
Studies in Big Data 41

Moamar Sayed-Mouchaweh Editor

Learning from
Data Streams
in Evolving
Environments
Methods and Applications

Studies in Big Data

Volume 41

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

mailto:kacprzyk@ibspan.waw.pl

The series “Studies in Big Data” (SBD) publishes new developments and advances
in the various areas of Big Data- quickly and with a high quality. The intent is to
cover the theory, research, development, and applications of Big Data, as embedded
in the fields of engineering, computer science, physics, economics and life sciences.
The books of the series refer to the analysis and understanding of large, complex,
and/or distributed data sets generated from recent digital sources coming from
sensors or other physical instruments as well as simulations, crowd sourcing, social
networks or other internet transactions, such as emails or video click streams and
others. The series contains monographs, lecture notes and edited volumes in Big
Data spanning the areas of computational intelligence including neural networks,
evolutionary computation, soft computing, fuzzy systems, as well as artificial
intelligence, data mining, modern statistics and operations research, as well as
self-organizing systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/11970

http://www.springer.com/series/11970

Moamar Sayed-Mouchaweh
Editor

Learning from Data Streams
in Evolving Environments
Methods and Applications

123

Editor
Moamar Sayed-Mouchaweh
Institute Mines-Telecom Lille Douai
Douai, France

ISSN 2197-6503 ISSN 2197-6511 (electronic)
Studies in Big Data
ISBN 978-3-319-89802-5 ISBN 978-3-319-89803-2 (eBook)
https://doi.org/10.1007/978-3-319-89803-2

Library of Congress Control Number: 2018949337

© Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-89803-2

Preface

The volume of data is rapidly increasing due to the development of the technology
of information and communication. This data comes mostly in the form of streams.
Learning from this ever-growing amount of data requires flexible learning models
that self-adapt over time. In addition, these models must take into account many
constraints: (pseudo) real-time processing, high-velocity, and dynamic multi-form
change such as concept drift and novelty. Consequently, learning from streams of
evolving and unbounded data requires developing new algorithms and methods able
to learn under the following constraints: (1) random access to observations is not
feasible or it has high costs, (2) memory is small with respect to the size of data, (3)
data distribution or phenomena generating the data may evolve over time, which is
known as concept drift and (4) the number of classes may evolve overtime, which
is known as concept evolution. Therefore, efficient data streams processing requires
particular drivers and learning techniques able to perform:

• Incremental learning in order to integrate the information carried out by each new
arriving data;

• Decremental learning in order to forget or unlearn the data samples which are no
more useful;

• Novelty detection in order to learn new concepts.

This edited Springer book presents and discusses recent advanced techniques,
methods and tools treating the problem of learning from data streams generated
by evolving and non-stationary phenomena. These methods address the different
challenges (with concept drift, with concept evolution, with both concept drift
and concept evolution) of learning from multidimensional data streams using
classification or clustering techniques, mono model or ensemble, online or semi-
online, centralized processing or distributed computing, instance based or window
based, and incremental decremental with or without transfer learning for different
applications (social networks, Twitter data analysis, stream trends and dynamics
visualization, user query and preference evaluation, gene network, customer rela-
tionship management, electricity price prediction, taxi traffic management, etc.).

v

vi Preface

Finally, the editor is very grateful to all authors and reviewers for their very
valuable contribution allowing enriching the research and publication history of
learning from data streams in non-stationary environments. I would like also to
acknowledge Mrs. Mary E. James for establishing the contract with Springer and
supporting the editor in any organizational aspects. I hope that this volume will
be a useful basis for further fruitful investigations and fresh ideas for researcher
and engineers as well as a motivation and inspiration for newcomers to address the
problems related to this very important and promising field of research.

Douai, France Moamar Sayed-Mouchaweh

Contents

Introduction . 1
Moamar Sayed-Mouchaweh

Transfer Learning in Non-stationary Environments . 13
Leandro L. Minku

A New Combination of Diversity Techniques in Ensemble
Classifiers for Handling Complex Concept Drift . 39
Imen Khamassi, Moamar Sayed-Mouchaweh, Moez Hammami, and
Khaled Ghédira

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 63
Markus Endres, Johannes Kastner, and Lena Rudenko

Error-Bounded Approximation of Data Stream:
Methods and Theories . 93
Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng

Ensemble Dynamics in Non-stationary Data Stream Classification 123
Hossein Ghomeshi, Mohamed Medhat Gaber, and Yevgeniya Kovalchuk

Processing Evolving Social Networks for Change Detection Based
on Centrality Measures . 155
Fabíola S. F. Pereira, Shazia Tabassum, João Gama, Sandra de Amo, and
Gina M. B. Oliveira

Large-Scale Learning from Data Streams with Apache SAMOA 177
Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet

Process Mining for Analyzing Customer Relationship Management
Systems: A Case Study . 209
Ahmed Fares, João Gama, and Pedro Campos

Detecting Smooth Cluster Changes in Evolving Graph Structures 223
Sohei Okui, Kaho Osamura, and Akihiro Inokuchi

vii

viii Contents

Efficient Estimation of Dynamic Density Functions with
Applications in Data Streams . 247
Abdulhakim Qahtan, Suojin Wang, and Xiangliang Zhang

Incremental SVM Learning: Review . 279
Isah Abdullahi Lawal

On Social Network-Based Algorithms for Data Stream Clustering 297
Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck

Introduction

Moamar Sayed-Mouchaweh

Abstract This introductory chapter intends to present the challenges related to the
problem of learning from data streams in nonstationary environments. It focuses
on the major challenges related to the learning with concept drift, learning with
concept evolution, and learning with both concept drift and concept evolution.
Then, it classifies the different methods and techniques of the state of the art that
are used to address these challenges. This categorization is achieved according
to how the learning is performed, how the data streams are processed, and how
the changes are detected and integrated into the model. Finally, this chapter ends
with a compact summary of the contents of this book by providing a paragraph
about each of the contributions and how the learning process from data streams is
performed (single learner or ensemble learners, centralized processing or distributed
computing, classification, regression or clustering, window-based or sequential-
based, applications targeted, etc.).

1 Learning from Data Streams

In the increasing number of real-world applications [1–6], for example, network
traffic, web mining, social networking, network monitoring, sensor networks,
telecommunication networks, manufacturing systems, electrical energy generation,
transmission and distribution grids, data samples arrive continuously online through
unlimited streams or flows often at high speed. In addition, the increasing attention
on Internet of Things (IoT), web applications, and mobile devices increase the
production and proliferation of streaming data.

The generated data streams [7, 8] by these applications possess the 5Vs
characteristics of Big Data (i.e., volume, velocity, value, variety, and veracity).
Indeed, data streams have unlimited size, so the volume of generated data is massive

M. Sayed-Mouchaweh (�)
Institute Mines-Telecom Lille Douai, Douai, France
e-mail: moamar.sayed-mouchaweh@imt-lille-douai.fr

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_1&domain=pdf
mailto:moamar.sayed-mouchaweh@imt-lille-douai.fr
https://doi.org/10.1007/978-3-319-89803-2_1

2 M. Sayed-Mouchaweh

and continuously growing at high speed. These data samples are generated from
different sources (people and different devices) and types (text, measurements,
images, videos, etc.). Finally, the veracity of these data is impacted by noises,
outliers, bias, missing information, environment changing, novelties, etc.

Traditional one-shot memory-based learning methods trained offline from a fixed
size of historic data sets are not adapted to learn from data streams. This is because,
first, it is not feasible to register all the data samples over time and, second, the
generated models become quickly obsolete due to the occurrence of changes in their
internal dynamics (e.g., because of aging or fault occurrence) or their environments.
In traditional machine learning and data mining approaches, the current observed
data and the future data are assumed to be sampled independently and from an
identical probability distribution (iid). However, the phenomena generating data
streams may evolve over time. In this case, the environment in which the system
or the phenomenon generated the data is considered to be dynamic, evolving, or
nonstationary.

Therefore, methods used to learn from data streams generated from phenomena
evolving in dynamic environments are facing several challenges. The first is caused
by the huge amount of data that are continuously generated over time. The second
challenge is due to the high speed of arrival of data streams. The third challenge may
occur when the joint probability distribution of the data samples evolves over time.
This is unknown as concept drift [2, 4, 9, 10]. The fourth challenge is related to the
fact that the number of classes or modes is often unknown in advance. Therefore,
new classes, or modes, may appear any time and they must be detected and the
model structure must be updated. This is known as concept evolution [11–13].
Finally, data streams may be generated and treated by and across a set of distributed
sources, sites, or users (i.e., data grid). In this case, processing data using one central
model (central computing) may not be efficient, especially if the infrastructure is
large and complex (e.g., network). Hence, a decentralized modeling structure based
on the use of several local models (distributed computing [14]) is more suitable and
efficient to process data grid.

Hence, learning from streams of evolving and unbounded data requires develop-
ing new algorithms and methods able to learn under the following constraints: (1)
random access to observations is not feasible or it has high costs, (2) memory is
small with respect to the size of data, (3) data distribution or phenomena generating
the data may evolve over time (concept drift), and (4) the number of classes
(occurrence of new classes or disappearance of existing classes) may evolve over
time (concept evolution).

Introduction 3

2 General Classification of Methods to Learn from Data
Streams

There are several machine learning and data mining approaches that are developed
to learn from data streams in the presence of concept drift and/or concept evolution.
These approaches can be classified according to

• How concept drift and/or concept evolution is handled into informed and blind
methods

• How learning is performed into single learner and ensemble learners
• How concept drift and/or concept evolution is monitored into supervised and

unsupervised change detection
• How data streams are processed into central and distributed
• How data samples are processed into sequential and windowing approaches

Informed methods explicitly detect changes (concept drift) using triggering or
change detection mechanisms such as the performance of a learner [2, 4], or the
characteristics of data distributions in the feature space. When a change is detected,
the informed methods relearn the model using a recent selection of data samples
through a time window or a register. The informed methods are based on three
steps: (1) detecting the drift using change or drift-monitoring indicators, (2) deciding
the data samples to be used to update the learner (which data samples to keep and
which ones to forget), and (3) deciding how to react or update the learner using the
collected data samples.

Learning from data streams with concept evolution (abnormal and normal new
concepts or classes) is based on the use of clustering techniques [8, 11] in order to
evaluate the cohesion between the data samples (registered in a buffer or short time
memory) that do not belong to any of the existing classes. In general, the cohesion
between data samples in the buffer is evaluated using a distance measure. It is worth
mentioning that learning from data streams with both concept drift and concept
evolution [15, 16] is a very challenging task since it is necessary to distinguish
between the drifting of existing concepts and the occurrence of a new concept.

The blind methods [4] implicitly adapt the learner to the current concept at
regular time intervals without any drift detection. They discard old concepts at a
constant speed independently of whether changes occurred or not.

Ensemble learners are based on the use of several classifiers, models, or learners
built by one learning method with different configurations or by different learning
methods in order to achieve the classification or the prediction of a new incoming
pattern. The aim of using ensemble methods is to achieve more accurate prediction
on training data set and better generalization on unseen data samples. They provide a
natural way for adapting to changes by either modifying their structure (combination
of the individual learners’ decisions, selection of one individual learner’s decision,
etc.) or updating the combination rules used to fuse the learners’ individual decisions
into one global decision. In single-learner approaches, only one model is used

4 M. Sayed-Mouchaweh

to achieve the prediction. They can be considered as an extension of incremental
learning algorithms by incorporating forgetting mechanisms in order to discard data
from outdated concepts. This was initially known by decremental learning.

Methods based on supervised indicators (such as accuracy rate or misclas-
sification rate) are used for detecting changes when the prediction feedback is
immediately or shortly available. When the feedback is not available, unsupervised
indicators, such as the dissimilarity in the data characteristics or distribution in the
feature space or the model complexity, are used.

The sequential approaches check if there is a change between two distributions
at a certain point by verifying two hypotheses. The null hypothesis is satisfied if
there is no change in the original distribution, while the alternative hypothesis is
satisfied if there is a change in the original distribution. The learning methods based
on the use of a window process a set of data samples within a time window in order
to update the learner. The window can be either data-based characterized by the
number of instances or data samples or time-based defined by a duration or period
of time.

3 Contents of This Book

This edited Springer book presents and discusses recent advanced techniques,
methods, and tools in treating the problem of learning from data streams generated
by evolving and nonstationary phenomena. These methods address the different
challenges (with concept drift, with concept evolution, with both concept drift
and concept evolution) of learning from multidimensional data streams using
classification or clustering techniques, mono-model or ensemble, online or semi-
online, centralized processing or distributed computing, instance-based or window-
based, incremental or decremental with or without transfer learning for different
applications (social networks, Twitter data analysis, stream trends and dynamics
visualization, user query and preference evaluation, gene network, Customer Rela-
tionship Management, Electricity price prediction, Taxi traffic management, etc.).

3.1 Chapter 2

This chapter discusses the similarities and differences between Transfer Learning
(TL) and Learning in Nonstationary Environments (NSE). It starts by defining
the TL, its advantages, and types. TL aims at transferring knowledge between
different domains (sources) and tasks (targets). However, this transfer can only
be beneficial if the sources and the targets share some similarities. According to
these similarities, TL can be divided into Transductive TL (TTL) and Inductive TL
(ITL). TTL consists in transferring knowledge between different domains that share
the same target, while ITL consists in transferring knowledge between different

Introduction 5

targets that may or may not have the same domain. Then this chapter presents the
learning in NSE and focuses on its advantages to learn from data streams and in
the presence of concept drift. The goal is to compare it according to the TL in
order to highlight the similarities and differences between them. Indeed, TL is not
designed to process data streams and to cope with continuous changes that generate
transitional periods between concepts. Finally, this chapter emphasizes the benefits
of combining both TL and learning in NSE in order to gather their advantages
by improving the model’s predictive performances when data samples come as
streams and when collecting target data is impossible or costly. To this end, two
approaches are studied. The first one is a regression approach for online ITL in NSE
called Dynamic Cross-company Mapped Model Learning (Dycom), and the second
approach is a classification ensemble approach for online learning in NSE called
Diversity for Dealing with Drifts (DDD).

3.2 Chapter 3

This chapter discusses the problem of learning from data streams in the presence
of concept drift that it presents time-varying characteristics (drift speed (abrupt or
gradual), drift severity (local or global), or drift nature (continuous or probabilistic)).
To tackle this problem, three techniques used in ensemble classifiers in order to
maximize their diversity are studied. These techniques are the block-based data, the
weighted data, and filtering data. Then, the advantages and drawbacks of these three
techniques are highlighted in order to investigate their complementarity to maximize
the classifiers’ diversity. The interest of maximizing the diversity of classifiers is
studied in order to evaluate its capacity to handle concept drifts with time-varying
characteristics. Then, the chapter proposes an ensemble approach combining these
three techniques and evaluates its performances using several academic and real data
sets. The proposed ensemble approach uses a variable data block size according
to the drift speed. Then, it selects, using a usefulness criterion, the informative
data samples that best describe the recent concept. This allows the ensemble
approach to adapt according to the drift severity or nature. Finally, the classifiers
are weighted according to their performances to best detect a drift. The prediction
accuracy of the proposed ensemble approach is compared to the one of some well-
known ensemble approaches of the literature: Accuracy Update Ensemble (AUE),
Accuracy Weighted Ensemble (AWE), Learn NSE, LeveragingBag, OzaBag, and
LimAttClass. The obtained results showed that the proposed ensemble approach
outperforms these approaches.

3.3 Chapter 4

This chapter proposes a preference-based query processing and clustering in order
to analyze multidimensional data streams. Formulating queries in the context of user

6 M. Sayed-Mouchaweh

preferences allows to avoid producing empty results by providing the most relevant
results to the user query. However, since the provided results could be too large such
that making decision could be complex or impossible, the proposed approach sum-
marizes these results by assigning the similar ones to the same cluster. The prefer-
ence on data streams is evaluated using the Stream-Based Lattice Skyline algorithm
(SLS) which has the advantage to avoid the continuous object to object comparison.
Avoiding the object-to-object comparison, required to perform preference evalu-
ation on continuous data streams, allows to reduce the runtime complexity from
exponential to linear in the number of input objects. This advantage is essential in
order to update continuously the Best Matches Only (BMO) when new data streams
arrive since they can contain better objects according to the user preferences. The
clustering is based on the use of Borda social choice voting rule. The latter allows
the assignment of each object to only one cluster based on an equal importance
of the voters (considered dimensions). The vote is based on the calculated distance
between the considered object and the cluster centroid according to each dimension.
The proposed approach is evaluated (runtime and the number of required iterations
to find the BMO) on artificial and real data sets. The latter is data set from Twitter
with different input streams (dimensions). The results showed that the proposed
approach can be applied for real-time preference evaluation on data streams.

3.4 Chapter 5

This chapter discusses the problem of minimizing the approximation error of
streaming data. Indeed, there are several techniques, such as Piecewise Linear
Representation (PLR), histograms, and wavelet-based methods, which are used to
represent data streams in proper and compact forms. These compact forms allow to
perform queries and operations on data streams and to describe the data dynamics
as trends, patterns, and outliers. The chapter focuses on the use of PLR because of
its efficiency and simplicity. PLR represents data streams with a number of simple
line segments, so that the data streams can be efficiently archived, and a query on
the stream can be approximately answered by a query on the line segments. In
addition, the line segments constructed from PLR provide striking visual outlines of
stream trends and can be more efficiently processed and represented in the database.
The number of line segments and their parameters are determined based on the
extreme slopes, maximum error bound, and convex hulls. These parameters are
updated over time with the arrival of new data streams. This chapter studies and
compares two PLR approaches: Both OptimalPLR and ParaOptimal achieve optimal
representation with linear complexity but process the data points in different spaces,
that is, time-value stream space and slope-offset parameter space. The chapter
proves formally that the two algorithms are equivalent. However, they may have
different performance (efficiency in both memory and time cost) in practice, due
to the different ways of recording intermediate data during the processing, which
results from the space they are based on.

Introduction 7

3.5 Chapter 6

This chapter discusses the problem of choosing the adequate ensemble method to
learn from data streams in nonstationary environments where concept drift may
occur. It presents the different structures and dynamics of ensemble methods and
analyzes their behavior and performances in response to the occurrence of different
concept drifts and environments’ conditions. Indeed, an ensemble method reacts
to a change in its environments’ conditions or to a concept drift by adding a new
classifier in fixed or variable time, by removing a classifier when the ensemble size is
reached, by observing when a classifier’s performance is below a specific threshold
or when a drift is detected, or by updating the weights/rank of classifiers or by
training them using a new data set. Each of these mechanisms, called “dynamics” in
the chapter, has its advantages according to the application context and conditions.
Therefore, this chapter compares the performances of these ensemble “dynamics”
using two academic (Hyperplane and SEA generator) and two real (Forest Cover-
type and Electricity prices) data sets. Well-known methods (Adaptive Boosting
(Aboost), Dynamic Weighted Majority (DWM), Tracking Recurrent Ensemble
(TRE), Adwin Bagging (AdwinBag), Recurrent Concept Drift (RCD), and Online
Accuracy Update Ensemble (OAUE)) using these mechanisms are evaluated and
compared using different evaluation criteria including classification accuracy, train-
ing time, memory usage, average adaptation time to concept drifts, and average
accuracy drop upon concept drifts. Each evaluation run in these experiments
involves passing one of the chosen data sets through a specific algorithm in a form
of data stream with a specified number of instances per interval. The obtained
results allow to help in choosing the adequate mechanism or mix of mechanisms
in response to the application context and conditions (drift type, nature, speed, etc.).

3.6 Chapter 7

This chapter studies the problem of analyzing online and under one-pass constraints
the users’ preferences changes in social networks. In the latter, the users’ relation-
ships reveal their behavior and preferences. These relationships are continuously
evolving over time after each incoming object (i.e., tweets or retweets). In order to
update the typology or structure of the network (nodes representing the users and
their interactions or relationships), a change detection model is used based on the
observation of the deviation of nodes positions. This deviation represents a change
in the user’s preference over predefined themes or topics. To detect this deviation,
three node centralities are used. The first centrality is the degree centrality of a
node that measures the number of edges adjacent to it. The second centrality is the
betweenness centrality that measures the number of shortest paths passing by this
node. The third centrality is the closeness centrality that is the inverse of the average
shortest path length between a node and all the other nodes. Three detection models

8 M. Sayed-Mouchaweh

are used: Moving Window Average (MWA), Weighted Moving Window Average
(WMWA), and Page Hinckley Test (PH). Then, a change point scoring function is
computed based on the centralities and the values of the detection models and then
compared to a threshold to decide a change. The accuracy of change detection of
users’ preferences in a social network (tweets) using each of the three detection
modes MWA, WMWA, and PH is compared. This comparison is achieved using
homogeneous and bipartite networks. Homogeneous network is based on retweets
where nodes are Twitter users and two nodes have a direct edge if the first node
retweeted the second node at certain time. Nodes in bipartite network are Twitter
users or topics. Topics represent the main themes that users are tweeting about and
have been extracted using the LDA (latent Dirichlet allocation) model.

3.7 Chapter 8

This chapter presents a platform, called Apache SAMOA (Scalable Advanced
Massive Online Analysis), for mining big data streams. It combines streaming
algorithms and distributed computing in order to perform distributed stream pro-
cessing. It is an open-source gathering framework and library. The framework
allows an algorithm developer to reuse his code and run it on several distributed
stream processing engines as Storm, Flink, Samza, and Apex. The library allows
the implementation of state-of-the-art algorithms for distributed machine learning
on streams. It includes three types of algorithms performing basic machine learning
functionalities such as classification via a decision tree, Vertical Hoeffding Tree
(VHT), clustering (CluStream), and regression rules (HAMR). It also includes
adaptive implementations of ensemble methods such as bagging and boosting.
These methods include state-of-the-art change detectors such as ADWIN, DDM,
EDDM, and Page-Hinckley. The performance of this platform (accuracy and
processing time) of its different classification, regression, clustering, and ensemble
methods is evaluated using three real data sets (Electricity prices, Particle Physics,
and CovertypeNorm). The goal is to compare the performance between local
implementation and distributed implementation. The analysis of the obtained results
shows the interest of the use of this platform for mining big data streams in
distributed fashion.

