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Abstract Graph mining is a set of techniques for finding useful patterns in various
types of structured data. Many effective algorithms for mining static graphs have
been proposed. However, graphs of human relationships and evolving genes change
over time, and such evolving graphs require different algorithms for analysis. In
this chapter, we explain a method called O2I for clustering in evolving graphs
that can detect changes in clusters over time. O2I partitions the graph sequence
into smooth clusters, even when the numbers of clusters and vertices vary. It first
constructs a graph from the graph sequence, then uses spectral clustering and the
RatioCut to apply k partitioning to this graph. O2I is compared in detail with the
preserving clustering membership (PCM) algorithm, which is a conventional online
graph-sequence clustering algorithm in which the numbers of clusters and vertices
must remain constant. We further show that, in contrast to PCM, the performance
of O2I is not dependent on the clustering of the initial graph in the graph sequence.
Experiments on synthetic evolving graphs show that O2I is practical to calculate and
addresses the main disadvantages of PCM. Further tests on real-world data show
that O2I can obtain reasonable clusters. This method is hence a flexible clustering
solution and will be useful on a wide range of graph-mining applications in which
the connections, number of clusters, and number of vertices of the graphs evolve
over time.
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1 Introduction

Studies on graph mining have established many approaches for finding useful
patterns in various types of structured data. Although the major algorithms for
graph mining are quite effective in practice, most of them focus on static graphs,
whose structures do not change over time. However, evolving graphs are used to
model many real-world applications [12]. For example, a human network can be
represented as a graph in which each human and each relationship between two
humans correspond to a vertex and an edge, respectively. If a human joins (or leaves)
a community in the human network, the numbers of vertices and edges in the graph
can change. Similarly, the evolution of a gene network, which consists of genes
and their interactions, produces a graph sequence when genes are added, deleted,
or mutated. Recently, much attention has been given to graph mining from evolving
graphs [6, 19]. Figure 1 shows an example of an evolving graph with four steps
and ten unique IDs, indicated by the numbers attached to the vertices. In addition,
edge weights are represented by line thickness. For example, humans in a human
network correspond to vertices, each of the humans has a unique ID. The strength
of the friendship between two humans is represented as an edge weight between
two vertices. The current human network is represented as a weighted graph, and
the network evolves over time. To represent the evolving network, we use a graph
sequence consisting of a series of graphs.

In this chapter, we tackle the problem of clustering in evolving graphs to detect
changes in the clusters. In an evolving graph, the number of clusters increases when
a cluster divides or decreases when two clusters merge. Although most conventional
clustering algorithms focus on partitioning a set of points in a vector space into k

clusters, von Luxburg [18] notes that the k partition problem in a vector space can
be reduced to the k partition problem in a graph, where each vertex corresponds
to a point in the set to be partitioned and an edge indicates the similarity between
two vertices. Therefore, the methods in this chapter are applicable to both evolving
graphs and points arriving over time.

In [19], problems involving clustering points arriving over time are categorized
into four types. Let Dt be a set of points at time t in the vector space, and let
D = 〈D1,D2, . . . , DT 〉 be a series of sets of points. The first type of clustering

Fig. 1 Example of a weighted graph sequence with four steps (numbers attached to vertices
represent vertex IDs)
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problem is where only one point arrives at each time t [1–3, 7, 9, 11, 15]. This
type of problem focuses on online data processing. The second type of problem is
clustering n sequences into k clusters and is applicable to clustering DNA sequences
or protein sequences in bioinformatics [4, 14, 17]. This differs from the first type of
problem as it does not require online data processing and Dt consists of n points.
The third type of problem is to cluster n data streams into k clusters [5, 8]. Although
this is the same as the first type in terms of the online analysis of data, each set Dt

contains n points, unlike the first type. Preserving cluster membership in Sect. 2.2
tackles this type of problem.

The fourth type of problem, which is addressed in this chapter, analyzes a series
D of sets Dt , each of which contains at most n points and is given before the
analysis [19]. Although each point clustered in the second type of problem is a
sequence, each point clustered in the fourth type of problem is a point in Dt . In
addition, while a set of k clusters is returned in the second type of problem, T sets
of k clusters are returned in the fourth type. While the predecessors Dτ (τ < t) of
Dt are used to cluster Dt in the third type of problem, its successors Dτ (τ ≥ t) are
also used to cluster Dt in the fourth type.

In this chapter, we explain an algorithm called O2I that partitions the vertices
of a graph sequence into smooth clusters, even when the number of vertices is
allowed to vary over time [16]. O2I uses spectral clustering and relies on applying
the k partition problem to a graph constructed from a graph sequence. Several
experiments demonstrate the performance of O2I and its advantages over existing
methods.

The remainder of this chapter is organized as follows: In Sect. 2, we formalize
the graph sequence clustering problem that we consider in this chapter and explain
the conventional method called PCM and its some drawbacks. In Sect. 3, we
explain a method called O2I that overcomes the drawbacks of PCM and discuss
the relationship between the performance of OI2 and connectivities of graphs in
a graph sequence. In Sect. 4, we compare O2I with PCM in terms of clustering
accuracy using artificially generated datasets, and verify the practicality of O2I on a
real-world dataset. Finally, we conclude the chapter in Sect. 5.

