution, Eq. (4), compared with the standard FDM, as
depicted in Fig. 9.
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Fig. 8 Graph of the FDM solution of (1)–(2) (continuous line) with the FDM solution of (18)
(dotted line) of , for X0 = X1 = 0, f (t) = cos t , a = 0, β = 0.008 and γ = 0.003
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Fig. 9 Graph of the FDM solution of (1)–(2) (continuous line) with the FDM solution of (18)
(dotted line) and the analytical solution (4) (dashed line), for X0 = 1, X1 = 0, f (t) = 0, a = 0,
β = 0.5 and γ = 0

4.3 The Finite Elements Method

In the previous subsection we introduced the FDM. In this subsection we will
discuss the finite element method (FEM) and specifically the Galerkin FEM. With
the help of FEM we are able to construct an approximate solution of the initial
value problem under consideration. These approximations are defined in the entire
domain, e.g. I = [0, T ], they are continuous and piecewise polynomials, e.g.
polynomials of order r in every subdomain of the partition of I . FEMs were
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developed from 1970 and beyond, they are more systematic compared to FDM and
they take place in more complicated spaces [4, 62]. The Galerkin FEM is usually
applied to dynamic PDEs and rarely to initial value ODE problems [5].

In order to demonstrate FEM, we’ll apply it to the IVP (1)–(2), where x ∈
C2[0, T ] in the case where a = 0. In this case, (1)–(2) takes the form

x′′ + βx + γ x3 = f (t), (62)

x(0) = X0, x′(0) = X1, (63)

which is called the “strong form” [4, 12].
Introducing the piecewise continuously differentiable function v ∈ C0[0, T ], we

write,

(x′′, v)+ (g(x, t), v) = (f, v), (64)

where, g(x, t) = βx + γ x3 and (·, ·) is the L2 dot product defined for piecewise
continuous functions, x, v in [0, T ] as,

(x, v) =
∫ T

0
x(t)v(t)dt =

N∑

j=0

∫ tj+1

tj

x(τ )v(τ )dτ ,

where, 0 = t0 < t1 < t2 < . . . < tJ+1 = T is the domain partition. The induced
norm from the dot product is expressed as ‖·‖ and the function v ∈ V , where V =
{v ∈ C0[0, T ] : v are piecewise continuously differentiable functions}. Applying
integration by parts, the term (x′′, v) can be written as,

(
x′′, v

) =
N∑

j=0

∫ tj+1

tj

x′′(τ )v(τ )dτ =
N∑

j=0

[

x′(τ )v(τ )
∣∣tj+1
tj

−
∫ tj+1

tj

x′(τ )v′(τ )dτ
]

.

(65)
Assuming that the function v ∈ C0[0, T ] is a linear polynomial with v(0) = v(T ) =
0, (65) can be rewritten as,

(
x′′, v

) = −(x′, v′), (66)

Finally, we can write that,

− (x′, v′)+ (g, v) = (f, v), (67)

which is called the “weak form”.
We introduce linear polynomials (linear splines) to construct the simplest

Galerkin FEM [4]. We impose the domain partition, 0 = t0 < t1 <

t2 < . . . < tJ+1 = T with maxj (tj+1, tj ) = h and the space S2
h =
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{
φ ∈ C[0, T ] : φ[tj , tj+1] ∈ P1

}
. The functions φj , j = 1, 2, . . . , J are defined in

[0, T ] as,

φj (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t − tj−1

tj − tj−1
, tj−1 � t � tj

tj+1 − t

tj+1 − tj
, tj−1 � t � tj

0, elsewhere

(68)

and for i = 0 is defined as,

φ0(t) =

⎧
⎪⎨

⎪⎩

t1 − t

t1 − t0
, t0 � t � t1.

0, elsewhere

(69)

The set
{
φj

}J
j=0 is a basis of S2

h and is called nodal basis and the discrete points tj
are called nodes [12]. We assume that the approximate solution, xh ∈ S2

h, satisfy the
“weak form” Eq. (67) in space S2

h. For the linear case it has been shown that: If the
weak form is a(x, v) = (f, v), where a(·, ·) is the bilinear form of a linear operator
A, and x ∈ C2[0, T ] and f ∈ C0[0, T ] satisfy the weak form, then x also satisfies
the strong form with the appropriate initial conditions. Moreover, if f ∈ L2[0, T ],
equation A(xh, v) = (fh, v), ∀v ∈ S2

h, has a unique solution. More details on the
linear problem can be found in [12].

Writing the approximate solution in the form, xh = a0φ0 + a1φ1 + . . . + aJ φJ
we obtain the algebraic system, A ā = F̄ , where ā = (a0, a1, . . . , aJ )

T , F̄ = (Fi),
Fi = (f, φi), i = 0, 1, . . . , J and A = (Aij ), with Aij = −(φ′

j , φ
′
i )+ (βφj , φi)+

(γ φ3
j , φi), i, j = 0, 1, . . . , J .

The system of equations obtained from the “weak form” (67) is numerically
solved implementing FEM in Matlab. The corresponding numerical solution for
X0 = X1 = 0, f (t) = 1

2 cos t , a = 0, β = 0.035 and γ = 0.0001 is shown
(dashed line) in Fig. 10. In the same figure, the numerical solutions obtained by
RK4 (continuous line), FDM (dotted line) are also depicted. The solution obtained
by FAT (see next section) is not depicted since for theses values of parameters and
initial conditions it coincides graphically with the RK4 solution. However, in Table 4
we compare the three numerical solutions obtained by FEM, FDM and RK4 with
the solution obtained by HAM and the solution obtained by FAT that follows.

5 A Functional-Analytic Technique

In this final section, we’ll describe a functional analytic technique (FAT) for
obtaining the solution of ODEs. Actually, this method is the combination of two
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Fig. 10 Graph of the three numerical methods, RK4 (continuous line), FDM (dotted line) and
FEM (dashed line) of (1)–(2), for X0 = X1 = 0, f (t) = 1

2 cos t , a = 0, β = 0.035 and γ =
0.0001

Table 4 Comparison of the three numerical methods, RK4, FEM, FDM, with HAM and FAT for
various values of time, t and for X0 = 1, X1 = 0, f (t) = 0, a = 0, β = 1.0 and γ = 10.0

Time (s) HAM FAT RK4 FDM FEM

0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000

2 0.8410511400 0.8356150796 0.8352800715 0.8176114534 0.8199895952

4 0.4318527148 0.4283707319 0.4883298390 0.4239989518 0.4820233720

6 −0.0523297550 −0.0649773903 −0.0639698268 −0.0704801933 −0.0850110357

8 −0.5094371206 −0.5177897201 −0.5166629311 −0.5121772708 −0.5171721184

10 −0.8873520147 −0.8847765340 −0.8925938207 −0.8788896663 −0.8425358431

12 −0.9898718736 −0.9898506062 −0.9847090261 −0.9863830224 −0.9713292225

14 −0.7368877482 −0.7333500846 −0.7209509149 −0.7360511664 −0.7717958122

16 −0.3047155397 −0.3009010000 −0.3675830852 −0.3201920195 −0.3666390525

18 0.1569462253 0.1727534941 0.1612739037 0.1271600464 0.2110826426

20 0.6075260295 0.6265640712 0.6463317609 0.6106077360 0.6218574555

FATs originally developed by Ifantis in [35–38] and [39], for obtaining existence and
uniqueness results of solutions of IVPs for ODEs and ordinary difference equations
in the Hilbert spaces
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H2(D) =
{

f : D → C, f (z) =
∞∑

n=1

fnz
n−1 with

∞∑

n=1

|fn|2 < +∞
}

, (70)

where D = {z ∈ C : |z| < 1} and

�2 =
{

fn : N → C with
∞∑

n=1

|fn|2 < +∞
}

(71)

or the Banach spaces

H1(D) =
{

f : D → C, f (z) =
∞∑

n=1

fnz
n−1 with

∞∑

n=1

|fn| < +∞
}

(72)

and

�1 =
{

fn : N → C with
∞∑

n=1

|fn| < +∞
}

. (73)

Later on, these FATs were also used and extended, not only by Ifantis, but also
by his students and collaborators. More recently, in [59], they were combined in
order to develop a “discretization” technique for the solution of IVPs of nonlinear
ODEs in the real plane, such as the Duffing equation. In [60], this “discretization”
technique was extended to BVPs and was applied to the well-known Blasius
problem. Moreover, it was extended in order to compute complex solutions of this
problem. The same “discretization” technique was also used in [58], in order to
study the behavior of the famous logistic equation in the complex plane.

The basic idea of this FAT is to “discretize” an ODE by converting it into an
equivalent difference equation, utilizing specific mappings among H2(D), �2 and an
abstract Hilbert space H , or among H1(D), �1 and an abstract Banach space H1.
The obtained solution of the ODE under consideration, by use of this technique, is
an analytic solution of the form

x(t) =
∞∑

n=1

xn

(
t

T

)n−1

, |t | < T, T > 0, t ∈ R or t ∈ C, (74)

where the coefficients xn are uniquely determined by a specific difference equation
which is called the discrete equivalent of the ODE under consideration.

In order to proceed, we’ll start by first defining H , H1 and the mappings among
H , H1, H2(D), H1(D), �2 and �1, on which this FAT is based. Let’s denote by H an
abstract separable Hilbert space over the complex field, with the orthonormal base
{en}, n = 1, 2, 3, . . . and by 〈·, ·〉 and ‖ · ‖ the inner product and the norm in H ,
respectively. Define also in H the shift operator V :

V en = en+1, n = 1, 2, 3, . . .
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and its adjoint V ∗:

V ∗en = en−1, n = 2, 3, . . . , V ∗e1 = 0,

as well as the diagonal operator C0:

C0en = nen, n = 1, 2, 3, . . . .

The following two propositions hold.

Proposition 2 ([37]) The representation

〈fz, f 〉 =
∞∑

n=1

fnz
n−1 = f (z), z ∈ D, (75)

is a one-by-one mapping from H onto H2(D) which preserves the norm, where

fz =
∞∑

n=1

zn−1en, f0 = e1, is the complete system in H of eigenvectors of V ∗ and

f =
∞∑

n=1

f nen an element of H .

The unique element f =
∞∑

n=1

fnen appearing in (75) is called the abstract form of

f (z) in H . In general, if G(f (z)) is a function from H2(D) to H2(D) and N(f ) is
the unique element in H for which

G(f (z)) = 〈fz,N(f )〉 ,

then N(f ) is called the abstract form of G(f (z)) in H .
The corresponding by the representation (75), abstract Banach space of the

elements f =
∞∑

n=1

f nen ∈ H for which
∞∑

n=1

|fn| < +∞, will be denoted by H1

and the norm in H1 by ‖·‖1. For H1 it is known [38, pp. 348–349] that it is invariant
under the operators V k , (V ∗)k , as well as under every bounded diagonal operator.

Proposition 3 ([39]) The linear function

φ : H(H1) → �2(�1)

defined by

φ(f ) = 〈f, en〉 = fn (76)
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is an isomorphism from H (H1) onto �2 (�1), i.e. it is a 1 − 1 mapping from H (H1)
onto �2 (�1) which preserves the norm.

The application of this FAT can be summarized in the following steps:

Step 1 Reduce the problem under consideration with unknown function x(t) with
|t | < T , T > 0, to a new one with independent variable z with |z| < 1. This is done
by using the simple transformation:

z = t

T
, x(t) = x(zT ) = x̃(z). (77)

Step 2 Use the mapping (75) and rewrite the problem for x̃(z) in the form of an
inner product like

〈fz, Ef 〉 = 0, (78)

where E is an operator defined on H or H1.

Step 3 Use the completeness of fz, |z| < 1 and find from (78) the equivalent to the
problem for x̃(z), operator equation in H or H1, i.e.

Ef = 0, (79)

Step 4 Take the inner product of both parts of (79) with en and use (76) to obtain
the equivalent to (79) difference equation, with unknown the sequence xn appearing
in (74).

Step 5 Compute xn and find

x̃(z) =
∞∑

n=1

xnz
n−1 ⇔ x(t) =

∞∑

n=1

xn

(
t

T

)n−1

. (80)

In this way a “numerical scheme” is found for the ODE under consideration.
From this “numerical scheme”, the coefficients xn are found and thus the truncated
solution

xtr (t) =
N∑

n=1

xn

(
t

T

)n−1

, |t | < T, (81)

can be obtained, where N finite number.
If we’re interested in complex solutions of the ODE under consideration, we

should further proceed by writing xn = un + ivn and t = reiθ , so as to
obtain the recurrence relations satisfied by un and vn, as well as the Re[x(t)] and
Im[x(t)]. There are many reasons for studying complex solutions of ODEs, even
for ODEs arising in real physical problems, such as (1). One of them is of course
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mathematical curiosity. Another one, as already mentioned in Sect. 2.1, is the fact
that singularity analysis for the complex solutions of the ODE, can provide evidence
for its integrability or not. In addition, the investigation of physical problems for
complex values of physical parameters can in many cases provide a further insight of
the properties of their solutions. Actually, complex solutions of (1)–(2), for β = 1,
f (t) = δ cos(ωt), α, γ, δ, ω ∈ R, were investigated in [10]. Moreover, the chaos
control of chaotic unstable limit cycles of real and complex nonlinear van der Pol
oscillators was investigated in [51].

In order to demonstrate this FAT, we’ll apply it to the IVP (1)–(2), for |t | < T ,
T > 0. Thus, Steps 1–6, become the following Steps A1–A6.

Step A1 Using (77), the IVP (1)–(2) becomes

x̃′′ − aT x̃′ + aT x̃2x̃′ + βT 2x̃ + γ T 2x̃3 = T 2f̃ (z) (82)

x̃(0) = X0, x̃′(0) = TX1, (83)

where |z| < 1, x̃ = x̃(z) and f̃ (z) = f (zT ) = f (t) = ∑∞
n=1 f̃nz

n−1.

Step A2 In order to rewrite (82)–(83) in the form of an inner product in H1, we
need the abstract forms of the terms appearing in (82). These were already found in
[37] and [38] and we give them in the form of the next proposition.

Proposition 4 The following relations hold:

(i)
dng(z)

dzn
= 〈

fz, (C0V
∗)ng

〉
,

(ii) φ(z)g(z) = 〈fz, φ(V )g〉,
(iii) [h(z)]n =

〈
fz, [h1(V )]n−1h

〉
,

where n = 1, 2, . . ., g(z) =
∞∑

n=1

gnz
n−1 ∈ H2(D), h(z) =

∞∑

n=1

hnz
n−1 ∈

H2(D), φ(z) =
∞∑

n=1

cnz
n−1 analytic in some neighborhood of D = [−1, 1],

φ(V ) =
∞∑

n=1

cnV
n−1, h1(V ) =

∞∑

n=1

hnV
n−1, g =

∞∑

n=1

gnen ∈ H and h =
∞∑

n=1

hnen ∈ H1.

Combining (i) and (iii) of the previous proposition, we easily find that

g2(z)g′(z) = d

dz

[
1

3
g3(z)

]
=

〈
fz,

1

3
C0V

∗[g1(V )]2g
〉
.

Thus, (82) is rewritten in the form
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< fz, (C0V
∗)2x̃ − aT C0V

∗x̃ + aT

3
C0V

∗[x̃1(V )]2x̃ + βT 2x̃ + γ T 2[x̃1(V )]2x̃ − T 2f̃ >= 0,

(84)

where f̃ and x̃ are the abstract forms in H1 of f̃ (z) and x̃(z), respectively.

Step A3 Using the completeness of fz, |z| < 1 the equivalent to (82), operator
equation in H1 is

(C0V
∗)2x̃ − aT C0V

∗x̃ + βT 2x̃ = T 2f̃ − aT

3
C0V

∗[x̃1(V )]2x̃ − γ T 2[x̃1(V )]2x̃.
(85)

Step A4 Taking the inner product of both parts of (85) with en and using (76) we
eventually obtain

xn+2 = T 2

n(n+ 1)
f̃n + aT

n+ 1
xn+1 − βT 2

n(n+ 1)
xn−

γ T 2

n(n+ 1)

n∑

k=1

xk

n−k+1∑

s=1

xsxn−k−s+2 − aT

3(n+ 1)

n+1∑

k=1

xk

n−k+2∑

s=1

xsxn−k−s+3.

(86)

Moreover, from the initial conditions (83), we find:

x̃(0) = X0 ⇒
∞∑

n=1

xnz
n−1

∣∣∣∣∣
z=0

= X0 ⇒ x1 = X0. (87)

x̃′(0) = TX1 ⇒
∞∑

n=2

(n− 1)xnz
n−2

∣∣
∣∣∣
z=0

= TX1 ⇒ x2 = TX1. (88)

Step A5 Computing xn from (86)–(88) we find the solution (80) of (1)–(2) for
t ∈ R.

Step A6 Setting xn = un + ivn, a = a1 + ia2, β = β1 + iβ2, γ = γ1 + iγ2,
t = reiθ , (86)–(88) become:

un+2=T 2Re[f̃n]
n(n+ 1)

− T 2β1un

n(n+ 1)
+ T 2β2vn

n(n+ 1)
+T a1un+1

n+ 1
−T a2vn+1

n+ 1
−

T 2γ1

n(n+1)

n∑

k=1

−k+n+1∑

s=1

(−vkusv−k+n−s+2 − vkvsu−k+n−s+2−ukvsv−k+n−s+2+ukusu−k+n−s+2)−

T 2γ2

n(n+1)

n∑

k=1

−k+n+1∑

s=1

(−vkus−u−k+n−s+2−ukusv−k+n−s+2−ukvsu−k+n−s+2+vkvsv−k+n−s+2)−

T a1

3(n+1)

n+1∑

k=1

−k+n+2∑

s=1

(−vkusv−k+n−s+3 − vkvsu−k+n−s+3−ukvsv−k+n−s+3 + ukusu−k+n−s+3)−

T a2

3(n+1)

n+1∑

k=1

−k+n+2∑

s=1

(−vkusu−k+n−s+3 − ukusv−k+n−s+3 − ukvsu−k+n−s+3 + vkvsv−k+n−s+3)
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vn+2 = T 2Im[f̃n]
n(n+ 1)

− T 2β2un

n(n+ 1)
− T 2β1vn

n(n+ 1)
+ T a2un+1

n+ 1
+ T a1vn+1

n+ 1
−

T 2γ2

n(n+ 1)

n∑

k=1

−k+n+1∑

s=1

(−vkusv−k+n−s+2−vkvsu−k+n−s+2−ukvsv−k+n−s+2+ukusu−k+n−s+2)−

T 2γ1

n(n+ 1)

n∑

k=1

−k+n+1∑

s=1

(vkusu−k+n−s+2+ukusv−k+n−s+2+ukvsu−k+n−s+2−vkvsv−k+n−s+2)−

T a2

3(n+ 1)

n+1∑

k=1

−k+n+2∑

s=1

(−vkusv−k+n−s+3−vkvsu−k+n−s+3−ukvsv−k+n−s+3+ukusu−k+n−s+3)−

T a1

3(n+ 1)

n+1∑

k=1

−k+n+2∑

s=1

(vkusu−k+n−s+3 + ukusv−k+n−s+3 + ukvsu−k+n−s+3 − vkvsv−k+n−s+3)

with

u1 = Re[X0], u2 = TRe[X1], v1 = Im[X0], v2 = T Im[X1].

Thus, the truncated solution (80) becomes

xtr (t) =
N∑

n=1

(un + ivn)

T n−1

(
reiθ

)n−1

=
N∑

n=1

rn−1

T n−1
(un + ivn) [cos(n− 1)θ + i sin((n− 1)θ)]

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Re[x(t)] =
N∑

n=1

rn−1

T n−1 [un cos((n− 1)θ)− vn sin((n− 1)θ)]

Im[x(t)] =
N∑

n=1

rn−1

T n−1 [un sin((n− 1)θ)+ vn cos((n− 1)θ)]

(89)

Having described this FAT, some questions arise such as:

Q1: How do we know that the operator equation (85) has a solution in H?
If it has such a solution, is it unique?

Q2: How do we choose N appearing in the truncated solution (81) or (89)?
Q3: How large T can be?
Q4: Regardless of the value of T , it may seem that a limitation of this FAT is the

upper bound of T . Is there a way to estimate solutions formed for values of t
larger than T ?
The answers to Q1 and Q3 are provided by the following theorem

Theorem 5 Suppose f̃ (z) ∈ H1(D),

|a|T + |β|T 2 < 2 (90)
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and

|X0| + T |X1| + T 2

2
‖f̃ (z)‖H1(D) <

(2 − |a|T − |β|T 2)3/2

3
√|a|T + 3|γ |T 2

. (91)

Then, the operator equation (85) has a unique solution in H1 bounded by R0 =√
2 − |a|T − |β|T 2

|a|T + 3|γ |T 2 . Equivalently, the IVP (82)–(83) has a unique solution in

H1(D).

Proof The operator equation (85) can also be written as

C0(C0+I )(V ∗)2x̃−aT C0V
∗x̃+βT 2x̃=T 2f̃−aT

3
C0V

∗[x̃1(V )]2x̃−γ T 2[x̃1(V )]2x̃,

since (C0V
∗)2 = C0(C0 + I )(V ∗)2 (see [37, p. 91]) or

(V ∗)2x̃−aT B1V
∗x̃+βT 2Bx̃ = T 2Bf̃ − aT

3
B1V

∗[x̃1(V )]2x̃−γ T 2B[x̃1(V )]2x̃,
(92)

where B, B1 are the diagonal operators:

Ben = 1

n(n+ 1)
en, B1en = 1

n+ 1
en, , n = 1, 2, . . .

with norms ‖B‖1 = ‖B1‖1 = 1

2
.

Taking into consideration that V ∗e1 = 0, Eq. (92) becomes:

x̃ − aT V 2B1V
∗x̃ + βT 2V 2Bx̃ = T 2V 2Bf̃ − aT

3 V 2B1V
∗[x̃1(V )]2x̃

−γ T 2V 2B[x̃1(V )]2x̃ + c1e1 + c2e2,
(93)

where c1, c2 are arbitrary constants which are determined by taking the inner
product of both parts of (93) with e1 and e2. Thus, (93) is eventually rewritten as

(
I − aT V 2B1V

∗ + βT 2V 2B
)
x̃ = X0e1 + TX1e2 + T 2V 2Bf̃−

aT
3 V 2B1V

∗[x̃1(V )]2x̃ − γ T 2V 2B[x̃1(V )]2x̃. (94)

Due to (90), the linear operator I − K , where K = aT V 2B1V
∗ − βT 2V 2B is

invertible, since ‖K‖ < 1, and its inverse is defined on all H and bounded by
1

1−‖K‖ (see for example [27, pp. 70–71]). Thus, (94) takes the following form

x̃ = (I −K)−1

[
X0e1 + TX1e2 + T 2V 2Bf̃ − aT

3
V 2B1V

∗[x̃1(V )]2x̃ − γ T 2V 2B[x̃1(V )]2x̃
]
= φ(x̃),

(95)
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which is convenient for the application of fixed point theorems. We usually use the
fixed point theorem of Earle and Hamilton [21]:

Theorem 6 If p : X → X is holomorphic, i.e. its Fréchet derivative exists, and
p(X) lies strictly inside X, then p has a unique fixed point in X, where X is a
bounded, connected and open subset of a Banach space Y . (By saying that a subset
X′ of X lies strictly inside X is meant that there exists an ε > 0 such that ‖x′−y‖ >
ε for all x′ ∈ X′ and y ∈ Y −X.)

In order to apply the previous theorem to (95), we begin by assuming that ‖x‖1 ≤ R,
R sufficiently large but finite. Then (95) gives

‖φ(x̃)‖1 ≤ 2

2 − |a|T − |β|T 2

(

|X0| + T |X1| + T 2

2
‖f̃ ‖1

)

+ |a|T + 3|γ |T 2

3
(
2 − |a|T − |β|T 2

)R3,

(96)
since ‖x̃1(V )‖1 = ‖x̃‖1 (see [38, p. 349]). Let

P(R) = R − |a|T + 3|γ |T 2

3
(
2 − |a|T − |β|T 2

)R3,

which has the maximum P(R0) = 2

3
R0 at R0 =

√
2 − |a|T − |β|T 2

|a|T + 3|γ |T 2
. Then, if

2

2 − |a|T − |β|T 2

(
|X0| + T |X1| + T 2

2
‖f̃ ‖H

)
≤ P(R0)− ε,

where ε > 0 arbitrary we have

‖φ(x̃)‖1 ≤ R0 − ε < R0

and φ is a holomorphic map (since [x̃1(V )]2 is Frechét differentiable, see [38,
p. 355]) from S(0, R0) = {x̃ ∈ H1 : ‖x̃‖1 < R0} strictly inside S(0, R0). Thus
if (91) holds, the fixed point theorem 6 can be applied to (95). As a consequence the
IVP (82)–(83) has a unique solution in H1(D), which proves Theorem 5.

Remark 5 Notice that the initial conditions accompanying (82), are incorporated in
operator equation (94) or (95).

Remark 6 Since (1) is very similar to the Duffing equation (the extra term appearing
in (1) is x2x′), Theorem 5 is very similar to theorem 3.1 of [59].

Now let’s return to questions Q1–Q4. As already mentioned, the existence and
uniqueness of (85) is guaranteed by Theorem 5, i.e. T should be chosen so that
inequalities (90)–(91) are valid.
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In order to determine N , the fact that the coefficients xn form a sequence
belonging in �1 must be taken into consideration. Thus, due to the definition of
�1, the coefficients xn tend to zero as n → ∞ and consequently the same holds for
un (or vn). Practically, this means that after some n = m, the coefficients xn (or
un, vn) computed by the method in Step 5 (or 6) will be very small, practically zero
(within the round-off error of the computer). Thus, N can be chosen greater or equal
to m. Typical values of m are 30, 20 or even 10, depending on the desired accuracy
of the computed solution.

Finally, in order to proceed to the numerical implementation of the method and
the computation of the solution, the procedure followed in [58–60] is considered.
The first step is to determine T as already mentioned and then, determine the
coefficients xn. One way to determine N for the numerical procedure is to monitor
the coefficients xn during their calculation. It can be set for example, that if five
successive coefficients are below 10−20 then N is sufficiently large. Once the
solution is calculated for the corresponding T , up to t = t1 the quantity x(t1)

is known. Considering now x(t1) known, it is used as a new initial value. A new
IVP is again solved, after determining T and N as already described. In this way,
successive IVPs are solved considering as initial values of the next problem the last
calculated value of the previous one.

We calculated several solutions of (1)–(2) using this FAT, not only for t ∈ R,
but also for t ∈ C. Indicatively we mention that in the case where X0 = X1 = 0,
f (t) = cos t , a = 0.002, β = 0.008 and γ = 0.003, the FAT solution coincides
graphically with the RK4 solution depicted in Fig. 2. In the case where X0 = 1,
X1 = 0, f (t) = 0, a = 0, β = 1 and γ = 10 some values of x(t) are given in
Table 4 and compared not only with the corresponding three numerical solutions
obtained by FEM, FDM and RK4, but also with the solution obtained by HAM. It
is obvious that the FAT solution is very close to all other solutions.

Now let’s turn our attention to the complex solutions of (1)–(2), which can be
calculated using (89). We performed several numerical experiments, but here we’ll
present the results only for the case where

X0 = 1.88 + 0.5i, X1 = 0.5, f (t) = 0, a = −0.08, β = 1, γ = 0. (97)

The reason is that the complex solutions for real t of the similar IVP

x′′ + a (xx − 1) x′ + x = 0, x(0) = X0, x′(0) = X1. (98)

where investigated in [51] for various values of the appearing parameters includ-
ing (97). Notice that the aforementioned ODE is the complex van der Pol equation.
It is remarkable, that the results for (1)–(2) are very similar to the corresponding
results for (98).

In an effort to locate possible singularities in the complex plane, (1)–(2) is solved
using the values (97), for various values of the angle θ all over the complex plane
(θ ∈ [0◦, 360◦]). It is remarkable, that the use of a complex variable permits the
integration from a single point of the complex plane towards different directions
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Fig. 11 Location of singularities in the complex plane of the solution of (1)–(2) for values of the
parameters as given in (97)

defined by the angle θ . After performing the integration for one angle, a new
integration with the same starting point takes place for θ increased by dθ , which in
our case was taken to be 0.2◦. Obviously, for θ = 0◦ and θ = 180◦, solutions of (1)–
(2) for real t are obtained. Figure 11 pictures these integrations in the polar plane and
shows the location of singularities (gray sectors) of x(t). These sectors are defined
from the first point, with respect to (r, θ), for which the solution “blows up”. These
points are singularities and the solution there ceases to be analytic. Unfortunately,
only the first singularity can be detected in each sector and there is no ability by
using this FAT, to examine the regions for larger r for which the first singularity is
detected. This means that this FAT cannot give any information on what happens
within the grey regions of Fig. 11. Also, this method cannot give any information
regarding the kind of the detected singularity.

Figures 12 and 13 show variations of the real and imaginary part of the solution
x(t) of (1)–(2) for the values (97) and for two values of the angle: θ = 0◦ and
θ = 5◦. It is obvious that both Re[x(t)] and Im[x(t)] exhibit an oscillatory behavior.
For t > 0 (case θ = 0◦), the Re[x(t)] resembles a damped oscillator, where the
Im[x(t)] resembles a harmonic oscillator. However, for complex t both Re[x(t)] and
Im[x(t)] oscillate with continuously increasing amplitude. The graph of Re[x(t)] for
θ = 5◦ is closer to the corresponding graph given in [51].
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Fig. 12 Variation of the real part of the solution of (1)–(2) for values of the parameters as given
in (97) and for values of θ 0◦ and 5◦

Fig. 13 Variation of the imaginary part of the solution of (1)–(2) for values of the parameters as
given in (97) and for values of θ 0◦ and 5◦
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Fig. 14 Phase plane for the real part of the solution of (1)–(2) for values of the parameters as
given in (97) and θ = 0◦

Finally, Figs. 14 and 15 show the phase plane for Re[x(t)] of the solution x(t)

of (1)–(2) for the values (97), again for θ = 0◦ and θ = 5◦. In the first case, a
spiral trajectory is observed which as t elapses approaches (0, 0), whereas in the
second case the formed spiral trajectory is drawn away from (0, 0) and close to a
limit cycle which seems to be formed. This limit cycle looks very similar to the
well-known limit cycle of the real van der Pol equation. Similar graphs were also
obtained for the phase plane of the corresponding Im[x(t)] for the same values of θ .

From the application of this FAT to the IVP (1)–(2), some advantages and disad-
vantages of this technique should be obvious. Let’s begin with the disadvantages:

• the continuous and not necessarily analytic solutions of ODEs, that often appear
in physical problems, cannot be obtained with this technique.

• The method is not easily applicable for someone not familiar with operator
theory.

On the other hand, the corresponding advantages compensate us for the aforemen-
tioned difficulties. These are

• The obtained solution always converges to the true solution of the ODE under
consideration, due to the used isomorphisms.

• The method is accurate, since the only errors encountered in practice are
the round-off errors for the truncated series (81) or (89), after taking into
consideration a sufficiently large number of terms.
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Fig. 15 Phase plane for the real part of the solution of (1)–(2) for values of the parameters as
given in (97) and θ = 5◦

• It does not depend on the grid used, due to the fact that the computed solution
of the ODE under consideration is based on the calculation of the coefficients xn
(or un, vn) and is calculated analytically.

• It is very fast, as already demonstrated in [59].
• It is only slightly modified when complex solutions are calculated instead of real

solutions, as Step A6 implies.
• The analysis of complex solutions may reveal the existence of points where the

solutions “blow up”, i.e. points where these solutions cease to be analytic. The
location of these singularities in C form sectors in polar graphs. However only
the first singularity can be detected in each sector and there is no ability by using
this method, to examine the regions for larger r for which the first singularity is
detected. Also, this method cannot give any information regarding the kind of the
detected singularity.

6 Conclusions

The differential equations that describe many realistic problems are nonlinear and
most of these cannot be solved explicitly using standard analytic techniques. In
this chapter, we present several qualitative, approximate or numerical techniques
in order to deal with such kind of equations. This was accomplished by considering
the nonlinear ODE (1), subject to the initial conditions (2), which is used in various
physical problems where oscillations appear.
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We begun by obtaining some qualitative type of results regarding the trajectories
of the corresponding autonomous equation (1) in the phase plane. This was
achieved by explicitly finding its first integrals for specific choices of the appearing
parameters and, by performing a standard phase plane analysis of the associated
to (1), auxiliary first order system of ODEs (10). Finding a first integral for a
nonlinear ODE is very useful, but unfortunately not always easy to be done.
Furthermore, studying the dynamic properties of a nonlinear ODE is of paramount
importance for understanding the behavior of its solution, since this includes the
investigation of the existence of limit cycles, strange attractors, chaos, etc. The
dynamic properties of a nonlinear ODE are investigated via rigorous mathematical
analysis and/or with the aid of numerical techniques.

Then, we connected the nonlinear IVP (1)–(2) with the Green function of an
auxiliary linear IVP. In this way, (1)–(2) was rewritten in the form of an integro-
differential Volterra equation, which in the case where a = 0 is reduced to a
pure integral equation. This integral equation is more appropriate than (1)–(2), for
the application of fixed point theorems, which permits establishing existence and
uniqueness results in specific spaces of interest. Instead of applying a numerical
method to the IVP, we may apply a numerical method to the corresponding
integrodifferential equation. This approach decreases the errors when using an FDM
method. Moreover, this integral form of (1)–(2) is connected with the finite elements
method.

Next, we calculated the approximate solution of (1)–(2) via the classical pertur-
bation method and the homotopy analysis method. Both methods rely in calculating
several consecutive approximations of the true solution of the IVP under consider-
ation. This is done by solving a series of “easier” than (1)–(2) IVPs. Perturbation
methods can be applied only when a small (51) positive parameter, the perturbation
parameter, appears in the problem and may be successful when at least the first
approximation of the solution (leading order term) can be found in closed form.
In (1), three parameters appear. If any of them is chosen to be the perturbation
parameter, the corresponding IVP for the leading order term, although “easier”
than (1)–(2), remains nonlinear and thus, cannot be solved for all values of the
remaining parameters. However, choosing all appearing parameters simultaneously
as perturbation parameters and performing a three-parameter perturbation, provides
a satisfactory approximate solution of (1)–(2).

The homotopy analysis method on the other hand, does not need the existence
of a small parameter in the problem under consideration and reduces the solution
of (1)–(2), to the solution of successive linear IVPs associated with (1)–(2). HAM
gives us great freedom in constructing these linear IVPs, although certain rules
should be followed. The obtained approximate solution depends on an auxiliary
parameter h̄. Appropriate choices of this parameter give us very satisfactory
approximations of the solution of (1)–(2).

After having used two approximate techniques, we numerically solved (1)–(2)
using the fourth order Runge-Kutta, the standard finite differences and the finite
elements method. These methods are widely utilized for the numerical solution of
nonlinear ODEs, while FDM and FEM are also used for the numerical solution of



Qualitative, Approximate and Numerical Approaches for the Solution of Nonlinear DEs 661

PDEs. All numerical methods gave solutions which are in very good agreement with
the approximate ones. Especially the fourth order RK method provided a solution
which is very close to the corresponding solution obtained by HAM. The FDM is the
dominated approach to numerical solutions of ODEs and PDEs, due to the fact that
as a method is very easy to implement in a numerical code and most times provides
very reliable results. Moreover, the FDM is a differential numerical method, whereas
the FEM is an integral method. The integral methods are superior compared to the
differential methods concerning the required smoothness of the functions needed
for the numerical solution. The FEM is more systematic compared to FDM, but it
takes place in more complicated spaces.

Finally, we solved (1)–(2) using a non-standard “discretization” based on a
functional analytic technique. This technique enables finding a difference equation
which is equivalent to (1) and not a discrete analogue of it. This FAT is very accurate
and fast and the obtained solution always converges to the true solution of the
problem under consideration. However, it requires a specific knowledge of operator
theory and cannot by applied if the required abstract forms cannot be founded, in
contrast for example with FDM methods which can be applied to almost all forms
of ODEs. Maybe the most significant advantage of this FAT, is the fact that it can be
only slightly modified in order to compute solutions of ODEs in the complex plane.

Overall, we would like to point out that there is a huge variety of techniques for
studying and solving differential equations and here we presented very few of them.
The choice of the technique depends not only on the problem under consideration,
but also on the personal taste of the researcher.
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On a Hilbert-Type Integral Inequality
in the Whole Plane

Michael Th. Rassias and Bicheng Yang

1 Introduction

If f (x), g(y) ≥ 0,

0 <

∫ ∞

0
f 2(x)dx < ∞ and 0 <

∫ ∞

0
g2(y)dy < ∞ ,

then we have the following well known Hilbert integral inequality (cf. [1]):

∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y
dxdy < π

(∫ ∞

0
f 2(x)dx

∫ ∞

0
g2(y)dy

) 1
2

, (1)

where the constant factor π is the best possible.
Recently, by the use of methods of weight functions and by introducing multi-

parameters, several extensions of (1) were presented in books of B. Yang (cf. [2, 3]).
Some Hilbert-type inequalities with the homogenous kernels of degree 0 and non-
homogenous kernels were obtained in [4–9]. Some other kinds of Hilbert-type
inequalities were established in [10–15]. Several of these inequalities are built in
the quarter plane of the first quadrant.
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By the use of methods of weight functions, in 2007, Yang [16] proved the
following Hilbert-type integral inequality in the whole plane as follows:

∫ ∞

−∞

∫ ∞

−∞
f (x)g(y)

(1 + ex+y)λ
dxdy

< B

(
λ

2
,
λ

2

)(∫ ∞

−∞
e−λxf 2(x)dx

∫ ∞

−∞
e−λyg2(y)dy

) 1
2

, (2)

where the constant factor B(λ2 ,
λ
2 )(λ > 0) is the best possible, and B(u, v) is the

beta function (cf. [17]). He et al. [18–31] proved some new Hilbert-type integral
inequalities in the whole plane with the best possible constant factors. The methods
in these papers are interesting and technically challenging.

In the present paper, still using methods of real analysis and weight functions, a
new Hilbert-type integral inequality in the whole plane with multi-parameters and a
best possible constant factor is formulated and proved. In the form of applications,
the equivalent forms, some particular cases and the operator expressions are also
considered.

2 Some Lemmas

In the following, we let 0 < α1 ≤ α2 < π,μ, σ > 0, μ+ σ = λ, δ ∈ {−1, 1},

γ ∈ {a; a = 1

2k + 1
, 2k − 1 (k ∈ N = {1, 2, · · · })}.

Definition 1 We define the following weight functions:

ω(σ, y) :=
∫ ∞

−∞
max
i∈{1,2}

|y|σ |x|δσ−1

[max{|xδy|γ + (xδy)γ cosαi, 1}]λ/γ dx (y ∈ R), (3)

6(σ, x) :=
∫ ∞

−∞
max
i∈{1,2}

|x|δσ |y|σ−1

[max{|xδy|γ + (xδy)γ cosαi, 1}]λ/γ dy (x ∈ R). (4)

Lemma 1 The following expressions hold true:

ω(σ, y) = 6(σ, x) = K(σ) (y, x ∈ R\{0}), (5)

where

K(σ) := 1

2
σ
γ

[(
sec

α2

2

) 2σ
γ +

(
csc

α1

2

) 2σ
γ

]
λ

μσ
∈ R+ = (0,∞). (6)
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Proof For y ∈ R\{0}, setting u = xδy in (3), we derive that

x = y
−1
δ u

1
δ , dx = 1

δ
y

−1
δ u

1
δ
−1du

and

ω(σ, y) = |1
δ
|
∫ ∞

−∞
max
i∈{1,2}

1

(max{|u|γ + uγ cosαi, 1})λ/γ |u|
σ−1du

= K1(σ )+K2(σ ), (7)

where

K1(σ ) : =
∫ 0

−∞
max
i∈{1,2}

1

[max{(−u)γ (1 − cosαi), 1}]λ/γ (−u)
σ−1du,

K2(σ ) : =
∫ ∞

0
max
i∈{1,2}

1

[max{uγ (1 + cosαi), 1}]λ/γ u
σ−1du.

Setting v = uγ (1 + cosαi) in the integral K2(σ ), we get

u = 1

(1 + cosαi)1/γ
v

1
γ , du = 1

γ (1 + cosαi)1/γ
v

1
γ
−1
dv

and

K2(σ ) =
∫ ∞

0
max
i∈{1,2}

1

γ (1 + cosαi)σ/γ
1

(max{v, 1})λ/γ v
σ
γ
−1
dv

= 1

γ (1 + cosα2)σ/γ

∫ ∞

0

1

(max{v, 1})λ/γ v
σ
γ
−1
dv

= 1

γ (1 + cosα2)σ/γ

(∫ 1

0
v
σ
γ
−1
dv +

∫ ∞

1

1

vλ/γ
v
σ
γ
−1
dv

)

= 1

(1 + cosα2)σ/γ

λ

μσ
= 1

2σ/γ
(sec

α2

2
)

2σ
γ

λ

μσ
∈ R+.

Setting v = −u in the integral of K1(σ ), we similarly obtain that

K1(σ ) =
∫ ∞

0
max
i∈{1,2}

1

{max{vγ [1 + cos(π − αi)], 1}}λ/γ v
σ−1dv

= 1

[1 + cos(π − α1)]σ/γ
λ

μσ
= 1

2σ/γ
(csc

α1

2
)

2σ
γ

λ

μσ
∈ R+,

namely, we have ω(σ, y) = K(σ) ∈ R+.
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For x ∈ R\{0}, setting u = xδy in (4), we find y = x−δu, dy = x−δdu and

6(σ, x) =
∫ ∞

−∞
max
i∈{1,2}

1

(max{|u|γ + uγ cosαi, 1})λ/γ |u|
σ−1du = K(σ).

Hence (5) follows and thus the lemma is proved.

Remark 1 If we replace maxi∈{1,2} with mini∈{1,2} in (3) and (4), then (6) is valid
by exchanging α1 and α2.

Lemma 2 Let us assume that p > 1, 1
p
+ 1

q
= 1, K(σ) is as defined in (6), and

f (x) is a non-negative measurable function in R. The following inequality holds
true:

J : =
∫ ∞

−∞
|y|pσ−1

{∫ ∞

−∞
max
i∈{1,2}

f (x)

[max{|xδy|γ + (xδy)γ cosαi, 1}] λγ
dx

}p

dy

≤ Kp(σ)

∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx. (8)

Proof In the sequel, we set

H(δ)(x, y) := max
i∈{1,2}

1

[max{|xδy|γ + (xδy)γ cosαi, 1}]λ/γ (x, y ∈ R). (9)

By Hölder’s inequality (cf. [32]), we obtain that

(∫ ∞

−∞
H(δ)(x, y)f (x)dx

)p

=
{∫ ∞

−∞
H(δ)(x, y)[ |x|

(1−δσ )/q

|y|(1−σ)/p f (x)][ |y|
(1−σ)/p

|x|(1−δσ )/q ]dx
}p

≤
∫ ∞

−∞
H(δ)(x, y)

|x|(1−δσ )(p−1)

|y|1−σ f p(x)dx

×
[∫ ∞

−∞
H(δ)(x, y)

|y|(1−σ)(q−1)

|x|1−δσ dx

]p−1

(10)

= (ω(σ, y))p−1

|y|pσ−1

∫ ∞

−∞
H(δ)(x, y)

|x|(1−δσ )(p−1)

|y|1−σ f p(x)dx.
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Thus by (5) and Fubini’s theorem (cf. [33]), we have

J ≤ Kp−1(σ )

∫ ∞

−∞

[∫ ∞

−∞
H(δ)(x, y)

|x|(1−δσ )(p−1)

|y|1−σ f p(x)dx

]

dy

= Kp−1(σ )

∫ ∞

−∞
6(σ, x)|x|p(1−δσ )−1f p(x)dx.

By (5) we also obtain the inequality (8). This completes the proof of the lemma.

3 Main Results and Corollaries

Theorem 1 If p > 1, 1
p
+ 1

q
= 1, K(σ) is as defined by (6), f (x), g(y) ≥ 0,

0 <

∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx < ∞ and 0 <

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy < ∞ .

then we have the following equivalent inequalities:

I : =
∫ ∞

−∞

∫ ∞

−∞
max
i∈{1,2}

f (x)g(y)

(max{|xδy|γ + (xδy)γ cosαi, 1}) λγ
dxdy

< K(σ)

[∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (11)

J : =
∫ ∞

−∞
|y|pσ−1

{∫ ∞

−∞
max
i∈{1,2}

f (x)

[max{|xδy|γ + (xδy)γ cosαi, 1}] λγ
dx

}p

dy

< Kp(σ)

∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx, (12)

where, the constant factors K(σ) and Kp(σ) are the best possible.
In particular, for α1 = α2 = α ∈ (0, π), γ = 1 in (11) and (12), setting

k(σ ) := 1

2σ

[(
sec

α

2

)2σ +
(

csc
α

2

)2σ
]

λ

μσ
, (13)
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we deduce the following equivalent inequalities:

∫ ∞

−∞

∫ ∞

−∞
1

(max{|xδy| + xδy cosα, 1})λ f (x)g(y)dxdy

< k(σ)

[∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (14)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞
1

(max{|xδy| + xδy cosα, 1})λ f (x)dx
]p

dy

< kp(σ )

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx. (15)

Proof If (10) takes the form of equality for a y �= 0, then there exists constants A
and B, satisfying A2 + B2 > 0, and

A
|x|(1−δσ )(p−1)

|y|1−σ f p(x) = B
|y|(1−σ)(q−1)

|x|1−δσ a. e. in R

(cf. [32]). We have A �= 0 (otherwise, B = A = 0), from which it follows that

|x|p(1−δσ )−1f p(x) = |y|q(1−σ) B

A|x| a. e. in R.

However, this contradicts the fact that

0 <

∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx < ∞ .

Hence, (10) takes the form of strict inequality. So does (8), namely, (12) follows.
In view of Hölder’s inequality (cf. [32]), we also obtain that

I =
∫ ∞

−∞

(
|y|σ− 1

p

∫ ∞

−∞
H(δ)(x, y)f (x)dx

)
(|y| 1

p
−σ

g(y))dy

≤ J
1
p

[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

. (16)

Then by (12) we derive (11). On the other hand, assuming that (11) holds true, we set

g(y) := |y|pσ−1
(∫ ∞

−∞
H(δ)(x, y)f (x)dx

)p−1

(y ∈ R).
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Then it follows that

J =
∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy .

In view of (9), we have J < ∞. If J = 0, then (12) is trivially valid. If 0 < J < ∞,
then in view of (11), we get

∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy = J = I

< K(σ)

[∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (17)

J
1
p =

[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
p

< K(σ)

[∫ ∞

−∞
|x|p(1−δσ )−1f p(x)dx

] 1
p

,

(18)
namely, (12) follows, which is equivalent to (11).

We set Eδ := {x ∈ R; |x|δ ≥ 1}, and

E+
δ := Eδ ∩ R+ = {x ∈ R+; xδ ≥ 1}.

For any ε > 0, we define f̃ (x), g̃(y) as follows:

f̃ (x) : =
{
|x|δ(σ− 2ε

p
)−1

, x ∈ Eδ

0, x ∈ R\Eδ

,

g̃(y) : =
{

0, y ∈ (−∞,−1) ∪ (1,∞)

|y|σ+ 2ε
q
−1
, y ∈ [−1, 1] .

Then we get

L̃ : =
[∫ ∞

−∞
|x|p(1−δσ )−1f̃ p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1g̃q(y)dy

] 1
q

= 2(
∫

E+
δ

x−2δε−1dx)
1
p (

∫ 1

0
y2ε−1dy)

1
q = 1

ε
.

We have

h(x) : =
∫ 1

−1
max
i∈{1,2}

|y|σ+ 2ε
q
−1

[max{|xδy|γ + (xδy)γ cosαi, 1}]λ/γ dy

=
∫ 1

−1
max
i∈{1,2}

|Y |σ+ 2ε
q
−1

[max{| − xδY |γ + (−xδY )γ cosαi, 1}]λ/γ dY

= h(−x),
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namely, h(x) is an even function. Since

Ĩ =
∫ ∞

−∞

∫ ∞

−∞
H(δ)(x, y)f̃ (x)g̃(y)dxdy

=
∫

Eδ

|x|δ(σ− 2ε
p
)−1

h(x)dx = 2
∫

E+
δ

x
δ(σ− 2ε

p
)−1

h(x)dx

= 2
∫

E+
δ

x−2δε−1

⎡

⎣
∫ xδ

−xδ
max
i∈{1,2}

|u|σ+ 2ε
q
−1

(max{|u|γ + uγ cosαi, 1})λ/γ du
⎤

⎦ dx (u = xδy),

setting v = xδ in the above integral, by Fubini’s theorem (cf. [33]), we obtain

Ĩ = 2
∫ ∞

1
v−2ε−1

⎡

⎣
∫ v

−v
max
i∈{1,2}

|u|σ+ 2ε
q
−1

(max{|u|γ + uγ cosαi, 1})λ/γ du
⎤

⎦ dv

= 2
∫ ∞

1
v−2ε−1

{∫ v

0
[ max
i∈{1,2}

1

(max{uγ (1 + cosαi), 1})λ/γ

+ max
i∈{1,2}

1

(max{uγ (1 − cosαi), 1})λ/γ ]u
σ+ 2ε

q
−1
du

}
dv

= 2
∫ ∞

1
v−2ε−1

{∫ v

0
[ 1

(max{uγ (1 + cosα2), 1})λ/γ

+ 1

(max{uγ (1 − cosα1), 1})λ/γ ]u
σ+ 2ε

q
−1
du

}
dv

= 2
∫ ∞

1
v−2ε−1

⎧
⎨

⎩

∫ 1

0
[ u

σ+ 2ε
q
−1

(max{uγ (1 + cosα2), 1})λ/γ

+ u
σ+ 2ε

q
−1

(max{uγ (1 − cosα1), 1})λ/γ ]du
⎫
⎬

⎭
dv

+2
∫ ∞

1
v−2ε−1

⎧
⎨

⎩

∫ v

1
[ u

σ+ 2ε
q
−1

(max{uγ (1 + cosα2), 1})λ/γ

+ u
σ+ 2ε

q
−1

(max{uγ (1 − cosα1), 1})λ/γ ]du
⎫
⎬

⎭
dv
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= 1

ε

∫ 1

0

⎧
⎨

⎩
u
σ+ 2ε

q
−1

[max{uγ (1 + cosα2), 1}] λγ

+ u
σ+ 2ε

q
−1

[max{uγ (1 − cosα1), 1}] λγ

⎫
⎬

⎭
du+ 2

∫ ∞

1

(∫ ∞

u

v−2ε−1dv

)

×
⎧
⎨

⎩
u
σ+ 2ε

q
−1

[max{uγ (1 + cosα2), 1}]λ/γ + u
σ+ 2ε

q
−1

[max{uγ (1 − cosα1), 1}]λ/γ

⎫
⎬

⎭
du

= 1

ε

⎧
⎨

⎩

∫ 1

0
[ u

σ+ 2ε
q
−1

(max{u(1 + cosα2)1/γ , 1})λ + u
σ+ 2ε

q
−1

(max{u(1 − cosα1)1/γ , 1})λ ]du

+
∫ ∞

1
[ u

σ− 2ε
p
−1

(max{u(1 + cosα2)1/γ , 1})λ + u
σ− 2ε

p
−1

(max{u(1 − cosα1)1/γ , 1})λ ]du
⎫
⎬

⎭
.

If the constant factor K(σ) in (11) is not the best possible, then there exists a
positive constant k ≤ K(σ), such that (11) is valid when replacing K(σ) by k. In
particular, we have εĨ < εkL̃, and

∫ 1

0

⎧
⎨

⎩
u
σ+ 2ε

q
−1

[max{u(1 + cosα2)1/γ , 1}]λ + u
σ+ 2ε

q
−1

[max{u(1 − cosα1)1/γ , 1}]λ

⎫
⎬

⎭
du

+
∫ ∞

1

⎧
⎨

⎩
u
σ− 2ε

p
−1

[max{u(1 + cosα2)1/γ , 1}]λ + u
σ− 2ε

p
−1

[max{u(1 − cosα1)1/γ , 1}]λ

⎫
⎬

⎭
du

= εĨ < εkL̃ = k. (19)

By (7) and Levi’s theorem (cf. [33]), we get

K(σ) = K2(σ )+K1(σ ) =
∫ ∞

0
max
i∈{1,2}

1

[max{uγ (1 + cosαi), 1}]λ/γ u
σ−1du

+
∫ ∞

0
max
i∈{1,2}

1

[max{uγ (1 − cosαi), 1}]λ/γ u
σ−1du

=
∫ ∞

0

uσ−1du

[max{u(1 + cosα2)
1
γ , 1}]λ

+
∫ ∞

0

uσ−1du

[max{u(1 − cosα1)
1
γ , 1}]λ
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=
∫ 1

0
lim
ε→0+

⎧
⎨

⎩
u
σ+ 2ε

q
−1

[max{u(1 + cosα2)1/γ , 1}]λ + u
σ+ 2ε

q
−1

[max{u(1 − cosα1)1/γ , 1}]λ

⎫
⎬

⎭
du

+
∫ ∞

1
lim
ε→0+

⎧
⎨

⎩
u
σ− 2ε

p
−1

[max{u(1 + cosα2)1/γ , 1}]λ + u
σ− 2ε

p
−1

[max{u(1 − cosα1)1/γ , 1}]λ

⎫
⎬

⎭
du

= lim
ε→0+

⎧
⎨

⎩

∫ 1

0
[ u

σ+ 2ε
q
−1

(max{u(1 + cosα2)1/γ , 1})λ + u
σ+ 2ε

q
−1

(max{u(1 − cosα1)1/γ , 1})λ ]du

+
∫ ∞

1
[ u

σ− 2ε
p
−1

(max{u(1 + cosα2)1/γ , 1})λ + u
σ− 2ε

p
−1

(max{u(1 − cosα1)1/γ , 1})λ ]du
⎫
⎬

⎭

≤ k.

Hence, the constant factor k = K(σ) in (11) is the best possible.
The constant factor in (12) is still the best possible. Otherwise, we would reach

a contradiction by (16), that the constant factor in (11) is not the best possible. This
completes the proof of the theorem.

Corollary 1 For δ = 1 in (11) and (12), we obtain the following equivalent
inequalities with the non-homogeneous kernel:

∫ ∞

−∞

∫ ∞

−∞
max
i∈{1,2}

f (x)g(y)

(max{|xy|γ + (xy)γ cosαi, 1}) λγ
dxdy

< K(σ)

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (20)

∫ ∞

−∞
|y|pσ−1

{∫ ∞

−∞
max
i∈{1,2}

f (x)

[max{|xy|γ + (xy)γ cosαi, 1}] λγ
dx

}p

dy

< Kp(σ)

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx, (21)

where, the constant factors K(σ) and Kp(σ) are the best possible. In particular, for
α1 = α2 = α ∈ (0, π), γ = 1 in (20) and (21), we have the following equivalent
inequalities:
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∫ ∞

−∞

∫ ∞

−∞
f (x)g(y)

(max{|xy| + xy cosα, 1})λ dxdy

< k(σ)

[∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (22)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞
f (x)

(max{|xy| + xy cosα, 1})λ dx
]p

dy

< kp(σ )

∫ ∞

−∞
|x|p(1−σ)−1f p(x)dx, (23)

where k(σ ) is indicated by (13).

Corollary 2 For δ = −1 in (11) and (12), replacing |x|λf (x) by f (x), we obtain

0 <

∫ ∞

−∞
|x|p(1−μ)−1f p(x)dx < ∞,

as well as the following equivalent inequalities with the homogeneous kernel:

∫ ∞

−∞

∫ ∞

−∞
max
i∈{1,2}

f (x)g(y)

(max{|y|γ + sgn(x)yγ cosαi, |x|γ })λ/γ dxdy

< K(σ)

[∫ ∞

−∞
|x|p(1−μ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (24)

∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞
max
i∈{1,2}

f (x)

(max{|y|γ + sgn(x)yγ cosαi, |x|γ })λ/γ dx
]p

dy

< Kp(σ)

∫ ∞

−∞
|x|p(1−μ)−1f p(x)dx, (25)

where the constant factors K(σ) and Kp(σ) are the best possible. In particular, for
α1 = α2 = α ∈ (0, π), γ = 1 in (24) and (25), we obtain the following equivalent
inequalities:

∫ ∞

−∞

∫ ∞

−∞
1

(max{|y| + sgn(x)y cosα, |x|})λ f (x)g(y)dxdy

< k(σ)

[∫ ∞

−∞
|x|p(1−μ)−1f p(x)dx

] 1
p
[∫ ∞

−∞
|y|q(1−σ)−1gq(y)dy

] 1
q

, (26)
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∫ ∞

−∞
|y|pσ−1

[∫ ∞

−∞
1

(max{|y| + sgn(x)y cosα, |x|})λ f (x)dx
]p

dy

< kp(σ )

∫ ∞

−∞
|x|p(1−μ)−1f p(x)dx, (27)

where k(σ ) is indicated by (13).

4 Operator Expressions

Suppose that p > 1, 1
p
+ 1

q
= 1. We define the following functions:

ϕ(x) := |x|p(1−δσ )−1, ψ(y) := |y|q(1−σ)−1, φ(x) := |x|p(1−μ)−1(x, y ∈ R),

wherefrom ψ1−p(y) = |y|pσ−1. Define the following real normed linear space:

Lp,ϕ(R) : =
{

f : ||f ||p,ϕ :=
(∫ ∞

−∞
ϕ(x)|f (x)|pdx

) 1
p

< ∞
}

,

Lp,ψ1−p (R) =
{

h : ||h||p,ψ1−p =
(∫ ∞

−∞
ψ1−p(y)|h(y)|pdy

) 1
p

< ∞
}

,

Lp,φ(R) =
{

g : ||g||p,φ =
(∫ ∞

−∞
φ(x)|g(x)|pdx

) 1
p

< ∞
}

.

(a) In view of Theorem 1, for f ∈ Lp,ϕ(R), setting

H1(y) :=
∫ ∞

−∞
max
i∈{1,2}

|f (x)|
[max{|xδy|γ + (xδy)γ cosαi, 1}] λγ

dx (y ∈ R),

by (12), we have

||H1||p,ψ1−p :=
(∫ ∞

−∞
ψ1−p(y)Hp

1 (y)dy

) 1
p

< K(σ)||f ||p,ϕ < ∞. (28)

Definition 2 Let us define the Hilbert-type integral operator with the non-
homogeneous kernel in the whole plane T1 : Lp,ϕ(R) → Lp,ψ1−p (R) as follows:
For any f ∈ Lp,ϕ(R), there exists a unique representation T1f = H1 ∈
Lp,ψ1−p (R), satisfying T1f (y) = H1(y) for any y ∈ R.
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In view of (28), it follows that

||T1f ||p,ψ1−p = ||H1||p,ψ1−p ≤ K(σ)||f ||p,ϕ,

and thus the operator T1 is bounded satisfying

||T1|| = sup
f ( �=θ)∈Lp,ϕ(R)

||T1f ||p,ψ1−p

||f ||p,ϕ ≤ K(σ).

Since the constant factor K(σ) in (28) is the best possible, we have ||T1|| = K(σ).

If we define the formal inner product of T1f and g as follows:

(T1f, g) : =
∫ ∞

−∞

(∫ ∞

−∞
H(δ)(x, y)f (x)dx

)
g(y)dy

=
∫ ∞

−∞

∫ ∞

−∞
H(δ)(x, y)f (x)g(y)dxdy,

then we can rewrite (11) and (12) as :

(T1f, g) < ||T1|| · ||f ||p,ϕ ||g||q,ψ , ||T1f ||p,ψ1−p < ||T1|| · ||f ||p,ϕ.

(b) In view of Corollary 2, for f ∈ Lp,φ(R), setting

H2(y) :=
∫ ∞

−∞
max
i∈{1,2}

|f (x)|
(max{|y|γ + sgn(x)yγ cosαi, |x|γ })λ/γ dx (y ∈ R),

by (25), we have

||H2||p,ψ1−p :=
(∫ ∞

−∞
ψ1−p(y)Hp

2 (y)dy

) 1
p

< K(σ)||f ||p,φ < ∞. (29)

Definition 3 Let us define the Hilbert-type integral operator with the homogeneous
kernel in the whole plane T2 : Lp,φ(R) → Lp,ψ1−p (R) as follows:

For any f ∈ Lp,φ(R), there exists a unique representation T2f = H2 ∈
Lp,ψ1−p (R), satisfying T2f (y) = H2(y) for any y ∈ R.

In view of (29), it follows that

||T2f ||p,ψ1−p = ||H2||p,ψ1−p ≤ K(σ)||f ||p,φ,
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and then the operator T2 is bounded satisfying

||T2|| = sup
f ( �=θ)∈Lp,φ(R)

||T2f ||p,ψ1−p

||f ||p,φ ≤ K(σ).

Since the constant factor K(σ) in (29) is the best possible, we have ||T2|| = K(σ).

If we define the formal inner product of T2f and g as

(T2f, g) :=
∫ ∞

−∞

∫ ∞

−∞
max
i∈{1,2}

f (x)g(y)

(max{|y|γ + sgn(x)yγ cosαi, |x|γ })
λ
γ

dxdy,

then we can rewrite (24) and (25) as follows:

(T2f, g) < ||T2|| · ||f ||p,φ ||g||q,ψ , ||T2f ||p,ψ1−p < ||T2|| · ||f ||p,φ.

Acknowledgements This work is supported by the National Natural Science Foundation (No.
61772140), and Appropriative Researching Fund for Professors and Doctors, Guangdong Univer-
sity of Education (No. 2015ARF25). We are grateful for their help.

References

1. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge,
1934)

2. B.C. Yang, The Norm of Operator and Hilbert-Type Inequalities (Science Press, Beijing, 2009)
3. B.C. Yang, Hilbert-Type Integral Inequalities (Bentham Science Publishers Ltd., Sharjah,

2009)
4. B.C. Yang, On the norm of an integral operator and applications. J. Math. Anal. Appl. 321,

182–192 (2006)
5. J.S. Xu, Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007)
6. B.C. Yang, On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal.

Appl. 325, 529–541 (2007)
7. D.M. Xin, A Hilbert-type integral inequality with the homogeneous kernel of zero degree.

Math. Theory Appl. 30(2), 70–74 (2010)
8. B.C. Yang, A Hilbert-type integral inequality with the homogenous kernel of degree 0. J.

Shandong Univ. 45(2), 103–106 (2010)
9. L. Debnath, B.C. Yang, Recent developments of Hilbert-type discrete and integral inequalities

with applications. Int. J. Math. Math. Sci. 2012, 871845, 29 (2012)
10. M.Th. Rassias, B.C. Yang, On a half-discrete Hilbert’s inequality. Appl. Math. Comput. 220,

75–93 (2013)
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Four Conjectures in Nonlinear Analysis

Biagio Ricceri

In this chapter, I intend to formulate four challenging conjectures in Nonlinear
Analysis which have their roots in certain results that I have obtained in the past
years.

1 A Conjecture on the Monge-Ampère Equation

Conjecture 1.1 Let Ω ⊂ Rn (n ≥ 2) be a non-empty open bounded set and let
h : Ω → R be a non-negative continuous function.

Then, each u ∈ C2(Ω) ∩ C1(Ω) satisfying in Ω the Monge-Ampère equation

det(D2u) = h

has the following property:

∇(Ω) ⊆ conv(∇(∂Ω)) .

This conjecture is motivated by Ricceri [26] where I proved that it is true for n = 2.
I am going to produce such a proof here.

In what follows, Ω is a non-empty relatively compact and open set in a
topological space E, with ∂Ω �= ∅, and Y is a real locally convex Hausdorff
topological vector space. Ω and ∂Ω denote the closure and the boundary of Ω ,
respectively. Since Ω is compact, ∂Ω , being closed, is compact too. Let us first
recall some well-known definitions.

B. Ricceri (�)
Department of Mathematics, University of Catania, Catania, Italy
e-mail: ricceri@dmi.unict.it

© Springer International Publishing AG, part of Springer Nature 2018
T. M. Rassias (ed.), Applications of Nonlinear Analysis, Springer Optimization
and Its Applications 134, https://doi.org/10.1007/978-3-319-89815-5_24

681

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89815-5_24&domain=pdf
mailto:ricceri@dmi.unict.it
https://doi.org/10.1007/978-3-319-89815-5_24


682 B. Ricceri

Let S be a subset of Y and let y0 ∈ S. As usual, we say that S is supported at y0
if there exists ϕ ∈ Y ∗ \ {0} such that ϕ(y0) ≤ ϕ(y) for all y ∈ S. If this happens, of
course y0 ∈ ∂S. Further, extending a maximum principle definition for real-valued
functions, a continuous function f : Ω → Y is said to satisfy the convex hull
property in Ω (see [7, 13] and references therein) if

f (Ω) ⊆ conv(f (∂Ω)) ,

conv(f (∂Ω)) being the closed convex hull of f (∂Ω). When dim(Y ) < ∞,
since f (∂Ω) is compact, conv(f (∂Ω)) is compact too and so conv(f (∂Ω)) =
conv(f (∂Ω)).

A function ψ : Y → R is said to be quasi-convex if, for each r ∈ R, the set
ψ−1(] −∞, r]) is convex.

Notice the following proposition:

Proposition 1.1 For each pair A,B of non-empty subsets of Y , the following
assertions are equivalent:

(a1) A ⊆ conv(B) .
(a2) For every continuous and quasi-convex function ψ : Y → R, one has

sup
A

ψ ≤ sup
B

ψ .

Proof Let (a1) hold. Fix any continuous and quasi-convex function ψ : Y → R. Fix
ỹ ∈ A. Then, there is a net {yα} in conv(B) converging to ỹ. So, for each α, we have
yα = ∑k

i=1 λizi , where zi ∈ B, λi ∈ [0, 1] and
∑k

i=1 λi = 1. By quasi-convexity,
we have

ψ(yα) = ψ

(
k∑

i=1

λizi

)

≤ max
1≤i≤k ψ(zi) ≤ sup

B

ψ

and so, by continuity,

ψ(ỹ) = lim
α
ψ(yα) ≤ sup

B

ψ

which yields (a2).
Now, let (a2) hold. Let x0 ∈ A. If x0 �∈ conv(B), by the standard separation

theorem, there would be ψ ∈ Y ∗ \ {0} such that supconv(B) ψ < ψ(x0), against (a2).
So, (a1) holds. '

Clearly, applying Proposition 1.1, we obtain the following one:

Proposition 1.2 For any continuous function f : Ω → Y , the following assertions
are equivalent:

(b1) f satisfies the convex hull property in Ω .
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(b2) For every continuous and quasi-convex function ψ : Y → R, one has

sup
x∈Ω

ψ(f (x)) = sup
x∈∂Ω

ψ(f (x)) .

In view of Proposition 1.2, we now introduce the notion of convex hull-like
property for functions defined in Ω only.

Definition 1.1 A continuous function f : Ω → Y is said to satisfy the convex hull-
like property in Ω if, for every continuous and quasi-convex function ψ : Y → R,
there exists x∗ ∈ ∂Ω such that

lim sup
x→x∗

ψ(f (x)) = sup
x∈Ω

ψ(f (x)) .

We have

Proposition 1.3 Let g : Ω → Y be a continuous function and let f = g|Ω .
Then, the following assertions are equivalent:

(c1) f satisfies the convex hull-like property in Ω .
(c2) g satisfies the convex hull property in Ω .

Proof Let (c1) hold. Let ψ : Y → R be any continuous and quasi-convex function.
Then, by Definition 1.1, there exists x∗ ∈ ∂Ω such that

lim sup
x→x∗

ψ(f (x)) = sup
x∈Ω

ψ(f (x)) .

But

lim sup
x→x∗

ψ(f (x)) = ψ(g(x∗))

and hence

sup
x∈∂Ω

ψ(g(x)) = sup
x∈Ω

ψ(g(x)) .

So, by Proposition 1.2, (c2) holds.
Now, let (c2) hold. Let ψ : Y → R be any continuous and quasi-convex function.

Then, by Proposition 1.2, one has

sup
x∈∂Ω

ψ(g(x)) = sup
x∈Ω

ψ(g(x)) .

Since ∂Ω is compact and ψ ◦ g is continuous, there exists x∗ ∈ ∂Ω such that

ψ(g(x∗)) = sup
x∈∂Ω

ψ(g(x)) .
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But

ψ(g(x∗)) = lim
x→x∗

ψ(f (x))

and, by continuity again,

sup
x∈Ω

ψ(g(x)) = sup
x∈Ω

ψ(g(x))

and so

lim
x→x∗

ψ(f (x)) = sup
x∈Ω

ψ(f (x))

which yields (c1). '
The central result is as follows:

Theorem 1.1 For any continuous function f : Ω → Y , at least one of the
following assertions holds:

(i) f satisfies the convex hull-like property in Ω .
(ii) There exists a non-empty open setX ⊆ Ω , withX ⊆ Ω , satisfying the following

property: for every continuous function g : Ω → Y , there exists λ̃ ≥ 0 such
that, for each λ > λ̃, the set (g + λf )(X) is supported at one of its points.

Proof Assume that (i) does not hold. So, we are assuming that there exists a
continuous and quasi-convex function ψ : Y → R such that

lim sup
x→z

ψ(f (x)) < sup
x∈Ω

ψ(f (x)) (1.1)

for all z ∈ ∂Ω .
In view of (1.1), for each z ∈ ∂Ω , there exists an open neighbourhood Uz of z

such that

sup
x∈Uz∩Ω

ψ(f (x)) < sup
x∈Ω

ψ(f (x)) .