3.8 Chapter 9

This chapter discusses the problem of building a social network that represents
different kinds of relations between resources (employees) and customers (requests,
activities). The analysis of this social network allows to improve the quality
of “Customer Relationship Management” process. In order to extract the social
network from saved sequential event logs, this chapter proposes to use a scheme

Introduction 9

based on the following steps. First, the process model is built using the Alpha
algorithm. This model is complicated since the Alpha algorithm does not consider
the activities’ frequencies. Therefore in the second step, the infrequent (considered
as noises) activities are removed using the heuristics miner algorithm. In order to
guarantee the production of a sound process model, the evolutionary tree mine
algorithm is applied which reduces the search space, so the unsound models will not
be considered. Then, the produced model will be converted into Petri net allowing
to code the activities by letters in order to facilitate their readability. The time
consumed in each transition of the Petri net model is integrated in order to allow
discovering which activity takes much time to be performed. Finally, the social
network is built from this Petri net model. Only most relevant activities with a
significant impact on the model quality are kept. The proposed scheme is applied to
extract a social network using the CRM event logs recorded during the year 2015
between clients and employees of the National Institute of Statistics in Portugal. The
extracted social network allows to discover useful information about the behavior of
employees (e.g., some employees act as a customer service and internal department
at the same time).

3.9 Chapter 10

This chapter studies the problem of clustering in graphs with structures that evolve
over time. Indeed in many real-world applications, the number of clusters increases
when a cluster divides or decreases when two clusters merge. The evolution of
a gene network as an example, which consists of genes and their interactions,
produces a graph sequence when genes are added, deleted, or mutated. This chapter
analyzes the performances of an algorithm, called O2I, to perform the clustering of
evolving graphs. O2I uses spectral clustering and relies on applying the k partition
problem to a graph constructed from a graph sequence. It uses a forgetting rate
in order to smooth the clusters between timestamps separated by a predefined
distance. The performances of O2I are evaluated using academic and real data sets
and compared to the ones of the conventional online graph sequence clustering
algorithm Preserving Clustering Membership (PCM). In the academic data sets,
the sets of points are generated following a Gaussian distribution and move toward
and away from the origin as time advances. The real data set is the Enron e-mail
data set which is divided onto several periods according to timestamps of e-mails.
A unique ID is assigned to the e-mail address for each person participating in the
communication, and an edge is assigned to a pair of individuals if they communicate
via e-mail within each period. The obtained results show that O2I is a solution for
mining evolving graphs in which the connections, number of clusters, and number
of vertices evolve over time.

10 M. Sayed-Mouchaweh

3.10 Chapter 11

This chapter proposes an approach that estimates online the Probability Density
Function (PDF) of evolving data streams. The proposed approach, called KDE-
Track, is based on the use of the Kernel Density Estimation (KDE) method. However
in order to reduce its quadratic time complexity into linear time complexity with
respect to the stream size, the proposed approach uses an adaptive resampling
strategy in order to control the number of resampling points, that is, more points
are resampled in the areas where the PDF has a larger curvature, while less number
of points are resampled in the areas where the function is approximately linear.
In order to timely track the evolving density, a sliding window is used to estimate
the density using the most recent data points. In order to improve the accuracy of
the density estimation, the proposed approach uses different bandwidth values for
each dimension allowing to capture the spread of the data on each dimension. The
accurate bandwidth is selected by minimizing the deviation between the true and
the estimated densities. The proposed approach is evaluated using synthetic and
real data sets. The real data sets represent two application problems, Taxi traffic
real-time visualization and unsupervised online change detection. For instance,
the estimated PDF is used for the taxi traffic problem to help in placing taxicabs
in places with high pickup rate at a certain period of time. The performances
(accuracy, time complexity) of the proposed approach are compared to several well-
known density estimation and change detection methods such as the traditional
KDE, the FFT-KDE, which deploys Fast Fourier Transform (FFT) to convolve a
very fine histogram of the data with a kernel function to produce a continuous
density function; the Cluster Kernels, which maintains a specific number of kernels
by merging similar kernels; and SOMKE, which employs Self-Organizing Maps
(SOM) to cluster the data into a specific number of clusters and uses the centroids
of the clusters as the set of kernels.

3.11 Chapter 12

This chapter discusses the use of the classification method Support Vector Machine
(SVM) for online learning from data streams. It focuses on the incremental version
of SVM that enables it to update the classifier after the arrival of a new data sample
without having to rebuild the classifier from scratch. This incremental learning
is particularly useful for learning from data streams since the classifier update is
performed using limited memory and processing resources. In addition, adding also
an unlearning mechanism into the incremental framework allows the classifier to
be updated using only useful knowledge and forgetting the useless or obsolete
knowledge. Hence, the classifier will be adapted to handle concept drift in the case
of evolving data streams. The chapter starts by classifying the major incremental
SVM methods in the state of the art into two groups: online and semi-online. The

Introduction 11

online methods process the data stream one sample at a time and ensure that the
Karush–Kuhn–Tucker (KKT) optimality conditions are maintained on all previously
seen samples while updating the classifier. The semi-online methods process the
samples in batches and while updating the classifier, they discard previously seen
samples except those identified as support vectors. Then, this chapter discusses the
advantages and drawbacks of these two groups according to their ability to handle
concept drift, to learn with unlabeled data samples, and to learn from large scale data
sets. The chapter also discusses some of the major applications of these methods and
focuses on their performances in the case of data streams.

3.12 Chapter 13

This chapter studies the problem of data streams clustering in the presence of
concept drift and concept evolution. Concept drifts occur whenever the data distribu-
tion changes, while concept evolutions refer to the appearance or disappearance of
clusters. The chapter starts by highlighting the challenges related to the problem of
data stream clustering. Indeed, clustering algorithms must (1) detect concept drifts
and adapt its clusters accordingly; (2) detect concept evolutions and create/delete
clusters independently from user intervention; (3) discern between seeds of new
clusters and noisy data; and finally (4) not rely on too much of parameters. The
chapter analyzes four selected major data stream clustering methods because of
the availability of their code, the high performances of their results in different
application domains, and their number of citations. These methods are CluStream,
ClusTree, DenStream, and HAStream. Then, the chapter analyzes the social network
theory and its use for building social networks from data streams. It studies and
compares the performances of three social network-based data stream clustering
algorithms: CNDenStream, SNCStream, and SNCStream+. Then, the performances
(clustering quality, processing time, and memory usage) of these methods are
compared to the ones of the four selected data stream clustering methods using
academic and public real data sets. The obtained results show the efficiency of social
network-based clustering methods against data stream clustering methods.

References

1. Abdallah, Z.S., Gaber, M.M., Srinivasan, B., Krishnaswamy, S.: Adaptive mobile activity
recognition system with evolving data streams. Neurocomputing. 150, 304–317 (2015)

2. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Self-adaptive windowing
approach for handling complex concept drift. Cogn. Comput. 7(6), 772–790 (2015)

3. Rashidi, P., Cook, D.J.: Keeping the resident in the loop: adapting the smart home to the user.
IEEE Trans. Syst. Man Cybern. Syst. Hum. 39(5), 949–959 (2009)

4. Sayed-Mouchaweh, M.: Learning from Data Streams in Dynamic Environments. Springer,
Cham (2016)

5. Mouchaweh, M.S.: Diagnosis in real time for evolutionary processes in using pattern recogni-
tion and possibility theory. Int. J. Comput. Cogn. 2(1), 79–112 (2004)

12 M. Sayed-Mouchaweh

6. Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic data-driven approach for drift-like fault
detection in wind turbines. Evol. Syst. 6(2), 115–129 (2015)

7. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 97–106. ACM, New York (2001)

8. Guha, S., Mishra, N.: Clustering data streams. In: Data Stream Management, pp. 169–187.
Springer, Berlin (2016)

9. Hartert, L., Sayed-Mouchaweh, M.: Dynamic supervised classification method for online
monitoring in non-stationary environments. Neurocomputing. 126, 118–131 (2014)

10. Mohamad, S., Bouchachia, A., Sayed-Mouchaweh, M.: A bi-criteria active learning algorithm
for dynamic data streams. IEEE Trans. Neural Netw. Learn. Syst. 29, 74 (2018)

11. Abdallah, Z.S., Gaber, M.M., Srinivasan, B., Krishnaswamy, S.: Anynovel: detection of novel
concepts in evolving data streams. Evol. Syst. 7(2), 73–93 (2016)

12. Faria, E.R., Gonçalves, I.J., de Carvalho, A.C., Gama, J.: Novelty detection in data streams.
Artif. Intell. Rev. 45(2), 235–269 (2016)

13. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: existing solutions and
latest technological trends. Comput. Netw. 51(12), 3448–3470 (2007)

14. Beringer, J., Hüllermeier, E.: Online clustering of parallel data streams. Data Knowl. Eng.
58(2), 180–204 (2006)

15. Masud, M., Gao, J., Khan, L., Han, J., Thuraisingham, B.M.: Classification and novel class
detection in concept-drifting data streams under time constraints. IEEE Trans. Knowl. Data
Eng. 23(6), 859–874 (2011)

16. Mohamad, S., Sayed-Mouchaweh, M., Bouchachia, A.: Active learning for classifying data
streams with unknown number of classes. Neural Netw. 98, 1–15 (2018)

Transfer Learning in Non-stationary
Environments

Leandro L. Minku

Abstract The fields of transfer learning and learning in non-stationary environ-
ments are closely related. Both look into the problem of training and test data
that come from different probability distributions. However, these two fields have
evolved separately. Transfer learning enables knowledge to be transferred between
different domains or tasks in order to improve predictive performance in a target
domain and task. It has no notion of continuing time. Learning in non-stationary
environments concerns with updating learning models over time in such a way to
deal with changes that the underlying probability distribution of the problem may
suffer. It assumes that training examples arrive in the form of data streams. Very
little work has investigated the connections between these two fields. This chapter
provides a discussion of such connections and explains two existing approaches that
perform online transfer learning in non-stationary environments. A brief summary
of the results achieved by these approaches in the literature is presented, highlighting
the benefits of integrating these two fields. As the first work to provide a detailed
discussion of the relationship between transfer learning and learning in non-
stationary environments, this chapter opens up the path for future research in the
emerging area of transfer learning in non-stationary environments.

1 Introduction

Individuals, organisations and systems have been producing large amounts of data.
Such data can be used to gain insights into various areas of interest, such as
businesses and processes. In particular, machine learning can be used to create
models able to give insights into the form of predictions. Examples of problems
involving predictions include spam detection, credit card approval, network intru-

L. L. Minku (�)
School of Computer Science, University of Birmingham, Birmingham, UK
e-mail: L.L.Minku@cs.bham.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_2&domain=pdf
mailto:L.L.Minku@cs.bham.ac.uk
https://doi.org/10.1007/978-3-319-89803-2_2

14 L. L. Minku

sion detection, speech recognition, among many others. This chapter concentrates
on machine learning for building predictive models.

In supervised learning, predictive models are created based on existing training
examples of the format (xi , yi) ∈ X × Y , where xi is example i’s vector of input
attributes, yi is example i’s vector of output attributes, X represents the input space
and Y represents the output space. For example, in the problem of predicting the
effort required to develop a software project, each example i could correspond to a
software project described by (xi , yi) ∈ X × Y , where X is the four-dimensional
space of all possible team expertises, programming languages, types of development
and estimated sizes, and Y is the one-dimensional space of all possible software
required efforts in person-hours. In the problem of predicting whether a credit
card customer will default their payments, each example i could correspond to a
customer described by (xi , yi) ∈ X × Y , where X is the 5-dimensional space
of all possible ages, genders, salaries, types of bank accounts and numbers of
years consecutively holding a bank account, and Y is the one-dimensional space
of payment categories (pay and default).1 When Y is a one-dimensional space, yi

can be written as yi . This work concentrates on one-dimensional output spaces, but
the ideas discussed herein could be extended to multidimensional output spaces.

Most supervised learning algorithms are offline learning algorithms, defined as
follows:

Definition 1 (Offline Learning) Consider a fixed training set S = {(xi , yi)}mi=1∼iid p(x, y), where (xi , yi) ∈ X × Y , and p(x, y) is the joint probability
distribution of the problem. Offline learning consists in using the predefined training
set S to build a model f : X → Y able to generalise to unseen examples
(xi , yi) ∼ p(x, y), i > m.

Given Definition 1, a model f created based on offline learning is appropriate
for predicting the output attributes of new instances from the same joint probability
distribution p(x, y) as the one underlying the training set S . However, many real-
world applications involve in making predictions for a target task in a given domain
based on examples coming from different source tasks or domains. In such cases,
the probability distributions underlying the target and sources may differ.

The need for using examples from different sources arises from the high cost or
even impossibility of collecting training examples from the target task and domain.
For example, when building a model to predict the effort required to develop a
software project in a given company, it is typically expensive to collect labelled
examples describing projects from within this company [14]. Examples of projects
developed by other companies are available in existing software project repositories
[13, 19], but they may come from different underlying probability distributions.

Machine learning algorithms operating in this type of scenario must be able to
tackle the different source and target probability distributions. Specifically, they

1The software required effort and credit card payment problems will be used as illustrative
examples for the concepts explained in this chapter.

Transfer Learning in Non-stationary Environments 15

need to transfer knowledge from the source task/domain to the target task/domain.
Algorithms designed to achieve such knowledge transfer are referred to as Transfer
Learning (TL) algorithms.

Many real-world applications pose yet another challenge to machine learning
algorithms. Instead of providing a fixed training set, they provide a potentially infi-
nite sequence of training sets S = 〈S1,S2, . . .〉, where St = {(x(i)

t , y
(i)
t)}mt

i=1 ∼iid
pt (x, y); t > 0 is a time step, that is the sequential identifier of a time moment
when a new training set was received; and mt > 0 is the size of the training set. Such
sequence is referred to as a data stream. Its unbounded nature provides a clear notion
of continuing time. For example, in the problem of predicting whether a credit card
customer will default their payments, new examples describing the behaviour of
additional customers may be received over time [22].

Data streams may suffer changes in their underlying probability distributions
over time, that is examples drawn at different time steps may belong to different
probability distributions. Such changes are referred to as concept drifts [10]. They
can be seen as the result of (1) actual changes in the underlying data-generating
process or (2) insufficient, unknown or unobservable input attributes, which result
in the probability distributions underlying observable attributes to change, despite
the true data-generating process being stationary [7]. For example, customers’
defaulting behaviour may be affected by the beginning of an economic crisis. If
there are no input attributes describing the presence of a crisis, the beginning of the
economic crisis would be perceived as a change in the joint probability distribution
underlying the observable attributes.

Machine learning algorithms for Non-stationary Environments (NSE) must be
able to adapt predictive models to concept drift. They need to maintain up-to-
date predictive models reflecting the current joint probability distribution, even
considering that part of the past training examples may belong to a different joint
probability distribution.

As we can see from the above, both TL and learning in NSE involve training and
test data that potentially come from different probability distributions. However,
these two fields have evolved separately, and little work has investigated the
connections between them. A discussion of the relationship between these two fields
could greatly benefit future work, as TL approaches could inspire new approaches
to overcome problems in learning algorithms for NSE, and vice-versa.

This chapter provides a novel discussion of the relationship between the fields of
TL and learning in NSE, and of the potential benefit of using one field to improve
the other. It explains two existing approaches that combine the strengths of TL and
learning in NSE: Diversity for Dealing with Drifts (DDD) [22] and Dynamic Cross-
company Mapped Model Learning (Dycom) [23]. The results achieved by these
two approaches in the literature are briefly explained, highlighting the benefits of
transferring knowledge in NSE.

This chapter is further organised as follows. Sections 2 and 3 explain TL
and learning in NSE, respectively. They are not intended to provide an extensive
literature review of these two fields, which can be found elsewhere [7, 11, 17, 29].

16 L. L. Minku

Instead, they are intended to provide definitions and examples of representative
algorithms to inform and enable the discussion of the relationship between these
two fields, which is provided in Sect. 4. After discussing this relationship, Sect. 5
discusses the potential of combining these two types of approach to improve their
weaknesses. It includes an explanation of the approaches DDD [22] and Dycom
[23] for TL in NSE, and of the results they have achieved in the literature. Finally,
Sect. 6 concludes this work.

2 Transfer Learning (TL)

TL has been studied by the machine learning and data mining communities for many
years [28]. When defining TL, several authors rely on the distinction between the
terms “domain” and “task” [28]:

Definition 2 (Domain) Domain is a pair 〈X , p(x)〉, where X is the input space;
p(x) is the unconditional probability distribution function (pdf); and x ∈ X .

Definition 3 (Task) Given a Domain = 〈X , p(x)〉, Task is a pair 〈Y, p(y|x)〉,
where Y is the output space; p(y|x) represents the posterior probabilities of the
output attributes; x ∈ X ; and y ∈ Y .

Given existing TL approaches [29], we can consider existing work to be adopting
the following definition of TL:

Definition 4 (Transfer Learning) Consider N source tasks, Taski = 〈Yi ,

pi(y|x)〉, 1 ≤ i ≤ N , and their corresponding source domains, Domaini =
〈Xi , pi(x)〉. Consider also a target task, Task′ = 〈Y ′, p′(y|x)〉, and its
corresponding target domain, Domain′ = 〈X ′, p′(x)〉, where ∀i, [Domaini
=
Domain′ or Taski
= Task′]. The sources are associated to fixed (labelled or
unlabelled) data sets Si . The target is associated to a fixed (labelled or unlabelled)
data set S ′. TL consists in using both the source and target data sets to build
a target model f ′ : X ′ → Y ′ able to generalise to unseen examples of
p′(x, y) = p′(y|x)p′(x). Its aim is to improve learning in comparison with
algorithms that use only S′.

The use of the source data sets Si , 1 ≤ i ≤ N , may be direct or indirect. In
the former case, relevant source examples can be selected to train the target model
f ′. In the latter, source data sets can be used to learn parameters of models or
representations, which are in turn used to help building f ′.

TL is typically useful when there is not enough target data to produce a good
target predictive model. The lack of target data may result from the high cost or
even impossibility of collecting target training examples, as explained in Sect. 1.
However, it is worth noting that TL can only be beneficial if the sources and target
share some similarities. If they are too dissimilar, the use of source examples could

Transfer Learning in Non-stationary Environments 17

even be detrimental to the performance of the target predictive model, depending on
the TL algorithm being used [31]. This phenomenon is called negative transfer.

Depending on whether sources and target differ in terms of their domains or
tasks, TL approaches can be categorised into two types—transductive (Sect. 2.1)
and inductive (Sect. 2.2).

2.1 Transductive TL

Given Definition 4 (TL), transductive TL can be further defined as follows:

Definition 5 (Transductive Transfer Learning) Transductive transfer learning
consists in transferring knowledge between different domains that share the same
task. More formally, ∀i, [Xi
= X ′ or pi(x)
= p′(x)] and [Yi = Y ′ and pi(y|x) =
p′(y|x)].

Transductive TL is typically used when we do not have access to labelled target
examples, but we do have one or more training sets containing labelled source
examples. Let’s take the software required effort problem introduced in Sect. 1 as
an example. Consider that three software development companies c1, c2 and c′ can
develop software projects whose estimated size varies from small to large. However,
company c1 is more often involved with large software projects, company c2 is
more often involved with medium software projects and company c′ is more often
involved with small software projects. So, p1(x)
= p2(x)
= p′(x). Consider
also that the three companies adopt largely the same practices. So, it is likely
that p1(y|x) = p2(y|x) = p′(y|x). Companies c1 and c2 have collected several
examples of their completed software projects, including information on their
required efforts. Such data was donated to the International Software Benchmarking
Standards Group [13]. Company c′, on the other hand, collected only the input
attributes of its projects, because required efforts are expensive to collect. Therefore,
company c′ may wish to use transductive TL to benefit from the data collected by
companies c1 and c2 to build a model for predicting software required effort.

In transductive TL, as the source and target tasks are the same, labelled source
examples can be used to learn the target task. However, as the source and target
domains are different, the sources may not cover the same regions of the input space
as the target, or may not share the same input space as the target. This needs to be
tackled to avoid incorrectly biasing the target predictive model.

The differences between the source and target domains can be addressed by
filtering or weighting source examples, so that the ones most relevant to the target
domain are emphasised. For example, Turhan et al. [39] filter source examples based
on their distance to the target examples in the input space. The source examples that
are closest to target examples are used to build the target predictive model. Huang
et al. [12] learn weights for the source examples so as to minimise the difference
between the means of the source and target examples in a kernel Hilbert space.

18 L. L. Minku

These weights can then be used when learning a kernel-based model for the target
domain based on the labelled source examples.

Another way to deal with the differences between source and target domains
is to transfer parameters that compose models or feature representations. For
example, Dai et al. [6] proposed a naïve Bayes transfer classification algorithm
based on Expectation-Maximisation. The parameters of a naïve Bayes model are
first estimated based on a labelled source data set. Expectation-Maximisation is
then used based on an unlabelled target data set to gradually converge the source
parameters to the target probability distribution. Pan et al. [29] proposed to learn a
transformation of the source and target input attributes into a new space, called the
latent space. This transformation is learned so as to minimise the distance between
the transformed source and target domains. This idea shares some similarities with
Huang et al. [12]’s approach. However, Huang et al. [12] learn weights to be used
with the transformed examples, whereas Pan et al. [29] learn the transformation
itself. Once the transformation is learnt, the target model can be learnt based on the
transformed source examples and their corresponding output attributes.

2.2 Inductive TL

Given Definition 4 (TL), inductive TL can be further defined as follows:

Definition 6 (Inductive Transfer Learning) Inductive transfer learning consists
in transferring knowledge between different tasks. The domains may or may not be
different. More formally, ∀i, [Yi
= Y ′ or pi(y|x)
= p′(y|x)].