2 Clustering a Graph Sequence

2.1 Problem Definition

In this chapter, to model an evolving graph, we use a weighted graph sequence. A
weighted graph at time t is represented by G(t) = (

V (t), E(t), w(t)
)
, where V (t) is

a set of vertices, each of which has a unique ID, E(t) = V (t) × V (t) is the set of
all edges, and w(t) is a function that assigns nonnegative real values to the edges
at time t . A series of T graphs is called a weighted graph sequence with T steps
and is denoted by

〈
G(1),G(2), . . . ,G(T )

〉
. Although we assume that the value of
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|V (t)| = n is unchanged in the graph sequence in this section, the value of |V (t)| in
O2I explained in the next section changes over time.

Figure 1 shows an example of a graph sequence with four steps. In the figure,
edge weights are represented by line thickness. For the sake of simplicity, we do not
show edges with weight 0 in the figures in this chapter.1

The vertices V (t) in a graph at time t are partitioned into k disjoint subsets

P (t) =
{
C

(t)
1 , C

(t)
2 , . . . , C

(t)
k

}
, where

⋃k
j=1 C

(t)
j = V (t). Using this notation, a

cluster sequence can be written as
〈
C

(1)
j , C

(2)
j , . . . , C

(T )
j

〉
for 1 ≤ j ≤ k.

Given a graph sequence
〈
G(1),G(2), . . . ,G(T )

〉
and the number of clusters k

as inputs, the problem addressed in this chapter is how to determine cluster

sequences
{〈

C
(1)
j , C

(2)
j , . . . , C

(T )
j

〉
| 1 ≤ j ≤ k)

}
that satisfy the following two

requirements:

1. Vertices connected by high-weight edges in a graph at time t should appear in
the same cluster for each graph in the sequence.

2. Clusters C
(t)
j and C

(t+1)
j should be almost the same. This requirement is called

cluster smoothness.

Figures 2 and 3 show cluster sequences obtained from the graph sequence in
Fig. 1. When we do not take requirement (2) into account, vertices 5 and 6 appear
in the same cluster because the edge (5, 6) at time 3 has a high weight, as shown in
Fig. 2. In contrast, when we take requirement (2) into account, vertex 6 is assigned
to C

(t)
2 before and after time 3, and hence both clusters C

(2)
2 and C

(3)
2 are the same.

Fig. 2 Cluster sequences (1) obtained from the graph sequence in Fig. 1

1The weight 0 means that there is no connection between two vertices. We need these zeros to
create Laplacian matrices in Sect. 2.2.
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Fig. 3 Cluster sequences (2) obtained from the graph sequence in Fig. 1

2.2 Preserving Cluster Membership

The k partition problem for a graph G = (V ,E,w) is defined as the problem of
finding non-empty sets C1, C2, . . . , Ck that partition V and that minimize

k∑

j=1

1

|Cj |
∑

e∈E(Cj ,V \Cj )

w(e),

where E(S, V \ S) is the set of edges (v, u) with v ∈ S and u ∈ V \ S. This
optimization problem minimizes the function called RatioCut. According to [18],
the above minimization problem is equivalent to

min
X∈Rn×k

tr(XT LX) s.t. XT X = I, 2 (1)

where the n-by-k matrix X indicates the cluster to which each vertex belongs, with
element xij of the matrix given by

xij =
{

1√|Cj | if vi ∈ Cj ,

0 otherwise,

where XT X = I indicates that each vertex in graph G belongs to one cluster, where
I is the identity matrix of size n. In addition, L is the Laplacian matrix of G, defined
as follows. Let A be an adjacency matrix for G, where the (i, j)th element aij is
weight w((i, j)) if an edge exists between vi and vj in G. Otherwise, aij is 0. Setting
D = diag(

∑n
i=1 ai1,

∑n
i=1 ai2, . . . ,

∑n
i=1 ain), the Laplacian matrix is L = D−A.

Equation (1) is called spectral clustering.

2Because of space limitations, we omit XT X = I henceforth.
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One online algorithm for clustering a graph sequence is called preserving cluster
membership (PCM) [10]. In this algorithm, the matrix Xt−1 corresponding to G(t−1)

is known and we are given graph G(t). The algorithm obtains cluster sequences by
iteratively optimizing

min
Xt∈Rn×k

tr(XT
t LtXt ) + α||XtX

T
t − Xt−1X

T
t−1||2, (2)

where α ≥ 0 and Lt is the Laplacian matrix of G(t). If the ith and j th vertices
belong to the same cluster at time t , then the (i, j)th element of XtX

T
t is a positive

real number. Otherwise, the (i, j)th element is 0. Minimizing the second term of the
objective function in Eq. (2) under the Frobenius norm, where ||W ||2 = tr(WT W),
satisfies requirement (2). The objective function is transformed as follows:

tr(XT
t LtXt ) + α||XtX

T
t − Xt−1X

T
t−1||2

= tr(XT
t LtXt ) + α tr(XtX

T
t − Xt−1X

T
t−1)

T (XtX
T
t − Xt−1X

T
t−1)

= tr(XT
t LtXt ) + α tr(XtX

T
t XtX

T
t − 2XtX

T
t Xt−1X

T
t−1 + Xt−1X

T
t−1Xt−1X

T
t−1)

= tr(XT
t LtXt ) + 2αk − 2α tr(XT

t Xt−1X
T
t−1Xt)

= 2αk + tr(XT
t LtXt − 2αXT

t Xt−1X
T
t−1Xt)

= 2αk + tr[XT
t (Lt − 2αXt−1X

T
t−1)Xt ].