Since ∂Ω is compact, there are finitely many z1, . . . , zk ∈ ∂Ω such that

∂Ω ⊆
k⋃

i=1

Uzi . (1.2)

Put

U =
k⋃

i=1

Uzi .
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Hence

sup
x∈U∩Ω

ψ(f (x)) = max
1≤i≤k sup

x∈Uzi
∩Ω

ψ(f (x)) < sup
x∈Ω

ψ(f (x)) .

Now, fix a number r so that

sup
x∈U∩Ω

ψ(f (x)) < r < sup
x∈Ω

ψ(f (x)) (1.3)

and set

K = {x ∈ Ω : ψ(f (x)) ≥ r} .

Since f,ψ are continuous, K is closed in Ω . But, since K ∩ U = ∅ and U is open,
in view of (1.2), K is closed in E. Hence, K is compact since Ω is so. By (1.3), we
can fix x̄ ∈ Ω such that ψ(f (x̄)) > r . Notice that the set ψ−1(] −∞, r]) is closed
and convex. So, thanks to the standard separation theorem, there exists a non-zero
continuous linear functional ϕ : Y → R such that

ϕ(f (x̄)) < inf
y∈ψ−1(]−∞,r])

ϕ(y) . (1.4)

Then, from (1.4), it follows

ϕ(f (x̄)) < inf
x∈Ω\K ϕ(f (x)) .

Now, choose ρ so that

ϕ(f (x̄)) < ρ < inf
x∈Ω\K ϕ(f (x))

and set

X = {x ∈ Ω : ϕ(f (x)) < ρ} .

Clearly, X is a non-empty open set contained in K . Now, let g : Ω → Y be any
continuous function. Set

λ̃ = inf
x∈X

ϕ(g(x))− infz∈K ϕ(g(z))

ρ − ϕ(f (x))
.

Fix λ > λ̃. So, there is x0 ∈ X such that

ϕ(g(x0))− infz∈K ϕ(g(z))

ρ − ϕ(f (x0))
< λ .



686 B. Ricceri

From this, we get

ϕ(g(x0))+ λϕ(f (x0)) < λρ + inf
z∈K ϕ(g(z)) . (1.5)

By continuity and compactness, there exists x̂ ∈ K such that

ϕ(g(x̂)+ λf (x̂)) ≤ ϕ(g(x))+ λf (x)) (1.6)

for all x ∈ K . Let us prove that x̂ ∈ X. Arguing by contradiction, assume that
ϕ(f (x̂)) ≥ ρ. Then, taking (1.5) into account, we would have

ϕ(g(x0))+ λϕ(f (x0)) < λϕ(f (x̂))+ ϕ(g(x̂))

contradicting (1.6). So, it is true that x̂ ∈ X, and, by (1.6), the set (g + λf )(X) is
supported at its point g(x̂)+ λf (x̂). '

An application of Theorem 1.1 shows a strongly bifurcating behaviour of certain
equations in Rn.

Theorem 1.2 Let Ω be a non-empty bounded open subset of Rn and let f : Ω →
Rn a continuous function.

Then, at least one of the following assertions holds:

(d1) f satisfies the convex hull-like property in Ω .
(d2) There exists a non-empty open set X ⊆ Ω , with X ⊆ Ω , satisfying the

following property: for every continuous function g : Ω → Rn, there exists
λ̃ ≥ 0 such that, for each λ > λ̃, there exist x̂ ∈ X and two sequences {yk},
{zk} in Rn, with

lim
k→∞ yk = lim

k→∞ zk = g(x̂)+ λf (x̂) ,

such that, for each k ∈ N, one has
(j) the equation

g(x)+ λf (x) = yk

has no solution in X ;
(jj) the equation

g(x)+ λf (x) = zk

has two distinct solutions uk, vk in X such that

lim
k→∞ uk = lim

k→∞ vk = x̂ .
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Proof Apply Theorem 1.1 with E = Y = Rn. Assume that (d1) does not hold.
Let X ⊆ Ω be an open set as in (ii) of Theorem 1.1. Fix any continuous function
g : Ω → Rn. Then, there is some λ̃ ≥ 0 such that, for each λ > λ̃, there exists
x̂ ∈ X such that the set (g + λf )(X) is supported at g(x̂)+ λf (x̂). As we observed
at the beginning, this implies that g(x̂)+λf (x̂) lies in the boundary of (g+λf )(X).
Therefore, we can find a sequence {yk} in Rn \ (g + λf )(X) converging to g(x̂) +
λf (x̂). So, such a sequence satisfies (j). For each k ∈ N, denote by Bk the open
ball of radius 1

k
centered at x̂. Let k be such that Bk ⊆ X. The set (g + λf )(Bk) is

not open since its boundary contains the point g(x̂) + λf (x̂). Consequently, by the
invariance of domain theorem [30, p. 705], the function g + λf is not injective in
Bk . So, there are uk, vk ∈ Bk , with uk �= vk , such that

g(uk)+ λf (uk) = g(vk)+ λf (vk) .

Hence, if we take

zk = g(uk)+ λf (uk) ,

the sequences {uk}, {vk}, {zk} satisfy (jj) and the proof is complete. '
Remark 1.1 Notice that, in general, Theorem 1.2 is no longer true when f : Ω →
Rm with m > n. In this connection, consider the case n = 1, m = 2, Ω =]0, π [
and f (θ) = (cos θ, sin θ) for θ ∈ [0, π ]. So, for each λ > 0, on the one hand,
the function λf is injective, while, on the other hand, f (]0, π [) is not contained in
conv({f (0), f (π)}).

If S ⊆ Rn is a non-empty open set, x ∈ S and h : S → Rn is a C1 function, we
denote by det(Jh(x)) the Jacobian determinant of h at x.

A very recent and important result by Saint Raymond [27] states what follows
(for anything concerning the topological dimension we refer to [8]):

Theorem 1.A ([27, Theorem 10]) Let A ⊆ Rn be a non-empty open set and ϕ :
A → Rn a C1 function such that the topological dimension of the set

{x ∈ A : det(Jϕ(x)) = 0}

is not positive.
Then, the function ϕ is open.

A joint application of Theorems 1.1 and 1.A gives

Theorem 1.3 Let Ω be a non-empty bounded open subset of Rn and let f : Ω →
Rn be a C1 function.

Then, at least one of the following assertions holds:

(a1) f satisfies the convex hull-like property in Ω .
(a2) There exists a non-empty open set X ⊆ Ω , with X ⊆ Ω , satisfying the

following property: for every continuous function g : Ω → Rn which is C1 in
X, there exists λ̃ ≥ 0 such that, for each λ > λ̃, the topological dimension of
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the set

{x ∈ X : det(Jg+λf (x)) = 0}

is greater than or equal 1.

Proof Assume that (a1) does not hold. Let X be an open set as in (ii) of
Theorem 1.1. Let g : Ω → Rn be a continuous function which is C1 in X. Then,
there is some λ̃ ≥ 0 such that, for each λ > λ̃, there exists x̂ ∈ X such that the set
(g + λf )(X) is supported at g(x̂) + λf (x̂). As already remarked, this implies that
g(x̂)+λf (x̂) ∈ ∂(g+λf )(X) and so (g+λf )(X) is not open. Now, (a2) is a direct
consequence of Theorem 1.A. '

In turn, here is a consequence of Theorem 1.3 when n = 2.

Theorem 1.4 Let Ω be a non-empty bounded open set of R2, let h : Ω → R
be a continuous function and let α, β : Ω → R be two C1 functions such that
|αxβy − αyβx | + |h| > 0 and (αxβy − αyβx)h ≥ 0 in Ω .

Then, any C1 solution (u, v) in Ω of the system

⎧
⎪⎪⎨

⎪⎪⎩

uxvy − uyvx = h

βyux − βxuy − αyvx + αxvy = 0

(1.7)

satisfies the convex hull-like property in Ω .

Proof Arguing by contradiction, assume that (u, v) does not satisfy the convex hull-
like property in Ω . Then, by Theorem 1.3, applied taking f = (u, v) and g =
(α, β), there exist λ > 0 and (x̂, ŷ) ∈ Ω such that

det(Jg+λf (x̂, ŷ)) = 0 .

On the other hand, for each (x, y) ∈ Ω , we have

det(Jg+λf (x, y)) = (uxvy − uyvx)(x, y)λ
2+(βyux−βxuy−αyvx+αxvy)(x, y)λ

+(αxβy − αyβx)(x, y)

and hence

h(x̂, ŷ)λ2 + (αxβy − αyβx)(x̂, ŷ) = 0

which is impossible in view of our assumptions. '
Finally, taking Proposition 1.3 in mind, here is the proof of Conjecture 1.1 when

n = 2:
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Theorem 1.5 Let Ω be a non-empty bounded open subset of R2, let h : Ω → R be
a continuous non-negative function and let w ∈ C2(Ω) be a function satisfying in
Ω the Monge-Ampère equation

wxxwyy − w2
xy = h .

Then, the gradient of w satisfies the convex hull-like property in Ω .

Proof It is enough to observe that (wx,wy) is a C1 solution in Ω of the system (1.7)
with α(x, y) = −y and β(x, y) = x and that such α, β satisfy the assumptions of
Theorem 1.4. '

2 A Conjecture on an Eigenvalue Problem

Conjecture 2.1 Let n ≥ 2 and let Ω = {x ∈ Rn : a < |x| < b}, with 0 < a < b.
Then, there exists λ > 0 such that the problem

⎧
⎪⎪⎨

⎪⎪⎩

Δu = λ sinu in Ω

u = 0 on ∂Ω

has at least one non-zero classical solution.

The above conjecture has its roots in Pohozaev identity [19]. Let me recall it.
So, letΩ ⊂ Rn be a smooth bounded domain, and let f : R → R be a continuous

function. Put

F(ξ) =
∫ ξ

0
f (t)dt

for all ξ ∈ R. For λ > 0, consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

−Δu = λf (u) in Ω

u = 0 on ∂Ω .

(Pλf )

In the sequel, a classical solution of problem (Pλf ) is any u ∈ C2(Ω) ∩ C1(Ω),
zero on ∂Ω , satisfying the equation pointwise in Ω . Set

Λf = {λ > 0 : (Pλf ) has a non-zero classical solution} .

When n ≥ 2, the Pohozaev identity tells us that, if u is a classical solution of (Pλf ),
then one has
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2 − n

2

∫

Ω

|∇u(x)|2dx + nλ

∫

Ω

F(u(x))dx = 1

2

∫

∂Ω

|∇u(x)|2x · ν(x)ds (2.1)

where ν denotes the unit outward normal to ∂Ω .
From (2.1), in particular, it follows that, if Ω is star-shaped with respect to 0 (so

x · ν(x) ≥ 0 on ∂Ω), then the set Λf is empty in the two following cases:

(a) f (ξ) = |ξ |p−2ξ with n ≥ 3 and p ≥ 2n
n−2 ;

(b) supξ∈R F(ξ) = 0 .

A natural question arises: what about problem (Pλf ) in cases (a) and (b) when
Ω is not star-shaped?

It is very surprising to realize that, while a great amount of research has been
produced on case (a) (see, for instance, [1–5, 12, 14, 17, 18]), apparently the only
papers dealing with case (b) are [9–11, 23].

In [11], the following result has been pointed out:

Theorem 2.1 Let n ≥ 2 and Ω = {x ∈ Rn : a < |x| < b} with 0 < a < b.
Then, for every continuous function f : R → R, with supξ∈R F(ξ) = 0, and

every λ > 0, problem (Pλf ) has no radially symmetric non-zero classical solutions.

Proof Let f : R → R be a continuous function, with supξ∈R F(ξ) = 0, let λ > 0,
and let u be a radially symmetric classical solution of (Pλf ). Then

⎧
⎪⎪⎨

⎪⎪⎩

−(rn−1u′(r))′ = λrn−1f (u(r)) in ]a, b[

u(a) = u(b) = 0 ,

that is
⎧
⎪⎪⎨

⎪⎪⎩

u′′(r)+ n−1
r
u′(r)+ λf (u(r)) = 0 in ]a, b[

u(a) = u(b) = 0 .

(2.2)

Multiplying both sides of the equation in (2.2) by u′, we have

u′′(r)u′(r)+ n− 1

r
(u′(r))2 + λf (u(r))u′(r) = 0 (2.3)

for all r ∈ (a, b). Let r1 ∈ (a, b) be such that u′(r1) = 0. Define

Ir1(r) =
1

2

∣∣u′(r)
∣∣2 + (n− 1)

∫ r

r1

(u′(t))2

t
dt + λF(u(r))
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for all r ∈ [a, b]. Then (2.3) shows that I ′r1
(r) = 0 for all r ∈]a, b[ and so, for some

c ∈ R, one has

Ir1(r) = c

for all r ∈ [a, b]. Since

Ir1(r1) = 0 + 0 + λF(u(r1)) ≤ 0 ,

we have c ≤ 0. On the other hand, since

Ir1(b) =
1

2
|u′(b)|2 + (n− 1)

∫ b

r1

(u′(t))2

t
dt + 0 ≥ 0 ,

have c ≥ 0, and so c = 0. In particular Ir1(b) = 0, which implies u′(b) = 0, and
consequently u(r) = 0 for all r ∈ [a, b], as claimed. '
Remark 2.1 It is important to note the drastic difference between cases (a) and
(b) enlighted by Theorem 2.1 when Ω is an annulus. Actually, in this case, it was
remarked in [14] that the problem

⎧
⎪⎪⎨

⎪⎪⎩

−Δu = λ|u|p−2u in Ω

u = 0 on ∂Ω

has radially symmetric non-zero classical solutions for p ≥ 2n
n−2 (n ≥ 3), and λ > 0.

Now, I recall a very general result proved in [23].
For any real Hilbert space X, denote by AX the set of all C1 functionals I :

X → R such that 0 is a global maximum of I and I ′ is Lipschitzian with Lipschitz
constant less than 1. Set

γX = inf
I∈AX

inf{λ > 0 : x = λI ′(x) for some x �= 0} .

We have:

Theorem 2.2 For any real Hilbert space (X, 〈·, ·〉), with X �= {0}, one has

γX = 3 .

We first prove

Proposition 2.1 One has

γR = 3 .
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Proof Let I0 ∈ AR and let L < 1 be the Lipschitz constant of I ′0. Set

I = I0 − I0(0) .

Fix λ ∈]0, 3]. Let us prove that 0 is the only solution of the equation

x = λI ′(x) .

Arguing by contradiction, assume that

x0 = λI ′(x0)

for some x0 �= 0. It is not restrictive to assume that x0 > 0 (otherwise, we would
work with I ′(−x)). Consider now the function g : R → R defined by

g(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− x2

2 if x <
x0
3

x2

2 − 2x0x
3 + x2

0
9 if

x0
3 ≤ x ≤ x0

− x2

2 + 4x0x
3 − 8x2

0
9 if x0 > x .

Clearly, g ∈ C1(R). Let x > 0 with x �= x0. Let us prove that

g′(x) < I ′(x) .

We distinguish two cases. If 0 < x ≤ x0
3 , We have

g′(x) = −x < −Lx ≤ I ′(x) .

If x >
x0
3 , We have

g′(x) = x0

3
− |x − x0| < x0

3
− L|x − x0| = λI ′(x0)

3
− L|x − x0|

≤ I ′(x0)− L|x − x0| ≤ I ′(x) .

So, in particular, we get

I

(
4x0

3

)
=

∫ 4x0
3

0
I ′(x)dx >

∫ 4x0
3

0
g′(x)dx = g

(
4x0

3

)
= 0

which contradicts the fact that the function I is non-positive, since 0 is a global
maximum of I0. From what we have just proven, it clearly follows that
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3 ≤ γR .

Now, fix any μ > 1. Continue to consider the function g defined above (for a fixed
x0 > 0). Clearly, the function 1

μ
g belongs to AR and

x0 = 3μ
g(x0)

μ
.

Of course, from this we infer that

γR ≤ 3μ

and the conclusion clearly follows. '
Proof of Theorem 2.2 First, let us prove that

γX ≤ 3 . (2.4)

To this end, fix any ϕ ∈ AR and any λ > 0 such that

t = λϕ′(t)

for some t �= 0. Fix also u ∈ X, with ‖u‖ = 1, and consider the functional I defined
by putting

I (x) = ϕ(〈u, x〉)

for all x ∈ X. It is readily seen that I ∈ AX. In particular, note that

I ′(x) = ϕ′(〈u, x〉)u .

Finally, set

x̂ = λϕ(t)u .

Of course, x̂ �= 0. Since

〈u, x̂〉 = λϕ′(t)

we also have

〈u, x̂〉 = t

and so

x̂ = λI ′(x̂) .
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From this, it clearly follows that

γX ≤ γR

and so (2.4) follows now from Proposition 2.1.
Now, let us prove that

3 ≤ γX . (2.5)

To this end, fix I ∈ AX, λ > 0 and x ∈ X \ {0} such that

x = λI ′(x) . (2.6)

Then, consider the function ϕ : R → R defined by

ϕ(t) = I

(
tx

‖x‖
)

for all t ∈ R. Clearly, 0 is a global maximum for ϕ. Moreover, ϕ ∈ C1(R) and one
has

ϕ′(t) =
〈
I ′

(
tx

‖x‖
)
,

x

‖x‖
〉
.

Therefore, if L is the Lipschitz constant of I ′, for each t, s ∈ R, we have

|ϕ′(t)− ϕ′(s)| =
∣
∣∣∣

〈
I ′

(
tx

‖x‖
)
− I ′

(
sx

‖x‖
)
,

x

‖x‖
〉∣∣∣∣

≤
∥∥∥
∥I

′
(

tx

‖x‖
)
− I ′

(
sx

‖x‖
)∥∥∥
∥ ≤ L|t − s| .

This shows that ϕ′ is a contraction, and so ϕ ∈ AR. Now, from (2.6), we get

‖x‖ = λ

〈
I ′(x), x

‖x‖
〉

that is

‖x‖ = λϕ′(‖x‖) .

From this, we infer that

γR ≤ γX .

So (2.5) follows from Proposition 2.1, and the proof is complete. '
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Now, for each L > 0, denote by CL the class of all Lipschitzian functions f :
R → R, with Lipschitz constant L, such that f (0) = 0 and supξ∈R F(ξ) = 0. Also
denote by λ1 the first eigenvalue of the problem

⎧
⎪⎪⎨

⎪⎪⎩

−Δu = λu in Ω

u = 0 on ∂Ω .

From Theorem 2.2, it directly follows that

inf
f∈CL

infΛf ≥ 3λ1

L
.

In [10], Fan obtained the finer inequality

inf
f∈CL

infΛf >
3λ1

L
.

Conjecture 2.1 says that Λf �= ∅ for f (ξ) = − sin ξ , Ω being an annulus. Due to
what precedes, if Conjecture 2.1 is true, then λ must necessarily be larger than 3λ1.

3 A Conjecture on a Non-local Problem

Conjecture 3.1 Let a ≥ 0, b > 0 and let Ω ⊂ Rn be a smooth bounded domain,
with n > 4.

Then, for each λ > 0 large enough and for each convex set C ⊆ L2(Ω) whose
closure in L2(Ω) contains H 1

0 (Ω), there exists v∗ ∈ C such that the problem

⎧
⎪⎪⎨

⎪⎪⎩

− (
a + b

∫
Ω
|∇u(x)|2dx)Δu = |u| 4

n−2 u+ λ(u− v∗(x)) in Ω

u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H 1
0 (Ω) of the

functional

u → a

2

∫

Ω

|∇u(x)|2dx+b

4

(∫

Ω

|∇u(x)|2dx
)2

−n− 2

2n

∫

Ω

|u(x)| 2n
n−2 dx−λ

2

∫

Ω

|u(x)−v∗(x)|2dx .

Conjecture 3.1 comes from the results I have obtained in [25]. I am going to
reproduce them here.

Let a, b,Ω be as in Conjecture 3.1.
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On the Sobolev space H 1
0 (Ω), we consider the scalar product

〈u, v〉 =
∫

Ω

∇u(x)∇v(x)dx

and the induced norm

‖u‖ =
(∫

Ω

|∇u(x)|2dx
) 1

2

.

Denote by A the class of all Carathéodory functions f : Ω × R → R such that

sup
(x,ξ)∈Ω×R

|f (x, ξ)|
1 + |ξ |p < +∞ (3.1)

for some p ∈
]
0, n+2

n−2

[
.

Moreover, denote by ˜A the class of all Carathéodory functions g : Ω × R → R
such that

sup
(x,ξ)∈Ω×R

|g(x, ξ)|
1 + |ξ |q < +∞ (3.2)

for some q ∈
]
0, 2

n−2

[
. Furthermore, denote by ˆA the class of all functions h :

Ω × R → R of the type

h(x, ξ) = f (x, ξ)+ α(x)g(x, ξ)

with f ∈ A , g ∈ ˜A and α ∈ L2(Ω). For each h ∈ ˆA , define the functional
Ih : H 1

0 (Ω) → R, by putting

Ih(u) =
∫

Ω

H(x, u(x))dx

for all u ∈ H 1
0 (Ω), where

H(x, ξ) =
∫ ξ

0
h(x, t)dt

for all (x, ξ) ∈ Ω × R.
By classical results (involving the Sobolev embedding theorem), the functional

Ih turns out to be sequentially weakly continuous, of class C1, with compact
derivative given by
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I ′h(u)(w) =
∫

Ω

h(x, u(x))w(x)dx

for all u,w ∈ H 1
0 (Ω).

Now, recall that, given h ∈ ˆA , a weak solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

− (
a + b

∫
Ω
|∇u(x)|2dx)Δu = h(x, u) in Ω

u = 0 on ∂Ω

is any u ∈ H 1
0 (Ω) such that

(
a + b

∫

Ω

|∇u(x)|2dx
)∫

Ω

∇u(x)∇w(x)dx =
∫

Ω

h(x, u(x))w(x)

for all w ∈ H 1
0 (Ω). Let Φ : H 1

0 (Ω) → R be the functional defined by

Φ(u) = a

2
‖u‖2 + b

4
‖u‖4

for all u ∈ H 1
0 (Ω).

Hence, the weak solutions of the problem are precisely the critical points in
H 1

0 (Ω) of the functional Φ − Ih which is said to be the energy functional of the
problem.

The central result is as follows:

Theorem 3.1 Let n ≥ 4, let f ∈ A and let g ∈ ˜A be such that the set

{

x ∈ Ω : sup
ξ∈R

|g(x, ξ)| > 0

}

has a positive measure.
Then, there exists λ∗ ≥ 0 such that, for each λ > λ∗ and each convex set C ⊆

L2(Ω) whose closure in L2(Ω) contains the set {G(·, u(·)) : u ∈ H 1
0 (Ω)}, there

exists v∗ ∈ C such that the problem

⎧
⎪⎪⎨

⎪⎪⎩

− (
a + b

∫
Ω
|∇u(x)|2dx)Δu = f (x, u)+ λ(G(x, u)− v∗(x))g(x, u) in Ω

u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H 1
0 (Ω) of the

functional
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u → a

2

∫

Ω

|∇u(x)|2dx + b

4

(∫

Ω

|∇u(x)|2dx
)2

−
∫

Ω

F(x, u(x))dx

−λ

2

∫

Ω

|G(x, u(x))− v∗(x)|2dx .

If, in addition, the functional

u → a

2

∫

Ω

|∇u(x)|2dx + b

4

(∫

Ω

|∇u(x)|2dx
)2

−
∫

Ω

F(x, u(x))dx

has at least two global minima in H 1
0 (Ω) and the function G(x, ·) is strictly

monotone for all x ∈ Ω , then λ∗ = 0.

The main tool we use to prove Theorem 3.1 is Theorem 3.C below which, in turn,
is a direct consequence of two other results recently established in [24].

To state Theorem 3.C in a compact form, we now introduce some notations.
Here and in what follows, X is a non-empty set, V, Y are two topological spaces,

y0 is a point in Y .
We denote by G the family of all lower semicontinuous functions ϕ : Y →

[0,+∞[, with ϕ−1(0) = {y0}, such that, for each neighbourhood U of y0, one has

inf
Y\U ϕ > 0 .

Moreover, denote by H the family of all functions Ψ : X × V → Y such that, for
each x ∈ X, Ψ (x, ·) is continuous, injective, open, takes the value y0 at a point vx
and the function x → vx is not constant. Furthermore, denote by M the family of all
functions J : X → R whose set of all global minima (noted by MJ ) is non-empty.

Finally, for each ϕ ∈ G , Ψ ∈ H and J ∈ M , put

θ(ϕ, Ψ, J ) = inf

{
J (x)− J (u)

ϕ(Ψ (x, vu))
: (u, x) ∈ MJ ×X with vx �= vu

}
.

When X is a topological space, a function ψ : X → R is said to be inf-compact if
ψ−1(] −∞, r]) is compact for all r ∈ R.

Theorem 3.A ([24, Theorem 3.1]) Let ϕ ∈ G , Ψ ∈ H and J ∈ M .
Then, for each λ > θ(ϕ,Ψ, J ), one has

sup
v∈V

inf
x∈X(J (x)− λϕ(Ψ (x, v))) < inf

x∈X sup
z∈X

(J (x)− λϕ(Ψ (x, vz))) .

Theorem 3.B ([24, Theorem 3.2]) Let X be a topological space, E a real Haus-
dorff topological vector space, C ⊆ E a convex set, f : X × C → R a function
which is lower semicontinuous and inf-compact in X, and upper semicontinuous
and concave in C. Assume also that
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sup
v∈C

inf
x∈X f (x, v) < inf

x∈X sup
v∈C

f (x, v) .

Then, there exists v∗ ∈ C such that the function f (·, v∗) has at least two global
minima.

Theorem 3.C Let ϕ ∈ G , Ψ ∈ H and J ∈ M . Moreover, assume that X is
a topological space, that V is a real Hausdorff topological vector space and that
ϕ(Ψ (x, ·)) is convex and continuous for each x ∈ X. Finally, let λ > θ(ϕ,Ψ, J )

and let C ⊆ V be a convex set, with {vx : x ∈ X} ⊆ C, such that the function
x → J (x) − λϕ(Ψ (x, v)) is lower semicontinuous and inf-compact in X for all
v ∈ C.

Under such hypotheses, there exists v∗ ∈ C such that the function x → J (x) −
λϕ(Ψ (x, v∗)) has at least two global minima in X.

Proof Set

D = {vx : x ∈ X}

and, for each (x, v) ∈ X × V , put

f (x, v) = J (x)− λϕ(Ψ (x, v)) .

Theorem 3.A ensures that

sup
v∈V

inf
x∈X f (x, v) < inf

x∈X sup
v∈D

f (x, v) . (3.3)

But, since f (x, ·) is continuous and D ⊆ C, we have

sup
v∈D

f (x, v) = sup
v∈D

f (x, v) ≤ sup
v∈C

f (x, v) = sup
v∈C

f (x, v)

for all x ∈ X, and hence, from (3.3), it follows that

sup
v∈C

inf
x∈X f (x, v) < inf

x∈X sup
v∈D

f (x, v) ≤ inf
x∈X sup

v∈C
f (x, v) .

At this point, the conclusion follows applying Theorem 3.B to the restriction of the
function f to X × C. '
Proof of Theorem 3.1 For each λ ≥ 0, v ∈ L2(Ω), consider the function hλ,v :
Ω × R → R defined by

hλ,v(x, ξ) = f (x, ξ)+ λ(G(x, ξ)− v(x))g(x, ξ)
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for all (x, ξ) ∈ Ω × R. Clearly, the function hλ,v lies in ˆA and

Hλ,v(x, ξ) = F(x, ξ)+ λ

2

(
|G(x, ξ)− v(x)|2 − |v(x)|2

)
.

So, the weak solutions of the problem are precisely the critical points in H 1
0 (Ω) of

the functional Φ − Ihλ,v . Moreover, if p ∈
]
0, n+2

n−2

[
and q ∈

]
0, 2

n−2

[
are such

that (3.1) and (3.2) hold, for some constant cλ,v , we have

∫

Ω

|Hλ,v(x, u(x))|dx ≤ cλ,v

(∫

Ω

|u(x)|p+1 +
∫

Ω

|u(x)|2(q+1)dx + 1

)

for all u ∈ H 1
0 (Ω). Therefore, by the Sobolev embedding theorem, for a constant

c̃λ,v , we have

Φ(u)− Ihλ,v (u) ≥
b

4
‖u‖4 − c̃λ,v(‖u‖p+1 + ‖u‖2(q+1) + 1) (3.4)

for all u ∈ H 1
0 (Ω). On the other hand, since n ≥ 4, one has

max{p + 1, 2(q + 1)} < 2n

n− 2
≤ 4 .

Consequently, from (3.4), we infer that

lim‖u‖→+∞(Φ(u)− Ihλ,v (u)) = +∞ . (3.5)

Since the functional Φ − Ihλ,v is sequentially weakly lower semicontinuous, by the
Eberlein-Smulyan theorem and by (3.5), it follows that it is inf-weakly compact.

Now, we are going to apply Theorem 3.C taking X = H 1
0 (Ω) with the weak

topology and V = Y = L2(Ω) with the strong topology, and y0 = 0. Also, we take

ϕ(w) = 1

2

∫

Ω

|w(x)|2dx

for all w ∈ L2(Ω). Clearly, ϕ ∈ G . Furthermore, we take

Ψ (u, v)(x) = G(x, u(x))− v(x)

for all u ∈ H 1
0 (Ω), v ∈ L2(Ω), x ∈ Ω . Clearly, Ψ (u, v) ∈ L2(Ω), Ψ (u, ·) is a

homeomorphism, and we have

vu(x) = G(x, u(x)) .
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We show that the map u → vu is not constant in H 1
0 (Ω). For each x ∈ Ω , set

α(x) = inf
ξ∈R

G(x, ξ)

and

β(x) = sup
ξ∈R

G(x, ξ) .

Since G is a Carathéodory is continuous, we have

α(x) = inf
ξ∈Q

G(x, ξ)

and

β(x) = sup
ξ∈Q

G(x, ξ) ,

and so the functions α, β are measurable. Set

A = {x ∈ Ω : α(x) < β(x)} .

Clearly, we have

A =
{

x ∈ Ω : sup
ξ∈R

|g(x, ξ)| > 0

}

.

Hence, by assumption, meas(A) > 0. Then, by the classical Scorza-Dragoni
theorem [6, Theorem 2.5.19], there exists a compact setK ⊂ A, of positive measure,
such that the restriction of G to K × R is continuous. Fix a point x̃ ∈ K such that
the intersection of K and any ball centered at x̃ has a positive measure. Next, fix
ξ1, ξ2 ∈ R such that

G(x̃, ξ1) < G(x̃, ξ2) .

By continuity, there is a closed ball B(x̃, r) such that

G(x, ξ1) < G(x, ξ2)

for all x ∈ K ∩ B(x̃, r). Finally, consider two functions u1, u2 ∈ H 1
0 (Ω) which are

constant in K ∩ B(x̃, r). So, we have

G(x, u1(x)) < G(x, u2(x))



702 B. Ricceri

for all x ∈ K ∩B(x̃, r). Hence, as meas(K ∩B(x̃, r)) > 0, we infer that vu1 �= vu2 ,
as claimed. As a consequence, Ψ ∈ H . Of course, ϕ(Ψ (u, ·)) is continuous and
convex for all u ∈ X. Finally, take

J = Φ − If .

Clearly, J ∈ M . So, for what seen above, all the assumptions of Theorem 3.C are
satisfied. Consequently, if we take

λ∗ = θ(ϕ, Ψ, J ) (3.6)

and fix λ > λ∗ and a convex set C ⊆ L2(Ω) whose closure in L2(Ω) contains the
set {G(·, u(·)) : u ∈ H 1

0 (Ω)}, there exists v∗ ∈ C such that the functional Φ−Ihλ,v∗
has at least two global minima in H 1

0 (Ω) which are, therefore, weak solutions of the
problem. To guarantee the existence of a third solution, denote by k the inverse of
the restriction of the function at + bt3 to [0,+∞[. Let T : X → X be the operator
defined by

T (w) =

⎧
⎪⎪⎨

⎪⎪⎩

k(‖w‖)
‖w‖ w ifw �= 0

0 ifw = 0 ,

Since k is continuous and k(0) = 0, the operator T is continuous in X. For each
u ∈ X \ {0}, we have

T (Φ ′(u)) = T ((a + b‖u‖2)u) = k((a + b‖u‖2)‖u‖)
(a + b‖u‖2)‖u‖ (a + b‖u‖2)u

= ‖u‖
(a + b‖u‖2)‖u‖ (a + b‖u‖2)u = u .

In other words, T is a continuous inverse of Φ ′. Then, since Ihλ,v∗′ is compact,
the functional Φ − Ihλ,v∗ satisfies the Palais-Smale condition [29, Example 38.25]
and hence the existence of a third critical point of the same functional is assured by
Corollary 1 of [20].

Finally, assume that the functional Φ − If has at least two global minima, say
û1, û2. Then, the set D := {x ∈ Ω : û1(x) �= û2(x)} has a positive measure. By
assumption, we have

G(x, û1(x)) �= G(x, u2(x))

for all x ∈ D, and so vû1 �= vû2 . Then, by definition, we have

0 ≤ θ(ϕ, Ψ, J ) ≤ J (û1)− J (û2)

ϕ(Ψ (û1, vû2))
= 0

and so λ∗ = 0 in view of (3.6). '
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Notice the following corollary of Theorem 3.1:

Corollary 3.1 Let n ≥ 4, let ν ∈ R and let p ∈
]
0, n+2

n−2

[
.

Then, for each λ > 0 large enough and for each convex set C ⊆ L2(Ω) whose
closure in L2(Ω) contains H 1

0 (Ω), there exists v∗ ∈ C such that the problem

⎧
⎪⎪⎨

⎪⎪⎩

− (
a + b

∫
Ω
|∇u(x)|2dx)Δu = ν|u|p−1u+ λ(u− v∗(x)) in Ω

u = 0 on ∂Ω

has at least three solutions, two of which are global minima in H 1
0 (Ω) of the

functional

u → a

2

∫

Ω

|∇u(x)|2dx + b

4

(∫

Ω

|∇u(x)|2dx
)2

− ν

p + 1

∫

Ω

|u(x)|p+1dx

−λ

2

∫

Ω

|u(x)− v∗(x)|2dx .

Proof Apply Theorem 3.1 taking f (x, ξ) = |ξ |p−1ξ and g(x, ξ) = 1. '
Remark 3.1 In Theorem 3.1, the assumption made on g (besides g ∈ ˜A ) is
essential. Indeed, if g = 0, for f = 0 (which is an allowed choice), the problem
would have the zero solution only.

Remark 3.2 The assumption n ≥ 4 is likewise essential. Indeed, Corollary 3.1 does
not hold if n = 3. To see this, take p = 4 (which, when n = 3, is compatible with
the condition p < n+2

n−2 ) and observe that the corresponding energy functional is
unbounded below.

Besides Corollary 3.1, among the consequences of Theorem 3.1, we highlight
the following

Theorem 3.2 Let n ≥ 4, let f ∈ A and let g ∈ ˜A be such the set

{

x ∈ Ω : sup
ξ∈R

F(x, ξ) > 0

}

has a positive measure. Moreover, assume that, for each x ∈ Ω , f (x, ·) is odd,
g(x, ·) is even and G(x, ·) is strictly monotone.

Then, for each λ > 0, there exists μ∗ > 0 such that, for each μ > μ∗ and for
each convex set C ⊆ L2(Ω) whose closure in L2(Ω) contains the set {G(·, u(·)) :
u ∈ H 1

0 (Ω)}, there exists v∗ ∈ C such that the problem
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⎧
⎪⎪⎨

⎪⎪⎩

− (
a + b

∫
Ω
|∇u(x)|2dx)Δu = μf (x, u)− λv∗(x)g(x, u) in Ω

u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H 1
0 (Ω) of the

functional

u → a

2

∫

Ω

|∇u(x)|2dx+b

4

(∫

Ω

|∇u(x)|2dx
)2

−μ
∫

Ω

F(x, u(x))dx+λ
∫

Ω

v∗(x)G(x, u(x))dx .

Proof Set

D =
{

x ∈ Ω : sup
ξ∈R

F(x, ξ) > 0

}

.

By assumption, meas(D) > 0. Then, by the Scorza-Dragoni theorem, there exists a
compact set K ⊂ D, of positive measure, such that the restriction of F to K × R is
continuous. Fix a point x̂ ∈ K such that the intersection of K and any ball centered
at x̂ has a positive measure. Choose ξ̂ ∈ R so that F(x̂, ξ̂ ) > 0. By continuity, there
is r > 0 such that

F(x, ξ̂ ) > 0

for all x ∈ K ∩ B(x̂, r). Set

M = sup
(x,ξ)∈Ω×[−|ξ̂ |,|ξ̂ |]

|F(x, ξ)| .

Since f ∈ A , we have M < +∞. Next, choose an open set Ω̃ such that

K ∩ B(x̂, r) ⊂ Ω̃ ⊂ Ω

and

meas(Ω̃ \ (K ∩ B(x̂, r)) <

∫
K∩B(x̂,r) F (x, ξ̂ )dx

M
.

Finally, choose a function ũ ∈ H 1
0 (Ω) such that

ũ(x) = ξ̂

for all x ∈ K ∩ B(x, r),

ũ(x) = 0
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for all x ∈ Ω \ Ω̃ and

|ũ(x)| ≤ |ξ̂ |

for all x ∈ Ω . Thus, we have

∫

Ω

F(x, ũ(x))dx =
∫

K∩B(x̂,r)
F (x, ξ̂ )dx +

∫

Ω̃\(K∩B(x̂,r)
F (x, ũ(x))dx

>

∫

K∩B(x̂,r)
F (x, ξ̂ )dx −Mmeas(Ω̃ \ (K ∩ B(x̂, r)) > 0 .

Now, fix any λ > 0 and set

μ∗ = Φ(ũ)+ λ
2 IGg(ũ)

If (ũ)
.

Fix μ > μ∗. Hence

Φ(ũ)− μIf (ũ)+ λ

2
IGg(ũ) < 0 .

From this, we infer that the functional Φ −μIf + λ
2 IGg possesses at least to global

minima since it is even. At this point, we can apply Theorem 3.1 to the functions g
and μf − λGg. Our current conclusion follows from the one of Theorem 3.1 since
we have λ∗ = 0 and hence we can take the same fixed λ > 0. '

4 A Conjecture on Disconnectedness Versus Infinitely Many
Solutions

Conjecture 4.1 Let Ω ⊂ Rn be a smooth bounded domain, with n ≥ 3. Let τ be
the strongest vector topology on H 1

0 (Ω).
Then, there exists a continuous function f : R → R, with

sup
ξ∈R

|f (ξ)|
1 + |ξ | n+2

n−2

< +∞ ,

such that the set
{
(u, v) ∈ H 1

0 (Ω)×H 1
0 (Ω) :

∫

Ω

∇u(x)∇v(x)dx −
∫

Ω

f (u(x))v(x)dx = 1

}

is disconnected in (H 1
0 (Ω), τ )× (H 1

0 (Ω), τ ).
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The importance of Conjecture 4.1 is shown by Proposition 4.3 below. But, first
the relevant theory should be fixed.

The central abstract result, obtained in [22], is as follows (see also [16]):

Theorem 4.1 Let X be a connected topological space, let E be a real topological
vector space, with topological dual E∗, and let A : X → E∗ be an operator such
that the set

{y ∈ E : x → 〈A(x), y〉 is continuous}

is dense in E and the set

{(x, y) ∈ X × E : 〈A(x), y〉 = 1}

is disconnected.
Then, A does vanish at some point of X.

Proof Denote by pX the projection from X × E onto X. Moreover, for any C ⊆
X × E, x ∈ X, put

Cx = {y ∈ E : (x, y) ∈ C}.

Arguing by contradiction, assume that A(x) �= 0 for all x ∈ X. Denote by Γ the set

{(x, y) ∈ X × E : 〈A(x), y〉 = 1}.

Since Γ is disconnected, there are two open sets Ω1,Ω2 ⊆ X × E such that

Ω1 ∩ Γ �= ∅, Ω2 ∩ Γ �= ∅, Ω1 ∩Ω2 ∩ Γ = ∅, Γ ⊆ Ω1 ∪Ω2.

We now prove that pX(Ω1 ∩Γ ) is open in X. So, let (x0, y0) ∈ Ω1 ∩Γ . Since E is
locally connected [28, p.35], there are a neighbourhood U0 of x0 in X and an open
connected neighbourhood V0 of y0 in E such that U0×V0 ⊆ Ω1. Since 〈A(x0), ·〉 is
a non-null continuous linear functional, it has no local extrema. Consequently, since
〈A(x0), y0〉 = 1, the sets

{u ∈ V0 : 〈A(x0), u〉 < 1},

{u ∈ V0 : 〈A(x0), u〉 > 1}

are both non-empty and open. Then, thanks to our density assumption, there are
u1, u2 ∈ V0 such that the set

{x ∈ U0 : 〈A(x), u1〉 < 1 < 〈A(x), u2〉}

is a neighbourhood of x0. Then, if x is in this set, due to the connectedness of V0,
there is some y ∈ V0 such that 〈A(x), y〉 = 1, and so, x actually lies in pX(Ω1∩Γ ),
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as desired. Likewise, it is seen that pX(Ω2 ∩ Γ ) is open. Now, observe that, for any
x ∈ X, the set {x} × Γx is non-empty and connected, and so it is contained either in
Ω1 or in Ω2. Summarizing, we then have that the sets pX(Ω1∩Γ ) and pX(Ω2∩Γ )

are non-empty, open, disjoint and cover X. Hence, X would be disconnected, a
contradiction. '

Once Theorem 4.1 has been obtained, we can state the following formally more
complete result:

Theorem 4.2 Let X be a topological space, let E be a real topological vector
space, and let A : X → E∗ be such that the set

{y ∈ E : x → 〈A(x), y〉 is continuous}

is dense in E.
Then, the following assertions are equivalent:

(i) The set

{(x, y) ∈ X × E : 〈A(x), y〉 = 1}

is disconnected.
(ii) The set X \ A−1(0) is disconnected.

Proof Let (i) hold. Since

{(x, y) ∈ X×E : 〈A(x), y〉 = 1} = {(x, y) ∈ (X \A−1(0))×E : 〈A(x), y〉 = 1},

if X \ A−1(0) were connected, we could apply Theorem 4.1 to A|(X\A−1(0)), and so
A would vanish at some point of X \ A−1(0), which is absurd.

Conversely, if (ii) holds, then (i) follows at once observing that, with the notations
of the proof of Theorem 4.1, one has X \ A−1(0) = pX(Γ ). '
Remark 4.1 When X is a connected topological space, E is an infinite-dimensional
real vector space (with algebraic dual E′), and A : X → E′ is a σ(E′, E)-
continuous operator, one could try to apply Theorem 4.1 endowing E with the
strongest vector topology [15, p.53].

Remark 4.2 In Theorem 4.1, the role of the constant 1 can actually be assumed by
any continuous real function on X. Precisely, we have the following

Proposition 4.1 Let X be a topological space, let E be a real topological vector
space, and let A : X → E′. Assume that, for some continuous function α : X → R,
the set

Λ := {(x, y) ∈ X × E : 〈A(x), y〉 = α(x)}

is disconnected.
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Then, either A(x) = 0 for some x ∈ X, or the set

Γ := {(x, y) ∈ X × E : 〈A(x), y〉 = 1}

is disconnected.

Proof Assume that A−1(0) = ∅. So, pX(Γ ) = X. Consider the function f : X ×
E → X × E defined by putting f (x, y) = (x, α(x)y) for all (x, y) ∈ X × E.
Of course, f is continuous. Arguing by contradiction, assume that Γ is connected.
Then, f (Γ ) is connected too. Now, observe that

Λ =
⋃

x∈α−1(0)

(f (Γ ) ∪ ({x} ×Λx)).

Furthermore, note that, if x ∈ α−1(0), then (x, 0) ∈ f (Γ ) ∩ ({x} × Λx), and so
f (Γ )∪ ({x} ×Λx) is connected. In turn, the sets f (Γ )∪ ({x} ×Λx) (x ∈ α−1(0))
are clearly pairwise non-disjoint, and hence Λ is connected, a contradiction. '

In [21], the following proposition was pointed out:

Proposition 4.2 ([21, Proposition 3]) Let E be an infinite-dimensional Hausdorff
topological vector space and K a relatively compact subset of E.

Then, the set E \K is connected.

Finally, as said, the following proposition shows the importance of Conjec-
ture 4.1:

Proposition 4.3 Let f be a function satisfying Conjecture 4.1.
Then, the problem

⎧
⎪⎪⎨

⎪⎪⎩

−Δu = f (u) in Ω

u = 0 on ∂Ω

has infinitely many weak solutions.

Proof Let X = W
1,2
0 (Ω), with the usual norm ‖u‖ = (

∫
Ω
|∇u(x)|2dx) 1

2 . Put

J (u) = 1

2

∫

Ω

|∇u(x)|2dx −
∫

Ω

(∫ u(x)

0
f (ξ)dξ

)

dx

for all u ∈ X.



Four Conjectures in Nonlinear Analysis 709

So, the functional J is of class C1 on X and one has

J ′(u)(v) =
∫

Ω

∇u(x)∇v(x)dx −
∫

Ω

f (x, u(x))v(x)dx

for all u, v ∈ X. Hence, the critical points of J inX are exactly the weak solutions of
the problem. Since J is of class C1, clearly the operator J ′ : X → X∗ is τ -weakly-
star continuous. Hence, by Theorem 4.2, the set X \ (J ′)−1(0) is τ -disconnected.
Then, due to Proposition 4.2, the set (J ′)−1(0) is not τ -relatively compact, and
hence is infinite. '
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Corelations Are More Powerful Tools
than Relations

Árpád Száz

To the Memory of my younger brother Géza Száz

1 Introduction

In our former papers [63, 65], a subset R of a product set X×Y was called a relation
on X to Y . In particular, the relation R was called a function if the set R (x) = {y ∈
Y : (x, y) ∈ R } is either empty or a singleton for all x ∈ X. That is, if x ∈ X such
that R (x) �= ∅, then there exists y ∈ Y such that R (x) = {y}.

Note that a singleton {x}, with x ∈ X, can usually be identified with the element
x. Thus, the set X may be considered as a subset of its power set P(X). Recall that,
for any A, B ⊆ X, we have A ∈ P(B) if and only if A ⊆ B. Therefore, P is just
another notation for the inclusion relation ⊆.

In addition to the fundamental notions of unary and binary operations, in our
recent paper [74], a function U of one power set P(X) to another P(Y ) has been
briefly called a corelation on X to Y . This definition differs from that of Pöschel
and Rössiger [46] who have established a more difficult Galois connection.

Now, a relation R on X to Y can be naturally identified with the function ϕR

defined by ϕR(x) = R (x) for all x ∈ X. However, the corelation ΦR , defined by
ΦR(A) = R [A ] = ⋃

x∈A R(x) for all A ⊆ X, will turn out to be a more powerful
tool than the relation R and the function ϕR.

More concretely, we shall show that just the union-preserving corelations will
correspond to relations. Note that, if the ground sets X and Y are not fixed, then
a relation is a more general object than a corelation. Namely, functions have been
defined as some very particular relations.

The above definition of a corelation has been mainly motivated by the obser-
vations of Höhle and Kubiak [25]. However, to feel the importance of corelations,
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the reader must only note that, for instance, the complement and closure (interior)
operations on a set X are corelations on X.

In the sequel, in addition to the plausible notions of increasingness and union-
preservingness, a corelation U on X to Y will be called quasi-increasing if
U
({x}) ⊆ U(A) for all x ∈ A ⊆ X. The importance of this property lies mainly in

the Galois connection established in our former paper [74].
Having in mind the ideas of several former mathematicians such as Weil [87],

Curtis and Mathews [11] and Nakano and Nakano [39], for instance, families R and
U of relations and corelations on X to Y will now be called relators and corelators
on X to Y , respectively.

Note that if d is a certain distance function on X, then the family Rd of all
surroundings Bd

r = {(x, y) ∈ X2 : d (x, y < r } is an important relator on X.
Namely, several notions can be more easily defined in terms of Rd than that of d.
For instance, we can at once write cld(A) = ⋂

r>0

(
Bd
r

)−1 [A ] for all A ⊆ X.
In [53, 69], by using the Davis–Pervin and Hunsaker–Lindgren relations [13, 26,

45], we have shown that relators on X are more powerful tools than generalized
proximities, closures, topologies and filters on X. By Efremovič and Švarc [17] and
our papers [49, 50], it is clear that the same must be true for convergences.

Therefore, it seems to be a big mistake that, following Tietze [86], just the
concept of open sets has been chosen to be the starting point by Bourbaki [4], Kelley
[28] and Engelking [18]. While, for instance, Sierpinski [47], Kowalsky [29], Isbell
[27] and Čech [8] applied less attractive, but more powerful tools.

Common generalizations of topological, proximity and uniform spaces were
formerly also given by several authors. See, for instance, Császár [9], Doitčinov [15]
and Herrlich [24]. However, following the treatments of Murdeshwar and Naimpally
[36] and Fletcher and Lingren [19], the basic topological structures can be more
conveniently generalized in the framework of generalized uniformities.

In the present work, we shall show that corelators on X to Y are more powerful
tools than relators onX to Y . Therefore, corelators have to be studied before relators.
At present, I am considering them to be the most convenient starting point for
general algebraic and analytical considerations [81].

If U is a corelation on X to Y , then instead of the standard notations of δU and
�U of Efremovič [16] and Smirnov [48], for any A ⊆ X and B ⊆ Y , we write

1. A ∈ ClU ( B) if U(A) ∩ B �= ∅ for all U ∈ U ;
2. A ∈ IntU ( B) if U(A) ⊆ B for some U ∈ U .

Thus, we can easily see that ClU (B) = P(X) \ IntU (Y \ B) for all B ⊆ Y .
Therefore, ClU and IntU are also equivalent tools. Moreover, for any x ∈ X, we
may also naturally write x ∈ clU (B) if {x} ∈ ClU (B), and x ∈ intU (B) if {x} ∈
IntU (B). Thus, we also have clU (B) = X \ intU (Y \ B) for all B ⊆ Y .

However, it is now more important to note that IntU is a relation on P(Y ) to
P(X) such that IntU = ⋃

U∈U IntU with IntU = Int{U}. Therefore, the properties
of the relation IntU can be immediately derived from those of the relations IntU .
This shows that corelations have to be studied before corelators.
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Following the ideas of Höhle and Kubiak [25] and the notations of Davey and
Priestly [12, p. 155], for any relation R and corelation U on X to Y , we define a
corelation R� and a relation U� on X to Y such that, for all A ⊆ X and x ∈ X,

R�(A) = R [A ] and U�(x) = U
({x}).

Here, for any two corelations U and V on X to Y , we write U ≤ V if U(A) ⊆
V (A) for all A ⊆ X. Thus, the maps � and � establish a Galois connection in the
sense that, for any relation R and quasi-increasing corelation U on X to Y we have
R� ≤ U ⇐⇒ R ⊆ U�.

This important Galois connection has the particular property that R�� = R for
all relation R on X to Y . Moreover, if U is a corelation on X to Y , then under
the notation U◦ = U� �, we have U◦ = U

(
resp. U◦ ≤ U

)
if and only if U is

union-preserving (resp. quasi-increasing).
In this respect, it is also worth mentioning that ◦ is always a projection (increa-

sing and idempotent) operation on the family of all corelations U on X to Y such
that U◦(A) = ⋃

x∈A U
({x}) for all A ⊆ X. Moreover, the operation ◦ is also

compatible with certain set and relation theoretic operations.
By using the maps � and �, for any two corelations U on X to Y and V on Y

to Z, we may also naturally define U−1 = U�−1 � and V • U = (
V � ◦ U�)�.

Moreover, for instance, for any relator R on X to Y , we may also naturally define
IntR = IntR� and intR = intR� , where R� = {

R� : R ∈ R
}
.

Thus, IntU is a more powerful tool than IntR . However, for instance, we already
have IntU ◦ = IntU � and intU = intU ◦ = intU � . Thus, our former results on the
relation intR and the families ER = {B ⊆ Y : intR(B) �= ∅ } and TR = {A ⊆ X :
A ⊆ intR(A)}, whenever X = Y , will not be generalized.

2 Some Basic Definitions on Relations

A subset F of a product set X×Y is called a relation on X to Y . In particular, a
relation on X to itself is called a relation on X. And, ΔX = {(x, x) : x ∈ X} is
called the identity relation on X.

If F is a relation on X to Y , then by the above definitions we can also state that F
is a relation on X ∪ Y . However, for several purposes, the latter view of the relation
F would be quite unnatural.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets F(x) = {y ∈
Y : (x, y) ∈ F } and F [A ] = ⋃

a∈A F(a) are called the images of x and A under
F . If (x, y) ∈ F , then we may also write x F y.

Moreover, the sets DF = {x ∈ X : F(x) �= ∅} and RF = F [X ] are called the
domain and range of F , respectively. If in particular DF = X, then we say that F
is a relation of X to Y , or that F is a total relation on X to Y .
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In particular, a relation f on X to Y is called a function if for each x ∈ Df there
exists y ∈ Y such that f (x) = {y}. In this case, by identifying singletons with their
elements, we may simply write f (x) = y in place of f (x) = {y}.

Moreover, a function � of X to itself is called a unary operation on X. While, a
function ∗ of X2 to X is called a binary operation on X. And, for any x, y ∈ X, we
usually write x� and x ∗ y instead of �(x) and ∗((x, y)).

If F is a relation on X to Y and U ⊆ DF , then the relation F |U = F ∩ (U×Y )

is called the restriction of F to U . Moreover, if F and G are relations on X to Y

such that DF ⊆ DG and F = G |DF , then G is called an extension of F .
If F is a relation on X to Y , then we can easily see that F = ⋃

x∈X {x}×F(x).
Therefore, the values F(x), where x ∈ X, uniquely determine F . Thus, a relation F
on X to Y can also be naturally defined by specifying F(x) for all x ∈ X.

For instance, the complement Fc and the inverse F−1 can be defined such that
Fc(x) = Y \ F(x) for all x ∈ X and F−1(y) = {x ∈ X : y ∈ F(x)} for all y ∈ Y .
Thus, we also have Fc = X×Y \ F and F−1= {(y, x) ∈ Y×X : (x, y) ∈ F }.

Moreover, if in addition G is a relation on Y to Z, then the composition G ◦ F
can be defined such that (G ◦F )(x) = G [F(x) ] for all x ∈ X. Thus, we also have
G ◦ F = {(x, z) ∈ X×Z : ∃ y ∈ Y : (x, y) ∈ F, (y, z) ∈ G}.

While, if G is a relation on Z to W , then the box product F 	G can be naturally
defined such that (F 	G)(x, z) = F(x)×G(z) for all x ∈ X and z ∈ Z. Note that
the box product can be defined for any family of relations.

If F is a relation on X to Y , then a function f of DF to Y is called a selection
of F if f ⊆ F , i. e., f (x) ∈ F(x) for all x ∈ DF . Thus, by the Axiom of Choice,
every relation has a selection. Moreover, it is the union of its selections.

For any relation F on X to Y , we may naturally define two set-valued functions
ϕF of X to P(Y ) and ΦF of P(X) to P(Y ) such that ϕF (x) = F(x) for all x ∈ X

and ΦF (A) = F [A ] for all A ⊆ X.
Functions of X to P(Y ) can be identified with relations on X to Y . While,

functions of P(X) to P(Y ) are more general objects than relations on X to Y .
They were briefly called corelations on X to Y in [74].

Now, a relation R on X may be briefly defined to be reflexive on X if ΔX ⊆ R,
and transitive if R ◦ R ⊆ R. Moreover, R may be briefly defined to be symmetric if
R−1 ⊆ R, and antisymmetric if R ∩ R−1 ⊆ ΔX.

Thus, a reflexive and transitive (symmetric) relation may be called a preorder
(tolerance) relation. And, a symmetric (antisymmetric) preorder relation may be
called an equivalence (partial order) relation.

For instance, for A ⊆ X, the Pervin relation RA = A2 ∪ Ac×X is a preorder
relation on X. (See [32, 69].) While, for a pseudo-metric d on X and r > 0, the
surrounding Bd

r = {
(x, y) ∈ X2 : d(x, y) < r

}
is a tolerance relation on X.

Moreover, we may recall that if A is a partition of X, i. e., a family of pairwise
disjoint, nonvoid subsets of X such that X = ⋃

A , then SA = ⋃
A∈A A2 is an

equivalence relation on X, which can, to some extent, be identified with A .
Now, for any relation R on X, we may also naturally define R0 = ΔX and

Rn = R ◦ Rn−1 if n ∈ N. Moreover, we may naturally define R∞ = ⋃∞
n=0 Rn.

Thus, R∞ is just the smallest preorder relation containing R [22].



Corelations 715

If R is a relation on X to Y , then the ordered pair (X, Y )(R) = (
(X, Y ), R

)

is called a relational space (simple relator space [41]) or a context space (formal
context) [20].

Having in mind an abbreviation of Birkhoff [1], a relational space X (≤ ) =
(X, X)(≤ ) is called a goset (generalized ordered set) [79]. And, a preordered set
(partially ordered set) is called a proset (poset).

If f is a function of one goset X to another Y and g is a function of Y to X such
that, for any x ∈ X and y ∈ Y , we have

f (x) ≤ y ⇐⇒ x ≤ g( y),

then we say that the functions f and g establish a Galos connection between X and
Y or that f is a g-normal function of X to Y [71].

While, if f is a function of one goset X to another Y and ϕ is an unary operation
on X such that, for any u, v ∈ X, we have

f (u) ≤ g (v) ⇐⇒ u ≤ ϕ (v),

then we say that the functions f and ϕ establish a Pataki connection between X and
Y or that f is a ϕ-regular function of X to Y [68].

If f is a g-normal function of X to Y and ϕ = g ◦ f , then we can at once see
that f (u) ≤ f (v) ⇐⇒ u ≤ g

(
f (v)

) ⇐⇒ u ≤ (g ◦ f )(v) ⇐⇒ u ≤ ϕ (v)

for all u, v ∈ X. Therefore, f is ϕ-regular.
Conversely, if f is a ϕ-regular function of X onto Y and g is a function of Y to

X such that ϕ = g ◦ f , then we can quite similarly see that f is g-normal. Thus,
normal functions are more general than the regular ones.

Galois and Pataki connections occur almost every branches of mathematics. They
allow of transposing notions and statements from one world of our imagination to
another one. (For their theories and applications, see [2, 12, 14, 21].)

Some examples and generalizations of Galois and Pataki connections can also be
found in our former papers [5, 62, 78, 80] and [75–77, 83]. However, it is frequently
enough to consider such connections only for corelations [67].

3 A Few Basic Theorems on Relations

Concerning relations, we shall frequently need the following theorems.

Theorem 3.1 For any two relations F and G on X to Y , the following assertions
are equivalent:

(1) F ⊆ G,
(2) F(x) ⊆ G( x) for all x ∈ X,
(3) F(x) ⊆ G(x) for all x ∈ DF .
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Corollary 3.2 For any relations F and G on X to Y , the following assertions are
equivalent:

(1) F = G,
(2) F(x) = G(x) for all x ∈ X,
(3) DF = DG and F(x) = G(x) for all x ∈ DF .

Theorem 3.3 If F is a relation on X to Y , then for any A ⊆ X and B ⊆ Y , the
following assertions are equivalent:

(1) F [A ] ∩ B �= ∅; (2) A ∩ F−1 [B ] �= ∅.

Corollary 3.4 If F is a relation on X to Y , then for any B ⊆ Y we have

F−1[B ] = {
x ∈ X : F (x) ∩ B �= ∅ }

.

Remark 3.5 Thus, in particular, for any relation F on X to Y we have

(1) DF = F−1[X ] = RF−1 ; (2) DF−1 = F [X ] = RF .

Theorem 3.6 If F and G are relations on X to Y , then

(1) (F \G)−1 = F−1 \G−1; (2)
(
Fc

)−1 = (
F−1

)c
.

Theorem 3.7 If F is a family of relations on X to Y , then

(1)
(⋂

F
)−1 = ⋂

F∈F
F−1; (2)

(⋃
F

)−1 = ⋃

F∈F
F−1.

Theorem 3.8 If F is a relation on X to Y and G is a relation on Y to Z, then for
any A ⊆ X we have

(G ◦ F) [A ] = G
[
F [A ] ].

Theorem 3.9 If F is a relation on X to Y , then

(1) F ◦ ∅ = ∅ = ∅ ◦ F ; (2) F ◦X2 = X×RF ;
(3) Y 2◦ F = DF×Y ; (4) F ◦ΔX = F = ΔY ◦ F .

Theorem 3.10 If F is a relation on X to Y and G is a relation on Y to Z, then

(G ◦ F)−1 = F−1◦ G−1.

Theorem 3.11 If F is a relation on X to Y , G is a relation on Y to Z, and H is a
relation on Z to W , then

H ◦ (G ◦ F) = (H ◦G) ◦ F.

Remark 3.12 From Theorems 3.11 and 3.9, we can see that P(X2), with composi-
tion, is a monoid (semigroup with identity).
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Therefore, by induction, for any relation R on X and n ∈ {0} ∪ N we may
naturally define Rn = ΔX if n = 0 and Rn = R ◦ Rn−1 if n > 0.

Theorem 3.13 If R is a relation on X, then

R∞ =
∞⋃
n=0

Rn

is the smallest preorder relation on X such that R ⊆ R∞.

Corollary 3.14 A relation R on X is a preorder on X if and only if R = R∞.

Theorem 3.15 For any relation R on X, we have

(1) R∞ = (
R∞)∞

; (2)
(
R∞)−1 = (

R−1
)∞

.

Corollary 3.16 A relation R on X is a preorder on X if and only if its inverse R−1

is a preorder on X.

Theorem 3.17 For a relation F on X to Y , the following assertions are equivalent:
(1) F is total; (2) ΔX ⊆ F−1 ◦ F ;
(3) F [A ] ⊆ B implies A ⊆ F−1 [B ] for all A ⊆ X and B ⊆ Y .

Corollary 3.18 A relation F on X to Y is total if and only if the relation F−1 ◦ F
is reflexive on X.

Theorem 3.19 For a relation F on X to Y , the following assertions are equivalent:
(1) F is a function; (2) F ◦ F−1 ⊆ ΔY ;
(3) A ⊆ F−1[B ] implies F [A ] ⊆ B or all A ⊆ X and B ⊆ Y .

Corollary 3.20 A relation F on X to Y is a function if and only if F ◦F−1 = ΔRF
.

Theorem 3.21 For a function f on X to Y and a function g on Y to Y , the following
assertions are equivalent:

(1) g = f−1; (2) f ◦ g = ΔDg and g ◦ f = ΔDf
.

Theorem 3.22 If f is a function of X to Y , then for any A ⊆ X and B ⊆ Y we
have

f [A ] ⊆ B ⇐⇒ A ⊆ f−1[B ].

Remark 3.23 This theorem shows that if f is a function on X to Y , then the
setfunctions Φf and Φf−1 establish a Galois connection between the posets P(X)

and P (Y ).
Note that, if F is a relation on X to Y , then by Theorem 3.3 we can also state that

the setfunctions ΦF and ΦF−1 also establish a Galois connection between the power
sets P(X) and P (Y ). However, for this, we have to write A ≤ B if A ∩ B �= ∅.
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4 Some Further Theorems on Relations

Theorem 4.1 If F is a relation on X to Y , then for any A, B ⊆ X we have

(1) F [A ] \ F [B ] ⊆ F [A \ B ]; (2) F [A ]c ⊆ F [Ac] if Y = RF .

Theorem 4.2 If F is a relation on X to Y , then for any family A of subsets of X
we have

(1) F
[⋂

A
]
⊆ ⋂

A∈A
F [A ]; (2) F

[⋃
A

]
= ⋃

A∈A
F [A ].

Remark 4.3 If in particular F−1 is a function, then the corresponding equalities are
also true in the above two theorems.

Remark 4.4 Note that if F is a relation on X to Y , then F−1 is a function if and
only if F (x) ∩ F (z) �= ∅ implies x = z for all x, z ∈ X.

Theorem 4.5 If F and G are relations on X to Y , then for any A ⊆ X we have

(1) F [A ] \G [A ] ⊆ (F \G) [A ]; (2) F [A ]c ⊆ Fc[A ] if A �= ∅.

Theorem 4.6 If F is a family of relations on X to Y , then for any A ⊆ X we have

(1)
( ⋂

F
)[A ] ⊆ ⋂

F∈F
F [A ]; (2)

( ⋃
F

)[A ] = ⋃

F∈F
F [A ].

Remark 4.7 If in particular A is a singleton, then the corresponding equalities are
also true in the above two theorems.

Remark 4.8 Note that if F is a relation on X onto Y , then by Theorems 4.1 and 4.5,
we have F [A ]c ⊆ F [Ac] ∩ Fc[A ] for all nonvoid subset A of X.

Theorem 4.9 If F is a relation on X to Y , the for any A ⊆ X we have

Fc[A ]c = ⋂

x∈A
F(x).

Corollary 4.10 If F is a relation on X to Y and G is a relation on Y to Z, then for
any x ∈ X we have

(
G ◦ F)c(x) = ⋂

y∈F(x)
Gc(y).

Corollary 4.11 If f is a function on X to Y and G is a relation on Y to Z, then
(G ◦ f )c = Gc ◦ f .

Theorem 4.12 If F is a relation on X to Y and G is a relation on Y to Z, then

(1) (G◦F)c ⊆ Gc◦F if X = DF ; (2) (G◦F)c ⊆ G◦Fc if Z = RG.

Theorem 4.13 If F and G are relations on X to Y and H is a relation on Y to Z,
then
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(
H ◦ F ) \ (

H ◦G) ⊆ H ◦ (
F \G)

.

Theorem 4.14 If F is a relation on X to Y and G and H are relations on Y to Z,
then

(
G ◦ F ) \ (

H ◦ F ) ⊆ (
G \H ) ◦ F.

Theorem 4.15 If F is a family of relations on X to Y and G is a relation on Y to
Z, then

(1) G ◦⋂
F ⊆ ⋂

F∈F
G ◦ F , (2) G ◦⋃

F = ⋃

F∈F
G ◦ F ,.

Theorem 4.16 If F is a relation on X to Y and G is a family of relations on Y to
Z, then

(1)
(⋂

G
)
◦ F ⊆ ⋂

G∈G
G ◦ F , (2)

(⋃
G

)
◦ F = ⋃

G∈G
G ◦ F .

Theorem 4.17 For any relations F on X to Z and G on Y to W , we have

( F 	G)−1 = F−1 	 G−1.

Theorem 4.18 If F is a relation on X to Z and G is a relation on Y to W , then for
any R ⊆ X×Y we have

( F 	G) [R ] = G ◦ R ◦ F−1.

Corollary 4.19 For any relations F on X to Y and G on Y to Z, we have

G ◦ F = (
F−1 	 G

) [ΔY ].

Corollary 4.20 If F is a relation on X to Z and G is a relation on Y to W , then for
any x ∈ X and y ∈ Y , we have

( F 	G)(x, y) = G ◦ {(x, y)} ◦ F−1.

Remark 4.21 These corollaries show that the box and composition products of two
relations are actually equivalent tools.

However, in contrast to the composition product, the box product of relations can
be immediately defined for arbitrary families of relations.

5 Increasing and Union-Preserving Corelations

The following terminology was first introduced in our former paper [74].
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Definition 5.1 A function U on one power set P(X) to another P(Y ) is called a
corelation on X to Y .

Remark 5.2 In particular, a corelation U on X to itself will be simply called a
corelation on X.

Moreover, a corelation U on X to Y will be said to be a corelation on X onto Y

if it maps P(X) onto P(Y ).
Note that if a subset A of X is not in the domain of U , then by the corresponding

definition for relations we have U (A) = ∅. Therefore, every corelation on X to Y

is actually a corelation of X to Y .

Definition 5.3 A corelation U on X to Y is called

(1) increasing if U(A) ⊆ U(B) for all A ⊆ B ⊆ X;
(2) quasi-increasing if U

({x}) ⊆ U(A) for all x ∈ A ⊆ X;
(3) union-preserving if U

( ⋃
A

) = ⋃

A∈A
U(A) for all A ⊆ P(X).

Remark 5.4 In particular, a corelation U on X may be called extensive, intensive,
involutive and idempotent if A ⊆ U(A), U(A) ⊆ A, U

(
U(A)

) = A and
U
(
U(A)

) = U(A) for all A ⊆ X, respectively.
Moreover, an increasing involutive (idempotent) corelation is called a involution

(projection) operation. While, an extensive (intensive) projection operation is called
a closure (interior) operation.

Furthermore, an increasing extensive (intensive) corelation is called a preclosure
(preinterior) operation. And, an extensive (intensive) idempotent corelation is called
a semiclosure (semiinterior) operation.

Simple reformulations of properties (1) and (2) in Definition 5.3 give the
following three theorems.

Theorem 5.5 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is quasi-increasing;
(2)

⋃

x∈A
U
({x}) ⊆ U(A) for all A ⊆ X.

Theorem 5.6 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is increasing;
(2) U

( ⋂
A

) ⊆ ⋂

A∈A
U(A) for all A ⊆ P(X);

(3) U
(
A1 ∩ A2

) ⊆ U
(
A1

) ∩ U
(
A2

)
for all A1, A2 ⊆ X.

Theorem 5.7 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is increasing;
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(2)
⋃

A∈A
U(A) ⊆ U

( ⋃
A

)
for all A ⊆ P(X);

(3) U
(
A1

) ∪ U(A2) ⊆ U
(
A1 ∪ A2

)
for all A1, A2 ⊆ X.

Hence, it is clear that in particular we also have the following

Corollary 5.8 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is union-preserving;
(2) U is increasing and U

( ⋃
A

) ⊆ ⋃

A∈A
U(A) for all A ⊆ P(X).

However, it is now more important to note that we also have the following
theorem which has also been proved, in a different way, by Pataki [43].

Theorem 5.9 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is union-preserving;
(2) U(A) = ⋃

x∈A
U
({x}) for all A ⊆ X.