As the output space or the posterior probabilities of the output attributes are
different, the source examples provide no information about the possible outputs
or the relationship between inputs and outputs of the target task. Therefore, a few
labelled target examples are necessary to learn such information. TL approaches
operating in this scenario are thus useful when the cost of acquiring labelled target
examples is high, but there are some labelled target examples available. The source
examples may or may not need to be labelled, depending on the learning algorithm.

Let’s take again the problem of software required effort introduced in Sect. 1 as
an example. Consider that a given software development company c1 donated a data
set containing several examples of completed software projects and their required
efforts to the International Software Benchmarking Standards Group [13]. Company
c′, on the other hand, has collected only a few examples of completed software
projects with their required efforts, due to the high cost of collecting required efforts.
Companies c1 and c′ typically conduct the same type of software projects (i.e.
p1(x) = p′(x)). However, the underlying function mapping X to Y may differ
between these two companies (i.e. p1(y|x) = p′(y|x)) because they adopt different
practices and such practices have not been collected as input attributes. In this case,
company c′ may wish to perform inductive TL based on c1’s projects in order to
improve its software required effort predictions.

Transfer Learning in Non-stationary Environments 19

As with transductive TL, one way to perform inductive TL is to filter or
weigh source examples based on how well they are believed to match the target
probability distributions. Such examples can then be used to help training the target
predictive model. A very popular approach in this category is TrAdaBoost [5].
This approach extends the well-known AdaBoost [33] ensemble learning algorithm
to perform inductive TL in scenarios where both domains and tasks may differ
between sources and target. Base models of the ensemble are trained sequentially,
as in the original Adaboost. Labelled target examples are weighted based on
AdaBoost’s original weighting rule, that is target training examples have their
weights increased/decreased if they are incorrectly/correctly classified by former
base models. In this way, misclassified target examples are emphasised, encouraging
the ensemble to learn how to classify them correctly. For source training examples,
which are also required to be labelled examples, this strategy is inverted. Source
training examples correctly classified/misclassified by former base models have
their weights increased/decreased, because they may match the target probability
distributions better/worse.

Other inductive TL approaches transfer parameters that compose models or
feature representations, which can then be used with the target model. For example,
at the same time as training source and target predictive models, Argyriou et
al. [1] learn a feature representation that is common to the source and target
domains. Learning consists in concurrently determining (1) target predictive model
parameters, (2) source predictive model parameters and (3) a transformation of
the input space, so that the regularised error of the source and target predictive
models is minimised. The error of the source/target predictive models is calculated
based on the source/target training examples. For that, both source and target
training examples need to be labelled. This approach works in scenarios where both
tasks and domains may differ between sources and target, but a common feature
space exists among them. Different from Argyriou et al. [1], Raina et al. [30]
learn the feature representation and target model separately, so that unlabelled
source examples can be used. Oquab et al. [26] use the internal layers of a
convolutional neural network as a generic extractor of higher-level features from the
source domain. For that, it requires labelled source examples. The neural network
parameters representing such higher-level features are then reused by the target
predictive model. Their corresponding internal layers are followed by an adaptation
layer, which enables the target task to be learnt. This approach considers that both
tasks and domains may differ between sources and target but relies on domain-
specific preprocessing of the source input attributes to produce a domain more
similar to the target one.

Some inductive TL approaches also exist to transfer knowledge between rela-
tional domains, where data can be represented by multiple relationships, such as
social networks [28]. Relational domains are out of the scope of this chapter.

20 L. L. Minku

3 Learning in Non-stationary Environments (NSE)

NSE are environments where training examples arrive in the form of data streams
which may suffer concept drift. Concept drift can be defined as follows [17]:

Definition 7 (Concept Drift) Let pt (x, y) = pt (y|x)pt (x) be the joint probability
distribution (concept) underlying a machine learning problem at time step t .
Concept drift occurs when the joint probability distribution changes over time. More
formally, if, for any time steps t and t + �, pt(x, y)
= pt+�(x, y), then concept
drift has occurred.

Concept drifts can be either the result of changes in the actual data-generating
process, or simply perceived, rather than actual changes. As explained by Ditzer
et al. [7], the latter case can be “caused by insufficient, unknown, or unobservable
attributes, a phenomenon known as ‘hidden context’ [42]”. In this case, there is
a stationary data-generating process, but it is hidden from the machine learning
algorithm, which will perceive it as non-stationary. Therefore, this work will refer
to learning in both cases as learning in NSE.

From Definition 7, we can see that concept drift may involve changes in p(y|x),
p(x) or both. This leads to the following widely used additional definitions:

Definition 8 (Real Concept Drift) A concept drift is referred to as a real concept
drift if it involves changes in p(y|x). More formally, if, for any time steps t and
t + �, pt (y|x)
= pt+�(y|x), then a real concept drift has occurred.

For example, in the credit card payment problem introduced in Sect. 1, an
economic crisis may cause customers that used to pay their bills in the past to start
defaulting their payments, representing a change in p(y|x).

Definition 9 (Virtual Concept Drift) A concept drift is referred to as a virtual
concept drift if it only involves changes in p(x). More formally, let t and t + �

be two time steps where pt (x)
= pt+�(x). If pt (y|x) = pt+�(y|x), then the
differences in the probability distributions between t and t + � represent a virtual
concept drift.

For example, in the credit card payment problem introduced in Sect. 1, a given
credit card company may start receiving and accepting more credit card applications
from younger customers, leading to a change in the problem’s p(x).

Concept drifts are also frequently categorised with respect to their speed (number
of time steps taken for a change to complete), severity (how large the changes in the
probability distributions are), recurrence (whether the concept drift takes us to a
previously seen concept) and periodicity (whether concept drifts occur periodically)
[7, 17, 24, 38].

In particular, it is worth noting that p(x, y) may suffer several small changes
between a number of consecutive time steps before becoming stable. Some authors
refer to that as a single gradual concept drift [38], whereas others refer to that as a
sequence of concept drifts of low severity [24]. This is distinguished from an abrupt

Transfer Learning in Non-stationary Environments 21

or sudden concept drift, which is an isolated concept drift that takes a single time
step to complete. The term “gradual concept drift” can also be used to describe
a single concept drift that takes several time steps to complete because the old
and new joint probability distributions are active concurrently for a given period
of time [2, 24]. In this scenario, the chances of an example being drawn from the
old/new joint probability distribution gradually reduce/increase, until the new joint
probability distribution completely replaces the old one. Certain data streams may
also continuously suffer concept drifts, that is they may not have any significant
period of complete stability.

Based on existing work on learning in NSE [7, 11, 17], we can consider existing
approaches for learning in NSE to be adopting the following definition:

Definition 10 (Learning Algorithms for Non-stationary Environments) Con-
sider a process generating a data stream S = 〈S1,S2, · · · 〉, where St = {(x(i)

t ,

y
(i)
t)}mt

i=1 ∼iid pt (x, y); mt > 0 is the size of the training set received at time step

t ; (x
(i)
t , y

(i)
t) ∈ X × Y; and pt (x, y) is the joint probability distribution of the

problem at time step t . Consider that at a current time step t , we are given access
to a model ft−1 : X → Y created based on past examples from S , a new training
set St ∈ S and possibly a set Spast containing a limited number of past examples
from S . Learning in non-stationary environments aims at creating an updated model
ft : X → Y able to generalise to unseen examples of pt(x, y), based on the given
information.

The following observations must be made when using Definition 10:

• The explicit index t in the probability distributions distinguishes these algorithms
from algorithms for stationary environments [7], as it takes the possibility of
concept drift into account.

• A model ft may be an ensemble model, possibly composed of several predictive
models created with data from previous training sets.

• The size of a training set can be one, that is the training set may consist of a
single example.

• Many algorithms discard past training sets once they are processed. However,
some approaches make use of a limited number of examples from past training
sets, as will be explained in Sects. 3.1 and 3.2. When used, the number of past
examples must be limited, given that data streams have potentially infinite size.
The unbounded nature of data streams means that it is infeasible to always store
all past examples for future access.

Learning algorithms for NSE may process data streams chunk-by-chunk
(Sect. 3.1) or example-by-example (Sect. 3.2). Most of these algorithms are prepared
to deal with changes that affect the suitability of the learnt decision boundaries.
Different from real concept drifts, virtual concept drifts do not affect the true
decision boundary of the problem. However, they may still affect the suitability
of the learnt decision boundary [41]. Therefore, most existing algorithms are

22 L. L. Minku

applicable to data streams with both types of concept drifts, despite having different
strengths and weaknesses depending on the context.

It is also worth noting that, even though in theory each training example from
a given data stream could potentially come from a completely different probability
distribution, it would be impossible for learning algorithms to build well-performing
predictive models in such scenario. In practice, it would be rather unlikely that a
given learning problem continuously suffers very large changes. For instance, in the
problem of predicting whether credit card customers will default their payments,
it would be rather unlikely that the defaulting behaviour of customers erratically
changes all the time. Therefore, most learning algorithms for NSE implicitly
assume that there will be some periods of relative stability, or that there are very
frequent/continuous changes, but such changes are frequently small.

3.1 Chunk-by-Chunk Approaches

Given Definition 10, chunk-based learning algorithms for NSE can be defined as
follows:

Definition 11 (Chunk-Based Learning for Non-stationary Environments)
Chunk-based learning algorithms for non-stationary environments are algorithms
that perform learning in non-stationary environments by processing the data stream
chunk-by-chunk, where the chunk size is larger than 1. These algorithms need to
wait for a whole chunk of examples to become available before learning it.

Intuitively, a chunk would be equivalent to a training set St provided by the data
stream. However, it is also possible to set the chunk size in such a way that they are
not equivalent. For instance, a chunk may contain more than one training set within
it, or a given training set may be broken down into different chunks. Even though the
size of each chunk could potentially be very small, it is typically implicitly assumed
that the size is set to be large enough for a predictive model trained only on it to be
better than random guess.

Most chunk-based learning algorithms for NSE are ensemble learning algorithms
whose predictions are the weighted average or weighted majority vote among the
predictions of their base models. The weights enable the ensemble to emphasise
the base models most appropriate to the current concept. These ensembles typically
perform learning as follows [9, 17, 35, 40]:

1. Train an initial base model using the first chunk of training examples.
2. For each new chunk, do:

(a) Use this chunk to evaluate each predictive model that composes the ensemble,
based on a given performance measure.

(b) Assign a weight to each predictive model based on its performance calculated
above.

(c) Create a new predictive model using this chunk.

Transfer Learning in Non-stationary Environments 23

(d) Add the new predictive model to the ensemble if the maximum ensemble size
has not been reached; otherwise, replace an existing predictive model by the
new one.

(e) Discard the current chunk.

One of the problems of such approaches is that they are sensitive to the chunk
size. A too small chunk size means that there are not enough examples to learn a
good predictive model. A too large chunk means that a single chunk may contain
examples from different joint probability distributions, resulting in the inability to
deal with concept drifts adequately.

Some chunk-based approaches try to reduce sensitivity to the chunk size. For
example, Scholz and Klinkenberg [34] allow a new chunk to be used to update
an existing predictive model, rather than always creating a new model for each
new chunk. This enables chunk sizes to be small enough without necessarily
hurting predictive performance. Some chunk-based approaches also enable a limited
number of examples from past chunks to be reprocessed. For example, Chen and He
[4] preserve certain minority class examples seen in past chunks in order to deal with
class imbalanced problems.

3.2 Example-by-Example Approaches

Given Definition 10, example-by-example learning algorithms for NSE can be
defined as follows:

Definition 12 (Example-by-Example Learning for Non-stationary Environ-
ments) Example-by-example learning algorithms for non-stationary environments
are algorithms that perform learning in non-stationary environments by processing
the data stream example-by-example. These algorithms can update the predictive
model whenever a new training example is received.

The simplest type of example-by-example algorithms are algorithms that main-
tain a sliding window over the data stream [18]. They build a new classifier to
replace the old one whenever the window slides, by making use of the examples
within the window. Similar to most chunk-based algorithms, sliding window
algorithms are also sensitive to the window size. They assume that the size must
be large enough to produce a well-performing predictive model, but small enough
not to delay adaptation to concept drifts due to examples belonging to past concepts
being within the window.

Another type of example-by-example algorithms are online learning algorithms,
which process each training example separately upon arrival and then immediately
discard it. The fact that each training example is immediately discarded leads
to significant differences between the mechanisms that typically underlie these
algorithms and other example-by-example or chunk-by-chunk algorithms. Chunk-
based or sliding window algorithms typically use offline learning algorithms to learn

24 L. L. Minku

each new chunk or window of examples. In many cases, this involves training a
new model using solely the examples within the new chunk or window [17]. This
would lead to poor predictive performance if each chunk or window contained a
single training example. Moreover, offline learning algorithms often requite iterating
through training examples several times. Therefore, there is frequently an implicit
assumption that training examples from a chunk or window can be reprocessed
several times before the chunk or window is discarded. Online learning algorithms
are much stricter—each training example must be discarded before a new training
example is used for training. They are therefore more suitable for applications with
very tight time and/or memory constraints, such as applications where the rate of
incoming data is very large or certain embedded systems.

Many of the online learning algorithms for NSE use concept drift detection
methods to actively detect concept drift. This is typically done by monitoring an
online learning model for stationary environments, for example naive Bayes [3] or
Hoeffding tree [8]. An example of well-known concept drift detection method is
Gama et al. [10]’s. This method tracks the error of an online learning model over
time. If this error significantly increases, a concept drift detection is triggered. Other
authors proposed different concept drift detection methods by monitoring different
quantities. For instance, Baena-Garcia et al. [2] monitor the distance between
misclassifications over time, whereas Ross et al. [32] monitor the exponentially
weighted average of the errors. A typical way to deal with concept drifts once they
are detected is to reset the online learning model, so that it can start learning the new
concept from scratch [2, 10, 32]. However, this strategy is sensitive to false positive
drift detections (a.k.a., false alarms). Strategies such as creating a new online
learning model upon concept drift detection, but maintaining old online learning
models in case they turn out to be still useful, can help to improve robustness to
false positive drift detections [22, 25].

Some online learning algorithms deal with concept drift passively, that is they do
not use any concept drift detection method. A well-known example is the Dynamic
Weighted Majority (DWM) algorithm [16]. This algorithm maintains an ensemble
of online learning models, each associated to a weight. For classification problems,
the prediction given by the ensemble is the weighted majority vote among the
predictions given by the base learners. When a new training example becomes
available, each online learning model is asked to predict the output attribute of
the example before learning it. If a given online learning model misclassifies the
training example, its weight is reduced. In this way, the ensemble can automatically
emphasise the online learning models most suitable to the current concept. Online
learning models whose weight is below a certain threshold are deemed outdated
and are thus eliminated. New online learning models can also be created when the
ensemble as a whole misclassifies a training example. In this way, new models can
be created to learn new concepts from scratch.

Transfer Learning in Non-stationary Environments 25

4 The Relationship Between TL and Learning in NSE

This section discusses the similarities (Sect. 4.1) and differences (Sect. 4.2) between
TL and learning in NSE.

4.1 Similarities

As we can see from Definitions 4 and 10, TL and learning in NSE both involve
training and test data that potentially come from different probability distributions.
In TL, training examples coming from different sources may have different domains
and tasks than the target test data. In learning in NSE, past training examples may
come from a different joint probability distribution from that underlying the current
test data.

In particular, transductive TL is concerned with sources and targets that share
the same task but have different domains. This means that sources and targets differ
in terms of their unconditional pdf p(x). This is similar to learning under virtual
concept drifts, which also represent changes in p(x). In inductive TL, sources and
targets have different tasks, that is they differ in terms of the posterior probabilities
of the classes p(y|x). This is similar to learning under real concept drifts, which
also represent changes in p(y|x). Moreover, sources and targets may or may not
differ in terms of p(x) in inductive TL. This is similar to real concept drifts, which
may or may not involve changes in p(x).

The similarities above translate into similarities in the approaches proposed
to perform TL and learning in NSE. As explained in Sects. 3.1 and 3.2, many
approaches for learning in NSE are ensemble approaches that maintain weighted
predictive models trained on data from different periods of time. So, each predictive
model could potentially represent a different joint probability distribution. In TL
terms, they could be seen as representing different sources. These approaches could
arguably be seen as a form of inductive TL. They allow knowledge from different
(source) joint probability distributions to possibly help making predictions for a
given (target) concept. Moreover, the fact that predictive models are weighted based
on how well they match the current concept has strong resemblance to approaches
such as TrAdaBoost [5], which weigh examples from different sources based on
how well they match the target joint probability distribution.

TL approaches could also potentially be seen as transferring knowledge from the
past to the present. This is because different periods of time of a given data stream
could be seen as different sources, which may have different domains and/or tasks
from the present (target) data. Therefore, both TL and learning in NSE could be
seen as trying to create good predictive models to a given present time.

Table 1 summarises the similarities between TL and learning in NSE.

26 L. L. Minku

Table 1 Similarities between TL and learning in NSE

TL Learning in NSE

Test data come from a different joint
probability distribution from that underlying
(part of) the training data.

Test data may come from a different joint
probability distribution from that underlying
(part of) the past training data.

Transductive TL deals with changes in p(x). Virtual concept drifts consist in changes in
p(x).

Inductive TL deals with changes in p(y|x). Real concept drifts consist in changes in
p(y|x).

Inductive TL may deal with changes in p(x). Real concept drifts may involve changes in
p(x).

TL tries to use data from different sources to
build a target model.

NSE approaches that use past predictive
models could be seen as using knowledge
from different sources to build a target model.

TL could be used to transfer knowledge from
the past in order to perform well in the
present.

Learning in NSE consists in creating
up-to-date predictive models that perform
well in the present.

4.2 Differences

Despite the strong similarities between TL and learning in NSE presented in
Sect. 4.1, there are also significant differences. The main difference is that TL has
no notion of continuing time, as explained by Ditzler et al. [7] and elucidated by
Definition 4 (TL). In particular, TL approaches currently assume that there are pre-
existing source and target data sets coming from fixed joint probability distributions.
Even if the sources are used to represent data from different past periods of time and
the target is used to represent a given present period of time, this would still capture
only a fixed snapshot of the environment. The continuing nature of time captured
by data streams, which is a fundamental aspect of learning in NSE (Definition 10),
is not considered.

The consequence of that is that TL approaches are not designed to process
additional data over time. Therefore, they cannot automatically cope with concept
drifts that may affect the present and cause the current target model to become
obsolete. In order to transfer knowledge across time, these approaches require us
to know beforehand which past and present periods of time represent a given
source/target. Therefore, concept drifts resulting in a change in target (with the
previous target becoming a source) would need to be manually identified and the
whole TL approach re-run from scratch.

TL approaches also do not make provision for processing data with gradual
concept drifts, where probability distributions slowly change until they become
stable, or where there are two different probability distributions concurrently active
before the concept drift completes. As each source and target should come from a
fixed joint probability distribution in TL, it is unclear what to do with transitional
periods when trying to transfer knowledge from the past to the present. Examples
produced during such periods may need to be manually discarded. This issue

Transfer Learning in Non-stationary Environments 27

becomes even more significant for real-world data streams presenting continuous
changes, that is whose underlying joint probability distribution is always changing
from one time step to another. TL approaches are not prepared to deal with this type
of problem.

Moreover, TL typically requires past sources to be reprocessed several times. For
example, TrAdaBoost [5] creates predictive models for its ensemble sequentially,
and requires iterating over all source and target examples again for each new
predictive model being created. The process is similar to AdaBoost [33], which is an
offline ensemble learning algorithm. Argyriou et al. [1]’s feature learning requires
iterating over all sources and target several times until a convergence criterion is
reached. Given the unbounded nature of data streams (they are potentially infinite),
this is infeasible for learning in NSE.

It is also worth mentioning that the time order between sources representing
different past periods of time would not be taken into account by TL approaches,
even if they were trying to transfer knowledge across time. This is because they do
not distinguish between the moment in time where different past sources have been
produced. However, this is a less significant issue in the context of NSE than the
absent notion of continuing time itself. Even though some NSE approaches take the
age of past predictive models into account (e.g. by eliminating older models), this is
not necessarily a good strategy to learn in NSE [15].

Another difference between TL and learning in NSE is that TL is explicitly
concerned with using different sources to create a better target model than one
produced using only the target data. Even though the sources come from different
probability distributions from that of the target, they are expected to be useful and
are exploited. For example, many TL approaches try to transform the input space
of the source and target into a feature space where they become more similar
[1, 29, 30], as discussed in Sect. 2. Others try to find out which source examples
match the target probability distribution well, even though the source as a whole is
known to follow a different probability distribution from that of the target [5].

Learning in NSE, on the other hand, is concerned with creating an appropriate
predictive model for the current concept. Even though models representing the past
can be used for that, attempting to use past knowledge to help learning a new concept
is not a requirement. For example, many NSE approaches delete old predictive
models once a concept drift is detected [2, 10, 32], without even trying to check
whether such past models could be somehow helpful for building a new model.
Even when models representing different periods of time are used by ensemble
approaches for NSE [9, 17, 34, 35, 40], the ultimate goal of these approaches is
to identify when the past models represent concepts that match the current concept
well, so that they can be used in the present. Although past models representing
somewhat different concepts may end up being used and result in possible benefits,
this is different from deliberately trying to make use of source models/data when
we know that they do come from different probability distributions, as done by TL
approaches.

In addition, the sources used by TL do not necessarily need to come from
the same data-generating process. For instance, in the problem of software effort

28 L. L. Minku

Table 2 Differences between TL and learning in NSE

TL Learning in NSE

No notion of continuing time. Continuing time is a fundamental aspect.

Not designed to automatically process
incoming data over time.

Designed to automatically process incoming
data over time.

Unable to automatically cope with changes in
the present.

Designed to automatically cope with changes
in the present.

No provision for processing examples from
transitional periods between different joint
probability distributions.

Can process examples from transitional
periods between different joint probability
distributions.

Typically has to reprocess examples several
times, being unsuitable for potentially infinite
data streams.