Therefore, Eq. (2) is equivalent to

min
Xt∈Rn×k

tr
[
XT

t

(
Lt − 2αXt−1X

T
t−1

)
Xt

]
. (3)

In [10], an offline algorithm was also proposed as an extension to PCM. To
demonstrate the offline algorithm, the authors introduced an optimization problem
for clustering G(t) using known Xt−1 and Xt+1 corresponding to clusters P (t−1)

and P (t+1), respectively:

min
Xt∈Rn×k

tr
[
XT

t

(
Lt − αXt−1X

T
t−1 − αXt+1X

T
t+1

)
Xt

]
. (4)

We define the functions f unc1(L), f unc2(Lt ,Xt−1, α), and f unc3(Lt ,Xt−1,

Xt+1, α) to be the minimum values of Eqs. (2), (3), and (4), respectively. Using these
functions, the PCM offline algorithm is shown in Algorithm 1. First, the PCM offline
algorithm clusters G(1), and then it clusters G(2) using the results from time 1. This
process is repeated for the series of graphs. Next, it clusters G(1) using the results
from time 2. Then, it clusters G(2) using the results from times 1 and 3. The process
repeats until convergence.
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Algorithm 1: PCM_offline

Data: 〈G(1),G(2), . . . , G(T )〉, k
Result: X1, X2, . . . , XT

1 for t ∈ [1, T ] do
2 if t = 1 then
3 X1 = f unc1(L1);
4 else

Xt = f unc2(Lt ,Xt−1, α);

5 repeat
6 for t ∈ [1, T ] do
7 if t = 1 then
8 X1 = f unc2(L1, X2, α);
9 else

if t = T then
10 XT = f unc2(LT ,XT −1, α);
11 else

Xt = f unc3(Lt ,Xt−1, Xt+1, α);

until X1, X2, . . . , XT converge;
12 return X1, X2, . . . , XT ;

When α is decreased, each graph in a graph sequence is clustered independently
because the first term in Eq. (2), which relates to requirement (1), is emphasized
over requirement (2). This results in the cluster sequences in Fig. 2. On the one hand,
when α is increased, the smooth cluster sequences in Fig. 3 are obtained because the
second term in Eq. (2), which relates to requirement (2), is emphasized. In concrete
terms, vertex 6 at time 3 belongs to cluster sequence C1 in Fig. 2, while it belongs
to the other cluster sequence C2 at times 2 and 4. On the other hand, placing vertex
6 in C1 in Fig. 3 decreases the second term of Eq. (2), and hence vertex 6 belongs to
C1 at all times.

2.3 Drawbacks of PCM

We point out three drawbacks of the PCM offline algorithm. First, the performance
of PCM is dependent on G(1). If the vertices in each latent cluster of G(1) are
strongly connected, then the problem of obtaining cluster sequences from a graph
sequence is relatively easy because the algorithm uses X1 to cluster G(2) and then
uses Xt to cluster G(t+1) for t > 1. However, if the clusters for G(1) are not suitable,
then this unsuitability propagates to clusters in P (t) for t > 1 because of the second
term in Eq. (2).

The second drawback comes from having k clusters at all times. For this reason,
PCM cannot determine suitable cluster sequences from a graph sequence when the
number of clusters increases after one cluster divides or when the number of clusters
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decreases after two clusters merge. To detect suitable cluster sequences from a graph
sequence, we should allow the number of clusters to vary over time.

The third drawback of PCM is related to the second drawback. The number of
vertices in the graph is the same at all times in PCM. However, the members of a
social network are not constant, but change over time. Therefore, we should allow
members to join and leave the network and develop a clustering algorithm for data
in which the number of vertices is not constant.

3 Detecting Smooth Cluster Changes in a Graph Sequence

3.1 Clustering a Graph Sequence Using Smoothness Between
Two Successive Graphs

Okui et al. have proposed a method called O2I that overcomes the first and second
drawbacks of PCM that are explained in the previous section [16]. To explain the
method, we discuss the problem of obtaining the X1, X2, . . . , XT ∈ Rn×k that
minimize

T∑

t=1

tr(XT
t LtXt ) + α′

T −1∑

t=1

||Xt − Xt+1||2, (5)

where α′ > 0. Minimizing the first term in Eq. (5) corresponds to clustering
each graph G(t) in a graph sequence according to requirement (1). To show that
minimizing the second term in Eq. (5) corresponds to requirement (2), we consider
a graph sequence consisting of only two graphs. The objective function for the
sequence is given by

tr(XT
1 L1X1) + tr(XT

2 L2X2) + α′||X1 − X2||2. (6)

From Eq. (6), we derive the equation in Fig. 4. Similarly, the equation shown in
Fig. 5 is derived from Eq. (5). When D′ is the underlined matrix in Fig. 5 and W ′ is
the double underlined matrix in Fig. 5, matrix L′ = D′ −W ′ is the Laplacian matrix
for a graph G′ that satisfies the following:

• The number of vertices in G′ is n × T . Henceforth, the ith vertex of G′ at time t

is represented by vt,i .
• If G(t) contains an edge (i, j) of weight w((i, j)), then G′ also contains an edge

(vt,i , vt,j ) of w((i, j)).
• Graph G′ contains an edge (vt,i , vt+1,i ) of weight α′ for 1 ≤ t ≤ T − 1 and

1 ≤ i ≤ n.