Proof To prove the implication (2) 2⇒ (1), note that if (2) holds, then U is
increasing. Therefore, by Theorem 5.7, we have

⋃
A∈A U(A) ⊆ U

( ⋃
A

)
for

all A ⊆ P(X). Thus, to obtain (1), we need only prove the converse inclusion.
For this, note that if A ⊆ P(X), then by (2) we have

U
( ⋃

A
) = ⋃

x∈⋃
A
U
({x}).

Therefore, if y ∈ U
( ⋃

A
)
, then there exists x ∈ ⋃

A such that y ∈ U
({x}).

Thus, in particular there exists A0 ∈ A such that x ∈ A0, and so {x} ⊆ A0. Hence,
by using the increasingness of U , we can already see that

y ∈ U
({x}) ⊆ U(A0) ⊆ ⋃

A∈A
U(A).

Therefore, U
( ⋃

A
) ⊆ ⋃

A∈A U(A) also holds.

From this theorem, by Theorem 5.5, it is clear that in particular we also have

Corollary 5.10 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is union-preserving;
(2) U is quasi-increasing and U(A) ⊆ ⋃

x∈A
U
({x}) for all A ⊆ X.

Now, by using Theorem 5.9, we can also easily establish the following two
examples.
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Example 5.11 If R is a reflexive relation on X and

U(A) = R−1[A ]
for all A ⊆ X, then by the reflexivity of R−1 and Theorem 5.9 it is clear that U is a
union-preserving preclosure operation on X.

Remark 5.12 Note that, for any x ∈ X and A ⊆ X, we have x ∈ R−1[A ] if and
only if there exists a ∈ A such that x ∈ R−1(a), and thus a ∈ R (x). Therefore,
U(A) is just the R-closure of A.

Example 5.13 Suppose that C is a T1-separating cover of a set X in the sense that
X = ⋃

C and for every x, y ∈ X, with x �= y, there exist C ∈ C such that such
that x ∈ C, but y /∈ C.

For any A ⊆ X, define

U (A) =
⋂ {

C ∈ C : A ⊆ C
}
.

Then, it can be easily seen that U is a preclosure operation on X such that U
( {x}) =

{x} for all x ∈ X.
Therefore, for any A ⊆ X, we have

⋃
x∈A U

({x}) = ⋃
x∈A{x} = A. Thus, by

Theorem 5.9, U is union-preserving if and only if U (A) = A for all A ⊆ X. That
is, U is the identity corelation on X.

Remark 5.14 Note that here C may, in particular, be the family of all closed
subsets of a T1-space X, or the family of all convex subsets (linear subspaces) of
a vector space X. Therefore, the most important closure operations fail to be union-
preserving.

However, to clarify the importance of union-preserving corelations, in addition
to Example 5.11, we can also state

Example 5.15 If U is a normal corelation on X to Y in the sense that U is V -normal
for some corelation V on Y to X, then U is union-preserving.

This statement is a practically important particular case of [68, Corollary 7.2].

Remark 5.16 If U is a regular corelation on X onto Y in the sense that U is Φ-
regular for some corelation Φ on X, then by [71, Theorem 7.5] the corelation U is
already normal.

6 Some Pointwise Operations and an Inequality for
Corelations

Here, to distinguish the pointwise complements and differences for corelations from
the global ones, we shall use bold notations.

Definition 6.1 If U and V are corelations on X to Y , then for any A ⊆ X we define

U c(A) = U(A)c and
(
U \ V )

(A) = U(A) \ V (A).
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Remark 6.2 Thus, if in particular U(A) = Y for all A ⊆ X, then

(U \ V )(A) = U(A) \ V (A) = Y \ V (A) = V (A)c = V c(A)

for all A ⊆ X. Therefore, in this particular case, we have U \ V = V c.

Moreover, to distinguish the pointwise intersections and unions for corelations
from the global ones, we shall use lattice theoretic notations.

Definition 6.3 If U is a family of corelations on X to Y , then for any A ⊆ X we
define

(∧
U

)
(A) = ⋂

U∈U
U (A) and

(∨
U

)
(A) = ⋃

U∈U
U(A).

Remark 6.4 Thus, for any two corelations U and V on X to Y , we also write

U ∧ V = ∧ {U, V } and U ∨ V = ∨ {U, V }.

Now, by using the corresponding definitions and Theorem 5.9, we can easily
prove the following two theorems.

Theorem 6.5 If U is a family of increasing (quasi-increasing) corelations on X to
Y , then

∧
U and

∨
U are also increasing (quasi-increasing) corelations on X to

Y .

Theorem 6.6 If U is a family of union-preserving corelations on X to Y , then∨
U is also an union-preserving corelations on X to Y .

Proof Under the notation V = ∨
U , for any A ⊆ X we have

V (A) = (∨
U

)
(A) = ⋃

U∈U
U(A).

Hence, by using that each member of U is union-preserving, we can see that

V (A) = ⋃

U∈U
U(A) = ⋃

U∈U
⋃

x∈A
U
({x}) = ⋃

x∈A
⋃

U∈U
U
({x}) = ⋃

x∈A
V
({x}).

Therefore, by Theorem 5.9, V is also union-preserving.

The following example shows that the corresponding assertion need not be true
for the corelation

∧
U .

Example 6.7 Let X be a set such that card (X) > 1, and for any A ⊆ X define

U(A) = ΔX[A ] and V (A) = Δc
X [A ].

Then, U and V are union-preserving corelations on X such that the corelation U∧V
is not union-preserving.
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Namely, now we have U
({x}) = ΔX

[{x}] = {x} and

V
({x}) = Δc

X [ {x} ] = Δc
X(x) = ΔX(x)

c = {x}c

for all x ∈ X.
Therefore, if x1, x2 ∈ X such that x1 �= x2, and A = {x1, x2}, then we can see

that U(A) = ΔX[A ] = A and

V (A) = Δc
X [A ] = Δc

X

({x1, x2}
) = Δc

X

({x1}
) ∪Δc

X

({x2}
) = {x1}c ∪ {x2}c.

Hence, it is clear that A = {x1, x2} ⊆ {x1}c ∪ {x2}c = V (A), and thus

(
U ∧ V

)
(A) = U(A) ∩ V (A) = A ∩ V (A) = A.

However,
(
U ∧V

)({xi}
) = U

({xi}
)∩V

({xi}
) = {xi} ∩ {xi}c = ∅ for i = 1, 2, and

thus

⋃

x∈A
(
U ∧ V

)({x}) = (
U ∧ V

)({x1}
) ∪ (

U ∧ V
)({x2}

) = ∅.

In the sequel, since set inclusion is not, in general, a convenient partial order for
functions, we shall use the following

Definition 6.8 For any two sets X and Y , denote by Q(X, Y ) the family of all
corelations on X to Y .

Moreover, for any two U, V ∈ Q(X, Y ), define U ≤ V if U(A) ⊆ V (A) for all
A ⊆ X.

Thus, we can easily prove the following

Theorem 6.9 With the above inequality relation ≤, the family Q(X, Y ) forms a
complete poset.

Proof It is clear that the relation ≤ considered in Definition 6.8 is a partial order
(reflexive, transitive and antisymmetric) relation on Q(X, Y ).

Moreover, if U ⊆ Q(X, Y ) and V = ∨
U , i. e.,

V (A) = ⋃

U∈U
U(A)

for all A ⊆ X, then it can be easily seen that V = sup
(
U

)
. Thus, the poset

Q(X, Y ) is sup-complete.
The fact that Q(X, Y ) is inf-complete can be proved quite similarly by showing

that
∧

U = inf
(
U

)
.

Remark 6.10 Note that, by a basic theorem of Birkhoff [1, p. 112], a poset is inf-
complete if and only if it is sup-complete.

Moreover, by our former paper [3], this theorem can be extended to an arbitrary
goset (generalized ordered set) even with a simpler proof.
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Definition 6.11 In the sequel, the families of the quasi-increasing, increasing and
union-preserving members of Q(X, Y ) will be denoted by Q1(X, Y ), Q2(X, Y )

and Q3(X, Y ), respectively.

Remark 6.12 Thus, we evidently have

Q3(X, Y ) ⊆ Q2(X, Y ) ⊆ Q1(X, Y ) ⊆ Q(X, Y ).

Moreover, in addition to Theorem 6.9, we can also prove the following

Theorem 6.13 With the corresponding restriction of the inequality relation ≤
considered in Definition 6.8, the family Qi (X, Y ), with i = 1, 2, 3, is also a
complete poset.

Proof To prove this for i = 3, note that if U ⊆ Q3(X, Y ), then by Theorem 6.9
there exists V ∈ Q(X, Y ) such that V = sup (U ).

Moreover, we necessarily have

V (A) = ⋃

U∈U
U(A) = ( ∨

U
)
(A)

for all A ⊆ X, and thus V = ∨
U .

Hence, by using Theorem 6.6, we can infer that V ∈ Q3(X, Y ). Therefore, V =
sup

(
U

)
is also true in Q3(X, Y ). Thus, Q3(X, Y ) is also sup-complete.

Remark 6.14 Now, by Remark 6.10, inf (U ) also exists in Q3(X, Y ). However,
because of Example 6.7, it can be strictly smaller than

∧
U . Therefore, the latter

notation may cause some confusions.

7 Increasingness and Union-Preservingness of Composite
Corelations

In addition to Theorems 6.5 and 6.6, it is also worth proving the following

Theorem 7.1 If U and V are increasing (union-preserving) corelations on X to Y

and Y to Z, respectively, then V ◦ U is a increasing (union-preserving) corelation
on X to Z.

Proof If for instance U and V are union-preserving, then by the corresponding
definitions we have

(
V ◦U)

(A) = V
(
U(A)

) = V
( ⋃

x∈A
U
({x})

)
= ⋃

x∈A
V
(
U
({x})) = ⋃

x∈A
(
V ◦U)({x})

for all A ⊆ X. Therefore, by Theorem 5.9, the corelation V ◦ U is also union-
preserving.
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Remark 7.2 If U is quasi-increasing and V is increasing, then we can at once see
that V ◦ U is also quasi-increasing.

However, if V is only quasi-increasing, then we cannot state that V ◦U is quasi-
increasing, even if U is a constant corelation.

From the above theorem, by induction, we can immediately derive

Corollary 7.3 If U is an increasing (union-preserving) corelation on X, then Un

is also an increasing (union-preserving) corelation on X for all n ∈ N.

Here, to avoid confusion with the ordinary preorder hull U∞ = ⋃∞
n=o Un of a

corelation U , we shall use bold notation.

Definition 7.4 For any corelation U on X, we define

U∞ =
∞∨
n=0

Un,

where in contrast to our former notation U0 is now to denote the identity corelation
on X.

Remark 7.5 Thus, for any A ⊆ X, we have

U∞(A) =
( ∞∨
n=0

Un
)
(A) =

∞⋃
n=0

Un(A).

Now, concerning the corelation U∞, we can easily prove the following theorems.

Theorem 7.6 If U is a corelation on X, then U∞ is an extensive corelation on X

such that U ≤ U∞.

Proof Since U0(A) = A and U1(A) = U(A) for all A ⊆ X, from Remark 7.5, it is
clear that A ⊆ U∞(A) and U(A) ⊆ U∞(A) for all A ⊆ X. Therefore, the required
assertions are also true.

Theorem 7.7 If U is an increasing (union-preserving) corelation on X, then U∞
is also an increasing (union-preserving) corelation on X.

Proof From Corollary 7.3, we know that the corelationUn is also increasing (union-
preserving) for all n ∈ N. Hence, by Definition 7.4 and Theorems 6.5 and 6.6, it is
clear that the required assertions are also true.

Theorem 7.8 If U is an union-preserving corelation on X, then U∞ is an idem-
potent corelation on X.

Proof From Corollary 5.8, we know that U is increasing. Moreover, by Theo-
rem 7.6, for any A ⊆ X, we have A ⊆ U∞(A). Hence, by using Theorem 7.7,
we can infer that

U∞(A) ⊆ U∞(
U∞(A)

) = (
U∞ ◦ U∞)

(A).
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Moreover, by using Remark 7.5, we can see that

U∞(
Un(A)

) =
∞⋃
k=0

Uk
(
Un(A)

) =
∞⋃
k=0

Uk+n(A) ⊆
∞⋃
l=0

Ul(A) = U∞(A)

for all n ∈ {0} ∪ N. Hence, by using Theorem 7.7, we can already see that

(
U∞◦U∞)

(A)=U∞(
U∞(A)

)=U∞
( ∞⋃
n=0

Un(A)
)
=

∞⋃
n=0

U∞(
Un(A)

)⊆U∞(A)

also holds. Therefore, we actually have
(
U∞ ◦ U∞)

(A) = U∞(A) for all A ⊆ X,
and thus U∞ ◦ U∞ = U∞.

Now, as an immediate consequence of Corollary 5.8 and Theorems 7.6, 7.7
and 7.8, we can also state

Theorem 7.9 If U is an union-preserving corelation on X, then U∞ is an union-
preserving closure operation on X such that U ≤ U∞.

In addition to this theorem, it is also worth proving the following

Theorem 7.10 If U is an increasing and V is an extensive corelation on X such
that U ≤ V and V 2 ≤ V , then U∞ ≤ V .

Proof By the above assumptions, for any A ⊆ X, we have U0(A) ⊆ V (A) and
U(A) ⊆ V (A). Moreover, we also have

U2(A) = U
(
U(A)

) ≤ U
(
V (A)

) ⊆ V
(
V (A)

) ⊆ V 2(A) ⊆ V (A).

Hence, by induction, it is clear that Un(A) ⊆ V (A) for all n ∈ {0} ∪ N. Therefore,
by Remark 7.5,

U∞(A) =
∞⋃
n=0

Un(A) ⊆ V (A),

and thus U∞ ≤ V also holds.

Finally, we note that, in particular, the following theorem is also true.

Theorem 7.11 If R is a relation on X, and U (A) = R [A] for all A ⊆ X, then
U∞(A) = R∞[A ] for all A ⊆ X.

Proof By the corresponding definitions, for any A ⊆ X, we have U0(A) = R0[A]
and U (A) = R [A]. Moreover, by Theorem 3.8, we also have

U2(A) = U
(
U(A)

) = R
[
R [A ] ] = R2[A ].

Hence, by induction, it is quite obvious that we also have Un(A) = Rn[A ] for all
n ∈ {0} ∪ N. Therefore, by Remark 7.5 and Theorem 4.6, we can also state that
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U∞(A) =
∞⋃
n=0

Un(A) =
∞⋃
n=0

Rn(A) =
( ∞⋃
n=0

Rn
)
(A) = R∞[A ].

Remark 7.12 In the next section, we shall show that a corelation U on X is union-
preserving if and only if there exists a relation R on X such that U (A) = R [A] for
all A ⊆ X. Therefore, Theorem 7.8 can be proved with the help of Theorem 7.11
too.

8 A Partial Galois Connection Between Relations and
Corelations

According to the corresponding definitions of Höhle and Kubiak [25] and the
notations of Davey and Priestley [12, p. 55], we may also naturally introduce

Definition 8.1 For any relation R and corelation U on X to Y , we define a
corelation R� and a relation U� on X to Y such that

R�(A) = R [A ] and U�(x) = U
({x})

for all A ⊆ X and x ∈ X.

Thus, we can easily prove the following two theorems.

Theorem 8.2 If U is a corelation on X to Y , then

R� ≤ U 2⇒ R ⊆ U�

for any relation R on X to Y .

Proof If R� ≤ U , then in particular we have

R (x) = R
[{x}] = R�({x}) ⊆ U

({x}) = U�(x)

for all x ∈ X. Therefore, by Theorem 3.1, R ⊆ U� also holds.

Theorem 8.3 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U is quasi-increasing;
(2) R ⊆ U� 2⇒ R� ≤ U for any relation R on X to Y .

Proof If (1) holds and R ⊆ U�, then

R�(A) = R [A ] = ⋃

x∈A
R (x) ⊆ ⋃

x∈A
U�(x) = ⋃

x∈A
U
({x}) ⊆ U (A)

for all A ⊆ X. Therefore, by Definition 6.8, R� ≤ U , and thus (2) also holds.
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While, if (2) holds, then because of U� ⊆ U� we have U� � = (
U�)� ≤ U .

Therefore, for any A ⊆ X, we have U� �(A) ⊆ U(A). Moreover, by using the
corresponding definitions, we can see that

U� �(A) = (
U�)�(A) = U� [A ] = ⋃

x∈A
U�(x) = ⋃

x∈A
U
( {x}).

Therefore,
⋃

x∈A U
( {x}) ⊆ U(A), and thus, by Theorem 5.5, assertion (1) also

holds.

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 8.4 For an arbitrary relation R and a quasi-increasing corelation U on
X to Y , we have

R� ≤ U ⇐⇒ R ⊆ U�.

Remark 8.5 This corollary shows that the operation � and the restriction of � to
Q1(X, Y ) establish a Galois connection between the complete posets P (X× Y )

and Q1(X, Y ).
Therefore, the extensive theory of Galois connections could be applied here.

However, because of the simplicity of Definition 8.1, it seems now more convenient
to use some, more elementary, direct proofs.

For instance, by the corresponding definitions, we evidently have the following

Theorem 8.6 For any two relations R, S and corelations U , V on X to Y ,

(1) R ⊆ S 2⇒ R� ≤ S�; (2) U ≤ V 2⇒ U� ⊆ V �.

Remark 8.7 By using Corollary 8.4, instead of (2) we could only prove that the
restriction of the function � to Q1(X, Y ) is increasing.

Moreover, we can also easily prove the following theorem whose first statement
has also been established by Höhle and Kubiak [25].

Theorem 8.8 For any two relations R and S on X to Y ,

(1) R�� = R; (2) R� ≤ S� 2⇒ R ⊆ S.

Proof By the corresponding definitions, we have

R��(x) = (
R�)�(x) = R�({x}) = R

[ {x} ] = R(x)

for all x ∈ X. Therefore, (1) is also true.
To prove (2), note that if R� ≤ S� holds, then by Theorem 8.6 we also have

R�� ⊆ S��. Hence, by using (1), we can see that R ⊆ S also holds.

Remark 8.9 From this theorem, we can see that � is an injective function of P(X×
Y ) to Q(X, Y ).
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Moreover, � maps a part of Q(X, Y ) onto P(X×Y ). And, the composition � �
is the identity function of P(X×Y ).

Now, as an immediate consequence of Theorems 8.6 and 8.8, we can also state

Corollary 8.10 For any two relations R and S on X to Y , we have

R ⊆ S ⇐⇒ R� ≤ S�.

Concerning the operation � �, we can only prove the following theorem which,
to some extent, has also been established by Höhle and Kubiak [25] and Pataki [43].

Theorem 8.11 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U� � = U ;
(2) U is union-preserving;
(3) U = R� for some relation R on X to Y .

Proof From the proof of Theorem 8.3, we know that

U� �(A) = ⋃

x∈A
U
({x})

for all A ⊆ X. Moreover, if (2) holds, then by Theorem 5.9 we have

U (A) = ⋃

x∈A
U
({x}

for all A ⊆ X. Therefore, U� �(A) = U (A) for all A ⊆ X, and thus (1) also holds.
Now, since (1) trivially implies (3), we need only note that if (3) holds, then

U(A) = R�(A) = R [A ] = ⋃

x∈A
R (x) = ⋃

x∈A
R
[{x}] = ⋃

x∈A
R�({x}) = ⋃

x∈A
U
({x})

for all A ⊆ X. Therefore, by Theorem 5.9, assertion (2) also holds.

Remark 8.12 From this theorem, we can see that the function � maps P(X×Y )

onto Q3(X, Y ).
Moreover, the restriction of � to Q3(X, Y ) is injective. And the restriction of � �

to Q3(X, Y ) is the identity function of Q3(X, Y ).

Now, as an immediate consequence of Theorems 8.6 and 8.11, we can also state

Corollary 8.13 For any two union-preserving corelations U and V on X to Y , we
have

U ≤ V ⇐⇒ U� ⊆ V �.
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Remark 8.14 Note that, by Remarks 8.9 and 8.12, the Galois connection mentioned
in Remark 8.5 is rather particular.

Therefore, it not surprising that, by Corollaries 8.10 and 8.13, the functions � and
� with the corresponding identity functions form Pataki connections.

9 The Galois Interior of a Corelation

Definition 9.1 For any corelation U on X to Y , the corelation

U◦ = U� �

will be called the Galois interior of U .

Thus, by Theorem 8.11, we evidently have the following

Theorem 9.2 If U is a corelation on X to Y , then U◦ is a union-preserving
corelation on X to Y .

Moreover, by using Theorem 8.8, we can easily establish the following

Theorem 9.3 For any relation R and corelation U on X to Y , we have

(1) R�◦ = R�; (2) U◦� = U�.

Furthermore, by the proof of Theorem 8.3, we can also state the following

Theorem 9.4 If U is a corelation on X to Y , then for any A ⊆ X, we have

U◦(A
) = ⋃

x∈A
U
({x}).

Example 9.5 If U is the complementation operation on X, then for any A ⊆ X we
have

U◦(A) =
⎧
⎨

⎩

∅ if card (A) = 0,
Ac if card (A) = 1,
X if card (A) > 1.

Namely, by Theorem 9.4 and De Morgan’s law, we have

U◦(A
) = ⋃

x∈A
U
({x}) = ⋃

x∈A
{x}c =

( ⋂

x∈A
{x}

)c
,

whence the required equalities immediately follow.

Now, in addition to Theorem 8.11, we can also easily prove the following

Theorem 9.6 For any corelation U on X to Y , we have
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(1) U◦◦ = U◦;
(2) U◦ ≤ U ⇐⇒ U is quasi-increasing;
(3) U◦ = U ⇐⇒ U is union-preserving.

Proof Assertion (3) follows from Theorem 8.11 by Definition 9.1. Moreover, by
Theorem 9.4, it is clear that, for any A ⊆ X, we have

U◦(A) ⊆ U (A) ⇐⇒ ⋃

x∈A
U
({x}) ⊆ U (A).

Hence, by Definition 6.8 and Theorem 5.5, it is clear that (2) is true.
Furthermore, by using Theorem 9.4, we can also see that

U◦◦(A) = ⋃

x∈A
U◦({x}) = ⋃

x∈A
U
({x}) = U◦(A)

for all A ⊆ X. Therefore, (1) is also true.

Remark 9.7 From the above theorem, we can see that the function ◦ is a modifi-
cation operation on Q(X, Y ) such that its restriction to Q1(X, Y ) is an interior
operation. Moreover, Q3(X, Y ) is the family of all open elements of Q1(X, Y ).

Theorem 9.8 For any two corelations U and V on X to Y , we have

(1) U ≤ V 2⇒ U◦ ≤ V ◦;
(2) U◦ ≤ V 2⇒ U� ⊆ V �;
(3) U� ⊆ V � 2⇒ U◦ ≤ V if V is quasi-increasing.

Proof Assertion (1) follows from Theorem 8.6 by Definition 9.1. Moreover, by
Definition 9.1 and Theorem 8.2, it is clear that

U◦ ≤ V 2⇒ (
U�)� ≤ V 2⇒ U� ≤ V �.

Therefore, (2) is true.
While, if V is quasi-increasing, then by using Theorem 8.3, we can quite

similarly see that

U� ⊆ V � 2⇒ (
U�)� ≤ V 2⇒ U◦ ≤ V.

Therefore, (3) is also true.

Remark 9.9 The above theorem shows that the functions � and ◦ establish a Pataki
connection between Q1(X, Y ) and P(X×Y ).

Now, by using our former results, we can also prove the following two theorems.

Theorem 9.10 If R is a relation on X to Y and U = R�, then

(1) U is an union-preserving corelation on X to Y such that U� = R;
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(2) U is the smallest quasi-increasing corelation on X to Y such that R ⊆ U�;
(3) U is the largest union-preserving corelation on X to Y such that U� ⊆ R.

Proof Theorems 8.11 and 8.8 show that U is union-preserving and U� = R� � = R.
Therefore, (1) is true.

Moreover, if V is a quasi-increasing corelation on X to Y such that R ⊆ V �,
then by Theorem 8.3 we also have R� ≤ V , and thus U ≤ V . Therefore, by (1),
assertion (2) is also true.

While, if V is a union-preserving corelation on X to Y such that V � ⊆ R, then
by Theorems 8.6 and 8.11 we also have V � � ≤ R�, and thus V ≤ U . Therefore, by
(1), assertion (3) is also true.

Theorem 9.11 If U is a corelation on X to Y and R = U�, then

(1) R� ≤ U ⇐⇒ U is quasi-increasing;
(2) R� = U ⇐⇒ U is union-preserving;
(3) if U is quasi-increasing, then R the largest relation on X to Y such that R� ≤

U ;
(4) if U is union-preserving, then R is the smallest relation on X to Y such that

U ≤ R�.

Proof By the corresponding definitions and Theorem 9.6, we have

R� ≤ U ⇐⇒ U� � ≤ U ⇐⇒ U◦ ≤ U ⇐⇒ U is quasi-increasing

and

R� = U ⇐⇒ U� � = U ⇐⇒ U◦ = U ⇐⇒ U is union-preserving.

Therefore, (1) and (2) are true.
On the other hand, if S is a relation on X to Y such that S� ≤ U , then by

Theorem 8.2 we also have S ⊆ U�, and thus S ⊆ R. Therefore, by (1), assertion (3)
is also true.

While, if S is a relation on X to Y such that U ≤ S�, then by Theorem 8.6, we
also have U� ⊆ S� �. Hence, by Theorem 8.8, we can see that R ⊆ S. Therefore, by
(2), assertion (4) is also true.

Remark 9.12 In addition to Definition 8.1 and Theorem 9.11, it is also worth
mentioning that if R is relation and U is a corelation on X to Y , then by the
corresponding definitions we have

(1) R�(A) = clR−1(A) for all A ⊆ X;
(2) R� ≤ U ⇐⇒ A ∈ IntR

(
U(A)

)
for all A ⊆ X.

Moreover, by using Theorems 9.11 and 4.6, it can be easily seen that if U is
quasi-increasing, then under the notation Int�(U) =

{
S ⊆ X×Y : S� ≤ U

}
we

have U� = max ( Int�(U)) = ⋃
Int�(U).
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10 Compatibility of � and � with Set Theoretic Operations

By using the corresponding definitions and some former theorems on relations, we
can easily prove the following five theorems.

Theorem 10.1 If R is a relation on X to Y , then for any A, B ⊆ X we have

(1) R�(A) \ R�(B) ⊆ R�( A \ B ); (2) R� c(A) ⊆ R�(Ac
)

if Y = R [X].
Proof To check (2), note that if Y = R [X], then by Theorem 4.1 we have

R� c(A) = R�(A)c = R [A ]c ⊆ R [Ac ] = R�(Ac
)
.

Theorem 10.2 If R is a relation on X to Y , then for any family A of subsets of X
we have

(1) R�( ⋂
A

) ⊆ ⋂

A∈A
R�(A

)
; (2) R�( ⋃

A
) = ⋃

A∈A
R�(A

)
.

Proof To check (1) note that, by Theorem 4.2, we have

R�( ⋂
A

) = R
[ ⋂

A
] ⊆ ⋂

A∈A
R [A ] = ⋂

A∈A
R�(A).

Remark 10.3 If in particular R−1 is a function, then by Remark 4.3 the corres-
ponding equalities are also true in the above two theorems.

Theorem 10.4 For any two relations R and S on X to Y , we have

(1) R� \ S� ≤ (R \ S)�; (2) R� c(A) ⊆ Rc �(A) if ∅ �= A ⊆ X.

Proof To check (1), note that by Theorem 4.5, for any A ⊆ X, we have
(
R� \ S�)(A) = R�(A) \ S�(A) = R [A ] \ S [A ] ⊆ (R \ S) [A ] = (R \ S)�(A).

Theorem 10.5 For any family R of relations on X to Y , we have

(1)
( ⋂

R
)� ≤ ∧

R∈R
R�; (2)

( ⋃
R

)� = ∨

R∈R
R�.

Proof To check (1), note that by Theorem 4.6, for any A ⊆ X, we have
( ⋂

R
)�
(A) = ( ⋂

R
) [A ] ⊆ ⋂

R∈R
R [A ] = ⋂

R∈R
R�(A) = ( ∧

R∈R
R�)(A).

Theorem 10.6 If R is a relation on X to Y , then for any A ⊆ X we have

Rc �c(A) = ⋂

x∈A
R (x).

Proof By Theorem 4.9, we have

Rc �c(A) = Rc �(A)c = Rc[A ]c = ⋂

x∈A
R (x).
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Moreover, by the corresponding definitions and some former theorems on
relations, it is clear that we also have the following five theorems.

Theorem 10.7 If U is a corelation on X to Y , then for any A, B ⊆ X we have

(1) U�[A ] \ U�[B ] ⊆ U�[A \ B ]; (2) U�[A ]c ⊆ U�[Ac] if Y =
U� [X].
Theorem 10.8 If U is a corelation on X to Y , then for any family A of subsets of
X we have

(1) U�[ ⋂
A

] ⊆ ⋂

A∈A
U�[A ]; (2) U�[ ⋃

A
] = ⋃

A∈A
U�[A ].

Remark 10.9 If in particular U�−1 is a function, then by Remark 4.3 the corre-
sponding equalities are also true in the latter two theorems.

Theorem 10.10 For any two corelations U and V on X to Y , we have

(1) U� \ V � = (U \ V )�; (2) U�[A ]c ⊆ U� c[A ] if ∅ �= A ⊆ X.

Proof To check (1), note that by Theorem 4.5 and Remark 4.7, for any x ∈ X, we
have

(
U� \V �)(x) = U�(x)\V �(x) = U

({x})\V ({x}) = (U \V )({x}) = (U \V )�(x).

Theorem 10.11 For any family U of corelations on X to Y , we have

(1)
( ∧

U
)� = ⋂

U∈U
U�; (2)

( ∨
U

)� = ⋃

U∈U
U�.

Proof To check (1), note that, by Theorem 4.6 and Remark 4.7, for any x ∈ X, we
have

( ∧
U

)�
(x) = ( ∧

U
)({x}) = ⋂

U∈U
U
({x}) = ⋂

U∈U
U�(x) = ( ⋂

U∈U
U�)(x).

Theorem 10.12 If U is a corelation on X to Y , then for any A ⊆ X we have

U�c[A ]c = ⋂

x∈A
U

({x}).

Finally, we note that, from Theorems 10.1 and 10.2, by writing U� in place of R,
we can obtain the following two theorems.

Theorem 10.13 If U is a corelation on X to Y , then for any A, B ⊆ X we have

(1) U◦(A)\ U◦(B) ⊆ U◦( A\B ); (2) U◦c(A) ⊆ U◦( Ac) if Y = U�[X].
Theorem 10.14 If U is a corelation on X to Y , then for any family A of subsets of
X we have

(1) U◦( ⋂
A

) ⊆ ⋂

A∈A
U◦(A

)
; (2) U◦( ⋃

A
) = ⋃

A∈A
U◦(A

)
.
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Remark 10.15 While, from Theorems 10.4 and 10.5, by writing U� and V � in place
of R and S, respectively, we can only get some less convenient theorems.

However, it is now more important to note that, by using Theorems 10.11
and 10.5, we can also prove the following

Theorem 10.16 For any family U of corelations on X to Y , we have

(2)
( ∧

U
)◦ ≤ ∧

U∈U
U◦; (2)

( ∨
U

)◦ = ∨

U∈U
U◦.

Proof To check (1), note that, by Theorems 10.11 and 10.5, we have

( ∧
U

)◦ = ( ∧
U

)� � = ( ⋂

U∈U
U�)� ≤ ∧

U∈U
U� � = ∧

U∈U
U◦

11 Compatibility of � and � with the Composition of
Relations

The following theorem has also been established by Höhle and Kubiak [25].

Theorem 11.1 For any two relations R on X to Y and S on Y to Z, we have

(
S ◦ R )� = S� ◦ R�.

Proof By the corresponding definitions and Theorem 3.8, it is clear that

(
S ◦ R )�

(A) = (
S ◦ R ) [A ] = S

[
R [A ] ] = S�

(
R�(A)

) = (
S� ◦ R�) (A)

for all A ⊆ X. Therefore, the required equality is also true.

From this theorem, by using Theorem 8.11, we can immediately derive the
following two corollaries.

Corollary 11.2 For an arbitrary relation on R on X to Y and a union-preserving
corelation V on Y to Z, we have

(
V �◦ R )� = V ◦ R�.

Corollary 11.3 For a union-preserving corelation U on X to Y and an arbitrary
relation S on Y to Z, we have

(
S ◦ U�)� = S�◦ U.

By Theorem 4.18, in addition to Theorem 11.1, we can also state the following
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Theorem 11.4 If R is a relation on X to Y and S is a relation on Z to W , then for
any A ⊆ X×Z we have

(
R 	 S

)�
(A) = S ◦ A ◦ R−1.

Moreover, by using Theorems 10.5 and 11.1, we can also prove the following

Theorem 11.5 For any relation R on X, we have

R∞� = R�∞.

Proof From Theorem 11.1, by induction, we can see that Rn� = R�n for all n ∈ N.
Moreover, we can also note that R0 � = R�0.

Hence, by the corresponding definitions and Theorem 10.5, it is clear that

R∞� =
( ∞⋃
n=0

Rn
)� =

∞∨
n=0

Rn� =
∞∨
n=0

R�n = R�∞.

In addition to Theorem 11.1, we can also easily prove the following correction
of a false statement of Höhle and Kubiak [25].

Theorem 11.6 For an arbitrary corelation U on X to Y and a union-preserving
corelation V on Y to Z, we have

(
V ◦ U )� = V � ◦ U�.

Proof By the corresponding definitions and Theorem 8.11, we have

( V ◦ U )�(x) = ( V ◦ U )
( {x}) = V

(
U
( {x}))

= V
(
U�(x)

) = V � �(U�(x)
) = V �[U�(x)

] = (
V � ◦ U�)(x)

for all x ∈ X. Therefore, the required equality is also true.

From this theorem, by using Theorems 8.11 and 8.8, we can immediately derive
the following two corollaries.

Corollary 11.7 For a corelation U on X to Y and a relation S on Y to Z, we have

(
S� ◦ U )� = S ◦ U�.

Corollary 11.8 For an arbitrary relation on R on X to Y and a union-preserving
corelation V on Y to Z, we have

(
V ◦ R�)� = V �◦ R.

Now, by using Theorems 11.6 and 11.1, we can also easily prove the following



738 Á. Száz

Theorem 11.9 For an arbitrary corelation U on X to Y and a union-preserving
corelation V on Y to Z, we have

(
V ◦ U )◦ = V ◦ U◦.

Proof By Theorems 11.6, 11.1 and 9.6, we have

(
V ◦ U )◦ = (

V ◦ U )� � = (
V � ◦ U�)� = V � � ◦ U� � = V ◦ ◦ U◦ = V ◦ U◦.

Moreover, by using Theorems 11.6 and 10.11, we can also prove the following

Theorem 11.10 For any union-preserving corelation U on X, we have

U∞ � = U�∞.

Proof From Theorem 11.6, by induction, we can see that Un� = U�n for all n ∈ N.
Moreover, we can also note that U0� = U�0.

Hence, by the corresponding definitions and Theorem 10.11, it is clear that

U∞ � =
( ∞∨
n=0

Un
)� =

∞⋃
n=0

Un � =
∞⋃
n=0

U�n = U�∞.

Remark 11.11 In the next section, we shall see that in connection with the usual
inversion of relations we cannot prove such compatibility theorems.

12 Incompatibility of � and � with the Inversion of Relations

Theorem 12.1 For a relation R on X to Y , the following assertions are equivalent:

(1) R is a function on X onto Y ;
(2) R ◦ R−1 = ΔY ; (3) R−1 � ⊆ R�−1.

Proof By Corollary 3.16, R is a function if and only if R ◦ R−1 = ΔR[X]. Hence,
since R is onto Y if and only if R [X] = Y , it is clear that (1) and (2) are equivalent.

Next, we show that (2) implies (3). For this, note that if A ⊆ X and B ⊆ Y such
that A = R−1 �(B), then by Definition 8.1 and Theorem 3.8 we also have

R�(A) = R [A ] = R
[
R−1 �(B)

] = R
[
R−1[B ] ] = (

R ◦ R−1) [B ].

Hence, if (2) holds, we can infer that

R�(A) = ΔY [B ] = B, and thus A ∈ R�−1[B ].

Therefore, (3) also holds.
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Now, to complete the proof, it remains to show that (3) also implies (2). For this,
note that if (3) holds, then in particular, for any y ∈ Y , we have

R−1(y) = R−1[{y}] = R−1 �({y}) ∈ R�−1({y}).

Hence, we can infer that

{y} = R�(R−1(y)
) = R

[
R−1(y)

]
, and thus ΔY (y) =

(
R ◦ R−1)(y).

Therefore, by Corollary 3.2, assertion (2) also holds.

From this theorem, by writing R−1 in place of R, we can immediately derive

Theorem 12.2 For a relation R on X to Y , the following assertions are equivalent:

(1) R−1 is a function on Y onto X;
(2) R−1◦ R = ΔX; (3) R�−1 ⊆ R−1 �.

Proof To derive this from Theorem 12.1, note that

R�−1 ⊆ R−1 � ⇐⇒ R� ⊆ R−1 �−1 ⇐⇒ (
R−1)−1 � ⊆ (

R−1)�−1
.

Now, as an immediate consequence of the above two theorems, we can also state

Corollary 12.3 For a relation R on X to Y , the following assertions are equivalent:

(1) R is an injective function of X onto Y ;
(2) R�−1 = R−1 �; (3) R−1 ◦ R = ΔX and R ◦ R−1 = ΔY .

From the above results, by writing U� in place of R, and using that U◦ = U� �,
we can immediately derive the following assertions.

Theorem 12.4 For a corelation U on X to Y following assertions are equivalent:

(1) U� is a function on X onto Y ;
(2) U�◦ U�−1 = ΔY ; (3) U�−1 � ⊆ U◦−1.

Theorem 12.5 For a corelation U on X to Y , the following assertions are
equivalent:

(1) U�−1 is a function on Y onto X;
(2) U�−1◦ U� = ΔX; (3) U◦−1 ⊆ U�−1 �.

Corollary 12.6 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U� is an injective function of X onto Y ;
(2) U◦−1 = U�−1 �; (3) U�−1 ◦ U� = ΔX and U� ◦ U�−1 = ΔY .

Remark 12.7 Note that if in particular U is union-preserving, then by Theorem 9.6
we have U◦ = U . Therefore, assertion (2) can be written in the more instructive
form that U−1 = U�−1 �.
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13 The Relationally Generated Inverse of a Corelation

Since the ordinary inverse U−1 of a corelation U on X to Y is a corelation on Y to
X if and only if U is injective, it seems necessary to introduce the following

Definition 13.1 For any corelation U on X to Y , the corelation

U−1 = U�−1 �

will be called the relationally generated inverse of U .

Thus, by writing R� in place of U , we can immediate derive the following

Theorem 13.2 For any relation R on X to Y , we have

R�−1 = R−1 �.

Proof Namely, by Definition 13.1 and Theorem 8.8, we have

R�−1 = R� �−1 � = R−1 �.

Remark 13.3 From the above theorem, by Theorem 8.8, we can infer that

R�−1 � = R−1 � � = R−1.

Therefore, a corelationally generated inverse of a relation need not be defined.

Moreover, by using Theorems 8.11 and 8.8, we can easily prove the following

Theorem 13.4 If U is a corelation on X to Y , then U−1 is a union-preserving
corelation on Y to X such that

(1) U�−1 = U−1�; (2) U◦−1= U−1.

Proof To prove (2), note that by Definitions 9.1 and 13.1 and Theorem 8.8 we have

U◦−1= U� � �−1 � = U�−1 � = U−1.

Remark 13.5 If U is a corelation on X such that the relation U� is symmetric, then
by Definitions 13.1 and 9.1 we can also see that

U−1 = U�−1 � = U� � = U◦.

Thus, if U is in addition union-preserving, then by Theorem 9.6 we can also state
that U−1 = U .

By using Remark 13.5, we can also easily establish the following
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Example 13.6 If U is the complementation operation on X, then for any A ⊆ X we
have

U−1(A) =
⎧
⎨

⎩

∅ if card (A) = 0,
Ac if card (A) = 1,
X if card (A) > 1.

Namely, now for any x, y ∈ X we have

y ∈ U�(x) ⇐⇒ y ∈ U
({x}) ⇐⇒ y ∈ {x}c ⇐⇒ x �= y

⇐⇒ x ∈ {y}c ⇐⇒ x ∈ U
({y}) ⇐⇒ x ∈ U�(y) ⇐⇒ y ∈ U�−1(x).

Therefore, U� = U�−1, and thus by Remark 13.5 we have U−1 = U◦. Hence, by
Example 9.5, we can see that the required assertion is also true.

Remark 13.7 In addition to Remark 13.5, it is also worth noticing that if U is and
union-preserving corelation on X to Y such U� is an injective function of X to Y ,
then by Remark 12.7 we have U−1 = U−1.

However, it is now more important to note that, by using Theorems 11.6 and 11.1,
we can also prove the following

Theorem 13.8 For an arbitrary corelation U on X to Y and a union-preserving
corelation V on Y to Z, we have

( V ◦ U )−1 = U−1 ◦ V −1.

Proof By Definition 13.1 and Theorems 11.6, 3.10 and 11.1, we have

( V ◦ U )−1 = ( V ◦ U )�−1� = (
V � ◦ U�)−1�

=
(
U�−1 ◦ V �−1

)� = U�−1� ◦ V �−1� = U−1 ◦ V −1.

From this theorem, by using Theorems 8.11 and 13.2, we can immediately derive

Corollary 13.9 For a corelation U on X to Y and a relation S on Y to Z, we have

( S�◦ U )−1 = U−1 ◦ S−1�.

Moreover, by using the corresponding definitions, we can easily prove

Theorem 13.10 If U is a corelation on X to Y , then for any B ⊆ Y we have

U−1(B) = {
x ∈ X : U

({x}) ∩ B �= ∅ }
.
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Proof By the corresponding definition, for any x ∈ X, we have

x ∈ U−1(B) ⇐⇒ x ∈ U�−1�(B) ⇐⇒ x ∈ U�−1[B ]
⇐⇒ U�(x) ∩ B �= ∅ ⇐⇒ U

({x}) ∩ B �= ∅.

By the above proof and Theorem 13.4, it is clear that we also have

Theorem 13.11 If U is a corelation on X to Y , then for any B ⊆ Y we have

U−1(B) = U�−1[B ] = U−1 �[B ].

Remark 13.12 Hence, analogously to Remark 9.12, we can note that

U−1(B) = clU�(B)

for all B ⊆ Y , and thus U−1 = clU� .

By using Theorem 13.10, we can easily establish the following two examples
which also reveal some serious disadvantages of the relationally generated inver-
sion.

Example 13.13 If U is a corelation on X such that U
({x}) = {x} for all x ∈ X,

then U−1 is the identity corelation on X.

Remark 13.14 Thus, if in particular U is as in Example 5.13, then U−1 is the
identity corelation on X.

Example 13.15 If U is a corelation on X to Y and Z ⊆ Y such that U
({x}) = Z

for all x ∈ X, then for any B ⊆ Y we have

U−1(B) = ∅ if Z ∩ B = ∅ and U−1(B) = X if Z ∩ B �= ∅.

Namely, by Theorem 13.10, for any x ∈ X we have

x ∈ U−1(B) ⇐⇒ U
({x}) ∩ B �= ∅ ⇐⇒ Z ∩ B �= ∅.

Remark 13.16 Thus, if in particular Z = Y , then for any B ⊆ Y we have

U−1(B) = ∅ if B = ∅ and U−1(B) = X if B �= ∅.

14 Some Further Results on the Relationally Generated
Inverse

By using Theorem 13.10, we can also easily prove the following three theorems.
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Theorem 14.1 If U is a corelation on X to Y , then

(
U−1

)−1 = U◦.

Proof By Theorems 13.10 and 9.4, for any A ⊆ X and y ∈ Y , we have

y ∈
(
U−1

)−1
(A) ⇐⇒ U−1({y})∩A �= ∅ ⇐⇒ ∃ x ∈ A : x ∈ U−1({y})

⇐⇒ ∃ x ∈ A : U
({x}) ∩ {y} �= ∅ ⇐⇒ ∃ x ∈ A : y ∈ U

({x})

⇐⇒ y ∈ ⋃

x∈A
U

({x}) ⇐⇒ y ∈ U◦(A).

Therefore, the required equality is also true.

From this theorem, by using Theorem 9.6, we can immediately derive

Corollary 14.2 For a corelation U on X to Y , the following assertions are equi-
valent:

(1) U = (
U−1

)−1
; (2) U is union-preserving.

Theorem 14.3 For any two corelations U and V of X to Y , we have

(1) U−1 \ V −1 ≤ (
U \ V )−1

;

(2)
(
V −1

)c
(B) ⊆ ( V c)−1 (B) if ∅ �= B ⊆ Y .

Proof By Definition 6.1 and Theorem 13.10, for any x ∈ X and B ⊆ Y , we have

x ∈
(
U−1 \ V −1

)
(B) ⇐⇒ x ∈ U−1(B) \ V −1(B) ⇐⇒

x ∈ U−1(B), x /∈ V −1(B) ⇐⇒ U
({x}) ∩ B �= ∅, V

({x}) ∩ B = ∅
2⇒ (

U
({x}) \ V ({x})) ∩ B �= ∅ ⇐⇒ (

U \ V )({x}) ∩ B �= ∅
⇐⇒ x ∈ (

U \ V )−1
(B).

Therefore,
(
U−1 \ V −1

)
(B) ⊆ (

U \ V )−1
(B) for all B ⊆ Y , and thus (1) is true.

Moreover, also by Definition 6.1 and Theorem 13.10, for any x ∈ X and ∅ �=
B ⊆ Y , we have

x ∈
(
V −1

)c
(B) ⇐⇒ x ∈ V −1(B)c ⇐⇒ x /∈ V −1(B)

⇐⇒ V
({x}) ∩ B = ∅ ⇐⇒ B ⊆ V

({x})c 2⇒ V
({x})c ∩ B �= ∅

⇐⇒ V c
({x}) ∩ B �= ∅ ⇐⇒ x ∈ (

V c
)−1

(B).

Therefore,
(
V −1

)c
(B) ⊆ ( V c)−1 (B), and thus (2) is also true.
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Remark 14.4 In addition to the letter direct proof, it is also worth noticing that
assertion (2) can actually be derived from (1), by defining U (A) = Y for all A ⊆ X.

Namely, in this case, by Remark 6.2 we have U \ V = V c, and thus

(
U \ V )−1

(B) = (
V c

)−1
(B)

for all B ⊆ Y .
Moreover, by the corresponding definitions and Remark 13.16, we have

(
U−1 \ V −1

)
(B) = U−1(B)\V −1(B) = X\V −1(B) = V −1(B)c =

(
V −1

)c
(B)

for all ∅ �= B ⊆ Y .

Theorem 14.5 For any family U of corelations on X to Y , we have

(1)
( ∧

U∈U
U

)−1≤ ∧

U∈U
U−1; (2)

( ∨

U∈U
U

)−1= ∨

U∈U
U−1.

Proof To prove (1), note that by Theorem 13.10 and Definition 6.3, for any x ∈ X

and B ⊆ Y , we have

x ∈
( ∧

U∈U
U

)−1
(B) ⇐⇒

( ∧

U∈U
U

)({x}) ∩ B �= ∅

⇐⇒
( ⋂

U∈U
U
({x}

)
∩ B �= ∅ 2⇒ ∀ U ∈ U : U

({x}) ∩ B �= ∅ ⇐⇒

∀ U ∈ U : x ∈ U−1(B) ⇐⇒ x ∈ ⋂

U∈U
U−1(B) ⇐⇒ x ∈

( ∧

U∈U
U−1

)
(B).

Therefore,

( ∧

U∈U
U
)−1
(B) ⊆

( ∧

U∈U
U−1

)
(B)

for all B ⊆ Y , and thus (1) is also true.

Now, analogously to Theorem 11.10, we can also prove the following

Theorem 14.6 For any union-preserving corelation U on X, we have

U∞−1 = U−1∞.

Proof From Theorem 13.8, by induction, we can see that Un−1 = U−1n for all
n ∈ N.

Hence, by Definition 7.4 and Theorem 13.4, it is clear that

U∞−1 =
( ∞∨
n=0

Un
)−1 =

∞∨
n=0

Un−1 =
∞∨
n=0

U−1n = U−1∞.
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15 The Relationally Generated Composition of Corelations

Analogously to Definition 13.1, we may also naturally introduce the following

Definition 15.1 For any two corelations U on X to Y and V on Y to Z, the core-
lation

V • U = (
V � ◦ U�)�

will be called the relationally generated composition of V and U .

Thus, by using Theorem 8.8, we can easily establish the following

Theorem 15.2 For any two relations R on X to Y and S on Y to Z, we have

S� • R� = (
S ◦ R)�

.

Proof Namely, by Definition 15.1 and Theorem 8.8, we have

S� • R� = (
S� � ◦ R� �)� = (

S ◦ R)�
.

Remark 15.3 From this theorem, by using Theorem 8.8, we can see that

(
S� • R� )� = (

S ◦ R)�� = S ◦ R.

Therefore, the corelationally generated composition of relations need not be defined.

Moreover, by using Theorems 8.11 and 11.1, we can easily prove the following

Theorem 15.4 If U is a corelation on X to Y and V is a corelation on Y to Z, then
V • U is a union-preserving corelation on X to Z such that

V • U = V ◦ ◦ U◦.

Proof To check this equality, note that, by the corresponding definitions and
Theorem 11.1, we have

V • U = (
V � ◦ U�)� = V � � ◦ U� � = V ◦ ◦ U◦.

Thus, in particular, by Theorem 9.6, we can also state

Corollary 15.5 For any two union-preserving corelations U on X to Y and V on
Y to Z, we have

V • U = V ◦ U.

Moreover, by using Theorems 15.4, we can easily prove the following theorems.
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Theorem 15.6 For any two corelations U on X to Y and V on Y to Z, we have

(
V • U)−1 = U−1◦ V −1.

Proof By Theorems 15.4, 9.2, 13.8 and 13.4, it is clear that

(
V • U)−1 = ( V ◦ ◦ U◦)−1 = U◦−1◦ V ◦−1 = U−1◦ V −1.

Theorem 15.7 For any three corelations U on X to Y , V on Y to Z and W on Z

to Ω , we have

W • (
V • U) = (

W • V ) • U.

Proof By Theorem 15.4 and 3.11, it is clear that

W • (
V • U) = W ◦ ◦ ( V ◦ ◦ U◦) = (W ◦ ◦ V ◦) ◦ U◦ = (

W • V ) • U.

Theorem 15.8 For any two corelations U on X to Y and V on Y to Z and A ⊆ X,
we have

(
V • U)

(A) = ⋃

x∈A
⋃

y∈U({x})
V
({y}).

Proof By Theorems 15.4, 3.11, 9.4 and 9.2, it is clear that

(
V • U)

(A) = ( V ◦ ◦ U◦) (A) = V ◦ (U◦(A
))

= V ◦
( ⋃

x∈A
U
({x})

)
= ⋃

x∈A
V ◦ (U

({x})) = ⋃

x∈A
⋃

y∈U({x}
) V

({y}).

16 Proximal Interiors and Closures Derived from
Corelations

For the origins of the following definition, see Efremovič [16], Smirnov [48] and
Száz [50].

Definition 16.1 If U is a corelation on X to Y , then for any A ⊆ X and B ⊆ Y we
write

(1) A ∈ IntU(B) if U(A) ⊆ B;
(2) A ∈ ClU(B) if U(A) ∩ B �= ∅.

The relations ClU and IntU will be called the proximal closure and proximal interior
generated by the corelation U , respectively.
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Remark 16.2 Relations on P(Y ) to P(X) can be identified with functions on
P(Y ) to P

(
P(X)

)
.

Therefore, the above relations may also be naturally considered as corelations on
Y to P(X).

The following theorem will already indicate a main advantage of our notations
ClU and IntU over the standardized ones δU and �U of Efremovič and Smirnov.
( For the historical developments of the subject, see Thron [84] and Naimpally and
Warrack [38].)

Theorem 16.3 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) ClU (B) = P(X) \ IntU ( Y \ B);
(2) IntU (B) = P(X) \ ClU ( Y \ B ).

Proof If A ∈ ClU(B), then U(A) ∩ B �= ∅, and thus U(A) �⊆ Y \ B. Therefore,
A /∈ IntU ( Y \B ), and thus A ∈ P(X) \ IntU ( Y \ B). Hence, we can already see
that ClU(B) ⊆ P(X) \ IntU( Y \ B). The converse inclusion can be proved quite
similarly by reversing the above argument. Thus, (1) is true.

Now, (2) can be derived from (1) by noticing that (1) implies

IntU( Y \ B ) = P(X) \ ClU(B )

for all B ⊆ Y . Hence, by writing Y \ B in place B, we can see that (2) also holds.

By using appropriate complementations, the above theorem can be reformulated
in a more concise form.

Corollary 16.4 For any corelation U on X to Y , we have

(1) IntU = (
ClU ◦CY

)c = (
ClU

)c ◦ CY ;

(2) ClU = (
IntU ◦CY

)c = (
IntU

)c ◦ CY .

Proof To check (1), note that for any B ⊆ Y we have

IntU (B) = P(X) \ ClU ( Y \ B ) = ClU
(
Bc

)c

= ClU
(
CY (B)

)c = (
ClU ◦CY

)
(B)c = (

ClU ◦CY

)c
(B).

Therefore, IntU = (
ClU ◦CY

)c. Moreover, by Corollary 4.11, we also have(
ClU ◦CY

)c = (
ClU

)c ◦ CY .

Remark 16.5 The above results show that the relations ClU and IntU are equivalent
tools in the corelational space (X, Y )(U).

However, in the sequel, we shall see that there are cases when one of the above
relations is a more convenient tool than the other one.

By using Definition 16.1, we can also easily prove the following
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Theorem 16.6 If U is a corelation on X to Y , then

(1) ClU is union-preserving; (2) IntU is intersection-preserving.

Proof To prove (2), note that, by Definition 16.1, the corelation IntU is increasing.
Therefore, if B ⊆ P(Y ), then by Theorem 5.6 we can at once state that

IntU
(⋂

B
) ⊆ ⋂

B∈B
IntU(B).

Moreover, if A ∈ ⋂
B∈B IntU (B), then A ∈ IntU (B), and thus U(A) ⊆ B for

all B ∈ B. Therefore, U(A) ⊆ ⋂
B, and thus A ∈ IntU

( ⋂
B

)
. Therefore,

⋂

B∈B
IntU(B) ⊆ IntU

( ⋂
B

)
,

and thus the corresponding equality is also true.

Remark 16.7 Note that, because of Theorem 16.3, assertions (1) and (2) are actually
equivalent.

However, by Theorem 5.9, assertion (1) can also be proved by showing only that
ClU(B) = ⋃

y∈B ClU
({y}) for all B ⊆ Y .

From Theorem 16.6, by taking empty union and intersection, we can immediately
derive

Corollary 16.8 For any corelation U on X to Y , we have

(1) ClU(∅ ) = ∅; (2) IntU( Y ) = P(X).

Moreover, from Theorem 16.6, by Theorems 5.6 and 5.7, it is also clear that in
particular we also have

Corollary 16.9 If U is a corelation on X to Y , then the corelations ClU and IntU
are increasing.

Hence, by using Theorems 5.6 and 5.7, we can immediately derive

Theorem 16.10 If U is a corelation on X to Y , then for any family B of subsets of
Y , we have

(1) ClU
( ⋂

B
) ⊆ ⋂

B∈B
ClU(B); (2)

⋃

B∈B
IntU(B) ⊆ IntU

( ⋃
B

)
.

The following example, together with Theorem 16.3, shows that the correspon-
ding equalities need not be true even in a very simple case.

Example 16.11 If in particular X = B1 ∪ B2, with Bi = {i}, and U is the identity
corelation on X, then by Definition 16.1 it is clear that

IntU(B1 ∪ B2) = P(X), but IntU(B1) ∪ IntU(B2) = P(X) \ {{X}}.
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Moreover, it is also worth noticing that now we also have

IntUc( B1 ∪ B2) = P(X), but IntUc(B1) ∪ IntUc( B2) = P(X) \ {{∅}}.

By using Corollary 16.9, we can also easily prove the following

Theorem 16.12 If U is a corelation on X to Y , then the corelations Cl−1
U and Int−1

U

are ascending-valued.

Proof To prove the first statement, suppose that A ⊆ X, B1 ∈ Cl−1
U (A) and B1 ⊆

B2 ⊆ Y . Then, by the definition of the inverse relation, we have A ∈ ClU(B1).
Moreover, by Corollary 16.9, we have ClU(B1) ⊆ ClU(B1). Therefore, we also
have A ∈ ClU(B2), and thus B1 ∈ Cl−1

U (A). This shows that Cl−1
U (A) is an

ascending family of subsets of Y .

Remark 16.13 Later, we shall see that if in particular U is union-preserving, then
Cl−1

U is increasing, but Int−1
U is decreasing.

By using the corresponding definitions, we can also easily prove the following

Theorem 16.14 For any two corelations U and V on X to Y , the following
assertions are equivalent:

(1) U ≤ V ; (2) ClU ⊆ ClV (3) IntV ⊆ IntU .

Proof To check the implication (3) 2⇒ (1), note that by Definition 16.1 for any
A ⊆ X we have A ∈ IntV

(
V (A)

)
, and thus

(
V (A), A

) ∈ IntV . Therefore, if (3)
holds, then we also have

(
V (A), A

) ∈ IntU , and thus A ∈ IntU
(
V (A)

)
. Hence,

by Definition 16.1, we can see that U (A) ⊆ V (A), and thus (1) also holds.

Now, as an immediate consequence of this theorem, we can also state

Corollary 16.15 For any two corelations U and V on X to Y , each of the equalities
ClU = ClV and IntU = IntV implies U = V .

Remark 16.16 By Theorem 16.14, for any two corelations U and V on X to Y , we
have

ClU ⊆ ClV ⇐⇒ U ≤ V.

Therefore, the mappings

U  −→ ClU and U  −→ U,

where U is a corelation on X to Y , establish a Pataki connection.
Moreover, this Pataki connection is very particular since the first mapping is

injective and the second one is injective and onto.
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17 Proximal Interiors and Closures Derived from Relations

By using Definitions 8.1 and 16.1, we can naturally introduce the following

Definition 17.1 For any relation R on X to Y , the relations

ClR = ClR� and IntR = IntR�

will be called the the proximal closure and proximal interior generated by the
relation R, respectively.

Thus, by the results of Sect. 16, we evidently have the following assertions.

Theorem 17.2 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) ClR (B) = P(X) \ IntR ( Y \ B);
(2) IntR (B) = P(X) \ ClR ( Y \ B ).

Corollary 17.3 For any relation R on X to Y , we have

(1) IntR = (
ClR ◦CY

)c = (
ClR

)c ◦ CY ;

(2) ClR = (
IntR ◦CY

)c = (
IntR

)c ◦ CY .

Remark 17.4 The above results show that the relations ClR and IntR are equivalent
tools in the relational space (X, Y )( R).

Theorem 17.5 If R is a relation on X to Y , then

(1) ClR is union-preserving; (2) IntR is intersection-preserving.

Corollary 17.6 For any relation R on X to Y , we have

(1) ClR(∅ ) = ∅; (2) IntR( Y ) = P(X).

Corollary 17.7 If R is a relation on X to Y , then the corelations ClR and IntR are
increasing.

Theorem 17.8 If R is a relation on X to Y , then for any family B of subsets of Y ,
we have

(1) ClR
( ⋂

B
) ⊆ ⋂

B∈B
ClR(B); (2)

⋃

B∈B
IntR(B) ⊆ IntR

( ⋃
B

)
.

The fact that the corresponding equalities need not be true even in the most
simple cases is apparent from the following modification of Example 16.11.

Example 17.9 If in particular X = B1 ∪ B2, with Bi = {i}, and R is the identity
relation on X, then

IntR(B1 ∪ B2) = P(X), but IntR(B1) ∪ IntR(B2) = P(X) \ {{X}}.

Moreover, it is also worth noticing that now the above equalities also hold with
Rc in place of R.
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Theorem 17.10 If R is a relation on X to Y , then the corelations Cl−1
R and Int−1

R

are ascending-valued.

By the corresponding definitions, it is clear that we also have the following

Theorem 17.11 If R is a relation on X to Y , then for any A ⊆ X and B ⊆ Y we
have

(1) A ∈ IntR(B) ⇐⇒ R [A ] ⊆ B;
(2) A ∈ ClR(B) ⇐⇒ R [A ] ∩ B �= ∅.

Moreover, since U◦ = U� �, we can also at once state the following

Theorem 17.12 For any corelation U on X to Y , we have

(1) ClU◦ = ClU�; (2) IntU◦ = IntU� .

The following theorem, together with Definition 17.1, shows that corelations can
generate more general proximal closures and interiors than relations.

Theorem 17.13 For any corelation U on X to Y , the following assertions are
equivalent:

(1) U is union-preserving;
(2) ClU = ClU� ; (3) IntU = IntU�;
(4) ClU = ClR for some relation R on X to Y ;
(5) IntU = IntR for some relation R on X to Y .

Proof If (1) holds, then by Theorem 9.6 we have U = U◦. Hence, by Theo-
rem 17.12, we can see that IntU = IntU◦ = IntU� . Therefore, (3) and thus (5)
also holds.

While, if (5) holds, then by Definition 17.1 we also have IntU = IntR� . Hence,
by Corollary 16.15, it follows that U = R�. Therefore, by Theorem 8.11, (1) also
holds.

By using this theorem, we can easily establish the following

Example 17.14 Let X = {1, 2 }, and for any A ⊆ X define

U(A) = A if A �= X and U(A) = {1} if A = X.

Then, U is a corelation on X such that, for any relation R on X, we have
(1) ClU �= ClR; (2) IntU �= IntR .
Note that now U is not even quasi-increasing, therefore by Theorem 17.13 the

required assertions are true.
However, U� is just the identity relation on X. Therefore, besides the automatic

equalities IntU(X) = P (X) = IntU�(X), we still have

IntU
( {2}) = {∅, {2}} = IntU�

({2}).

Moreover, it is also worth noticing that now U◦ = U� � is just the identity
corelation on X. Therefore, U ≤ U◦, but in accordance with Theorem 9.6 the
converse inequality fails to hold.
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The fact that corelations can generate more general proximal closures and
interiors is also apparent from the following

Theorem 17.15 For any relation R on X to Y , we have

(1) Cl−1
R = ClR−1; (2) Int−1

R = CY ◦ IntR−1 ◦CX.

Proof By Theorems 17.11 and 3.3, for any A ⊆ X and B ⊆ Y , we have

B ∈ Cl−1
R (A) ⇐⇒ A ∈ ClR(B) ⇐⇒ R [A ] ∩ B �= ∅

⇐⇒ R−1(B) ∩ A �= ∅ ⇐⇒ B ∈ ClR−1(A).

Therefore, (1) is true.
By using Theorem 17.11, assertion (2) can be proved somewhat more tediously.

Therefore, it is better to derive it from assertion (1) by using Corollary 17.3. For
this, we have to note only that

Int−1
R = (

ClcR ◦CY

)−1= C−1
Y ◦ Clc−1

R

= CY ◦ Cl−1 c
R = CY ◦ Clc

R−1 = CY ◦ IntR−1 ◦CX.

Remark 17.16 By using the above theorem, the properties of the relations Cl−1
R and

Int−1
R can be easily derived from those of ClR and IntR .

For instance, from Theorem 17.5, by using Theorem 17.15, we can easily derive

Theorem 17.17 If R is a relation on X to Y , then

(1) Cl−1
R is union-preserving; (2) Int−1

R is union-reversing.

Proof To prove (2), note that, by Theorem 17.15, we have

Int−1
R (A) = (

CY ◦ IntR−1 ◦CX

)
(A) = CY

[
IntR−1

(
Ac

)]

for all A ⊆ X.
Hence, by using Theorem 17.5 and DeMorgan’s law, we can see that

Int−1
R

( ⋃
A

) = CY

[
IntR−1

( ( ⋃
A

)c)] = CY

[
IntR−1

( ⋂

A∈A
Ac

)]

= CY

( ⋂

A∈A
IntR−1

(
Ac

)) = ⋂

A∈A
CY

[
IntR−1

(
Ac

)] = ⋂

A∈A
Int−1

R (A)

for all A ⊆ P(X).

Remark 17.18 The assertions of the above theorem can be reformulated in the more
direct forms that:
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(1) for any A ⊆ P(X) and B ⊆ Y we have

⋃
A ∈ ClR(B) ⇐⇒ ∃ A ∈ A : A ∈ ClR(B).

(2) for any A ⊆ P(X) and B ⊆ Y we have

⋃
A ∈ IntR(B) ⇐⇒ ∀ A ∈ A : A ∈ IntR(B).

To check (2), note that, by Theorem 17.17, we have

⋃
A ∈ IntR(B) ⇐⇒ B ∈ Int−1

R

(⋃
A

) ⇐⇒ B ∈ ⋂

A∈A
Int−1

R (A)

⇐⇒ ∀ A ∈ A : B ∈ Int−1
R (A) ⇐⇒ ∀ A ∈ A : A ∈ IntR(B).

From Theorem 17.17, by taking empty union, we can immediately derive

Corollary 17.19 For any relation R on X to Y , we have

(1) Cl−1
R (∅ ) = ∅; (2) Int−1

R (∅ ) = P(Y ).

Remark 17.20 The assertions of this corollary can be reformulated in the more
direct forms that:

(1) ∅ /∈ ClR(B) for all B ⊆ Y ; (2) ∅ ∈ IntR(B) for all B ⊆ Y ;

From Theorem 17.17, it is clear that in particular we can also state

Corollary 17.21 If R is a relation on X, then the corelation Cl−1
R is increasing,

while the corelation Int−1
R is decreasing.

Thus, analogously to Theorem 17.8, we can also prove

Theorem 17.22 If R is a relation on X to Y , then for any family A of subsets of
X, we have

(1) Cl−1
R

(⋂
A

)
⊆ ⋂

A∈A
Cl−1

R (A); (2)
⋃

A∈A
Int−1

R (A) ⊆

Int−1
R

(⋂
A

)
.

Finally, we note that, by using Theorem 16.14, we can also prove

Theorem 17.23 For any two relations R and S on X to Y , the following assertions
are equivalent:

(1) R ⊆ S; (2) ClR ⊆ ClS (3) IntS ⊆ IntR .

Proof To check the implication (3) 2⇒ (1), note that if (3) holds, then by
Definition 17.1 we have IntS� ⊆ IntS� . Hence, by Theorem 16.14, it follows that
R� ⊆ S�. Therefore, by Theorem 8.8, inclusion (1) also holds.
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Now, as an immediate consequence of this theorem, we can also state

Corollary 17.24 For any two relations R and S on X to Y , each of the equalities
ClR = ClS and IntR = IntS implies that R = S.

Remark 17.25 By Theorem 17.22, for any two relations R and S on X to Y , we
have

ClR ⊆ ClS ⇐⇒ R ⊆ V.

Therefore, the mappings

R  −→ ClR and R  −→ R,

where R is a relation on X to Y , establish a Pataki connection.
Moreover, this Pataki connection is very particular since the first mapping is

injective and the second one is injective and onto.

18 Topological Interiors and Closures Derived from
Corelations

Definition 18.1 If U is a corelation on X to Y , then for any x ∈ X and B ⊆ Y

we write

(1) x ∈ clU(B) if {x} ∈ ClU(B);
(2) x ∈ intU(B) if {x} ∈ IntU(B).

The relations clU and intU will be called the topological closure and topological
interior generated by the corelation U , respectively.

Remark 18.2 Relations on P(Y ) to X can be identified with functions on P(Y ) to
P(X).

Therefore, the above relations may also be naturally considered as corelations on
Y to X.

By using the above definition, from the results of Sect. 16, we can easily derive
the following assertions.

Theorem 18.3 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) clU(B) = X \ intU( Y \ B); (2) intU(B) = X \ clU( Y \ B ).

Proof To check (1), note that by Definition 18.1 and Theorem 16.3, for any x ∈ X

we have

x ∈ clU(B) ⇐⇒ {x} ∈ ClU(B) ⇐⇒ {x} /∈ IntU(B
c) ⇐⇒ x /∈ intU(B

c).
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Corollary 18.4 For any corelation U on X to Y , we have

(1) intU = (
clU ◦CY

)c = (
clU

)c ◦ CY ;

(2) clU = (
intU ◦CY

)c = (
intU

)c ◦ CY .

Remark 18.5 The above results show that the relations clU and intU are also equi-
valent tools in the corelational space (X, Y )(U).

The fact that the relations ClU and IntU are, in general, much better tools than
clU and intU is already apparent from the following

Example 18.6 If U is a corelation on X such that U
({x}) = {x} for all x ∈ X, then

clU and intU are already the identity corelations on X.
To check this, note that now, for any x ∈ X and A ⊆ X, we have

x ∈ intU(A) ⇐⇒ {x} ∈ IntU(A) ⇐⇒ U
({x}) ⊆ A ⇐⇒ {x} ⊆ A ⇐⇒ x ∈ A.

Therefore, intU(A) = A for all A ⊆ X.

Theorem 18.7 If U is a corelation on X to Y , then

(1) clU is union-preserving; (2) intU is intersection-preserving.

Corollary 18.8 For any corelation U on X to Y , we have

(1) clU(∅ ) = ∅; (2) intU( Y ) = X.

Corollary 18.9 If U is a corelation on X to Y , then the corelations clU and intU
are increasing.