Only requires repeated access to a limited
number of past examples, being feasible for
potentially infinite data streams.

Unable to distinguish between the time order
of different past sources.

Can potentially take the age of different past
models into account.

Aims to use sources with different probability
distributions to improve target model.

Aims to create an up-to-date predictive
model, without necessarily using past data or
models to help learning a new concept.

Sources may come from different
data-generating processes.

All training examples come from the same
data-generating process.

Explicitly considers sources and targets with
different input and output spaces.

Changes in the input and output spaces are
usually not explicitly considered.

estimation, training examples may be acquired from different companies than the
target one. Learning in NSE assumes that all training examples come from the same
data-generating process, even though there may be concept drift. Therefore, learning
in NSE approaches are not prepared to benefit from different data-generating
process. In particular, they can process a single data stream over time.

Yet another difference is that TL explicitly considers different input and output
spaces, as illustrated by Definition 4. Learning in NSE could potentially involve
changes in the input and output spaces, as they are intrinsically related to changes
in p(x) and p(y), which compose the joint probability distribution of a problem.
For instance, Sun et al. [36] proposed a NSE approach that explicitly takes class
evolution (appearance, disappearance and reoccurrence of classes) into account.
However, most existing NSE work does not explicitly tackle changes in the input
and output space.

Table 2 summarises the differences between TL and learning in NSE.

5 The Potential of Transfer Learning in NSE

Sections 4.1 and 4.2 show that, even though there are strong similarities between
current work on TL and learning in NSE, there are also significant differences. These
differences lead to limitations that prevent these approaches to effectively deal with

Transfer Learning in Non-stationary Environments 29

certain types of problem, or that cause these approaches to potentially miss useful
knowledge that could lead to better predictive performance.

In particular, TL is not designed to automatically process incoming data over
time and is typically unable to deal with potentially infinite data streams. It cannot
automatically cope with changes to the present and has no provision to process
examples from transitional periods between concepts. However, several real-world
problems that could potentially benefit from TL provide data streams rather than
fixed training sets. Let’s take the example of the software required effort problem
mentioned in Sect. 1. Software development companies develop additional software
projects over time, which could be provided as training examples in the form of
data streams. Such data streams are likely to present concept drift, given that, for
example the practices adopted by a software company and the type of projects that
it develops may change over time. So, a TL approach able to deal with data streams
would be desirable.

Meanwhile, NSE approaches are potentially wasting useful knowledge from
past concepts that could be used to help learning a new concept. As concept
drifts could lead to new concepts that share some similarities with respect to old
concepts, it would be desirable to have NSE approaches able to transfer knowledge
from old concepts to better learn new concepts. Moreover, NSE approaches cannot
benefit from examples coming from different data-generating processes. However,
several learning problems that operate in NSE could benefit from data coming
from different data-generating processes. In particular, as explained in the previous
paragraph, the software required effort problem introduced in Sect. 1 is actually
a problem that both operates in NSEs and could benefit from data coming from
different data-generating processes (i.e. different companies).

By combining TL and learning for NSE, the individual limitations of these
approaches could be overcome. For instance, two approaches called Dynamic
Cross-company Learning (DCL) [21] and Dynamic Cross-company Mapped Model
Learning (Dycom) [23] make use of data from different source data-generating
processes in order to improve predictive performance in a target non-stationary data
stream. The former can still only benefit from knowledge from a different data-
generating process when it matches the current target concept well. However, the
latter can transform knowledge from sources with different tasks and domains into
useful knowledge to learn a new concept in NSE. This approach enables TL to
process data streams in NSE. It can be seen as using ideas from learning in NSE to
make TL aware of continuing time.

Another online learning approach called Diversity for Dealing with Drifts (DDD)
[22] attempts to use knowledge acquired from a past concept’s p(x) and p(y|x) to
aid the learning of a new concept. This helps it to improve predictive performance
in the presence of gradual or not severe concept drifts. A recent chunk-based
approach [37] called Diversity and Transfer based Ensemble Learning (DTEL) uses
knowledge acquired from past concepts’ p(x) to aid the learning of a new concept.
These approaches can be seen as getting inspiration from TL to improve learning in
NSE.

30 L. L. Minku

The combination of TL and learning for NSE environments could lead to a
whole new range of machine learning approaches, forming a new combined area
of TL in NSE that overcomes the limitations of these areas in isolation. Sections 5.1
and 5.2 explain Dycom [23] and DDD [22], as well as the results achieved by these
approaches in the literature [22, 23], highlighting the potential benefit of TL in NSE.

5.1 Dynamic Cross-company Mapped Model Learning
(Dycom)

Dycom [23] is a regression approach for online inductive transfer learning in NSE
where both tasks and domains may differ between the sources and target. It assumes
that a good number of labelled source training examples are available from different
data-generating processes, but that the specific source generating a given example
is unknown. It considers that collecting labelled training examples from the target
data-generating process is expensive, and that only very few of such examples can
be acquired over time. Therefore, transferring knowledge from different sources
may help to learn a better target predictive model. Such TL should be able to tackle
concept drift, given that the target is non-stationary.

The approach is illustrated in Fig. 1. It separates the set of source training
examples into M partitions according to their similarities. This could be done based
on a clustering approach [20] or on prior knowledge [23]. Each of the M partitions
is used to create a source predictive model (source models 1 to M in Fig. 1). In this
version of Dycom, the source models are trained based on offline learning. However,
this approach could be extended to use source data streams.

A target data stream is used to train a target predictive model (target model 0 in
Fig. 1) based on an online supervised learning algorithm. This predictive model is
expected to be weak and perform poorly, due to the small number of labelled target

Target
Data Stream

Target
Model 0

Weight 0

Weight 1 Weight 2
...

...

...

Weight M

Target
Model 1

Source
Model 1

Source
Model 2

Source
Model M

Target
Model 2

Target
Model M

Source
Partition 1

Source
Partition 2

Source
Partition M

Fig. 1 Dycom approach for TL in NSE. Arrows represent flow of information

Transfer Learning in Non-stationary Environments 31

training examples. However, depending on how long the periods of stability are, it
may happen that, over time, it will be trained with enough examples to perform well.
Therefore, it is worth building and maintaining this model.

The target data stream is also used to learn M functions g
(i)
t : Y → Y able to

map the predictions made by each of the M source models i into the target concept
at time t . These functions thus compose M target models (target models 1 to M in
Fig. 1). Dycom assumes that, as the source training examples have been separated
into similar partitions, there exists a reasonably linear relationship between each
of the source models and the target concept, which can be learnt based on a few
labelled target training examples. This relationship is described as follows:

g
(i)
t (f (i)(x)) = f (i)(x) · b

(i)
t ,

where g
(i)
t is the function to map source model f (i)’s predictions to the target

concept, b
(i)
t is a learnt parameter, and x ∈ X are the input attributes of the target

example being predicted.
Parameter b

(i)
t is learnt in an online manner based on the following equation:

b
(i)
t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
if no target training example
has been received yet;

yt

f (i)(xt)
,

if(xt , yt) is the first
target training example;

lr · yt

f (i)(xt)
+ (1 − lr) · b

(i)
t−1, otherwise,

(1)

where (xt , yt) is the current target training example, and lr ∈ (0, 1) is a predefined
smoothing factor.

As explained in [23], the mapping function performs a direct mapping b
(i)
t = 1

if no target training example has been received yet. When the first target training
example is received, b

(i)
t is set to the value yt/f

(i)(xt). This gives a perfect
mapping of f (i)(xt) to the target concept for the example being learnt, as f (i)(xt) ·
b

(i)
t = f (i)(xt) · yt/f

(i)(xt) = yt . For all other target training examples received,
exponentially decayed weighted average with smoothing factor lr is used to set b

(i)
t .

Higher lr will cause more emphasis on the most recent target training examples
and higher adaptability to changing environments, whereas lower lr will lead to a
more stable mapping function. So, the weighted average allows learning mapping
functions that provide good mappings based on previous target training examples,
while allowing adaptability to changes that may affect the target.

Dycom’s predictions for new target examples are based on the weighted average
of all target models. The weights are initialised to 1 and are updated whenever a
new target training example becomes available as follows. The winner model is set

32 L. L. Minku

to be the target model whose prediction for the current target training example is
the most accurate. All other models are the looser models, and have their weights
multiplied by a predefined factor β ∈ (0, 1]. All weights are then normalised so
that they sum up to 1. The weights of the target models thus allow more emphasis
to be placed on the models that are currently more accurate. In particular, if the
target model that does not use source knowledge (target model 0) is inaccurate, its
corresponding weight will be low, so that its predictions will not hinder Dycom’s
predictive performance.

This approach has been evaluated in the context of software effort estimation,
where we are interested in predicting the effort for projects from a given target
company. In this problem, we have access to training examples from other source
companies, despite the fact that acquiring labelled training examples from within
the target company is expensive. The problem of software effort estimation gave
the name Dynamic Cross-company Mapped Model Learning to this approach, but
Dycom is also applicable to other problems, as we can see from its description
above.

Experiments on five databases containing software development projects [23]
using regression trees as the base learner show that Dycom achieved similar or
better predictive performance while requiring 10 times less target training examples
than a target model created using only target (no source) training examples. This
highlights the benefits of using TL in NSE when the cost of acquiring labelled
target training examples is high. Moreover, the experiments showed that Dycom’s
mapping functions can be visualised so that project managers can see how the
relationship between the efforts required by their company and other companies
changes over time. This could be potentially used to aid the development of
strategies to improve a company’s productivity. Therefore, the insights provided by
TL in NSE could go beyond mere predictions.

5.2 Diversity for Dealing with Drifts (DDD)

DDD is a classification ensemble approach for online learning in NSE. It was not
originally described as an approach for TL in NSE. However, this is essentially what
it does. This approach is based on two key findings [22]:

• Knowledge from a past concept can be useful when learning in the presence of
concept drifts that occur gradually or are not severe. When a gradual concept
drift occurs, knowledge from the past concept remains useful for a certain period
of time, until the drift completes. And, more importantly, if there is a non-severe
concept drift (i.e. if the old and new concepts share some similarities), knowledge
from the old concept could be useful to help learning the new concept. This is
in line with the fact that TL approaches can be beneficial if the source and target
share some similarities, as explained in Sect. 2. On the other hand, if the concept
drift occurs very fast and is very severe, the old and new concepts will not share

Transfer Learning in Non-stationary Environments 33

(a) Before concept drift detection

Drift Detection
Method

Weight old low

Weight new low

Weight old high

Low Diversity Ensemble
(learning and prediction)

Old Low Diversity Ensemble
(learning and prediction)

New Low Diversity Ensemble
(learning and prediction)

New High Diversity Ensemble
(learning)

Old High Diversity Ensemble
(learning and prediction)

High Diversity Ensemble
(learning)

Data
Stream

(a) After concept drift detection

Fig. 2 DDD approach for TL in NSE. Arrows represent flow of information

enough similarities for knowledge from the old concept to help learning the new
concept.

• Learning a given concept using very highly diverse ensembles will cause them
to perform poorly on this concept. However, such weak learning enables these
ensembles to quickly adapt to a new concept, if this new concept shares
similarities with the given concept. In essence, this enables knowledge of a
given concept to be transferred to a new concept in order to improve predictive
performance in NSE.

Therefore, DDD maintains online learning ensembles with different diversity
levels in order to achieve robustness to different data stream conditions (i.e. to
different types of concept drift or periods of stability). Figure 2 illustrates its
behaviour. Before a concept drift is detected, a low-diversity ensemble is used both
for learning incoming training examples and for making predictions. A very highly
diverse ensemble is used for learning, but not for predictions. This is because this
ensemble is expected to be weak and perform poorly in the current concept, but it
may become helpful if there are gradual or not severe concept drifts, based on the
findings above.

The low-diversity ensemble is monitored by a drift detection method. If a drift is
detected, DDD switches to the mode “after concept drift detection”. In this mode,
the previous low- and high-diversity ensembles are kept as old ensembles, and both
are activated for learning and predictions. Low diversity is enforced into the learning
procedure of the old high-diversity ensemble, so that it can strongly learn the new
concept while transferring knowledge from the old concept. These ensembles may
be beneficial if the concept drift is gradual or not severe. They may also be beneficial
in case the drift detection was a false positive drift detection (false alarm), in which
case the concept did not change and the old ensembles remain representative of the
current concept. A new low-diversity ensemble is created to start learning the new
concept from scratch. It may be useful if the concept drift is very fast and severe.

34 L. L. Minku

This ensemble is therefore activated for predictions. It is also monitored by the drift
detection method to detect new concept drifts. A new high-diversity ensemble is
created to weakly learn the new concept, and is not active for predictions. It may
become useful if there is a new gradual or not severe concept drift.

The prediction given by the system in the mode “after concept drift detection”
is the weighted majority vote of the predictions given by the ensembles that are
active for predictions. The weight is the normalised accuracy of the corresponding
ensemble since the last concept drift detection, and is calculated in an online way
[22] based on incoming training examples. It allows the right ensembles to be
emphasised for the given concept drift (or false alarm).

The approach switches back to the mode “before concept drift detection” once
the accuracy of the new low-diversity ensemble becomes higher than that of the
old ensembles, or the accuracy of the old high-diversity ensemble becomes higher
than that of the low-diversity ensembles, with a certain margin. The ensemble which
became more accurate than the others and the new high-diversity ensemble become
the low- and high-diversity ensembles in the mode “before concept drift detection”.

Any online ensemble learning algorithm and method to encourage high or low
diversity could potentially be used. Online bagging ensembles [27] were used in
the paper that proposed DDD [22], and different levels of diversity were achieved
by using different sampling rates based on the parameter lambda of the Poisson
distribution used by online bagging. In particular, the lambda value was kept with
the original value of one used by the online bagging algorithm in order to create low-
diversity ensembles. Lower lambda values (less than one) lead to higher diversity,
and were used to produce the high-diversity ensembles.

Experiments were performed to evaluate DDD based on several synthetic data
streams containing different types of concept drift and on real-world data streams
from the areas of credit card approval, electricity price prediction and network
intrusion detection [22]. The results show that DDD was usually able to maintain or
improve predictive performance in comparison with other approaches for learning
in NSE (DWM [16] and Baena-Garcia et al. [2]’s approach) and online bagging
without mechanisms to deal with concept drifts. Predictive performance was
improved specially for gradual and non-severe drifts, which are exactly the cases
for which TL via the the old ensembles had been found to be helpful (see first bullet
point in the beginning of this subsection).

Overall, DDD and its achieved results further illustrate the benefits of combining
TL and learning in NSE. In particular, they show that knowledge from old concepts
can be used to help learning the new concept, improving learning in NSE especially
when the old and new concepts share some similarities.

6 Conclusions

This chapter provided background in the fields of TL and learning in NSE to enable
understanding the relationship between these two fields. It gave definitions that
existing work in these fields can be considered to be adopting, and examples of

Transfer Learning in Non-stationary Environments 35

several representative approaches. Based on that, a discussion of the similarities
and differences between these two fields was provided. This discussion reveals
that approaches in these fields have limitations that could be overcome through
a better integration between them. For instance, NSE approaches are potentially
wasting useful knowledge from past concepts that could be helpful for learning a
new concept. Moreover, they cannot benefit from examples coming from different
data-generating processes. TL, on the other hand, has no notion of continuing time.
It is not designed to automatically process incoming data over time and is typically
unable to deal with potentially infinite data streams. It cannot automatically cope
with concept drifts affecting the present and has no provision to process examples
from transitional periods between concepts.

Therefore, this chapter discussed the potential benefits of better integrating the
fields of TL and learning in NSE. In particular, two existing approaches for TL
in NSE called Dycom and DDD were explained. The positive results obtained by
these approaches in the literature highlight the benefit of TL in NSE. Dycom shows
how ideas from learning in NSE can be used to make TL aware of continuing time,
enabling it to deal with data streams and automatically cope with concept drift.
Conversely, DDD shows how ideas from TL can be used to inspire better algorithms
for learning in NSE, by enabling knowledge from past concepts to aid the learning
of new concepts.

As the first work to provide a detailed discussion of the relationship between
TL and NSE, this chapter opens up the path for future research in the emerging
area of TL in NSE. It encourages the research communities in these fields to work
together, so that improved algorithms can be proposed to tackle challenging real-
world problems.

Acknowledgements This work was partially funded by EPSRC Grant No. EP/R006660/1.

References

1. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Proceedings of the 19th
Annual Conference on Neural Information Processing Systems, pp. 41–48 (2007)

2. Baena-García, M., Del Campo-Ávila, J., Fidalgo, R., Bifet, A.: Early drift detection method. In:
Proceedings of the 4th International Workshop on Knowledge Discovery from DataStreams,
Berlin, pp. 77–86 (2006)

3. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Singapore (2006)
4. Chen, S., He, H.: SERA: selectively recursive approach towards nonstationary imbalanced

stream data mining. In: Proceedings of the 2009 International Joint Conference on Neural
Networks (IJCNN), pp. 522–529 (2009)

5. Dai, W., Yang, Q., Xue, G., Yu, Y.: Boosting for transfer learning. In: Proceedings of the 24th
International Conference on Machine Learning, pp. 193–200 (2007)

6. Dai, W., Xue, G.R., Yang, Q., Yu, Y.: Transferring Naive Bayes classifiers for text
classification. In: Proceedings of the 22nd National Conference on Artificial Intelligence
(2007)

36 L. L. Minku

7. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a
survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

8. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp.
71–80 (2000)

9. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments.
IEEE Trans. Neural Netw. Learn. Syst. 22(10), 1517–1531 (2011)

10. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Proceedings
of the 7th Brazilian Symposium on Artificial Intelligence (SBIA), São Luiz do Maranhão.
Lecture Notes in Computer Science, vol. 3171, pp. 286–295. Springer, Berlin (2004)

11. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. 46(4), 44:1–44:44 (2015)

12. Huang, J., Smola, A., Gretton, A., Borgwardt, K., Scholkopf, B.: Correcting sample selection
bias by unlabeled data. In: Proceedings of the 19th Annual Conference on Neural Information
Processing Systems (2007)

13. ISBSG. The International Software Benchmarking Standards Group. (2011) http://www.isbsg.
org

14. Kitchenham, B., Mendes, E., Travassos, G.: Cross versus within-company cost estimation
studies: a systematic review. IEEE Trans. Softw. Eng. 33(5), 316–329 (2007)

15. Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In:
Proceedings of the 22nd International Conference on Machine Learning (ICML), Bonn, pp.
449–456 (2005)

16. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting
concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

17. Krawczyk, B., Minku, L., Gama, J., Stefanowski, J., Wozniak, M.: Ensemble learning for data
stream analysis: a survey. Inform. Fusion 37, 132–156 (2017)

18. Kuncheva, L., Zliobaite, I.: On the window size for classification in changing environments.
Intell. Data Anal. 13(6), 861–872 (2009)

19. Menzies, T., Caglayan, B., He, Z., Kocaguneli, E., Krall, J., Peters, F., Turhan, B.: The promise
repository of empirical software engineering data (2012). http://promisedata.googlecode.com

20. Minku, L., Hou, S.: Clustering dycom: an online cross-company software effort estimation
study. In: Proceedings of the 13th International Conference on Predictive Models and Data
Analytics for Software Engineering (PROMISE), pp. 12–21 (2017)

21. Minku, L., Yao, X.: Can cross-company data improve performance in software effort
estimation? In: Proceedings of the 8th International Conference on Predictive Models in
Software Engineering (PROMISE), Lund, pp. 69–78 (2012)

22. Minku, L.L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE
Trans. Knowl. Data Eng. 24(4), 619–633 (2012)

23. Minku, L., Yao, X.: How to make best use of cross-company data in software effort estimation?
In: Proceedings of the 36th International Conference on Software Engineering (ICSE), pp.
446–456 (2014)

24. Minku, L.L., White, A., Yao, X.: The impact of diversity on on-line ensemble learning in the
presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

25. Nishida, K.: Learning and detecting concept drift. PhD thesis, Hokkaido University (2008)
26. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image

representations using convolutional neural networks. In: Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724 (2014)

27. Oza, N.C., Russell, S.: Online bagging and boosting. In: Proceedings of the 2005 IEEE
International Conference on Systems, Man and Cybernetics, New Jersey, vol. 3, pp. 2340–
2345. Institute for Electrical and Electronics Engineers (2005)

28. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2010)

29. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component
analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

http://www.isbsg.org
http://www.isbsg.org
http://promisedata.googlecode.com

Transfer Learning in Non-stationary Environments 37

30. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.: Self-taught learning: transfer learning from
unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning
(ICML), pp. 759–766 (2007)

31. Rosenstein, M., Marx, Z., Kaelbling, L.: To transfer or not to transfer. In: Proceedings of the
Conference on Neural Information Processing Systems (NIPS) Workshop Inductive Transfer:
10 Years Later (2005)

32. Ross, G., Adams, N., Tasoulis, D., Hand, D.: Exponentially weighted moving average charts
for detecting concept drift. Pattern Recogn. Lett. 33, 191–198 (2012)

33. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions.
Mach. Learn. 37(3), 297–336 (1999)

34. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting concepts. Intell. Data Anal.
11(1), 3–28 (2007)

35. Street, W., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In:
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 377–382 (2001)

36. Sun, Y., Tang, K., Minku, L.L., Wang, S., Yao, X.: Online ensemble learning of data streams
with gradually evolved classes. IEEE Trans. Knowl. Data Eng. 28(6), 1532–1545 (2016)

37. Sun, Y., Tang, K., Zhu, Z., Yao, X.: Concept drift adaptation by exploiting historical knowledge
(2017). ArXiv https://arxiv.org/abs/1702.03500

38. Tsymbal, A.: The problem of concept drift: definitions and related work. Technical Report
106, Computer Science Department, Trinity College, Dublin (2004)

39. Turhan, B., Menzies, T., Bener, A., Di Stefano, J.: On the relative value of cross-company and
within-company data for defect prediction. Empir. Softw. Eng. 14(5), 540–578 (2009)

40. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble
classifiers. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 26–235 (2003)

41. Wang, S., Minku, L., Yao, X.: A systematic study of online class imbalance learning with
concept drift. IEEE Trans. Neural Netw. Learn. Syst., 20 pp (2018). https://doi.org/10.1109/
TNNLS.2017.2771290

42. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach.
Learn. 23(1), 69–101 (1996)

https://arxiv.org/abs/1702.03500
https://doi.org/10.1109/TNNLS.2017.2771290
https://doi.org/10.1109/TNNLS.2017.2771290

A New Combination of Diversity
Techniques in Ensemble Classifiers
for Handling Complex Concept Drift

Imen Khamassi, Moamar Sayed-Mouchaweh, Moez Hammami,
and Khaled Ghédira

Abstract Recent advances in Computational Intelligent Systems have focused
on addressing complex problems related to the dynamicity of the environments.
Generally in dynamic environments, data are presented as streams that may evolve
over time and this is known by concept drift. Handling concept drift through
ensemble classifiers has received a great interest in last decades. The success of
these ensemble methods relies on their diversity. Accordingly, various diversity
techniques can be used like block-based data, weighting-data or filtering-data. Each
of these diversity techniques is efficient to handle certain characteristics of drift.
However, when the drift is complex, they fail to efficiently handle it. Complex drifts
may present a mixture of several characteristics (speed, severity, influence zones in
the feature space, etc.) which may vary over time. In this case, drift handling is more
complicated and requires new detection and updating tools. For this purpose, a new
ensemble approach, namely EnsembleEDIST2, is presented. It combines the three
diversity techniques in order to take benefit from their advantages and outperform
their limits. Additionally, it makes use of EDIST2, as drift detection mechanism, in
order to monitor the ensemble’s performance and detect changes. EnsembleEDIST2
was tested through different scenarios of complex drift generated from synthetic and
real datasets. This diversity combination allows EnsembleEDIST2 to outperform
similar ensemble approaches in terms of accuracy rate, and present stable behaviors
in handling different scenarios of complex drift.