Therefore, the problem of minimizing Eq. (5) is reduced to the k partition problem
for G′. The edges between vertices vt,i and vt+1,i have weight α′. Cutting some
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tr XT
1 L1X1 + tr XT

2 L2X2 +α ||X1−X2||2
= tr XT

1 L1X1+XT
2 L2X2 +α tr[XT

1 X1+XT
2 X2−XT

2 X1−XT
1 X2]

= tr X1
X2

T L1 0
0 L2

X1
X2

+α tr X1
X2

T I −I
−I I

X1
X2

= tr X1
X2

T L1+α I −α I
−α I L2+α I

X1
X2

= tr X1
X2

T D1+α I 0
0 D2+α I − W1 α I

α I W2

X1
X2

Fig. 4 Objective function for a graph sequence with two steps

Fig. 5 Objective function for a graph sequence with T steps

)2()1( ,GG 'G

1,1v

2,1v
3,1v

4,1v 5,1v
6,1v

7,1v
8,1v

9,1v 10,1v

11,1v

1,2v

2,2v 3,2v

4,2v
5,2v

6,2v 7,2v8,2v

9,2v
10,2v11,2v

Fig. 6 Conversion of a graph sequence with two steps into a graph G′

of these edges increases the value of the objective function in Eq. (5) when G′ is
partitioned to k subgraphs. For this reason, vt,i and vt+1,i are likely to appear in the
same cluster, so these edges may not be cut. Therefore, minimizing Eq. (5) satisfies
requirement (2). Figure 6 shows an example of transforming a graph sequence with
two steps 〈G(1),G(2)〉 to a graph G′. In this figure, broken lines represent edges of
weights α′.

The problem of minimizing Eq. (5) has hence been reduced to the k partition
problem for G′. The cluster sequences obtained by O2I is not dependent on
clustering G(1), unlike in PCM, which first partitions G(1) and then iteratively
partitions the other graphs. Thus, the first drawback of PCM is overcome. In
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Algorithm 2: O2I

Data: 〈G(1),G(2), . . . , G(T )〉, k
Result: X1, X2, . . . , XT

1 Construct G′ from 〈G(1),G(2), . . . , G(T )〉;
2 � = n × T ;
3 Compute the Laplacian matrix L′ of G′;
4 Compute the first k eigenvectors u1, u2, . . . , uk of L′;
5 Let U ∈ R�×k be the matrix that has uq as its qth column;
6 For i = 1, . . . , �, let yi ∈ Rk be the vector corresponding to the ith row of �;
7 Use the k-means algorithm to cluster the points {y1, y2, . . . , y�} in Rk into clusters

P1, P2, . . . , Pk ;
8 for t ∈ [1, T ] do
9 Xt = 0;

10 for j ∈ [1, k] do
11 for vt,i ∈ Pj do
12 x

(t)
i,j = 1√|{vt ′,i′ ∈Pj |t=t ′}| ;

13 return X1, X2, . . . , XT ;

addition, some clusters obtained using O2I may not contain any vertex from time t .
Therefore, O2I does not guarantee a partition of each graph G(t) into exactly
k clusters, but instead partitions the graph into k or fewer clusters. Hence, O2I
overcomes the second drawback.

Note that O2I requires α′ > 0 in Eq. (5). If α′ = 0, then there are no edges
between G(t) and G(t+1) in G′, so when G′ is partitioned into T clusters, each
graph G(t) becomes a cluster. Therefore, α′ should be a positive real number.

The objective function for O2I is similar to the objective function for PCM.
However, it is impossible to derive an equation in the form of Fig. 4 from

tr(XT
1 L1X1) + tr(XT

2 L2X2) + α||XT
1 X1 − XT

2 X2|| 2.

Thus, it is impossible to reduce the objective function for PCM to the k partition
problem for a graph.

Algorithm 2 shows the pseudo code for O2I. The method uses the spectral
clustering algorithm [18] in lines 3–6. It then initializes Xt to the zero matrix in
lines 7–8. In lines 9–11, if the j th cluster Pj contains vt,i , then 1√|{vt ′,i′ ∈Pj |t=t ′}|
replaces x

(t)
i,j in Xt .

Using Algorithm 2, the number of vertices does not have to be n at all times.
The third drawback is hence resolved by replacing � = n × T in line 2 with � =∑T

t=1 |V (t)|.
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3.2 Clustering Using the Forgetting Rate

We considered the smoothness of clusters between two consecutive timesteps in the
previous subsection. In this section, we extend O2I to consider cluster smoothness
between timesteps separated by distance τ . This is formulated in the following
equation:

T∑

t=1

tr(XT
t LtXt ) + α′

T −1∑

τ=1

γ τ−1
T −τ∑

t=1

||Xt − Xt+τ ||2, (7)

where γ is called the forgetting rate and 0 ≤ γ ≤ 1. Equation (7) is a
generalization of Eq. (5), as they are equivalent when γ = 0. The equation shown
in Fig. 7 is derived in a manner similar to that in the previous section, where
Bt = α′ ∑T

τ=1,τ 	=t γ |t−τ |−1I is a diagonal matrix. The underlined part in Fig. 7
is the Laplacian matrix L′′ of graph G′′ that satisfies the following:

• The number of vertices in G′′ is n × T .
• If G(t) contains an edge (i, j) of weight w((i, j)), then G′ also contains an edge

(vt,i , vt,j ) of w((i, j)).
• Graph G′′ contains an edge of weight α′γ (t ′−t−1) between vt,i and vt ′,i for 1 ≤

t < t ′ ≤ T and 1 ≤ i ≤ n.