Theorem 18.10 If U is a corelation on X to Y , then for any family B of subsets of
Y , we have

(1) clU
( ⋂

B
) ⊆ ⋂

B∈B
clU(B); (2)

⋃

B∈B
intU(B) ⊆ intU

( ⋃
B

)
.

The fact that the corresponding equalities need not be true even in the most
simple cases is apparent from the following modification of Example 16.11.

Example 18.11 If in particular X = B1 ∪ B2, with Bi = {i}, and U is a corelation
on X such that U(B1) = B1 and U(B2) = X, then

intU(B1 ∪ B2) = X, but intU(B1) ∪ intU(B2) = ∅.

However, it now more important to note that, by the corresponding definitions,
we also have the following

Theorem 18.12 If U is a corelation on X to Y , then for any x ∈ X and B ⊆ Y

we have

(1) x ∈ intU(B) ⇐⇒ U�(x) ⊆ B;
(2) x ∈ clU(B) ⇐⇒ U�(x) ∩ B �= ∅.
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Proof To check (1), note that, by Definitions 18.1, 16.1 and 8.1, we have

x ∈ intU(B) ⇐⇒ {x} ∈ IntU(B) ⇐⇒ U({x}) ⊆ B ⇐⇒ U�(x) ⊆ B.

Hence, by using Definition 13.1 and Theorem 18.3, we can immediately derive

Corollary 18.13 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) clU(B) = U−1(B); (2) intU(B) = U−1( Bc)c.

Proof To check (1), note that, by Theorem 18.12 and the corresponding definitions,
for any x ∈ X we have

x ∈ clU(B) ⇐⇒ U�(x) ∩ B �= ∅ ⇐⇒ x ∈ U�−1 [B ]
⇐⇒ x ∈ U�−1 �(B) ⇐⇒ x ∈ U−1(B).

Remark 18.14 Therefore, for any corelation U on X to Y , we actually have

(1) clU = U−1; (2) intU = U−1 c ◦ CY .

By using Theorem 18.12, we can also easily prove the following

Theorem 18.15 If U is a quasi-increasing corelation on X to Y , then for any A ⊆
X and B ⊆ Y we have

(1) A ∈ IntU(B) 2⇒ A ⊆ intU(B);
(2) A ∩ clU(B) �= ∅ 2⇒ A ∈ ClU(B).

Proof Assertion (2) can, in principle, be immediately derived from (1) by using
Theorems 16.3 and 18.3. However, it can certainly be more easily proved by using
the corresponding definitions.

For this, it is enough to note only that if A∩ clU(B) �= ∅, then there exists x ∈ A

such that x ∈ clU(B). Therefore, by Theorem 18.12, we also have U�(x) ∩ B �= ∅.
Hence, since now U�(x) = U

({x}) ⊆ U(A), we can infer that U(A) ∩ B �= ∅, and
thus A ∈ ClU(B) also holds.

Now, by using Theorem 18.12, we can also easily prove the following

Theorem 18.16 For any two corelations U and V on X to Y , the following
assertions are equivalent:

(1) U� ⊆ V �; (2) clU ⊆ clV (3) intV ⊆ intU .

Proof To check the implication (3) 2⇒ (1), note that by the Theorem 18.12, for any
x ∈ X we have x ∈ intV

(
V �(x)

)
. Therefore, if (3) holds, then we also have x ∈

intU
(
V �(x)

)
. Hence, by using Theorem 18.12, we can already infer that U�(x) ⊆

V �(x). Therefore, by Theorem 3.1, assertion (1) also holds.

Now, as an immediate consequence of this theorem, we can also state
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Corollary 18.17 For any two corelations U and V on X to Y , the following
assertions are equivalent:

(1) U� = V �; (2) clU = clV (3) intV = intU .

Remark 18.18 Note that if both U and V are union-preserving, then by Corol-
lary 8.13 we have U ≤ V ⇐⇒ U� ⊆ V �.

While, if U is an arbitrary and V is a quasi-increasing corelation on X to Y , then
by Theorem 9.8 we have U◦ ≤ V ⇐⇒ U� ⊆ V �.

Remark 18.19 Hence, by Theorem 18.16, we can see that if U is an arbitrary and
V is a quasi-increasing corelation on X, then

clV ⊇ clU ⇐⇒ V ≥ U◦.

Therefore, the mappings

V  −→ clV and V  −→ V ◦,

where V is a quasi-increasing corelation on X to Y , establish a Pataki connection
with respect to the inverses of the relations ≤ and ⊆.

19 Topological Interiors and Closures Derived from
Relations

Now, analogously to Definition 17.1, we may also naturally have the following

Definition 19.1 For any relation R on X to Y , the relations

clR = clR� and intR = intR�

will be called the topological closure and topological interior generated by the
relation R, respectively.

Thus, by the corresponding results of Sect. 18, we can at once state the following
assertions.

Theorem 19.2 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) clR (B) = X \ intR ( Y \ B); (2) intR (B) = X \ clR ( Y \ B ).

Corollary 19.3 For any relation R on X to Y , we have

(1) intR = (
clR ◦CY

)c = (
clR

)c ◦ CY ;

(2) clR = (
intR ◦CY

)c = (
intR

)c ◦ CY .
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Remark 19.4 The above results show that the relations clR and intR are equivalent
tools in the relational space (X, Y )( R).

Theorem 19.5 If R is a relation on X to Y , then

(1) clR is union-preserving; (2) intR is intersection-preserving.

Corollary 19.6 For any relation R on X to Y , we have

(1) clR(∅ ) = ∅; (2) intR( Y ) = X.

Corollary 19.7 If R is a relation on X to Y , then the corelations clR and intR are
increasing.

Theorem 19.8 If R is a relation on X to Y , then for any family B of subsets of Y ,
we have

(1) clR
(⋂

B
)
⊆ ⋂

B∈B
clR(B); (2)

⋃

B∈B
intR(B) ⊆ intR

(⋃
B

)
.

The fact that the corresponding equalities need not be true even in the most
simple cases is apparent from the following counterpart of Example 18.11.

Example 19.9 If in particular X = B1 ∪ B2, with Bi = {i}, and R is a relation on
X such that R (1) = {1} and R (2) = X, then

intR(B1 ∪ B2) = X, but intU(B1) ∪ intU(B2) = ∅.

However, it is now more important to note that, by the corresponding definitions,
we also have the following

Theorem 19.10 If R is a relation on X to Y , then for any x ∈ X and B ⊆ Y we
have

(1) x ∈ clR(B) ⇐⇒ {x} ∈ ClR(B);
(2) x ∈ intR(B) ⇐⇒ {x} ∈ IntR(B).

Proof To check (2), note that by Definitions 19.1, 18.1 and 17.1 we have

x ∈ intR(B) ⇐⇒ x ∈ intR�(B) ⇐⇒ {x} ∈ IntR�(B) ⇐⇒ {x} ∈ IntR(B).

From this theorem, by using Theorem 17.11 and the fact that R
({x}) = R (x),

we can immediately derive

Corollary 19.11 If R is a relation on X to Y , then for any x ∈ X and B ⊆ Y we
have

(1) x ∈ intR(B) ⇐⇒ R (x) ⊆ B;
(2) x ∈ clR(B) ⇐⇒ R (x) ∩ B �= ∅.

By using the corresponding definitions and Theorem 19.2, the latter corollary can
be reformulated in the following more concise form.
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Corollary 19.12 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) clR(B) = R−1[B ], (2) intR(B) = R−1[Bc]c.
Remark 19.13 Therefore, for any relation R on X to Y , we actually have

(1) clR = R−1 �; (2) intR = R−1 � c ◦ CY .

The following theorem shows that, in contrast to Example 17.14, corelations
cannot generate more general topological closures and interiors than relations.

Therefore, our results on the relations clR and intR , established in several former
papers, cannot be generalized by using corelations instead of relations.

Theorem 19.14 For any corelation U on X to Y , we have

(1) clU = clU◦ = clU�; (2) intU = intU◦ = intU� .

Proof From Theorem 17.12, by using Definition 18.1, we can at once see that
intU◦ = intU� .

Moreover, by Theorem 18.12 and Corollary 19.11, it is clear that, for any x ∈ X

and B ⊆ Y , we have

x ∈ intU(B) ⇐⇒ U�(x) ⊆ B ⇐⇒ x ∈ intU�(B).

Therefore, intU(B) = intU�(B) for all B ⊆ Y , and thus intU = intU� . This shows
that assertion (2) is true.

Assertion (1) can now be immediately derived from assertion (2), by using
Theorems 18.3 and 19.2.

In this respect, it is also worth noticing that we also have the following

Theorem 19.15 If U is a corelation on X to Y , then for any A ⊆ X and B ⊆ Y we
have

(1) A ⊆ intU(B) ⇐⇒ A ∈ IntU�(B);
(2) A ∩ clU(B) �= ∅ ⇐⇒ A ∈ ClU�(B).

Proof By Theorems 17.12, 18.15 and 19.14, it is clear that

A ∈ IntU�(B) 2⇒ A ∈ IntU◦(B) 2⇒ A ⊆ intU◦(B) 2⇒ A ⊆ intU(B).

Namely, from Theorem 9.2 and Corollary 5.10, we know that U◦ is quasi-
increasing.

Conversely, if A ⊆ intU(B), then for each x ∈ A we have x ∈ intU(B). Hence,
by Theorem 18.12, we can infer that U�(x) ⊆ B. Therefore, we have

U�[A ] = ⋃

x∈A
U�(x) ⊆ B.

Hence, by Theorem 17.11, we can infer that A ∈ IntU�(B). Therefore, assertion (1)
is true.
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Assertion (2) can now be easily derived from assertion (1) by using Theo-
rems 18.3 and 16.3 and 17.2.

Remark 19.16 The above two theorems show that, for instance, the relations intU ,
intU◦ , intU� , IntU◦ and IntU� are also equivalent tools in the corelational space
(X, Y )(U).

Now, by using Theorem 18.16, we can also easily prove the following

Theorem 19.17 For any two relations R and S on X to Y , the following assertions
are equivalent:

(1) R ⊆ S; (2) clR ⊆ clS (3) intS ⊆ intR .

Proof To check the equivalence of (1) and (2), note that by Theorems 8.8 and 18.16
and Definition 19.1 we have

R ⊆ S ⇐⇒ R� � ⊆ S� � ⇐⇒ clR� ⊆ clS� ⇐⇒ clR ⊆ clS .

Remark 19.18 Note that U and V are corelations on X to Y such that clU ⊆ clV ,
then by Theorem 19.14 we also have clU� ⊆ clV � . Hence, by using the above
theorem, we can infer that U� ⊆ U�. Therefore, Theorem 18.16 and 19.17 are
actually equivalent.

Now, as an immediate consequence of Theorem 19.17, we can also state

Corollary 19.19 For any two relations R and S on X to Y , each of the equalities
clR = clS and intR = intS implies R = S.

Remark 19.20 By Theorem 19.17, for any two relations R and S on X to Y , we
have

clR ⊆ clS ⇐⇒ U ⊆ S.

Therefore, the mappings

R  −→ clR and R  −→ R,

where R is a relation on X to Y , establish a Pataki connection.
Moreover, this Pataki connection is very particular since the first mapping is

injective and the second one is injective and onto.

20 Fat and Dense Sets Derived from Corelations

Definition 20.1 For any corelation U on X to Y , the members of the families

EU = {
B ⊆ Y : intU(B) �= ∅ }

and DU = {
B ⊆ Y : clU(B) = X

}

will be called the fat sets and dense sets generated by the corelation U , respectively.
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Thus, by Corollary 18.13 and Theorem 18.12, we evidently have

Theorem 20.2 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) B ∈ DU ⇐⇒ U−1[B ] = X; (2) B ∈ ER ⇐⇒ U−1[Bc ] �= X.

Theorem 20.3 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) B ∈ EU if and only if U�(x) ⊆ B for some x ∈ X;
(2) B ∈ DU if and only if U�(x) ∩ B �= ∅ for all x ∈ X.

From Theorem 20.2, we can immediately derive the following theorem which
can also be easily proved with the help of Theorem 18.3.

Theorem 20.4 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) B ∈ EU ⇐⇒ Bc /∈ DU ; (2) B ∈ DU ⇐⇒ Bc /∈ EU .

By using appropriate complementations, this theorem can be written in the
following more concise form.

Corollary 20.5 For any corelation U on X to Y , we have
(1) EU = CY [Dc

U ]; (2) DU = CY [E c
U ].

Remark 20.6 By the corresponding definitions, for any family B of subsets of Y ,
we have Bc = P(X) \B and CY [B ] = {

Bc : B ∈ B } with Bc = Y \ B.
Thus, the ordinary and elementwise complements of B are quite different sets.

However, sometimes the family CY [B ] may also be naturally denoted by Bc.

The following theorem can, in principle, be derived from Theorem 20.4.
However, it can be more easily proved with the help of Theorem 20.3. Here, we
shall give a mixed proof.

Theorem 20.7 If U is a corelation on X to Y , then for any B ⊆ Y we have

(1) B ∈ EU if and only if B ∩D �= ∅ for all D ∈ DU ;
(2) B ∈ DU if and only if B ∩ E �= ∅ for all E ∈ EU .

Proof To check (2), note that if B ∈ DU and E ∈ EU , then by Theorem 20.3
there exists x ∈ X such that U�(x) ⊆ E. Moreover, by Theorem 18.12, we have
U�(x) ∩ B �= ∅. Therefore, B ∩ E �= ∅ also holds.

While, if B ∩ E �= ∅ for all E ∈ EU , then by using Theorem 20.4 we can easily
see that B ∈ DU . Namely, if B /∈ DU , then by Theorem 20.4 we have Bc ∈ EU .
Therefore, B ∩ Bc �= ∅, which is a contradiction.

Remark 20.8 The above two theorems shows that the families EU and DU are equi-
valent tools in the corelational space (X, Y )(U).

The following theorem is also more immediate from Theorem 20.3 than from
Corollary 18.9 or Theorem 20.7.

Theorem 20.9 If U is a corelation on X to Y , then EU and DU are ascending
families in P(Y ).
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Remark 20.10 A subfamily A of the poset P(X) is called ascending if A ∈ A and
A ⊆ B ∈ P (X) implyB ∈ A . That is, P−1[A ] ⊆ A , and thus A = P−1[A ].

In the literature, an ascending subfamily A of P(X) is usually are called a stack
in X. Moreover, it is called proper if ∅ /∈ A , or equivalently A �= P(X).

A stack A in X is called a filter if A1, A2 ∈ A implies A1 ∩ A2 ∈ A . While,
A is called a grill if A1 ∪ A2 ∈ A implies that either A1 ∈ A or A2 ∈ A . They
are usually assumed to be proper and nonvoid.

Several interesting facts on the discoveries and applications of stacks, filters and
grills and can be found in the fundamental works [84, 85] of Thron. In particular, it
is noteworthy that nets and filters are essentially equivalent tools.

By using Theorems 20.3 and 20.4, in addition to Theorem 20.7, we can also
easily prove the following two theorems.

Theorem 20.11 For any corelation U on X to Y , the following assertions are equi-
valent:

(1) EU �= ∅; (2) Y ∈ EU ;
(3) ∅ /∈ DU ; (4) DU �= P(Y ); (5) X �= ∅.

Theorem 20.12 For any corelation U on X to Y , the following assertions are equi-
valent:

(1) ∅ /∈ EU ; (2) EU �= P(Y );
(3) DU �= ∅; (4) X ∈ DU ; (5) X = U−1(Y ).

Proof To check the equivalence of (1) and (5), note that, by Theorem 20.3, we have

∅ /∈ EU ⇐⇒ ∀ x ∈ X : U�(x) �⊆ ∅ ⇐⇒ ∀ x ∈ X : U�(x) �= ∅
⇐⇒ ∀ x ∈ X : U�(x) ∩ Y �= ∅ ⇐⇒ ∀ x ∈ X : x ∈ U�−1[Y ]

⇐⇒ X = U�−1[Y ] ⇐⇒ X = U�−1 �(Y ) ⇐⇒ X = U−1(Y )

Remark 20.13 A subfamily B of a stack A in X is called a base of A if for each
A ∈ A there exists B ∈ B such that B ⊆ A.

Note that, for any family B of subsets of X, the family

B∗ = {
A ⊆ X : ∃ B ∈ B : B ⊆ A

}

is a stack in X such that B is a base of B∗.
Moreover, it is also noteworthy that now, by Corollary 19.11, for any A ⊆ X we

have

A ∈ B∗ ⇐⇒ ∃ B ∈ B : B ∈ P(A) ⇐⇒ P(A)∩B �= ∅ ⇐⇒ A ∈ clP (B).

Therefore, B∗ = clP (B).

Now, as an important addition to Theorem 20.9, we can also prove the following
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Theorem 20.14 For any corelation U on X to Y , the stack EU has a base B with
card (B) ≤ card (X).

Proof By Theorem 20.3, it is clear that the family B = {
U�(x) : x ∈ X

}
is a

base of the stack EU .
Moreover, the function f , defined by f (x) = U�(x) for all x ∈ X, is onto B.

Hence, by the axiom of choice, the cardinality condition follows.
Namely, now f−1 is a relation of B to X. Hence, by choosing a selection ϕ of

f−1, we can see that ϕ is an injection of B to X.

Remark 20.15 Now, a corresponding property of the family DU could, in principle,
be derived from the above theorem by using either Theorem 20.4 or 20.7.

However, it is now more important to note that, as an interesting counterpart of
Theorem 18.16, we can also prove the following

Theorem 20.16 For any two corelations U and V on X to Y , the following
assertions are equivalent:

(1) EU ⊆ EV ; (2) DV ⊆ DU ;
(3)

(
V �−1 ◦ U� c) (x) �= X for all x ∈ X;

(4) V � ◦ ϕ ⊆ U� for some function ϕ of X to itself;
(5) V � ◦Φ ⊆ U� for some relation Φ of X to itself;
(6) for every x ∈ X there exists v ∈ X such that V �(v) ⊆ U�(x).

Proof It is clear that (4) 2⇒ (5) 2⇒ (6). Moreover, by using the axiom of choice,
we can also at once see that (6) implies (4). Therefore, assertions (4), (5) and (6) are
equivalent.

Furthermore, by using Theorem 20.3, we can easily see that (1) and (2) are also
equivalent. Moreover, by Theorem 20.3, it is clear that (6) implies (1).

On the other hand, if x ∈ X, then by Theorem 20.3 we have U�(x) ∈ EU .
Therefore, if (1) holds, then we also have U�(x) ∈ EV . Thus, by Theorem 20.3,
there exists v ∈ X such that V �(v) ⊆ U�(x). Therefore, (6) also holds.

While, if (6) holds, then for any x ∈ X there exists v ∈ X such that

V �(v) ∩ U�(x)c = ∅, and thus V �(v) ∩ U� c(x) = ∅.

Hence, we can infer that

v /∈ V �−1[ U� c(x) ], and thus v /∈
(
V �−1 ◦ U� c) (x).

Therefore, (3) also holds.
Now, to complete the proof, we need only note that the converse implication

(3) 2⇒ (6) can be proved quite similarly by reversing the above argument.
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21 Fat and Dense Sets Derived from Relations

Definition 21.1 For any relation R on X to Y , the members of the families

ER = ER� and DR = DR�

will be called the fat sets and dense sets generated by the relation R, respectively.

Thus, by the corresponding definitions, we evidently have the following

Theorem 21.2 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) B ∈ ER ⇐⇒ intR(B) �= ∅; (2) B ∈ DR ⇐⇒ clR(B) = X.

Proof To check (1), note that by Definitions 21.1, 20.1 and 19.1, we have

B ∈ ER ⇐⇒ B ∈ ER� ⇐⇒ intR�(B) �= ∅ ⇐⇒ intR(B) �= ∅.

From this theorem, by using Corollaries 19.12 and 19.11, we can immediately
derive the following two corollaries.

Corollary 21.3 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) B ∈ DR ⇐⇒ R−1[B ] = X;
(2) B ∈ ER ⇐⇒ R−1[Bc ] �= X.

Corollary 21.4 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) B ∈ ER if and only if R (x) ⊆ B for some x ∈ X;
(2) B ∈ DR if and only if R (x) ∩ B �= ∅ for all x ∈ X.

Moreover, by using Theorems 21.2 and 19.14, we can also prove the following

Theorem 21.5 For any corelation U on X to Y , we have

(1) EU = EU◦ = EU� ; (2) DU = DU◦ = DU� .

Proof To check (1), note that by Definitions 9.1 and 21.1 we have

EU◦ = EU� � = EU� .

Moreover, by Theorems 21.2 and 19.14, for any B ⊆ Y , we have

B ∈ EU� ⇐⇒ intU�(B) �= ∅ ⇐⇒ intU(B) �= ∅ ⇐⇒ B ∈ EU .

Therefore, EU� = EU is also true.

Remark 21.6 This theorem shows that corelations cannot generate more fat and
dense sets than relations.

From the results of Sect. 20, by Definition 21.1, it is clear that we can also state
the following theorems.
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Theorem 21.7 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) B ∈ ER ⇐⇒ Bc /∈ DR; (2) B ∈ DR ⇐⇒ Bc /∈ ER .

Corollary 21.8 For any relation R on X to Y , we have
(1) ER = CY [Dc

R]; (2) DR = CY [E c
R].

Theorem 21.9 If R is a relation on X to Y , then for any B ⊆ Y we have

(1) B ∈ ER if and only if B ∩D �= ∅ for all D ∈ DR;
(2) B ∈ DR if and only if B ∩ E �= ∅ for all E ∈ ER .

Remark 21.10 The above two theorems shows that the families ER and DR are
equivalent tools in the relational space (X, Y )(R).

Theorem 21.11 If U is a corelation on X to Y , then EU and DU are stacks in Y .

Theorem 21.12 For any relation R on X to Y , the following assertions are equi-
valent:

(1) ER �= ∅; (2) Y ∈ ER;
(3) ∅ /∈ DR; (4) DR �= P(Y ); (5) X �= ∅.

Theorem 21.13 For any relation R on X to Y , the following assertions are equi-
valent:

(1) ∅ /∈ ER; (2) ER �= P(Y );
(3) DR �= ∅; (4) X ∈ DR; (5) X = R−1[Y ].

Theorem 21.14 For any relation R on X to Y , the stack ER has a base B with
card (B) ≤ card (X).

Remark 21.15 The importance of the study of the cardinalities of the bases of
the stack of all fat sets in a relator space, concerning a problem of mine on
paratopologically simple relators, was first recognized by J. Deák (1994) and G.
Pataki (1998). (For the corresponding results, see [41].)

Theorem 21.16 For any two relations R and S on X to Y , the following assertions
are equivalent:

(1) ER ⊆ ES; (2) DS ⊆ DR;
(3)

(
S−1 ◦ Rc

)
(x) �= X for all x ∈ X;

(4) S ◦ ϕ ⊆ R for some function ϕ of X to itself;
(5) S ◦Φ ⊆ R for some relation Φ of X to itself;
(6) for every x ∈ X there exists v ∈ X such that S(v) ⊆ R(x).

Proof To derive this from Theorem 20.16, note that by Definition 21.1 we have

ER ⊆ ES ⇐⇒ ER� ⊆ ES� .

Moreover, by Theorem 8.8, we have R�� = R and S�� = S.
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Remark 21.17 In our former papers [51, 57, 58], motivated by a standard definition
for families of sets [10, p. 339], a relator S on X was said to be uniformly refined
by a relator R on X if for every S ∈ S there exist R ∈ R and a function ϕ of X to
itself such that R ⊆ S ◦ ϕ.

22 Open and Closed Sets Derived from Corelations

Definition 22.1 For any corelation U on X, the members of the families

TU = {
A ⊆ X : A ⊆ intU(A)

}
and FU = {

A ⊆ X : clU(A) ⊆ A
}

will be called the open sets and closed sets generated by the corelation U ,
respectively.

Thus, by Theorem 18.3, we evidently have the following

Theorem 22.2 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ TU ⇐⇒ Ac ∈ FU ; (2) A ∈ FU ⇐⇒ Ac ∈ TU .

Now, by using elementwise complementation, we can also state

Corollary 22.3 For any corelation U on X, we have

(1) TU = F c
U ; (2) FU = T c

U .

From Theorems 18.7 and 18.10, by using Definition 22.1, we can easily derive

Theorem 22.4 For any corelation U on X, the families TU and FU are closed
under arbitrary unions and intersections.

Proof To check this for the family TU , note that if A ⊆ TU , then by Definition 22.1
we have A ⊆ intU(A) for all A ∈ A . Hence, by using Theorems 18.7 and 18.10,
we can infer that

⋂
A ⊆

⋂

A∈A
intU(A) = intU

(⋂
A

)
and

⋃
A ⊆

⋃

A∈A
intU(A) ⊆ intU

(⋃
A

)
.

Therefore, by Definition 22.1, the inclusions
⋂

A ∈ TU and
⋃

A ∈ TU also
hold.

From this theorem, by taking empty union and intersection, we obtain

Corollary 22.5 For any corelation U on X, we have {∅, X} ⊆ TU ∩FU .

By Definition 22.1 and Theorem 19.14, we can also at once state
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Theorem 22.6 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ FU ⇐⇒ clU◦(A) ⊆ A ⇐⇒ clU�(A) ⊆ A;
(2) A ∈ TU ⇐⇒ A ⊆ intU◦(A)

} ⇐⇒ A ⊆ intU�(A).

Thus, by Definition 22.1, we can also state

Corollary 22.7 For any corelation U on X, we have

(1) TU = TU◦; (2) FU = FU◦ .

Moreover, from Theorem 22.6, by Corollary 19.11, it is clear that we also have

Theorem 22.8 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ TU if and only if U�(x) ⊆ A for all x ∈ A;
(2) A ∈ FU if and only if A ∩ U�(x) �= ∅ implies x ∈ A for all x ∈ X.

The latter assertions can be written in the following more concise forms.

Corollary 22.9 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ TU ⇐⇒ U� [A ] ⊆ A; (2) A ∈ FU ⇐⇒ U�−1 [A ] ⊆ A.

Hence, by using Theorems 17.11 and 17.12, we can easily derive

Theorem 22.10 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ TU ⇐⇒ A ∈ IntU�(A) ⇐⇒ A ∈ IntU◦(A);
(2) A ∈ FU ⇐⇒ Ac /∈ ClU�(A) ⇐⇒ Ac /∈ ClU◦(A).

Proof To prove assertion (2), note that by Theorem 22.2, assertion (1) and Theo-
rems 16.3 and 17.12 we have

A ∈ FU ⇐⇒ Ac ∈ TU ⇐⇒ Ac ∈ IntU�(Ac)

⇐⇒ Ac /∈ ClU�(A) ⇐⇒ Ac /∈ ClU◦(A).

Now, in particular, we can also state

Corollary 22.11 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ TU ⇐⇒ U◦(A) ⊆ A; (2) A ∈ FU ⇐⇒ A∩U◦(Ac) = ∅.

By using Theorem 18.15, in addition to Theorem 22.10, we can also prove

Theorem 22.12 If U is a quasi-increasing corelation on X, then for any A ⊆ X

(1) A ∈ IntU(A) implies A ∈ TU ;
(2) A ∈ FU and clU(A) �= ∅ imply A ∈ ClU(A).

Proof To prove assertion (2), note that if A ∈ FU , then by Definition 22.1 we have
clU(A) ⊆ A, and thus A ∩ clU(A) = clU(A). Hence, if clU(A) �= ∅, by using
Theorem 18.15 we can infer that A ∈ ClU(A).
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Moreover, by Definition 22.1 and Corollary 18.13, it is clear that we also have

Theorem 22.13 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ FU ⇐⇒ U−1(A) ⊆ A; (2) A ∈ TU ⇐⇒ A ⊆ U−1(Ac)c.

Thus, by Definition 16.1 and Theorems 22.2 and 16.3, we can also state

Corollary 22.14 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ FU ⇐⇒ A ∈ IntU−1(A); (2) A ∈ TU ⇐⇒ Ac /∈ ClU−1(A).

By using Definitions 20.1 and 22.1, we can also easily prove the following

Theorem 22.15 For any corelation U on X, we have

(1) TU \ {∅} ⊆ EU ; (2) DU ∩FU ⊆ {X}.
Proof To prove (2), note that if A ∈ DU ∩ FU , then A ∈ DU and A ∈ FU .
Therefore, by Definitions 20.1 and 22.1, we have clU(A) = X and clU(A) ⊆ A,
and thus X ⊆ A. Hence, it follows that A = X, and thus A ∈ {X}.

From assertion (2), we can immediately derive

Corollary 22.16 For any corelation U on X, we have

(1) FU ⊆ (
P(X) \DU

) ∪ {X}; (2) DU ⊆ (
P(X) \FU

) ∪ {X}.
Proof To prove (1), note that if A ⊆ X such that A /∈ (

P(X) \ DU

) ∪ {X}, then
A /∈ (

P(X) \DU

)
and A /∈ {X}. Therefore, A ∈ DU , and thus by assertion (2) of

Theorem 22.15 we necessarily have A /∈ FU . Therefore, inclusion (1) is true.

Moreover, by using Theorems 20.9, 22.15, 20.4 and 22.2, we can also prove

Theorem 22.17 If U is a corelation on X, then for any A ⊆ X we have

(1) A ∈ EU if Ω ⊆ A for some Ω ∈ TU \ {∅};
(2) A ∈ DU only if A \W �= ∅ for all W ∈ FU \ {X}.
Proof From Theorem 20.9 we know that EU is ascending in P(X). Therefore,
assertion (1) is an immediate consequence of assertion (1) of Theorem 22.15.

To check assertion (2), note that if A ∈ DU , then by Theorem 20.4 we have
Ac /∈ EU . Therefore, by assertion (1), for any Ω ∈ TU \ {∅} we have Ω �⊆ Ac, and
thus A ∩Ω �= ∅.

Now, if W ∈ FU \ {X}, then by Theorem 22.2 we can see that Wc ∈ TU \ {∅}.
Therefore, by our former observation, we can state that A ∩ Wc �= ∅, and thus
A \W �= ∅.

23 Open and Closed Sets Derived from Relations

Definition 23.1 For any relation R on X, the members of the families

TR = TR� and FR = FR�
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will be called the open sets and closed sets generated by the relation R, respectively.

Thus, by Definition 19.1, we evidently have the following

Theorem 23.2 If R is a relation on X, then for any A ⊆ X, we have

(1) A ∈ FR ⇐⇒ clR(A) ⊆ A ⇐⇒ clR�(A) ⊆ A;
(2) A ∈ TR ⇐⇒ A ⊆ intR(A) ⇐⇒ A ⊆ intR�(A).

Proof To prove (1), note that, by Definitions 23.1 and 19.1, we have

A ∈ FR ⇐⇒ A ∈ FR� ⇐⇒ clR�(A) ⊆ A ⇐⇒ clR(A) ⊆ A.

Now, by Theorem 19.14 and Definition 22.1, we can also state

Theorem 23.3 For any corelation U on X, we have

(1) TU = TU�; (2) TU = TU� .

Moreover, from the results of Sect. 22, we can immediately derive the following
theorems.

Theorem 23.4 If R is a relation on X, then for any A ⊆ X, we have

(1) A ∈ TR ⇐⇒ Ac ∈ FR; (2) A ∈ FR ⇐⇒ Ac ∈ TR .

Corollary 23.5 For any relation R on X, we have

(1) TR = F c
R; (2) FR = T c

R .

Theorem 23.6 For any relation R on X, the families TR and FR are closed under
arbitrary unions and intersections.

Corollary 23.7 For any relation R on X, we have {∅, X} ⊆ TR ∩FR .

Theorem 23.8 If R is a relation on X, then for any A ⊆ X we have

(1) A ∈ TR if and only if R (x) ⊆ A for all x ∈ A;
(1) A ∈ FR if and only if A ∩ R (x) �= ∅ implies x ∈ A for all x ∈ X.

Proof To prove (1), note that, by Definition 23.1 and Theorems 22.8 and 8.8,

A ∈ TR ⇐⇒ A ∈ TR� ⇐⇒ ∀ x ∈ A : R��(x) ⊆ A

⇐⇒ ∀ x ∈ A : R (x) ⊆ A.

The above assertions can be reformulated in the following more concise forms.

Corollary 23.9 If R is a relation on X, then for any A ⊆ X we have

(1) A ∈ TR ⇐⇒ R [A ] ⊆ A;

(2) A ∈ FR ⇐⇒ R−1[A ] ⊆ A.
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Hence, it is clear that in particular we can also state

Corollary 23.10 If R is a relation on X, then
(1) TR = FR−1 ; (2) FR = TR−1 .

Remark 23.11 Note that U is a corelation on X, then in general U−1 is not a
corelation on X. Therefore, the corresponding theorem for U−1 cannot be stated.

However, concerning the relationally generated inverse U−1 of U , we can prove

Theorem 23.12 For any corelation U on X, we have

(1) TU−1 = FU� = FU◦ ; (2) FU−1 = TU� = TU◦ .

Proof To prove (1), by using Definitions 13.1 and 23.1, Corollary 23.10 and
Definition 9.1, we can easily see that

TU−1 = TU�−1 � = TU�−1 = FU� = FU� � = FU◦ .

Now, by using Theorem 22.10, we can also prove the following

Theorem 23.13 If R is a relation on X, then for any A ⊆ X we have

(1) A ∈ TR ⇐⇒ A ∈ IntR(A) ⇐⇒ A ∈ IntR�(A);
(2) A ∈ FR ⇐⇒ Ac /∈ ClR(A) ⇐⇒ Ac /∈ ClR�(A).

Proof To prove (1), note that, by Definition 23.1 and Theorem 22.10, for any A ⊆ X

we have

A ∈ TR ⇐⇒ A ∈ TR� ⇐⇒ A ∈ IntR��(A) ⇐⇒ A ∈ IntR�◦(A).

Moreover, by Theorems 8.8 and 9.3, we have R�� = R and R� ◦ = R�. Therefore,
the required implications are also true.

From this theorem, by using Definition 16.1, we can also get

Corollary 23.14 If R is a relation on X, then for any A ⊆ X we have
(1) A ∈ TR ⇐⇒ R�(A) ⊆ A; (2) A ∈ FR ⇐⇒ A ∩ R�(A) = ∅.

Moreover, by using Theorem 22.12, we can also prove the following

Theorem 23.15 If R is a relation on X, then for any A ⊆ X

(1) A ∈ IntR(A) implies A ∈ TR;
(2) A ∈ FR and clR(A) �= ∅ imply A ∈ ClR(A).

Proof From Theorems 8.11 and Corollary 5.10, we know that the corelation R� is
quasi-increasing. Therefore, to prove (2), by Theorem 22.12, we can state that

A ∈ FR� and clR�(A) �= ∅ implies A ∈ ClR�(A).
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Hence, by Definitions 23.1, 19.1 and 17.1, we can see that the required implication
is also true.

Remark 23.16 To see the necessity of the condition clR(A) �= ∅ in the above
theorem, note that if clR(A) = ∅, then clR(A) ⊆ A, and thus A ∈ FR by
Theorem 23.2.

Moreover, if clR(A) = ∅, then by Corollary 19.12, we also have R−1 [A ] = ∅,
and thus A ∩ R−1 [A ] = ∅. Therefore, R [A ] ∩ A = ∅, and thus A /∈ ClR(A) by
Theorem 17.11.

Finally, we note that, from Theorems 22.15 and 22.17, by Definitions 23.1
and 21.1, it is clear that we also have the following two theorems.

Theorem 23.17 For any relation R on X, we have

(1) TR \ {∅} ⊆ ER; (2) DR ∩FR ⊆ {X}.
Corollary 23.18 For any relation R on X, we have

(1) FR ⊆ (
P(X) \DR

) ∪ {X}; (2) DR ⊆ (
P(X) \FR

) ∪ {X}.
Theorem 23.19 If R is a relation on X, then for any A ⊆ X we have

(1) A ∈ ER if Ω ⊆ A for some Ω ∈ TR \ {∅};
(2) A ∈ DR only if A \W �= ∅ for all W ∈ FR \ {X}.

24 Some Further Results on Open and Closed Sets

The origin of the following theorem and the use of the preorder closure in the theory
of relator spaces go back to Mala [33]. (See also [22, 34, 44].)

Theorem 24.1 For any two relations R and S on X, the following assertions are
equivalent:

(1) R ⊆ S∞; (2) R∞ ⊆ S∞; (3) TS ⊆ TR; (4) FS ⊆ FR .

Proof By Theorem 3.13, it is clear that (1) and (2) are equivalent. Moreover, from
Theorems 23.4, it is clear that (3) and (4) are also equivalent. Therefore, it is enough
to prove only the equivalence of (1) and (3).

For this, note that if A ∈ TS , then by Corollary 23.9 we have S [A ] ⊆ A.
Hence, by induction, we can infer that Sn[A ] ⊆ A for all n ∈ N. Thus, since
S0[A ] = ΔX[A ] = A also holds, by Theorem 4.6 we can also state that

S∞[A ] =
( ∞⋃
n=0

Sn
)
[A ] =

∞⋃
n=0

Sn[A ] ⊆ A.

Therefore, if (1) holds, then we also have
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R [A ] ⊆ S∞ [A ] ⊆ A.

Hence, by Corollary 23.9, we can see that A ∈ TR . Therefore, (1) implies (3).
Moreover, if x ∈ X, then by using Theorems 3.13 and 3.15, we can see that

S
[
S∞(x)

] ⊆ S∞
[
S∞(x)

] = (
S∞ ◦ S∞

)
(x) = S∞(x).

Hence, by using Corollary 23.9, we can infer that S∞(x) ∈ TS . Therefore, if
(3) holds, then we also have S∞(x) ∈ TR . Hence, by using x ∈ S∞(x) and
Corollary 23.9, we can infer that

R(x) ⊆ R
[
S∞(x)

] ⊆ S∞(x).

Therefore, by Theorem 3.1, assertion (1) also holds.

Remark 24.2 From the above proof, we can see that if R is a relation on X, then
R∞(x) ∈ TR for all x ∈ X. Thus, R∞ is an open-valued preorder relation on X.

Moreover, from the above proof, we can also see that TR ⊆ TR∞ . Hence, by
using that R ⊆ R∞, and thus TR∞ ⊆ TR , we can already infer that TR = TR∞ .

However, the latter fact can more easily be derived from the following immediate
consequence of the above theorem by using the equality R∞ = R∞∞.

Corollary 24.3 For any two relations R and S on X, the following assertions are
equivalent:

(1) R∞ = S∞; (2) TR = TS; (3) FR = FS .

From Theorem 24.1, by Corollary 3.14, it is clear that in particular we also have

Theorem 24.4 If R is an arbitrary and S is preorder relation on X, then the
following assertions are equivalent:

(1) R ⊆ S; (2) R∞ ⊆ S; (3) TS ⊆ TR; (4) FS ⊆ FR .

Thus, by this theorem or Corollary 24.3, we can also state

Corollary 24.5 If R is an arbitrary and S is preorder relation on X, then the follo-
wing assertions are equivalent:

(1) R∞ = S; (2) TR = TS; (3) FR = FS .

Hence, it is clear that, in particular, we also have

Corollary 24.6 For any two preorder relations R and S on X, each of the equalities
TR = TS and FR = FS implies that R = S.

Moreover, by using Corollary 24.5, we can also easily prove the following

Theorem 24.7 For a relation R on X, we have

(1) R∞ = ΔX ⇐⇒ TR = P(X) ⇐⇒ FR = P(X);
(2) R∞ = X2 ⇐⇒ TR = {∅, X } ⇐⇒ FR = {∅, X }

.
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Proof To check (1), note that, by Corollary 23.9, we have TΔX
= P(X)

and FΔX
= P(X). Moreover, ΔX is a preorder relation on X. Therefore,

Corollary 24.5 can be applied to obtain the required equivalences.

Remark 24.8 Note that, for a reflexive relation R on X, the inclusion R ⊆ ΔX

already implies that R = ΔX.
While, for an arbitrary relation R on X, the inclusion X2 ⊆ R∞ means only that,

for any x, y ∈ X, with x �= y, there exists a finite sequence ( xi)ni=0 in X such that
x0 = x, xn = y and xi ∈ R ( xi−1) for all i = 1, 2, . . . , n.

In our former papers [31, 44], a relator R on X was called well-chained if, under
the plausible notation R∞ = {R∞ : R ∈ R }, we have R∞ = {X2}. Thus,
well-chainedness is a particular case of simplicity [41].

Moreover, it was shown that connectedness a particular case of well-chainedness
[44]. In this respect, it noteworthy that compactness is a particular case of total
boundedness [60]. While, “convergent” and “Cauchy” are actually equivalent
notions [54].

Note that, analogously to the identity relation ΔX and the universal relation X2,
the Davis–Pervin relation RA = A2 ∪ Ac× X, where A ⊆ X, is also an important
preorder relation on X.

Therefore, in addition to Theorem 24.7, it is also worth proving the following

Theorem 24.9 For any A ⊆ X and relation R on X, the following assertions are
equivalent:

(1) R∞ = RA; (2) TR = {∅, A, X }
; (3) FR = {∅, Ac, X

}
.

Proof For any Ω ⊆ X, we have RA[Ω] = ∅ if Ω = ∅,

RA[Ω] = Ω if ∅ �= Ω ⊆ A and RA[Ω] = X if Ω �⊆ A.

Hence, by using Corollary 23.9 and Theorem 23.4, we can see that

TRA
= {∅, A, X }; and FRA

= {∅, Ac, X
}
.

Moreover, since RA is a preorder relation on X, by Corollary 3.14 we can state that
R∞
A = RA. Therefore, Corollary 24.5 can again be applied to obtain the required

equivalences.

Remark 24.10 Note that R∅ = X2 and RX = X2. Thus, in particular, Theorem 24.9
is a substantial generation of assertion (2) of Theorem 24.7.

Concerning the relation RA, it also worth noticing that, by Corollary 23.10, we
have TRAc

= FRA
= T

R−1
A

. Therefore, by Corollary 24.6, we also have RAc =
R−1
A .

The importance of the relations RA, with A ⊆ X, is also apparent from
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Theorem 24.11 For any relation R on X, we have

R∞ = ⋂

A∈TR

RA.

Proof Define S = ⋂
A∈TR

RA. Then, for any x ∈ X, we have

S (x) = ⋂

A∈TR

RA(x) = ⋂ {
A ∈ TR : x ∈ A

}
.

Hence, by Remark 24.2, we can see that S (x) ⊆ R∞(x). Therefore, S ⊆ R∞.
On the other hand, if A ∈ TR , then by the corresponding definitions, for any

x ∈ A, we have R (x) ⊆ A = RA(x). Hence, it is clear that R ⊆ RA, and thus
R∞ ⊆ R∞

A = RA for all A ∈ TA. Therefore, R∞ ⊆ S, and thus also S = R∞.

Remark 24.12 From Theorem 24.1, we can see that the mappings

R  −→ TR and R  −→ R∞,

where R is a relation on X, establish a Pataki connection with respect to the relation
⊆ and ⊇.

Therefore, it is not surprising that we also have the following

Theorem 24.13 If R is a relation on X, then S = R∞ is the largest relation on X

such that TR ⊆ TS

(
TR = TS

)
, or equivalently FR ⊆ FS

(
FR = FS

)
.

Proof By Theorem 3.15, we have R∞ = R∞∞ = S∞. Hence, by using
Corollary 24.3, we can infer that TR = TS .

Moreover, if Ω is a relation on X such that TR ⊆ TΩ , then by Theorem 24.1 we
have Ω ⊆ R∞ = S. Therefore, S has the required properties.

From Theorem 24.1, by using Theorem 23.3, we can also easily derive

Theorem 24.14 For any two corelations U and V on X to Y , the following
assertions are equivalent:

(1) U� ⊆ V �∞; (2) U�∞ ⊆ V �∞; (3) TV ⊆ TU ; (4) FV ⊆ FU .

Proof By Theorem 24.1, we have

U� ⊆ V �∞ ⇐⇒ U�∞ ⊆ V �∞ ⇐⇒ TV � ⊆ TU� ⇐⇒ FV � ⊆ FU� .

Moreover, by Theorem 23.3, we have TU� = TU and FU� = FU .

Now, as an immediate consequence of this theorem, we can also state

Corollary 24.15 For any two corelations U and V on X to Y , the following
assertions are equivalent:

(1) U�∞ = V �∞; (2) TU = TV ; (3) FU = FV .
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25 Generalizations to Corelators and Relators

Analogously to our former terminology on relators and relator spaces [63, 65], a
family U of corelations on X to Y will be called a corelator on X to Y , and the
ordered pair (X, Y )(U ) = (

(X, Y ), U
)

will be called a corelator space.
In particular, a corelator U on X to itself will be called a corelator on X,

and the notation X(U ) = (X, X)(U ) will be used. Moreover, a corelator space
(X, Y )(U ) will be called simple if the corelator U is simple in the sense that it is a
singleton {U}. Singleton are usually identified with their elements.

Since corelations on X to Y are more general objects than relations on X to Y , it
is clear that corelators on X to Y are also more general objects than relators on X to
Y . In particular, instead of a relator R on X to X we may always naturally consider
the associated corelator R� = {R� : R ∈ R }. Therefore, in the sequel we shall
mainly be dealing with corelators.

Now, for a corelator U on X to Y , we may, for instance, naturally define

IntU = ⋃

U∈U
IntU , intU = ⋃

U∈U
intU and EU = ⋃

U∈U
EU .

Namely, thus for any x ∈ X and B ⊆ Y , we also have
(1) x ∈ intU (B) ⇐⇒ {x} ∈ IntU (B);
(2) B ∈ EU ⇐⇒ intU (B) �= ∅.
However, in connection with the generated open sets we must be more careful.

Namely, if U is a corelator on X, then the family

τU = ⋃

U∈U
TU

of all proximally open sets generated by U is, in general, only a proper subfamily
of the family

TU = {
A ⊆ X : A ⊆ intU (A)

}

of all topologically open sets generated by U .
To see this, note that if for instance x1, x2 ∈ X such that x1 �= x2, and for each

i = 1, 2 we define

Ri = {xi}2 ∪ (
X \ {xi}

)2
,

then R = {R1, R2} is an equivalence relator on X such that, under the notation
A = {x1, x2}, we have A ∈ TR \ τR whenever X �= A.

The above mentioned property of the topologically open sets causes the serious
inconvenience that if U is a corelator on X, then in general there does not exist
a largest corelator U � on X such that TU = TU � . The latter fact for relators
was first proved by Mala [33, Example 5.3] by considering the singleton relator
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R = {X2} with card(X) > 2. This simple relator was later more deeply investigated
by Pataki [42, Example 7.2]. (See also [67, Example 10.11].)

The notion of a fat set, the duality of fat and dense sets, and the fact that the fat
and dense sets in a relator space are frequently more important tools than the open
and closed ones was first revealed by the present author in [52, 53]. The participants
of the symposium, considering me as an outsider, were unwilling to acknowledge
this.

Despite that, to realized the validity of my claims, it is enough to note only that if
for instance ≤ is a certain order relation on X, then T≤ and E≤ are just the families
of all ascending subsets and residual subsets of the ordered set X(≤ ), respectively.
And, to note that the residual subsets are more important tools than the ascending
ones. Namely, they can be used to define coherences and convergences of nets [49,
50].

Moreover, if for instance R is a relation on R such that

R (x) = {x − 1} ∪ [ x, +∞[

for all x ∈ R, then TR = TR� = {∅, R }, but ER = ER� is quite a large family
of subsets of R. Namely, it contains all supersets of the sets R(x) with x ∈ X.
Therefore, in this particular case, ER is a much better tool than TR .

To let the reader feel the appropriateness of the term “fat”, it is also worth
mentioning that a subset A of a corelator space X(U ) may be called rare if
clU (A) /∈ EU . Moreover, the subset A may be called meager if there exists a
sequence ( An)

∞
n=1 of rare subsets of X(U ) such that A = ⋃∞

n=1 An. Thus, the
corelator space X(U ) may be called Baire if the fat subsets of X(U ) are not
meager, or equivalently the meager subsets of X(U ) are not fat. (The corresponding
subject for relator spaces has been worked out in [64, 66].)

In this respect, it is also worth mentioning that if F and G are relations on a
corelator space X(U ) to Y and Z, respectively, and V is a corelator on Y to Z, then
we may also naturally write

(1) F ∈ LimV (G) if
{
x ∈ X : G(x) ⊆ V

(
F(x)

)} ∈ EU for all V ∈ V ;
(2) F ∈ AdhV (G) if

{
x ∈ X : G(x) ∩ V

(
F(x)

) �= ∅} ∈ DU for all
V ∈ V .
Now, by taking FB = X×B for some B ⊆ Y , we may also naturally write:

(3) B ∈ limV (G) if FB ∈ LimV (G), (4) B ∈ adhV (G) if FB ∈ AdhV (G).
However, to have some sufficiently powerful tools in corelator spaces, it is

usually enough to consider only the particular case when X(U ) is a preordered
set, F and G are functions and B is a singleton. That is, it is usually enough to
consider the convergence and adherence of preordered nets to preordered nets and
points.

Finally, we note several useful algebraic tools can also defined in corelator
spaces. First of all, the results of our former paper [65] on upper and lower bound
relations generated by relators should also be extended to corelators.
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Rational Contractions and Coupled Fixed
Points

Mihai Turinici

1 Introduction

Let X be a nonempty set. By a sequence in X, we mean any mapping x : N → X,
where N = {0, 1, . . .} is the set of natural numbers. For simplicity reasons, we
will denote it as (x(n); n ≥ 0), or (xn; n ≥ 0); moreover, when no confusion can
arise, one further simplifies this notation as (x(n)) or (xn), respectively. Also, any
sequence (yn := xi(n); n ≥ 0) with

(i(n); n ≥ 0) is strictly ascending (whence: i(n) → ∞ as n → ∞)

will be referred to as a subsequence of (xn; n ≥ 0). Finally, call the subset Y of
X, almost singleton (in short: asingleton) provided y1, y2 ∈ Y implies y1 = y2;
and singleton if, in addition, Y is nonempty; note that in this case, we have the
representation Y = {y}, for some y ∈ X.

Take a metric d : X × X → R+ := [0,∞[ over X; as well as a selfmap
T ∈ F (X). [Here, for each couple A,B of nonempty sets, F (A,B) stands for
the class of all functions from A to B; when A = B, we write F (A) in place of
F (A,A).] Denote Fix(T ) = {x ∈ X; x = T x}; each point of this set is referred to
as fixed under T . The determination of such points is to be performed in the context
below, comparable with the one in Rus [35, Ch 2, Sect 2.2]:

pic-0) We say that T is fix-asingleton, when Fix(T ) is asingleton; likewise, we
say that T is fix-singleton when Fix(T ) is singleton

pic-1) We say that x ∈ X is a Picard point (modulo (d; T )) if the iterative
sequence (T nx; n ≥ 0) is d-Cauchy; when this property holds for all
x ∈ X, then T is called a Picard operator (modulo d)
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pic-2) We say that x ∈ X is a strong Picard point (modulo (d; T )) if the iterative
sequence (T nx; n ≥ 0) is d-convergent and limn(T

nx) ∈ Fix(T ); when
this property holds for all x ∈ X, then T is called a strong Picard operator
(modulo d).

The basic result in this area was obtained in 1922 by Banach [2]. Call T : X →
X, (d, μ)-contractive (where μ ≥ 0), provided

(B-con) d(T x, T y) ≤ μd(x, y), ∀x, y ∈ X.

Theorem 1 Assume that T is (d, μ)-contractive, for some μ ∈ [0, 1[. In addition,
let X be d-complete. Then,

(11-a) T is fix-singleton: Fix(T ) = {z}, for some x ∈ X

(11-b) T is strong Picard (modulo d): limn T
nx = z, for each x ∈ X.

This result (referred to as: Banach’s contraction principle) found some basic
applications to the operator equations theory. As a consequence, many extensions
for it were proposed. The most general ones have the implicit form

(si-con) (d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ∈ M ,
for all x, y ∈ X, x∇y;

where M ⊆ R6+ is a (nonempty) subset, and ∇ is a relation over X. In particular,
when M is the zero-section of a certain function F : R6+ → R, the implicit
contractive condition above has the familiar form:

(fi-con) F(d(T x, T y), d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)) ≤ 0,
for all x, y ∈ X, x∇y.

For the explicit trivial relation case of it, characterized as

(fe-con) d(T x, T y) ≤ G(d(x, y), d(x, T x), d(y, T y), d(x, T y), d(T x, y)),
for all x, y ∈ X

(where G : R5+ → R+ is a function), some consistent lists of such contractions
may be found in the survey papers by Rhoades [33] or Collaco and E Silva [11], as
well as the references therein; these, in particular, include some outstanding results
in the area due to Boyd and Wong [5], Reich [32], and Matkowski [21]. And, for
the implicit setting above, certain technical aspects have been considered by Leader
[20] and Turinici [43]. On the other hand, in the case of ∇ being a (partial) order
on X, some early statements were obtained in the 1986 papers by Turinici [44, 45];
two decades later, these results have been re-discovered—at the level of Banach
contractive maps—by Ran and Reurings [31]; see also Nieto and Rodriguez-Lopez
[29]. Further, an extension—to the same framework—of Leader’s contribution was
performed in Agarwal et al [1]; and, since then, the number of such papers increased
rapidly. Finally, the case of ∇ being amorphous (i.e.: it has no regularity properties
at all) has been discussed (via graph techniques) in Jachymski [18]; and (from a
general perspective) by Samet and Turinici [38].
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A basic particular case of the implicit contractive property above is

(2i-con) (d(T x, T y), d(x, y)) ∈ M , for all x, y ∈ X, x∇y;

where M ⊆ R2+ is a (nonempty) subset. The classical example over this direction
(again in the trivial relation setting) is due to Meir and Keeler [23]; further
refinements of the method were proposed by Matkowski [22] and Cirić [9]. Having
these precise, it is our aim in the following to propose an analytic perspective for
the study of Meir-Keeler contractions over quasi-ordered metric spaces; this, in
particular, includes the old (metrical) contractions due to Boyd and Wong [5] or
Matkowski [21], as well as the recent ones introduced by Dutta and Choudhury [12].
Finally, as an application of the obtained facts, a rational type coupled fixed point
theorem over quasi-ordered metric spaces is established, which includes a recent
statement obtained (via rather different methods) by Nashine and Kadelburg [27].
Further aspects will be delineated elsewhere.

2 Dependent Choice Principle

Throughout this exposition, the axiomatic system in use is Zermelo-Fraenkel’s
(abbreviated: ZF), as described by Cohen [10, Ch 2]. The notations and basic facts
to be considered in this system are more or less standard. Some important ones are
discussed below.

(A) Let X be a nonempty set. By a relation over X, we mean any nonempty part
R ⊆ X × X; for simplicity, we sometimes write (x, y) ∈ R as xRy. Note
that R may be regarded as a mapping between X and exp[X] (=the class of all
subsets in X). To verify this, denote for x ∈ X:

X(x,R) = {y ∈ X; xRy} (the section of R through x);

then, the desired mapping representation is [R(x) = X(x,R), x ∈ X]. A basic
example of such object is

I = {(x, x); x ∈ X} [the identical relation over X].

Given the relations R, S over X, define their product R ◦S as

(x, z) ∈ R ◦S , if there exists y ∈ X with (x, y) ∈ R, (y, z) ∈ S .

Also, for each relation R in X, denote

R−1 = {(x, y) ∈ X ×X; (y, x) ∈ R} (the inverse of R).

Finally, given the relations R and S on X, let us say that R is coarser than S (or,
equivalently: S is finer than R), provided

R ⊆ S ; i.e.: xRy implies xS y.
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Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I ⊆ R
(P2) R is irreflexive: R ∩I = ∅
(P3) R is transitive: R ◦R ⊆ R
(P4) R is symmetric: R−1 = R
(P5) R is antisymmetric: R−1 ∩R ⊆ I .

This yields the classes of relations to be used; the following ones are important for
our developments:

(C0) R is amorphous (i.e.: it has no specific properties)
(C1) R is a quasi-order (reflexive and transitive)
(C2) R is a strict order (irreflexive and transitive)
(C3) R is an equivalence (reflexive, transitive, symmetric)
(C4) R is a (partial) order (reflexive, transitive, antisymmetric)
(C5) R is trivial (i.e.: R = X ×X).

Remember that, by a sequence in X we mean any map x : N → X; also denoted
as (x(n)) or (xn). Take such an object; as well as a relation R on X.

I) Let us say that (xn) is R-ascending, if

xnRxn+1, for all n ≥ 0.

Note that this property is not hereditary; i.e.: it cannot hold for a subsequence.
However, when R is transitive, this ascending property may be written as

xnRxm, whenever n < m;

wherefrom, it is hereditary.

II) Let us say that (xn) is bounded above by an element u ∈ X, when

xnRu, for all n; written as: (xn)Ru.

Clearly, this property is hereditary:

(xn)Ru implies (yn)Ru, for each subsequence (yn) of (xn).

The converse inclusion is not in general true; i.e.,

((yn)Ru for some subsequence (yn) of (xn)) does not imply (xn)Ru.

(B) Remember that, an outstanding part of (ZF) is the Axiom of Choice (abbrevi-
ated: AC); which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each function
F : J → exp(X), there exists a (selective) function
f : J → X, with f (ν) ∈ F(ν), for each ν ∈ J .

(Here, exp(X) stands for the class of all nonempty elements in exp[X]). Sometimes,
when the ambient set X is endowed with denumerable type structures, the case of
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J = N will suffice for handling choice reasonings; and, existence of such a selective
function may be determined by using a weaker form of (AC), called: Dependent
Choice principle (in short: DC). Call the relation R, proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.

Note that, in this case, R is to be viewed as a mapping between X and exp(X);
the couple (X,R) will be then referred to as a proper relational structure. Given
a ∈ X, let us say that the sequence (xn; n ≥ 0) in X is (a;R)-iterative, provided

x0 = a and xnRxn+1 (i.e.: xn+1 ∈ R(xn)), ∀n.

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X

there is at least an (a,R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [3] and Tarski [42]—is
deductible from (AC), but not conversely; cf. Wolk [48]. Moreover, by the devel-
opments in Moskhovakis [25, Ch 8] and Schechter [41, Ch 6], the reduced system
(ZF-AC+DC) it comprehensive enough so as to cover the “usual” mathematics; see
also Moore [24, Appendix 2].

Let (Rn; n ≥ 0) be a sequence of relations on X. Given a ∈ X, let us say that
the sequence (xn; n ≥ 0) in X is (a; (Rn; n ≥ 0))-iterative, provided

x0 = a and xnRnxn+1 (i.e.: xn+1 ∈ Rn(xn)), ∀n.

The following Diagonal Dependent Choice principle (in short: DDC) is available.

Proposition 2 Let (Rn; n ≥ 0) be a sequence of proper relations on X. Then, for
each a ∈ X there exists at least one (a; (Rn; n ≥ 0))-iterative sequence in X.

Clearly, (DDC) includes (DC); to which it reduces when (Rn; n ≥ 0) is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P = N ×X; and let S be the relation over P introduced as

S (i, x) = {i + 1} ×Ri (x), (i, x) ∈ P .

It will suffice applying (DC) to (P,S ) and b := (0, a) ∈ P to get the conclusion
in our statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as: Selected Dependent Choice principle (in short: SDC).

Proposition 3 Let the map F : N → exp(X) and the relation R over X fulfill

(∀n ∈ N ): R(x) ∩ F(n+ 1) �= ∅, ∀x ∈ F(n).

Then, for each a ∈ F(0) there exists a sequence (x(n); n ≥ 0) in X, with

x(0) = a, x(n) ∈ F(n), x(n+ 1) ∈ R(x(n)), ∀n.

As before, (SDC) 2⇒ (DC) (⇐⇒ (DDC)); just take [F(n) = X, n ∈ N ]. But,
the reciprocal is also true, in the sense: (DDC) 2⇒ (SDC). This follows from
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Proof (Proposition 3) Let the premises of (SDC) be true. Define a sequence of
relations (Rn; n ≥ 0) over X as: for each n ≥ 0,

Rn(x) = R(x) ∩ F(n+ 1), if x ∈ F(n),
Rn(x) = {x}, otherwise (x ∈ X \ F(n)).
Clearly, Rn is proper, for all n ≥ 0. So, by (DDC), it follows that for the starting
a ∈ F(0), there exists an (a, (Rn; n ≥ 0))-iterative sequence (x(n); n ≥ 0) in X.
Combining with the very definition above, it follows that conclusion in the statement
is effectively holding.

In particular, when R = X × X, the regularity condition imposed in (SDC)
holds. The corresponding variant of our underlying statement is just (AC(N)) (=the
Denumerable Axiom of Choice). Precisely, we have

Proposition 4 Let F : N → exp(X) be a function. Then, for each a ∈ F(0) there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ∈ N .

As a consequence of the discussed facts, (DC) 2⇒ (AC(N)) in (ZF-AC). A direct
verification of this is obtainable by taking A = N ×X and introducing the relation
R over it, according to:

R(n, x) = {n+ 1} × F(n+ 1), n ∈ N , x ∈ X;

we do not give details. The reciprocal of this last inclusion is not true; see
Moskhovakis [25, Ch 8, Sect 8.25] for details.

3 Conv-Cauchy Structures

Let X be a nonempty set.

(A) Denote by S (X) the class of all sequences (xn) in X. By a (sequential)
convergence structure on X we mean, as in Kasahara [19], any part C of
S (X)×X with the properties

(conv-1) C is hereditary:
((xn); x) ∈ C 2⇒ ((yn); x) ∈ C , for each subsequence (yn) of (xn)
(conv-2) C is reflexive:
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills ((xn); u) ∈ C ;

in this case, the couple (X,C ) will be referred to as a convergence space. For

simplicity, the relation ((xn); x) ∈ C will be denoted xn
C−→ x; and reads: x is

the C -limit of (xn); the set of all such points will be denoted as

C − limn(xn); or, limn(xn) when C is understood;

when it is not empty, we say that (xn) is C -convergent. The following optional
condition about the convergence structure C is to be considered
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(conv-3) C is separated:
C − limn(xn) is an asingleton, for each sequence (xn; n ≥ 0) in X;

some concrete cases will be given a bit further.
Likewise, by a (sequential) Cauchy structure on X we shall mean, as in Turinici

[46], any part H of S (X) with

(Cauchy-1)H is hereditary:
(xn) ∈ H 2⇒ (yn) ∈ H , for each subsequence (yn) of (xn)
(Cauchy-2) H is reflexive:
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills (xn) ∈ H .

Each element of H will be referred to as a H -Cauchy sequence in X; and the
couple (X;H ) will be called a Cauchy space. Finally, the pair (C ,H ) will be
referred to as a conv-Cauchy structure on X; and the triple (X,C ,H ), as a conv-
Cauchy space. The natural conditions about the conv-Cauchy structure (C ,H ) to
be considered here are

(CC-1) (C ,H ) is regular:
each C -convergent sequence in X is H -Cauchy
(CC-2) (C ,H ) is complete:
each H -Cauchy sequence in X is C -convergent.

(B) In the following, a basic example of conv-Cauchy structure is given.

By a pseudometric over X we shall mean any map d : X ×X → R+. Suppose that
we fixed such an object; with, in addition,

(met-1) d is triangular: d(x, z) ≤ d(x, y)+ d(y, z), for all x, y, z ∈ X

(met-2) d is reflexive: d(x, x) = 0, for each x ∈ X

(met-3) d is sufficient: d(x, y) = 0 implies x = y

(met-4) d is symmetric: d(x, y) = d(y, x), ∀x, y ∈ X.

In this case, d is called a metric on X; and the couple (X, d) will be referred to as a
metric space.

We introduce a d-convergence and a d-Cauchy structure on X as follows. Given
the sequence (xn) in X and the point x ∈ X, we say that (xn), d-converges to x

(written as: xn
d−→ x) provided d(xn, x) → 0 as n → ∞; i.e.,

∀ε > 0, ∃i = i(ε): i ≤ n 2⇒ d(xn, x) < ε.

This will be also referred to as: x is a d-limit of (xn); and written: x ∈ limn(xn);
when such points x exist, we say that (xn) is d-convergent. By this very definition,
we have the hereditary and reflexive properties:

(conv-1) (
d−→) is hereditary: xn

d−→ x implies yn
d−→ x,

for each subsequence (yn; n ≥ 0) of (xn; n ≥ 0)

(conv-2) (
d−→) is reflexive:

(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u;
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hence, (
d−→) is a convergence structure on X. As precise, the following condition

about this structure is to be considered

(conv-3) (
d−→) is separated (referred to as: d is separated):

limn(xn) is an asingleton, for each sequence (xn) in X.

Note that this holds under the conditions imposed upon d; and then, {x} = limn(xn)

will be written as x = limn(xn).
Further, call the sequence (xn), d-Cauchy when d(xm, xn) → 0 as m, n → ∞

with m < n; i.e.,

∀ε > 0, ∃j = j (ε): j ≤ m < n 2⇒ d(xm, xn) < ε;

the class of all such sequences will be denoted as Cauchy(X, d). Clearly, we have
the hereditary and reflexive properties

(Cauchy-1) Cauchy(X, d) is hereditary:
(xn) is d-Cauchy implies (yn) is d-Cauchy,
for each subsequence (yn; n ≥ 0) of (xn; n ≥ 0)
(Cauchy-2) Cauchy(X, d) is reflexive:
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) is d-Cauchy;

so that, Cauchy(X, d) is a Cauchy structure on X.

Now—according to the general setting—call the couple ((
d−→), Cauchy(X, d)),

a conv-Cauchy structure induced by d. Remember that the following regularity
conditions about this structure are to be considered

(CC-1) d is regular: each d-convergent sequence in X is d-Cauchy
(CC-2) d is complete: each d-Cauchy sequence in X is d-convergent;

note that the former of these holds in our setting.
Finally, let us say that (xn; n ≥ 0) is d-semi-Cauchy, provided

d(xn, xn+1) → 0 as n → ∞; or, equivalently:
d(xn, xn+i ) → 0 as n → ∞, for each i ≥ 1.

In this case, for each γ > 0,

S ((xn); γ ) := {k ∈ N; n ∈ N(k,≤), i ∈ {1, 2} 2⇒ d(xn, xn+i ) < γ }
is nonempty; hence, n(γ ) := minS ((xn); γ ) exists;

we then say that n(γ ) is the semi-Cauchy rank attached to γ . Clearly,

γ  → n(γ ) is decreasing: γ1 ≤ γ2 2⇒ n(γ1) ≥ n(γ2).

Finally, it is immediate that each d-Cauchy sequence appears as d-semi-Cauchy too;
the reciprocal of this is not in general true.

Note that an extended setting of these concepts is possible, under the lines
sketched by Hitzler [15, Ch 1, Sect 1.2]; we shall discuss these facts elsewhere.
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(C) Concerning these developments, the following auxiliary statement is useful in
the sequel.

Proposition 5 The mapping (x, y)  → d(x, y) is d-Lipschitz, in the sense

|d(x, y)− d(u, v)| ≤ d(x, u)+ d(y, v), (x, y), (u, v) ∈ X ×X.

As a consequence, this map is d-continuous; i.e.,

xn
d−→ x, yn

d−→ yimply d(xn, yn) → d(x, y).

The proof is immediate, by the triangular and symmetric properties of d(., .); so,
further details are not needed.

4 Meir-Keeler Admissible Functions

In the following, a basic class of real valued functions is introduced.

(A) Denote for simplicity F0(R+) = {ϕ ∈ F (R+);ϕ(0) = 0}. Then, let us put

F0(re)(R+)=the subclass of all ϕ ∈ F0(R+), endowed with
ϕ=regressive: ϕ(t) < t , for all t ∈ R0+ :=]0,∞[.
Call ϕ ∈ F0(re)(R+), Meir-Keeler admissible [23] if

∀γ > 0, ∃β > 0, (∀t): (γ < t < γ + β 2⇒ ϕ(t) ≤ γ ).

In the following, some important examples of such objects are given.

(B) For any ϕ ∈ F0(re)(R+) and any s ∈ R0+, put

Λ+ϕ(s) = inf{Φ(s+)(ε); ε > 0},
where Φ(s+)(ε) = supϕ(]s, s + ε[), ε > 0.

From the regressive property of ϕ, these quantities are finite; precisely,

0 ≤ Λ+ϕ(s) ≤ s, ∀s ∈ R0+.

The following consequence of this will be useful. Given the sequence (rn; n ≥ 0) in
R and the point r ∈ R, let us write

rn → r+, if rn → r and (rn > r , for all n ≥ 0).

Proposition 6 Let ϕ ∈ F (re)(R+) and s ∈ R0+ be arbitrary fixed. Then,

(41-1) lim supn(ϕ(tn)) ≤ Λ+ϕ(s),
for each sequence (tn) in R0+ with tn → s+
(41-2) there exists a sequence (rn) in R0+ with
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rn → s+ and ϕ(rn) → Λ+ϕ(s).

Proof Denote, for simplicity,

α = Λ+ϕ(s); hence, α = infε>0 Φ(s+)(ε), and 0 ≤ α ≤ s,

i) Given ε > 0, there exists a rank p(ε) ≥ 0 such that

s < tn < s + ε, for all n ≥ p(ε);

hence (by definition)

lim sup
n

(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s+)(ε).

Passing to infimum over ε > 0, yields (see above)

lim sup
n

(ϕ(tn)) ≤ inf
ε>0

Φ(s+)(ε) = α;

and the claim follows.

ii) Define (βn := Φ(s+)(2−n); n ≥ 0); this is a descending sequence in R+, with

(βn ≥ α, ∀n) and inf
n
βn = α; hence lim

n
βn = α.

By these properties, there may be constructed a sequence (γn; n ≥ 0) in R, with

γn < βn, ∀n; lim
n
γn = lim

n
βn = α.

(For example, we may take (γn = βn−3−n; n ≥ 0); but this is not the only possible
choice). Let n ≥ 0 be arbitrary fixed. By the supremum definition, there exists
rn ∈]s, s + 2−n[ such that ϕ(rn) > γn; moreover (again by definition), ϕ(rn) ≤ βn.
The obtained sequence (rn; n ≥ 0) fulfills rn → s+ and ϕ(rn) → α; wherefrom,
the desired conclusion is clear.