I. Khamassi (�) · M. Hammami · K. Ghédira
Université de Tunis, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia
e-mail: imen.khamassi@isg.rnu.tn; moez.hammami@isg.rnu.tn; khaled.ghedira@isg.rnu.tn

M. Sayed-Mouchaweh
Institute Mines-Telecom Lille Douai, Douai, France
e-mail: moamar.sayed-mouchaweh@imt-lille-douai.fr

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_3&domain=pdf
mailto:imen.khamassi@isg.rnu.tn
mailto:moez.hammami@isg.rnu.tn
mailto:khaled.ghedira@isg.rnu.tn
mailto:moamar.sayed-mouchaweh@imt-lille-douai.fr
https://doi.org/10.1007/978-3-319-89803-2_3

40 I. Khamassi et al.

1 Introduction

Learning from evolving data stream has received a great attention. It addresses the
state of data being non-stationary over time, which is known by concept drift. The
term concept refers to data distribution, represented by the joint distribution p(x, y),
where x represents the n-dimensional feature vector and y represents its class label.
The term concept drift refers to a change in the underlying distribution of new
incoming data. For example, in intrusion detection application, the behavior of an
intruder may evolve in order to confuse the system protection rules. Hence, it is
essential to consider these changes for updating the system in order to preserve its
performance.

Ensemble classifiers appear to be promising approaches for tracking evolving
data streams. The success of the ensemble methods, according to single classifier,
relies on their diversity [17, 21, 22]. Diversity can be achieved according to three
main strategies[15]: block-based data, weighting-data, or filtering-data. In block-
based ensembles [5, 16, 20], the training set is presented as blocks or chunks of
data at a time. Generally, these blocks are of equal size and the evaluation of base
learners is done when all instances from a new block are available. In weighting-
data ensembles[2, 13, 18], the instances are weighted according to some weighting
process. For example in Online Bagging [19], the weighting process is based on
reusing instances for training individual learners. Finally, filtering-data ensembles
[1] are based on selecting data from the training set according to a specific criterion,
for example, similarity in feature space.

In many real-life applications, the concept drift may be complex in the sense that
it presents time-varying characteristics. For instance, a drift can present different
characteristics according to its speed (abrupt or gradual), nature (continuous
or probabilistic), and severity (local or global). Accordingly, complex drift can
present a mixture of all these characteristics over time. It is worth underlining
that each characteristic presents its own challenges. Hence, a mixture of these
different characteristics may accentuate the challenge issues and complicate the drift
handling.

In this paper, the goal is to underline the complementarity of the diversity
techniques (block-based data, weighting-data, and filtering-data) for handling
different scenarios of complex drift. For this purpose, a new ensemble approach,
namely EnsembleEDIST2, is proposed. The intuition is to combine these three
diversity techniques in order to efficiently handle different scenarios of complex
drift. Firstly, EnsembleEDIST2 defines a data-block with variable size for updating
the ensemble’s members, thus it can avoid the problem of tuning off size of
the data-block. Secondly, it defines a new filtering criterion for selecting the
most representative data of the new concept. Thirdly, it applies a new weighting
process in order to create diversified ensemble’s members. Finally, it makes use of
EDIST2 [11, 14], as drift detection mechanism, in order to monitor the ensemble’s
performance and detect changes.

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 41

EnsembleEDIST2 has been tested through different scenarios of complex drifts
generated from synthetic and real datasets. This diversity combination allows
EnsembleEDIST2 to outperform similar ensemble approaches in terms of accuracy
rate, and present a stable behavior in handling different scenarios of complex drift.

The remainder of the paper is organized as follows. In Sect. 2, the challenges
of complex concept drift are exposed. In Sect. 3, the advantages and the limits of
each diversity technique are studied. In Sect. 4, the proposed approach, namely
EnsembleEDIST2, is detailed. Section 5, the experimental setup and the obtained
results are presented. Finally, in Sect. 6, the conclusion and some future research
directions are exposed.

2 Complex Concept Drift Characteristics and Challenges

A drift occurs when a new concept replaces an old one, and it may by characterized
by its speed (abrupt, gradual), nature (continuous, probabilistic), or severity (local,
global).

2.1 Speed

Speed refers to how long the drift lasts. Hence, the drift can be categorized as

• Abrupt drift which occurs when the new concept suddenly replaces the old
one. This drift is challenging because it immediately deteriorates the learner
performance and causes a rapid accuracy decrease.

• Gradual drift which occurs when the drifting time is relatively large. As a result,
there are two types of gradual drift:

– Gradual probabilistic drift which refers to a period when both new and old
concepts are active. As time passes, the probability of sampling from the old
concept decreases, whereas the probability of sampling from new concept
increases, until the new concept totally replaces the old one (see Fig. 1).
Namely, this drift is challenging, because it creates a period of uncertainty,
where both new and old concepts are active at the same time.

– Gradual continuous drift occurs when the concept itself continuously changes
from the old to the new concept, by suffering small modifications at every
time step (see Fig. 2). Notice that these changes are so small that they are only
noticed during a long time period; and this may lead to a delay of detection.

42 I. Khamassi et al.

(b)(a) (c) (d) (e)

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

2

4

6

8

10

2

4

6

8

10

2

4

6

8

10

2

4

6

8

10

2

4

6

8

10

Fig. 1 Gradual probabilistic local drift: SEA dataset. (a) concept1: 100%; concept2: 0%. (b)
concept1: 75%; concept2: 25%. (c) concept1: 50%; concept2: 50%. (d) concept1: 25%; concept2:
75%. (e) concept1: 0%; concept2: 100%

(a) (b) (c) (d) (e)
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Fig. 2 Gradual continuous local drift: (a) concept1, (b)–(d) instance space affected by the drift
and (e) concept2

2
1
0

-1
-2
-3
-4

2
1
0

-1
-2
-3
-4

2
1
0

-1
-2
-3
-4

-3 -2 -1 01 2 -3 -2 -1 01 2 -3 -2 -1 01 2

(b)(a) (c)

Fig. 3 Gradual continuous global drift: (a) concept1, (b) concept evolution and (c) concept2

2.2 Severity

Severity refers to the amount of change caused by the drift. Accordingly, the drift
can be categorized as

– Local drift where changes only occur in some regions of the instance space.
Hence, when looking at the overall instance space, we notice that only some
subsets are affected by the drift (see Figs. 1 and 2). Namely, the time until local
concept drift is detected can be arbitrarily long. This is due to the rarity of data
representing the drift, which in turn makes it difficult to confirm the presence of
drift.

– Global drift where changes affect the overall instance space. In such a case,
the difference between the old and the new concept is more noticeable and
the drift can be earlier detected (see Fig. 3). Namely, handling this drift is also
challenging, because the performance’s decrease of the learner is more important
than the other types of drift.

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 43

2.3 Complex Concept Drift

In many real-life applications, the concept drift may be complex in the sense that
it presents time-varying characteristics. Let us take the example of a drift with
three different characteristics according to its speed (gradual or abrupt), nature
(continuous or probabilistic), and severity (local or global). It is worth underlining
that each characteristic presents its own challenges (as stated in Sects. 2.1 and 2.2).
As a result, a mixture of these different characteristics may accentuate the challenge
issues and complicate the drift handling.

For instance, we can consider the drift depicted in Fig. 2 as complex drift as it
simulates a Gradual Continuous Local Drift, in the sense that the hyperplane class
boundary is gradually rotating during the drifting phase and continuously presenting
changes with each instance in local regions. Namely, the time until this complex
drift is detected can be arbitrarily long. This is due to the rarity of data source
representing the drift, which in turn makes it difficult to confirm the presence of
drift. Moreover, in some cases, this drift can be considered as noise by confusion,
which makes the model unstable. Hence, to overcome the instability, the model has
to (1) effectively differentiate between local changes and noises, and (2) deal with
the scarcity of instances that represent the drift in order to effectively update the
learner.

Another interesting complex drift represents the Gradual Continuous Global
Drift (see Fig. 3). During this drift, the concept is gradually changing and contin-
uously presenting modifications with each instance. Namely, during the transition
phase, the drift evolves and presents several intermediate concepts until the emer-
gence of the final concept (see Fig. 3b). Hence, the challenging issue is to efficiently
decide the end time of the old concept and detect the start time of the new concept.
The objective is to update the learner with the data that represent the final concept
(see Fig. 3c) and not with data collected during the concept evolution (see Fig. 3b).
Moreover, this drift is considered as global because it is affecting all the instances of
the drifting class. Namely, handling this complex drift is also challenging, because
the performance’s decrease of the learner is more pronounced than the other types
of drifts.

3 Related Work

The diversity [15] among the ensemble can be fulfilled by applying various
techniques such as block-based data, weighting-data or filtering data, in order to
differently train base learners (see Fig. 4). Hence, the objective in this investigation
is to highlight the advantages and drawbacks of each diversity technique in handling
complex drift (see Table 1).

44 I. Khamassi et al.

Data Stream

Ensemble ClassifierC1 C2 C3

C1 C2 C3

C1 C2 C3

(a)

(b)

(c)

3 times
1 time 2 times

Fig. 4 Different diversity techniques among the ensemble. (a) Block-based (b) Weighting-data (c)
Filtering-data

Table 1 Summary of the advantages (+) and drawbacks (−) of diversity techniques for handling
complex drift

Gradual continuous Gradual probabilistic Abrupt

Complex drift Local Global Local Global Local Global

Block-based + + + + − −
Weighting-data + − + − + −
Filtering-data − + − + − +

3.1 Block-Based Technique

According to the block-based technique, the training set is presented as blocks
or chunks of data at a time. Generally, these blocks are of equal size and the
construction, evaluation, or updating of base learners is done when all instances

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 45

from a new block are available. Very often, ensemble learners periodically evaluate
their components and substitute the weakest one with a new (candidate) learner
after each data-block [4, 16, 20]. This technique preserves the adaptability of the
ensemble in such way that learners, which were trained in recent blocks, are the
most suitable for representing the current concept.

The block-based ensembles are suitable for handling gradual drifts. Generally,
during these drifts, the change between consecutive data-blocks is not quite
pronounced; thus, it can be only noticeable in long periods. The interesting point
in the block-based ensembles is that they can enclose different learners that are
trained in different periods of time. Hence, by aggregating the outputs of these base
classifiers, the ensemble can offer accurate reactions to such gradual drifts.

In contrast, the main drawback of block-based ensembles is the difficulty of
tuning off the block size to offer a compromise between fast reactions to drifts and
high accuracy. If the block size is too large, they may slowly react to abrupt drift;
whereas small size can damage the performance of the ensemble in stable periods.

3.2 Weighting-Data Technique

In this technique, the base learners are trained according to weighted instances from
the training set. A popular instance weighting process is presented in the Online
Bagging ensemble [19]. For ease of understanding, the weighting process is based
on reusing instances for training individual classifiers. Namely, if we consider that
each base classifier Ci is trained from a subset Mi from the global training set, then
the instancei will be presented k times in Mi ; where the weight k is drawn from a
Poisson(1) distribution.

Online Bagging has inspired many researchers in the field of drift tracking [2,
13, 17]. This approach can be of great interest for:

– Class imbalance: where some classes are severely underrepresented in the dataset
– Local drift: where changes occur in only some regions of the instance space.

Generally, the weighting process intensifies the reuse of underrepresented class
data and helps to deal with the scarcity of instances that represent the local drift.
However, the instance duplication may impact the ability of the ensemble in
handling global drift. During global drift, the change affects a large amount of data;
thus, when reusing data for constructing base classifiers, the performance’s decrease
is accentuated and the recovery from the drift may be delayed.

3.3 Filtering-Data Technique

This technique is based on selecting data from the training set according to a specific
criterion, for example similarity in the feature space. Such technique allows to select

46 I. Khamassi et al.

subsets of attributes that provide partitions of the training set containing maximally
similar instances, that is, instances belonging to the same regions of feature space.
Thanks to this technique, base learners are trained according to different subspaces
to get benefit from different characteristics of the overall feature space.

In contrast with conventional approaches which detect drift in the overall
distribution without specifying which feature has changed, ensemble learners based
on filtered data can exactly specify the drifting feature. This is a desired property
for detecting novel class emergence or existing class fusion in unlabeled data.
However, these approaches may present difficulty in handling local drifts if they
do not define an efficient filtering criterion. It is worth underlining that during local
drift, only some regions of the feature space are affected by the drift. Hence, only
the base classifier which is trained on changing region is the most accurate to handle
the drift. However, when aggregating the final decision of this classifier with the
remained classifiers, trained from unchanged regions, the performance recovery
may be delayed [12].

4 The Proposed Approach

The intuition behind EnsembleEDIST2 is to combine the three diversity techniques
(Block-based, Weighting-data, and Filtering data) in order to take benefit from their
advantages and avoid their drawbacks.

The contributions of EnsembleEDIST2 for efficiently handling complex concept
drifts are as follows, it:

– Explicitly handles drift through a drift detection method EDIST2 [14] (Sect. 4.1)
– Makes use of data-block with variable size for updating the ensemble’s members

(Sect. 4.2)
– Defines a new filtering criterion for selecting the most representative data of the

new concept (Sect. 4.3)
– Applies a new weighting process in order to create diversified ensemble’s

members (Sect. 4.4)

4.1 Drift Monitoring Process in EnsembleEDIST2

EnsembleEDIST2 is an ensemble classifier designed to explicitly handle drifts. It
makes use of EDIST2 [14], as drift detection mechanism, in order to monitor the
ensemble’s performance and detect changes (see Fig. 5).

EDIST2 monitors the prediction feedback provided by the ensemble. More
precisely, EDIST2 studies the distance between two consecutive errors of classi-
fication. Notice that the distance is represented by the number of instances between

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 47

C1 C2
C3

C1 C2 C3

t0

t0

t1

t1
t2

Time

Time

WG W0

WG W0

W0W
G

+

W
warning

WG W 0WG W
warning

W 0= +

C1 C2 C3 C
new

(a)

(b) (c)

Ensemble

3 times 1 time 2 times

A new classifier is created from data in W and W
0warning

and the oldest classifier is removed

The ensemble members are incremented
according to weighted data from W

warning

The ensemble members are incremented
according to data in WG and W

0

Fig. 5 EnsembleEDIST2’s adapting process according to the three detection levels: (a) In-control,
(b) Warning and (c) Drift

two consecutive errors of classification. Accordingly, when the data distribution
becomes nonstationary, the ensemble will commit much more errors and the
distance between these errors will decrease.

In EDIST2, the concept drift is tracked through two data windows, a ‘global’
one and a ‘current’ one. The global window WG is a self-adaptive window which
is continuously incremented if no drift occurs and decremented otherwise; and the
current window W0 which represents the batch of current collected instances.

In EDIST2, we want to estimate the error distance distribution of WG and W0
and make a comparison between the averages of their error distance distributions
in order to check a difference. As stated before, a significant decrease in the error
distance implies a change in the data distribution and suggests that the learning
model is no longer appropriate.

EDIST2 makes use of a statistical hypothesis test in order to compare WG and
W0 error distance distributions and checks whether the averages differ by more than
the threshold ε. It is worth underlining that there is no a priori definition of the
threshold ε, in the sense that it does not require any a priori adjusting related to the
expected speed or severity of the change. ε is autonomously adapted according to a
statistical hypothesis test (for more details please refer to [14]).

48 I. Khamassi et al.

The intuition behind EDIST2 is to monitor μd which represents difference
between WG and W0 averages and accordingly three thresholds are defined (see
EnsembleEDIST2 Algorithm):

– In-Control level: μd ≤ ε ; within this level, we confirm that there is no change
between the two distributions, so we enlarge WG by adding W0 ’s instances.
Consequently, all the ensemble members are incremented according to data
samples in WG and W0.

– Warning level: μd > ε ; within this level, the instances are stored in a warning
chunk Wwarning. Hence, all the ensemble members are incremented according
to weighted data from Wwarning. (The weighting process will be explained in
Sect. 4.4)

– Drift level: μd > ε + σd ; within this level, the drift is confirmed and WG is
decremented by only containing the instances stored since the warning level,
that is, in Wwarning. Additionally, a new base classifier is created from scratch
and trained according to data samples in Wwarning, then the oldest classifier is
removed from the ensemble.

4.2 EnsembleEDIST2’s Diversity by Variable-Sized Block
Technique

In EnsembleEDIST2, the size of data-block is not defined according to the number
of instances, as it is the case of conventional block-based ensembles, but according
to the number of errors committed during the learning process. More precisely,
the data-block W0, in EnsembleEDIST2, is constructed by collecting the instances
that exist between N0 errors (see CollectInstances Procedure in EnsembleEDIST2
Algorithm).

As depicted in Fig. 6, when the drift is abrupt, the ensemble commits N0 errors
in short drifting time. However, when the drift is gradual, the ensemble commits N0
errors in relatively longer drifting time. Hence, according to this strategy, the block
size is variable and adjusted according to drift characteristics.

It is worth underlining that EnsembleEDIST2 can offer a compromise between
fast reactions to abrupt drift and stable behavior regarding gradual drift. This
is a desirable property for handling complex drift which may present different
characteristics at the same time, and accordingly EnsembleEDIST2 can avoid the
problem of tuning off the size of data-block as it is the case of most block-based
approaches.

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 49

concept1

concept2 concept2

concept1

Error
number

Error
number

N0 N0

W 0 W 0

drifting
time

drifting time

TimeTime

TimeTime

(a) (b)

Variable block-based
technique

Fig. 6 Variable data-block technique in EnsembleEDIST2. (a) Abrupt drift (b) Gradual drift

4.3 EnsembleEDIST2’s Diversity by New Filtering-Data
Criterion

Different from conventional filtering-data ensembles, which filter data according to
similarity in the feature space, EnsembleEDIST2 defines a new filtering criterion.
It filters the instances that trigger the warning level. More precisely, each time the
ensemble reaches the warning level, the instances are gathered in a warning chunk
Wwarning in order to reuse them for training the ensemble’s members (see Fig. 7a).
This is an interesting point when dealing with local drift because drifting data are
scarce and not continuously provided. It is possible that a certain amount of drifting
data can be found in zones (1), (2), (3) and (4) but not quite sufficient to reach the
drift level. Hence, by considering these data for updating the ensemble’s members,
EnsembleEDIST2 can ensure a rapid recovery from local drift.

In contrast, conventional filtering-data ensembles are unable to define in which
zone the drift has occurred; thus, they may update the ensemble’s members with data
filtered from unchanged feature space, which in turn may delay the performance
correctness.

50 I. Khamassi et al.

(1) (2) (3) (4)

concept2

concept1

W
0

W
warning

W
0

W
0

W
0

Time

Time

C1 C2 C3

k=1k=3 k=2

are weighted according to
k=poisson(1)

for training ensemble members

Data present in W
warning

Data that flagged the Warning

are filtered in W
warning

Drift
threshold

Warning
threshold

Monitoring
measure

Local drift

(b)

(a)

Fig. 7 (a) Filtering-data technique and (b) Weighting-data technique in EnsembleEDIST2

4.4 EnsembleEDIST2’s Diversity by New Weighting-Data
Process

The focus in EnsembleEDIST2 is to maximize the use of data present in Wwarning for
accurately updating the ensemble. More precisely, the data in Wwarning are weighted
according to the same weighting process used in Online bagging [19]. Namely, each
instancei from Wwarning is reused k times for training the base classifier Ci , where
the weight k is drawn from a Poisson(1) distribution (see WeightingDataProcess
Procedure in EnsembleEDIST2 Algorithm).

Generally, the weighting process in EnsembleEDIST2 offers twofold advantages.
First, it intensifies the reuse of underrepresented class data and helps to deal with
scarcity of instances that represent the local drift. Second, it permits faster recovery
from global drift than conventional weighting-data ensembles. As it is known,
during global drift, the change affects a large amount of data. Hence, different from
conventional weighting-data ensembles, which apply the weighting process to all
the datasets; EnsembleEDIST2 only weights the instances present in Wwarning (see
Fig. 7b). In consequence, it can avoid to accentuate the decrease of the ensemble’s
performance during global drift, and ensure a fast recovery.