Graph G′ is a subgraph of G′′. When γ = 0, G′ is isomorphic to G′′. Algorithm 2
is applicable to G′′ by replacing G′ and L′ with G′′ and L′′, respectively. In the
previous section, we explained that O2I overcomes the third drawback of PCM.
However, when vi is contained in G(t) but not in both G(t−1) and G(t+1), we
cannot consider the smoothness of clusters for this vertex. In contrast, O2I using
the forgetting rate further overcomes the third drawback by introducing edges with
weights that decrease exponentially with the distance between graphs.

Fig. 7 Objective function with forgetting rate for a graph sequence with T steps
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3.3 Connectivities of Graphs

In this section, we discuss the effect of the connectivity of each graph in a graph
sequence on the clustering result. For the sake of simplicity, we consider the simple
example of a sequence of sets of points, as shown in Fig. 8. Each timestep consists
of three points whose coordinates are given in the figure. We convert each of the
sets of the points into a graph where the vertices and edge weights are the points

and exp(− d2

2 ), respectively, where d is the Euclidean distance between two points.
We then obtain a graph sequence with two steps. We assume that 〈{v1}, {v1, v2}〉 and
〈{v2, v3}, {v3}〉 are desirable cluster sequences obtained from the graph sequence for
k = 2.

Figure 9 shows the graph G′
1 = (V ′

1, E
′
1, w

′
1) created from the graph sequence

with two steps. Because G′
1 is partitioned by RatioCut, we obtain the following

solutions depending on the value of α′.

min
2∑

j=1

1

|Cj |
∑

e∈E′
1(Cj ,V ′

1\Cj )

w′
1(e)

=
{

2α′ if 0 < α′ ≤ 0.56 (C1 = {v1,1, v1,2, v1,3}), and

1.11 otherwise (C1 = {v1,1, v2,1}).
(8)

Fig. 8 Example of a
sequence of sets of points

Fig. 9 Graph G′
1 created

from the sequence of points
in Fig. 8
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Fig. 10 Solutions for G′
1 and

various α′

Fig. 11 Solutions for G′
2 and

various α′

Equation (8) is represented by Fig. 10 for various α′. When α′ is less than 0.56,
G′

1 is partitioned into {v1,1, v1,2, v1,3} and {v2,1, v2,2, v2,3}, which does not satisfy
cluster smoothness. In contrast, when α′ is greater than 0.56, G′

1 is partitioned
into {v1,1, v2,1} and {v1,2, v1,3, v2,2, v2,3}, which means that O2I cannot detect any
changes in the clusters because requirement (2) is oversatisfied. Thus, O2I has no
chance to obtain the desirable cluster sequences from G′

1 shown in Fig. 9, even if α′
is tuned to the optimal value.

In the previous example, we created the complete graph from each set of points
in a timestep. In [18], the ε-neighborhood graph and κ-nearest neighbor graph are
introduced as an alternative to a complete graph created from a set of points. In the
ε-neighborhood graph, two points are connected by an edge if a distance d between
the points is less than ε. In the κ-nearest neighbor graph, two points are connected
if one of them is among the κ-nearest neighbors of the other. When ε-neighborhood
graph G′

2 = (V ′
2, E

′
2, w

′
2) of ε 1 is created from a sequence of points, we obtain

the following solutions, depending on the value of α′ after partitioning G′
2 using

RatioCut.

min
2∑

j=1

1

|Cj |
∑

e∈E′
2(Cj ,V ′

2\Cj )

w′
2(e)

=

⎧
⎪⎪⎨

⎪⎪⎩

2α′ if 0 < α′ ≤ 0.43 (C1 = {v1,1, v1,2, v1,3})
0.67α′ + 0.57 if 0.43 < α′ ≤ 0.50 (C1 = {v1,1, v2,1, v2,2})
1.11 otherwise (C1 = {v1,1, v2,1}).

(9)
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Similarly to Eq. (8) and Fig. 10, Eq. (9) is illustrated by Fig. 11 for various α′. In
contrast to the case for G′

1, Fig. 11 indicates that O2I can obtain the desirable cluster
sequence when 0.43 < α′ ≤ 0.50.

When G′
1 consists of two complete graphs, each of which is created from a

set of points, vertices coming from the same timestep are connected densely with
each other, while every pair of vertices coming from different timesteps is rarely
connected. In this case, {v1,1, v1,2, v1,3} coming from the same timestep minimizes
RatioCut rather than {v1,1, v2,1, v2,2}. In contrast, when a sparse graph is created
from a set of points instead of a dense graph, the connectivities among vertices
coming from the same timestep and among vertices coming from the different
timesteps are balanced, and O2I can select {v1,1, v2,1, v2,2} to minimize RatioCut
for G′ by tuning α′.