Call ϕ ∈ F0(re)(R+), Boyd-Wong admissible [5] if

Λ+ϕ(s) < s, for all s > 0.

Sufficient conditions for this property are being described in

Proposition 7 Suppose that ϕ ∈ F0(re)(R+) fulfills one of the conditions

(42-1) ϕ is upper semicontinuous at the right on R0+:
Λ+ϕ(s) ≤ ϕ(s), ∀s ∈ R0+
(42-2) ϕ is continuous at the right on R0+.

Then, ϕ is Boyd-Wong admissible.



Rational Contractions and Coupled Fixed Points 791

Proof

i) Evident, by the regressiveness of ϕ.
ii) From the right continuous property,

Λ+ϕ(s) = ϕ(s), ∀s ∈ R0+;

so, this case reduces to the preceding one.

(C) Denote for simplicity

F (in)(R+)=the class of all increasing functions in F (R+),
F0(re, in)(R+) = F0(re)(R+) ∩F (in)(R+).

Call ϕ ∈ F0(re, in)(R+), Matkowski admissible [21] provided

ϕn(t) → 0 as n → ∞, for all t > 0.

[Here, for each n ≥ 0, ϕn stands for the n-th iterate of ϕ]. As a matter of fact, the
iterative condition we just imposed assures us that ϕ is regressive; but, this is not
important for our developments.

As before, we need sufficient conditions under which our property holds. For
each ϕ ∈ F0(re, in)(R+), denote

ϕ(s + 0) := limt→s+ ϕ(t), s ∈ R0+
(the right limit of ϕ at s). It is not hard to see that the following evaluation holds

ϕ(s) ≤ ϕ(s + 0) ≤ s, for all s > 0;

we do not give details. Finally, denote (over the same class of functions)

M(ϕ) = {s > 0;ϕ(s + 0) = s}.
Clearly, the extremal case of M(ϕ) = ∅ cannot be avoided; just take the function
ϕ ∈ F0(re, in)(R+) as

ϕ is right continuous on R0+: ϕ(s + 0) = ϕ(s), for each s ∈ R0+.

Concerning the other extremal case M(ϕ) = R0+, the following simple (negative)
answer is available (see also Jachymski [17]):

Proposition 8 For each function ϕ ∈ F0(re, in)(R+), we have

M(ϕ) is at most denumerable in R0+; hence, M(ϕ) = R0+ is false.

Proof By the increasing property of our function ϕ, the subset

Γ = {s ∈ R0+;ϕ is right discontinuous at s}
appears as (at most) countable; cf. Natanson [28, Ch 8, Sect 1]; so, necessarily,
Θ := R0+ \ Γ is nonempty in R0+, and

ϕ(s + 0) = ϕ(s) < s, for each s ∈ Θ; whence M(ϕ) ∩Θ = ∅.
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This tells us that, necessarily, M(ϕ) ⊆ Γ ; and conclusion follows.

We may now state an appropriate answer to the posed question.

Proposition 9 Supppose that the function ϕ ∈ F0(re, in)(R+) fulfills

ϕ is strongly regressive: ϕ(s + 0) < s, for each s > 0 (i.e.: M(ϕ) = ∅).

Then, ϕ is Matkowski admissible.

Proof Given s0 > 0, let (sn = ϕn(s0); n ≥ 0) be its iterative sequence. If

sk = 0, for some k ≥ 0

then, by the decreasing property of (sn), we have (sn = 0, for all n ≥ k); and
conclusion follows. It remains now to discuss the case of

sn > 0, for all n ≥ 0.

By the regressive property of ϕ, (sn) is strictly descending; hence, s := limn sn
exists, with sn > s, for all n. Suppose by contradiction that s > 0. Combining with

ϕ(s + 0) = limn ϕ(sn) = limn sn+1,

yields ϕ(s + 0) = s; contradiction. Hence, s > 0; and we are done.

Remark 1 The reverse inclusion is not (in general) true. To verify this, let us
consider the function ϕ ∈ F0(re, in)(R+), according to (for some r > 0):

(ϕ(t) = 0, if t ≤ r), (ϕ(t) = r , if t > r).

Clearly, ϕ is Matkowski admissible; we do not give details. On the other hand,

ϕ(r + 0) = r; whence, ϕ is not strongly regressive;

and this proves our claim.

(D) Now, it is natural to establish the connection between the introduced classes
and the Meir-Keeler one. An appropriate answer to this is contained in

Proposition 10 Under these conventions, the following inclusions are valid:

(45-1) if ϕ ∈ F0(re)(R+) is Boyd-Wong admissible,
then ϕ is Meir-Keeler admissible
(45-2) the function ϕ ∈ F0(re, in)(R+) is Matkowski admissible,
if and only if it is Meir-Keeler admissible.

Proof

i) (cf. Meir and Keeler [23]). Suppose that ϕ ∈ F (re)(R+) is Boyd-Wong
admissible; and fix γ > 0. As Λ+ϕ(γ ) < γ , there exists β = β(γ ) > 0 such
that Φ(γ+)(β) < γ ; wherefrom, γ < t < γ +β implies ϕ(t) < γ ; hence the
claim.
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ii-1) (cf. Jachymski [16]). Assume that ϕ ∈ F0(re, in)(R+) is Matkowski
admissible; we have to establish that it is Meir-Keeler admissible. If the
underlying property fails, then (for some γ > 0):

∀β > 0, ∃t ∈]γ, γ + β[, such that ϕ(t) > γ .

As ϕ is increasing, this yields (by the arbitrariness of β)

(ϕ(t) > γ , ∀t > γ ); whence, by induction: (ϕn(t) > γ , ∀n, ∀t > γ ).

Taking some t > γ and passing to limit as n → ∞, one gets 0 ≥ γ ; contradiction.
Hence, ϕ is Meir-Keeler admissible, as claimed.

ii-2) Assume that ϕ ∈ F0(re, in)(R+) is Meir-Keeler admissible; we have to
establish that it is Matkowski admissible. Given s0 > 0, let (sn = ϕn(s0); n ≥
0) be the iterates sequence. If

sk = 0, for some k ≥ 0

then, by the decreasing property of (sn), we have (sn = 0, for all n ≥ k); and
conclusion follows. It remains now to discuss the case of

sn > 0, for all n ≥ 0.

By the regressive property of ϕ, (sn) is strictly descending; hence, s := limn sn
exists, with (in addition) sn > s, for all n. Suppose by contradiction that s > 0; and
let r > 0 be the number assured by the Meir-Keeler admissible property of ϕ. By
definition, there exists a rank n(r) ≥ 0, such that

n ≥ n(r) implies s < sn < s + r .

This, by the underlying property, gives (for the same ranks)

s < sn+1 = ϕ(sn) ≤ s; contradiction.

Hence, s = 0; wherefrom ϕ is Matkowski admissible.

Remark 2 Concerning the reverse of our first inclusion, the answer is (in general)
negative. In fact, let us again consider the function ϕ ∈ F0(re, in)(R+), we just
introduced (for some r > 0):

(ϕ(t) = 0, if t ≤ r), (ϕ(t) = r , if t > r).

Clearly,

ϕ(r + 0) = r; i.e.: Λ+ϕ(s) = r;

which tells us that ϕ is not Boyd-Wong admissible. On the other hand, by definition
(and the previous developments)

ϕ is Matkowski admissible; hence, Meir-Keeler admissible;

and this proves our claim.
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(E) A bilateral version of the “right” type statements above may be done as follows.
For any ϕ ∈ F0(re)(R+) and any s ∈ R0+, put

Λ±ϕ(s) = inf{Φ(s±)(ε); 0 < ε < s},
where Φ(s±)(ε) = supϕ(]s − ε, s + ε[), 0 < ε < s.

From the regressive property of ϕ, these quantities are finite; precisely,

0 ≤ Λ+ϕ(s) ≤ Λ±ϕ(s) ≤ s, ∀s ∈ R0+.

The following consequence of this will be useful.

Proposition 11 Let ϕ ∈ F0(re)(R+) and s ∈ R0+ be arbitrary fixed. Then,

(46-1) lim supn(ϕ(tn)) ≤ Λ±ϕ(s),
for each sequence (tn) in R0+ with tn → s

(46-2) there exists a sequence (rn) in R0+ with
rn → s and ϕ(rn) → Λ±ϕ(s).

The proof mimics its “right” version; however, for completeness reasons, we
provide an argument in what follows.

Proof Denote, for simplicity,

α = Λ±ϕ(s); hence, α = inf{Φ(s±)(ε); 0 < ε < s} and 0 ≤ α ≤ s,

i) Given ε in ]0, s[, there exists a rank p(ε) ≥ 0 such that

s − ε < tn < s + ε, for all n ≥ p(ε);

hence (by definition)

lim sup
n

(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s±)(ε).

Passing to infimum over ε in ]0, s[, yields (see above)

lim sup
n

(ϕ(tn)) ≤ inf{Φ(s±)(ε); 0 < ε < s} = α;

and the claim follows.

ii) Define (βn := Φ(s±)(s2−n−1); n ≥ 0); this is a descending sequence in R+,
with the properties

(βn ≥ α, ∀n) and inf
n
βn = α; hence lim

n
βn = α.

By these properties, there may be constructed a sequence (γn; n ≥ 0) in R, with

γn < βn, ∀n; lim
n
γn = lim

n
βn = α.
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(For example, we may take (γn = βn−3−n; n ≥ 0); but this is not the only possible
choice). Let n ≥ 0 be arbitrary fixed. By the supremum definition, there exists
rn ∈]s− s2−n−1, s+ s2−n−1[ such that ϕ(rn) > γn; moreover (again by definition),
ϕ(rn) ≤ βn. The obtained (inR0+) sequence (rn; n ≥ 0) fulfills rn → s and ϕ(rn) →
α; wherefrom, all is clear.

Having these precise, call ϕ ∈ F0(re)(R+), bilateral Boyd-Wong admissible, if

Λ±ϕ(s) < s, for all s > 0;

note that, by a previous relation, any such function is Boyd-Wong admissible.
Sufficient conditions for this property are being described in

Proposition 12 Suppose that ϕ ∈ F0(re)(R+), fulfills one of the conditions

(47-1) ϕ is upper semicontinuous on R0+: Λ±ϕ(s) ≤ ϕ(s), ∀s ∈ R0+
(47-2) ϕ is continuous on R0+.

Then, ϕ is bilateral Boyd-Wong admissible.

As before, the proof of this is a direct translation of its “right” counterpart; so,
further details are not given.

(F) A useful completion of these is the following. Let ϕ ∈ F0(re)(R+) be a
function; we call it Geraghty admissible [13], provided

(tn; n ≥ 0)= sequence in R0+ and ϕ(tn)/tn → 1 imply tn → 0.

Technically speaking, this class of functions may be viewed as a particular case
of the previous (bilateral) Boyd-Wong one. Precisely, we have

Proposition 13 Let ϕ ∈ F0(re)(R+) be Geraghty admissible. Then,

(48-1) ϕ is bilateral Boyd-Wong admissible
(48-2) ϕ is Boyd-Wong admissible.

Proof

i) Suppose that ϕ ∈ F0(re)(R+) is not bilateral Boyd-Wong admissible. From a
previous relation, there exists some s ∈ R0+ with Λ±ϕ(s) = s. By the auxiliary
fact we just exposed, there exists a sequence (rn; n ≥ 0) in R0+ with

rn → s and ϕ(rn) → s; whence ϕ(rn)/rn → 1;

i.e.: ϕ is not Geraghty admissible. The obtained contradiction proves our claim.
ii) Evident, by the observations above.

Remark 3 Concerning the reverse inclusion, note that, for the (continuous) bilateral
Boyd-Wong admissible function in F0(re)(R+)

ϕ(t) = t (1 − e−t ), t ≥ 0,

and the sequence (tn = n+ 1; n ≥ 0) in R0+, we have

ϕ(tn)/tn → 1; but, evidently, tn → ∞.
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Hence, ϕ is not Geraghty admissible; so that the reciprocals of both these inclusions
are not in general true.

5 Statement of the Problem

Let X be a nonempty set; and d : X × X → R+ be a metric [i.e.: a triangular,
reflexive, sufficient, symmetric pseudometric] on X; then, (X, d) will be referred
to as a metric space. Further, let (≤) be a quasi-order [i.e.: a reflexive transitive
relation] over X; then, (X, d,≤) will be referred to as a quasi-ordered metric space.

Call the subset Y of X, (≤)-asingleton if [y1, y2 ∈ Y , y1 ≤ y2] imply y1 = y2;
and (≤)-singleton if, in addition, Y is nonempty. Clearly, the generic inclusions hold

(∀Y ∈ exp[X]) : asingleton 2⇒ (≤)-asingleton, singleton 2⇒ (≤)-singleton.

An instance when the reciprocal inclusions hold too is described as follows.

Proposition 14 Suppose that

(dir) X is (≤)-directed: ∀z1, z2 ∈ X, ∃z3 ∈ X: z1, z2 ≤ z3.

Then,

(51-1) The generic inclusions are valid

(∀Y ∈ exp[X]) : (≤)-asingleton 2⇒ asingleton, (≤)-singleton 2⇒ singleton.

(51-2) Hence, in the precise context,

(∀Y ∈ exp[X]) : (≤)-asingleton ⇐⇒ asingleton, (≤)-singleton ⇐⇒ singleton.

Proof It will suffice verifying the first half of this conclusion. Let the subset Y of
X be (≤)-asingleton; and take a couple y1, y2 ∈ Y . By the directed property, there
exists y3 ∈ X, such that y1, y2 ≤ y3. This yields (by hypothesis)

y1 = y3, y2 = y3; whence y1 = y2.

The proof is complete.

(A) Take some T ∈ F (X). Assume in the following that

(s-pro) T is semi-progressive: X(T ,≤) := {x ∈ X; x ≤ T x} �= ∅
(incr) T is increasing: x ≤ y implies T x ≤ Ty.

Concerning the former of these conditions, the following aspect is to be noted.
Let (<) stand for the relation

x < y iff x ≤ y and x �= y;
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clearly, (<) is irreflexive but not in general transitive, as long as (≤) is not
antisymmetric. Now, evidently,

(s-s-pro) T is strongly semi-progressive: X(T ,<) := {x ∈ X; x < T x} �= ∅
is a particular case of the semi-progressive condition above; however, it is not
obtainable from the underlying property, as simple examples show.

Now, as in the trivial quasi-order case, we are interested in establishing sufficient
conditions for the determination of elements in Fix(T ). The basic directions for
getting these fixed points are described in our list below, comparable with the one
proposed by Turinici [47]:

pic-0) We say that T is fix-(≤)-asingleton, when Fix(T ) is (≤)-asingleton; and
fix-(≤)-singleton when Fix(T ) is (≤)-singleton

pic-1) We say that x ∈ X(T ,≤) is a Picard point (modulo (d,≤; T )) if the
iterative sequence (T nx; n ≥ 0) is d-Cauchy; when this property holds
for all x ∈ X(T ,≤), then T is called a Picard operator (modulo (d,≤))

pic-2) We say that x ∈ X(T ,≤) is a strong Picard point (modulo (d,≤; T )) if the
iterative sequence (T nx; n ≥ 0) is d-convergent and limn(T

nx) ∈ Fix(T );
when this property holds for all x ∈ X(T ,≤), then T is called a strong
Picard operator (modulo (d,≤))

pic-3) We say that x ∈ X(T ,≤) is a Bellman Picard point (modulo (d,≤; T ))
if the iterative sequence (T nx; n ≥ 0) is d-convergent and T nx ≤
limn(T

nx) ∈ Fix(T ), ∀n ≥ 0; when this property holds for all x∈X(T ,≤),
then T is called a Bellman Picard operator (modulo (d,≤)).

The sufficient (regularity) conditions for such properties are being founded on
strictly ascending strongly orbital full concepts (in short: (asa-so-f)-concepts) and
on strictly ascending strongly orbital full concepts (in short: (sa-so-f)-concepts).
Call the sequence (zn; n ≥ 0) in X,

strictly ascending, if zi < zj whenever i < j ;
strongly T -orbital, if (zn = T nx; n ≥ 0), for some x ∈ X;
full, when n  → zn is injective (i < j implies xi �= xj );

the intersection of these notions yields the precise ones.

reg-1) Call X, (sa-so-f,d)-complete provided

(for each (sa-so-f)-sequence) d-Cauchy 2⇒ d-convergent.

reg-2) We say that T is (sa-so-f,d)-continuous, if

((zn)=(sa-so-f)-sequence and zn
d−→ z) imply T zn

d−→ T z.

reg-3) Call (≤), (sa-so-f,d)-selfclosed, when

((zn)=(sa-so-f)-sequence and zn
d−→ z) imply (zn ≤ z, for each n ≥ 0).
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When the strong orbital properties are ignored, these conventions may be written
in terms of (almost strictly ascending full) and (strictly ascending full) sequences;
we do not give details.

(B) As an essential completion of these facts, we have to discuss the contractive
type conditions to be used. Let us introduce the mappings (for x, y ∈ X)

M1(x, y) = d(T x, T y), M2(x, y) = d(x, y), M3(x, y) = d(x, T x),
M4(x, y) = d(y, T y), M5(x, y) = d(x, T y), M6(x, y) = d(T x, y).

By taking elementary order/algebraic combinations between these, one gets a lot of
functions to be used in our reasonings; the basic ones are

A1 = M2, A2 = (1/2)[M3 +M4],
A3 = max{M3,M4}, A4 = (1/2)[M5 +M6];
or, explicitly (for x, y ∈ X)
A1(x, y) = d(x, y), A2(x, y) = (1/2)[d(x, T x)+ d(y, T y)],
A3(x, y) = max{d(x, T x), d(y, T y)}, A4(x, y) = (1/2)[d(x, T y)+ d(T x, y)].

Let P : X×X → R+ be a map. For an easy reference, we give the list of orbital
normality conditions (to be fulfilled – or not – by P(., .)):

(o-nor-1) P is orbitally small:
for each d-semi-Cauchy (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤) and

each (ε, δ) with ε > δ > 0, there exists γ ∈]0, δ/2[ (and the attached semi-
Cauchy rank n(γ ) ≥ 0), such that:

for each j ≥ 2, k ≥ n(γ ) with d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}),
we have:
P(xn, xn+j ) < ε + δ, whenever (n ≥ k, d(xn, xn+j+1) ≥ ε + δ/2)
(o-nor-2) P is orbitally singular asymptotic:
for each (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤),
and each z ∈ X with

(xn
d−→ z, T xn

d−→ z), (xn < z for almost all n), and d(z, T z) > 0,
we have lim infn P (xn, z) < d(z, T z)

(o-nor-3) P is orbitally regular asymptotic:
for each (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤),
and each z ∈ X with

(xn
d−→ z, T xn

d−→ z), (xn < z for almost all n), and d(z, T z) > 0,
we have P(xn, z) → d(z, T z)

(o-nor-4) P is orbitally strongly regular asymptotic:
for each (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤),
and each z ∈ X with

(xn
d−→ z, T xn

d−→ z), (xn < z for almost all n), and d(z, T z) > 0,
we have P(xn, z) →→ d(z, T z).

Here, a property π(n) involving n ∈ N is holding for almost all n, provided

there exists h ∈ N such that π(n) holds for all n ≥ h.
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Likewise, given the sequence (rn; n ≥ 0) in R and the point r ∈ R, we denoted

rn →→ r , if rn → r and there exists a subsequence
(sn = ri(n); n ≥ 0) of (rn; n ≥ 0) such that [sn = r , ∀n ≥ 0].

Further, starting from the same mapping P : X × X → R+, we give the list of
global normality conditions (to be fulfilled—or not—by P(., .)):

(g-nor-1) P is (≤)-sufficient:
P(x, y) > 0, for each x, y ∈ X, x < y

(g-nor-2) P is telescopic bounded:
for each x ∈ X(T ,<), we have P(x, T x) ≤ A3(x, T x)

(g-nor-3) P is fix-bounded:
(x, y ∈ Fix(T ), x < y) 2⇒ P(x, y) ≤ M(x, y)

(g-nor-4) P is chain diametrally bounded:
for each x, y ∈ X taken so as (x, T x, y, T y) is (<)-chain,
we have P(x, y) ≤ M(x, y)

(g-nor-5) P is diametrally bounded:
for each x, y ∈ X we have P(x, y) ≤ M(x, y).

Here, for each (nonempty) subset Z in X, we put

diam(Z) = sup{d(x, y); x, y ∈ Z} (the diameter of Z);

and the element in M ∈ F (X ×X,R+) introduced via

M(x, y) = diam{x, T x, y, T y}, x, y ∈ X,

will be referred to as the diameter mapping relative to T . Likewise, the 4-tuple
(z1, z2, z3, z4) ∈ X4 is called a (<)-chain, provided

zi < zj , whenever i < j .

Concerning the orbitally small concept above, the following practical criteria will
be useful for us.

Proposition 15 Under the above conventions,

(52-1) If the mapping P : X × X → R+ is chain diametrally bounded, then it is
orbitally small

(52-2) If the maps P1, P2 : X × X → R+ are orbitally small, then P3 :=
max{P1, P2} is orbitally small.

Proof

i) Let the d-semi-Cauchy (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤) and
the couple (ε, δ) with ε > δ > 0 be given. Further, take some γ ∈]0, δ/2[; and
let n(γ ) stand for the attached semi-Cauchy rank. We claim that for each j ≥ 2
and k ≥ n(γ ) with

d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}),
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the relations below hold

P(xn, xn+j ) < ε + δ, for each n ≥ k;

and this will complete the argument. In fact, let n ≥ k be arbitrary fixed. By the very
choice of our sequence,

(xn, xn+1, xn+j , xn+j+1) is a (<)-chain in X4.

On the other hand, by the working hypothesis above, we have

d(xn, xn+j ), d(xn+1, xn+j ), d(xn+1, xn+j+1) < ε + δ/2;

and, by the very definition of our index n(γ ), one gets (as k ≤ n(γ ))

d(xn, xn+1), d(xn+j , xn+j+1) < γ < δ/2 < ε + δ/2.

Finally, taking the triangular inequality into account, one gets (by the choice of γ )

d(xn, xn+j+1) ≤ d(xn, xn+1)+ d(xn+1, xn+j+1) < γ + ε + δ/2 < ε + δ.

Putting these together, yields (by the chain diametrally bounded property)

P(xn, xn+j ) ≤ M(xn, xn+j ) < ε + δ;

and our claim follows.

ii) Given the couple (ε, δ) with ε > δ > 0, let γ1 ∈]0, δ/2[ (with the associated
semi-Cauchy rank n(γ1)) and γ2 ∈]0, δ/2[ (with the associated semi-Cauchy
rank n(γ2)) be assured by the orbitally small property of P1 and P2, respectively.
Then, let us put

γ3 = min{γ1, γ2}, n(γ3) = the associated semi-Cauchy rank (hence, n(γ3) ≥
max{n(γ1), n(γ2)});

we claim that the desired property of P3 is fulfilled with respect to the obtained pair.
In fact, let j ≥ 2, k ≥ n(γ3) be such that

d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j});
we have to establish that

P3(xn, xn+j ) < ε + δ, whenever (n ≥ k, d(xn, xn+j+1) ≥ ε + δ/2).

To verify this, note that, by the imposed hypothesis

d(xm, xm+i ) < ε + δ/2 for (m ≥ k ≥ n(γk), i ∈ {1, . . . , j}, r ∈ {1, 2}).
On the other hand, letting n ≥ k be as in the premise above, we have

n ≥ k ≥ n(γk), d(xn, xn+j+1) ≥ ε + δ/2, r ∈ {1, 2}.
Putting these together, gives (by the admitted properties of P1 and P2)

Pk(xn, xn+j ) < ε + δ, r ∈ {1, 2}; whence, P3(xn, xn+j ) < ε + δ;

and the conclusion follows.
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(C) Finally, given the mapping P : X ×X → R+, let us say that T is Meir-Keeler
(d,≤;P)-contractive, in case

(mk-1) [x < y, P(x, y) > 0] imply d(T x, T y) < P (x, y);
referred to as: T is strictly nonexpansive (modulo (d,≤;P))
(mk-2) for each ε > 0, there exists δ > 0, such that:
(x < y, ε < P (x, y) < ε + δ) 2⇒ d(T x, T y) ≤ ε;
expressed as: T has the Meir-Keeler property (modulo (d,≤;P)).
Note that, by the former of these, the Meir-Keeler property may be written as

(mk-3) for each ε > 0, there exists δ > 0, such that:
(x < y, 0 < P(x, y) < ε + δ) 2⇒ d(T x, T y) ≤ ε.

In particular, when P = A1, this convention is comparable with the standard one
proposed by Meir and Keeler [23] and refined by Matkowski [22]; see also Cirić
[9]. Further aspects may be found in Jachymski [16] and Samet [37].

In the following, two basic examples of such contractions are given.

(I) Given ϕ ∈ F0(R+), call T , (d,≤;P ;ϕ)-contractive if

(contr-1) d(T x, T y) ≤ ϕ(P (x, y)), ∀x, y ∈ X, x < y, P(x, y) > 0.

Proposition 16 Assume that T is (d,≤;P ;ϕ)-contractive, where ϕ ∈
F0(re)(R+) is Meir-Keeler admissible. Then, T is Meir-Keeler (d,≤;P)-
contractive.

Proof

i) Let x, y ∈ X be such that x < y, P(x, y) > 0. By the contractive condition and
ϕ=regressive

d(T x, T y) ≤ ϕ(P (x, y)) < P (x, y);

so, T is strictly nonexpansive (modulo (d,≤;P)).
ii) Let ε > 0 be arbitrary fixed; and δ > 0 be the number assured by the Meir-

Keeler admissible property of ϕ. Further, let x, y ∈ X be such that x < y, and
ε < P (x, y) < ε + δ. By the contractive condition and admissible property,

d(T x, T y) ≤ ϕ(P (x, y)) ≤ ε;

so that, T has the Meir-Keeler property (modulo (d,≤;P)).
(II) Let us say that (ψ, ϕ) is an admissible pair of functions in F0(R+), if

(a-p) ψ is increasing, and ϕ is sufficient (ϕ(t) > 0 if t > 0).

The following sequential type conditions involving this couple are considered

(seq-1) ϕ is right sequentially positive:
(lim supn ϕ(tn) > 0 when tn → ε+), for each ε > 0
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(seq-2) ψ is ϕ-bounded left oscillating:
ϕ(ε) > ψ(ε)− ψ(ε − 0), for each ε > 0
(seq-3) ψ is ϕ-bounded bilateral oscillating:
(lim supn ϕ(tn) > ψ(ε + 0)− ψ(ε − 0), when tn → ε), for each ε > 0.

Here, given the sequence (rn; n ≥ 0) in R and the point r ∈ R, we write

rn → r+ (rn → r−) if rn → r and (rn > r (rn < r), for all n ≥ 0).

Now, given the mapping P : X × X → R+ and the couple (ψ, ϕ) of functions in
F0(R+), let us say that T is (d,≤;P ; (ψ, ϕ))-contractive, provided

(contr-2) ψ(d(T x, T y)) ≤ ψ(P (x, y))− ϕ(P (x, y)),
∀x, y ∈ X, x < y, P(x, y) > 0.

Proposition 17 Suppose that T is (d,≤;P ; (ψ, ϕ))-contractive, for an admissible
pair (ψ, ϕ) of functions in F0(R+), with ϕ = right sequentially positive. Then,
necessarily, T is Meir-Keeler (d,≤;P)-contractive, in (ZF-AC+DC).

Proof

i) Let x, y ∈ X be such that x < y, P(x, y) > 0. As ϕ is sufficient, we derive

ϕ(P (x, y)) > 0; wherefrom ψ(d(T x, T y)) < ψ(P (x, y)).

This, via [ψ=increasing], yields d(T x, T y) < P (x, y); so that, T is strictly
nonexpansive (modulo (d,≤;P)).
ii) Assume by contradiction that T does not have the Meir-Keeler property (modulo

(d,≤;P)); i.e. (for some ε > 0)

C(δ) := {(u, v) ∈ X ×X; u < v, ε < P(u, v) < ε + δ, d(T u, T v) > ε}
is nonempty, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the Denumerable
Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-AC+DC)], a couple of
sequences (xn; n ≥ 0) and (yn; n ≥ 0) in X, so as

(∀n): (xn, yn) is an element of C(δn);

or, equivalently (by definition and preceding step)

(∀n) : xn < yn, ε < d(T xn, T yn) < P (xn, yn) < ε + δn.

By the contractive condition, we get

ψ(d(T xn, T yn)) ≤ ψ(P (xn, yn))− ϕ(P (xn, yn)), ∀n;

or, equivalently,

(0 <) ϕ(P (xn, yn)) ≤ ψ(P (xn, yn))− ψ(d(T xn, T yn)), ∀n.
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From the preceding relation, P(xn, yn) → ε+, d(T xn, T yn) → ε+; so, passing to
lim sup as n → ∞,

(0 ≤) lim sup
n

ϕ(P (xn, yn)) ≤ ψ(ε + 0)− ψ(ε + 0) = 0.

But, as ϕ is right sequentially positive, the obtained relations cannot hold simul-
taneously. Hence, the working hypothesis is not acceptable; and the Meir-Keeler
property follows. Putting these together, ends the argument.

(III) A basic particular case of this last construction is to be described as follows.
Take a triple of functions (ψ, λ, μ) over F0(R+); we call it admissible,
provided

(admi) ψ(.) is increasing and the function χ := μ− λ+ ψ

is sufficient (χ(t) > 0 when t > 0); whence, χ ∈ F0(R+)

The following sequential type conditions involving this triple are considered

(sequ-1) μ− λ is right-lsc (resp., lsc) on R0+
(sequ-2) ψ is left continuous on R0+ (ψ(s − 0) = ψ(s), ∀s > 0).
(sequ-3) ψ is continuous on R0+ (ψ(s + 0) = ψ(s − 0), ∀s > 0).

Here, a function γ ∈ F (R+) is called right-lsc (resp., lsc) on R0+, provided

lim inft→s+ γ (t) ≥ γ (s), (resp., lim inft→s+ γ (t) ≥ γ (s)), ∀s ∈ R0+.

Proposition 18 Let the triple of functions (ψ, λ, μ) over F0(R+) be admissible
(see above). Then,

(55-1) if μ− λ is right-lsc on R0+, then χ is sequentially positive
(55-2) if (in addition to the right-lsc property), if ψ is left continuous on R0+, then

ψ is χ -bounded left oscillating
(55-3) if (in addition to the right-lsc property), if μ − λ is lsc on R0+, and ψ is

χ -bounded bilateral oscillating.

Proof

i) Suppose by contradiction that there exist ε > 0 and a sequence (tn; n ≥ 0) in
R0+ with tn → ε+, such that

lim supn(χ(tn)) = 0; hence, lim infn(χ(tn)) = 0.

By the properties of lim inf operator, one gets (as ψ is increasing and μ− λ =
χ − ψ)

lim infn(μ(tn)− λ(tn)) ≤ lim infn(χ(tn))− ψ(ε + 0) = −ψ(ε + 0).

As μ− λ is right-lsc on R0+, we get

μ(ε)− λ(ε) ≤ lim infn(μ(tn)− λ(tn)) ≤ −ψ(ε + 0) ≤ −ψ(ε);
or, equivalently, χ(ε) ≤ 0;
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in contradiction with the sufficiency of χ . As a consequence, our working
assumption is not acceptable; and the claim follows.

ii) For each ε > 0, we have (as χ is sufficient and ψ is left continuous)

χ(ε) > 0 = ψ(ε)− ψ(ε − 0);
and the assertion follows.

iii) For each ε > 0, we have (as χ is sufficient and ψ is bilaterally continuous)

lim supn(χ(tn)) ≥ lim infn(μ(tn)− λ(tn)+ ψ(tn)) ≥ μ(ε)− λ(ε)+ ψ(ε)

= χ(ε) > 0 = ψ(ε + 0)− ψ(ε − 0), when tn → ε;
whence the claim.

Now, given the mapping P : X ×X → R+ and the triple (ψ, λ, μ) of functions
in F0(R+), let us say that T is (d,≤;P ; (ψ, λ, μ))-contractive, provided

(contr-3) ψ(d(T x, T y)) ≤ λ(P (x, y))− μ(P (x, y)),
∀x, y ∈ X, x < y, P(x, y) > 0.

Proposition 19 Suppose that T is (d,≤;P ; (ψ, λ, μ))-contractive, for an admis-
sible triple (ψ, λ, μ) of functions in F0(R+), with μ − λ = right-lsc on R0+. Then,
necessarily, T is Meir-Keeler (d,≤;P)-contractive in (ZF-AC+DC).

The proof is immediately obtainable from the preceding auxiliary fact; we do not
give details.

6 Main Result

Let (X, d,≤) be a quasi-ordered metric space; and T ∈ F (X) be a selfmap of X;
supposed to be semi-progressive and increasing. The general directions under which
the problem of determining fixed points of T is to be solved were already made
precise; moreover, the (sufficient) regularity conditions and metrical contractive
properties of the same were settled.

The main (fixed point) result of this exposition (referred to as Function Meir-
Keeler theorem; in short: (MK-f)) may be stated as below.

Theorem 2 Assume (under the precise general conditions) that T is Meir-Keeler
(d,≤;P)-contractive, for some mapping P : X ×X → R+, with:

(co-basic) P is (≤)-sufficient, telescopic bounded, and orbitally small.

In addition, let X be (sa-so-f,d)-complete. Then

(61-a) T is a strong Picard operator (modulo (d,≤)), provided the following extra
condition holds

(exco-a1) T is (sa-so-f,d)-continuous
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(61-b) T is a Bellman Picard operator (modulo (d,≤)), whenever (≤) is (sa-so-
f,d)-selfclosed and one of the following extra conditions holds

(exco-b1) P is orbitally singular asymptotic
(exco-b2) P is orbitally regular asymptotic, and T is
(d,≤;P ;ϕ)-contractive, where ϕ ∈ F0(re)(R+) is bilateral Boyd-Wong admissi-

ble (hence, Meir-Keeler admissible)
(exco-b3) P is orbitally strongly regular asymptotic, and T is (d,≤;P ;ϕ)-

contractive, where ϕ ∈ F0(re)(R+) is Meir-Keeler admissible
(exco-b4) P is orbitally regular asymptotic, and T is

(d,≤;P ; (ψ, ϕ))-contractive, for an admissible couple (ψ, ϕ) of functions in
F0(R+), such that ϕ is sequentially positive and ψ is ϕ-bounded

bilateral oscillating
(exco-b5) P is orbitally strongly regular asymptotic, and T is
(d,≤;P ; (ψ, ϕ))-contractive, for an admissible couple (ψ, ϕ) of functions in

F0(R+), such that ϕ is sequentially positive and ψ is ϕ-bounded
left oscillating

(61-c) T is fix-(≤)-asingleton (hence, fix-(≤)-singleton) whenever (in addition to
the above setting)

(exco-c1) P is fix-bounded (see above)

(61-d) T is fix-asingleton (hence, fix-singleton) whenever (in addition to the above
setting) the fix-bounded condition we just listed is combined with

(exco-d1) X is (≤)-directed.

Proof There are several steps to be passed.

Part 0 We start with the last two affirmations in the statement. Assume that

P is fix-bounded: (x, y ∈ Fix(T ), x < y) 2⇒ P(x, y) ≤ M(x, y);

and let z1, z2 ∈ Fix(T ) be such that z1 ≤ z2. If, by absurd,

z1 �= z2; hence, z1 < z2,

we necessarily have

P(z1, z2) > 0 (as P is (≤)-sufficient);

so that, by the strict nonexpansive property (modulo (d,≤;P))
d(z1, z2) = d(T z1, T z2) < P (z1, z2).

On the other hand, clearly,

P(z1, z2) ≤ M(z1, z2) = d(z1, z2) (by the fix-bounded property).

The contradiction at which we arrived shows that our working assumption is not
acceptable; and then, our first affirmation follows. Finally, the second affirmation is
evident, by an auxiliary fact above.
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Having these precise, we may now pass to the basic part of our developments.
Take some x0 ∈ X(T ,≤); and put (xn = T nx0; n ≥ 0); clearly, this is an ascending
strongly orbital sequence. If xn = xn+1 for some n ≥ 0, we are done; so, without
loss, one may assume that, for each n ≥ 0,

(asa-cond) xn �= xn+1; hence, xn < xn+1, ρn := d(xn, xn+1) > 0.

Part 1 We firstly assert that, for each n ≥ 0,

(0 <) ρn+1 < P(xn, xn+1) ≤ ρn, (hence, (0 <)ρn+1 < ρn).

In fact, let n ≥ 0 be arbitrary fixed. Clearly,

P(xn, xn+1) > 0 (since P is (≤)-sufficient);

so that, by the strict nonexpansive property of T (modulo (d,≤;P)),

ρn+1 = d(T xn, T xn+1) < P (xn, xn+1).

On the other hand, as P is telescopic-bounded, we must have

P(xn, xn+1) ≤ A3(xn, xn+1) = max{ρn, ρn+1}.

Combining with the preceding relation gives, for each n ≥ 0,

ρn+1 < max{ρn, ρn+1}; wherefrom: ρn+1 < ρn, A3(xn, xn+1) = ρn;

and the claim follows.

Part 2 From the preceding part, one derives (ρn+1 < ρn, ∀n); so that, the sequence
(ρn; n ≥ 0) is strictly descending. As a consequence, ρ := limn ρn exists as an
element of R+. Assume by contradiction that ρ > 0; and let σ > 0 be the number
given by the Meir-Keeler property of T (modulo (d,≤;P)). By definition, there
exists a rank n(σ) such that

n ≥ n(σ) implies ρ < ρn < ρ + σ .

On the other hand, taking a previous relation into account, we have

(∀n): (0 <) ρn+1 < P(xn, xn+1) ≤ ρn.

From the preceding relation involving (ρn), we then have

n ≥ n(σ) implies (xn < xn+1 and) ρ < P(xn, xn+1) < ρ + σ ;

so that, by the Meir-Keeler property,

(∀n ≥ n(σ)): ρ < ρn+1 = d(T xn, T xn+1) ≤ ρ;

a contradiction. Hence, ρ = 0; so that,

ρn := d(xn, xn+1) = d(xn, T xn) → 0, as n → ∞;
or, in other words: (xn; n ≥ 0) is d-semi-Cauchy.
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Part 3 Suppose that

there exist i, j ∈ N such that i < j , xi = xj .

Denoting p = j − i, we thus have p > 0 and xi = xi+p; so that

xi+1 = xi+p+1; whence, ρi = ρi+p;

in contradiction with the strictly descending property of (ρn; n ≥ 0). Hence, our
working hypothesis cannot hold; wherefrom

(xn; n ≥ 0) is a full sequence
(i < j implies xi �= xj ; hence, xi < xj , d(xi, xj ) > 0).

Part 4 As a consequence of this, the iterative sequence (xn = T nx0; n ≥ 0)
in X(T ,≤) is strictly ascending, strongly orbital and full. We now establish that
(xn; n ≥ 0) is d-Cauchy. Let ε > 0 be given; and δ > 0 be assured by the Meir-
Keeler property of T (modulo (d,≤;P)); clearly, without loss, one may assume
that δ < ε. Further, given the couple (ε, δ) as before, let the number γ ∈]0, δ/2[
[and the associated semi-Cauchy rank n(γ )] be assured via P=orbitally small. We
claim that, under these conditions,

(∀i ≥ 1): d(xn, xn+i ) < ε + δ/2, for each n ≥ n(γ );

and, from this, the d-Cauchy property of (xn) follows. To verify the assertion, an
(ordinary) induction is being performed upon i ≥ 1. The case i ∈ {1, 2} is evident,
via γ < δ/2 and the very definition of our semi-Cauchy rank n(γ ). Suppose that
the underlying relation holds for all i ∈ {1, . . . , j}, where j ≥ 2; we must establish
its validity for i = j + 1:

d(xn, xn+j+1) < ε + δ/2, for all n ≥ n(γ ).

Suppose by contradiction that this does not hold:

C(ε, δ) := {n ∈ N(n(γ ),≤); d(xn, xn+j+1) ≥ ε + δ/2} is nonempty;

and let n ∈ C(ε, δ) be one of these ranks; for example, one may take n =
minC(ε, δ). By the choice of our data

P(xn, xn+j ) < ε + δ (as P is orbitally small).

On the other hand, by the preceding step (and P = (≤)-sufficient)

xn < xn+j (whence, P(xn, xn+j ) > 0).

Combining with the (variant of) Meir-Keeler property of T (modulo (d,≤;P)),
gives

d(xn+1, xn+j+1) = d(T xn, T xn+j ) ≤ ε;

so that, taking the triangular inequality into account,

d(xn, xn+j+1) ≤ d(xn, xn+1)+ d(xn+1, xn+j+1) < ε + γ < ε + δ/2;
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in contradiction with the choice of n ∈ C(ε, δ). Hence, the precise inductive relation
holds; wherefrom, (xn; n ≥ 0) is d-Cauchy, as claimed.

Part 5 As X is (sa-so-f,d)-complete, xn
d−→ z for some (uniquely determined)

z ∈ X. There are two cases to discuss.

Case 5a Suppose that T is (sa-so-f,d)-continuous. Then yn := T xn
d−→ T z as

n → ∞. On the other hand, (yn = xn+1; n ≥ 0) is a subsequence of (xn; n ≥ 0);

whence yn
d−→ z; and this yields (as d is separated), z = T z.

Case 5b Suppose that (≤) is (sa-so-f,d)-almost-selfclosed. For the moment, it is
clear that

xn ≤ z for all n ≥ 0.

We show that b := d(z, T z) > 0 yields a contradiction.
From the d-semi-Cauchy and convergence properties one gets (taking a metrical

property of d(., .) into account)

d(xn, z), d(T xn, z) → 0, d(xn, T xn) → 0, d(xn, T z), d(T xn, T z) → b.

On the other hand, by the full property of (xn; n ≥ 0),

E := {n ∈ N; xn = z} is an asingleton;

so that, the following separation property holds:

(sepa) ∃h = h(z) ≥ 0: n ≥ h 2⇒ xn �= z (hence, xn < z).

There are several sub-cases to be analyzed.

Alter 1 Assume that P is orbitally singular asymptotic. As P is (≤)-sufficient,

P(xn, z) > 0, ∀n ≥ h.

This tells us that the Meir-Keeler contractive condition applies to (xn, z), ∀n ≥ h;
and yields (by the strict nonexpansive property)

d(xn+1, T z) < P (xn, z), for all n ≥ h;

wherefrom (passing to lim inf as n → ∞)

b = lim infn d(xn+1, T z) ≤ lim infn P (xn, z).

This, however, contradicts the orbital singular asymptotic property of P . Hence,
necessarily, b = 0 [i.e.: z = T z]; and conclusion follows.

Alter 2 Suppose that P is orbitally regular asymptotic, and T is (d,≤;P ;ϕ)-
contractive, where ϕ ∈ F0(re)(R+) is bilateral Boyd-Wong admissible (hence,
Meir-Keeler admissible). By the previous convergence relations concerning (xn) we
have (from the orbital regular asymptotic property)

P(xn, z) → b, as n → ∞.
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On the other hand, by the imposed contractive conditions,

d(xn+1, T z) ≤ ϕ(P (xn, z)), for all n ≥ h.

Passing to lim sup as n → ∞, one derives (by an auxiliary fact)

b ≤ lim supn ϕ(P (xn, z)) ≤ Λ±ϕ(b) < b; a contradiction.

Hence, necessarily, b = 0; i.e.: z = T z.

Alter 3 Assume further that P is orbitally strongly regular asymptotic, and T

is (d,≤;P ;ϕ)-contractive, where ϕ ∈ F0(re)(R+) is Meir-Keeler admissible.
From the previous convergence relations concerning (xn) we have (by the posed
hypothesis upon P )

P(xn, z) →→ b, as n → ∞.

According to the definition of this relation, there must be a subsequence (un :=
xj (n); n ≥ 0) of (xn; n ≥ 0), such that (in addition)

P(un, z) = b(> 0), for all n ≥ 0.

Note that, as limn j (n) = ∞, one may arrange for

j (n) ≥ h (hence, un < z), for all n ≥ 0.

From the imposed contractive condition, we get

d(T un, T z) ≤ ϕ(P (un, z)) = ϕ(b), for all n ≥ 0.

Passing to limit as n → ∞ in the previous relation, it results that

b ≤ ϕ(b) < b; a contradiction.

Hence, b = 0; i.e.: z = T z; and conclusion follows.

Alter 4 Suppose that P is orbitally regular asymptotic, and T is (d,≤;P ; (ψ, ϕ))-
contractive, for an admissible couple (ψ, ϕ) of functions in F0(R+), such that ϕ
is sequentially positive and ψ is ϕ-bounded bilateral oscillating. By the previous
convergence relations concerning (xn) (see above), we have (by the orbital regular
asymptotic property)

P(xn, z) → b, as n → ∞.

On the other hand, by the imposed contractive conditions,

ψ(d(xn+1, T z)) ≤ ψ(P (xn, z))− ϕ(P (xn, z)), for all n ≥ h;

or, equivalently,

ϕ(P (xn, z)) ≤ ψ(P (xn, z))− ψ(d(xn+1, T z)), for all n ≥ h.

Passing to lim sup as n → ∞ one derives

lim supn ϕ(P (xn, z)) ≤ ψ(b + 0)− ψ(b − 0);
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in contradiction with ψ being ϕ-bounded bilateral oscillating. Hence, necessarily,
b = 0 (i.e.: z = T z); and this establishes our claim.

Alter 5 Assume that the mapping P is orbitally strongly regular asymptotic and
T is (d,≤;P ; (ψ, ϕ))-contractive, for an admissible couple (ψ, ϕ) of functions in
F0(R+), such that ϕ is sequentially positive and ψ is ϕ-bounded left oscillating.
From the previous convergence relations concerning (xn) we have (by the posed
hypothesis upon P )

P(xn, z) →→ b, as n → ∞.

According to the definition of this relation, there must be a subsequence (un :=
xj (n); n ≥ 0) of (xn; n ≥ 0), such that (in addition)

P(un, z) = b(> 0), for all n ≥ 0.

Note that, as limn j (n) = ∞, one may arrange for

j (n) ≥ h (hence, un < z), for all n ≥ 0.

From the imposed contractive conditions, one gets

ψ(d(T un, T z)) ≤ ψ(P (un, z))− ϕ(P (un, z)) = ψ(b)− ϕ(b), ∀n ≥ 0;

or, equivalently,

(0 <)ϕ(b) ≤ ψ(b)− ψ(d(T un, T z)), for all n ≥ 0.

By the left part of this relation, we have (along with ψ=increasing)

d(T un, T z) < b, for all n; whence d(T un, T z) → b−.

Passing to lim sup as n → ∞ in the right part of our previous relation, yields

ϕ(b) ≤ ψ(b)− ψ(b − 0);

in contradiction with ψ being ϕ-bounded left oscillating. Hence, b = 0 (i.e.: z =
T z); and conclusion follows. The proof is thereby complete.

Note that, further enlargements of these facts are possible, over quasi-metric
spaces taken as in Roldán et al. [34]. On the other hand, this result admits
multivalued type versions, under Nadler’s model [26]; but, in this case, the setting
of our problem is (ZF-AC+DC). Finally, non-sufficient versions of our main result
are possible, under the lines in Choudhury and Kundu [8]. We shall discuss all these
facts in a separate paper.

7 Particular Cases

Let (X, d,≤) be a quasi-ordered metric space. Further, let T be a selfmap of X;
supposed to be semi-progressive and increasing. As precise, we have to determine
appropriate conditions under which Fix(T ) is nonempty. The specific directions
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under which this problem is to be solved were already listed. Sufficient conditions
for getting such properties are being founded on the (almost) strictly ascending
strongly orbital full concepts we just introduced. Finally, the specific contractive
properties to be used have been described; and the main result incorporating all
these is Function Meir-Keeler theorem (MK-f). It is our aim in the sequel to expose
a certain particular case of it, with some technical relevance. To do this, remember
that for each x, y ∈ X, we defined the (basic) maps

M1(x, y) = d(T x, T y), M2(x, y) = d(x, y), M3(x, y) = d(x, T x),
M4(x, y) = d(y, T y), M5(x, y) = d(x, T y), M6(x, y) = d(T x, y).

By taking elementary order/algebraic combinations between these, one gets a lot of
functions to be used in our reasonings; the basic ones are

A1 = M2, A2 = (1/2)[M3 +M4],
A3 = max{M3,M4}, A4 = (1/2)[M5 +M6];
or, explicitly (for x, y ∈ X)
A1(x, y) = d(x, y), A2(x, y) = (1/2)[d(x, T x)+ d(y, T y)],
A3(x, y) = max{d(x, T x), d(y, T y)}, A4(x, y) = (1/2)[d(x, T y)+ d(T x, y)].
Then, by means of (further) intricate order/algebraic operations, we may define
some other functions of this type; the following ones will be taken as concrete
examples in our developments. Let us introduce the diagonal type subset of R2+
Δ = {(ξ, η) ∈ R+ × R0+; ξ ≤ η}.
This set is composed of a “singular” and “regular” part, expressed as

Δs = {(ξ, η) ∈ Δ; ξ < η},
Δr = {(ξ, η) ∈ Δ; ξ = η} = {(ζ, ζ ); ζ ∈ R0+}.
For each (ξ, η) ∈ Δ, let us introduce the map B := B[ξ, η] : X ×X → R+, as

B = M4(ξ +M3)/(η +M2); or, explicitly (for x, y ∈ X)
B(x, y) = d(y, T y)[ξ + d(x, T x)]/[η + d(x, y)].
Further, let us define

Bs=one of the maps B[ξ, η] with (ξ, η) ∈ Δs ,
Br=one of the maps B[ξ, η] with (ξ, η) ∈ Δr ; or, equivalently:
Br=one of the maps B[ζ, ζ ] with ζ ∈ R0+.

The reason of splitting these maps will become clear later. Finally, given (α, β) ∈ Δ,
let us introduce the map C := C[α, β] : X ×X → R+, according to

C = M6(α +M5)/(β +M2); or, explicitly (for x, y ∈ X):
C(x, y) = d(T x, y)[α + d(x, T y)]/[β + d(x, y)].

Having these precise, fix in the following the couples (ξ, η) ∈ Δs , (ζ, ζ ) ∈ Δr ,
(α, β) ∈ Δ; and (according to the previous conventions), denote

A = {A1, A2, A3, A4, Bs, Br , C}, A1 = {A2, A3, A4, Bs, Br, C}.
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For each (nonempty) subset Θ ∈ exp(A ), let max(Θ) ∈ F (X × X,R+) be the
mapping defined as

max(Θ)(x, y) = max{E(x, y);E ∈ Θ}, x, y ∈ X.

Denote also

A ∗
1 = {Θ ∈ exp(A );A1 ∈ Θ} = {A1} ∪ exp[A1];

clearly, there are card exp[A1] = 26 = 64 subsets of this type. Technically speaking,
the admissible maps P : X ×X → R+ to be considered are of the form

P = max(Θ); where, Θ ∈ A ∗
1 .

So, it remains to establish of to what extent is this functional family compatible with
the (orbital or global) normality conditions required by our main result.

I) First, as a direct consequence of this very construction, we have

Proposition 20 All maps P = max(Θ) where Θ ∈ A ∗
1 are (≤)-sufficient.

Proof Evident, in view of P ≥ A1.

II) The next property to be checked is telescopic boundedness. A positive result in
this direction is given below.

Proposition 21 All maps P = max(Θ) where Θ ∈ A ∗
1 are telescopic bounded.

Proof Given the arbitrary point x ∈ X(T ,<), we have

A1(x, T x) = d(x, T x) ≤ max{d(x, T x), d(T x, T 2x)} = A3(x, T x),
A2(x, T x) = (1/2)[d(x, T x)+ d(T x, T 2x)] ≤
max{d(x, T x), d(T x, T 2x)} = A3(x, T x),
A4(x, T x) = (1/2)d(x, T 2x)) ≤ A2(x, T x) ≤ A3(x, T x);
B(x, T x) = d(T x, T 2x)[ξ + d(x, T x)]/[η + d(x, T x)] ≤
d(T x, T 2x) ≤ A3(x, T x),
C(x, T x) = 0 ≤ A3(x, T x);

and this, along with any map Bs or Br having the form B = B[ξ, η] where (ξ, η) ∈
Δ, ends the argument.

III) Passing to the orbitally small property, we have

Proposition 22 All maps P = max(Θ), where Θ ∈ A ∗
1 are orbitally small.

Proof There argument consists of two steps.

Step 1 Let us first establish that all maps Q ∈ A have such a property. There are
two cases to be discussed.

Case 1 Q ∈ {A1, A2, A3, A4}. By definition, we have for 1 ≤ i ≤ 4,

Ai(x, y) ≤ M(x, y), for all x, y ∈ X;
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whence, the maps {A1, A2, A3, A4} are chain diametrally bounded; this, along with
a previous auxiliary fact, assures us that the underlying maps are orbitally small.

Case 2 Q ∈ {B,C}, where

B ∈ {Bs, Br }; i.e.: B = B[ξ, η], for some (ξ, η) ∈ Δ.

Let the d-semi-Cauchy (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤) be
given, as well as the couple (ε, δ) with ε > δ > 0. Further, let γ ∈]0, δ/2[ be
arbitrary for the moment; and n(γ ) be the attached semi-Cauchy rank. Finally, let
j ≥ 2 and k ≥ n(γ ) be such that be some index with

d(xm, xm+i ) < ε + δ/2 for (m ≥ k, i ∈ {1, . . . , j}).
Suppose now that n ≥ k is such that

d(xn, xn+j+1) ≥ ε + δ/2.

Denote, as usual, (ρn = d(xn, xn+1); n ≥ 0). By these hypotheses, we have

d(xn, xn+j+1) ≤ d(xn, xn+j )+ ρn+j < ε + δ/2 + γ .

On the other hand, the triangular inequality (and our choice of n ≥ k) give

d(xn, xn+j ) ≥ d(xn, xn+j+1)− ρn+j ≥ ε + δ/2 − γ (> 0).

In this case, by definition,

B(xn, xn+j ) =
ρn+j [ξ + ρn]/[η + d(xn, xn+j )] ≤
ρn+j [ξ + ρn]/[η + ε + δ/2 − γ ] < γ [ξ + γ ]/[η + ε + δ/2 − γ ],
C(xn, xn+j ) = d(xn+1, xn+j )[α + d(xn, xn+j+1)]/[β + d(xn, xn+j )] <
(ε + δ/2)[α + ε + δ/2 + γ ]/[β + ε + δ/2 − γ ].

Denote, for 0 < γ < δ/2,

Φ(γ ) = γ [ξ + γ ]/[η + ε + δ/2 − γ ],
Ψ (γ ) = (ε + δ/2)[α + ε + δ/2 + γ ]/[β + ε + δ/2 − γ ].

By the above evaluations, we have (for all such γ )

B(xn, xn+j ) < Φ(γ ), C(xn, xn+j ) < Ψ (γ ).

On the other hand,

limγ→0+Φ(γ ) = 0 < ε + δ,
limγ→0+ Ψ (γ ) = (ε + δ/2)[α + ε + δ/2]/[β + ε + δ/2] < ε + δ.

This tells us that, if γ ∈]0, δ/2[ is small enough, we have
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Φ(γ ) < ε + δ; hence, B(xn, xn+j ) < ε + δ,
Ψ (γ ) < ε + δ; hence, C(xn, xn+j ) < ε + δ.

Putting these together, one gets the desired assertion involving the class A .

Step 2 The final conclusion relative to the maps P = max(Θ), where Θ ∈ A1 is
now clear—by a previous auxiliary fact—via all elements in Θ being endowed with
the orbitally small property.

IV) Concerning the orbital asymptotic properties, the situation is a little bit
complicated. Precisely, the following synthetic answer is available.

Proposition 23 Under the above conventions,

(74-1) Each (admissible) map P = max(Θ), where Θ ∈ A ∗
1 fulfills A3, Br /∈ Θ is

orbitally singular asymptotic
(74-2) Each (admissible) map P = max(Θ), where Θ ∈ A ∗

1 fulfills Br ∈ Θ is
orbitally regular asymptotic

(74-3) Each (admissible) map P = max(Θ), where Θ ∈ A ∗
1 fulfills A3 ∈ Θ ,

Br /∈ Θ is orbitally strongly regular asymptotic.

Proof There are three steps to be passed.

Step 1 First, we have to discuss the orbital asymptotic properties of the maps Q ∈
{A1, A2, A3, A4}. Let the (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤) and
the point z ∈ X be such that

xn
d−→ z, T xn

d−→ z, (xn < z for almost all n), and b := d(z, T z) > 0.

From these convergence properties one gets (taking a metrical property of d(., .)
into account)

d(xn, z), d(T xn, z) → 0, d(xn, T xn) → 0, d(xn, T z), d(T xn, T z) → b.

This, by definition, gives (as n → ∞)

A1(xn, z) → 0, A2(xn, z) → b/2, A3(xn, z) → b, A4(xn, z) → b/2;

whence, any map Q ∈ {A1, A2, A4} is orbitally singular asymptotic. Moreover, the
same convergence properties of (xn; n ≥ 0) tell us that, for a certain rank n(z) ≥ 0,
we must have for all n ≥ n(z),

d(xn, z), d(T xn, z) < b/2, d(xn, T xn) < b/2.

This, by the d-Lipschitz property of d(., .), gives for all n ≥ n(z),

|d(xn, T z)− b| ≤ d(xn, z) < b/2,
|d(T xn, T z)− b| ≤ d(T xn, z) < b/2;

wherefrom (for the same ranks)

b/2 < d(xn, T z), d(T xn, T z) < 3b/2.
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Combining these, yields, for all n ≥ n(z)

A1(xn, z) < b/2 < b, A2(xn, z) < 3b/4 < b,
A3(xn, z) = b, A4(xn, z) < b;

which, in particular, tells us that

Q = A3 is orbitally strongly regular asymptotic.

Step 2 Second, we discuss the orbital asymptotic properties of the maps Q ∈
{Bs, Br, C}. Let the (sa-so-f)-sequence (xn = T nx0; n ≥ 0) in X(T ,≤), and the
point z ∈ X be such that

xn
d−→ z, T xn

d−→ z, (xn < z for almost all n), and b := d(z, T z) > 0.

By definition, we have (under the notation (ρn := d(xn, xn+1); n ≥ 0))

B(xn, z) = b[ξ + ρn]/[η + d(xn, z)], ∀n; so, limn B(xn, z) = bξ/η.

This, along with the above conventions, means

limn Bs(xn, z) = bξ/η < b;
whence, Q = Bs is orbitally singular asymptotic;
limn Br(xn, z) = bζ/ζ = b;
whence, Q = Br is orbitally regular asymptotic.

On the other hand,

C(xn, z) = d(xn+1, z)/[α + d(xn, T z)]/[β + d(xn, z)], ∀n;
so, limn C(xn, z) = 0 < b;
wherefrom: Q = C is orbitally singular asymptotic.

Step 3 By the above discussion, it is clear that our conclusion follows.

V) Finally, let us see what happens with the fix-bounded property.

Proposition 24 All maps P = max(Θ) where Θ ∈ A ∗
1 , are fix-bounded.

Proof Let x, y ∈ Fix(T ) be such that x < y. Then (under the convention B =
B[ξ, η], where (ξ, η) ∈ Δ)

A1(x, y) = A4(x, y) = d(x, y) = M(x, y),
A2(x, y) = A3(x, y) = 0 ≤ d(x, y) = M(x, y),
B(x, y) = 0 ≤ d(x, y) = M(x, y),
C(x, y) = d(x, y)[α + d(x, y)]/[β + d(x, y)] ≤ d(x, y) = M(x, y);

and, from this, we are done.

Now, by simply combining these with our main result, one gets the following
rational type fixed point statement (referred to as Rational Function Meir-Keeler
theorem; in short: (MK-f-ra)).
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Theorem 3 Assume that the selfmap T is (semi-progressive, increasing and) Meir-
Keeler (d,≤;max(Θ))-contractive, for some subset Θ ∈ A ∗

1 . In addition, let X be
(sa-so-f,d)-complete. Then

(71-a) T is a strong Picard operator (modulo (d,≤)), provided the following extra
condition holds

(exco-a1) T is (sa-so-f,d)-continuous

(71-b) T is a Bellman Picard operator (modulo (d,≤)), provided (≤) is (sa-so-
f,d)-selfclosed and one of the following extra conditions holds

(exco-b1) {A3, Br } is disjoint from Θ

(exco-b2) Br ∈ Θ , and T is (d,≤;max(Θ);ϕ)-contractive, where the function ϕ ∈
F0(re)(R+) is bilateral Boyd-Wong admissible (hence, Meir-Keeler admissible
as well)

(exco-b3) A3 ∈ Θ , Br /∈ Θ , and T is (d,≤;max(Θ);ϕ)-contractive, where ϕ ∈
F0(re)(R+) is Meir-Keeler admissible

(exco-b4) Br ∈ Θ , and T is (d,≤;max(Θ); (ψ, ϕ))-contractive, for an admissible
couple (ψ, ϕ) of functions in F0(R+), such that ϕ is sequentially positive and ψ
is ϕ-bounded bilateral oscillating

(exco-b5) A3 ∈ Θ , Br /∈ Θ , and T is (d,≤;max(Θ); (ψ, ϕ))-contractive, for
an admissible couple (ψ, ϕ) of functions in F0(R+), such that ϕ is sequentially
positive and ψ is ϕ-bounded left oscillating

(71-c) T is fix-(≤)-asingleton (hence, fix-(≤)-singleton); moreover, when (in addi-
tion) X is (≤)-directed, then T is fix-asingleton (hence, fix-singleton).

Some particular cases of this result may be described as follows.

Case 1 Suppose that (≤) is the trivial quasi-order on X. Then, (MK-f-ra) our
particular main result includes directly the basic statements in Boyd and Wong [5],
Matkowski [21] and Leader [20].

Case 2 Suppose that (≤) is, in addition, antisymmetric; hence, a partial order on
X. Then, (MK-f-ra) includes the related statements in Agarwal et al [1] when Θ =
{A1, A3, A4}; and the ones in Cabrera et al [6], when Θ = {A1, Br}. Further aspects
may be given in Saluja et al [36].

Finally, as a particular case of Rational Function Meir-Keeler theorem (i.e.: (MK-
f-ra)), we have the linear type fixed point statement to be used further (referred to
as: Linear Rational Meir-Keeler theorem; in short: (MK-ra-lin)). Let the mapping
K ∈ F (X ×X,R+) be introduced as

K = min{M3(2 +M4)/(2 +M2),M4(2 +M3)/(2 +M2)};
or, explicitly (for x, y ∈ X)
K(x, y) = min{K1(x, y),K2(x, y)}, where
K1(x, y) = d(x, T x)(2 + d(y, T y))/(2 + d(x, y)),
K2(x, y) = d(y, T y)(2 + d(x, T x)/(2 + d(x, y)).
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Then, let us define the mapping P : X ×X → R+, according to

P = max{A1, A2, A4,K}; or, explicitly (for x, y ∈ X)
P(x, y) = max{A1(x, y), A2(x, y), A4(x, y),K(x, y)}.
Finally, given μ ≥ 0, let us say that T is (d,≤;P,μ)-contractive, provided

d(T x, T y) ≤ μP(x, y), for all x, y ∈ X, x ≤ y.

Theorem 4 Assume that the selfmap T is (semi-progressive, increasing as well as)
(d,≤;P,μ)-contractive, for some μ ∈ [0, 1[. In addition, let X be (sa-so-f,d)-
complete. Then

(72-a) T is a strong Picard operator (modulo (d,≤)), provided T is (sa-so-f,d)-
continuous

(72-b) T is a Bellman Picard operator (modulo (d,≤)), provided (≤) is (sa-so-
f,d)-selfclosed.

(72-c) T is fix-(≤)-asingleton (hence, fix-(≤)-singleton); moreover, when (in addi-
tion) X is (≤)-directed, then T is fix-asingleton (hence, fix-singleton).

Proof Denote, for x, y ∈ X,

Br(x, y) = d(y, T y)[2 + d(x, T x)]/[2 + d(x, y)],
Q(x, y) = max{A1(x, y), A2(x, y), A4(x, y), Br(x, y)}.
By the very definition of the mapping K , one has

P(x, y) ≤ Q(x, y), for all x, y ∈ X.

As a consequence of this, T is (d,≤;Q,μ)-contractive. In addition, (by the
introduced conventions)

Q = max(Θ), where Θ = {A1, A2, A4, Br } (so that, Br ∈ Θ).

Finally, the function (ϕ(t) = μt; t ≥ 0) is (regressive and) bilateral Boyd-
Wong admissible; hence, Meir-Keeler admissible as well. Summing up, the Rational
Function Meir-Keeler theorem (MK-f-ra) applies to our data; wherefrom, all is clear.

Finally, it is worth noting that, by the used techniques, our particular fixed point
statement does not include the one in Chandok et al [7]. However, if one starts from
a certain bi-dimensional refinement of its developments, this inclusion holds; we do
not give details. Further aspects may be found in Harjani et al [14]; see also Yadava
et al [49].

8 Coupled Fixed Points

In the following, an application of the obtained facts is given—under the lines in
Samet et al [40]—to existence results involving coupled fixed points, taken as in
Bhaskar and Lakshmikantham [4].
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Let (X, d,≤) be a quasi-ordered metric space. Denote for simplicity X2 = X ×
X; and let the metric Δ over X2 be introduced as

Δ(z,w) = d(x, u)+ d(y, v), for z = (x, y), w = (u, v) in X2.

Further, define a quasi-order and a conjugate map over X2 according to:

(x, y) 0 (u, v) iff x ≤ u, y ≥ v; z∗ = (y, x), if z = (x, y).

By this very convention,

(p-1) z  → z∗ is involutive: (z∗)∗ = z, ∀z ∈ X2.

Some basic properties of the quasi-ordered metric space (X2,Δ,0) related to this
conjugate map are

(p-2) for each (z = (x, y), w = (u, v) in X2): Δ(z,w) = Δ(z∗, w∗)
(p-3) the conjugation map z  → z∗ is Δ-continuous: zn

Δ−→ z implies z∗n
Δ−→ z∗

(p-4) for each (z = (x, y), w = (u, v) in X2): z 0 w if and only if w∗ 0 z∗.

Having these precise, let F : X2 → X be a map; and

(G : X → X): G(x) = F(x, x), x ∈ X

be the associated diagonal operator. Denote

Cfix(F ) := {(a, b) ∈ X2; a = F(a, b), b = F(b, a)};
each element of it will be referred to as a coupled fixed point of F . The following
useful properties involving such elements are available.

Proposition 25 Under these conventions, we have

(81-1) c := (a, b) ∈ Cfix(F ) if and only if c∗ := (b, a) ∈ Cfix(F )
(81-2) (a, a) ∈ Cfix(F ), if and only if a ∈ Fix(G)
(81-3) if Cfix(F ) is a singleton {c = (a, b)}, then a = b; hence, c = (a, a);

moreover, we have Fix(G) = {a}.
Proof

i), ii) Evident.
iii) By the first part, c∗ = (b, a) ∈ Cfix(F ); and then, c = c∗; wherefrom, a = b

and Cfix(F ) = {(a, a)}; so that (by the second part), a ∈ Fix(G). Suppose
that b ∈ Fix(G). Then, again by the second part, (b, b) ∈ Cfix(F ); so, by
the above representation, (a, a) = (b, b); wherefrom a = b. The proof is
complete.

In what follows, we are primarily concerned with existence and uniqueness
results for the coupled fixed points of F . But, as long as the singleton property
of Cfix(F ) is available, we also get existence and uniqueness fixed point results for
the associated diagonal operator G.
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To reach this objective, the following basic construction will be considered.
Given F as before, define the selfmap of X2

T z = (Fz, Fz∗), for z := (x, y) ∈ X2.

Clearly, the compatible type relation holds

T z∗ = (T z)∗, for each z ∈ X2.

Moreover, it is easy to see that

Cfix(F ) = Fix(T ); i.e.: (a, b) ∈ Cfix(F ) iff (a, b) ∈ Fix(T ).

In other words; the coupled fixed points of F : X×X → X are just the fixed points
of T : X2 → X2. Hence, the regularity conditions we are looking for are the ones
appearing in (precise particular versions of) our main result, applied to the quasi-
ordered metric space (X2,Δ,0) and the selfmap T . For technical reasons, it would
be useful expressing these conditions in terms of our initial data (X, d,≤) and F .
We have three groups of such requirements.

I) The first group consists of initial type conditions.
I-1) We say that F is (≤,≥)-semi-progressive, when

X2(F,≤,≥) := {(a, b) ∈ X2; a ≤ F(a, b), b ≥ F(b, a)} is nonempty.

Note that, by this definition,

(a ≤ F(a, b), b ≥ F(b, a)) iff (a, b) 0 T (a, b);

so, this condition assures us that T is (0)-semi-progressive.

I-2) Let us say that the mapping F is mixed monotone, provided

(x, y) 0 (u, v) implies F(x, y) ≤ F(u, v).

A simpler way of expressing this is as follows. Call F , (1-increasing,2-decreasing)
if it is increasing in the first variable and decreasing in the second one:

∀(a, b) ∈ X2: F(., b)=increasing, F(a, .)=decreasing.

Proposition 26 Under these conventions, we have

(F is mixed monotone) iff (F is (1-increasing,2-decreasing)).
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Proof

i) Assume that F is mixed monotone; and let (a, b) ∈ X2 be arbitrary fixed. If x1 ≤
x2, then, as (x1, b) 0 (x2, b), we must have, F(x1, b) ≤ F(x2, b). Likewise,
taking y1, y2 ∈ X with y1 ≥ y2, then, as (a, y1) 0 (a, y2), one gets F(a, y1) ≤
F(a, y2).

ii) Assume that the function F is (1-increasing,2-decreasing); and let the points
z1 := (x1, y1), z2 := (x2, y2) be such that

z1 0 z2; that is: x1 ≤ x2, y1 ≥ y2.