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 51

Algorithm EnsembleEDIST2
Input: (x, y): Data Stream

N0: number of error to construct the window
m: number of base classifier

Output: Trained ensemble classifier E

1. for each base classifier Ci from E

2. InitializeClassif ier(Ci)

3. end for
4. WG←CollectInstances(E,N0)

5. Wwarning←ø
6. repeat
7. W0←CollectInstances(E,N0)

8. Level←DetectedLevel(WG,W0)

9. switch (Level)
10. case 1: Incontrol

11. WG ← WG ∪ W0
12. UpdateParameters(WG,W0)

13. Increment all ensemble’s members of E according to instances in WG

14. end case 1
case 2: Warning

15. Wwarning ← Wwarning ∪ W0
16. UpdateParameters(Wwarning,W0)

17. WeightingDataP rocess(E,Wwarning)

18. end case 2
case 3: Drif t

19. Create a new base classifier Cnew trained on instances in Wwarning

20. E ← E ∪ Cnew

21. Remove the oldest classifier from E

22. WG←Wwarning

23. Wwarning←ø
24. end case 3
25. end switch
26.until The end of the data streams

Algorithm DetectedLevel(WG,W0)
Input: WG: Global data window characterized by:

NG: error number
μG: error distance mean
σG:error distance standard deviation

W0: Current data window characterized by:
N0: error number,
μ0: error distance mean,
σ0:error distance standard deviation

52 I. Khamassi et al.

Output: Level: detection level
1. μd←μG-μ0

2. σd←
√

σ 2
G

NG
+ σ 2

0
N0

3. ε←t1−α ∗ σd

4. if (μd > ε + σd)
5. Level←Drif t

6. else if (μd > ε)
7. Level←Warning

8. else Level←Incontrol

9. end if
10. end if
11. return (Level)

Algorithm CollectInstances(E,N0)
Input: (x, y): Data Stream

N0: number of error to construct the window
C: trained ensemble classifier E

Output: W : Data window characterized by:
N : error number
μ: error distance mean
σ :error distance standard deviation

1. W←ø
2. N←0
3. μ←0
4. σ←0
5. repeat for each instance xi

6. Prediction ← unweightedMajorityV ote(E, xi)

7. if (Prediction = f alse)
8. di←computeDistance()

9. μ← N
N+1μ + di

N+1

10. σ←
√

N−1
N

σ 2 + (di−μ)2

N+1
11. N←N + 1
12. end if
13. W←W ∪ {xi}
14. until (N = N0)
15. return (W)

Algorithm UpdateParameters(WG,W0)
Input: WG: Global data window characterized by:

NG: error number
μG: error distance mean
σG:error distance standard deviation

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 53

W0: Current data window characterized by:
N0: error number,
μ0: error distance mean,
σ0:error distance standard deviation

Output: Updated parameters of WG

1. μG← 1
NG+N0

(NG.μG+N0.μ0) σG←
√

NGσ 2
G+N0σ

2
0

NG+N0
+ NGN0

(NG+N0)
2 (μG − μ0)2

2. NG←NG + N0

Algorithm WeightingDataProcess(E,Wwarning)
Input: E: Ensemble Classifier

Wwarning: Window of data
Output: E: Updated ensemble classifier
1. for each instance xi from Wwarning

2. for each base classifier Ci from E

3. k ← poisson(1)

4. do k times
5. T rainClassif ier(Ci, xi)

6. end do
7. end for
8. end for

5 Experimental Evaluation

5.1 Synthetic Datasets

All Synthetic datasets contain 100,000 instances and one concept drift where the
starting and the ending time are predefined. For gradual drift, the drifting time lasts
30,000 instances (it begins at tstart = 40,000 and ends at tend = 70,000). For abrupt
drift, the drift occurs at t = 50,000.

(a) Rotating Hyperplane Hulten et al. [9] is used to simulate the Gradual Continu-
ous Local Drift.

It is based on moving hyperplane which is represented in d-dimensional
space by:

∑d
i=1 wixi = w0. Where xi is the instance, wi is the corresponding

weight to each attributei and w0 is the total weight. The instances which satisfy∑d
i=1 wixi ≥= w0 are labeled as positive, otherwise negative.
In this investigation, the hyperplane is represented in 2-dimentional space

and the concept drift is simulated by slightly rotating the hyperplane with
each consecutive instance. This rotation is done by gradually modifying wi by

54 I. Khamassi et al.

0.1 with each instance. As depicted in Fig. 4, the drift is locally affecting the
instance space.

(b) RBF (Radial Basis Function) Bifet et al. [3] is used to simulate the Gradual
Continuous Global Drift.

A fixed number of random centroids are generated. Each center has a
random position, a single standard deviation, class label, and weight. The
instances are generated by selecting a center at random. A random direction
is chosen to offset the attribute values from the central point. The length of
the displacement is randomly drawn from a Gaussian distribution with standard
deviation determined by the chosen centroid.

In this investigation, we have used two centroids which represent two classes.
The drift is introduced by gradually moving the center of only one centroid in
a linear direction; the center is slowly moving at speed level of 0.001 with each
instance. As depicted in Fig. 5, the drift is considered as global because it is
affecting all the instances of the drifting centroid.

(c) SEA Concepts Generator Street and Kim [24] models three independent
real valued attributes in [0, 10], only the first two attributes are relevant for
prediction. In original data, the class decision boundary is defined as follows:
x1 + x2 ≤ θ where x1 and x2 are the first two attributes and θ is a threshold
value. Four functions are defined for generating binary class labels: f1 : θ = 9,
f2 : θ = 8, f3 : θ = 7, and f4 : θ = 9.5.

In this investigation, we have generated SEA Gradual dataset for simulating
Gradual Probabilistic Local Drift, where the drift is introduced by gradually
substituting the class function f1 by f4 in a probabilistic way (See Fig. 3). We
have also generated another dataset, namely SEA Abrupt, where the drift is
introduced by suddenly replacing f1 by f4 in order to simulate Abrupt Local
Drift.

(d) STAGGER Concepts Generator Schlimmer and Granger Jr. [23] models three
independent categorical attributes: size (small, medium, large), color (red,
green, blue), and shape (square, circular, triangular). The classification task is
defined according to three decision functions:
f1 : size = small and color = red, f2 : color = green or shape = circular ,
and f3 : size = medium or size = large.

In this investigation, we have generated STAGGER Gradual dataset for simulat-
ing Gradual Probabilistic Global Drift, where the drift is introduced by gradually
substituting the class function f1 by f3 in a probabilistic way. We have also
generated another dataset, namely STAGGER Abrupt, where the drift is introduced
by suddenly replacing f1 by f3 with 10% of noise in order to simulate Abrupt
Local Drift with noise. In this paper, by noise we refer to class noise, that is, errors
artificially introduced to class labels (Table 2).

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 55

Table 2 Different types of
complex drift handled in this
investigation

Complex drift characteristics
Synthetic datasetsSpeed Nature Severity

Gradual Continuous Local Hyperplane [9]

Global RBF [3]
Probabilistic Local SEA gradual [24]

Global STAGGER gradual [23]
Abrupt Local SEA abrupt [24]

Global STAGGER abrupt [23]

5.2 Real Datasets

(a) Electricity Dataset (48,312 instances, 8 attributes, 2 classes) is a real-world
dataset from the Australian New South Wales Electricity Market [8]. In this
electricity market, the prices are not fixed and may be affected by demand and
supply. The dataset covers a period of 2 years and the instances are recorded
every half an hour. The classification task is to predict a rise (UP) or a fall
(DOWN) in the electricity price. Three numerical features are used to define
the feature space: the electricity demand in the current region, the electricity
demand in the adjacent regions, and the schedule of electricity transfer between
the two regions.

This dataset may present several scenarios of complex drift. For instance, a
gradual continuous drift may occur when the users progressively change their
consumption habits during a long time period. Likewise, an abrupt drift may
occur when the electricity prices suddenly increase due to unexpected events
(e.g., political crises or natural disasters). Moreover, the drift can be local if it
impacts only one feature (e.g., the electricity demand in the current region), or
global if it impacts all the features.

(b) Spam Dataset (9,324 instances, 500 attributes, 2 classes) is a real-world dataset
containing e-mail messages from the Spam Assassin Collection Project [10].
The classification task is to predict if a mail is spam or legitimate. The dataset
contains 20% of spam mailing. The feature space is defined by a set of numerical
features such as the number of receptors, textual attributes describing the mail
content, and sender characteristics. . .

This dataset may present several scenarios of complex drift. For instance,
a gradual drift may occur when the user progressively changes his preferences.
However, an abrupt drift may occur when the spammer rapidly changes the mail
content to trick the spam filter rules. In one side, the drift can be continuous
when the spammer starts to change the spam content, but the filter continues to
correctly detect them. On the other side, the drift can be probabilistic when the
spammer starts to change the spam content, but the filter fails in detecting some
of them.

56 I. Khamassi et al.

5.3 Evaluation Criteria

When dealing with evolving data streams, the objective is to study the evolution
of the EnsembleEDIST2 performance over time and see how quick the adaptation
to drift is. According to Gama et al. [7], the prequential accuracy is a suitable
metric to evaluate the learner performance in presence of concept drift. It proceeds
as follows: Each instance is firstly used for testing, then for training. Hence, the
accuracy is incrementally updated using the maximum available data; and the model
is continuously tested on instances that it has not already seen (for more details
please refer to [7]).

5.3.1 Parameter Settings

All the tested approaches were implemented in the java programming language by
extending the Massive Online Analysis (MOA) software [3]. MOA is an online
learning framework for evolving data streams and supports a collection of machine
learning methods.

For comparison, we have selected well-known ensemble approaches according
to each category:

– Block-based ensemble: AUE (Accuracy Updated Ensemble) [5], AWE (Accuracy
Weighted Ensemble) [16], and LearnNSE [20] with block size equal to 500
instances.

– Weighting-data ensemble: LeveragingBag [2] and OzaBag [19]
– Filtering-data ensemble: LimAttClass [1]

For all these approaches, the ensemble’s size was fixed to 10 and the Hoeffding Tree
(HT) [6] was used as a base learning algorithm.

It is worth noticing that EnsembleEDIST2 makes use of two parameters: N0
which is the number of errors in W0 and m which is the number of base classifiers
among the ensemble. In this investigation, we respectively set N0 = 30 and m = 3
according to empirically studies done in Sects. 6.1 and 6.2.

6 Comparative Study and Interpretation

6.1 Impact of N0 on EnsembleEDIST2 Performance

EnsembleEDIST2 makes use of the parameter N0 in order to define the minimum
number of errors occurred in W0. Recall that W0 represents the batch of current
collected instances. This batch is constructed by collecting the instances that exist
between N0 errors.

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 57

Table 3 Prequential accuracy for different values of N0 in EnsembleEDIST2

Gradual continuous Gradual probabilistic Abrupt

Complex drifts Local Global Local Global Local Global

Synthetic SEA STAGGER SEA STAGGER
databases Hyperplane RBF gradual gradual abrupt abrupt

N0 = 30 98.6 95.9 97.2 91.6 97.9 99.6
N0 = 60 98.2 95.9 97.2 91.5 98.1 99.6
N0 = 90 98.2 95.6 97.1 91.6 97.5 99.6
N0 = 120 98.3 95.9 97.1 91.6 98.2 99.6
N0 = 150 98.3 95.6 97.1 91.7 97.5 99.6

It is interesting to study the impact of N0 on the accuracy according to
different scenarios of complex drift. For this purpose, we have done the following
experiments: For each scenario of complex drift, the accuracy of EnsembleEDIST2
is presented by varying N0 values (see Table 3).

Based on these results, we can conclude that the performance of Ensem-
bleEDIST2 in handling different scenarios of complex drifts is weakly sensitive
to N0. Hence, we have decided to use N0 = 30 as it has achieved the best accuracy
rate in most cases.

6.2 Impact of Ensemble Size on EnsembleEDIST2
Performance

EnsembleEDIST2 makes use of the parameter m in order to define the number of
classifiers in the ensemble. Accordingly, it is interesting to study the impact of m on
ensemble’s performance according to different scenarios of complex drift.

According to Table 4, it is noticeable that the size of EnsembleEDIST2 does
not impact significantly the performance in handling different scenarios of complex
drift. Hence, we have decided to use m = 3 as it achieved the best accuracy rate in
most cases and it allows to limit the computational complexity of the ensemble.

6.3 Accuracy of EnsembleEDIST2 Vs Other Ensembles

Table 5 summarizes the average of prequential accuracy during the drifting phase.
The objective of this experiment is to study the ensemble performance in the
presence of different scenarios of complex drift. Firstly, it is noticeable that Ensem-
bleEDIST2 has achieved better results than block-based ensembles in handling
different types of abrupt drift. During abrupt drift (independently of being local
of global), the change is rapid; thus AUE, AWE, and LearnNSE present difficulty in

58 I. Khamassi et al.

Table 4 Accuracy of EnsembleEDIST2 with a different number of base classifiers

Gradual continuous Gradual probabilistic Abrupt

Complex drifts Local Global Local Global Local Global

Synthetic SEA STAGGER SEA STAGGER
databases Hyperplane RBF Gradual Gradual Abrupt Abrupt

m = 3 98.6 95.9 97.2 91.6 97.9 99.6
m = 5 98.6 95.9 97.1 91.6 98 99.6
m = 10 98.4 95.8 97.2 91.1 97.6 99.6

Table 5 Accuracy of EnsembleEDIST2 vs. other ensembles in synthetic datasets

Gradual continuous Gradual probabilistic Abrupt

Complex drifts Local Global Local Global Local Global

SEA STAGGER SEA STAGGER
Synthetic databases Hyperplane RBF Gradual Gradual Abrupt Abrupt

EnsembleEDIST2 98.604 95.982 97.211 91.609 98.196 99.605
Block-based AUE 94.187 95.611 94.547 90.381 95.234 98.367

AWE 94.054 95.018 94.563 90.551 95.23 98.367

LearnNSE 96.369 95.44 94.372 85.873 95.079 39.049

Weighting-data LeveragingBag 98.6 95.8 97.1 89.1 98.2 94.3

OzaBag 98.195 93.533 96.982 69.21 98.132 96.64

Filtering-data LimAttClass 91.281 94.186 91.126 86.553 91.226 94.893

tuning off the block size to offer a compromise between fast reactions to drift and
high accuracy. However, EnsembleEDIST2 is able to autonomously train ensemble
members with variable amount of data at each time process, thus it can efficiently
handle abrupt drift.

Secondly, it is noticeable that EnsembleEDIST2 outperforms weighting-data
ensembles in handling different categories of global drift. During global drift (either
continuous, probabilistic or abrupt), the change affects a large amount of data; thus
when LeveragingBag and OzaBag intensify the reuse of data for training ensemble
members, the performance’s decrease is accentuated. In contrast, EnsembleEDIST2
duplicates only a set of filtered instances for training the ensemble members, that is
why it is more accurate in handling global drift.

Thirdly, it is noticeable that EnsembleEDIST2 outperforms the filtering-data
ensembles in handling different categories of local drift. During local drift (either
continuous, probabilistic or abrupt), the change affects a little amount of data; thus,
the choice of the filtering criterion is an essential point for efficiently handling local
drift. EnsembleEDIST2 defines a new filtering criterion, which is based on selecting
the data that triggered the warning level. These data are the most representative of
the new concept; thus, when training the ensemble’s members accordingly, it makes
it more efficient for handling local drift.

EnsembleEDIST2 has also been tested through real-world datasets which repre-
sent different scenarios of drift. It is worth underlining that the size of these datasets
is relatively small compared to the synthetic ones. Despite the different features of

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 59

Table 6 Accuracy of
EnsembleEDIST2 vs. other
ensembles in real datasets

Real dataset Electricity Spam

EnsembleEDIST2 84.8 89.2
Block-based AUE 69.35 79.34

AWE 72.09 60.25

LearnNSE 72.07 60.33
Weighting-data LeveragingBag 83.8 88.2

OzaBag 82.3 82.7

Filtering-data LimAttClass 82.6 63.9

each real dataset, encouraging results have been found where EnsembleEDIST2 has
achieved the best accuracy in all the datasets (see Table 6).

To sum, it is worth underlining that the combination of the three diversity
techniques in EnsembleEDIST2 is beneficial for handling different scenarios of
complex drift at the same time.

7 Conclusion

In this paper, we have presented a new study of the role of diversity among the
ensemble. More precisely, we have highlighted the advantages and the limits of three
widely used diversity techniques (block-based data, weighting-data and filtering
data) in handling complex drift.

Additionally, we have presented a new ensemble approach, namely Ensem-
bleEDIST2, which combines these three diversity techniques. The intuition behind
this approach is to explicitly handle drifts by using the drift detection mechanism
EDIST2. Accordingly, the ensemble performance is monitored through a self-
adaptive window. Hence, EnsembleEDIST2 can avoid the problem of tuning off
the size of the batch data as it is the case of most block-based ensemble approaches,
which is a desirable property for handling abrupt drifts. Secondly, it defines a new
filtering criterion, which is based on selecting the data that trigger the warning level.
Thanks to this property, EnsembleEDIST2 is more efficient for handling local drifts
than conventional filtering-data ensembles, which are only based on filtering data
according to similarity on feature space. Then, differently from the conventional
weighting-data ensembles which apply the weighting process to all the data stream;
EnsembleEDIST2 only intensifies the reuse of the most representative data of the
new concept, which is a desirable property for handling global drifts.

EnsembleEDIST2 has been tested in different scenarios of complex drift. Encour-
aging results were found, compared to similar approaches, where EnsembleEDIST2
has achieved the best accuracy rate in all datasets, and presented a stable behavior
in handling different scenarios of complex drift.

It worth underlining that in the present investigation, the ensemble size, that is,
the number of ensemble members, was fixed. Hence it is interesting, for future work,
to perform a strategy for dynamically adapting the ensemble size. The focus is

60 I. Khamassi et al.

that, during stable periods, the ensemble size is maintained fixed, whereas during
the drifting phase the size is autonomously adapted. This may ameliorate the
performance and reduce the computational cost among the ensemble.

References

1. Bifet, A., Frank, E., Holmes, G., Pfahringer, B., Sugiyama, M., Yang, Q.: Accurate ensembles
for data streams: combining restricted hoeffding trees using stacking. In: 2nd Asian Conference
on Machine Learning (ACML2010), pp. 225–240 (2010)

2. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams. In: Pro-
ceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery
in Databases: Part I. ECML PKDD’10, pp. 135–150. Springer, Berlin, Heidelberg (2010)

3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach.
Learn. Res. 11, 1601–1604 (2010)

4. Brzezinski, D., Stefanowski, J.: Accuracy updated ensemble for data streams with concept drift.
In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) Hybrid Artificial Intelligent Systems.
Lecture Notes in Computer Science, vol. 6679, pp. 155–163. Springer, Berlin, Heidelberg
(2011)

5. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy
updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80.
KDD00. ACM, New York (2000)

7. Gama, J., Sebastião, R., Rodrigues, P.: On evaluating stream learning algorithms. Mach. Learn.
90(3), 317–346 (2013)

8. Harries, M.: Splice-2 comparative evaluation: electricity pricing. Technical Report, The
University of South Wales (1999)

9. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings
of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, August 26–29, 2001, pp. 97–106 (2001)

10. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble classi-
fiers: an application to email filtering. Knowl. Inform. Syst. 22(3), 371–391 (2010)

11. Khamassi, I., Sayed-Mouchaweh, M.: Drift detection and monitoring in non-stationary envi-
ronments. In: Evolving and Adaptive Intelligent Systems (EAIS), Linz, pp. 1–6 (2014)

12. Khamassi, I., Sayed-Mouchaweh, M.: Self-adaptive ensemble classifier for handling complex
concept drift. In: 2nd ECML/PKDD 2017 Workshop on Large-scale Learning from Data
Streams in Evolving Environments, Skopje, pp. 52–72 (2017)

13. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Ensemble classifiers for
drift detection and monitoring in dynamical environments. In: Annual Conference of the
Prognostics and Health Management Society, New Orlean (2013)

14. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Self-adaptive windowing
approach for handling complex concept drift. Cogn. Comput. 7(6), 772–790 (2015)

15. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Discussion and review on
evolving data streams and concept drift adapting. Evol. Syst. 9(1), 1–23 (2018)

16. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting
concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

17. Minku, L., White, A., Yao, X.: The impact of diversity on online ensemble learning in the
presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)

18. Minku, L., Yao, X.: Ddd: a new ensemble approach for dealing with concept drift. IEEE Trans.
Knowl. Data Eng. 24(4), 619–633 (2012)

A New Combination of Diversity Techniques in Ensemble Classifiers for. . . 61

19. Oza, N.C., Russell, S.: Online bagging and boosting. In: Artificial Intelligence and Statistics
2001, pp. 105–112. Morgan Kaufmann, Boston (2001)

20. Polikar, R., Upda, L., Upda, S., Honavar, V.: Learn++: an incremental learning algorithm for
supervised neural networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 31(4), 497–508
(2001)

21. Ren, Y., Zhang, L., Suganthan, P.N.: Ensemble classification and regression-recent develop-
ments, applications and future directions. IEEE Comput. Intell. Mag. 11(1), 41–53 (2016)

22. Sayed-Mouchaweh, M.: Handling Concept Drift. In: Learning from Data Streams in Dynamic
Environments, pp. 33–59. Springer International Publishing, Cham (2016)

23. Schlimmer, J.C., Granger Jr., R.H.: Incremental learning from noisy data. Mach. Learn. 1(3),
317–354 (1986)

24. Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD01, pp. 377–382. ACM, New York (2001)

Analyzing and Clustering
Pareto-Optimal Objects in Data Streams

Markus Endres, Johannes Kastner, and Lena Rudenko

Abstract Stream data analysis is a high relevant topic in various academic and
business fields. Users want to analyze data streams to extract information in order to
learn from this ever-growing amount of data. Although many approaches exist for
effective processing of data streams, learning from streams requires new algorithms
and methods to be able to learn under the evolving and unbounded data. In this
chapter we focus on the task of preference-based stream processing and clustering
to analyze data streams. We show that this method is a real alternative to the state-
of-the-art approaches.