4 Experimental Evaluation

4.1 Experimental Setup

In this section, we compare O2I with the PCM offline algorithm using the adjusted
Rand index (ARI). The ARI measures the similarity of two sets of clusters,
and is calculated using the number of vertices common to each pair of clusters.
We assume that a set of n vertices is partitioned both into r disjoint subsets
U = {U1, U2, . . . , Ur} and into c disjoint subsets V = {V1, V2, . . . , Vc}, so that∑r

i=1 |Ui | = ∑c
j=1 |Vj | = n. The number of vertices common to Ui and Vj is

denoted by nij , as shown in Table 1 , where ni. and n.j are the numbers of vertices
in clusters Ui and Vj , respectively. The number of pairs of vertices commonly
contained in Ui and Vj is calculated by

(nij

2

)
. The ARI is hence calculated as

∑
i,j

(nij

2

) −
[∑

i

(
ni.

2

)∑
j

(n.j

2

)]
/
(
n
2

)

1
2

[∑
i

(
ni.

2

) + ∑
j

(n.j

2

)] −
[∑

i

(
ni.

2

) ∑
j

(n.j

2

)]
/
(
n
2

) .

The ARI takes a value between 0 and 1. Larger ARI values indicate that the obtained
clusters are more suitable because U and V correspond to the original partition of

Table 1 Contingency table
comparing partitions U and
V

V

U V1 V2 . . . Vc Total

U1 n11 n12 . . . n1c n1.

U2 n21 n22 . . . n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Ur nr1 nr2 . . . nrc nr.

Total n.1 n.2 . . . n.c n.. = n
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the data and the partition obtained by the algorithm, respectively. The ARI values
given in this chapter are averages for 20 trials.

4.2 Results

4.2.1 Dependence on the Initial Graph of the Graph Sequence

To compare O2I with PCM, we generated artificial datasets using the following
procedures with the parameters shown in Table 2. The means of the k Gaussian
distributions were placed at equal intervals on a circle of radius r whose center is
the origin. A set of points was generated under a Gaussian distribution for each
of the means. In this experiment, the sizes of the three sets of points were set to
600, 300, and 200. The set of generated points corresponds to a latent cluster of
vertices. The sets of points move toward and away from the origin as time advances,
as shown in Fig. 12. The means of the Gaussian distributions are on a sine curve
whose amplitude, angular frequency, and initial phase are denoted by A, ω, and ϕ,
respectively. Therefore, the mean of the Gaussian distribution corresponding to the
j th cluster at time t is given by

Table 2 Parameters of the artificial data

Parameters Default values

Number of cluster sequences k =3

Radius r =3

Variance of each Gaussian distribution var =1.0

Number of vertices n =1100 (=600+300+200)

Amplitude A =1.0

Angular frequency ω = π
4

Initial phase ϕ =0

Steps T =10

Number of moving vertices m =5

Connectivity κ =10

Fig. 12 Generation of the artificial datasets
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Fig. 13 ARIs for O2I for
various values of α′

Fig. 14 Computation time
for various values of n

(
x

y

)
= R

(
2π(j − 1)

k

) [
A

(
sin (ω(t − 1) + ϕ)

0

)
+

(
r

0

)]
, (10)

where R(θ) is a rotation matrix for angle θ , with 1 ≤ j ≤ k and 1 ≤ t ≤ T . In
addition, m points in the largest cluster move to the second-largest cluster at each
step. The sets of points at time t are converted into the κ-nearest neighbor graph G(t)

with edges with weights exp
(
− d2

2

)
, where d is the Euclidean distance between two

of the points.
Figure 13 shows the ARIs for O2I as α′ increases from 1 to 100,000. When

α′ = 40, the two requirements are balanced. When α′ > 40, the ARI decreases
because requirement (2) is oversatisfied because of the influence of the second term
in Eq. (5). In contrast, when α′ < 40, the ARI decreases because requirement (1) is
oversatisfied because of the influence of the first term in Eq. (5). Moreover, when α′
is decreased to less than 1, the ARI decreases drastically because the weights of the
edges between two successive graphs in the graph sequence are less than the weights
of the edges in each graph G(t) and O2I partitions G′ into clusters by cutting the
edges between successive graphs. Therefore, these results confirm that O2I obtains
suitable cluster sequences satisfying the requirements by tuning α′. Henceforth, α′
is set to 40. Because a similar result was obtained for PCM, α was set to 4.

Figure 14 shows the computation time for O2I when the number of vertices in
each graph in a graph sequence increases. The computation time is proportional to
the cube of the number of the vertices because the most time-consuming procedure
in O2I is the calculation of the eigenvectors of the Laplacian matrix of G′. Figure 14
shows that O2I is practical for graphs G′ with more than 10,000 × 10 vertices.
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Fig. 15 ARIs for various
values of ϕ

Figure 15 shows the ARIs for O2I and PCM when ϕ increases from 0 to 2π .
The ARI for PCM substantially decreases around ϕ = 3

2π . When ϕ = 3
2π , the

distributions of the points significantly overlap at t = 1, 5, and 9, because the
means of the distributions approach one another. In particular, when the clusters for
G(1) are not suitable, the ARI value decreases substantially because the unsuitability
propagates through the clusters for G(t) with t > 1. In contrast, the ARI for O2I is
better than the ARI for PCM for all ϕ, although the ARI decreases slightly around
ϕ = 3

2π . Hence, the results confirm that O2I overcomes the first drawback of PCM.