Then

F(x1, y1) ≤ F(x2, y1) ≤ F(x2, y2);

and this ends the argument.

Concerning the relationships with the corresponding properties of T , we have

Proposition 27 Suppose that F is mixed monotone. Then, T is (0)-increasing.

Proof Let z1 := (x1, y1), z2 := (x2, y2) be such that

z1 0 z2; i.e.: x1 ≤ x2, y1 ≥ y2.

Then (by the mixed monotone property)

F(x1, y1) ≤ F(x2, y2), F (y1, x1) ≥ F(y2, x2); hence, T (z1) 0 T (z2);

and the claim follows.

II) The second group consists of global conditions relative to the structure
(X, d,≤) and the mapping F .

II-1) Call the sequence (xn; n ≥ 0) in X, monotone when it is either ascending or
descending. In this case, let us say that X is (monotone, d)-complete, provided

each monotone d-Cauchy sequence in X is d-convergent.

It is not hard to see that, under such a condition,

X2 is (0,Δ)-complete:
each (0)-ascending Δ-Cauchy sequence.

II-2) Let us say that (≤,≥) is self-closed, provided

both (≤) and (≥) are self-closed; i.e.: the d-limit of each ascending (descending)
sequence is an upper (lower) bound of it.

Note that, in this case,

(0) is self-closed: the Δ-limit of each (0)-ascending sequence in X2

is an upper bound of it (modulo (0)).
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II-3) Remember that F is continuous (modulo d), when

xn
d−→ x, yn

d−→ y imply F(xn, yn)
d−→ F(x, y).

It is not hard to see that, under such a condition, we have

T is continuous (modulo Δ): zn
Δ−→ z implies T zn

Δ−→ T z.

II-4) Let us say that X is (≤,≥)-directed, when

for each x, y ∈ X, {x, y} has upper and lower bounds (modulo (≤)).

In this case, we claim that the quasi-ordered structure X2 is (0)-directed. In fact,
given z1 = (x1, y1), z2 = (x2, y2) in X2, an upper bound (modulo (0)) of {z1, z2}
is w = (u, v); where u is an upper bound of {x1, x2} and v is a lower bound of
{y1, y2}.
III) Finally, a third group of conditions concerns the contractive property. Denote,

for (x, y), (u, v) ∈ X2,

H((x, y); (u, v)) = min{H1((x, y); (u, v)),H2((x, y); (u, v))};
where, by definition,

H1((x, y); (u, v)) =
d(x, F (x, y))[2 + d(u, F (u, v))+ d(v, F (v, u))]/[2 + d(x, u)+ d(y, v)],
H2((x, y); (u, v)) =
d(u, F (u, v))[2 + d(x, F (x, y))+ d(y, F (y, x))]/[2 + d(x, u)+ d(y, v)].

Given (α, β, γ, δ) ∈ R4+, call F , coupled (d,≤,≥;α, β, γ, δ)-contractive provided

d(F (x, y), F (u, v)) ≤
(α/2)[d(x, u)+ d(y, v)] + βH((x, y); (u, v))+
(γ /2)[d(x, F (x, y))+ d(y, F (y, x))+ d(u, F (u, v))+ d(v, F (v, u))]+
(δ/2)[d(x, F (u, v))+ d(y, F (v, u))+ d(u, F (x, y))+ d(v, F (y, x)],

for all x, y, u, v ∈ X with x ≤ u, y ≥ v.

The following auxiliary statement will be useful for us. Let the system of maps
{A1, A2, A3, A4} in F (X2×X2, R+) be introduced as in the standard metrical case;
namely: for z = (x, y) ∈ X2, w = (u, v) ∈ X2,

A1(z, w) = Δ(z,w), A2(z, w) = (1/2)[Δ(z, T z)+Δ(w, T w)],
A3(z, w) = max{Δ(z, T z),Δ(w, T w)}, A4(z, w) = (1/2)[Δ(z, T w)+Δ(T z,w)].
Further, let the maps
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K1 : X2 ×X2 → R+, K2 : X2 ×X2 → R+, K : X2 ×X2 → R+
be introduced as: for z = (x, y) ∈ X2, w = (u, v) ∈ X2,

K1(z, w) = Δ(z, T z)[2 +Δ(w, T w)]/[2 +Δ(z,w)],
K2(z, w) = Δ(w, T w)[2 +Δ(z, T z)]/[2 +Δ(z,w)],
K(z,w) = min{K1(z, w),K2(z, w)}.
Proposition 28 Suppose that F is coupled (d,≤,≥;α, β, γ, δ)-contractive (see
above). Then, T is (Δ,0;L,μ)-contractive, where μ := α+ β + 2γ + 2δ; and for
z = (x, y) ∈ X2, w = (u, v) ∈ X2,

L(z,w) = max{A1(z, w),A2(z, w),A4(z, w),K(z,w))}.
Proof By the introduced definition (and properties of conjugate operator) one has,
for z = (x, y) ∈ X2, w = (u, v) ∈ X2,

H1((x, y); (u, v)) = d(x, F (x, y))[2 +Δ(w, T w)]/[2 +Δ(z,w)],
H2((x, y); (u, v)) = d(u, F (u, v))[2 +Δ(z, T z)]/[2 +Δ(z,w)];
H1((y, x); (v, u)) = d(y, F (y, x))[2 +Δ(w, T w)]/[2 +Δ(z,w)],
H2((y, x); (v, u)) = d(v, F (v, u))[2 +Δ(z, T z)]/[2 +Δ(z,w)].
Combining with the immediate relation

min{t1, s1} + min{t2, s2} ≤ min{t1 + t2, s1 + s2}, t1, s1, t2, s2 ∈ R,

we derive

H((x, y); (u, v))+H((y, x); (v, u)) ≤ min{K1((x, y); (u, v)),K2((x, y); (u, v))};

where

K1((x, y); (u, v)) =
(d(x, F (x, y))+ d(y, F (y, x)))[2 +Δ(w, T w)]/[2 +Δ(z,w)] =
Δ(z, T z)[2 +Δ(w, T w)]/[2 +Δ(z,w)] = K1(z, w),

K2((x, y); (u, v)) =
(d(u, F (u, v)+ d(v, F (v, u)))[2 +Δ(z, T z)]/[2 +Δ(z,w)] =
Δ(w, T w)[2 +Δ(z, T z)]/[2 +Δ(z,w)] = K2(z, w).

On the other hand, from the contractive condition we get

d(F (x, y), F (u, v))+ d(F (y, x), F (v, u)) ≤
αΔ(z,w)+ β[H((x, y); (u, v))+H((y, x); (v, u))]+
2γ (1/2)[Δ(z, T z)+Δ(w, T w)] + 2δ(1/2)[Δ(z, T w)+Δ(T z,w)],

for all x, y, u, v ∈ X with x ≤ u, y ≥ v.
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Taking the above evaluation into account, yields

Δ(T z, T w) ≤ μL(z,w), for all z,w ∈ X2, z 0 w;

and we are done.

Now, by simply combining this with the Linear Rational Meir-Keeler theorem
(i.e.: (MK-ra-lin)), one gets the following coupled fixed point theorem involving
these data.

Theorem 5 Assume that F is coupled (d,≤,≥;α, β, γ, δ)-contractive, for some
quadruple (α, β, γ, δ) in R4+ with μ := α+β+2γ +2δ < 1. In addition, let (X, d)
be monotone complete, X be (monotone, d)-complete and (≤,≥)-directed, F be
(≤,≥)-semi-progressive, mixed monotone, and one of the extra conditions below is
holding

(ext-1) F is d-continuous
(ext-2) (≤,≥) is self-closed.

Then

(81-a) F has a unique coupled fixed point, (a, a) with a ∈ X;
(81-b) the associated diagonal operator [G(x) = F(x, x), x ∈ X] admits this

a ∈ X as its unique fixed point (in X)
(81-c) for each (x0, y0) ∈ X2 with [x0 ≤ F(x0, y0), y0 ≥ F(y0, x0)], the iterative

process (xn+1 = F(xn, yn), yn+1 = F(yn, xn); n ≥ 0), Δ-converges

towards (a, a); whence, xn
d−→ a, yn

d−→ a.

Proof By the quoted fixed point result, T is (Δ,0;L,μ)-contractive. This, along
with the above remarks, gives us all desired conclusions.

The obtained coupled fixed point result extends a related one in Nashine and
Kadelburg [27]; which, in turn, refines the statement in Samet and Yazidi [39].
Further aspects may be found in Pathak et al [30].
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A Multiple Hilbert-Type Integral
Inequality in the Whole Space

Bicheng Yang

1 Introduction

If p > 1, 1
p
+ 1

q
= 1, f (≥ 0) ∈ Lp(R+), g(≥ 0) ∈ Lq(R+), ||f ||p, ||g||q > 0,

then we have the following equivalent Hardy-Hilbert’s integral inequalities (cf. [1]):

∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y
dxdy <

π

sin(π/p)
||f ||p||g||q, (1)

[∫ ∞

0

(∫ ∞

0

f (x)

x + y
dx

)p

dy

] 1
p

<
π

sin(π/p)
||f ||p, (2)

where, the constant factor π
sin(π/p) is the best possible. Inequality (1)–(2) are

important in analysis and its applications (cf. [2]).
In 2002, [3] considered the property of Hilbert’s integral operator and gave an

improvement of (1) (for p = q = 2). In 2004, by introducing another pair of
conjugate exponents (r, s) (r > 1, 1

r
+ 1

s
= 1) and an independent parameter λ > 0,

Yang [4] gave a best extensions of (1) as follows:

∫ ∞

0

∫ ∞

0

f (x)g(y)

xλ + yλ
dxdy <

π

λ sin(π/r)
||f ||p,φ ||g||q,ψ , (3)
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where, φ(x) = xp(1− λ
r
)−1, ψ(x) = xq(1− λ

s
)−1, ||f ||p,φ = (

∫∞
0 φ(x)f p(x)dx)

1
p >

0, and ||g||q,ψ > 0. In 2007, Yang [5] gave the following inequality with the non-
homogeneous kernel and the best possible constant factor B(λ2 ,

λ
2 )(λ > 0; B(u, v)

is the beta function):

∫ ∞

0

∫ ∞

0

f (x)g(y)

(1 + xy)λ
dxdy

< B(
λ

2
,
λ

2
)

(∫ ∞

0
x1−λf 2(x)dx

∫ ∞

0
x1−λg2(x)dx

) 1
2

. (4)

In recent years, [6] gave another extension of (4) to the general kernel kλ(1, xy)
(λ > 0) with one pair of conjugate exponents (p, q). Some other kind of Hilbert-
type inequalities and operators are provided by Milovanovic and Rassias [7], Huang
[8], Krnić and Pečarić [9], Milovanovic and Rassias [10].

Definition 1 If n ∈ N = {1, 2, · · · },

Rn+ := {(x1, · · · , xn)|xi ∈ R+ = (0,∞) (i = 1, · · · , n)},

λ ∈ R = (−∞,∞), kλ(x1, · · · , xn) is a measurable function in Rn+, such that for
any u > 0 and (x1, · · · , xn) ∈ Rn+,

kλ(ux1, · · · , uxn) = u−λkλ(x1, · · · , xn),

then we call kλ(x1, · · · , xn) the homogeneous function of degree −λ in Rn+.

In 2009, [6] obtained the following multiple Hilbert-type integral inequality:
Suppose that n ∈ N\{1}, pi > 1,

∑n
i=1

1
pi

= 1, λ > 0, kλ(x1, · · · , xn) (≥ 0) is a
homogeneous function of degree −λ in Rn+, such that for any (r1, · · · , rn) (ri > 1),
satisfying

∑n
i=1

1
ri
= 1, and

kλ =
∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u

λ
rj
−1

j du1 · · · dun−1 ∈ R+.

If φi(x) = x
pi(1− λ

ri
)−1

, fi (≥ 0) ∈ L
pi
φi
(0,∞), ||f ||pi,φi > 0 (i = 1, · · · , n), then

we have the following inequality:

∫

Rn+
kλ(x1, · · · , xn)

n∏

i=1

fi(xi)dx1 · · · dxn < kλ

n∏

i=1

||fi ||pi,φi , (5)

where, the constant factor kλ is the best possible.
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For n = 2, kλ(x, y) = 1
xλ+yλ , inequality (5) reduces to (3); for λ = n − 1, ri =

(n−1)pi
pi−1 (i = 1, · · · , n), (5) reduces to the following multiple Hardy-Hilbert-type

integral inequality (cf. [1]):

∫

Rn+
kn−1(x1, · · · , xn)

n∏

i=1

fi(xi)dx1 · · · dxn < kn−1

n∏

i=1

||fi ||pi . (6)

Recently, [11] also studied the corresponding multiple Hardy-Hilbert-type integral
operator. Inequality (5) are some extensions of the results [12–16].

In this paper, by introducing some interval variables and using the weight
functions and the way of real analysis, a multiple Hilbert-type integral inequality in
the whole space with a best possible constant factor is given, which is an extension
of (5). The equivalent forms, the operator expressions with the norm, the equivalent
reverses, a few particular cases and some examples with the particular kernels are
also considered.

2 Some Lemmas

In the following, we make appointment that n ∈ N\{1}, αi ∈ (0, π),

ui(x) := |x| + x cosαi (x ∈ R = (−∞∞)),

δi ∈ {−1, 1}, pi ∈ R\{0, 1} , λi ∈ R (i = 1, · · · , n),∑n−1
i=1

1
pi

= 1 − 1
pn

= 1
qn
,

∑n−1
i=1 λi = λn = λ

2 , kλ(x1, · · · , xn) (≥ 0) is a homogeneous function of degree −λ
in Rn+.

Lemma 1 (cf. [15]) For ui > 0, we have

A :=
n∏

i=1

⎡

⎣u(δiλi−1)(1−pi)
i

n∏

j=1(j �=i)
u
δj λj−1
j

⎤

⎦

1
pi

= 1. (7)

Lemma 2 If we define

H(i) : =
∫

Rn−1+
kλ(u1, · · · , ui−1, 1, ui+1, · · · , un)

×
n∏

j=1(j �=i)
u
λj−1
j du1 · · · dui−1dui+1 · · · dun (i = 1, · · · , n),
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satisfying

kλ := H(n) =
∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj−1
j du1 · · · dun−1 ∈ R, (8)

then, each H(i) = H(n) = kλ, and for i = 1, · · · , n, we have

ωi(xi) := u
δiλi
i (xi)

∫

Rn−1
kλ(u

δ1
1 (x1)u

δn
n (xn), · · · , uδn−1

n−1 (xn−1)u
δn
n (xn), 1)

×
n∏

j=1(j �=i)
u
δj λj−1
j (xj )dx1 · · · dxi−1dxi+1 · · · dxn

= 2n−1kλ

n∏

j=1(j �=i)
csc2 αj . (9)

Proof Setting uj = unvj (j �= i, n) in the integral of H(i), we find

H(i) =
∫

Rn−1+
kλ(v1, · · · , vi−1, u

−1
n , vi+1, · · · , vn−1, 1)

n−1∏

j=1(j �=i)
v
λj−1
j

×u−1−λi
n dv1 · · · dvi−1dvi+1 · · · dvn−1dun.

Setting vi = u−1
n in the above integral, we obtain H(i) = H(n) = kλ.

Since uj (xj ) = xj (sgn(xj )+cosαj ), setting vj = uj (xj ) (j �= i) in the integral
of (9), we find

dvj = duj (xj ) =
{

(1 + cosαj )dxj , xj > 0,
(−1 + cosαj )dxj , xj < 0,

and

ωi(xi) = u
δiλi
i (xi)

×
∫

Rn−1+
kλ(v

δ1
1 vδnn , · · · , vδi−1

i−1 v
δn
n , u

δi
i (xi)v

δn
n , v

δi+1
i+1 v

δn
n , · · · , vδn−1

n−1 v
δn
n , 1)

×
n∏

j=1(j �=i)
v
δj λj−1
j

(
1

1 − cosαj
+ 1

1 + cosαj

)
dv1 · · · dvi−1dvi+1 · · · dvn

= 2n−1Wi(xi)

n∏

j=1(j �=i)
csc2 αj , (10)
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where,

Wi(xi) := u
δiλi
i (xi)

×
∫

Rn−1+
kλ(v

δ1
1 vδnn , · · · , vδi−1

i−1 v
δn
n , u

δi
i (xi)v

δn
n , v

δi+1
i+1 v

δn
n , · · · , vδn−1

n−1 v
δn
n , 1)

×
n∏

j=1(j �=i)
v
δj λj−1
j dv1 · · · dvi−1dvi+1 · · · dvn.

Since λ− λn = λn, we find

6i(xi) = u
δiλi
i (xi)

×
∫

Rn−1+
kλ(v

δ1
1 , · · · , vδi−1

i−1 , u
δi
i (xi), v

δi+1
i+1 , · · · , vδn−1

n−1 , v
−δn
n )v−δnλn−1

n

×
n−1∏

j=1(j �=i)
v
δj λj−1
j dv1 · · · dvi−1dvi+1 · · · dvn−1dvn.

Setting yn = v−1
n in the above expression, we obtain

Wi(xi) = u
δiλi
i (xi)

×
∫

Rn−1+
kλ(v

δ1
1 , · · · , vδi−1

i−1 , u
δi
i (xi), v

δi+1
i+1 , · · · , vδn−1

n−1 , y
δn
n )yδnλn+1

n

×
n−1∏

j=1(j �=i)
v
δj λj−1
j dv1 · · · dvi−1dvi+1 · · · dvn−1(y

−2
n )dyn

= u
δiλi
i (xi)

∫

Rn−1+
kλ(v

δ1
1 , · · · , vδi−1

i−1 , u
δi
i (xi), v

δi+1
i+1 , · · · , vδnn )

×
n∏

j=1(j �=i)
v
δj λj−1
j dv1 · · · dvi−1dvi+1 · · · dvn.

Setting uj = u
−δi
i (xi)v

δj
j (j �= i) in the above integral, we find

Wi(xi) = u
δiλi
i (xi)

×
∫

Rn−1+
kλ(u

δi
i (xi)u1, · · · , uδii (xi)ui−1, u

δi
i (xi), u

δi
i (xi)ui+1, · · · , uδii (xi)un)
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×
n∏

j=1(j �=i)
(u

δi/δj
i (xi)u

1/δj
j )δj λj−1u

δi/δj
i (xi)u

(1/δj )−1
j du1 · · · dui−1dui+1 · · · dun

= H(i) = H(n) = kλ.

Hence, by (10), expression (9) follows.
The lemma is proved.

Lemma 3 (cf. [15]) The expression

k(̃λ1, · · · , λ̃n−1) :=
∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λ̃j−1
j du1 · · · dun−1

is finite in a neighborhood of (λ1, · · · , λn−1) if any only if k(̃λ1, · · · , λ̃n−1) is
continuous at (λ1, · · · , λn−1).

Lemma 4 We define the sets

Ei := {x ∈ R; uδii (xi) ≥ 1} (i = 1, · · · , n).

If there exists a η > 0, such that for max1≤i≤n−1{|ηi |} < η, k(λ1 +η1, · · · , λn−1 +
ηn−1) ∈ R, pi ∈ R\{0, 1}(i = 1, · · · , n), 0 < ε < ηmin1≤i≤n{|pi |}, then

Iε : = ε

∫

En−1

· · ·
∫

E1

[∫

R\En

u
δn(λn+ ε

pn
)−1

n (xn)

×kλ(uδ1
1 (x1)u

δn
n (xn), · · · , uδn−1

n (xn−1)u
δn
n (xn), 1)dxn

]

×
n−1∏

j=1

u
δj (λj− ε

pj
)−1

j (xj )dx1 · · · dxn−1 = 2nkλ

n∏

j=1

csc2 αj + o(1) (ε → 0+).

(11)

Proof Setting yn = u−1
n (xn) in the integral of (11), we find

Iε = 2ε csc2 αn

∫

En−1

· · ·
∫

E1

×
[∫

En

y
−δn(λn+ ε

pn
)−1

n kλ(u
δ1
1 (x1)y

−δn
n , · · · , uδn−1

n−1 (xn−1)y
−δn
n , 1)dyn

]

×
n−1∏

j=1

u
δj (λj− ε

pj
)−1

j (xj )dx1 · · · dxn−1.
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Setting uj = u
δj
j (xj )y

−δn
n (j = 1, · · · , n− 1) in the above integral, since λ− λn =

λn, by (9), we find

Iε = ε2n
n∏

j=1

csc2 αj

∫

En

y−1−δnε
n

[∫ ∞

y
−δn
n

· · ·
∫ ∞

y
−δn
n

kλ(u1, · · · , un−1, 1)

×
n−1∏

j=1

u
(λj− ε

pj
)−1

j du1 · · · dun−1

⎤

⎦ dyn

= ε2n
n∏

j=1

csc2 αj

∫ ∞

1
x−1−ε
n

[∫ ∞

x−1
n

· · ·
∫ ∞

x−1
n

kλ(u1, · · · , un−1, 1)

×
n−1∏

j=1

u
(λj− ε

pj
)−1

j du1 · · · dun−1

⎤

⎦ dxn (xn = yδnn ). (12)

Setting Dj := {(u1, · · · , un−1)|uj ∈ (0, x−1
n ), uk ∈ (0,∞) (k �= j)} and

Aj(xn) :=
∫

· · ·
∫

Dj

kλ(u1, · · · , un−1, 1)
n−1∏

j=1

u
λj− ε

pj
−1

j du1 · · · dun−1,

then by (12), it follows that

Iε ≥ 2n
n∏

j=1

csc2 αj

∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
(λj− ε

pj
)−1

j du1 · · · dun−1

−ε2n
n∏

j=1

csc2 αj

n−1∑

j=1

∫ ∞

1
x−1
n Aj (xn)dxn. (13)

Without loss of generality, in the following, we estimate the case that j = n,

namely,

∫ ∞

1
x−1
n An−1(xn)dxn = O(1).

In fact, setting α > 0, such that | ε
pn−1

+ α| < η, since

−uαn−1 ln un−1 → 0 (un−1 → 0+),



834 B. Yang

there exists a constant M > 0, such that

−uαn−1 lnun−1 ≤ M (un−1 ∈ (0, 1]),

and then by Fubini theorem (cf. [17] ), it follows that

0 ≤
∫ ∞

1
x−1
n An−1(xn)dxn =

∫ ∞

1
x−1
n

(∫

Rn−2+

∫ x−1
n

0
kλ(u1, · · · , un−1, 1)

×
n−1∏

j=1

u
λj− ε

pj
−1

j dun−1du1 · · · dun−2

⎞

⎠ dxn

=
∫ 1

0

∫

Rn−2+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj− ε

pj
−1

j

(∫ u−1
n−1

1

dxn

xn

)

du1 · · · dun−1

=
∫ 1

0

∫

Rn−2+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj− ε

pj
−1

j (− ln un−1)du1 · · · dun−1

≤ M

∫ 1

0

∫

Rn−2+
kλ(u1, · · · , un−1, 1)

×
n−2∏

j=1

u
λj− ε

pj
−1

j u
λn−1−( ε

pn−1
+α)−1

n−1 du1 · · · dun−1

≤ M

∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−2∏

j=1

u
λj− ε

pj
−1

j u
λn−1−( ε

pn−1
+α)−1

n−1 du1 · · · dun−1

= M · k
(
λ1 − ε

p1
, · · · , λn−2 − ε

pn−2
, λn−1 − (

ε

pn−1
+ α)

)
< ∞.

Hence by (13), we have

Iε ≥ 2n
n∏

j=1

csc2 αj

×
∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj− ε

pj
−1

j du1 · · · dun−1 − o1(1)

= 2nkλ

n∏

j=1

csc2 αj − o(1) (ε → 0+).
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Since by Lemma 3, we obtain

Iε ≤ ε2n
n∏

j=1

csc2 αj

∫ ∞

1
x−1−ε
n

(∫ ∞

0
· · ·

∫ ∞

0
kλ(u1, · · · , un−1, 1)

×
n−1∏

j=1

u
λj− ε

pj
−1

j du1 · · · dun−1

⎞

⎠ dxn

= 2n
n∏

j=1

csc2 αj

∫ ∞

0
· · ·

∫ ∞

0
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj− ε

pj
−1

j du1 · · · dun−1

= 2nk(λ1 − ε

p1
, · · · , λn−1 − ε

pn−1
)

n∏

j=1

csc2 αj

= 2nkλ

n∏

j=1

csc2 αj + o2(1)(ε → 0+),

then we have (11).
The lemma is proved.

Lemma 5 Suppose that

kλ =
∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj−1
j du1 · · · dun−1 ∈ R.

If fi (≥ 0) are measurable functions in R (i = 1, · · · , n− 1), putting

k̃(x1, · · · , xn) := kλ(u
δ1
1 (x1)u

δn
n (xn), · · · , uδn−1

n−1 (xn−1)u
δn
n (xn), 1),

then

(i) for pi > 1 (i = 1, · · · , n), we have

J :=
{∫ ∞

−∞
u
δnλnqn−1
n (xn)

×
[∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

]qn
dxn

⎫
⎬

⎭

1
qn

≤ 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj

n−1∏

i=1

[∫ ∞

−∞
u
pi(1−δiλi )−1
i (xi)f

pi (xi)dxi

] 1
pi ;

(14)
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(ii) for 0 < p1 < 1, pi < 0 (i = 2, · · · , n), we have the reverse of (14).

Proof

(i) For pi > 1 (i = 1, · · · , n), by Hölder’s inequality (cf. [18]) and (7), we have

⎛

⎝
∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

⎞

⎠

qn

=

⎧
⎪⎨

⎪⎩

∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

⎡

⎣u(δiλi−1)(1−pi)
i

(xi)

n∏

j=1(j �=i)
u
δj λj−1
j

(xj )

⎤

⎦

1
pi

fi(xi)

×
⎡

⎣u(δnλn−1)(1−pn)
n (xn)

n−1∏

j=1

u
δj λj−1
j

(xj )

⎤

⎦

1
pn

dx1 · · · dxn−1

⎫
⎪⎬

⎪⎭

qn

≤

⎧
⎪⎨

⎪⎩

∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

⎡

⎣u(δiλi−1)(1−pi)
i

(xi)

n∏

j=1(j �=i)
u
δj λj−1
j

(xj )

⎤

⎦

qn
pi

×f qn
i
(xi)dx1 · · · dxn−1

}

×
⎧
⎨

⎩

∫

Rn−1+
k̃(x1, · · · , xn)u(δnλn−1)(1−pn)(xn)

n−1∏

j=1

uδj λj−1(xj )dx1 · · · dxn−1

⎫
⎬

⎭

qn−1

= (2n−1kλ

n−1∏

j=1

csc2 αj )
qn−1u1−δnqnλn(xn)

∫

Rn−1+
k̃(x1, · · · , xn)

××
n−1∏

i=1

⎡

⎣u(δiλi−1)(1−pi)(xi)
n∏

j=1(j �=i)
uδj λj−1(xj )

⎤

⎦

qn
pi

f
qn
i
(xi)dx1 · · · dxn−1. (15)

Then it follows that

J ≤ (2n−1kλ

n−1∏

j=1

csc2 αj )
1
pn

{∫ ∞

−∞

∫

Rn−1
k̃(x1, · · · , xn)

×
n−1∏

i=1

⎡

⎣u(δiλi−1)(1−pi)
i (xi)

n∏

j=1(j �=i)
u
δj λj−1
j (xj )

⎤

⎦

qn
pi

f
qn
i (xi)dx1 · · · dxn−1dxn

⎫
⎪⎬

⎪⎭

1
qn

= (2n−1kλ

n−1∏

j=1

csc2 αj )
1
pn

{∫

Rn−1

(∫ ∞

−∞
k̃(x1, · · · , xn)uδnλn−1

n (xn)dxn

)



A Multiple Hilbert-Type Integral Inequality in the Whole Space 837

×
n−1∏

i=1

⎡

⎣u(δiλi−1)(1−pi)
i (xi)

n−1∏

j=1(j �=i)
u
δj λj−1
j (xj )

⎤

⎦

qn
pi

f
qn
i (xi)dx1 · · · dxn−1

⎫
⎪⎬

⎪⎭

1
qn

.

(16)

For n ≥ 3, in view of
∑n−1

i−1
qn
pi

= 1, by Hölder’s inequality again, it follows
that

J ≤ (2n−1kλ

n−1∏

j=1

csc2 αj )
1
pn

{
n−1∏

i=1

[∫

Rn−1
(

∫ ∞

−∞
k̃(x1, · · · , xn)uδnλn−1

n (xn)dxn)

×u(δiλi−1)(1−pi)
i (xi)

n−1∏

j=1(j �=i)
u
δj λj−1
j (xj )f

pi
i (xi)dx1 · · · dxn−1

⎤

⎦

qn
pi

⎫
⎪⎬

⎪⎭

1
qn

≤ (2n−1kλ

n−1∏

j=1

csc2 αj )
1
pn

n−1∏

i=1

{∫ ∞

−∞

[∫

Rn−1
k̃(x1, · · · , xn)uδiλii (xi)

×
n∏

j=1(j �=i)
u
δj λj−1
j (xj )dx1 · · · dxi−1dxi+1 · · · dxn

⎤

⎦

u
pi(1−δiλi )−1
i (xi)f

pi
i (xi)dxi

} 1
pi

= (2n−1kλ

n−1∏

j=1

csc2 αj )
1
pn

n−1∏

i=1

[∫ ∞

−∞
ωi(xi)u

pi(1−δiλi )−1
i (xi)f

pi
i (xi)dxi

] 1
pi

.

Then by (9), we have (14) (Note: for n = 2, we do not use Hölder’s
inequality again in the above).

(ii) For 0 < p1 < 1, pi < 0 (i = 2, · · · , n), by the reverse Hölder’s inequality (cf.
[18]) and the same way, we obtain the reverse of (14).

The lemma is proved.
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3 Main Results and Operator Expressions

Setting the functions

φi(x) := u
pi (1−δi λi )−1

i (x) (x ∈ R; i = 1, · · · , n),

we find φqn−1
n (x) = u

δnqnλn−1
n (x). If pi > 1 (i = 1, · · · , n), we define the following

real function spaces:

L
pi
φi
(R) :=

{

fi; ||fi ||pi,φi =
(∫ ∞

−∞
φi(x)|fi(x)|pi dx

) 1
pi

< ∞
}

(i = 1, · · · , n),

n−1∏

i=1

L
pi
φi
(R) :=

{
f = (f1, · · · , fn−1); fi ∈ L

pi
φi
(R), i = 1, · · · , n− 1

}
,

and a multiple Hilbert-type integral operator T : ∏n−1
i=1 L

pi
φi
(R) → L

qn

φ
qn−1
n

(R) as

follows: For f = (f1, · · · , fn−1) ∈ ∏n−1
i=1 L

pi
φi
(R), there exists a unified expression

Tf, satisfying for xn ∈ R,

(Tf )(xn) :=
∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1. (17)

Then by (14), it follows that Tf ∈ L
qn

φ
qn−1
n

(R). T is bounded satisfying

||Tf ||
qn,φ

qn−1
n

≤ 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj

n−1∏

i=1

||fi ||pi,φi ,

and then ||T || ≤ 2n−1kλ
∏n

j=1 csc
2(1− 1

pj
)
αj , where,

||T || := sup
f ( �=θ)∈∏n−1

i=1 L
pi
φi
(R)

||Tf ||
qn,φ

qn−1
n∏n−1

i=1 ||fi ||pi,φi
. (18)

Define the formal inner product of T (f1, · · · , fn−1) and fn as follows:

(T (f1, · · · , fn−1), fn) :=
∫

Rn

k̃(x1, · · · , xn)
n∏

i=1

fi(xi)dx1 · · · dxn. (19)
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Theorem 1 Suppose that

kλ =
∫

Rn−1+
kλ(u1, · · · , un−1, 1)

n−1∏

j=1

u
λj−1
j du1 · · · dun−1 ∈ R+. (20)

If fi(≥ 0) ∈ L
pi
φi
(R), ||f ||pi,φi > 0 (i = 1, · · · , n), then

(i) for pi > 1 (i = 1, · · · , n), we have the following equivalent inequalities:

||T (f1, · · · , fn−1)||qn,φqn−1
n

< 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj

n−1∏

i=1

||fi ||pi,φi , (21)

(T (f1, · · · , fn−1), fn) < 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj

n∏

i=1

||fi ||pi,φi , (22)

where, the constant factor 2n−1kλ
∏n

j=1 csc
2(1− 1

pj
)
αj is the best possible,

namely

||T || = 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj ;

(ii) for 0 < p1 < 1, pi < 0 (i = 2, · · · , n), using the formal symbols in the
case of (i), we have the equivalent reverses of (21) and (22) with the same best
constant factor.

Proof

(i) For all pi > 1, if (15) takes the form of equality, then for n ≥ 3 in (21), there
exist Ci and Ck (i �= k), such that they are not all zero and

Ciu
(δiλi−1)(1−pi)
i (xi)

n−1∏

j=1(j �=i)
u
δj λj−1
j (xj )f

pj
j (xj )

= Cku
(δkλk−1)(1−pk)
k (xk)

n−1∏

j=1(j �=k)
u
δj λj−1
j (xj )f

pj
j (xj ) a.e. in Rn,

namely,

Ciu
pi(1−δiλi )
i (xi)f

pi
i (xi) = Cku

pk(1−δkλk)
k (xk)f

pk
k (xk) = C a.e. inRn+.
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Assuming that Ci > 0, then

u
pi(1−δiλi )−1
i (xi)f

pi
i (xi) = C

Ciui(xi)
,

which contradicts the fact that 0 < ||f ||pi,φi < ∞ (Note: for n = 2, we

consider (15) for f pi
k (xk) = 1 in the above). Hence we have (21).

By Hölder’s inequality, it follows that

(Tf, fn) =
∫ ∞

−∞

(

u
δnλn− 1

qn
n (xn)

∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

)

×
(
u

1
qn

−δnλn
n (xn)fn(xn)

)
dxn ≤ ||T (f1, · · · , fn−1)||qn,φqn−1

n
||fn||pn,φn,

(23)
and then by (21), we have (22). Assuming that (22) is valid, setting

fn(xn) := u
δnqnλn−1
n (xn)

(∫

Rn−1
k̃(x1, · · · , xn)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

)qn−1

,

then it follows that

J =
[∫ ∞

−∞
u
pn(1−δnλn)−1
n (xn)f

pn
n (xn)dxn

] 1
qn

.

By (14), it follows that J < ∞. If J = 0, then (21) is trivially valid. Assuming
that 0 < J < ∞, by (22), it follows that

∫ ∞

−∞
u
pn(1−δnλn)−1
n (xn)f

pn
n (xn)dxn

= J qn = (Tf, fn) < 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj

n∏

i=1

||fi ||pi,φi ,

[∫ ∞

−∞
u
pn(1−δnλn)−1
n (xn)f

pn
n (xn)dxn

] 1
qn

= J < 2n−1kλ

n∏

j=1

csc
2(1− 1

pj
)
αj

n−1∏

i=1

||fi ||pi,φi ,

and then (21) is valid, which is equivalent to (22).
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For Ei := {x ∈ R; uiδi (x) ∈ [1,∞)} (i = 1, · · · , n), ε > 0, we set f̃i (xi)
as follows:

f̃i (xi) = 0, xi ∈ R\Ei;
f̃i (xi) = u

δi(λi− ε
pi
)−1

i (xi), xi ∈ Ei (i = 1, · · · , n− 1),

f̃n(xn) = u
δn(λn+ ε

pn
)−1

n (xn), x ∈ R\En; f̃n(xn) = 0, xn ∈ En.

We find

||f̃i ||pi,φi =
[∫

Ei

u
p
i (1−δi λi )−1

i (xi)u
δi(piλi−ε)−pi
i (xi)dxi

] 1
pi

=
(∫

Ei

u
−δi ε−1

i (xi)dxi

) 1
pi

.

If δi = 1 (i = 1, · · · , n − 1), setting y = ui(xi), then we have dxi =
2 csc2 αidy and

||f̃i ||pi,φi =
(

2 csc2 αi

∫ ∞

1
y−ε−1dy

) 1
pi =

(
2

ε
csc2 αi

) 1
pi ;

if δi = −1, still setting y = ui(xi), then we have

||f̃i ||pi,φi =
(

2 csc2 αi

∫ 1

0
yε−1dy

) 1
pi =

(
2

ε
csc2 αi

) 1
pi

.

In the same way, we find

||f̃n||pn,φn =
(

2

ε
csc2 αn

) 1
pn

.

If there exists a positive constant k ≤ kλ, such that (22) is still valid when
replacing kλ by k, then in particular, by Lemma 4, we have

2nkλ

n∏

j=1

csc2 αj + o(1) = Iε = ε(T (f̃1, · · · , f̃n−1), f̃n)

< ε2n−1k

n∏

j=1

csc
2− 2

pj αj

n∏

i=1

||f̃i ||pi,φi
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= ε2n−1k

n∏

j=1

csc
2− 2

pj αj

n∏

i=1

(
2

ε
csc2 αi)

1
pi = 2nk

n∏

j=1

csc2 αj ,

and then kλ ≤ k (ε → 0+). Hence k = kλ is the best value of (22).
The constant factor kλ in (21) is still the best possible. Otherwise we would

reach a contradiction by (23) that the constant factor in (22) is not the best
possible.

(ii) For 0 < p1 < 1, pi < 0 (i = 2, · · · , n), by using the reverse Hölder’s
inequality and in the same way, we have the equivalent reverses of (21) and (22)
with the same best constant factor.

The theorem is proved.

Remark 3.1

(i) For δi = 1, αi = π
2 (i = 1, · · · , n) in (21) and (22), we have the following

equivalent inequalities with the non-homogeneous kernel and best possible
constant factor 2n−1kλ

∫

Rn

kλ(|x1xn|, · · · , |xn−1xn|, 1)
n∏

i=1

fi(xi)dx1 · · · dxn

< 2n−1kλ

n∏

i=1

[∫ ∞

−∞
|xi |pi(1−λi)−1f pi (xi)dxi

] 1
pi

, (24)

⎧
⎨

⎩

∫ ∞

−∞
|xn|λnqn−1

[∫

Rn−1
kλ(|x1xn|, · · · , |xn−1xn|, 1)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

]qn

dxn

⎫
⎬

⎭

1
qn

< 2n−1kλ

n−1∏

i=1

[∫ ∞

−∞
|xi |pi(1−λi)−1f pi (xi)dxi

] 1
pi

. (25)

In particular, for fi(−xi) = fi(xi) (xi > 0; i = 1, · · · , n) in (24) and (25), we
have (cf. [15] ):

∫

Rn+
kλ(x1xn, · · · , xn−1xn, 1)

n∏

i=1

fi(xi)dx1 · · · dxn

< kλ

n∏

i=1

[∫ ∞

0
xi
pi(1−λi)−1f pi (xi)dxi

] 1
pi

, (26)
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⎧
⎨

⎩

∫ ∞

0
xn

λnqn−1

[∫

Rn−1+
kλ(x1xn, · · · , xn−1xn, 1)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

]qn
dxn

⎫
⎬

⎭

1
qn

< kλ

n−1∏

i=1

[∫ ∞

0
xi
pi(1−λi)−1f pi (xi)dxi

] 1
pi

. (27)

(ii) For δi = 1, αi = π
2 (i = 1, · · · , n − 1), αn = π

2 , δn = −1 in (21) and (22),
replacing |xn|λfn(xn) by fn(xn), we have the following equivalent inequalities
with the homogeneous kernel and a best possible constant factor kλ :

∫

Rn

kλ(|x1|, · · · , |xn|)
n∏

i=1

fi(xi)dx1 · · · dxn

< 2n−1kλ

n∏

i=1

[∫ ∞

−∞
|xi |pi(1−λi)−1f pi (xi)dxi

] 1
pi

, (28)

⎧
⎨

⎩

∫ ∞

−∞
|xn|λnqn−1

[∫

Rn−1
kλ(|x1|, · · · , |xn|)

n−1∏

i=1

fi(xi)dx1 · · · dxn−1

]qn
dxn

⎫
⎬

⎭

1
qn

< 2n−1kλ

n−1∏

i=1

[∫ ∞

−∞
|xi |pi(1−λi)−1f pi (xi)dxi

] 1
pi

. (29)

For λi = λ
ri
> 0, fi(−xi) = fi(xi)(xi > 0) (i = 1, · · · , n), inequality (28)

reduces to (5) (for rn = 2).
(iii) For n = 2 in (24), we have

∫ ∞

−∞

∫ ∞

−∞
kλ(|xy|, 1)f (x)g(y)dxdy

< 2kλ

[∫ ∞

0
xp(1−

λ
2 )−1f p(x)dx

] 1
p
[∫ ∞

0
xq(1−

λ
2 )−1gq(x)dx

] 1
q

, (30)

where, kλ = ∫∞
0 kλ(u, 1)u

λ
2 −1du > 0 (λ ∈ R) is the best possible.

Inequality (30) is an extension of (4) (for kλ(xy, 1) = 1
(xy+1)λ

, p = q = 2).
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4 Some Examples

Example 1 For λ > 0, λi = λ
ri
(i = 1, · · · , n), rn = 2,

∑n
i=1

1
ri
= 1,

kλ(x1, · · · , xn) = 1

(
∑n

i=1 xi)
λ
,

by mathematical induction, we can show that (cf. [6])

kλ =
∫

Rn−1+

∏n−1
j=1 u

λ
rj
−1

j

(
∑n−1

i=1 ui + 1)λ
du1 · · · dun−1 = 1

Γ (λ)

n∏

i=1

Γ (
λ

ri
). (31)

By (22), we have

∫

Rn

1

(
∑n−1

i=1 u
δi
i (xi)u

δn
n (xn)+ 1)λ

n∏

i=1

fi(xi)dx1 · · · dxn

<
2n−1

Γ (λ)

n∏

j=1

Γ (λj ) csc
2(1− 1

pj
)
αj

n∏

i=1

||fi ||pi,φi . (32)

Example 2 For λ > 0, λi = λ
ri
(i = 1, · · · , n), rn = 2,

∑n
i=1

1
ri
= 1,

kλ(x1, · · · , xn) = 1
∑n

i=1 x
λ
i

,

we can show that

kλ =
∫

Rn−1+

∏n−1
j=1 u

λ
rj
−1

j
∑n−1

i=1 uλi + 1
du1 · · · dun−1 = 1

λn−1

n∏

i=1

Γ (
1

ri
). (33)

In fact, setting vi = uλi (i = 1, · · · , n − 1) in the above integral, we find

ui = v
1
λ

i , dui = 1
λ
v

1
λ
−1

i dvi and

kλ = 1

λn−1

∫

Rn−1+

∏n−1
j=1 v

1
rj
−1

j
∑n−1

i=1 vi + 1
dv1 · · · dvn−1.

In view of (31), for λ = 1, we have (32).
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By (22), we have

∫

Rn

1
∑n−1

i=1 u
λδi
i (xi)u

λδn
n (xn)+ 1

n∏

i=1

fi(xi)dx1 · · · dxn

< (
2

λ
)n−1

n∏

j=1

Γ (λj ) csc
2(1− 1

pj
)
αj

n∏

i=1

||fi ||pi,φi . (34)

Example 3 For λ > 0, λi = λ
ri
(i = 1, · · · , n), rn = 2,

∑n
i=1

1
ri
= 1,

kλ(x1, · · · , xn) = 1

(max1≤i≤n{xi})λ ,

we can show that (cf. [6])

kλ =
∫

Rn−1+

1

(max1≤i≤n−1{ui}, 1)λ

n−1∏

j=1

u

λ
rj
−1

j du1 · · · dun−1

= 1

λn−1

n∏

i=1

ri . (35)

By (22), we have

∫

Rn

1

(max1≤i≤n−1{uδii (xi)uδnn (xn), 1})λ
n∏

i=1

fi(xi)dx1 · · · dxn

< (
2

λ
)n−1

n∏

j=1

Γ (
λ

λj
) csc

2(1− 1
pj

)
αj

n∏

i=1

||fi ||pi,φi . (36)
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Generalizations of Metric Spaces: From
the Fixed-Point Theory to the
Fixed-Circle Theory

Nihal Yılmaz Özgür and Nihal Taş

1 Introduction

Fixed-point theory has been extensively studied on metric spaces since the time
of Stefan Banach (see [5, 9] for more details). Applications of this theory to
the applied areas such as differential equations, integral equations etc. are well-
known (see [8, 11, 18, 20–22, 24, 45] (Jha, Banach contraction principle and
some generalizations. Unpublished M. Phil. Thesis, Kathmandu University, Nepal
(1999))). Recently some generalized metric spaces have been introduced and
studied as the generalizations of metric spaces (see [1, 2], [4, 12, 15, 26, 30, 42–
44, 46, 47, 49]). For example, S-metric spaces and Sb-metric spaces have been
presented for this purpose. Using the obtained generalizations, the known classical
fixed-point results have been generalized (see [29, 31, 32, 41, 43, 44, 48] for more
details). Furthermore some applications have been obtained to the other areas (see
[14, 25, 35–37] for more details).

Now we recall the definitions of an S-metric space and an Sb-metric space as
follows:

Definition 1 ([43]) Let X be a nonempty set and S : X × X × X → [0,∞) be a
function satisfying the following conditions for all x, y, z, a ∈ X :
(S1) S (x, y, z) = 0 if and only if x = y = z,
(S2) S (x, y, z) ≤ S (x, x, a)+S (y, y, a)+S (z, z, a).

Then S is called an S-metric on X and the pair (X,S ) is called an S-metric
space.
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Definition 2 ([44]) Let X be a nonempty set and b ≥ 1 be a given real number. A
function Sb : X ×X ×X → [0,∞) is said to be an Sb-metric if and only if for all
x, y, z, a ∈ X the following conditions are satisfied:

(Sb1) Sb(x, y, z) = 0 if and only if x = y = z,
(Sb2) Sb(x, y, z) ≤ b[Sb(x, x, a)+Sb(y, y, a)+Sb(z, z, a)].

The pair (X,Sb) is called an Sb-metric space.

An Sb-metric space is also a generalization of an S-metric space. Indeed, every
S-metric is an Sb-metric with b = 1. But the converse of this statement is not always
true as seen in the following example.

Example 1 ([48]) Let X = R and the S-metric be defined by

S (x, y, z) = 1

4
(|x − y| + |y − z| + |x − z|),

for all x, y, z ∈ R. Using this S-metric we define

Sb(x, y, z) = S (x, y, z)2 = 1

16
(|x − y| + |y − z| + |x − z|)2.

Then the function Sb is an Sb-metric with b = 4, but it is not an S-metric.

In the following diagram it can be seen the relationships among the metric, S-
metric and Sb-metric spaces.

metric spaces −→ S-metric spaces −→ Sb-metric spaces

It has been extensively studied the existence of fixed points of functions which
satisfy certain conditions with different aspects. At first we recall the Banach’s
contraction principle as follows:

Theorem 1 ([9]) Let (X, d) be a complete metric space and a self-mapping T :
X → X be a contraction, that is, there exists an h ∈ [0, 1) such that

d(T x, T y) ≤ hd(x, y),

for any x, y ∈ X. Then there exists a unique fixed point x0 ∈ X of T .

Many authors have been studied new fixed-point theorems on a complete metric
space. For example, Caristi gave the following fixed-point theorem.

Theorem 2 ([7]) Let (X, d) be a complete metric space and T : X → X be a
mapping. If there exists a lower semicontinuous function ϕ mapping X into the
nonnegative real numbers satisfying

d(x, T x) ≤ ϕ(x)− ϕ(T x), (1)

for all x ∈ X then T has a fixed point.
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The following theorem was given on a compact metric space by Edelstein [13].
Also this result was proved independently by Nemytskii [27].

Theorem 3 ([13, 27]) Let T be a mapping from a compact metric space (X, d) into
itself satisfying

d(T x, T y) < d(x, y),

for all x, y ∈ X with x �= y. Then T has a unique fixed point.

It has been also introduced and studied new contractive conditions to obtain new
fixed-point theorems. For example, the following contractive condition was given in
L. B. Ćirić’s result [10]:

There exists a constant h, 0 < h < 1, such that, for each x, y ∈ X,

d(T x, T y) ≤ hmax {d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)} .

As an another example, Rhoades defined the following condition (which is called
the Rhoades’ condition) [40]:

d(T x, T y) < max {d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)} ,

for all x, y ∈ X, x �= y.
Some known fixed-point theorems have been extended on some generalized

metric spaces such as an S-metric space. For example, Banach’s contraction
principle has been extended using some different methods (see [29, 43]). The
classical Ćirić’s fixed-point result has been generalized in [41]. Also the classical
Nemytskii-Edelstein fixed-point theorem has been obtained on a compact S-metric
space [43]. The present authors introduced the Rhoades’ contractive condition and
some generalizations of it on S-metric spaces (see [31, 32]). Using these generalized
contractive conditions, they proved new fixed-point results as the generalizations of
the Ćirić’s fixed-point result and the Nemytskii-Edelstein fixed-point theorem.

In some special metric spaces, mappings with fixed points have been used in
neural networks as activation functions. For example, Möbius transformations have
been used for this purpose. A Möbius transformation M is a rational function of
the form

Mz = az+ b

cz+ d
, (2)

where a, b, c, d are complex numbers satisfying ad − bc �= 0. A Möbius
transformation has at most two fixed points (see [19] for more details about Möbius
transformations). In [23], Mandic identified the activation function of a neuron and
a single-pole all-pass digital filter section as Möbius transformations. On the other
hand, there are some examples of functions which fix a circle. For example, let C
be the metric space with the usual metric

d(z,w) = |z− w| ,
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for all z,w ∈ C and the mapping T be defined as

T z = 1

z
,

for all z ∈ C \ {0}, where z is the complex conjugate of the complex number z. The
mapping T fixes the unit circle C0,1. In [28], using the self-mapping T , Özdemir,
İskender and Özgür obtained new types of activation functions which fix a circle
for a complex valued neural network (CVNN). The usage of these types activation
functions leads us to guarantee the existence of the fixed points of a complex valued
Hopfield neural network (CVHNN).

Therefore it is important to study the mappings with a fixed circle and the
notion of a fixed circle. It will be an interesting problem to investigate some
fixed-circle theorems on some spaces such as metric or normed spaces. More
recently, some fixed-circle theorems have been presented as a different direction for
the generalizations of the known fixed-point theorems. Existence and uniqueness
conditions for fixed-circles of self-mappings have been investigated on a metric and
an S-metric space (see [33, 34, 38]).

Let X = C and the mapping S : X ×X ×X → [0,∞) be defined as

S (z1, z2, z3) = |z1 − z3| + |z1 + z3 − 2z2| , (3)

for all z1, z2, z3 ∈ C. Then (C,S ) is an S-metric space. Let us consider the circle
CS

0,3 and define the self-mapping T : C → C by

T z =
{

9
4z ; z �= 0
0 ; z = 0

,

for all z ∈ C. Then CS
0,3 is the fixed circle of T . If we consider the self-mapping

T : C → C by

T z =
{

9
4z ; z �= 0
0 ; z = 0

,

for all z ∈ C, then clearly T does not fix the circle CS
0,3 but T maps the circle CS

0,3

onto itself. Especially T fixes the points z1 = 3
2 and z2 = − 3

2 only. Therefore it
is important to study new existence and uniqueness conditions for fixed-circles of
self-mappings.

In this study, we give a survey about the fixed-point theory on some generalized
metric spaces and obtain new fixed-point (resp. fixed-circle) results on an Sb-metric
space. In Sect. 2, we recall some basic facts and results on S-metric and Sb-metric
spaces. In Sect. 3, we present new contractive conditions as the generalizations
of the Rhoades’ conditions using the theory of an Sb-metric space and study
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some fixed-point theorems for self-mappings satisfying the Rhoades’ conditions.
In Sect. 4, we obtain new generalizations of the Nemytskii-Edelstein fixed-point
theorem and the Ćirić’s fixed-point result. In Sect. 5, we give a brief survey about
the known fixed-circle results on a metric (resp. an S-metric) space. We prove new
fixed-circle theorems on metric and Sb-metric spaces with a geometric viewpoint.
Especially we give some existence and uniqueness conditions for fixed-circle results
on an Sb-metric space. Our results can be also considered as the new generalizations
of the known fixed-point results on a metric and an S-metric space.

2 Some Generalized Metric Spaces

At first, we consider some basic properties about S-metric (resp. Sb-metric) spaces.
We give necessary facts and theorems on these spaces which will be used in the next
sections.

Definition 3 ([43]) Let (X,S ) be an S-metric space and A ⊂ X.

1. A sequence {xn} in X converges to x if and only if S (xn, xn, x) → 0 as n → ∞.
That is, for each ε > 0, there exists n0 ∈ N such that S (xn, xn, x) < ε for all
n ≥ n0. We denote this by lim

n→∞xn = x or lim
n→∞S (xn, xn, x) = 0.

2. A sequence {xn} in X is called a Cauchy sequence if S (xn, xn, xm) → 0
as n,m → ∞. That is, for each ε > 0, there exists n0 ∈ N such that
S (xn, xn, xm) < ε for all n,m ≥ n0.

3. The S-metric space (X,S ) is called complete if every Cauchy sequence in X is
convergent.

Lemma 1 ([43]) Let (X,S ) be an S-metric space. Then we have

S (x, x, y) = S (y, y, x).

The relation between a metric and an S-metric is given in [17] as follows:

Lemma 2 ([17]) Let (X, d) be a metric space. Then the following properties are
satisfied:

1. Sd(x, y, z) = d(x, z)+ d(y, z) for all x, y, z ∈ X is an S-metric on X.
2. xn → x in (X, d) if and only if xn → x in (X,Sd).
3. {xn} is Cauchy in (X, d) if and only if {xn} is Cauchy in (X,Sd).

4. (X, d) is complete if and only if (X,Sd) is complete.

The metric Sd defined in Lemma 2 (1) is called the S-metric generated by d [31].
Note that there exist some examples of S-metrics satisfying S �= Sd for all

metrics d (see [17, 31]). We recall the following example.

Example 2 ([31]) Let X = R and define the function

S (x, y, z) = |x − z| + |x + z− 2y|,
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for all x, y, z ∈ R. Then (X,S ) is an S-metric space. Now we prove that there is
no any metric d such that S = Sd . Conversely, suppose that there exists a metric
d such that

S (x, y, z) = d(x, z)+ d(y, z),

for all x, y, z ∈ R. Then we obtain

S (x, x, z) = 2d(x, z) = 2|x − z| and so d(x, z) = |x − z|

and

S (y, y, z) = 2d(y, z) = 2|y − z| and so d(y, z) = |y − z|,

for all x, y, z ∈ R. Hence we have

|x − z| + |x + z− 2y| = |x − z| + |y − z|,

which is a contradiction. Therefore S �= Sd .

Let (X,S ) be any S-metric space. In [16], it was shown that every S-metric on
X defines a metric dS on X as follows:

dS(x, y) = S (x, x, y)+S (y, y, x), (4)

for all x, y ∈ X. However, in [31] it was noted that the function dS(x, y) defined
in (4) does not always define a metric. It can be easily checked that the triangle
inequality is not satisfied for all elements of X everywhen for the function dS [31].
More precisely, it was proved that the function dS defined in (4) is a b-metric on X,
but it is not always a metric since every b-metric need not to be a metric [39]. In
the case that dS is a metric, dS is called as the metric generated by S [31]. In the
following we give an example of an S-metric which does not generate a metric.

Example 3 ([31]) Let X = {1, 2, 3} and the function S : X × X × X → [0,∞)

be defined as:
S (1, 1, 2) = S (2, 2, 1) = 5,
S (2, 2, 3) = S (3, 3, 2) = S (1, 1, 3) = S (3, 3, 1) = 2,
S (x, y, z) = 0 if x = y = z,
S (x, y, z) = 1 otherwise,

for all x, y, z ∈ X. Then the function S is an S-metric which is not generated by
any metric and the pair (X,S ) is an S-metric space. But the function dS defined
in (4) is not a metric on X. Indeed, for x = 1, y = 2, z = 3 we get

dS(1, 2) = 10 � dS(1, 3)+ dS(3, 2) = 8.
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Proposition 1 ([39]) Let X �= ∅ be any set. If an S-metric is generated by any
metric then this S-metric generates a metric. Especially we have dS(x, y) =
4d(x, y).

The converse of the above proposition is not always true as seen in the following
example.

Example 4 Let X = R and define the function S : X ×X ×X → [0,∞) by

S (x, y, z) =
∣∣∣x5 − z5

∣∣∣+
∣∣∣x5 + z5 − 2y5

∣∣∣ ,

for all x, y, z ∈ R. Then the function S is an S-metric which is not generated by
any metric and (X,S ) is an S-metric space. Now we show that this S-metric is not
generated by any metric d, that is, S �= Sd . On the contrary, we assume that there
exists a metric d such that

S (x, y, z) = Sd(x, y, z) = d(x, z)+ d(y, z),

for all x, y, z ∈ R. Therefore we have

S (x, x, z) = 2d(x, z) and so d(x, z) =
∣∣∣x5 − z5

∣∣∣

and

S (y, y, z) = 2d(y, z) and so d(y, z) =
∣∣∣y5 − z5

∣∣∣ ,

for all x, y, z ∈ R. Then we get

∣∣∣x5 − z5
∣∣∣+

∣∣∣x5 + z5 − 2y5
∣∣∣ =

∣∣∣x5 − z5
∣∣∣+

∣∣∣y5 − z5
∣∣∣ ,

which is a contradiction for x = 1, y = 2, z = 0 ∈ R. Consequently, S �= Sd , that
is, the S-metric is not generated by any metric d. However, this S-metric generates
a metric dS such that

dS(x, y) = S (x, x, y)+S (y, y, x) = 2S (x, x, y) = 2
∣∣∣x5 − z5

∣∣∣ ,

for all x, y ∈ R.

Remark 1

1) For an S-metric which is not generated by any metric, dS can be or can not be a
metric on X (see Examples 3 and 4).

2) Let X �= ∅, S1 be an S-metric on X which is not generated by any metric d and
S2 be an S-metric on X which is generated by any metric d. Then dS1 and dS2

may be the same (see [39] for more details).
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Definition 4 ([43]) Let (X,S ) be an S-metric space and A ⊂ X. A subset A of X
is said to be S-bounded if there exists r > 0 such that

S (x, x, y) < r ,

for all x, y ∈ A.

Definition 5 ([17, 32]) Let (X,S ) be an S-metric space, x ∈ X and A ⊂ X. The
diameter of A is defined by

δ(A) = sup{S (x, x, y) : x, y ∈ A}.

If A is S-bounded, then we will write δ(A) < ∞.
Now we recall some basic facts on an Sb-metric space.

Definition 6 ([44]) Let (X,Sb) be an Sb-metric space.

1. A sequence {xn} inX converges to x if and only if Sb(xn, xn, x) → 0 as n → ∞,
that is, for each ε > 0 there exists n0 ∈ N such that Sb(xn, xn, x) < ε for all
n ≥ n0. It is denoted by

lim
n→∞xn = x.

2. A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 there exists
n0 ∈ N such that Sb(xn, xn, xm) < ε for each n,m ≥ n0.

3. An Sb-metric space (X,Sb) is said to be complete if every Cauchy sequence in
X is convergent.

Definition 7 ([48]) Let (X,Sb) be an Sb-metric space, x ∈ X and A ⊂ X.

(a) A subset A of X is said to be Sb-bounded if there exists r > 0 such that

Sb(x, x, y) < r ,

for all x, y ∈ A.
(b) The diameter of A is defined by

δ(A) = sup{Sb(x, x, y) : x, y ∈ A}.

If A is Sb-bounded, then we will write δ(A) < ∞.

Lemma 3 ([44]) Let (X,Sb) be an Sb-metric space with b ≥ 1, then we have

Sb(x, x, y) ≤ bSb(y, y, x)

and

Sb(y, y, x) ≤ bSb(x, x, y).
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Definition 8 ([48]) Let (X,Sb) be an Sb-metric space and b > 1. An Sb-metric
Sb is called symmetric if

Sb(x, x, y) = Sb(y, y, x), (5)

for all x, y ∈ X.

For b = 1, the symmetry condition (5) is satisfied by Lemma 1.

Lemma 4 ([48]) Let (X,Sb) be an Sb-metric space. If the sequence {xn} in X

converges to x then x is unique.

In the following lemmas, we see the relationships between a b-metric and an
Sb-metric.

Lemma 5 ([48]) Let (X,Sb) be an Sb-metric space, Sb be a symmetric Sb-metric
with b ≥ 1 and the function d : X ×X → [0,∞) be defined by

d(x, y) = Sb(x, x, y),

for all x, y ∈ X. Then d is a b-metric on X.

Lemma 6 ([48]) Let (X, d) be a b-metric space with b ≥ 1 and the function Sb :
X ×X ×X → [0,∞) be defined by

Sb(x, y, z) = d(x, z)+ d(y, z),

for all x, y, z ∈ X. Then Sb is an Sb-metric on X.

Now we recall the following definitions, propositions, corollaries and theorems
on S-metric spaces. At first, we consider the Rhoades’ contractive condition and its
generalizations on an S-metric space.

Definition 9 ([32]) Let (X,S ) be an S-metric space and T be a self-mapping of
X. We define

(S25) S (T x, T x, T y) < max{S (x, x, y),S (T x, T x, x),S (T y, T y, y),

S (T y, T y, x),S (T x, T x, y)},

for each x, y ∈ X, x �= y.

Definition 10 ([31]) Let (X,S ) be an S-metric space and T be a self-mapping of
X. We define the contractive conditions (S50), (S75), (S100) and (S125) as follows:

(S50) There exists a positive integer p such that

S (T px, T px, T py) < max{S (x, x, y),S (T px, T px, x),S (T py, T py, y),

S (T py, T py, x),S (T px, T px, y)},

for any x, y ∈ X, x �= y.
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(S75) There exist positive integers p, q such that

S (T px, T px, T qy) < max{S (x, x, y),S (T px, T px, x),S (T qy, T qy, y),

S (T qy, T qy, x),S (T px, T px, y)},
for any x, y ∈ X, x �= y.

(S100) For any given x ∈ X there exists a positive integer p(x) such that

S (T p(x)x, T p(x)x, T p(x)y) < max{S (x, x, y),S (T p(x)x, T p(x)x, x),

S (T p(x)y, T p(x)y, y),S (T p(x)y, T p(x)y, x),

S (T p(x)x, T p(x)x, y)},
for any y ∈ X, x �= y.

(S125) For any given x, y ∈ X, x �= y there exists a positive integer p(x, y)
such that

S (T p(x,y)x, T p(x,y)x, T p(x,y)y) < max{S (x, x, y),S (T p(x,y)x, T p(x,y)x, x),

S (T p(x,y)y, T p(x,y)y, y),S (T p(x,y)y,T p(x,y)y, x),

S (T p(x,y)x, T p(x,y)x, y)}.

We recall some properties of the Rhoades’ contractive conditions and fixed-point
results on an S-metric space.

Proposition 2 ([31]) Let (X,S ) be an S-metric space and T be a self-mapping of
X. We obtain the following implications :

(S25) 2⇒ (S50) 2⇒ (S75) and (S50) 2⇒ (S100) 2⇒ (S125).

Theorem 4 ([31]) Let (X,S ) be an S-metric space, T be a self-mapping of X
which satisfies the inequality (S125). If T has a fixed point then it is unique.

Corollary 1 ([31]) Let (X,S ) be an S-metric space, T be a self-mapping of X
and the inequality (S25) (resp. T ∈ (S50), T ∈ (S100)) be satisfied. If T has a
fixed point then it is unique.

Corollary 2 ([31]) Let (X,S ) be an S-metric space, T be a self-mapping of X
and the inequality (S75) be satisfied. If T has a fixed point then it is unique.

Definition 11 ([32]) Let (X,S ) be an S-metric space and T be a self-mapping of
X. T is called a CS-mapping on X if for each x ∈ X and each positive integer n ≥ 2
satisfying

T ix �= T jx, 0 ≤ i < j ≤ n− 1, (6)

we have

S (T nx, T nx, T ix) < max
1≤j≤n

{S (T j x, T jx, x)}, i = 1, 2, . . . , n− 1.
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Definition 12 ([32]) Let (X,S ) be an S-metric space and T be a self-mapping of
X. T is called an LS-mapping on X if for each x ∈ X and each positive integer
n ≥ 2 with the condition (6) we have

S (T nx, T nx, T ix) < max
0≤p<q≤n

{S (T px, T px, T qx)}, i = 1, 2, . . . , n− 1.

Theorem 5 ([32]) Let (X,S ) be an S-metric space and T be a self-mapping of X.
If T satisfies the condition (S25), then T is a CS-mapping.

Proposition 3 ([32]) Let (X,S ) be an S-metric space. Then the notions of a CS-
mapping and of an LS-mapping are equivalent.

Theorem 6 ([32]) Let T be a CS-mapping from an S-metric space (X,S ) into
itself. Then T has a fixed point in X if and only if there exist integers p and q,
p > q ≥ 0 and x ∈ X satisfying

T px = T qx. (7)

If the condition (7) is satisfied, then T qx is a fixed point of T .

Corollary 3 ([32]) Let (X,S ) be an S-metric space and T be a self-mapping of
X satisfying the condition (S25). Then T has a fixed point in X if and only if there
exist integers p and q, p > q ≥ 0 and x ∈ X satisfying the condition (7). Then T qx

is the fixed point of T .

Theorem 7 ([32]) Let T be an LS-mapping from an S-metric space (X,S ) into
itself. Then T has a fixed point in X if and only if there exist integers p and q,
p > q ≥ 0 and x ∈ X satisfying the condition (7). Then T qx is a fixed point of T .

Theorem 8 ([31]) Let (X,S ) be an S-metric space, x ∈ X, T be a self-mapping
of X and the inequality (S125) be satisfied. Assume that x is a periodic point of T
with periodic index m. Then T has a fixed point x in {T nx}(n ≥ 0) if and only if for
any T n1x, T n2x ∈ {T nx}(n ≥ 0), T n1x �= T n2x, there exist T n3x, T n4x ∈ {T nx}
such that

T p(T n3x,T n4x)(T n3x) = T n1x and T p(T n3x,T n4x)(T n4x) = T n2x.

Then the point x is the unique fixed point of T in X.

Corollary 4 ([31]) Let (X,S ) be an S-metric space, T be a self-mapping of X,
the inequality (S100) be satisfied and x ∈ X be a periodic point of T . Then the
following conditions are equivalent:

1. T has a unique fixed point in {T nx}(n ≥ 0),
2. There exists T n0x ∈ {T nx}(n ≥ 0) such that

T p(T n0x)(T n0x) = T n1x,

for any T n1x ∈ {T nx}(n ≥ 0), where p(T n0x) is a positive integer.

Then the point x is the unique fixed point of T in X.
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Corollary 5 ([31]) Let (X,S ) be an S-metric space, T be a self-mapping of X,
the inequality (S75) be satisfied and x ∈ X be a periodic point of T . Then x is the
unique fixed point of T if there exist T n3x, T n4x ∈ {T nx}(n ≥ 0), T n3x �= T n4x

such that

T p(T n3x) = T n1x and T q(T n4x) = T n2x,

for any T n1x, T n2x ∈ {T nx}(n ≥ 0), T n1x �= T n2x, where p and q are positive
integers.

Corollary 6 ([31]) Let (X,S ) be an S-metric space, T be a self-mapping of X and
the inequality (S50) be satisfied. Then the following conditions are equivalent:

1. T has a fixed point in X,
2. There exists a periodic point x ∈ X of T .

Then the point x is the unique fixed point of T in X.

Definition 13 ([32]) Let (X,S ) be an S-metric space, x, y ∈ X, T be a self-
mapping of X, Ux = {T nx : n ∈ N}, diam{Ux} < ∞ and diam{Uy} < ∞.
We define

(S25a) S (T x, T x, T y) < diam{Ux ∪ Uy},

for each x, y ∈ X with x �= y.

Proposition 4 ([32]) Let (X,S ) be an S-metric space and T be a self-mapping of
X. If T satisfies the condition (S25), then T satisfies the condition (S25a).

Theorem 9 ([32]) Let T be a continuous self-mapping from a compact S-metric
space (X,S ) into itself and T satisfies the condition (S25a). Then T has a unique
fixed point.

Corollary 7 ([32]) Let T be a continuous self-mapping from a compact S-metric
space (X,S ) into itself and T satisfies the condition (S25). Then T has a unique
fixed point.

3 New Generalizations of Rhoades’ Contractive Conditions

In this section we consider Sb-metric spaces and present new contractive conditions
such as (Sb25), (Sb50), (Sb75), (Sb100) and (Sb125) as the generalizations of the
Rhoades’ contractive conditions mentioned in the previous sections. We investigate
some properties of these new contractive conditions and give some illustrative
examples.

At first we generalize the Rhoades’ conditions given in Sect. 2.
Let (X,Sb) be an Sb-metric space with b ≥ 1 and T be a self-mapping of X.
(Sb25) For any x, y ∈ X with x �= y
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Sb(T x, T x, T y) < max{Sb(x, x, y),Sb(T x, T x, x),Sb(T y, T y, y),

Sb(T y, T y, x),Sb(T x, T x, y)}.