1 Introduction

Today, data processed by humans as well as computers is very large, rapidly
increasing, and often in form of data streams. Many modern applications such
as network monitoring, financial analysis, infrastructure manufacturing, sensor
networks, meteorological observations, or social networks require query processing
over data streams, e.g., [1, 9, 12, 56]. Users want to analyze this data to extract
personalized and customized information in order to learn from this ever-growing
amount of data, e.g., [16, 26, 38, 58]. However, queries on streams run continuously
over a period of time and return different results as new data arrive. Therefore,
stream data processing and analyzing can be considered as a high relevant, but
difficult and complex task, which is in the focus of current research.

Although many approaches exist for effective processing of data streams,
learning from streams requires new algorithms and methods to be able to learn
under the evolving and unbounded data. In this chapter we focus on the task of
preference-based query processing and clustering to analyze data streams. We show
that this method is a real alternative to the state-of-the-art approaches. Queries in

M. Endres (�) · J. Kastner · L. Rudenko
Institute for Computer Science, University of Augsburg, Augsburg, Germany
e-mail: Markus.Endres@informatik.uni-augsburg.de;
Johannes.Kastner@informatik.uni-augsburg.de; Lena.Rudenko@informatik.uni-augsburg.de

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_4&domain=pdf
mailto:Markus.Endres@informatik.uni-augsburg.de
mailto:Johannes.Kastner@informatik.uni-augsburg.de
mailto:Lena.Rudenko@informatik.uni-augsburg.de
https://doi.org/10.1007/978-3-319-89803-2_4

64 M. Endres et al.

Table 1 Example of Twitter data about the Confed Cup

Tweet.ID Hashtag user.followers_count user.status_count tweet.text

76513 #fifa 32.109 4.430 #RapidReplay #FIFA
#ConfedCup #WorldCup
Julian Draxler captained
Germany to the #ConfedCup
title and wins the Gold

81365 #fifa 42.171 2.014 Germany’s B team beating
everyone else’s A team.
#ConfedCup #FIFA

65230 #soccer 53.093 1.087 Today, it’s @miseleccionmx
vs @DFB_Team_EN! Where
in #McAllen are you
watching the big game?
#ConfedCup #Soccer

77514 #fifa 9.316 15.866 Germany top #FIFA World
Rankings after #ConfedCup
triumph

99142 #football 20.639 6.057 #ConfederationsCupfinal
#Germany defeated #Chile
1-0 to win the #ConfedCup
for the 1st time! #football

53614 #football 14.006 9.918 #ConfedCup #CHIGER
Chile was more aggressive n
deserved to win but the more
mature team won n
consolidated their position in
world #football

the context of preferences are soft constraints that should be fulfilled as closely as
possible [51, 52]. If exact matches are not available, optimal alternatives are better
than nothing.

Example 1 Consider the sample Twitter data1 about the 2017 FIFA Confederations
Cup presented in Table 1.

Assume a person wants to retrieve only high quality tweets and comments
and therefore specifies that he prefers users on Twitter with at least 10,000
followers (user.followers_count ≥ 10,000), at least 10,000 tweets overall
(user.status_count ≥ 10,000), and a hashtag in {#fifa, #soccer, #foot-
ball}. The person assumes that a tweet having these field values is from a reliable
user due to the high number of followers and tweets.

Formulating this query with hard constraints might lead to an empty result as
on the data in Table 1, since no object in the data stream fulfills all conditions.
However, expressing the wishes above as preferences and combining them as

1Note that Twitter provides stream data in the JSON document format. We merged and re-formatted
fields from tweets for a better overview.

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 65

equally important would lead to a result set which contains all tweets in Table 1,
because all objects are Pareto-optimal w.r.t. to the given preferences on the
attribute fields. Note that the Pareto-optimal objects are those objects which are
not dominated by any other object. An object p having d dimensions (attributes)
dominates an object q, if p is better than q in at least one dimension and not worse
than q in all other dimensions for the defined preference. The Pareto-optimal set
is also known as the Skyline [14]. At the end, the searching person retrieves only
personalized and valuable information w.r.t. the given preference.

Personalized stream processing reduces the huge amount of data to high relevant
information without producing an empty result. However, during the nature of
streams, even the information reduced w.r.t. user’s preferences could be too large
such that making some decision could be impossible. One typical learning and
decision-making task in stream scenarios is clustering to summarize similar data for
an overview over the data stream content and to recommend items to a user, e.g., in
decision support systems, cp. [57]. Based on the Pareto-frontier a preference query
provides, we present a novel clustering method exploiting the Borda social choice
voting rule as criterion for the cluster allocation in order to present representatives
to the user such that one can make a decision.

In this chapter we propose an approach to analyze data streams with the support
of user preferences. Our contributions are

• a preference-based stream processing framework for analyzing data streams.
• the preference continuous query language (PCQL) for effective personalized

query formulation on streams.
• a novel stream-based lattice skyline algorithm (SLS) for efficient real-time

preference evaluation of continuous data streams.
• a groundbreaking clustering technique for Pareto-optimal objects based on the

Borda social choice voting rule.

The remainder of this book chapter is organized as follows: Sect. 2 highlights
related work. Section 3 recapitulates essential concepts of the used preference
model. In Sect. 4 we describe our preference-based stream analysis framework,
the preference continuous query language, and our SLS algorithm. Our clustering
approach based on the Borda social choice rule is described in Sect. 5. Section 6
demonstrates an application use case. Experiments in Sect. 7 show the advantages
of our approach in comparison to existing methods. Finally, we conclude in Sect. 8
and give an outlook on future work and open challenges.

2 Related Work

When dealing with Pareto-optimal objects and preferences in general, several
models play an important role. For example, Kasabov and Song [33] and Dovẑan
et al. [17] handle preferences with fuzzy values, whereas Boutilier et al. [11] use

66 M. Endres et al.

Ceteris-Paribus nets (CP-nets) do describe user wishes. Other models like Chomicki
[13] and Kießling [35, 38] use strict partial orders to represent preferences in
information systems and are often more flexible than other approaches.

Another central aspect in this chapter is stream processing to extract important
information from continuous data flows. Babu and Widom [6], e.g., focus primarily
on the problem how to define and evaluate continuous queries over data streams.
Ribeiro et al. [50] describe an approach for processing data streams according to
temporal conditional preferences. In [41], Lee et al. propose a new method for
processing multiple continuous Skyline queries over a data stream.

In [5] the authors motivate the need for and research issues arising from stream
data processing. Faria et al. [23] describe various applications of novelty detection in
data streams, and Krempl et al. [40] discuss challenges for data stream mining such
as protecting data privacy, handling incomplete and delayed information, or analysis
of complex data. In [39] the authors examine the characteristics of important
preference queries (Skyline, top-k and top-k dominating) and review algorithms pro-
posed for the evaluation of continuous preference queries under the sliding window
streaming model. However, they do not present any framework for preference-based
stream evaluation nor discuss clustering on Pareto-optimal objects.

An important research direction associated with stream processing is data stream
clustering. This issue is discussed, e.g., in [7, 8, 15, 25, 27, 29, 30, 42]. Clustering
data of social networks, e.g., Twitter, is discussed in [45]. The need for stream
processing has also been shown in, e.g., [44], where the authors describe an event
notification system that monitors and delivers semantically relevant tweets if these
meet the user’s information needs. Railean and Moraru [49] address the problem
of determining the popularity of social events based on their presence in Twitter.
For this they compute an association coefficient for an event-tweet pair and use it to
determine the popularity. In [46], Mahardhika et al. present an evolving fuzzy-rule-
based classifier on streaming data.

The most related work on preference-based clustering is [24] and [28]. In
[24] Ferligoj and Batagelj present a Pareto-efficient clustering approach, where
several criteria for clustering are consulted in order to find one and only one
Pareto-dominant clustering, which dominates all other clusterings. Huang et al.
[28] presented a SkyClustering method based on k-means, which works within a
Skyline/Pareto computation in a relational database. This approach explores the
diversity of Skylines by compressing large sets of Pareto-optima and finally presents
k representative and diverse Skyline objects to the user. Another approach to handle
with Skylines was presented in [59], where supervised alternative clusterings are
introduced. The main focus of the paper is to find clusterings of good quality starting
from given negative clusterings which should be as different as possible and at the
same time a Pareto-optimal solution.

In contrast to previous work, our approach is based on preference stream
processing which never yields an empty result set and only extracts the most
relevant information w.r.t. the user’s preferences. Our subsequent clustering of
Pareto-optimal objects is done by exploiting the Borda social choice rule to weight
distances to clusters according to each object.

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 67

3 Background

Preference modeling has been in focus for some time, leading to diverse approaches,
e.g., [13, 36]. A preference P = (A,<P) is a strict partial order (SPO) on the
domain of A, dom(A). Thus <P is irreflexive and transitive. Some values are
considered to be better than some others. The term x <P y can be interpreted
as “y is preferred over x”. Two values not ordered by the strict partial order <P

are regarded as indifferent, i.e. ¬(x <P y) ∧ ¬(y <P x). The maximal objects
of a preference P = (A,<P) on an input data set D are all objects that are not
dominated by any other object w.r.t. the given preference P .

Definition 1 (Best-Matches-Only Set (BMO) [36]) The Best-Matches-Only
(BMO) result set contains only the best matches w.r.t. the strict partial order of
a preference P . These objects are computed by the preference selection operator
σ [P](D). The query model retrieves exact matches if such objects exist and best
alternatives else.

σ [P](D) := {o ∈ D | ¬∃o′ ∈ D : o <P o′} (1)

3.1 Preference Constructors

To express preferences on data attributes, preference constructors were defined in
[36–38, 60]. There are preference constructors for single attributes on categorical,
numerical, temporal, and spatial domains as well as on multiple attributes. Subse-
quently, we present some selected constructors used in this chapter.

The categorical base preference POS(A,POS-set) expresses that a user has a set
of preferred values, the POS-set. The preference NEG(A,NEG) is the counterpart
to the POS preference. It is possible to combine these preferences to POS/POS or
POS/NEG.

The numerical base preference AROUND(A, z) favors values close to a preferred
numerical target value z. If this is infeasible, values with less deviation from the
specified value z are preferred. HIGHEST(A) and LOWEST(A) allow users to
express easily their desire for values as high or as low as possible. The preferences
AT_LEAST(A, z) and AT_MOST(A, z) prefer values higher and lower than z, resp.

Complex preferences determine the relative importance of preferences and
combine base or again complex preference constructors. For example, in a Pareto
preference P := P1 ⊗P2 = (A1 ×A2,<P) all preferences are of equal importance.

Definition 2 (Pareto Preference) Given two Preferences P1 = (A1,<P1), P2 =
(A2,<P2) with x = (x1, x2), y = (y1, y2) ∈ dom(A), the Pareto preference
constructor P := P1 ⊗ P2 = (A1 × A2,<P) is defined as:

68 M. Endres et al.

(x1, x2) <p (y1, y2) ⇔ (x1 <P1 y1) ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨
(x2 <P2 y2) ∧ (x1 <P1 y1 ∨ x1 = y1))

If we consider only LOWEST and HIGHEST preferences in Pareto, then this
definition coincides with the one of Skyline queries, cp. [10, 14].

There are more complex preferences, e.g., in a Prioritization preference P :=
P1 & P2 the preference P1 = (A1,<P1) is more important than P2 = (A2,<P2)

and a RANKF preference allows to construct weighted preferences. For a formal
definition and more detailed information, we refer to [36, 38].

Example 2 Remember the introductory Example 1 where a user wants to filter high
quality tweets. The mentioned conditions can now be modeled as soft constraints by
using base preferences combined to Pareto:

P := AT_LEAST(user.followerscount, 10.000) ⊗
AT_LEAST(user.statuscount, 10.000) ⊗
POS(hashtag, {#fifa, #soccer, #football})

3.2 PreferenceSQL

The PreferenceSQL query language (cp. [38]) is a declarative extension of SQL
by strict partial order preferences, behaving like soft constraints under the BMO
query model described in Definition 1. Syntactically, PreferenceSQL extends the
SELECT statement of SQL by an optional PREFERRING clause, cp. Fig. 1. The
keywords SELECT, FROM, and WHERE are treated as the standard SQL keywords.
The PREFERRING clause specifies a preference which is evaluated after the WHERE
condition.

Example 3 The Pareto preference in Example 2 can be expressed in PreferenceSQL
as follows, where ConfedCup is the data set which contains information about the
FIFA Confederations Cup 2017 in Russia.

SELECT * FROM ConfedCup
PREFERRING
user.followers_count AT LEAST 10.000 PARETO
user.status_count AT LEAST 10.000 PARETO
hashtag IN (’#fifa’, ’#soccer’, ’#football’);

Fig. 1 Simplified
PreferenceSQL query block

SELECT . . . <projection, aggregation>
FROM . . . <table reference>
WHERE . . . <hard conditions>
PREFERRING . . . <soft conditions>

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 69

In PreferenceSQL IN expresses a POS preference. The keyword PARETO states a
Pareto preference, and PRIOR TO would lead to a Prioritization (not shown).

Note that for the evaluation of preferences special algorithms are needed, cp. [14]
for an overview.

4 Preference-Based Stream Processing

In this section we describe our preference-based stream processing framework,
introduce the Preference Continuous Query Language (PCQL), and show how to
find the BMO-set by using our Stream-based Lattice Skyline (SLS) algorithm.

4.1 The Preference-Based Stream Processing Framework

For the processing of preferences on data streams we exploit the University
prototype of PreferenceSQL2 [38, 55]. PreferenceSQL originally was developed
to run queries against bounded data sets that are stored persistently in a relational
database and for this it provides several database related evaluation and optimization
techniques. Note that we rely on PreferenceSQL, because it is a well-known,
approved, and high-performance software prototype. However, for analyzing con-
tinuous, unbounded data, it is necessary to extend the PreferenceSQL system in
order to process data from streams.

We use Apache Flink,3 an open source platform for scalable stream and batch
data processing, to transform continuous data into a PreferenceSQL compatible
and processable format. Figure 2 depicts our stream processing framework for
preference evaluation.

The incoming data stream is processed by Apache Flink in an ETL (Extract,
Transform, Load) process. Since streams are often encoded in various format, e.g.,
as JSON4-objects as in Twitter, data must be transformed into a PreferenceSQL

Data Stream

Stream of
objects

Stream of
data chunks

Best matching
objects

ETL Process in Apache Flink

StreamProcessor DataAccumulator

Stream of processed data

PreferenceSQL

Fig. 2 Streaming architecture for preference analytics

2PreferenceSQL: http://www.preferencesql.com.
3Apache Flink: https://flink.apache.org/.
4JSON: http://www.json.org/.

http://www.preferencesql.com
https://flink.apache.org/
http://www.json.org/

70 M. Endres et al.

{” c r e a t e d-a t ” : ”Thu Jul 03 14 :44:05 +0000 2017” , ” id ”:77514 ,
” text ” : ”Germany top #FIFA World Rankings a f t e r #ConfedCup triump ” ,
” source ” : ” Twitter for iPhone ” , . . . , ” user ” : {” id ”:228586199 ,
”name” : ”Mario Gomez , ” screen-name ” : ” mariohonduran10 ” , ” location ” : ” South
Carolina ” , ” url ” :null , ” descr iption ” : ”My biggest passion , s o c c e r ? the love
of my l i f e ! #HalaMadrid #Honduras #Olimpia . San Pedro Sula , Honduras /SC,

USA #ACL surgery on both knees ” , ” protected ” :false , ” v e r i f i e d ” :false ,
” followers-count ” :9316 , ” friends-count ” :5 , ” l i s t e d-c o u n t ” :22 ,
” favourites-count ” :5916 , ” statuses-c o u n t ” :15866} ,...}

Fig. 3 Simplified JSON object of a tweet

readable format. For this one has to implement the mapping of a stream object to a
relational structure inside the StreamProcessor, which provides a correspond-
ing interface implementation. The data types of the fields can be extracted from
the stream objects, e.g., by using the Twitter API. The DataAccumulator builds
(finite) chunks of objects, which can then be processed by PreferenceSQL to find the
best-matches-only set w.r.t. the preference specified by a user. This grouping can be
size (how many objects are in one chunk) or time (the number of objects per chunk
is determined by the time) based. For more details and a prototype implementation,
we refer to [54, 55].

Example 4 Figure 3 shows a simplified JSON object of a twitter message. There
are several different fields which describe a tweet in detail, e.g., created_at, id, text,
name, followers_count, status_count, and many more. Our StreamProcessor
converts such objects into more structured data, e.g., as shown in Table 1.

4.2 The Preference Continuous Query Language (PCQL)

In this section we propose a language for preference-based stream analysis. Our
Preference Continuous Query Language (PCQL) is based on the PreferenceSQL
query language described in Sect. 3.2 and in [54], but additionally has the STREAM
keyword to emphasize that we connect or query a data stream. Note that there are
also other approaches to stream analysis and querying, e.g., [2, 3, 32], each of them
has SQL-like syntax and enhanced support for windows and ordering, but they
cannot be used together with preferences.

As shown in Fig. 2, we exploit the ETL process of Apache Flink, which allows
us to connect to different data streams. The stream connection can be done
by implementing a pre-defined interface, which leads to a generic and flexible
framework for arbitrary stream processing. In our current University prototype we
provide connectors for Twitter data (TwitterStream), for the DAX stock market
index (StockStream) as well as data from Flickr (FlickrStream).

By using a pre-defined stream connector or implementing one, a user con-
nects to a stream as depicted in the syntax diagram in Fig. 4. The keywords
CREATE STREAM introduce a stream connection with a user defined stream

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 71

CREATE STREAM ASstreamName stream_connector

TwitterStream(consumerKey, consumerSecret, token, secret)
stream_connector ::=

StockStream()

FlickrStream()

Fig. 4 Syntax diagram for the connection of data streams

SELECT STREAM FROM

CHUNK

SIZE

TIME

PREFERRING

attribute_list streamName

preference_condition

= number

Fig. 5 Syntax diagram for preference stream queries

connection name streamName. The value of stream_connector corresponds
to the name of a pre-implemented connector which, e.g., gets the user-specific login
credentials as shown in the TwitterStream invocation in Fig. 4.

When connected to a stream, the data can be queried with the SELECT STREAM
clause as depicted in Fig. 5. After SELECT STREAM one can specify a list of
attributes attribute_list, where each attribute corresponds to a field in a
stream object. The stream name streamName corresponds to the user defined
name given in the CREATE STREAM statement. The kind and the quantity of the
chunks, that are built from the endless stream, can be defined by the user. Thereby,
the chunks can be size or time based. When specifying a time (in seconds), the
DataAccumulator in the ETL process builds chunks based on the data retrieved
within the given time slot. By specifying a size the ETL processor combines size
objects to one chunk. PREFERRING introduces the preference conditions as in
PreferenceSQL which will be evaluated on the chunks of the data stream.

Example 5 Remember Example 3 with the preference query on the Twitter stream.
If we want to directly connect and query the stream data, we use the following
statements, where the chunks are constructed time based in intervals of 60 s.

72 M. Endres et al.

-- Connect to Twitter by using (invalid) credentials
CREATE STREAM ConfedCupTwitterStream AS TwitterStream
(’NQEk0KbszVbaAcjCWLksbodkN’,
’HDKxlp2REOHvuq59oKrZZsdFovItwG6upOGJuSN4btr6npp2c3’,
’2400192752-DQSedtepr68SerQVyjHLzpHhMitcwJQfbvwxnLi’,
’BAk0krCYq77W4p45UwyuAuNnpR3nrv9WofO9PNL46YFch’);

-- Preference query on the chunks of the data stream
SELECT * FROM ConfedCupTwitterStream
CHUNK TIME = 60
PREFERRING
user.followers_count AT LEAST 10.000 PARETO
user.status_count AT LEAST 10.000 PARETO
hashtag IN (’#fifa’, ’#soccer’, ’#football’);

4.3 The Stream-Based Lattice Skyline Algorithm (SLS)

In this section we show how to evaluate preferences on data streams and suggest a
real-time lattice skyline algorithm for stream analysis.

4.3.1 Finding the BMO-Set of a Data Stream

Preference processing requires efficient evaluation algorithms, especially on time-
oriented data streams. In addition, result computation must be adapted to stream
properties since the dataflow is continuous and there is no “final” result after some
data of the stream is processed. The result must be calculated and adjusted as
soon as new data arrive, since new stream objects received later can match the
user preferences better than the objects already recognized in previously computed
BMO-sets.

To the best of our knowledge only Block-Nested-Loop style algorithms (e.g.,
BNL [10]) can be adapted to preference evaluation on continuous stream data. These
algorithms are based on an object-to-object comparison approach and have a worst-
case runtime complexity of O(n2), where n is the number of input objects. New
objects have to be compared with all objects from the current BMO-set.

More detailed: Let c1, c2, . . . be the chunks provided by the ETL processor.
A BNL-style algorithm evaluates the user preference P on the first chunk, i.e.,
σ [P](c1), cp. Eq. (1). Since c2 could contain better objects we also have to compare
the new objects from c2 with the current BMO-set, i.e., we have to compute

σ [P](σ [P](c1) ∪ c2) , (2)

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 73

and so on. However, this leads to a computational overhead if c2 is large, which is
the usual case. Therefore, this continuous comparing process is the most expensive
operation of preference-based stream evaluation.

4.3.2 The SLS Algorithm

For preference stream evaluation we implemented the Stream-based Lattice Skyline
algorithm (SLS), which avoids the annoying object-to-object comparison of BNL.
SLS is based on the algorithms Hexagon [48] and Lattice Skyline [43], can be
parallelized as shown in [18, 19], and has a linear runtime complexity. Our algorithm
exploits the lattice induced by a Pareto preference over discrete domains to compute
the best objects. Visualization of such lattices is often done using Better-Than-
Graphs (BTG) (similar to Hasse diagrams), graphs in which edges state dominance.
The nodes in the BTG represent equivalence classes. Each equivalence class
contains the objects mapped the same feature vector constructed by a preference.
All values in the same class are considered substitutable.