4.2.2 Varying Cluster Numbers

In this experiment, the means of the two small latent clusters out of the three clusters
are located at

(
x

y

)
= R

(
2π(j − 1)

k

)
r

(
exp [β(t − T )]

0

)
, (11)

rather than the points in Eq. (10). Although the means of the two clusters are close
to each other at time 1, they diverge exponentially and move toward a circle of
radius r whose center is the origin at time T . By assuming that the points generated
from distributions whose means are closer than 2var belong to the same cluster, we
generate an artificial graph sequence where one of the latent clusters divides into
two latent clusters. In this experiment, m is set to 0.

Figure 16 shows the ARIs for O2I and PCM as β increases from 0 to 0.4. When
β is low, the ARI for PCM is high because the three latent clusters are separate from
one another in G(1) and remain separate until time T . However, when β is high, the
ARI value decreases because PCM partitions each graph G(t) into three clusters for
small t even though the number of latent clusters is 2. In contrast, O2I partitions
each graph into k or fewer clusters because it first converts the graph sequence into
G′ and then solves the k partition problem for G′. Thus, O2I partitions each graph
G(t) into two clusters for small t and into three clusters for large t . Hence, it detects
suitable clusters for various values of β.

Figure 17 shows three sets of points: One of the sets is derived from Eq. (10)
and the others are derived from Eq. (11). Each point is colored according to cluster
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Fig. 16 ARIs for various
values of β

Fig. 17 Distribution of vertices in detected cluster sequences
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sequences detected by O2I. This result was obtained for n = 110 and β = 0.35.
The points with arrows are points with the same ID. Because cluster 1 vibrates in a
sinusoid, the number of points is almost the same over time. In contrast, although the
number of points in detected cluster 3 is 0 at time 1, the number of vertices increases
and becomes 18 at the last timestep.3 It is a difficult task to detect the three different
clusters at time 2 by conventional methods because the point detected as a point in
cluster 3 at time 2 exists near the centroid of cluster 2. However, the second term of
Eq. (5) enables O2I to detect the three clusters. This figure indicates that O2I detects
cluster sequences in which one cluster divides into two clusters.

In this experiment, we generated artificial graph sequences where one of the
latent clusters divides into two latent clusters. O2I does not depend on the direction
of the temporal axis because it converts the graph sequence into graph G′ and solves
the k partition problem for G′. If Eq. (12) is used instead of Eq. (11), we can generate
an artificial graph sequence in which two latent clusters merge.

(
x

y

)
= R

(
2π(j − 1)

k

)
r

(
exp [−β(t − 1)]

0

)
(12)

In this case, the same result is obtained for O2I as in Fig. 16. Therefore, we have
confirmed that O2I overcomes the second drawback of PCM.

4.2.3 Varying Numbers of Vertices

Figure 18 shows the ARIs for O2I for artificial data with ratio% of the vertices
removed from a graph sequence generated using Eq. (10). In this experiment, we
measure the ARIs for forgetting rates γ equal to 0, 0.1, 0.2, 0.3, 0.4, and 0.5, as
ratio increases from 0 to 30. The setting for ratio = 0 and γ = 0 is the same as in
the experiments for Fig. 13. Figure 18 does not contain any results for PCM because
PCM cannot be applied to this data. When γ is increased, then ARI increases except

Fig. 18 ARIs for various
values of ratio and γ

3The numbers of vertices in the third detected cluster sequence increases with time as
〈0, 1, 4, 8, 13, 16, 16, 18, 18, 18〉.
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Fig. 19 AIRs for various
values of α′ and κ (1)

for ratio = 0 because vertices with the same ID that are � timesteps apart are
connected by an edge weight α′γ �−1 and requirement (2) is satisfied. In particular,
increasing γ from 0 to 0.025 is the most effective. When γ is increased further,
the ARI decreases because requirement (2) is oversatisfied. This result is consistent
with Sect. 4.2.1 In contrast, because α′ for ratio = 0 is sufficiently tuned in the
experiment of Sect. 4.2.1. The ARI decreases when γ is increased. Hence, these
results confirm that O2I overcomes the third drawback of PCM.

For γ ≥ 0.1, the reason why ARI for large ratio is more than for small ratio

is as follows. Because the graph G(t) for ratio = 0 and γ = 0 has about κ|V (t)|/2
edges and it connects to G(t+1) with |V (t)| edges, the former connectivity is higher
than the latter. Their connectivities are not balanced. In contrast, when ratio or γ

is increased, both connectivities are balanced and the ARI increases. In the next
subsections, we further investigate effect of other parameters on connectivities of
graphs in graph sequences.

4.2.4 Graph Connectivities

Figure 19 shows the result of ARIs when α′ and κ are changed. When κ is increased
for a certain α′, the ARI decreases. This is because the connectivity among vertices
coming from the same timestep becomes dense by increasing κ , and cutting edges
with weights α′ in G′ minimizes the objective function Eq. (5) of O2I compared
with cutting edges among the vertices coming from the same timestamp. Figure 20
shows the maximum ARIs and their corresponding α′ obtained by setting α′ to 1,
5, 10, 50, 100, 500, 1000, 5000, and 10,000 for each κ . Because vertices in the
latent clusters in G′ rarely connect with one another for small κ , the ARI increases
when κ is increased. When κ is further increased, the ARI decreases drastically.
When κ is greater than 100, the tuned α′ is greater than 500. In this case, most of
the clusters in the obtained cluster sequences satisfy C