(Sb50) There exists a positive integer p such that

Sb(T
px, T px, T py) < max{Sb(x, x, y),Sb(T

px, T px, x),Sb(T
py, T py, y),

Sb(T
py, T py, x),Sb(T

px, T px, y)},

for any x, y ∈ X with x �= y.
(Sb75) There exist positive integers p, q such that

Sb(T
px, T px, T qy) < max{Sb(x, x, y),Sb(T

px, T px, x),Sb(T
qy, T qy, y),

Sb(T
qy, T qy, x),Sb(T

px, T px, y)},

for any x, y ∈ X with x �= y.
(Sb100) For any given x ∈ X there exists a positive integer p(x) such that

Sb(T
p(x)x, T p(x)x, T p(x)y) < max{Sb(x, x, y),Sb(T

p(x)x, T p(x)x, x),

Sb(T
p(x)y, T p(x)y, y),Sb(T

p(x)y, T p(x)y, x),

Sb(T
p(x)x, T p(x)x, y)},

for any y ∈ X with x �= y.
(Sb125) For any given x, y ∈ X with x �= y there exists a positive integer p(x, y)

such that

Sb(T
p(x,y)x, T p(x,y)x, T p(x,y)y) < max{Sb(x, x, y),Sb(T

p(x,y)x, T p(x,y)x, x),

Sb(T
p(x,y)y, T p(x,y)y, y),Sb(T

p(x,y)y,

T p(x,y)y, x),

Sb(T
p(x,y)x, T p(x,y)x, y)}.

For b = 1, we note that the condition (Sb25) (resp. (Sb50), (Sb75), (Sb100)
and (Sb125)) coincides with the condition (S25) (resp. (S50), (S75), (S100) and
(S125)).

Proposition 5 Let (X,Sb) be an Sb-metric space with b ≥ 1 and T be a self-
mapping of X. We obtain the following implications:

(Sb25) 2⇒ (Sb50) 2⇒ (Sb75) and (Sb50) 2⇒ (Sb100) 2⇒ (Sb125).

Proof Let T satisfies the condition (Sb25). Then we have
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Sb(T x, T x, T y) < max{Sb(x, x, y),Sb(T x, T x, x),Sb(T y, T y, y),

Sb(T y, T y, x),Sb(T x, T x, y)},

for any x, y ∈ X with x �= y. If we take p = 1 then the condition (Sb50) is clearly
satisfied.

Assume that T satisfies the condition (Sb50). Hence there exists a positive integer
p such that

Sb(T
px, T px, T py) < max{Sb(x, x, y),Sb(T

px, T px, x),Sb(T
py, T py, y),

Sb(T
py, T py, x),Sb(T

px, T px, y)},

for any x, y ∈ X with x �= y. If we take p = q then the condition (Sb75) is satisfied.
Also T satisfies the condition (Sb100) taking p = p(x).

Suppose that T satisfies the condition (Sb100). Hence there exists a positive
integer p(x) for any given x ∈ X such that

Sb(T
p(x)x, T p(x)x, T p(x)y) < max{Sb(x, x, y),Sb(T

p(x)x, T p(x)x, x),

Sb(T
p(x)y, T p(x)y, y),Sb(T

p(x)y, T p(x)y, x),

Sb(T
p(x)x, T p(x)x, y)},

for any y ∈ X with x �= y. If we take p = p(x) = p(x, y) then the condition
(Sb125) is satisfied. The proof is completed.

The converses of the above implications in Proposition 5 are not always true as
we have seen in the following examples.

Example 5 Let us consider the Sb-metric defined in Example 1 on X = [0, 1]. Let

T x =
{

0 ; x ∈ [0, 1] , x �= 1
6

1 ; x = 1
6

,

for all x ∈ X. Then T is a self-mapping on the Sb-metric space (X, Sb) and satisfies
the condition (Sb50) for p = 2. But T does not satisfy the condition (Sb25). Indeed,
for x = 1

2 , y = 1
6 ∈ [0, 1] we obtain

Sb(T x, T x, T y) = Sb (0, 0, 1) = 1

4
,

Sb(x, x, y) = Sb

(
1

2
,

1

2
,

1

6

)
= 1

36
,

Sb(T x, T x, x) = Sb

(
0, 0,

1

2

)
= 1

16
,
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Sb(T y, T y, y) = Sb

(
1, 1,

1

6

)
= 25

144
,

Sb(T y, T y, x) = Sb

(
1, 1,

1

2

)
= 1

16
,

Sb(T x, T x, y) = Sb

(
0, 0,

1

6

)
= 1

144

and so we get

Sb(T x, T x, T y) = 1

4
< max

{
1

36
,

1

16
,

25

144
,

1

16
,

1

144

}
= 25

144
.

Example 6 Let us consider the Sb-metric defined in Example 1 on X =
{1, 2, 3}. Let

T x =
{
x + 1 ; x ∈ {1, 2}

2 ; x = 3
,

for all x ∈ X. Then T is a self-mapping on the Sb-metric space (X,Sb) and satisfies
the condition (Sb75) for p = 1 and q = 2. But T does not satisfy the condition
(Sb50). Indeed, let us choose x = 2 and y = 3.

For p = 1 we have

Sb(T x, T x, T y) = Sb (3, 3, 2) = 1

4
,

Sb(x, x, y) = Sb (2, 2, 3) = 1

4
,

Sb(T x, T x, x) = Sb (3, 3, 2) = 1

4
,

Sb(T y, T y, y) = Sb (2, 2, 3) = 1

4
,

Sb(T y, T y, x) = Sb (2, 2, 2) = 0,

Sb(T x, T x, y) = Sb (3, 3, 3) = 0
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and so we get

Sb(T x, T x, T y) = 1

4
< max

{
1

4
,

1

4
,

1

4
, 0, 0

}
= 1

4
.

Hence the condition (Sb50) is not satisfied.
For p = 2 we have

Sb(T
2x, T 2x, T 2y) = Sb (2, 2, 3) = 1

4
,

Sb(x, x, y) = Sb (2, 2, 3) = 1

4
,

Sb(T
2x, T 2x, x) = Sb (2, 2, 2) = 0,

Sb(T
2y, T 2y, y) = Sb (3, 3, 3) = 0,

Sb(T
2y, T 2y, x) = Sb (3, 3, 2) = 1

4
,

Sb(T
2x, T 2x, y) = Sb (2, 2, 3) = 1

4

and so we get

Sb(T
2x, T 2x, T 2y) = 1

4
< max

{
1

4
, 0, 0,

1

4
,

1

4

}
.

Hence the condition (Sb50) is not satisfied. For p ≥ 3 using similar arguments we
can easily see that the condition (Sb50) is not satisfied.

Example 7 Let us consider the self-mapping T defined in Figure 4 on page 105 in

[3] and the Sb-metric defined in Example 1. If we choose x =
(

1
n
+ 1, 0

)
, y =

(
1
n
, 0

)
for each n then the condition (Sb50) is not satisfied. A positive integer p(x)

can be chosen for any given x ∈ X such that the condition (Sb100) is satisfied.

Example 8 Let X = [0, 1] ∪ {5} be the Sb-metric space with the Sb-metric defined
in Example 1 and let

T x =

⎧
⎪⎪⎨

⎪⎪⎩

√
x ; x ∈ [0, 1] , x �= 1

4 , x �= 1
5

1
5 ; x = 1

4
5 ; x = 1

5
1
4 ; x = 5

,

for all x ∈ X. Then T is a self-mapping on the Sb-metric space (X,Sb) and satisfies
the condition (Sb125). But T does not satisfy the condition (Sb100).
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Theorem 10 Let (X,Sb) be an Sb-metric space, Sb be a symmetric Sb-metric with
b > 1 and T be a self-mapping of X which satisfies the condition (Sb125). If T has
a fixed point then it is unique.

Proof Suppose that x and y are the fixed points of T such that x, y ∈ X with x �= y.
Then there exists a positive integer p = p(x, y) such that

Sb(T
px, T px, T py) < max{Sb(x, x, y),Sb(T

px, T px, x),Sb(T
py, T py, y),

Sb(T
py, T py, x),Sb(T

px, T px, y)},
by the condition (Sb125). Then by using the symmetry condition and the fact that
T px = x, T py = y we get

Sb(T
px, T px, T py) = Sb(x, x, y) < Sb(x, x, y),

which is a contradiction. Consequently, the fixed point is unique.

For b = 1, Theorem 10 coincides with Theorem 4.
Following the ideas used in the proof of Theorem 10 we obtain the following

corollary by Proposition 5.

Corollary 8 Let (X,Sb) be an Sb-metric space, Sb be a symmetric Sb-metric with
b > 1 and T be a self-mapping of X which satisfies the condition (Sb25) (resp.
(Sb50), (Sb75) and (Sb100)). If T has a fixed point then it is unique.

For b = 1, Corollary 8 coincides with Corollaries 1 and 2.
If we consider the following example then it is clear that the symmetry condition

have an important role for the self-mappings satisfying the condition (Sb125).

Example 9 Let X = R and the function Sb : X ×X ×X → [0,∞) be defined as

Sb(0, 0, 1) = 2,
Sb(1, 1, 0) = 4,
Sb(x, y, z) = 0 if x = y = z,
Sb(x, y, z) = 1 otherwise,

for all x, y, z ∈ R [48]. Then the function Sb is an Sb-metric with b ≥ 2 which is
not symmetric and (R,Sb) is an Sb-metric space. If we consider the self-mapping
T : R → R defined by

T x =
{

1 ; x ∈ {0, 1}
6 ; otherwise

,

for all x ∈ R, then T has two fixed points x1 = 1, x2 = 6 and T does not satisfy the
condition (Sb125) for the fixed points.

In order to obtain a fixed point theorem for a self-mapping of X satisfying the
condition (Sb25), we give the following definition.
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Definition 14 Let (X,Sb) be an Sb-metric space with b ≥ 1 and T be a self-
mapping of X.

1. For each x ∈ X and each positive integer n ≥ 2 satisfying

T ix �= T jx (0 ≤ i < j ≤ n− 1), (8)

if we have

Sb(T
nx, T nx, T ix) < max

1≤j≤n

{
Sb(T

j x, T jx, x)
}
(i = 1, 2, . . . , n− 1),

(9)
then T is called a Cb

S-mapping on X.
2. For each x ∈ X and each positive integer n ≥ 2 with the condition (8) if we have

Sb(T
nx, T nx, T ix) < max

1≤p<q≤n
{
Sb(T

px, T px, T qx)
}
(i = 1, 2, . . . , n− 1),

then T is called an Lb
S-mapping on X.

If we consider the case b = 1 then the notion of a Cb
S-mapping (resp. an Lb

S-
mapping) coincides with the notion of a CS-mapping (resp. an LS-mapping).

We note that the symmetry condition (5) is not necessary in the following
proposition and the case b = 1 was proved in Theorem 5.

Proposition 6 Let (X,Sb) be an Sb-metric space with b ≥ 1 and T be a self-
mapping of X. If T satisfies the condition (Sb25) then T is a Cb

S-mapping.

Proof Using mathematical induction and the condition (Sb25) the proof follows
easily.

The converse of the above proposition is not always true. We give the following
example.

Example 10 Let X = [0, 1] ∪ {2, 5, 8} be the Sb-metric space with the Sb-metric
defined in Example 1 and let

T x =
⎧
⎨

⎩

x ; x ∈ [0, 1]
x − 3 ; x ∈ {5, 8}

1 ; x = 2
,

for all x ∈ X. Then T is a CS-mapping. Indeed, we have the following cases for
x ∈ {2, 5, 8}.
Case 1 For x = 2 and n = 2 we get

Sb(T
22, T 22, T 2) = 0 < max

{
Sb(T

22, T 22, 2),Sb(T 2, T 2, 2)
}
= 1

4
.

For n > 2 using similar arguments it can be seen that (9) holds.
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Case 2 For x = 5 and n ∈ {2, 3} we get

Sb(T
25, T 25, T 5) = 1

4
< max

{
Sb(T

25, T 25, 5),Sb(T 5, T 5, 5)
}
= 4

and

max
{
Sb(T

35, T 35, T 5),Sb(T
35, T 35, T 25)

}
= 1

4
<

max
{
Sb(T

35, T 35, 5),Sb(T
25, T 25, 5),Sb(T 5, T 5, 5)

}
= 4.

For n > 3 using similar arguments it can be seen that (9) holds.

Case 3 For x = 8 and n ∈ {2, 3, 4} we get

Sb(T
28, T 28, T 8) = 9

4
< max

{
Sb(T

28, T 28, 8),Sb(T 8, T 8, 8)
}
= 9,

max
{
Sb(T

38, T 38, T 8),Sb(T
38, T 38, T 28)

}
= 4 <

max
{
Sb(T

38, T 38, 8),Sb(T
28, T 28, 8),Sb(T 8, T 8, 8)

}
= 49

4

and

max
{
Sb(T

48, T 48, T 8),Sb(T
48, T 48, T 28),Sb(T

48, T 48, T 38)
}
=4 <

max
{
Sb(T

48, T 48, 8),Sb(T
38, T 38, 8),Sb(T

28, T 28, 8),Sb(T 8, T 8, 8)
}
= 49

4
.

For n > 4 using similar arguments it can be seen that (9) holds.

But T does not satisfy the condition (Sb25). Indeed, for x = 1

4
, y = 1

5
∈ [0, 1]

we have

Sb(T x, T x, T y) = Sb

(
1

4
,

1

4
,

1

5

)
= 1

1600
,

Sb(x, x, y) = Sb

(
1

4
,

1

4
,

1

5

)
= 1

1600
,

Sb(T x, T x, x) = Sb (x, x, x) = 0,

Sb(T y, T y, y) = Sb (y, y, y) = 0,
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Sb(T y, T y, x) = Sb

(
1

5
,

1

5
,

1

4

)
= 1

1600
,

Sb(T x, T x, y) = Sb

(
1

4
,

1

4
,

1

5

)
= 1

1600

and so

Sb(T x, T x, T y) = 1

1600
< max

{
1

1600
, 0, 0,

1

1600
,

1

1600

}
= 1

1600
.

In the following proposition, the symmetry condition (5) is necessary.

Proposition 7 Let (X,Sb) be an Sb-metric space and Sb be a symmetric Sb-metric
with b > 1. Then the notions of a Cb

S-mapping and an Lb
S-mapping are equivalent.

Proof Let T be an Lb
S-mapping and x ∈ X. Suppose that the condition (8) is

satisfied for each positive integer n ≥ 2. Hence we have

min{Sb(T
ix, T ix, T j x) : 0 ≤ i < j ≤ k − 1} > 0,

where 2 ≤ k ≤ n. It is obvious that

Sb(T
nx, T nx, T ix) < max

0≤p<q≤n
{Sb(T

px, T px, T qx)},

where i = 1, 2, . . . , n− 1. Let

Un = max
1≤i≤n−1

{Sb(T
nx, T nx, T ix)}

and

Vn = max
1≤i≤n

{Sb(T
ix, T ix, x)}.

Then using the symmetry condition (5) we obtain

Un = max{Sb(T
nx, T nx, T ix) : 1 ≤ i ≤ n− 1}

< max{Vn,max{Sb(T
px, T px, T qx) : 1 ≤ p < q ≤ n− 1}}

= max{Un−1, Vn,max{Sb(T
px, T px, T qx) : 1 ≤ p < q ≤ n− 2}}

≤ max{Vn, Vn−1,max{Sb(T
px, T px, T qx) : 1 ≤ p < q ≤ n− 2}}

= max{Vn,max{Sb(T
px, T px, T qx) : 1 ≤ p < q ≤ n− 2}}

≤ . . .

≤ max{Vn,max{Sb(T
px, T px, T qx) : 1 ≤ p < q ≤ 2}}

= max{Vn,Sb(T x, T x, T
2x)} = max{Vn,Sb(T

2x, T 2x, T x)}
≤ max{Vn,max{Sb(T x, T x, x),Sb(T

2x, T 2x, x)}} = Vn.

Therefore T is a Cb
S-mapping.
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Conversely, let T be a Cb
S-mapping and x ∈ X. Suppose that the condition (8) is

satisfied for each n ≥ 2. Using the definition of a Cb
S-mapping we get

Sb(T
nx, T nx, T ix) < max

1≤j≤n
{Sb(T

j x, T jx, x)},

where i = 1, 2, . . . , n− 1. If 1 ≤ j ≤ n then 0 ≤ j − 1 ≤ n− 1. Let us choose q
such that 0 ≤ j − 1 < q ≤ n. For j − 1 = 0 we have 1 ≤ q ≤ n and

Sb(T
nx, T nx, T ix) < max

1≤q≤n
{Sb(T

qx, T qx, x)}.

If we take j − 1 = p then using the symmetry condition (5) we obtain

Sb(T
nx, T nx, T ix) < max

0≤p<q≤n{Sb(T
qx, T qx, T px)}= max

0≤p<q≤n{Sb(T
px, T px, T qx)}.

Consequently, T is an Lb
S-mapping.

Notice that if we take b = 1 in Proposition 7 then we get Proposition 3.

Theorem 11 Let (X,Sb) be an Sb-metric space, Sb be a symmetric Sb-metric with
b > 1 and T be a Cb

S-mapping. Then T has a fixed point in X if and only if there
exist integers p and q, p > q ≥ 0 and x ∈ X satisfying

T px = T qx. (10)

If the condition (10) is satisfied then T qx is a fixed point of T .

Proof Let x0 ∈ X be a fixed point of T , that is, T x0 = x0. It is obvious that the
condition (10) is satisfied for p = 1, q = 0.

Conversely, suppose that there exist the integers p and q such that p > q ≥ 0
and x ∈ X satisfying

T px = T qx.

Let p be the smallest integer such that T kx = T qx with k > q. If we put T qx = y

and n = p − q we have

T ny = T nT qx = T p−q+qx = T px = T qx = y

and so n is the minimal integer such that T ny = y for n ≥ 1. We prove that y
is a fixed point of T . Assume that y is not a fixed point of T . Then n ≥ 2 and
T iy �= T jy for 0 ≤ i < j ≤ n − 1. By the definition of a Cb

S-mapping and the
symmetry condition (5), we obtain

Sb(T
iy, T iy, y) = Sb(T

iy, T iy, T ny)
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= Sb(T
ny, T ny, T iy) < max

1≤j≤n
{Sb(T

jy, T jy, y)}

= max
1≤j≤n−1

{Sb(T
jy, T jy, y)},

where i = 1, 2, . . . , n− 1. Then we get

max
1≤i≤n−1

{Sb(T
iy, T iy, y)} < max

1≤j≤n−1
{Sb(T

j y, T jy, y)}.

This is a contradiction. Therefore T qx = y is a fixed point of T .

Corollary 9 Let (X,Sb) be an Sb-metric space, Sb be a symmetric Sb-metric with
b > 1 and T be a self-mapping of X satisfying the condition (Sb25) (or T be an
Lb
S-mapping). Then T has a fixed point in X if and only if there exist integers p and

q, p > q ≥ 0 and x ∈ X satisfying the condition (10). Then T qx is a fixed point of
T .

We note that the case b = 1 was proved in [32]. Hence Theorem 11 (resp.
Corollary 9) generalizes Theorem 6 (resp. Corollary 3 and Theorem 7) given in
[32].

Theorem 12 Let (X,Sb) be an Sb-metric space with b > 1, T be a self-mapping
of X satisfying the condition (Sb125) and x ∈ X. Suppose that x is a periodic point
of T with periodic index m. Then T has a fixed point x in {T nx} (n ≥ 0) if and
only if for any T n1x, T n2x ∈ {T nx} (n ≥ 0) with T n1x �= T n2x, there exist T n3x,
T n4x ∈ {T nx} such that

T p(T n3x,T n4x)(T n3x) = T n1x and T p(T n3x,T n4x)(T n4x) = T n2x.

Then the point x is the unique fixed point of T in X.

Proof The proof of the if part can be easily seen from the definition of periodic
index taking T n3x = T n1x, T n4x = T n2x and p(T n3x, T n4x) = m. Now we prove
the only if part. If x is a periodic point of T with periodic index m, then we have

{T nx} = {x, T x, . . . , T m−1x}.

Assume that x �= T x. Then there exist T n1x, T n2x ∈ {T nx} with T n1x �= T n2x

such that

δ({T nx}) = max
0≤k,l≤m−1,k �=l{Sb(T

kx, T kx, T lx)} = Sb(T
n1x, T n1x, T n2x).

By the hypothesis there exist T n3x, T n4x ∈ {T nx} such that

T p(T n3x,T n4x)(T n3x) = T n1x and T p(T n3x,T n4x)(T n4x) = T n2x.
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Since T n1x �= T n2x we obtain T n3x �= T n4x. So we obtain

δ({T nx}) = Sb(T
n1x, T n1x, T n2x)

= Sb(T
p(T n3x,T n4x)(T n3x), T p(T n3x,T n4x)(T n3x), T p(T n3x,T n4x)(T n4x))

< max{Sb(T
n3x, T n3x, T n4x),Sb(T

n1x, T n1x, T n3x),Sb(T
n2x, T n2x, T n4x),

Sb(T
n2x, T n2x, T n3x),Sb(T

n1x, T n1x, T n4x)}
≤ δ({T nx}),

which is a contradiction. Therefore we get x = T x. The uniqueness of the fixed
point x can be seen from Theorem 10.

Notice that the symmetry condition is not necessary in Theorem 12 and the case
b = 1 was proved in Theorem 8.

Now we give the following corollaries as a result of Theorem 12.

Corollary 10 Let (X,Sb) be an Sb-metric space with b > 1, T be a self-mapping
of X satisfying the condition (Sb100) and x ∈ X be a periodic point of T . Then the
following conditions are equivalent:
1. T has a unique fixed point in {T nx} (n ≥ 0),
2. There exists T n0x ∈ {T nx} (n ≥ 0) such that

T p(T n0x)(T n0x) = T n1x,

for any T n1x ∈ {T nx} (n ≥ 0), where p(T n0x) is a positive integer.

Then the point x is the unique fixed point of T in X.

Notice that the case b = 1 was given in Corollary 4.

Corollary 11 Let (X,Sb) be an Sb-metric space with b > 1, T be a self-mapping
of X satisfying the condition (Sb75) and x ∈ X be a periodic point of T . Then
x is the unique fixed point of T if there exist T n3x, T n4x ∈ {T nx} (n ≥ 0) with
T n3x �= T n4x such that

T p(T n3x) = T n1x and T q(T n4x) = T n2x,

for any T n1x, T n2x ∈ {T nx} (n ≥ 0) with T n1x �= T n2x, where p and q are
positive integers.

Notice that the case b = 1 was given in Corollary 5.

Corollary 12 Let (X,Sb) be an Sb-metric space with b > 1 and T be a self-
mapping of X satisfying the condition (Sb50). Then the following conditions are
equivalent:
1. T has a fixed point in X,
2. There exists a periodic point x ∈ X of T .

Then the point x is the unique fixed point of T in X.

Notice that the case b = 1 was given in Corollary 6.
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Now we give a new contractive condition as a generalization of the condition
(Sb25) using the notion of diameter on Sb-metric spaces.

Definition 15 Let (X,Sb) be an Sb-metric space with b ≥ 1, x, y ∈ X, T be a
self-mapping of X, Ux = {T nx : n ∈ N}, diam{Ux} < ∞ and diam{Uy} < ∞.
We define

(Sb25a) Sb(T x, T x, T y) < diam{Ux ∪ Uy},
for each x, y ∈ X with x �= y.

Proposition 8 Let (X,Sb) be an Sb-metric space with b ≥ 1 and T be a self-
mapping of X. If T satisfies the condition (Sb25), then T satisfies the condition
(Sb25a).

Proof It can be easily seen from the definitions of the conditions (Sb25) and
(Sb25a).

The converse of Proposition 8 is not always true as we have seen in the following
example.

Example 11 Let us consider the Sb-metric defined in Example 1 on X = (0, 1). Let

T x =
⎧
⎨

⎩

x ; x ∈ (0, 1) , x �= 1
2 , x �= 1

3
1
3 ; x = 1

2
1
2 ; x = 1

3

,

for all x ∈ X. Then T is a self-mapping on the Sb-metric space (X,Sb) and satisfies
the condition (Sb25a) since sup {(0, 1)} = 1. But T does not satisfy the condition
(Sb25). Indeed, for x = 1

2 , y = 1
3 ∈ (0, 1) we obtain

Sb(T x, T x, T y) = Sb

(
1

3
,

1

3
,

1

2

)
= 1

144
,

Sb(x, x, y) = Sb

(
1

2
,

1

2
,

1

3

)
= 1

144
,

Sb(T x, T x, x) = Sb

(
1

3
,

1

3
,

1

2

)
= 1

144
,

Sb(T y, T y, y) = Sb

(
1

2
,

1

2
,

1

3

)
= 1

144
,

Sb(T y, T y, x) = Sb

(
1

2
,

1

2
,

1

2

)
= 0,

Sb(T x, T x, y) = Sb

(
1

3
,

1

3
,

1

3

)
= 0
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and so we get

Sb(T x, T x, T y) = 1

144
< max

{
1

144
,

1

144
,

1

144
, 0, 0

}
= 1

144
.

Let T : X → Y be a map from an Sb-metric space X to an Sb-metric space Y .
Then T is continuous at x ∈ X if and only if T xn → T x whenever xn → x.

Let (X,Sb) be an Sb-metric space with b ≥ 1. (X,Sb) is said to be compact if
every sequence in X has a convergent subsequence.

Theorem 13 Let (X,Sb) be a compact Sb-metric space with b > 1 and T be a
continuous self-mapping of X satisfying the condition (Sb25a). Then T has a unique
fixed point.

Proof There exists a compact subset A of X containing TX since T is a continuous

self-mapping of X and X is compact. Then TA ⊂ A and so B =
∞⋂
n=1

T nA is a

nonempty compact subset of X which is mapped by T onto itself.
We now show that B is a singleton consisting of the unique fixed point x of T .

Suppose that B is not a singleton. Then we get diam{B} > 0. Hence there exist
x, y ∈ B with Sb(x, x, y) = diam{B} since B is a compact subset. Also there
exist x0, y0 ∈ B with T x0 = x, Ty0 = y since T maps B onto itself. Using the
condition (Sb25a) we obtain

diam{B} = Sb(x, x, y) = Sb(T x0, T x0, T y0) < diam{B},

which is a contradiction. Consequently, T has a unique fixed point.

The case b = 1 was proved in Theorem 9.

Corollary 13 Let (X,Sb) be a compact Sb-metric space with b > 1 and T be a
continuous self-mapping of X satisfying the condition (Sb25). Then T has a unique
fixed point.

The case b = 1 was proved in Corollary 7.

4 Some Generalizations of Nemytskii-Edelstein and Ćirić’s
Fixed-Point Theorems

In this section we investigate new generalizations of the Nemytskii-Edelstein fixed-
point theorem and the Ćirić’s fixed-point theorem.
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4.1 Generalizations of Nemytskii-Edelstein Fixed-Point
Theorem

In this subsection we obtain new generalizations of the classical Nemytskii-
Edelstein fixed-point theorem for continuous self-mappings of a compact Sb-metric
space.

At first, we note that a b-metric is not continuous in general [6]. If we consider
Lemmas 5 and 6 then we deduce that an Sb-metric is not always continuous. We
give the following theorem.

Theorem 14 Let (X,Sb) be a compact Sb-metric space with the continuous Sb-
metric function (b > 1). If a self-mapping T : X → X satisfies

Sb(T x, T x, T y) < Sb(x, x, y), (11)

for all x, y ∈ X with x �= y, then T has a unique fixed point.

Proof Let us define the function ξ : X → [0, 1) as

ξ(x) = Sb(x, x, T x).

Since X is compact, the function ξ takes on its minimum value. That is, there exists
x0 ∈ X such that

Sb(x0, x0, T x0) < Sb(x, x, T x),

for all x ∈ X. We now show that x0 is a fixed point of T . Assume that T x0 �= x0.
Using the condition (11), we obtain

Sb(T x0, T x0, T T x0) < Sb(x0, x0, T x0),

which contradicts the minimality of Sb(x0, x0, T x0) among all numbers
Sb(x, x, T x). Hence x0 is a fixed point of T , that is, T x0 = x0.

Now we prove that the fixed point x0 is unique. On the contrary, assume that y0
is another fixed point of T . From the condition (11) we get

Sb(x0, x0, y0) = Sb(T x0, T x0, T y0) < Sb(x0, x0, y0).

Therefore x0 = y0, that is, x0 is the unique fixed point of T .

The case b = 1 was proved in [43] (see Theorem 3.3 on page 264). We note
that Theorem 14 is a generalization of Theorem 3.3 which is called the Nemystkii-
Edelstein fixed-point theorem on an S-metric space.

Now we give two new generalizations of the classical Nemytskii-Edelstein fixed-
point theorem for continuous self-mappings of a compact Sb-metric space. Notice
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that if T satisfies the condition (11) then T satisfies the condition (Sb25). Indeed
we have

Sb(T x, T x, T y) < Sb(x, x, y)

≤ max

{
Sb(x, x, y),Sb(T x, T x, x),Sb(T y, T y, y),

Sb(T y, T y, x),Sb(T x, T x, y)

}
,

for all x, y ∈ X with x �= y. Therefore we can give the following generalizations:

1. Corollary 13 is a generalization of Theorem 14.
2. By Proposition 8, Theorem 13 is another generalization of Theorem 14.

Now we give an example of a continuous self-mapping which satisfies the
conditions (Sb25) and (Sb25a) but does not satisfy the condition (11).

Example 12 Let X = [0, 1] be the compact Sb-metric space with the Sb-metric
given in Example 1. Let us define the function T : X → X as

T x =
⎧
⎨

⎩

x + 3
4 ; x ∈

[
0, 1

4

)

1 ; x ∈
[

1
4 , 1

] ,

for all x ∈ X. Then T is a continuous self-mapping on the compact Sb-metric space
X = [0, 1]. It can be easily seen that T satisfies the conditions (Sb25) and (Sb25a).
Hence T has a unique fixed point x = 1 in [0, 1]. But the condition (11) is not
satisfied. Indeed we get

Sb(T x, T x, T y) = 1

4
|x − y|2 < Sb(x, x, y) = 1

4
|x − y|2 ,

for x, y ∈
[
0, 1

4

)
.

4.2 Generalizations of Ćirić’s Fixed-Point Theorem

In this subsection we give a new generalization of the Ćirić’s fixed-point theorem.

Theorem 15 Let (X,Sb) be a complete Sb-metric space with b ≥ 1 and T be a
self-mapping of X satisfying

Sb(T x, T x, T y) ≤ hmax

{
Sb(x, x, y),Sb(T x, T x, x),Sb(T y, T y, y),

Sb(T y, T y, x),Sb(T x, T x, y)

}
,

(12)
for all x, y ∈ X and some 0 ≤ h < 1

2b2+b . Then T has a unique fixed point.
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Proof Let x0 ∈ X and the sequence {xn} be defined as follows:

T x0 = x1, T x1 = x2,. . . , T xn = xn+1,. . . .

Suppose that xn �= xn+1 for all n. From the condition (12) and Lemma 3, we obtain

Sb(xn, xn, xn+1) = Sb(T xn−1, T xn−1, T xn) (13)

≤ hmax

{
Sb(xn−1, xn−1, xn),Sb(xn, xn, xn−1),Sb(xn+1, xn+1, xn),

Sb(xn+1, xn+1, xn−1),Sb(xn, xn, xn)

}

= hmax

{
Sb(xn−1, xn−1, xn),Sb(xn, xn, xn−1),

Sb(xn+1, xn+1, xn),Sb(xn+1, xn+1, xn−1)

}

≤ hmax

{
Sb(xn−1, xn−1, xn), bSb(xn−1, xn−1, xn),

Sb(xn+1, xn+1, xn),Sb(xn+1, xn+1, xn−1)

}

. (14)

By the condition (Sb2), we get

Sb(xn+1, xn+1, xn−1) ≤ 2bSb(xn+1, xn+1, xn)+ bSb(xn−1, xn−1, xn). (15)

Using the inequalities (13), (15) and Lemma 3, we have

Sb(xn, xn, xn+1) ≤ 2bhSb(xn+1, xn+1, xn)+ bhSb(xn−1, xn−1, xn)

≤ 2b2hSb(xn, xn, xn+1)+ bhSb(xn−1, xn−1, xn)

and so

(1 − 2b2h)Sb(xn, xn, xn+1) ≤ bhSb(xn−1, xn−1, xn),

which implies

Sb(xn, xn, xn+1) ≤ bh

1 − 2b2h
Sb(xn−1, xn−1, xn). (16)

Let k = bh
1−2b2h

. Then k < 1 since 2b2h + bh < 1. We note that 1 − 2b2h �= 0

since 0 ≤ h < 1
2b2+b . Now repeating this process in the inequality (16), using the

mathematical induction we get

Sb(xn, xn, xn+1) ≤ knSb(x0, x0, x1). (17)

We prove that the sequence {xn} is Cauchy. For all n,m ∈ N with m > n, using the
inequality (17), the condition (Sb2) and Lemma 3, we obtain

Sb(xn, xn, xm) ≤ 2bkn

1 − b2k
Sb(x0, x0, x1). (18)
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Therefore lim
n,m→∞Sb(xn, xn, xm) = 0 by the inequality (18) and so {xn} is a Cauchy

sequence. From the completeness hypothesis, there exists x ∈ X such that {xn} →
x. Now we show that x is a fixed point of T . Assume that T x �= x. Then using the
condition (12) and Lemma 3, we get

Sb(xn, xn, T x) = Sb(T xn−1, T xn−1, T x)

≤ hmax

{
Sb(xn−1, xn−1, x),Sb(xn, xn, xn−1),Sb(T x, T x, x),

Sb(T x, T x, xn−1),Sb(xn, xn, x)

}

and so taking limit for n → ∞ we have

Sb(x, x, T x) ≤ hSb(T x, T x, x) ≤ hbSb(x, x, T x),

which implies Sb(x, x, T x) = 0 and T x = x since 0 ≤ h < 1
2b2+b .

Finally we show that the point x is unique. On the contrary, assume that x and y

be two fixed points of T . Using the condition (12) and Lemma 3, we obtain

Sb(T x, T x, T y) = Sb(x, x, y) ≤ hmax

{
Sb(x, x, y),Sb(x, x, x),Sb(y, y, y),

Sb(y, y, x),Sb(x, x, y)

}

≤ hbSb(x, x, y),

which implies x = y since 0 ≤ h < 1
2b2+b . Consequently, x is a unique fixed point

of T .

The case b = 1 was proved in [41] (see Corollary 2.21 on page 123). We
note that Theorem 13 and Corollary 13 are the generalizations of Theorem 15 for
continuous self-mappings of a compact Sb-metric space. If we consider the self-
mapping defined in Example 12, then it can be easily checked that the inequality (12)
is not satisfied for x = 0 and y = 1

8 .

5 Some Fixed-Circle Theorems

Recently, the notion of a fixed circle has been introduced on a metric and an S-
metric space (see [33, 34, 38]). It is important to obtain new-fixed circle theorems
on various metric spaces since there exist some applications of them to other
disciplines. For example, some activation functions having a fixed circle was used
complex valued neural networks (see [28] for more details). Therefore, our aim is
to investigate some generalized existence and uniqueness conditions for fixed-circle
theorems on Sb-metric spaces.
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5.1 Fixed-Circle Theorems on Metric Spaces

In this section we give a brief survey about the fixed-circle problem on metric
spaces. Additionally, we obtain a new fixed-circle result.

Definition 16 ([33]) Let (X, d) be a metric space and Cx0,r = {x ∈ X : d(x0, x) =
r} be a circle. For a self-mapping T : X → X, if T x = x for every x ∈ Cx0,r then
the circle Cx0,r is called a fixed circle of T .

Using the inequality (1), we give the following existence theorem for a self-
mapping having a fixed circle.

Theorem 16 ([33]) Let (X, d) be a metric space and Cx0,r be any circle on X. Let
us define the mapping

ϕ : X → [0,∞), ϕ(x) = d(x, x0), (19)

for all x ∈ X. If there exists a self-mapping T : X → X satisfying

(C1) d(x, T x) ≤ ϕ(x)− ϕ(T x)

and
(C2) d(T x, x0) ≥ r ,

for each x ∈ Cx0,r , then the circle Cx0,r is a fixed circle of T .

Remark 2 ([33] ) We note that Theorem 2 guarantees the existence of a fixed point
while Theorem 16 guarantees the existence of a fixed circle. In the case where the
circle Cx0,r has only one element Theorem 16 is a special case of Theorem 2.

Now we recall another known existence theorems.

Theorem 17 ([33]) Let (X, d) be a metric space and Cx0,r be any circle on X. Let
the mapping ϕ be defined as in (19). If there exists a self-mapping T : X → X

satisfying

(C1)∗ d(x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r
and

(C2)∗ d(T x, x0) ≤ r ,
for each x ∈ Cx0,r , then Cx0,r is a fixed circle of T .

Theorem 18 ([33]) Let (X, d) be a metric space and Cx0,r be any circle on X. Let
the mapping ϕ be defined as in (19). If there exists a self-mapping T : X → X

satisfying

(C1)∗∗ d(x, T x) ≤ ϕ(x)− ϕ(T x)

and
(C2)∗∗ hd(x, T x)+ d(T x, x0) ≥ r ,

for each x ∈ Cx0,r and some h ∈ [0, 1), then Cx0,r is a fixed circle of T .

Now we prove a new fixed-circle theorem.
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Theorem 19 Let (X, d) be a metric space and Cx0,r be any circle on X. Let the
mapping ϕ be defined as in (19). If there exists a self-mapping T : X → X satisfying

(C1)∗∗∗ d(x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r
and

(C2)∗∗∗ d(x, T x)+ d(T x, x0) ≤ r ,
for each x ∈ Cx0,r , then Cx0,r is a fixed circle of T .

Proof Let x ∈ Cx0,r . Then using the conditions (C1)∗∗∗, (C2)∗∗∗ and the triangle
inequality, we obtain

d(x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r

= d(x, x0)+ d(T x, x0)− 2r

≤ d(x, T x)+ d(T x, x0)+ d(T x, x0)− 2r

≤ 2d(x, T x)+ 2d(T x, x0)− 2r

≤ 2r − 2r = 0

and so

d(x, T x) = 0,

which implies T x = x. Consequently, Cx0,r is a fixed circle of T .

Example 13 ([33]) Let (X, d) be a metric space, Cx0,r be any circle on X and α be
a constant such that

d(α, x0) �= r .

If we define the self-mapping T : X → X as

T x =
{
x ; x ∈ Cx0,r

α ; otherwise
,

for all x ∈ X, then it can be easily seen that the conditions (C1) and (C2) (resp. the
conditions (C1)∗, (C2)∗, the conditions (C1)∗∗, (C2)∗∗ and the conditions (C1)∗∗∗,
(C2)∗∗∗) are satisfied. Clearly Cx0,r is a fixed circle of T .

Let IX : X → X be the identity map defined as IX(x) = x for all x ∈ X.

Notice that the identity map satisfies the conditions (C1) and (C2) (resp. (C1)∗ and
(C2)∗, (C1)∗∗ and (C2)∗∗, (C1)∗∗∗ and (C2)∗∗∗) in Theorem 16 (resp. Theorem 17,
Theorem 18 and Theorem 19). Now we investigate a condition which excludes the
IX in Theorems 16–19. We give the following theorem.

Theorem 20 ([33]) Let (X, d) be a metric space and Cx0,r be any circle on X. Let
the mapping ϕ be defined as in (19). If a self-mapping T : X → X satisfies the
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condition

(Id) d(x, T x) ≤ ϕ(x)− ϕ(T x)

h
,

for all x ∈ X and some h > 1, then T = IX and Cx0,r is a fixed circle of T .

Notice that the converse statement of this theorem is also true. Hence if a self-
mapping T in Theorem 16 (resp. Theorem 17, Theorem 18 and Theorem 19) does
not satisfy the condition (Id) given in Theorem 20 then T can not be the identity
map.

Notice that the fixed circle Cx0,r is not necessarily unique in Theorem 16 (resp.
Theorem 17, Theorem 18 and Theorem 19).

Proposition 9 ([33]) Let (X, d) be a metric space. For any given circles Cx0,r and
Cx1,ρ , there exists at least one self-mapping T of X such that T fixes the circles
Cx0,r and Cx1,ρ .

Corollary 14 ([33]) Let (X, d) be a metric space. For any given circles Cx1,r1 ,· · · ,
Cxn,rn , there exists at least one self-mapping T of X such that T fixes the circles
Cx1,r1 ,· · · , Cxn,rn .

Then it is a natural problem to investigate the uniqueness of the fixed circles
obtained in the above fixed-circle theorems. Now we investigate the uniqueness
conditions for the fixed circles in Theorem 16.

Theorem 21 ([33]) Let (X, d) be a metric space and Cx0,r be any circle on X. Let
T : X → X be a self-mapping satisfying the conditions (C1) and (C2) given in
Theorem 16. If the contractive condition

(C3) d(T x, T y) ≤ hd(x, y), (20)

is satisfied for all x ∈ Cx0,r , y ∈ X \ Cx0,r and some h ∈ [0, 1) by T , then Cx0,r is
the unique fixed circle of T .

Notice that the uniqueness of the fixed circle in Theorems 17–19 can be also
obtained using the contractive condition (C3). More generally it is possible to use
an appropriate contractive condition for the uniqueness of the obtained fixed circle
theorems (see [33] for more details).

5.2 Fixed-Circle Theorems on S-Metric Spaces

In this section we recall the following fixed-circle definition on an S-metric space.
Some comparisons of circles were given on metric and S-metric spaces. Then we
give a survey of the known results about the fixed-circle problem on S-metric spaces.
Also we give a new example of a self-mapping having a fixed circle.
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Definition 17 ([34]) Let (X,S ) be an S-metric space and x0 ∈ X, r ∈ (0,∞).
The circle centered at x0 with radius r is defined by

CS
x0,r

= {x ∈ X : S (x, x, x0) = r}.

Definition 18 ([34]) Let (X,S ) be an S-metric space, CS
x0,r

= {x ∈ X :
S (x, x, x0) = r} be a circle on X and T : X → X be a self-mapping. If T x = x

for all x ∈ CS
x0,r

then the circle CS
x0,r

is called a fixed circle of T .

Now we recall the following propositions and corollaries.

Proposition 10 ([38]) Let (X,S ) be an S-metric space such that S is generated
by a metric d. Then any circle CS

x0,r
on the S-metric space is the circle Cx0,

r
2

on the
metric space (X, d).

Corollary 15 ([38]) The circle Cx0,r on a metric space (X, d) is the circle CS
x0,2r

on the S-metric space generated by d.

Proposition 11 ([38]) Let (X, dS) be a metric space such that dS is generated by
an S-metric S . Then any circle Cx0,r on the metric space (X, dS) is the circle CS

x0,
r
2

on the S-metric space (X,S ).

Corollary 16 ([38]) The circle CS
x0,r

on an S-metric space (X,S ) is the circle
Cx0,2r on the metric space (X, dS) where dS is generated by S .

In the following theorems we see some fixed-circle results on S-metric spaces.

Theorem 22 ([38]) Let (X,S ) be an S-metric space and CS
x0,r

be any circle on X.
Let us define the mapping

ϕ : X → [0,∞), ϕ(x) = S (x, x, x0), (21)

for all x ∈ X. If there exists a self-mapping T : X → X satisfying

(SC1) S (x, x, T x) ≤ ϕ(x)− ϕ(T x)

and
(SC2) S (T x, T x, x0) ≥ r ,

for each x ∈ CS
x0,r

, then CS
x0,r

is a fixed circle of T .

Theorem 23 ([38]) Let (X,S ) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as in (21). If there exists a self-mapping T : X → X

satisfying

(SC1)∗ S (x, x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r
and

(SC2)∗ S (T x, T x, x0) ≤ r ,
for each x ∈ CS

x0,r
, then CS

x0,r
is a fixed circle of T .
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Theorem 24 ([34]) Let (X,S ) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as in (21). If there exists a self-mapping T : X → X

satisfying

(SC1)∗∗ S (x, x, T x) ≤ ϕ(x)− ϕ(T x)

and
(SC2)∗∗ hS (x, x, T x)+S (T x, T x, x0) ≥ r ,

for each x ∈ CS
x0,r

and some h ∈ [0, 1), then CS
x0,r

is a fixed circle of T .

Theorem 25 ([34]) Let (X,S ) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as in (21). If there exists a self-mapping T : X → X

satisfying

(SC1)∗∗∗ S (x, x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r
and

(SC2)∗∗∗ S (x, x, T x)+S (T x, T x, x0) ≤ r ,
for each x ∈ CS

x0,r
, then CS

x0,r
is a fixed circle of T .

Example 14 Let X = C and (C,S ) be the S-metric space with the S-metric
defined in (3). Let us consider the circle CS

0,3 and define the self-mapping T : C →
C by

T z =
{

9
4z ; z �= 0
0 ; z = 0

,

for all z ∈ C. Then it can be easily seen that the conditions (SC1) and (SC2) (resp.
the conditions (SC1)∗, (SC2)∗, the conditions (SC1)∗∗, (SC2)∗∗ and the conditions
(SC1)∗∗∗, (SC2)∗∗∗) are satisfied. Clearly CS

0,3 is the fixed circle of T . But, if we
define the self-mapping T : C → C by

T z =
{

9
4z ; z �= 0
0 ; z = 0

,

for all z ∈ C, then the self-mapping T satisfies the condition (SC2)∗ but does not
satisfy the condition (SC1)∗. Clearly T does not fix the circle CS

0,3. Especially, T

maps the circle CS
0,3 onto itself while fixes the points z1 = 3

2 and z2 = − 3
2 only.

Notice that the identity map satisfies the conditions (SC1) and (SC2) (resp.
(SC1)∗ and (SC2)∗, (SC1)∗∗ and (SC2)∗∗, (SC1)∗∗∗ and (SC2)∗∗∗) in Theorem 22
(resp. Theorem 23, Theorem 24 and Theorem 25). Now we determine a condition
which excludes the IX in Theorem 22, Theorem 23, Theorem 24 and Theorem 25.
We give the following theorem.

Theorem 26 ([34]) Let (X,S ) be an S-metric space and CS
x0,r

be any circle on X.
Let the mapping ϕ be defined as in (21). If there exists a self-mapping T : X → X

satisfying the condition
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(IS) S (x, x, T x) ≤ ϕ(x)− ϕ(T x)

h
,

for all x ∈ X and some h > 2, then T = IX and CS
x0,r

is a fixed circle of T .

Let (X,S ) be an S-metric space. For any given circles CS
x0,r

and CS
x1,ρ

on X, we
notice that there exists at least one self-mapping T of X such that T fixes both of the
circles CS

x0,r
and CS

x1,ρ
. Indeed, let us define the mappings ϕ1, ϕ2 : X → [0,∞) as

ϕ1(x) = S (x, x, x0)

and

ϕ2(x) = S (x, x, x1),

for all x ∈ X. If we define the self-mapping T : X → X as

T x =
{
x ; x ∈ CS

x0,r
∪ CS

x1,ρ

α ; otherwise
,

for all x ∈ X, where α is a constant satisfying S (α, α, x0) �= r and S (α, α, x1) �=
ρ, it can be easily seen that the self-mapping T : X → X satisfies the conditions
(SC1) and (SC2) (resp. (SC1)∗ and (SC2)∗, (SC1)∗∗ and (SC2)∗∗, (SC1)∗∗∗ and
(SC2)∗∗∗) in Theorem 22 (resp. Theorem 23, Theorem 24 and Theorem 25) for the
circles CS

x0,r
and CS

x1,ρ
using the mappings ϕ1 and ϕ2, respectively. Hence T fixes

both of the circles CS
x0,r

and CS
x1,ρ

. The number of the fixed circles can be extended
to any positive integer n using the same arguments.

In the following theorem, a uniqueness condition of a fixed circle was given.

Theorem 27 ([38]) Let (X,S ) be an S-metric space and CS
x0,r

be any circle on
X. Let T : X → X be a self-mapping satisfying the conditions (SC1) and (SC2)
given in Theorem 22. If the contractive condition (S25) is satisfied for all x ∈ CS

x0,r
,

y ∈ X\CS
x0,r

by T then CS
x0,r

is the unique fixed circle of T .

Notice that the uniqueness of the fixed circle in Theorem 23, Theorem 24 and
Theorem 25 can be also obtained using the contractive condition (S25). Furthermore
it is possible to use appropriate contractive conditions for the uniqueness of the
obtained fixed circle theorems (see [34, 38] for more details).

5.3 Fixed-Circle Theorems on Sb-Metric Spaces

In this section we give new fixed-circle theorems on an Sb-metric space with the
geometric interpretation. Also we obtain some illustrative examples for our results.
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Definition 19 Let (X,Sb) be an Sb-metric space with b ≥ 1 and x0 ∈ X, r ∈
(0,∞). The circle centered at x0 with radius r is defined by

CSb
x0,r

= {x ∈ X : Sb(x, x, x0) = r} .

Example 15 Let X = R and the function S : X ×X ×X → [0,∞) be defined as

S (x, y, z) = |arccotx − arccoty| + |arccotx + arccoty − 2arccotz| ,

for all x, y, z ∈ R. Then S is an S-metric which is not generated by any metric and
the pair (R,S ) is an S-metric space. If we consider the function Sb : X×X×X →
[0,∞) defined as

Sb(x, y, z) = S (x, y, z)3,

then the function Sb is an Sb-metric with b = 16.

In the following example we extend the Sb-metric defined in the previous
example to the three dimensional case and give an example of a circle on this Sb-
metric space using mathematica [50].

Example 16 Let us consider the set X = R
3 and the function Sb : X ×X ×X →

[0,∞) be defined as

Sb(x, y, z)=
3∑

i=1

(|arccotxi−arccotyi | + |arccotxi + arccotyi − 2arccotzi |)3 ,

for all x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) ∈ X. Then Sb is an
Sb-metric with b = 16 and (R3,Sb) is an Sb-metric space. If we choose x0 =
(0, 0, 0) = 0 and r = 8π , then we get the circle

C
Sb
0,8π = {x ∈ X : Sb(x, x, x0) = 8π}

=
{

x ∈ X :
3∑

i=1

∣
∣∣arccotxi − π

2

∣
∣∣
3 = π

}

,

as shown in Fig. 1.

Using the arctan function, we obtain the following example of an Sb-metric
space.

Example 17 Let us consider the set X = R
3 and the function Sb : X ×X ×X →

[0,∞) be defined as

Sb(x, y, z)=
3∑

i=1

(|arctanxi−arctanyi | + |arctanxi+arctanyi − 2arctanzi |)3 ,
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Fig. 1 The circle CSb
0,8π in

Example 16

Fig. 2 The circle CSb
0,8π in

Example 17

for all x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) ∈ X. Then Sb is an
Sb-metric with b = 16 and (R3,Sb) is an Sb-metric space. If we choose x0 =
(0, 0, 0) = 0 and r = 8π , then we get the circle

C
Sb
0,8π = {x ∈ X : Sb(x, x, x0) = 8π}

=
{

x ∈ X :
3∑

i=1

|arctanxi |3 = π

}

,

as shown in Fig. 2.

Definition 20 Let (X,Sb) be an Sb-metric space with b ≥ 1, CSb
x0,r be a circle on

X and T : X → X be a self-mapping. If T x = x for all x ∈ C
Sb
x0,r then the circle

C
Sb
x0,r is called as a fixed circle of T .

Now we give the following existence and uniqueness theorems for the fixed
circles of self-mappings on an Sb-metric space.

Theorem 28 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be a circle

on X. Let us define the mapping

ϕ : X → [0,∞) , ϕ(x) = Sb(x, x, x0), (22)



884 N. Y. Özgür and N. Taş

for all x ∈ X. If there exists a self-mapping T : X → X satisfying

(CSb1) Sb(x, x, T x) ≤ ϕ(x)− ϕ(T x)

and
(CSb2) Sb(T x, T x, x0) ≥ r ,

for each x ∈ C
Sb
x0,r , then the circle CSb

x0,r is a fixed circle of T .

Proof Let us consider the mapping ϕ defined in (22) for a given circle CSb
x0,r and let

x ∈ C
Sb
x0,r be any point. Now we show that T x = x whenever x ∈ C

Sb
x0,r . Using the

condition (CSb1) we get

Sb(x, x, T x) ≤ ϕ(x)− ϕ(T x)

= Sb(x, x, x0)−Sb(T x, T x, x0) (23)

= r −Sb(T x, T x, x0).

Because of the condition (CSb2), the point T x should be lie on or exterior of the
circle CSb

x0,r . Then we have two cases.
If Sb(T x, T x, x0) > r then using the inequality (23) we have a contradiction.

Therefore it should be Sb(T x, T x, x0) = r . In this case, using the inequality (20)
we obtain

Sb(x, x, T x) ≤ r −Sb(T x, T x, x0) = r − r = 0

and so T x = x. Therefore we have T x = x for all x ∈ C
Sb
x0,r . Consequently, the

self-mapping T fixes the circle CSb
x0,r .

Remark 3

1) Notice that the condition (CSb1) guarantees that T x is not in the exterior of the
circle CSb

x0,r for each x ∈ C
Sb
x0,r . Similarly, the condition (CSb2) guarantees that

T x is not in the interior of the circle C
Sb
x0,r for each x ∈ C

Sb
x0,r . Consequently,

T x ∈ C
Sb
x0,r for each x ∈ C

Sb
x0,r and so we have T (CSb

x0,r ) ⊂ C
Sb
x0,r (see Figs. 3, 4,

and 5).
2) If we take b = 1 in Theorem 28 then we get Theorem 22.

Now we give an example of a self-mapping which has a fixed circle.

Fig. 3 The geometric
description of the condition
(CSb1)

T x

T x

x0

x

r
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Fig. 4 The geometric
description of the condition
(CSb2)

T x
T x

x

r
x0

Fig. 5 The geometric
description of the condition
(CSb1) ∩ (CSb2)

T x

x

r
x0

Example 18 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be any circle

on X. Let us define the self-mapping T : X → X as

T x =
{
x ; x ∈ C

Sb
x0,r

x0 ; otherwise
,

for all x ∈ X. It can be easily checked that the conditions (CSb1) and (CSb2) are
satisfied. Then C

Sb
x0,r is a fixed circle of T .

In the following example, we give an example of a self-mapping which satisfies
the condition (CSb1) and does not satisfy the condition (CSb2).

Example 19 LetX = R and the function Sb be the Sb-metric with b = 4 defined by

Sb(x, y, z) = (|x − z| + |y − z|)2 ,

for all x, y, z ∈ R. Let (R,Sb) be the corresponding Sb-metric space. Let us
consider the circle CSb

0,4 = {−1, 1} and define the self-mapping T : R → R as

T x =
{

0 ; x ∈ C
Sb
0,4

4 ; otherwise
,

for all x ∈ R. Then the self-mapping T satisfies the condition (CSb1) but does not
satisfy the condition (CSb2). Clearly, T does not fix the circle CSb

0,4.
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Now we give an example of a self-mapping which satisfies the condition (CSb2)
and does not satisfy the condition (CSb1).

Example 20 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be any circle

on X. Let β be chosen such that Sb(β, β, x0) = ρ > r and consider the self-
mapping T : X → X defined by T x = β for all x ∈ X. Then the self-mapping T

satisfies the condition (CSb2) but does not satisfy the condition (CSb1). Clearly, T
does not fix the circle CSb

x0,r .

Theorem 29 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be a circle

on X. Let the self-mapping ϕ be defined as in (22). If there exists a self-mapping
T : X → X satisfying

(CSb1)∗ Sb(x, x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r
and

(CSb2)∗ Sb(T x, T x, x0) ≤ r ,
for each x ∈ C

Sb
x0,r , then the circle CSb

x0,r is a fixed circle of T .

Proof Let us consider the mapping ϕ defined in (22) for a given circle CSb
x0,r and let

x ∈ C
Sb
x0,r be any point. Using the condition (CSb1)∗ we obtain

Sb(x, x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r

= Sb(x, x, x0)+Sb(T x, T x, x0)− 2r (24)

= Sb(T x, T x, x0)− r .

Because of the condition (CSb2)∗, the point T x should be lie on or interior of
the circle CSb

x0,r .
If Sb(T x, T x, x0) < r then using the inequality (24) we have a contradiction.

Therefore it should be Sb(T x, T x, x0) = r . If Sb(T x, T x, x0) = r then using the
inequality (24) we get

Sb(x, x, T x) ≤ Sb(T x, T x, x0)− r = r − r = 0

and so we find T x = x. Consequently, CSb
x0,r is a fixed circle of T .

Remark 4

1) Notice that the condition (CSb1)∗ guarantees that T x is not in the interior of the
circle CSb

x0,r for each x ∈ C
Sb
x0,r . Similarly, the condition (CSb2)∗ guarantees that

T x is not in the exterior of the circle C
Sb
x0,r for each x ∈ C

Sb
x0,r . Consequently,

T x ∈ C
Sb
x0,r for each x ∈ C

Sb
x0,r and so we have T (CSb

x0,r ) ⊂ C
Sb
x0,r (see Figs. 6, 7,

and 8).
2) If we take b = 1 in Theorem 29 then we get Theorem 23.

Now we give an example of a self-mapping having a fixed-circle.
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Fig. 6 The geometric
description of the condition
(CSb1)∗

T x
T x

x

r
x0

Fig. 7 The geometric
description of the condition
(CSb2)∗

T x

T x

x0

x

r

Fig. 8 The geometric
description of the condition
(CSb1)∗ ∩ (CSb2)∗

T x

x

r
x0

Example 21 Let (R,Sb) be the Sb-metric space with b = 4 defined in Example 19.
Let us consider the circle C

Sb
0,64 = {−4, 4} on R and define the self-mapping T :

R → R as

T x =
{

16
x

; x ∈ C
Sb
0,64

0 ; otherwise
,

for all x ∈ R. Then the self-mapping T satisfies the conditions (CSb1)∗ and
(CSb2)∗. It can be easily checked that CSb

0,64 is a fixed circle of T .

We give an example of a self-mapping which satisfies the condition (CSb1)∗ and
does not satisfy the condition (CSb2)∗.

Example 22 Let (R,Sb) be the Sb-metric space with b = 4 defined in Example 19.

Let us consider the circle C
Sb
0,1 =

{
− 1

2 ,
1
2

}
on R and define the self-mapping T :

R → R as

T x =
⎧
⎨

⎩

− 3
2 ; x = − 1

2
3
2 ; x = 1

2
3 ; otherwise

,
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for all x ∈ R. Then the self-mapping T satisfies the condition (CSb1)∗ but does not
satisfy the condition (CSb2)∗. Clearly, T does not fix the circle CSb

0,1.

We give an example of a self-mapping which satisfies the condition (CSb2)∗ and
does not satisfy the condition (CSb1)∗.

Example 23 Let (X,Sb) be any Sb-metric space with b ≥ 1 and C
Sb
x0,r be any

circle on X. Let β be chosen such that Sb(β, β, x0) = ρ < r and consider the self-
mapping T : X → X defined by T x = β for all x ∈ X. Then the self-mapping T

satisfies the condition (CSb2)∗ but does not satisfy the condition (CSb1)∗. Clearly,
T does not fix the circle CSb

x0,r .

Theorem 30 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be a circle

on X. Let the self-mapping ϕ be defined as in (22). If there exists a self-mapping
T : X → X satisfying

(CSb1)∗∗ Sb(x, x, T x) ≤ ϕ(x)− ϕ(T x)

and
(CSb2)∗∗ hSb(x, x, T x)+Sb(T x, T x, x0) ≥ r ,

for each x ∈ C
Sb
x0,r and some h ∈ [0, 1), then the circle CSb

x0,r is a fixed
circle of T .

Proof Let us consider the mapping ϕ defined in (22) for a given circle CSb
x0,r and let

x ∈ C
Sb
x0,r be any point. Using the conditions (CSb1)∗∗ and (CSb2)∗∗ we obtain

Sb(x, x, T x) ≤ ϕ(x)− ϕ(T x) = Sb(x, x, x0)−Sb(T x, T x, x0)

= r −Sb(T x, T x, x0)

≤ hSb(x, x, T x)+Sb(T x, T x, x0)−Sb(T x, T x, x0)

= hSb(x, x, T x),

which is a contradiction since h ∈ [0, 1). Therefore we get T x = x and C
Sb
x0,r is a

fixed circle of T .

Remark 5

1) Notice that the condition (CSb1)∗∗ guarantees that T x is not in the exterior of
the circle CSb

x0,r for each x ∈ C
Sb
x0,r . Similarly, the condition (CSb2)∗∗ guarantees

that T x should be lie on or exterior or interior of the circle CSb
x0,r . Consequently,

T x should be lie on or interior of the circle CSb
x0,r (see Fig. 9).

2) If we take b = 1 in Theorem 30 then we get Theorem 24.

Example 24 Let (R,Sb) be the Sb-metric space with b = 4 defined in Example 19.
Let us consider the circle C

Sb
0,36 = {−3, 3} on R and define the self-mapping T :

R → R as

T x =
⎧
⎨

⎩

ex+3 − 4 ; x = −3
6 − x ; x = 3

0 ; otherwise
,
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Fig. 9 The geometric
interpretation of the
conditions (CSb1)∗∗ and
(CSb2)∗∗. (a) The condition
(CSb1)∗∗. (b) The condition
(CSb2)∗∗. (c) The condition
(CSb1)∗∗ ∩ (CSb2)∗∗

T x

T x

x0

x

r

(a)

T x

x

rT x

T x

x

(b)

T x

T x

x0

x

r

(c)

for all x ∈ R. Then the self-mapping T satisfies the conditions (CSb1)∗∗ and
(CSb2)∗∗. Hence CSb

0,36 is a fixed circle of T .

Now we give an example of a self-mapping which satisfies the condition
(CSb1)∗∗ but does not satisfy the condition (CSb2)∗∗.

Example 25 Let (R,Sb) be the Sb-metric space with b = 4 defined in Example 19.
Let us consider the circle CSb

2,16 = {0, 4} on R and define the self-mapping T : R →
R as

T x =
{

2 ; x ∈ C
Sb
2,16

18 ; otherwise
,

for all x ∈ R. Then the self-mapping T satisfies the condition (CSb1)∗∗ but does
not satisfy the condition (CSb2)∗∗. Clearly, T does not fix the circle CSb

2,16.
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We give an example of a self-mapping which satisfies the condition (CSb2)∗∗
and does not satisfy the condition (CSb1)∗∗.

Example 26 Let (R,Sb) be the Sb-metric space with b = 4 defined in Example 19.

Let us consider the circle C
Sb
0,9 =

{
− 3

2 ,
3
2

}
on X and define the self-mapping T :

R → R as T x = 9 for all x ∈ R. Then the self-mapping T satisfies the condition
(CSb2)∗∗ but does not satisfy the condition (CSb1)∗∗. Clearly, T does not fix the
circle CSb

0,9.

Theorem 31 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be a circle

on X. Let the self-mapping ϕ be defined as in (22). If there exists a self-mapping
T : X → X satisfying

(CSb1)∗∗∗ Sb(x, x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r
and

(CSb2)∗∗∗ bSb(x, x, T x)+
(

1+b2

2

)
Sb(T x, T x, x0) ≤ r ,

for each x ∈ C
Sb
x0,r , then the circle CSb

x0,r is a fixed circle of T .

Proof Let us consider the mapping ϕ defined in (22) for a given circle C
Sb
x0,r and

let x ∈ C
Sb
x0,r be any point. Using the conditions (CSb1)∗∗∗, (CSb2)∗∗∗ and (Sb2)

we get

Sb(x, x, T x) ≤ ϕ(x)+ ϕ(T x)− 2r = Sb(x, x, x0)+Sb(T x, T x, x0)− 2r

≤ b [2Sb(x, x, T x)+Sb(x0, x0, T x)] +Sb(T x, T x, x0)− 2r

= 2bSb(x, x, T x)+ bSb(x0, x0, T x)+Sb(T x, T x, x0)− 2r

≤ 2bSb(x, x, T x)+ b2Sb(T x, T x, x0)+Sb(T x, T x, x0)− 2r

= 2bSb(x, x, T x)+ (1 + b2)Sb(T x, T x, x0)− 2r

≤ 2r − 2r = 0

and so Sb(x, x, T x) = 0 which implies T x = x. Consequently, CSb
x0,r is a fixed

circle of T .

Remark 6

1) Notice that the condition (CSb1)∗∗∗ guarantees that T x is not in the interior of
the circleCSb

x0,r for each x ∈ C
Sb
x0,r . Similarly, the condition (CSb2)∗∗∗ guarantees

that T x is not in the exterior of the circle CSb
x0,r for each x ∈ C

Sb
x0,r . Consequently,

T x ∈ C
Sb
x0,r for each x ∈ C

Sb
x0,r and so we get T (CSb

x0,r ) ⊂ C
Sb
x0,r (see Fig. 10).

2) If we take b = 1 in Theorem 31 then we get Theorem 25.

Example 27 Let X = R and the function Sb : X×X×X → [0,∞) be defined by

Sb(x, y, z) = 1

3
(|x − z| + |x + z− 2y|) ,
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Fig. 10 The geometric
interpretation of the
conditions (CSb1)∗∗ and
(CSb2)∗∗. (a) The condition
(CSb1)∗∗∗. (b) The condition
(CSb2)∗∗∗. (c) The condition
(CSb1)∗∗∗ ∩ (CSb2)∗∗∗

T x
T x

x

r
x0

(a)

T x

T x

x0

x

r

(b)

T x

x

r
x0

(c)

for all x, y, z ∈ R. Then (R,Sb) is an Sb-metric space with b = 1. Let us consider

the circle CSb
3,3 =

{
− 3

2 ,
15
2

}
and define the self-mapping T : R → R as

T x =
{
x ; x ∈

{
− 3

2 ,
15
2

}

3 ; otherwise
,

for all x ∈ R. Then the self-mapping T satisfies the conditions (CSb1)∗∗∗ and
(CSb2)∗∗∗. Clearly, CSb

3,3 is a fixed circle of T .

If we consider the self-mapping T defined in Example 22, then it can be easily
checked that the self-mapping T satisfies the condition (CSb1)∗∗∗ but does not
satisfy the condition (CSb2)∗∗∗ for the unit circle CSb

0,1.
Now we give an example of a self-mapping which satisfies the condition

(CSb2)∗∗∗ and does not satisfy the condition (CSb1)∗∗∗.
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Example 28 Let (X,Sb) be any Sb-metric space with b ≥ 1 and C
Sb
x0,r be any

circle on X. If we consider the self-mapping T : X → X defined by T x = x0 for
all x ∈ X. Then the self-mapping T satisfies the condition (CSb2)∗∗∗ but does not
satisfy the condition (CSb1)∗∗∗. Clearly, T does not fix the circle CSb

x0,r .

Notice that the identity map IX satisfies the conditions (CSb1) and (CSb2)
(resp. (CSb1)∗ and (CSb2)∗, (CSb1)∗∗ and (CSb2)∗∗, (CSb1)∗∗∗ and (CSb2)∗∗∗)
in Theorem 28 (resp. Theorem 29, Theorem 30 and Theorem 31). In the following
theorem we present a condition which excludes IX in Theorems 28–31.

Theorem 32 Let (X,Sb) be an Sb-metric space with b ≥ 1 and C
Sb
x0,r be a circle

on X. Let the self-mapping ϕ be defined as in (22). A self-mapping T : X → X

satisfies the condition

(ISb ) Sb(x, x, T x) ≤ ϕ(x)− ϕ(T x)

h
,

for all x ∈ X and some h > 2b if and only if T = IX.

Proof Let x ∈ X and T x �= x. Then using the inequality (ISb ) and the condition
(Sb2) we get

hSb(x, x, T x) ≤ ϕ(x)− ϕ(T x)

= Sb(x, x, x0)−Sb(T x, T x, x0)

≤ b [2Sb(x, x, T x)+Sb(x0, x0, T x)] −Sb(T x, T x, x0)

≤ 2bSb(x, x, T x)+ bSb(x0, x0, T x)− bSb(x0, x0, T x)

= 2bSb(x, x, T x)

and so

(h− 2b)Sb(x, x, T x) ≤ 0,

which is a contradiction since h > 2b. Hence we obtain T x = x and T = IX.
Conversely, it is clear that the identity map IX satisfies the condition (ISb ).

Hence if a self-mapping T in Theorem 28 (resp. Theorem 29, Theorem 30 and
Theorem 31) does not satisfy the condition (ISb ) given in Theorem 32 then T can
not be the identity map.

Finally we investigate the uniqueness of the fixed circles in theorems obtained
above on an Sb-metric space. We note that the fixed circle CSb

x0,r is not necessarily
unique in Theorem 28 (resp. Theorem 29, Theorem 30 and Theorem 31). We can
give the following proposition.
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Proposition 12 Let (X,Sb) be an Sb-metric space with b ≥ 1. For any given
circles CSb

x0,r and C
Sb
x1,ρ , there exists at least one self-mapping T of X such that T

fixes the circles CSb
x0,r and C

Sb
x1,ρ .

Proof Let CSb
x0,r and C

Sb
x1,ρ be any circles on X. Let us define the self-mapping T :

X → X as

T x =
{
x ; x ∈ C

Sb
x0,r ∪ C

Sb
x1,ρ

β ; otherwise
, (25)

for all x ∈ X, where β is a constant satisfying Sb(β, β, x0) �= r and Sb(β, β, x1) �=
ρ. Let us define the mappings ϕ1, ϕ2 : X → [0,∞) as

ϕ1(x) = Sb(x, x, x0)

and

ϕ2(x) = Sb(x, x, x1),

for all x ∈ X. Then it can be easily checked that the conditions (CSb1) and (CSb2)
are satisfied by T for the circles CSb

x0,r and CSb
x1,ρ with the mappings ϕ1(x) and ϕ2(x),

respectively. Clearly, CSb
x0,r and C

Sb
x1,ρ are the fixed circles of T by Theorem 28.

Finally we note that the self-mapping T defined in (25) satisfies the conditions
(CSb1)∗ and (CSb2)∗ (resp. (CSb1)∗∗ and (CSb2)∗∗, (CSb1)∗∗∗ and (CSb2)∗∗∗)
for the circles CSb

x0,r and C
Sb
x1,ρ with the mappings ϕ1(x) and ϕ2(x), respectively.