(t)
j = C

(t+1)
j , which means

that the cluster sequences do not change over time. Thus, although the effectiveness
of O2I decreases when κ becomes too large, we can improve its effectiveness by
making the graphs in the graph sequences sparse.
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Fig. 20 AIRs for various
values of α′ and κ (2)

Fig. 21 Distribution of yi for
α′ = 50 and κ = 10

Fig. 22 Distribution of yi for
α′ = 50 and κ = 1000

As mentioned in Algorithm 2, O2I contains spectral clustering. In general, when
the spectral clustering is applied to a certain graph G1 consisting of k connected
components, all vertices in the j th (1 ≤ j ≤ k) connected component are mapped to
the same point pj in the k-dimensional space in Line 6 of Algorithm 2. In addition,
when the spectral clustering is applied to another connected graph G2 created from
G1 by adding some edges with small weights, all of the vertices that formed the
j th (1 ≤ j ≤ k) connected component in G1 are mapped to points yi around
the point pj in k-dimensional space [18].4 Because k-means is applied to points yi

around this point pj , the spectral clustering adequately detects clusters in which the
vertices are connected with large weights to one another in G2. Figures 21 and 22
show the distributions of yi derived from artificially generated graph sequences
for κ = 10 and κ = 1000, respectively. Although yi are 3-dimensional vectors,
we use their second and third elements to plot the distributions because their first

4Vector yi is the same symbol used in Algorithm 2.
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elements are the same. Each point is colored according to the latent clusters to which
the point belongs. In Fig. 21, because points in each cluster are distributed around
either (0.00, 0.015), (−0.005, −0.005), or (−0.02, 0.005), k-means detects the latent
clusters accurately. In this figure, the reason why the distributions for clusters 1 and 2
overlap is because m points at each timestep move from cluster 1 to cluster 2. In
contrast, in Fig. 22, the distributions of the three clusters overlap around the origin.
This is because vertices coming from the same timestamps connect to each other,
vertices coming from the different timestamps connect with large weights α′ and G′
becomes a large connected component. In this case, k-means cannot partition the
points around the origin accurately, and the ARI of O2I decreases.

The above experiments confirm that κ is an important hyperparameter of O2I that
enables the method to cluster graph sequences accurately. When a graph sequence
consisting of dense graphs is given as input, we must select edges with large weights
in the graphs to make the graphs sparse before line 1 of Algorithm 2. Making graphs
sparse is easier than making graphs dense.

4.2.5 Real-World Data

To assess the practicality of O2I, we applied it to the Enron e-mail dataset [13]. We
divided the dataset into T periods according to timestamps of e-mails, assigned a
unique ID to the e-mail address for each person participating in the communication,
and assigned an edge to a pair of individuals if they communicate via e-mail within
each period, assigned weight log(c+1) to the edge between two vertices if c e-mails
are sent between the corresponding individuals, and obtained graphs G(t) for each
period t .

Figure 23 shows the number of vertices in the clusters detected by O2I at
each timestep. This result was obtained from a graph sequence with eight steps
in which the vertices correspond to about 150 senior managers. The hyperpa-
rameters for O2I were set as k = 24, α′ = 12, and γ = 0.1, and O2I
took about 5 s to obtain this result. For the sake of visibility, we omitted any

Fig. 23 Number of vertices
in each cluster at time t
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detected outliers having only a few vertices from the figure. The reason why
O2I detects the outliers is that there are many senior managers who each con-
tacted a particular senior manager in the dataset. This figure shows that O2I
is applicable to a graph sequence where the number of vertices varies over
time, with (|V (1)|, |V (2)|, . . . , |V (8)|) = (79, 99, 113, 113, 114, 123, 124, 109). In
addition, the number of clusters detected by O2I also varies over time, with
(|P (1)|, |P (2)|, . . . , |P (8)|) = (8, 9, 12, 14, 9, 15, 17, 16). As shown in Fig. 23, the
cluster represented by dark blue appears at time 3 and then gradually grows larger,
although it does not exist at times 1 and 2.

We also applied O2I to the same graph sequence for the approximately 150
managers, with γ = 0 and the other hyperparameters set as before. In the detected
cluster sequences, more than 90% of the vertices belong to a particular cluster
sequence at each time and the rest of the vertices belong to k−1 outliers. Therefore,
the forgetting rate γ in O2I is beneficial for obtaining suitable cluster sequences.

5 Conclusion

In this chapter, we explained O2I for clustering in evolving graphs that can detect
changes in clusters over time. In O2I, the graph sequence is partitioned into smooth
clusters, even when the numbers of clusters and vertices vary. The method first
constructs a graph from the graph sequence, then uses spectral clustering and the
RatioCut to apply k partitioning to this graph. The method approach was compared
in detail with the preserving clustering membership (PCM) algorithm, which is a
conventional online graph-sequence clustering algorithm in which the numbers of
clusters and vertices must remain constant. We further showed that, in contrast to
PCM, the performance of O2I is not dependent on the clustering of the initial graph
in the graph sequence. Experiments on synthetic evolving graphs showed that O2I is
practical to calculate and addresses the main disadvantages of PCM. Further tests on
real-world data showed that O2I can obtain reasonable clusters. It is hence a flexible
clustering solution and will be useful on a wide range of graph-mining applications
in which the connections, number of clusters, and number of vertices of the graphs
evolve over time.
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