Corollary 17 Let (X,Sb) be an Sb-metric space with b ≥ 1. For any given circles
C
Sb
x1,r1 , . . . , C

Sb
xn,rn , there exists at least one self-mapping T of X such that T fixes

the circles CSb
x1,r1 , . . . , C

Sb
xn,rn .

Hence it is important to investigate the uniqueness of the fixed circles. Now we
determine a uniqueness condition for the circles in Theorem 28 (resp. Theorem 29,
Theorem 30 and Theorem 31).

Theorem 33 Let (X,Sb) be an Sb-metric space with b ≥ 1, CSb
x0,r be a circle on

X and T : X → X be a self-mapping which fixes the circle CSb
x0,r . If the contractive

condition (Sb25) is satisfied for all x ∈ C
Sb
x0,r , y ∈ X\CSb

x0,r by T , then C
Sb
x0,r is the

unique fixed circle of T .

Proof Suppose that there exist two fixed circles CSb
x0,r and CSb

x1,ρ of the self-mapping

T . Let x ∈ C
Sb
x0,r , y ∈ C

Sb
x1,ρ and x �= y be any arbitrary points. We show that

Sb(x, x, y) = 0 and so x = y. Using the condition (Sb25) we obtain

Sb(x, x, y) = Sb(T x, T x, T y) < max{Sb(x, x, y),Sb(T x, T x, x),
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Sb(T y, T y, y),Sb(T y, T y, x),Sb(T x, T x, y)}
= Sb(x, x, y),

which is a contradiction. Consequently, it should be x = y for all x ∈ C
Sb
x0,r , y ∈

C
Sb
x1,ρ and so C

Sb
x0,r is the unique fixed circle of T .

More generally it is possible to use appropriate contractive conditions for the
uniqueness of the obtained fixed-circle theorems.
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Finite-Difference Modeling of Nonlinear
Phenomena in Time-Domain
Electromagnetics: A Review

Theodoros T. Zygiridis and Nikolaos V. Kantartzis

1 Introduction

The investigation of electromagnetic (EM) problems is directly connected to
the solution of Maxwell’s equations, which is, in most cases, obtained using
computational methods, as analytical techniques can be practically applied only
when specific or ideal conditions are satisfied. Especially when dynamic phenomena
need to be considered, the corresponding studies are commonly performed in the
time domain, and the finite-difference time-domain (FDTD) method constitutes one
of the most popular choices [1, 2]. Of course, other alternatives also exist, such as
the finite-element time-domain method [3], the discontinuous Galerkin time-domain
approach [4], or techniques based on integral equation methods [5]. The FDTD
scheme is well-known for its attractive features, which include the simplicity of
implementation, the explicit character (i.e. no matrix inversions are required), the
ability to model a wide range of material properties, its parallelization potential on
multi-core systems, etc. Furthermore, a number of extensions and improvements
of the standard formulation have been proposed through the years, including
high-order formulations [6], subgridding techniques [7], perfectly-matched layers
for absorbing boundary conditions [8], hybrid schemes with other discretization
methods [9], thin-wire formulations [10], surface-impedance boundary conditions
[11], etc.
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In its original formulation, the standard FDTD method is well-suited for linear
EM problems. In fact, the vast majority of pertinent FDTD applications and
the corresponding extensions have been mainly targeted towards cases without
nonlinearities. On the other hand, several nonlinear EM problems are of significant
engineering interest, including (but not restricted to) configurations operating at
optical frequencies, such as optical fibers, switches, resonators, filters, couplers,
multiplexers, and splitters, which constitute fundamental parts of modern and
future communication, signal-processing, and transmission systems. The constantly
increasing research regarding the aforementioned applications has triggered the
development of FDTD approaches for the study of the corresponding nonlinear
EM phenomena. Apart from the above-mentioned advantages, FDTD formula-
tions do not require any special conditions for their application, in order to
provide consistent results. For this reason, the full-wave FDTD solutions are
commonly more preferable than other approximate (less generic) models, such as
the nonlinear Schrödinger equation (an asymptotic envelope equation) [12] or the
beam-propagation technique (based on the paraxial wave equation) [13].

More specifically, the most common case of EM nonlinearities pertains to the
response of materials. In such cases, the material constitutive parameters exhibit a
dependence on the intensity of the electric or the magnetic field. This behavior gives
rise to a complicated form for the polarization P, which is related to the electric-field
intensity E and dielectric displacement D via

D = ε0E + P (1)

where ε0 is the electric permittivity of vacuum. The behavior of nonlinear media
can be described via the following general formula for the polarization’s compo-
nents [14]:

Pi =
∑

j

χ
(1)
ij Ej + 2

∑

j,k

χ
(2)
ijkEjEk + 4

∑

j,k,l

χ
(3)
ijklEjEkEl + . . . (2)

where χ(1) stands for the linear susceptibility and χ(2), χ(3), . . . denote nonlinear
susceptibilities with increasing orders.1 Two of the most characteristic pertinent
phenomena are the Kerr effect and Raman scattering, which are related to the
third-order nonlinear susceptibility models. Regarding the latter, the corresponding
relation between the polarization and the electric-field intensity is described in the
time domain by

PNL(r, t) = ε0

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
χ(3)(t − τ1, t − τ2, t − τ3)E(r, τ1)

× E(r, τ2)E(r, τ3)dτ1dτ2dτ3 (3)

1In the simple—quite common—case of linear materials, it is P = ε0χ
(1)E.
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which clearly poses significant challenges in terms of implementation in the context
of an efficient time-domain computational scheme. Apart from that, other forms of
nonlinearities will be also considered in the present analysis.

In this chapter, we provide a review of selected FDTD-related works that
present formulations suitable for EM problems exhibiting nonlinear behavior in
at least one of their aspects. Although the pertinent literature has become quite
vast over the years, it is our opinion that the current collection covers a significant
number of important contributions for nonlinear problems, and extends previous
related reviews such as those found in [14–16]. Specifically, [15] summarizes the
main extensions of the FDTD method to nonlinear optics up to 1997, while [14]
presents a more general review of complex material models, where a small part is
devoted to the works pertinent to nonlinear media. Furthermore, [16] compares the
performance of two existing FDTD approaches that are suitable for modeling the
instantaneous Kerr effect. Without proceeding to a high level of detail, we provide
all the necessary information that one needs to have at hand, in order to understand
the main gist of each methodology and recognize the applications that the examined
approach is suitable for. In addition, a quick reference to the test problems that the
examined methods were implemented to is given. With the current study, a sufficient
description of the specific research area is provided, which can be useful for those
not previously familiar with nonlinear EM problems. It can also serve as a starting
point for researchers that wish to engage into the computational study of nonlinear
EM phenomena using FDTD techniques. Before proceeding to the main part of this
work, a short description of the original FDTD formulation that is suitable for linear
problems is provided.

2 FDTD Discretization of Linear Electromagnetic Problems

We begin by briefly introducing the standard FDTD methodology for linear EM
phenomena, which is currently considered a widely accepted numerical tool for
performing reliable simulation studies. In the case of linear, isotropic, and non-
dispersive materials, Maxwell’s equations take the form

∇ × E = −∂B
∂t

− Mc − Ms (4)

∇ × H = ∂D
∂t

+ Jc + Js (5)

where E is the electric-field intensity, H is the magnetic-field intensity, D = εrε0E
is the electric-flux density, B = μrμ0H is the magnetic-flux density, Jc = σE
and Mc = σ̃H denote the electric and magnetic conductivity current densities,
respectively, Js and Ms denote the electric- and magnetic-current source terms,
respectively, σ is the electric conductivity, σ̃ stands for the magnetic conductivity, ε0
is the electric permittivity in free space, μ is the magnetic permeability in free space,
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εr is the relative electric permittivity, and μr is the relative magnetic permeability.
The standard FDTD formulation considers the field values located at nodes that are
organized according to a dual staggered spatial grid, at distances of Δx,Δy,Δz
along x, y, z axes, respectively. Specifically, the primary grid is used for the electric

field components, with the following arrangement: Ex is located at
(
i + 1

2 , j, k
)

nodes, Ey at
(
i, j + 1

2 , k
)

, and Ez at
(
i, j, k + 1

2

)
nodes.2 In a similar fashion,

the magnetic-field components are located at nodes of the secondary grid, and are

organized according to: Hx on
(
i, j + 1

2 , k + 1
2

)
, Hy on

(
i + 1

2 , j, k + 1
2

)
, and Hz

on
(
i + 1

2 , j + 1
2 , k

)
. The time axis is also discretized with steps equal to Δt , with

the electric components computed at time instants described by (nΔt), while the

magnetic components are computed at
(
n+ 1

2

)
time instants.

In order to discretize Maxwell’s equations, second-order finite-difference
approximations are implemented for both space and time derivatives. Consider,
for example, the equation

ε
∂Ex

∂t
= ∂Hz

∂y
− ∂Hy

∂z
− σEx − Jsx (6)

which is one of the six scalar equations that the two vector equations (4), (5) can
be decomposed. The approximating formulae for the three appearing derivatives at

node
(
i + 1

2 , j, k
)

and time instant
(
n+ 1

2

)
are:

∂Ex

∂t
9

Ex |n+1
i+ 1

2 ,j,k
− Ex |n

i+ 1
2 ,j,k

Δt
(7)

∂Hz

∂y
9

Hz|n+
1
2

i+ 1
2 ,j+ 1

2 ,k
− Hz|n+

1
2

i+ 1
2 ,j− 1

2 ,k

Δy
(8)

∂Hy

∂z
9

Hy

∣∣n+ 1
2

i+ 1
2 ,j,k+ 1

2
− Hy

∣∣n+ 1
2

i+ 1
2 ,j,k− 1

2

Δz
(9)

In addition, the following averaging formula for the conductivity current is intro-
duced:

σEx 9 1

2
σ |

i+ 1
2 ,j,k

(
Ex |n+1

i+ 1
2 ,j,k

+ Ex |n
i+ 1

2 ,j,k

)
(10)

2The convention f (iΔx, jΔy, kΔz, nΔt) = f |ni,j,k is used in this work.
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Once the aforementioned expressions are substituted in (6), the update equation for
Ex at each time instant is obtained:

Ex |n+1
i+ 1

2 ,j,k
=

2ε|
i+ 1

2 ,j,k
− σ |

i+ 1
2 ,j,k

Δt

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
Ex |n

i+ 1
2 ,j,k

+ 2Δt

Δy
(

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
)
(
Hz|n+

1
2

i+ 1
2 ,j+ 1

2 ,k
− Hz|n+

1
2

i+ 1
2 ,j− 1

2 ,k

)

− 2Δt

Δz
(

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
)
(
Hy

∣
∣n+ 1

2

i+ 1
2 ,j,k+ 1

2
− Hy

∣
∣n+ 1

2

i+ 1
2 ,j,k− 1

2

)

− 2Δt

2ε|
i+ 1

2 ,j,k
+ σ |

i+ 1
2 ,j,k

Δt
Js,x

∣
∣n+ 1

2

i+ 1
2 ,j,k

(11)

The same procedure is applied to the remaining five equations, so that an equal
number of discrete update formulae is derived, which determine the problem’s
interior discretization scheme. In this way, the required components are calculated
in an explicit fashion, without necessitating—computationally expensive—system
solutions in every iteration. Furthermore, the update procedure is conditionally
stable, with the time-step size bounded by the well-known stability limit

Δt ≤ 1

c0

√
1

Δx2 + 1
Δy2 + 1

Δz2

(12)

where c0 = 1/
√
με is the free-space speed of light.

As far as the boundary conditions are concerned, these are implemented accord-
ing to the physics of the problem under consideration. For instance, absorbing
boundary conditions are applied in the case of open (radiation) problems, homoge-
neous Dirichlet conditions in case of waves guided by metallic structures, periodic
conditions for infinite configurations, symmetry conditions for size reduction of the
computational domain, etc.

3 FDTD Methodologies for Nonlinear Problems

3.1 Integration of Nonlinear Maxwell’s Equations
in 1D Setups

The first attempts to exploit the FDTD algorithm for the solution of the nonlinear
Maxwell’s equations can be traced back to 1992 and the works reported in [17,
18]. Specifically, the methodology presented therein investigates the simple case of
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1D wave propagation along the x-axis considering nonlinear instantaneous effects,
where Ez and Hy are the components of the electric-and magnetic-field intensities,
respectively. In this manner, the study of optical solitons with extended bandwidths
becomes possible. The equations that describe the problem under investigation are:

μ0
∂Hy

∂t
= ∂Ez

∂x
(13)

∂Dz

∂t
= ∂Hy

∂x
(14)

Dz = ε0ε∞Ez + Pz (15)

where ε∞ is the relative permittivity at infinite frequency (the rest of the terms have
been explained previously). The polarization comprises a linear and a nonlinear part:

Pz = PL
z + PNL

z (16)

The (first-order) linear term is described by

PL
z =

∫ +∞

−∞
χ(1)(t − τ)Ez(x, τ ) dτ (17)

where χ(1) is the first-order susceptibility function. For the latter, Lorentz linear
dispersion is considered in [18], according to

χ(1)(t) = ω2
p

v0
e−δt/2 sin(v0t) (18)

with the corresponding permittivity described by

ε(ω) = ε∞ + χ(1)(ω) = ε∞ + ω2
0 (εs − ε∞)

ω2
0 − jδω − ω2

(19)

where ω2
p = ω2

0 (εs − ε∞) and ν2
0 = ω2

0 − δ2/4. The non-linear term PNL
z depends

on the third-order susceptibility function according to [19]

PNL
z = ε0χ

(3)Ez(x, t)

∫ +∞

−∞
g(t − τ)E2

z (x, τ ) dτ (20)

where

g(t) = αδ(t)+ (1 − α)gR(t) (21)

gR(t) = τ 2
1 + τ 2

2

τ1τ
2
2

e
− t

τ2 sin

(
t

τ1

)
(22)
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In (21), the delta function represents Kerr non-resonant virtual electronic transitions
up to 1 fs, while the remaining part models transient Raman scattering. Parameter
α acts as a relative weight for Kerr and Raman interactions. After defining the
functions

F(t) = ε0

∫ t

0
χ(1)(t − τ)Ez(x, τ ) dτ (23)

G(t) = ε0

∫ t

0
gR(t − τ)E2

z (x, τ )dτ (24)

and differentiating the above two formulae, a couple of second-order nonlinear
equations is obtained, which are discretized with conventional finite differences and
solved simultaneously (Eqs. (13) and (14) are dealt with in a standard manner). For
instance, the equation pertinent to F is

1

ω2
0

d2F

dt2
+ δ

ω2
0

dF

dt
+

(
1 + εs − ε∞

ε∞ + αχ(3)E2
z

)
F + (εs − ε∞)(1 − α)χ(3)Ez

ε∞ + αχ(3)E2
z

G

= εs − ε∞
ε∞ + αχ(3)E2

z

Dz (25)

whose finite-difference analogue is

1

ω2
0

F |n+1
i − 2 F |ni + F |n−1

i

Δt2
+ δ

ω2
0

F |n+1
i − F |n−1

i

2Δt

+
(

1 + εs − ε∞
ε∞ + αχ(3) E2

z

∣∣n
i

)
F |n+1

i + F |n−1
i

2

+ (εs − ε∞)(1 − α)χ(3) Ez|ni
ε∞ + αχ(3) E2

z

∣∣n
i

G|n+1
i + G|n−1

i

2

= εs − ε∞
ε∞ + αχ(3) E2

z

∣∣n
i

Dz|n+1
i + Dz|n−1

i

2
(26)

A similar result is obtained for the update of G. Evidently, values at two previous
time-steps need to be stored, and the latest value of Ez is obtained from

Ez = Dz − F − (1 − α) χ(3)EzG

ε0
(
ε∞ + αχ(3)E2

z

) (27)

The aforementioned nonlinear equation can be handled via an iterative Newton
procedure. The propagation of a single soliton, as well as the collision of two
solitons moving in different directions were simulated for the first time with this
methodology in [18].



904 T. T. Zygiridis and N. V. Kantartzis

3.2 Multi-Dimensional Formulation with Applications

A FDTD methodology that solves Maxwell’s equations in a multi-dimensional (2D)
framework is presented in [20], where Lorentz linear dispersion as well as Raman
nonlinearity models are incorporated. Specifically, the former is described by

∂2PL

∂t2
+ ΓL

∂PL

∂t
+ ω2

LPL = ε0χ0ω
2
LE (28)

while the latter is described by

∂2χNL

∂t2
+ ΓR

∂χNL

∂t
+ ω2

Rχ
NL = εRω

2
R|E|2 (29)

considering that P = PL + PNL = PL + ε0χ
NLE. The aforementioned equations

are combined with

∂

∂t
(μ0H) = −∇ × E (30)

∂

∂t
(εLE) = ∇ × H − ∂P

∂t
(31)

where εL is the linear permittivity. The proposed formulation differentiates from
earlier works that rely on the introduction of the effective quantities

εeff = εL + ε0χ
NL, σeff = ε0

∂

∂t
χNL (32)

The proposed methodology was applied in a problem of scattering of a pulsed
Gaussian beam, which is normally incident on a linear-nonlinear interface. It was
noted that propagation within the nonlinear medium resulted in self-focusing of the
beams, and the linear diffraction region and nonlinear effects were identified via the
intensity patterns in the focus region.

3.3 Transient Analysis Within a Nonlinear Magnetic Sheet

The FDTD solution of problems involving wave propagation within a significantly
conducting nonlinear magnetic medium is discussed in [21]. In essence, the case
of a saturable ferromagnetic material is considered, whose differential permeability
that describes the B −H characteristic curve is modeled by

dμ(H) = ∂B

∂H
= μm + Bs

Hc

e−|H |/Hc (33)
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where μm,Bs,Hc are known constants. The presence of the magnetic nonlinearity
affects only the magnetic-field update equation,

∂Ez

∂y
= −∂Bx

∂t
= −dμ(Hx)

∂Hx

∂t
(34)

which is easily transformed into a FDTD update equation using standard approxi-
mations:

Hx |n+1
j = Hx |nj −

Δt

dμ
(
Hx |nj

)
Δy

(
Ez|n+

1
2

j+ 1
2
− Ez|n+

1
2

j− 1
2

)
(35)

Owing to the high conductivity of the considered medium, the current density term
in the corresponding discrete equation is computed from the most recent value
of E, in order to ensure stable simulations. Furthermore, to avoid computations
in free space that would weaken the stability, the fields are calculated only inside
the magnetic material. Such an approach necessitates the implementation of proper
boundary conditions, which are translated into second-order, one-sided, finite-
difference formulae, e.g.

Hx |n0 = 1

F

[
2 Einc|n + 1

2σΔy

(
4 Hx |n1 − Hx |n2

)
]

(36)

where F = η0 + 3/(2σΔy) (η0 = √
μ0/ε0). It was also shown that the nonlinearity

plays the most significant role in the reduction of the maximum allowable time-
step size. In fact, due to the combination of the material’s nonlinearity and high
conductivity, the time-step size had to be reduced by 10–30 times with respect to
the Courant stability criterion, with smaller time-steps needed when the material is
governed by more intense nonlinearity.

3.4 Incorporating Active Device Models

The work of Toland et al. [22] presents a methodology that enables simulating
realistic devices incorporating active and nonlinear regions. Let us consider an active
device, like a resonant tunneling diode, with a junction capacitance C, a series
resistance R and a nonlinear current source F . The latter are translated into the
distributed parameters E and F(V s), considered for each grid cell. This actually
implies the cells within the active region can be treated as a voltage source, and the
total effect from all nodes in the active region is characteristic of the physical device.
It is well-known that voltage/current sources can be introduced into an FDTD
algorithm without difficulty, yet with a special attention to the overall stability of
the resulting scheme. Hence, we start from the fact that the voltage source is a
solution of

dVs

dt
+ Vs

RC
+ F(Vs)

C
= − Vin

RC
(37)
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For this equation to be solved, forward time average differencing can be utilized. To
this aim, the nonlinear current source is expanded in a Taylor series, as

F(Vs |n+1) ≈ F(Vs |n)+ dF(Vs |n)
dV

[
Vs |n+1 − Vs |n

]
(38)

leading to

Vs |n+1 = A1 Vs |n − A2F(Vs |n)− A3Δy
[
Ey

∣∣n+1 + Ey

∣∣n
]

(39)

where

A1 = 2RC −Δt [1 − RdF(Vs)/dV ]

β
, A2 = 2RΔt

β
, A3 = Δt

β
(40)

with β = 2RC+Δt [1 + RdF(Vs)/dV ]. This outcome can then be plugged into the
FDTD algorithm. For example, bearing in mind a y-directed source, Ey is updated
according to

Ey

∣∣n+1 = ε/Δt − 0.5(1 − A3)/R

ε/Δt + 0.5(1 − A3)/R
Ey

∣∣n

+ 1

Δz [ε/Δt + 0.5(1 − A3)/R]

(
Hx |n+1/2

i,j+ 1
2 ,k+ 1

2
− Hx |n+1/2

i,j+ 1
2 ,k− 1

2

)

+ 1

Δx [ε/Δt + 0.5(1 − A3)/R]

(
Hz|n+1/2

i+ 1
2 ,j+ 1

2 ,k
− Hz|n+1/2

i− 1
2 ,j+ 1

2 ,k

)

− 1

2RΔy [ε/Δt + 0.5(1 − A3)/R]

[
(1 + A1) Vs |n − A2F(Vs |n)

]

(41)

The use of (39) in conjunction with (41), guarantees that no instabilities are to be
generated due to the nonlinear nature of the involved elements.

3.5 A Discrete Model for Magnetic Diffusion Problems

A possible alternative for problems involving slowly changing waveforms or
extended diffusion times is developed in [23]. Such problems pose certain com-
putational difficulties, due to the limiting Courant stability condition. As a study
example, we may consider an aluminum enclosure. At first, a transient field will
cause the appearance of eddy currents on the enclosure, which should lead to the
cancellation of the external excitation. If the aluminum were considered to be
a perfect conductor, the eddy currents would be characterized by long duration,
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similar to that of the transient field. Of course, these eddy currents are practically
characterized by a specific time constant, which depends on a number of factors,
such as the enclosure volume, the thickness and the conductivity of the wall. The
decay time can be of the order of 0.1 s, in case of an aluminum enclosure the
size of a large truck. If the duration of a magnetic pulse is much longer than
this value, the enclosure will behave as being magnetically transparent. However,
before this transparency takes place, any magnetic memory inside the enclosure
will be scrambled. In essence, the magnetic field penetrating the enclosure cannot
be treated solely in the context of a simple diffusion problem, at least in three
dimensions. In fact, when the magnetic field develops a component that is normal to
the surface of the enclosure, the corresponding problem should not be characterized
as diffusive. Furthermore, the fields in the enclosure satisfy Maxwell’s system, and
the appearance of eddy currents are a direct result of this property.

Problems involving steel enclosures are not much different than those with
aluminum enclosures. The main difference is that the steel’s permeability is likely
to prevent it from establishing a full magnetic transparency. Furthermore, nonlinear
effects will take place, considering the nonlinear relationship between B,H . On
the other hand, both enclosures will initially exclude interior magnetic fields, and
will allow magnetic fields to slowly appear into the interior. For studying these
phenomena, an implicit FDTD approach has been suggested.

Let us now consider a wave traveling along +x, with only Hy and Ez compo-
nents. As usual, air is represented by (ε0, μ0) and walls by (ε, μ, σ ). Moreover, E
will be computed at the air-wall interface. Regarding the grid, the x-axis is divided
into nodal points separated in air by Δx/2, while the spatial resolution in the walls
becomes δx/2. In air, the equation

∂Hy

∂x
= −ε0

∂Ez

∂t
(42)

can take the Crank-Nicolson FDTD form

E|n+1
i = E|ni −

Δt

ε0Δx

[
λ
(
H |n+1

i+1 − H |n+1
i−1

)
+ (1 − λ)

(
H |ni+1 − H |ni−1

)]

(43)

Here, λ is a parameter that is set between 1/2 (center differences) and 1 (forward
differences) for implicit schemes. Equation (43) can be written in tridiagonal
form, as

− ai H |n+1
i+1 + bi E|n+1

i − ci H |n+1
i−1 = di (44)

where

ai = − λΔt

ε0Δx
, bi = 1, ci = λΔx

ε0Δt
, di = E|ni −(1−λ)

λΔt

μ0Δx
(H |ni+1−H |ni−1)

(45)
A corresponding set of equations can be deduced at even i with E,H , and μ0, ε0
interchanged. For λ �= 0, the two equation families allow all field samples to
be calculated simultaneously. If λ = 0 is selected, (43) becomes an explicit
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FDTD expression. In this case, E|i and H |i cannot be all advanced at the same
time. Moreover, at positions within the wall, (42) is modified by adding the term
−σE on the right side, and (44) needs to be altered by replacing (a, b, c, d) with
(A,B,C,D), where

Ai = −
( ε

Δt
−Λσ

)−1 λ

δx
= −Ci, Bi = 1,

Di =
ε
Δt

− (1 −Λ)σ
ε
Δt

+Λσ
E|ni −

1
(
ε
Δt

+Λσ
)
δx

[
(1 − λ)

(
H |ni+1 − H |ni−1

)]
(46)

Here, Λ is another parameter that can be adjusted. It is noted that the coefficients
in (46) will produce numerical instabilities for “explicit” Λ values, if Δt is selected
higher than the Courant limit. Therefore, a consistent choice is to select Λ between
1/2 (center-differenced loss) and 1 (forward-differenced loss).

3.6 Calculation of Photonic Band Structures

The FDTD methodology of [24] is suitable for studying the photonic band structure
of a dielectric material, when Kerr-type nonlinearities are present. The algorithm
assumes field distributions (B and E) that are characterized by the wave vectors
k. The time-dependent Maxwell’s system is integrated to provide B(k, t). For a
specific k, Maxwell’s equations will also determine the appropriate frequency value.
In the case of nonlinear Kerr media, it is reminded that D = (

ε + χ |E|2)E. An
analytical solution for E is available for such a system. First, we take the square of
the magnitude the aforementioned formula, to find an equation for χ , i.e.

|χ |2x3 + 2 Re{ε ∗ χ}x2 + |ε|2x − |D|2 = 0 (47)

The solution to this cubic equation is known and its knowledge extremely useful, as
it can save computational time. The main question pertains to which root to consider,
among the available ones. The case we are studying (ε, χ have the same sign) is
quite simple, as there exists one positive real root, and x must be a positive real.
After x has been determined, E is given by

E = D
ε + χx

(48)

Computations are carried out by solving the system on a 3D lattice, with the curl
computed in k space. Such an approach can be more reliable than the standard
finite-difference approximation of the curl normally used in the FDTD method.
Furthermore, implementation of a staggered spatial grid (which adds programming
complexity) is avoided, and the periodic boundary condition is automatically
fulfilled, without requiring further modifications. The calculations evolve as follows
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(linear case):

B(k, t +Δt) = B(k, t)− jcΔtk × E(k, t +Δt/2) (49)

D(k, t +Δt/2) = D(k, t −Δt/2)+ jcΔtk × B(k, t +Δt) (50)

E(r, t) = D(r, t)/ε(r) (51)

while (51) is replaced by the appropriate equation, for the nonlinear case. The split-
time scheme not only assures higher accuracy, but also is more economical in terms
of memory, as it is not necessary to preserve the field values at two subsequent
steps. Finally, B(k, t) is Fourier transformed to provide B(k, ω). To ensure that all
modes have been considered, B(k, t) is multiplied with a Gaussian function, with
a width half of that of 1/Δω (Δω is the frequency resolution). This action broaden
the peaks. As a source-free solution is required, the two divergence conditions
need to be satisfied. However, we still may select an arbitrary initial condition,
as the corresponding fields at later times will automatically satisfy the divergence
conditions (this can be verified by taking the divergence of Maxwell’s equations).
If the initial fields display nonzero divergence, they can be considered as fields
originating from static charges. Hence, they will be identified only at ω = 0. Note
that the resolution (Δk and Δω) of the calculation is mainly affected by two factors:
the grid size and the duration of integration.

3.7 Z-Transform-Based FDTD Formulation

The study of nonlinear phenomena using the FDTD method is also the subject
of [25], where techniques borrowed from digital filtering theory are implemented.
Similar to other works, the Kerr effect is described by the polarization term

PK(t) = ε0χ
(3)
0 αE3(t) (52)

and the term due to Raman scattering is given by

PR(t) = ε0χ
(3)
0 (1 − α)E(t)

∫ t

0
gR(t − τ)E2(τ ) dτ (53)

where

gR(ω) = 1

1 + j2δNL

(
ω

ωNL

)
−

(
ω

ωNL

)2 (54)

By defining the integral

IR(t) = ε0χ
(3)
0 (1 − α)

∫ t

0
gR(t − τ)E2(τ ) dτ (55)
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the implementation of the Z-transform yields

IR(z) = ε0
γRΔte

−αRΔt sin(βRΔt)z−1

1 − 2e−αRΔt cos(βRΔt)z−1 + e−2αRΔtz−2
E2(z) (56)

where αR, βR, γR are known constant coefficients. If the compact notation IR(z) =
ε0z

−1SR(z) is introduced (which is equivalent to IR|n = ε0 SR|n−1 in the time
domain), then the update of SR is performed via

SR|n = cnl1 SR|n−1 − cnl2 SR|n−2 + cnl3

(
E2

)∣∣∣
n

(57)

where cnl1, cnl2, cnl3 are known coefficients. As the implementation of time
discretization dictates

PR(t) = E(t)IR(t) ↔ PR|n = E|n IR|n

then PR|n is computed from the preceding value of SR:

PR|n = ε0E|n SR|n−1 (58)

and then the current value of the latter is obtained from E2, according to (57).
Regarding the Kerr effect, after considering a proper Taylor expansion of E3, we

are led to an update equation of the form

(
E|n)3 = 3

(
E|n−1

)2 (
E|n)− 2

(
E|n−1

)3
(59)

which enables the computation of the corresponding polarization term PK |n
from (52). Evidently, the resulting equation dictates that PK depends on the electric-
field value at two different time-steps.

Finally, to calculate the E field from the individual polarization terms, we start
from

ε0ε∞E|n = D|n − PL|n − PR|n − PK |n (60)

where PL denotes the linear polarization, for which a similar, Z-transform based
approach, is applied. Once all substitutions have been made, and all E|n terms have
been collected, we end up with

E|n =
1
ε0
D|n − SL|n−1 + 2χ(3)

0 α
(
E|n−1)3

ε0 + χ
(3)
0 (1 − α)SR|n−1 + 3χ(3)

0 α
(
E|n−1)2 (61)

The methodology of [25] was implemented in the 1D calculation of the reflection
coefficient from a nonlinear material with reasonably good accuracy. Furthermore,
the potential of this approach to simulate soliton propagation was exemplified, in
case of pulses with sufficiently large amplitude.
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3.8 Auxiliary-Differential-Equation Approach for Absorbing
and Gain Media

A fully explicit FDTD methodology capable of modeling wave propagation in
certain types of nonlinear media is presented in [26]. The proposed approach is
similar to the auxiliary-differential-equation (ADE) method used for dispersive
media, and incorporates the atomic rate equations, which correspond to the time
evolution of the atomic energy level populations, when the effect of applied signals
is taken into account. Consequently, nonlinear gain and absorption effects can be
included, and the approach is reliable over a non-trivial range of different signal
strengths.

First, it is shown in the considered work that the electric polarization in real
atomic transitions satisfies

d2P
dt2

+Δωa
dP
dt

+ ω2
αP = κΔNE (62)

where Δωa is the total energy decay rate that corresponds to the actual linewidth
of the transition, ωa is the resonance frequency of the material that is related to
the atomic energy levels, κ is a constant related to, among others, the mass and the
charge of an electron, and ΔN represents the instantaneous population difference.
The time variation of the latter becomes significant in case of high signal intensities
and signals displaying rapid variations. Furthermore, for an ideal two-level system,
the population difference ΔN satisfies

dΔN

dt
= − 2

h̄ωa
E · dP

dt
− ΔN −ΔN0

τ21
(63)

where ΔN0 is the population difference at thermal equilibrium, h̄ denotes the
reduced Planck’s constant, and τ21 stands for the atoms’ lifetime in the upper
energy level.

Considering the simple case of 1D propagation, the standard finite-difference
update equation of the Ex component is

Ex |n+1
k = Ex |n+1

k − Δt

ε0Δz

(
Hy

∣∣n+ 1
2

k+ 1
2
− Hy

∣∣n+ 1
2

k− 1
2

)
− 1

ε0

(
Px |n+1

k − Px |nk
)

(64)

and the macroscopic polarization is obtained via

Px |n+1
k = 2Δt2

2ΔωaΔt

[
κ ΔN |nk Ex |nk+

(
2

Δt2
−ω2

a

)
Px |nk +

(
Δω

2Δt
− 1

Δt2
Px |n−1

k

)]

(65)
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In a similar fashion, the equation regarding ΔN is discretized as follows:

ΔN |n+1
k = 2τ12Δt

2τ21 +Δt

[
ΔN |nk

(
1

Δt
− 1

2τ21

)

+ΔN0

τ21
−

(
Ex |n+1

k + Ex |nk
) (

Px |n+1
k − Px |nk

)

Δth̄ωa

⎤

⎦ (66)

To ensure numerical stability as well as satisfactory accuracy, the size of the time-
step is determined by Δt ≤ Ta

100 , where Ta is the time period related to the material
resonance.

This approach was validated by considering a problem involving wave prop-
agation in a two-level system of atoms, considering Gaussian-pulse excitation.
Good agreement with existing theoretical models for the case of small-signal
frequency response was observed. Moreover, population dynamics in the presence
of considerable fields were also simulated satisfactorily using the aforementioned
technique.

3.9 Hybrid Implicit-Explicit Modeling

A hybridization of two computational schemes is proposed in [27] for modeling
2D waveguiding structures, which is suitable for problems with small, nonlinear
inclusions within larger, linear areas. The main feature of this algorithm is the partial
elimination of the restrictive time-step stability limit, by implementing a partially
implicit discretization approach in the nonlinear parts of the configuration under
study.

If a 2D computational domain is described by a set of xz-axes, the Ey component
satisfies the wave equation

∇2
xzEy − μ0ε0

∂2

∂t2

(
εrEy

)− μ0
∂

∂t

(
σEy

) = 0 (67)

where ∇2
xz = ∂2

∂x2 + ∂2

∂z2 . In nonlinear regions, the Kerr-type nonlinearity is expressed

via εr = εr,L+α
∣∣Ey

∣∣2. The discretization of (67) in linear areas is performed using
a forward-difference formula for the first temporal derivative, and central difference
approximations for the second temporal and spatial derivatives, resulting in the
following expression:

μ0 σ |i,k
Δt

(
E|n+1

i,k − E|ni,k
)
+ μ0ε0 εr |i,k

Δt2

(
E|n+1

i,k − 2 E|ni,k + E|n−1
i,k

)
=

= 1

Δx2

(
E|ni+1,k − 2 E|ni,k + E|ni−1,k

)+ 1

Δz2

(
E|ni,k+1 − 2 E|ni,k + E|ni,k−1

)

(68)
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Hence, the linear problem is treated with an explicit scheme, whose stability is
dictated by the standard limit. On the other hand, a weighted-averaging time-
stepping process is applied in nonlinear regions, according to:

μ0

Δt

[(
σEy

)∣∣n+1
i,k

− (
σEy

)∣∣n
i,k

]
+μ0ε0

Δt2

[(
εrEy

)∣∣n+1
i,k

−2
(
εrEy

)∣∣n
i,k
+(

εrEy

)∣∣n−1
i,k

]
=

=
∑

�,m�

c�

[
1

Δx2

(
Ey

∣∣m�

i+1,k − 2 Ey

∣∣m�

i,k
+ Ey

∣∣m�

i−1,k

)

+ 1

Δz2

(
Ey

∣∣m�

i,k+1 − 2 Ey

∣∣m�

i,k
+ Ey

∣∣m�

i,k−1

)]

(69)

where � = 1, 2, 3 and m1 = n−1, m2 = n, m3 = n+1. As seen, the spatial deriva-
tives can be averaged over three successive time-steps. Note that the explicit scheme
is obtained simply by setting c2 = 1, c1 = c3 = 0 in the aforementioned formula. In
case of highly conducting materials, the partially implicit scheme with c1 = c2/2 =
c3 = 1/4 is selected instead, which exhibits better stability properties than the fully
explicit approach and, at the same time, does not suffer from artificial amplitude
attenuation, unlike the fully implicit method. Consequently, the overall stability is
not affected and is still directly related to the discretization approach applied in
the linear regions. To deal with the implicit updates, the authors in [27] implement
the Newton-Raphson’s iterative technique, using the field values at the current time
instant as the initial guess for the subsequent time-step. The developed method
was applied in problems involving either slab waveguides with weak or moderate
nonlinearities, or nonlinear distributed Bragg resonators with 40 grating periods.

3.10 3D Optical Pulse Simulation Using a Moving Reference
Frame

A finite-difference methodology that is particularly suited for the efficient 3D
modeling of single-mode propagation in optical fibers over large distances is
presented in [28]. Using normalized units, the dielectric displacement can be
expressed in the following form:

D = εrE + PL + PNL (70)

where for the nonlinear polarization, the Kerr effect is modeled via PNL = χ(3)E3.
As already mentioned, the proper manipulation of Taylor expansion of E3 produces
(E|n)3 9 3(E|n−1)2E|n − 2(E|n−1)3 , a formula which was also introduced in
[25]. We eventually end up with the expression

E|n = D|n + 2χ(3)
0

(
E|n−1)3

εr + 3χ(3)
0

(
E|n−1)2

(71)

Note that the linear polarization term is computed with a formula similar to (61).
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The implementation of the proposed methodology exploits several strategies,
in an attempt to improve the algorithm’s overall efficiency. First, the spatial mesh
density is selected to be higher along the direction of propagation, and reduced in the
transverse direction, where the pulses are expected to change much slower. Second,
the symmetry of the transverse field is taken into consideration, and only one
quadrant of the computational space actually needs to be simulated, after applying
the proper boundary conditions. Finally, the pulse is always held in the middle of the
computational domain, by computing the average position of the pulse on the axis
located at the center of the fiber’s core and properly displacing the field values in
the mesh, with respect to a pre-selected spatial buffer. Due to the moving reference
frame, a wavelet transform is applied, in order to track the changes of the pulse’s
shape, while a Fourier transform at the central pulse frequency is implemented, for
the assessment of the pulse’s speed and attenuation.

3.11 Decoupled FDTD Algorithms for 2D Photonic Crystals

The methodology presented in [29] is suitable for the analysis of arbitrary 2D struc-
tured material configurations, which lead to second-harmonic (SH) generation.3

In essence, an artificial separation of the fundamental field (FF) and the SH is
accomplished, which partially sacrifices generality, but enables less time-consuming
simulations.

Considering an incident H-polarized FF, standard (linear) FDTD updating is
implemented for the calculation for the FF. The nonlinearity is not considered for
the FF, but only for the SH, which is not associated to the FF. The SH field is updated
according to

ESH
z

∣∣∣
n+1

i,j
= ESH

z

∣∣∣
n

i,j

+ Δt

εSH
∣∣
i,j
Δ

(
H SH
y

∣
∣∣
n+ 1

2

i+ 1
2 ,j

− H SH
y

∣
∣∣
n+ 1

2

i− 1
2 ,j

+ H SH
x

∣
∣∣
n+ 1

2

i,j− 1
2

− H SH
x

∣
∣∣
n+ 1

2

i,j+ 1
2

)

− 1

εSH
∣∣
i,j

(
P (2)
z

∣∣∣
n+ 1

2

i,j
− P (2)

z

∣∣∣
n− 1

2

i,j

)
(72)

where the last term, which is proportional to the time-derivative of the second-order
polarization, represents the nonlinearity source. The polarization is obtained from
the FF values, in a manner that depends on the properties of the considered nonlinear
material. For instance, the case of a defective nonlinear photonic crystal is examined
in [29], where the polarization update has the form

3Second-harmonic generation is a phenomenon, according to which a wave within a nonlinear
medium can produce another wave with twice the frequency of the former.
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P
(2)
z

∣
∣
∣
n+ 1

2

i,j
= P

(2)
z

∣
∣
∣
n− 1

2

i,j
+ ε0 d|i,j

2

⎡

⎣

(

EFF
x

∣
∣
∣
n+ 1

2

i+ 1
2 ,j+1

)2

+
(

EFF
x

∣
∣
∣
n+ 1

2

i+ 1
2 ,j

)2

−
(

EFF
x

∣
∣∣
n− 1

2

i+ 1
2 ,j+1

)2

−
(

EFF
x

∣
∣∣
n− 1

2

i+ 1
2 ,j

)2

+
(

EFF
y

∣
∣
∣
n+ 1

2

i,j+ 1
2

)2

+
(

EFF
y

∣
∣
∣
n+ 1

2

i+1,j+ 1
2

)2

−
(

EFF
y

∣
∣
∣
n− 1

2

i,j+ 1
2

)2

−
(

EFF
y

∣
∣
∣
n− 1

2

i+1,j+ 1
2

)2
⎤

⎦

(73)

where d stands for the nonlinear susceptibility. The examined structure supports
waveguide modes at both FF and SH frequencies, as it is designed to exhibit
photonic bandgaps in the proximity of the FF frequency in the case of H-
polarization, and near the SH frequency for E-polarization. The configuration’s
transmission diagrams was computed, which displayed maxima at the expected
wavelengths.

3.12 A High-Order Extension of the Nonlinear ADE-FDTD
Technique

The work of [30] presents a reformulation of the ADE technique, for problems
concerning optical pulse propagating within linear Lorentz and nonlinear Kerr and
Raman media. The main difference compared to other approaches is that the ADE
approach is applied to the polarization, rather than to the polarization currents. The
technique was originally developed for linear cases only [7], and this work extended
it to nonlinear cases as well. Furthermore, unlike the conventional formulation of the
FDTD method, the authors of [30] introduced spatial approximations of the form

∂f

∂u

∣
∣∣∣
i

9 1

Δu

∑

�

c�

(
f |

i+�+ 1
2
− f |

i−�− 1
2

)
(74)

where c�, � = 0, 1, . . . are the stencil coefficients of wavelet-based schemes
that correspond to Deslauriers–Dubuc interpolating bases. The above-mentioned
approximations are capable of ensuring higher-order accuracy for spatial deriva-
tives. The paper considered third-order nonlinear polarization, consisting of both
the Kerr (PK ) and the Raman (PR) nonlinearities. The latter is treated with a simple
ADE technique, which is also consistent with the implementation of the anisotropic
perfectly matched layer (PML) absorbing boundary condition of [31]. As the
electric-flux density is related to the electric-field intensity and the polarization
terms via

Dy

∣∣n+1 = ε0ε∞Ey

∣∣n+1 + PD|n+1 + PL|n+1 + PK |n+1 + PR|n+1 (75)
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(PD,PL correspond to Debye and Lorentz dispersion, respectively) the final form
of the update equation, similar to [25], becomes

Ey

∣∣n+1 = Dy

∣∣n+1 − aD PD|n − bD Ey

∣∣n − PL|n+1

ε0

[
ε∞ + bD + αχ

(3)
0

(
Ey

∣∣n+1
)2 + S|n+1

] (76)

where aD, bD are known coefficients, and S denotes an auxiliary variable related to
Raman nonlinearity. Evidently, the aforementioned formula is nonlinear and needs
to be solved via an iterative scheme

The typical problems that were studied for numerical verification considered
mainly 2D geometries and demonstrated spatio-temporal soliton propagation in
optical media. In addition, the computational savings due to the high-order approx-
imations in terms of memory requirements and computing times were clearly
demonstrated.

3.13 A Vector ADE-FDTD Method for Nonlinear Problems

A FDTD method that features a general vector ADE approach is developed
in [32] for 2D setups, where the electric field does not feature just a single
vector component, and is suitable for propagation problems in dispersive nonlinear
materials. The polarization current is considered to comprise three terms, J =
JLorentz + JKerr + JRaman. The linear Lorentz polarization model is the sum of
contributions from different resonances,

JLorentz =
3∑

�=1

JLorentz,� (77)

In phasor representation, each term can be written as

J̇Lorentz,� = ε0β�ω
2
�

jω

ω2
� − ω2

Ė (78)

After multiplying the above equation with
(
ω2
� − ω2

)
, applying the inverse trans-

form, and discretizing the resulting expression, we end up with

JLorentz,�
∣∣n+1 = α� JLorentz,�

∣∣n − JLorentz,�
∣∣n−1 + γ�

2Δt

(
E|n+1 − E|n−1

)
(79)

where α�, γ� are known coefficients. However, the current density is required at(
n+ 1

2

)
time instants, hence a simple averaging process is applied that yields

JLorentz,�
∣
∣n+ 1

2 =1

2

[
(1+α�) JLorentz,�

∣
∣n−JLorentz,�

∣
∣n−1+ γ�

2Δt

(
E|n+1−E|n−1

)]

(80)
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Regarding the nonlinear Kerr polarization, it satisfies

JKerr = ∂PKerr

∂t
= ∂

∂t

(
αε0χ

(3)
0 |E|2E

)
(81)

and it is discretized according to

JKerr|n+ 1
2 = αε0χ

(3)
0

Δt

{(∣∣∣E|n+1
∣∣∣
)2

E|n+1 − (∣∣E|n∣∣)2 E|n
}

(82)

As far as the nonlinear Raman polarization is concerned, an auxiliary variable is
introduced for the convolution

S(t) = χ
(3)
Raman(t) ∗ |E(t)|2

FT↔ S(ω) = χ
(3)
Raman(ω)F

{
|E(t)|2

}
(83)

where

χ
(3)
Raman(ω) =

(1 − α)χ
(3)
0 ω2

Raman

ω2
Raman + 2jωδRaman − ω2

(84)

and F denotes Fourier transform. Transforming back to the time domain produces

∂2S

∂t2
+ 2δRaman

∂S

∂t
+ ω2

Raman = (1 − α) χ
(3)
0 ω2

Raman|E|2 (85)

which, when discretized, leads to the update equation

S|n+1=2 − ω2
RamanΔt

2

δRamanΔt + 1
S|n+δRamanΔt−1

δRamanΔt+1
S|n−1+ (1−α)χ(3)

0 ω2
RamanΔt

2

δRamanΔt+1

(∣∣E|n∣∣)2

(86)

Finally, the Raman polarization term at the time instant
(
n+ 1

2

)
is updated

according to

JRaman|n+ 1
2 = ε0

Δt

(
E|n+1 S|n+1 − E|n S|n

)
(87)

Taking into account all the aforementioned quantities, the update of the electric-field
intensity at (n+ 1) must be performed via

∇ × H|n+ 1
2 − ε0

Δt

(
E|n+1 − E|n

)
− JLorentz|n+ 1

2 − JKerr|n+ 1
2 − JRaman|n+ 1

2 = 0

(88)
Evidently, the aforementioned formula describes a nonlinear system of coupled
equations. First, Ex |n+1, Ey

∣
∣n+1 are updated from (80), (82), (87), and (88). Then,
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the authors of [32] suggest the implementation of a multi-dimensional Newton’s
method, and define an objective function vector, according to
[
x

y

]

= ∇ × H|n+ 1
2 − ε0

Δt

(
E|n+1 − E|n

)

− 1

2

3∑

�=1

[
(1 + α�) JLorentz,�

∣∣n − JLorentz,�
∣∣n−1 + γ�

2Δt

(
E|n+1 − E|n−1

)]

− αε0χ
(3)
0

Δt

{(∣∣∣E|n+1
∣∣∣
)2

E|n+1 − (∣∣E|n∣∣)2 E|n
}
+ ε0

Δt

(
E|n+1Sn+1 − E|nSn

)

(89)

Next, if the m-th guesses for Ex |n+1, Ey

∣∣n+1 are represented by e
(m+1)
x , e

(m+1)
y ,

then Newton’s approach updates the guesses according to
⎡

⎣
e(m+1)
x

e(m+1)
y

⎤

⎦ =
⎡

⎣
e(m)x

e(m)y

⎤

⎦− J−1

([
x

y

])∣∣∣
∣∣

(m)

(90)

until both objective functions attain values that are sufficiently close to zero (J stands
for the Jacobian ∂(x, y)/∂(ex, ey)). Temporal and spatial solitons in dispersive
nonlinear material were modeled, in the context of numerically demonstrating the
potential of the suggested approach.

3.14 Nonlinear FDTD Approach with Exponential Integrators

Electromagnetic problems with general nonlinear polarizations are studied with a
Krylov-subspace-based operator-exponential method in [33], by following different
strategies for the different (linear, nonlinear) parts of the involved differential
equations. Specifically, the linear part is treated with a high-accuracy approach,
while the nonlinear part is evaluated by means of standard high-order techniques.

In order to apply such an strategy, the governing equations need to be
expressed as

∂

∂t
ΨΨΨ =HHH ΨΨΨ +NNN (ΨΨΨ , t) (91)

where ΨΨΨ = [E H]T. The HHH part is treated via an accurate exponential integrator,
whileNNN that denotes the nonlinear behavior, is updated with a sufficiently accurate
standard approach. Specifically, the two scaled (c0 = 1) splitting terms are

HHH =
[

−σe 1
εr
∇×

− 1
μr
∇× −σm

]

, NNN (ΨΨΨ ) =
[(

C (E)− 1
ε

)
∇ × H

0

]
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where C(E) is defined as follows: starting from the constitutive relation

D = ε0

(
εr + χ(3)|E|2

)
E (92)

the corresponding temporal derivatives are related via

∂E
∂t

= C (E)
∂D
∂t

where it is found that

C (E) =
[
ε2
r + 4χ(3)εr |E|2 + 3

(
χ(3)

)2|E|4
]

I − 2χ(3)εnlA

(εnl)
2 (εr + 3χ(3)|E|2) (93)

In the above equation, εnl = εr + χ(3)|E|2 and

A =
⎡

⎣
E2
x ExEy ExEz

ExEy E2
y EyEz

ExEz EyEz E2
z

⎤

⎦ (94)

Note that the operator HHH does not depend on the electric or the magnetic field.
The discretization of the linear and nonlinear parts can be performed via standard
methodologies, such as finite differences, finite elements, etc.

The most crucial part of this methodology is the time integration of the involved
equation. Based on a classical fourth-order Runge-Kutta scheme, the authors of [33]
first propose the implementation of a Lawson exponential integrator, according to
the following scheme:

Y1 = Ψ
(
t |n−1

)
(95)

Y2 = Δt

2
eΔtHHH NNN

(
Y1, t |n−1

)
+ e

ΔtHHH
2 Y1 (96)

Y3 = Δt

2
NNN

(
Y2, t |n−2

)
+ e

ΔtHHH
2 Y1 (97)

Y4 = Δte
ΔtHHH

2 NNN
(

Y3, t |n− 1
2

)
eΔtHHH Y1 (98)

ΨΨΨ
(
t |n) = Δt

6

[
eΔtHHH NNN

(
Y1, t |n−1

)
+ 2e

ΔtHHH
2 NNN

(
Y2, t |n− 1

2

)

+2e
ΔtHHH

2 NNN
(

Y3, t |n− 1
2

)
+NNN

(
Y4, t |n

)]+ eΔtHHH Y1 (99)

To ensure that the Lawson integrator is fourth-order accurate, the matrix exponential
is computed through Krylov-subspace techniques, with a Krylov-subspace dimen-
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sion equal to 6. The authors mention that higher-order integrators can be realized,
provided that the corresponding increase in the Krylov-subspace dimension is
ensured, but at the same time significantly increasing the memory requirements
compared to the standard FDTD approach.

Another fourth-order approach proposed in [33] is based on the Rosenbrock-
Wanner exponential integrators. Considering the general first-order initial-value
problem

∂y

∂t
= f (y), y(0) = 0 (100)

Rosenbrock-Wanner methods emerge from the linearization of the result of applying
the implicit Euler discretization scheme to the aforementioned equation. Specifi-
cally, the authors in [33] apply the following fourth-order multi-step approach:

k1 = φ

(
1

2
ΔtA

)
f (yn) (101)

k2 = φ (ΔtA) f (yn) (102)

w3 = 3

8
(k1 + k2) (103)

u3 = yn +Δtw3 (104)

d3 = f (u3)− f (yn)−ΔtAw3 (105)

k3 = φ

(
1

2
ΔtA

)
d3 (106)

yn+1 = yn +Δt

(
k2 + 16

27
k3

)
(107)

where

di = f (ui)− f (yn)−ΔtA

s∑

j=1

αij kj (108)

s is the number of steps, A = f ′(yn) represents the Jacobian that results from the
linearization, φ(A) = I/(I − A) is the characteristic of the implicit Rosenbrock-
Wanner methods, and αij are free parameters. The performance of this approach
relies on the exact computation of the Jacobian at each time-step, otherwise only
first-order accuracy is ensured (however, only two Krylov subspaces are required
for a single time-step). Despite its computational overhead, the authors mention that
the suggested approach offers specific advantages that render it a quite competitive
solver for nonlinear Maxwell’s equations.



Finite-Difference Modeling of Nonlinear Phenomena in Time-Domain. . . 921

3.15 A Unified Nonlinear FDTD Formulation

A FDTD formulation that is capable of including various linear and nonlinear kinds
of dispersion is presented in [34], which also facilitates the implementation of
unidirectional sources, such as Gaussian beams. The nonlinear polarization term
satisfies P(t) = ε0S(t)E(t), where S(t) is computed as the convolution of χ(3)(t)

and E2(t). The quantity S can be obtained from the recursive relation

S|n+1 = A
(
E2

)∣∣∣
n + B S|n + CS|n−1 (109)

By properly changing the values of the parameters χ(3), A, B, and C, Kerr as well
as Raman nonlinearities can be modeled. For a general dispersive Kerr nonlinear
medium, we have

D = ε0 (ε∞ + S)E + PL + ε0χ
(3)
0 E2E (110)

When no material dispersion is taken into account, we have

D = ε0

(
εr + χ

(3)
0,KE

2
)

E (111)

which can be used for the numerical update of the electric-field intensity. For the
more general dispersive nonlinear Kerr medium, it is

D = ε0 (ε∞ + S)E + PL + ε0χ
(3)
0,KE

2E (112)

On the other hand, in case of absent instantaneous Kerr nonlinearity and linear
dispersion, we end up with the simple update

E|n+1 = 1

ε0
(
ε∞ + S|n+1) D|n+1 (113)

Finally, the authors described a general approach for the implementation of unidi-
rectional sources, featuring arbitrary profiles, shapes, and radiation towards different
angles.

3.16 Modeling Cold-Plasma Maxwell’s Equations with a
Time-Split Technique

The authors of [35] discuss a methodology for cold-plasma equations, when an
external EM excitation is present. Specifically, the nonlinear Drude model for
modeling nonlinear dispersive media is extracted from the cold-plasma equations,
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and associated with Maxwell’s system. The cold-plasma equations for the electron
density ne and velocity ue, and Maxwell’s equations for fields E,B are given by

∂ne

∂t
+ ∇ · (neue) = 0 (114)

∂ue
∂t

+ (ue · ∇)ue = qe

me

(E + ue × B) (115)

∇ · B = 0 (116)

ε0∇ · D = ρ
∂B
∂t

= −∇ × E (117)

ε0
∂E
∂t

= 1

μ0
∇ × B − J (118)

where me, qe are the electron mass and charge, respectively. The electron number
density and velocity field are represented by ne(r) and ue(r). The first equation is
the continuity equation, and the second one is the generalized Newton’s second law.
The charge density ρ and current density J are defined as ρ = qe(ne − n0) and
J = qeneue, respectively, where n0 is the (assumed constant) positive ion density .
To secure charge neutrality, the electron density equals n0 before the exciting field
appears. After rewriting the initial equations in terms of ρ and J, we obtain

∂ρ

∂t
= −∇ · J (119)

∂J
∂t

+
∑

k

∂

∂xk

JJk
qene

= qe

me

(qeneE + J × B) = 1

τ
J (120)

where τ is the phenomenological damping time constant. The aforementioned
equations can be reduced to

∂J
∂t

= −1

τ
J+ε0ω

2
pE+ qe

me

(ρE + J × B)−
∑

k

∂

∂xk

(
JJk

ρ + ε0meω2
p/qe

)

(121)

where ω(r) = √
q2
e n0(r)/(ε0me) is the plasma frequency.

In order to develop a discrete model for the nonlinear Drude equation (121),
a time-split semi-implicit finite-difference approach is proposed. Specifically, the
initial problem is divided into three subproblems:

∂J
∂t

= −1

τ
J + ε0ω

2
pE + qe

me

ε0(∇ · E)E (122)

∂J
∂t

= qe

me

J × B (123)

∂J
∂t

= −
∑

k

∂

∂xk

(
JJk

ρ + ε0meω2
p/qe

)

(124)
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First, using (122), J is updated from time-step n−1/2 to n+1/2 utilizing an implicit
approach with respect to J, and explicit differencing for the remaining terms. Hence,

J(1) − J|n−1/2

Δt
= −J(1) + J|n−1/2

2τ
+ ε0ω

2
p E|n + qe

me

ε0(∇ · E|n)E|n (125)

where J(1) is the intermediate updated value of J at n + 1/2. The ∇ · En term
is evaluated in a standard fashion. As it is required at the same mesh points as
the electric field, the divergence must be interpolated. Then, the finite-difference
equation can be solved explicitly:

J(1) = τ −Δt/2

τ +Δt/2
Jn−1/2 + τΔt

τ +Δt/2
ε0

[
ω2
pEn + qe

me

(∇ · En)En

]
(126)

Second, an implicit scheme is applied to (122). Before updating this equation, the
components of J are computed at the cell centers via interpolation. Similarly, H
is interpolated at the cell center, and also at time instant n. The advantage of this
collocation is that it eliminates the need to solve large systems. The resulting update
requires that the following linear system is solved, for each cell center:

J(2) − Ĵn

Δt
= qe

me

μ0
J(2) + Ĵn

2
× Ĥn (127)

or, more compactly, AJ(2) = A′ Ĵ
∣
∣∣
n

, with

A =
⎛

⎝
1 −aHz aHy

aHz 1 −aHx

−aHy aHx 1

⎞

⎠ (128)

where the hat notation indicates interpolation. Moreover, A′ denotes the transpose
of A, Ĥ = [Hx Hy Hz]′, and a = 0.5Δtμ0qe/me. The explicit solution then takes
the form

J(2)=

= 1

|A|

⎛

⎜
⎝

1 + a2(H 2
x −H 2

y −H 2
z ) 2a(aHxHy +Hz) 2a(aHzHx −Hy)

2a(aHxHy −Hz) 1 + a2(H 2
y −H 2

z −H 2
x ) 2a(aHyHz −Hx)

2a(aHzHx +Hy) 2a(aHyHz −Hx) 1 + a2(H 2
z −H 2

x −H 2
y )

⎞

⎟
⎠

∣
∣∣
∣
∣
∣
∣

n

(129)

where |A| = 1 + a2
(
H 2
x +H 2

y +H 2
z

)
. Finally, (124) is updated, after it is written

in conservation form:

∂J
∂t

+ Fx(J)+Gy(J)+Kz(J) = 0 (130)
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where F(J) = JJx/ρ′, G(J) = JJy/ρ′, K(J) = JJz/ρ′ and ρ′ = ρ + ε0meω
2
p/qe.

In this case, a two-step Lax-Wendroff approach can be implemented. The time-step
is chosen to satisfy the CFL conditions as Δt < Δx/(2 max{υmax, c}), where c

is the speed of light in vacuum and υmax = max{|J/ρ′|} is the maximum wave
velocity in the plasma. After the last update has been performed, all J components
are interpolated back at the cell face centers, and can be then introduced in the FDTD
method for computing the E field.

3.17 3D Modeling of Nonlinear Ferroelectric Materials

The work of [36] investigates the behavior of nonlinear ferroelectric materials
(i.e. materials with nonlinear polarization response) and specifically their effects,
when they are present inside a rectangular waveguide. Regarding ferroelectric
materials, the linear relation P = ε0χE is valid only for small values of the applied
electric-field intensity. When the electric field becomes stronger, all the electric
domains of the material are aligned, and polarization reaches saturation, without the
requirement of an external bias. The nonlinear behavior of the ferroelectric material
can be described reliably by a modified hyperbolic tangent function,

P = Psat tanh (EscaleE) (131)

where Psat is the polarization saturation limit, and Escale = ε0(εr−1)
Psat

is a scaling
factor.

In order to construct a FDTD algorithm without augmented memory require-
ments, the time derivative of D is computed according to

∂D
∂t

= ∂D
∂E

∂E
∂t

= PsatEscale

(
1 − tanh2 (EscaleE)

)
+ ε0 (132)

which leads to the definition of the effective permittivity:

εeff = PsatEscale

(
1 − tanh2

(
Escale

∣∣∣En−1
∣∣∣
))

+ ε0 (133)

Then, the electric- and magnetic-field intensities are update in a standard manner,
following

Hn+ 1
2 = Hn− 1

2 − Δt

μ0
∇ × En (134)

En+1 = En +Δt(εeff)
−1∇ × Hn+ 1

2 (135)

Compared to the linear case, simulations show that the presence of a ferroelectric
material in a waveguide structure leads to an increase of the peak power density
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and a spatial compression of the pulsewidth. This type of behavior can be useful
in various contemporary applications that require high-power electromagnetic pulse
generation, sharp/compressed waveforms, etc.

3.18 Analysis of Second-Harmonic Generation in Periodic
Structures

An extension of the split-field (SF) FDTD method to 2D periodic configurations
without any assumptions regarding the material symmetries is developed in [37].
For a non-magnetic and non-conducting medium, Maxwell’s equations are given by

∇ × E = −jωμ0H, ∇ × H = jωε0εrE + jωFNL (136)

where FNL is the nonlinear polarization. The SF FDTD method transforms the
electric and magnetic fields, considering that the new quantities contain the oblique
field propagation in an implicit fashion. This produces the new variables

P = Eej (kxx+kyy), Q = cμ0Hej (kxx+kyy) (137)

where P and Q are considered in the phasor domain. A similar transformation
can be also implemented to the nonlinear polarization term, using GNL =
cμ0FNLej (kxx+kyy). Substituting the new components into Maxwell’s equations,
the SF-FDTD algorithm is formulated as

jω

c
P = κ∇ × Q + jω

c
κqQ − jωGNL (138)

jω

c
Q = −∇ × P − jω

c
κqP (139)

where κ = ε−1
r and

q = ω

c

⎡

⎣
0 0 −ky
0 0 kx

ky −kx 0

⎤

⎦ (140)

The appearance of time derivatives on both sides hinders the direct approximation
via finite differences. To solve this problem, new variables are defined, separating
both P,Q into two parts:

P = Pa + κqQ − cGNL, Q = Qa − qP (141)
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After proper manipulations, discretizing the equations with respect to time yields

1

cΔt

(
Pa|n+1 − Pa|n

)
= κ∇ × Q|n+1/2 (142)

1

cΔt

(
Qa|n+1 − Qa|n

)
= −∇ × P|n+1/2 (143)

The stability of the SF-FDTD algorithm is affected by various factors, including the
CFL condition, the averaging process, and large incidence angles. The lower bound
can ensure stability in most case studies. Consequently, the CFL number is selected
low enough, in order to ensure both stability and convergence. Furthermore, this
also leads to lower time and spatial resolutions and, hence, larger grids, simulation
times, and computational resources. It is reminded that FDTD models display
exponentially growing computational costs. Consequently, increasing the grid size
has a severe consequence on the necessary simulation times. The proposed SF-
FDTD leapfrog algorithm updates the “a” fields from the P and Q quantities. After
that, the current P field is calculated from

P = Pa + κqQa − cGNL

I + κq2 (144)

where I is the identity matrix. After updating P, it is straightforward to obtain
Q. Moving to a particular material configuration, let us examine introducing the
polarization terms in (144) for the case of a tensorial second-order nonlinear
susceptibility. To this objective, polarization FNL that represents the nonlinear
response in non-centrosymmetric materials associates the second-order nonlinear
susceptibility with the field within the considered configuration. Actually, the
appearance of a fundamental or pump field at ωf produces an exchange of energy
with the (second-harmonic field) at ωs = 2ωf . The nonlinear polarization is
described by a third-rank tensor d that, in the case of second harmonic generation
(in a periodic nanostructure), can be represented in matrix form as

d =
⎡

⎣
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤

⎦ (145)

whose elements are defined according to the involved nonlinear medium. Taking
into account the transformation, we find that

⎡
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⎣
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NL,ωf
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G
NL,ωf
z
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⎦ = 2

c
d

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

P
ωf
x E

ωs
x

P
ωf
y E

ωs
y

P
ωf
z E
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z E
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z E
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x E
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z

P
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x E
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y + P
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y E
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x

⎤

⎥
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⎦

(146)
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⎡

⎢
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(147)

Once the “a” fields are known, the total fields can be computed. It turns out that they
can be expressed using only the “a” fields and the interior electric components. For
instance,

P
ωf
x =

P
ωf
xa − κ

(
kyQ

ωf
za − kxkyP

ωf
y − cḠ

NL,ωf
x

)

1 + κ
[
k2
y + 2

(
d11E

ωs
x + d15E

ωs
z + d16E

ωs
y

)] (148)

Pωs
x =

P
ωs
xa − κ

(
kyQ

ωs
za − kxkyP

ωs
y − cG

NL,ωs
x

)

1 + κk2
y

(149)

where

Ḡ
NL,ωf
x = 2

c

[
d12P

ωf
y Eωs

y + d13P
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z Eωs

z

+ d14

(
P
ωf
z Eωs

y + P
ωf
y Eωs

z

)
+ d15P

ωf
z Eωs

x + d16P
ωf
y Eωs

x

]
(150)

Similar formulae are obtained for the remaining components. In this manner, a
nonlinear equation system of the form P = U(P) is composed. For its solution,
a fixed-point iterative procedure can be selected. The key point of this approach is
to solve the iterative process with the form P(p+1) = U(P(p)), with p = 1, 2, . . . the
number of iterations. It is noted that the fixed-point process needs to be performed
at every time-step of the FDTD updating procedure. The approach requires an
initial guess of P, which corresponds to the fields considering linear media. Then,
subsequent iterations are carried out, so that the precision of the outcomes improves
with every iteration. Finally, in order to ensure the convergence of the iterative
procedure, the amplitude of E must be limited by an upper bound, which is dictated
by the magnitude of the second-order susceptibility.

3.19 Time-Filtered Integration of Maxwell’s Equations

The case of a dielectric medium with Kerr nonlinearity is also examined in [38], in
the context of verifying the performance of a novel FDTD approach that employs
an unstaggered temporal grid. Specifically, considering a 1D setup and that the
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time derivatives of the dielectric displacement and the electric-field intensity are
connected via

∂E

∂t
= c (E)

∂D

∂t
(151)

where c (E) = ε + 3χ(3)E2, the corresponding electromagnetic phenomena can be
described by the following discrete model:

E|n+1
i − Ẽ

∣∣∣
n−1

i

2Δt
= 1

ε + 3χ(3)
(
E|ni

)2

H |av
i+ 1

2
− H |av

i− 1
2

Δx
+ ν

∂4E

∂x4

∣∣∣
∣

n

i

(152)

H |n+1
p − H̃

∣∣
∣
n−1

p

2Δt
= 1

μ

E|av
p+ 1

2
− E|av

p− 1
2

Δx
+ ν

∂4H

∂x4

∣∣∣∣

n

i

(153)

In the above equations, it is p = i in case of spatial collocation, or p = i + 1/2

in case of staggered spatial grids. The Ẽ

∣∣∣
n−1

i
, H̃

∣∣∣
n−1

p
components denote values

obtained after a time filtering process has been applied, according to the implicit
scheme

F̃

∣∣
∣
n−1

i
= F |n−1

i
+γ

(
− F̃

∣∣
∣
n−3

i
+ 4 F̃

∣∣
∣
n−2

i
− 6 F̃

∣∣
∣
n−1

i
+ 4 F |ni − F |n+1

i

)
, F = E,H

(154)
Note that these computations can be conducted in an explicit fashion, after proper
reformulation. The aim of the aforementioned filtering approach is to weaken high-
frequency modes that emerge due to lack of staggering in time. The averaged values
appearing in the spatial derivative approximations are computed via

F |avi = 1

24

(− F |ni + 26 F |ni − F |ni
)

(155)

F |av
i+ 1

2
= 7

12

(
F |ni+1 + F |ni

)− 1

12

(
F |ni+2 + F |ni−1

)
(156)

for collocated and staggered grids, respectively. Approximations (155) and (156)
actually result in fourth-order finite-difference formulae. Finally, the fourth-order
derivatives appearing in (152) and (153) act as smoothers that combat inadequately
resolved high-frequency oscillations, and are computed via

∂4F

∂x4

∣∣∣∣

n

i

= 1

Δx4

(− F |ni−2 + 4 F |ni−1 − 6 F |ni + 4 F |ni+1 − F |ni+2

)
(157)
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To validate the proposed computational scheme, the authors of [38] proceeded to the
analysis of parametric Four-Wave Mixing, which is a phenomenon directly related
to the third-order nonlinearity.

4 Conclusions

In the present work, we have reviewed a number of important contributions regard-
ing the development of finite-difference models for nonlinear EM problems that
may emerge in numerous realistic applications. As nonlinearities do not necessarily
comply with a specific unique form, pertinent research efforts have produced a
number of different computational approaches that adapt the conventional FDTD
algorithm to the peculiar requirements of each problem. The majority of the
developed techniques preserve most of the attractive properties of the classic FDTD
scheme, thus the study of a wide variety of nonlinear EM problems can be conducted
reliably, without requiring special conditions to hold. Evidently, the present study
is not completely exhaustive. However, it is the authors’ belief that many of the
available key contributions in this scientific area have been included, and a quite
complete description of the latter has been formulated. In any case, the research
on computational nonlinear EM models is ongoing and continuously developing,
and novel contributions towards more efficient techniques or numerical approaches
for less explored phenomena and applications constantly appear, thus broadening
further this already vast scientific subject.
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