An example of a BTG is shown in Fig. 6. We write [2,4] to describe a two-
dimensional domain as well as the maximal possible values of the feature vector
representing preference values. For example, the BTG could present a Pareto
preference on the activity status of a user ({active, non-active, unknown}) (values
0, 1, and 2) and the hashtag, which might be an element of {#fifa, #soccer,
#football, #confed_cup, #others} (values 0, . . . 4). The arrows show the dominance
relationship between nodes of the lattice. The node (0,0) presents the best node,
whereas (2,4) is the worst node. All gray nodes are occupied with an element of the
data stream (in this case with an object of the first chunk), white nodes are empty.

The elements of the data stream that compose the (temporary) BMO set are those
in the BTG that have no path leading to them from another non-empty node. In
Fig. 6 these are the nodes (0,1) and (2,0). All other nodes have direct or transitive
edges from these both nodes, and therefore are dominated. We exploited these

Fig. 6 Data stream
processing with SLS

(0,0)

(1,0)

(1,1)(0,2)

(0,1)

(2,1)

(1,3)

(0,3)

(2,0)

(1,2)

(0,4) (2,2)

(1,4) (2,3)

(2,4)

S
tr

ea
m

 o
f o

bj
ec

ts

Chunk 1

Object A
Object B

. .
 .

Chunk 2

. .
 .

. .
 .

74 M. Endres et al.

observations to develop an algorithm for efficient stream processing. Our approach
in general works as follows:

1. The construction phase initializes the data structure (the lattice) which depends
on the Pareto preference and domain size (see [18] for details). Initially, all nodes
of the lattice are marked as empty.

2. Adding phase

(a.) Read the next chunk from the data stream.
(b.) Iterate through the objects of the chunk. Each object will be mapped to one

node in the lattice and this node is marked as non-empty.

3. Removal phase: After all objects in the chunk have been processed, the nodes of
the lattice that are marked as non-empty and are not reachable by the transitive
dominance relationship from any other non-empty node of the lattice represent
the (temporary) BMO-set. From an algorithmic point of view this is done by a
combination of breadth-first traversal (BFT) and depth-first traversal (DFT).

(a.) Start a BFT at node (0, 0) to find non-empty and non-dominated nodes
(b.) For each non-empty and non-dominated node start a DFT to mark nodes as

dominated, if a transitive better-than relationship exists.
(c.) The remaining nodes contain the temporary BMO-set and can be presented to

the user

4. Go to Step 2.

Note that the BMO-set computation in Step 3 can be done after an arbitrary
number of processed chunks or after a pre-defined time. Therefore, our algorithm
can be used for real-time preference evaluation. It is also possible to parallelize this
approach in the sense of [18, 19]: After adding an object, directly start a DFT to
mark nodes as dominated. In this case it is not necessary to “add” objects to the
lattice if nodes are already marked as dominated.

Example 6 As mentioned, data streams are processed in finite chunks, as can be
seen in Fig. 6. After constructing the lattice, which only must be done once, all
objects of the current chunk (chunk 1) are mapped to the corresponding lattice nodes
in a consecutive way. Assume all gray nodes in Fig. 6 are occupied with data from
the first chunk. Afterwards we run a BFT to find the non-empty nodes (blue dashed
line in Fig. 6). The first non-empty node is (0, 1) and we start a DFT (red arrows)
to mark all transitive dominated nodes as dominated. If the DFT reaches the bottom
node (2, 4) (or an already dominated node), it will recursively follow all other edges.

Afterwards the BFT continues with node (1, 0), which is empty. The next non-
empty node is (1, 1), but dominated. Continue with (2, 0). Since all other nodes are
marked as dominated, the remaining nodes, (0, 1) and (2, 0), present the temporary
BMO-set for the current chunk.

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 75

Now consider the next chunk (chunk 2). Read all objects form chunk 2, add them
to the lattice, and perform a BFT and DFT. Again, the remaining nodes (maybe
including the objects from the previous computation) contain the temporary best
objects. Continue with chunk 3, and so on.

Note that all lattice based algorithms suffer from two restrictions: First, they
are restricted to low-cardinality domains, and second, in general they only work
with Pareto preferences which construct a lattice. To overcome the first restriction
a method was developed by Morse et al. [43], Endres and Kießling [19] to remove
one unrestricted domain in the BMO computation. The second restriction can be
discarded by using the approach presented in [21] which allows the embedding of
any strict partial order into a lattice structure.

5 Clustering of Pareto-Optimal Objects

In this section we show how to cluster Pareto-optimal objects on continuous data
streams after a pre-defined time for each PCQL query. Before we explain our
clustering framework, we introduce the most important basics and background
knowledge of our approach. Afterwards we present our Borda social choice
approach for clustering multi-dimensional objects.

5.1 Clustering Background

The most relevant work for our approach is the k-means clustering algorithm [31],
which is an iterative partitioning algorithm with a convergence criterion. Hereby
each object gets allocated to one of k clusters iteration by iteration, until a stable
configuration is found. The k-means clustering approach is described in Algorithm 1
and Function 1 and generally works as follows:

1. Find an initial partition for the cluster centroids by choosing a random point of
set X for each of the k centroids in line 2.

2. Calculate for each point the distances to all centroids by Function 1. The point
is being allocated to the closest centroid in line 9 of Algorithm 1, by using, e.g.,
the Euclidean distance (line 5 in Function 1).

3. Recalculate the centroids by averaging the contained points in line 14 of
Algorithm 1.

4. Proceed with step 5.1 until two succeeding clusterings are stable, which means
that all clusters from the last iteration contain the equal set of points as in the
current iteration (Algorithm 1, line 6).

76 M. Endres et al.

Algorithm 1 k-means-clustering
Input: Set X = {xi | i = 1, ..., n} of d-dimensional points xi = (xi1, ..., xid) of size n, set of k
cluster centroids C = {cj | j = 1, ..., k}.
Output: Sets Ek = {ej | j = 0, ..., m} of clustered d-dim. points ei = (ei1, ..., eid).
1: function K-MEANS(X,C)
2: C ← random(X, k) / Random initial partition for k centroids
3: E ← ∅ / Current clustered set
4: E′ ← ∅ / Clustered set from last iteration
5: equals ← f alse / Variable for stop-criterion
6: while !equals do / Termination-criterion: Old Set equals current set
7: for xi ∈ X do / Iterate through all points
8: id ← getClosestCentroidId(xi , C) / Get id of closest cluster
9: Eid ← Eid ∪ {xi} / Add the current point to the closest centroid

10: end for
11: equals ← checkClusterings(E,E′) / Check if clusters are equals
12: E′ ← E / Save the current clustering for next iteration
13: for Ei ∈ E do
14: ci ← recalculateCentroid(Ei) / Recalculate centroids of each cluster
15: end for
16: end while
17: return E

18: end function

Function 1 Closest centroid for traditional distances
Input: d-dim. point xi = (xi1, ..., xid), set of k centroids C = {cj | j = 1, ..., k}.
Output: id of the closest centroid, the point gets allocated to.
1: function GETCLOSESTCENTROIDID(xi, C)
2: dist ← maxDistance / Distance to closest centroid
3: id ← 0
4: for cj ∈ C do / Iterate through all clusters
5: d ← distance(xi , cj) / Current distance between point and cluster
6: if d < dist then
7: dist ← d / Replace closest distance if current distance is closer
8: id ← j / Replace id if current id has closer distance
9: end if

10: end for
11: return id

12: end function

5.2 The Borda Social Choice Voting Rule for Clustering

In [34] we presented an approach for clustering Pareto-optimal objects which was
based on the Pareto-dominance criterion. However, this only works well for two-
dimensional use cases. Since objects extracted from data streams contain several
different dimensions, we need a more suitable approach for allocating objects to
clusters than our former method.

We use the Borda social choice voting rule, because it represents a suitable
decision criterion for the allocation of each point to one and only one cluster with

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 77

taking account of equal importance of the considered dimensions as required by
Pareto preferences. In our approach each dimension is considered self-contained
and has the same influence in the form of a weighting on the cluster allocation.
This overcomes the crucial influence on the clustering process of dimensions with
extensive domains as in traditional distance-measures like the Euclidean distance.

5.2.1 The Borda Social Choice Voting Rule

In the Borda social choice rule each candidate receives equal weighted votes from
each voter, as it is defined in [53].

Definition 3 (Borda Social Choice Voting Rule) Given m candidates Ci , i =
1 . . . m and d voters Vj , j = 1 . . . d where every voter votes for each candidate. Each
voter Vj has to allocate the votings vjk from a pairwise distinct set of k = 0 . . . m−1.

After all voters assigned their votes, the votes for each candidate are summed up
as it can be seen in Eq. (3), while the Borda winner is determined as mentioned in
Eq. (4).

bordasumCm =
d∑

j=1

vjm (3)

bordawinnerCm = max{bordasumCm} (4)

If we apply this approach to our clustering-framework, we replace the candidates
with the available clusters and the voters with the d-dimensional stream objects,
which should be allocated to one and only one cluster. Finally, each stream object
votes for each cluster. After the voting, Eq. (3) determines the sum of all votes
for each cluster, and Eq. (4) defines a cluster as the Borda winner, which got the
most overall votes. Finally, the Borda social choice voting rule ensures that each
dimension receives equal weighted votes, whether they have a large or a small
domain. So small domains have a higher influence on the clustering using Borda
social choice compared to traditional distance measures like Euclidean.

Note that we use the Jaccard similarity measure when clustering categorical
domains in order to get a numerical representation, since the Borda social choice
rule only works on numerical values.

5.2.2 Cluster Allocation

In order to realize a clustering approach based on the Borda social choice rule as
decision criterion for the cluster allocation, we modify the k-means algorithm.

For this we replace line 8 of Algorithm 1 by Function 2. In Function 2 the Borda
votes for each point xi to each cluster is assigned as explained in Eq. (3). In order to

78 M. Endres et al.

sum up the votes for the clusters, an array is created in line 2. Thus the distances in
each dimension between the considered point and the cluster centroid are calculated,
which is performed in Function 3. For each dimension these distances are calculated
and saved together with the id in an object-based data-structure in lines 6 and 7.
After that the object is set on the current last position of the array in line 8 and
sorted with insertion sort between lines 10 and 22 to the right position according
to the distances (line 12), in order to avoid a further sorting if all objects would be
added unsorted to the array.

While the last distance is sorted to the right position in the array, the votes for
each cluster are determined (line 17) and summed up in the array (line 19) for the
absolute votes, in order to avoid another iteration through the array afterwards. After
the array with the summed up votes is returned from Function 3, it is sorted with
insertion sort in line 3 of Function 2 in order to find the Borda winner as explained
in Eq. (4). If there is only one Borda winner (line 5), return the id of the centroid.

Function 2 Closest centroid for Borda social choice voting rule
Input: d-dim. point xi , clusterset C, cluster-id last iteration idlast .
Output: id of the closest cluster for point xi .
1: function GETBESTCLUSTERID(xi, C, idLast)
2: bordaV als[] ← calculateBordaV als(xi , C) / calculate Borda values
3: insertion_sort (bordaV als[]) / Sort Borda values
4: counter ← 1
5: if bordaV als[0].val > bordaV als[1] then / Only one Borda winner
6: return bordaV als[0].id / Return id of first element
7: end if
8: if bordaV als[0].val == bordaV als[1] then / More than one Borda winner
9: while bordaV als[counter].val == bordaV als[0].val do

10: if bordaV als[counter].id == idlast then / Check idlast

11: return idlast / Return id of element from last iteration
12: end if
13: counter ← counter + 1
14: if counter >= bordaV als[].Size() then / All centroids Borda winner
15: return bordaV als[random(0, counter − 1)].id / Return random id
16: end if
17: end while
18: end if
19: return bordaV als[random(0, counter − 1)].id / Return random id
20: end function

We decided to add a specific decision criterion for the cluster allocation at the
appearance of more than one Borda winner. Our approach looks back to the last
iteration, in order to check if the centroid was allocated to one of the Borda winners
before (Function 2, line 10). If not, one of the centroids id’s, which is represented
in the Borda winners, is randomly chosen in line 19. Finally the k-means clustering
continues in line 9 of Algorithm 1.

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 79

Function 3 Calculate the votes for each centroid
Input: d-dim. point xi , clusterset C.
Output: bordaVals for each centroid.
1: function CALCULATEBORDAVALS(xi, C)
2: bordaV als[] ← bordaV als[C.size()]
3: for i = 0; x < xi .getDims().size(); i ← i + 1 do
4: bordaObj [] ← bordaObj [C.size()] / Array for voters
5: for k = 0; k < C.size(); k ← k + 1 do / For each voter(centroid)
6: val =| xi .getDims()[i] − cj .getDims()[i] | / Calculate distance
7: obj ← newbordaObj (val, cj .id) / Init. object for voter
8: bordaObj [k] = obj / Set object on last available position
9: voteDiff ← k + 1 / Difference for Votes

10: for j = k; j >= 0; j ← j − 1 do / Start insertion_sort
11: if j > 0 then / Check if not last item is sorted
12: if obj.val < bordaObj [j − 1].val then / Compare obj. pairwise
13: swap(bordaObj [j − 1], bordaObj [j]) / Swap objetcs
14: end if
15: end if
16: if k == C.size() − 1 then / Last Element is sorted
17: val ← bordaObj [].size() − voteDiff / Determine Votes
18: id ← bordaObj [j].id / Fetch id of Object to sum up
19: bordaV als[id].val ← bordaV als[id].val + val / Sum up the value
20: voteDiff ← voteDiff − 1 / Reduce voteDiff for growing values
21: end if
22: end for
23: end for
24: end for
25: return bordaV als[]
26: end function

5.2.3 Complexity and Convergence

Our algorithm reaches a complexity of O(n · (d · c · c2 + c2 + c)) where n is the
number of d-dimensional points that should be clustered in c clusters. For each point
n the distances of each dimension d for each cluster c is calculated in O(d ·c). These
distances are sorted by insertion sort with a complexity of O(c2) for the worst case,
while the list of the summed up votes is sorted with insertion sort in O(c2), too.
Finally the list is iterated one more time in order to check if there is more than one
Borda winner in O(c). Hence we get a complexity of O(n · d · c3).

After some preliminary tests, we found out that especially for growing numbers
of dimensions, our approach is not terminating, which leads to alternating between
two or more clusters. Therefore, we decided to adjust Step 1 of the k-means
clustering algorithm (Algorithm 1, line 2) by using k-means++, in order to start
the clustering process with a better starting position. The seeding technique of
k-means++ speeds up the clustering process as published in [4] and reaches a
higher accuracy as well. The feature of using the seeding technique of k-means++
ensures that our approach terminates in higher dimensions likewise, which will be
documented and discussed in Sect. 7.

80 M. Endres et al.

Another well-known problem in clustering is the appearance of empty clusters,
e.g., if the initial partition of the cluster centroids are populated with very similar
objects in the first step of k-means clustering. With k-means++ the probability of
choosing objects which are duplicates or direct neighbors is minimized. In order to
prevent the phenomenon of empty clusters, k-medoids is a very suitable approach.

6 Application Use Case

In this section we want to exemplify a whole run through our analyzing and
clustering approach of Pareto-optimal objects in data streams.

Assume that the preference query in Example 1 exactly retrieves the Pareto-
optimal objects shown in Table 1. We now want to apply our Borda approach to
cluster these objects in order to learn some kind of “similarity” between these
Pareto-optimal objects. For this, we apply k-means++ with Borda, use k=3 initial
clusters, and exploit the lookback to the last iteration at the appearance of more than
one Borda winner as explained in Sect. 5.

First of all we initialize the random centroids of k-means++ using the Borda rule
as follows:

1. The Stream object 65230 is chosen randomly as centroid C1. After that the
distances D for each point to the current centroid C1 are calculated as explained
in Sect. 5. These computations can be seen in Table 2.

2. Then the next stream object is set as new centroid C2. A determined random
value of 65.026 is exceeded of the summed up squared distances at object 99142
while iterating through the object set.

3. For C3 the stream object with ID 77514 is determined likewise C2 after updating
the distances to the previously chosen centroid shown in Table 2. If a distance
is now smaller than a previous one, the current is set and the probability to be
chosen decreases.

After the initialization we allocate objects to clusters using the Borda social
choice rule as follows:

4. We show the allocation for the stream objects with IDs 81356 and 53614 to the
initialized centroids C1, C2, and C3, as it can be seen in Table 3 in the first
iteration of the k-means clustering algorithm.

Table 2 Creating the initial cluster partition with kmeans++

Tweet.ID D(x)2 ∑
Tweet.ID D(x)2 ∑

76513 8.0360 8.0360 77514 50.0025 60.0410

81365 2.0025 10.0385 99142 18.0360 78.0770
65230 − − 53614 32.0000 110.0770

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 81

Table 3 Cluster allocation for some stream-objects

ID 81365 ID 53614

D(C1) D(C2) D(C3) D(C1) D(C2) D(C3)

followers_count 1 (2) 2 (1) 4 (0) 4 (0) 1 (1) 1 (2)

status_count 1 (2) 2 (1) 4 (0) 4 (0) 1 (2) 1 (1)

Hashtag 0.05 (1) 0.11 (0) 0.00 (2) 0.00 (2) 0.06 (0) 1.05 (1)
∑

5 2 2 2 3 4

5. For the stream object with ID of 81365 the distances D to centroid C1 are the
closest for both the dimensions of the followers count and the status count. Thus
centroid C1 receives a maximum possible vote of 2 for both distances. In the
third dimension concerning the hashtags, C1 is only the second closest centroid
and thus receives only a voting of 1. Nevertheless C1 receives a higher sum of
five votes overall, while both C2 and C3 only get a total of 2 votes.

6. For the stream object with the ID of 53614 each dimension has a different closest
centroid. Thus the second closest centroids are crucial for the overall voting. C3
receives both a second highest voting of 1 from the dimensions of the status count
and the hashtags and finally wins the Borda voting with a concise advance of 4
against C2, which receives a total of three votes.

7. If there would be a draw in the summed up votings between two or more centroids
in one iteration, i.e, we have more than one Borda winner, the cluster ID of the
previous iteration would tip the balance to one of these Borda winner centroids
if the ID of the previous Borda winner is represented in the current set of the
Borda winners. Otherwise this object will be allocated randomized to one of the
centroids.

8. The algorithm continues with the recalculation of the centroids and the check of
the termination criterion as mentioned in Sect. 5.

The final clusterings after the second iteration can be seen in Figs. 7 and 8. In
these figures the dimension for user.status_count is chosen as fixed dimen-
sion for all other dimensions in order to compare them easily. Finally in the two-
dimensional illustrations several clusterings around the centroids C1, C2, and C3
can be seen. Note that we used some discretization of the domain values for a better
overview. Figure 7 shows that the stream objects got clustered convenient regard-
ing the dimensions user.status_count and user.followers_count.
Regarding the dimensions user.followers_count and hashtag the stream
objects got clustered intuitively as well as it can be seen in Fig. 8.

7 Experiments

In this section we present several experiments for our SLS algorithm and our
Borda social choice clustering approach. For our experiments we used commodity
hardware with a 2.53 GHz CPU and 16 GB RAM for the Java virtual machine. All
algorithms are implemented in Java.

82 M. Endres et al.

Fig. 7 Final clustering w.r.t
the dimensions
user.followers_count and
user.status_count

Fig. 8 Final clustering w.r.t
the dimensions
user.followers_count and
hashtags

7.1 Benchmarks for Stream Lattice Skyline Algorithm

This section provides experiments on our SLS algorithm.

7.1.1 Experiments on Artifical Data

For our experiments on artificial data we generated anticorrelated data as described
in [10], because this kind of data is most challenging for Pareto queries. We wanted
to investigate how the chunk size affects the runtime of our algorithm, since this
influences the real-time behavior of SLS. In our experiments we varied the chunk
sizes from 10 to 100000 objects and tested the algorithm on an input data set of
100000 objects.

In Fig. 9 we evaluated the behavior of SLS for queries with different domains:
[2856,1,5], [2,3,5,10,10] and [2,3,7,8,4,10]. Remember, each number corresponds

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 83

Fig. 9 Runtime for different
Pareto queries

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10 100 1000 10000 100000
R

un
tim

e
(s

ec
)

Chunk size

[2856,1,5]
[2,3,5,10,10]

[2,3,7,8,4,10]

Fig. 10 Runtime for 100000
objects

 0

 5

 10

 15

 20

 25

 30

 35

10 100 1000 10000 100000

R
un

tim
e

(s
ec

)

Chunk size

BNL
SLS

to the maximal possible values of the single domains. The algorithm is significantly
slower for small chunks (up to 100 objects) than for chunks with more than 100
objects. This can be explained by the frequent repeating of the breadth-first and
depth-first traversal in SLS which have to be carried out for each chunk. For
the chunk size over 10000 objects the runtime of SLS increases slightly, because
the adding of new objects to the BTG (Phase 2 in SLS, cp. Sect. 4.3.2) is more
expensive. Therefore we claim that the optimal chunk size for the best runtime is
between 100 and 10000 objects.

In Fig. 10 we used a Pareto preference query consisting of five LOWEST
preferences on the domain [2,3,5,10,10]. Such a setting is typical for “ real world”
Pareto queries: A few categorical preferences with small maximal values (e.g.,
POS/POS or POS/NEG) are combined with some numerical preferences with larger
domains (AROUND, AT_MOST etc).

We compared SLS to BNL mentioned in Sect. 4.3.1. The SLS algorithm outper-
forms BNL, but for small chunks (up to 500 objects) and very large chunks (over
10000 objects), the difference is much more significant.

84 M. Endres et al.

Fig. 11 Runtime for 10000
objects

20

18

16

14

12

10

8

6

4

2
10 50 100 200 500 1000

R
un

tim
e

(s
ec

)

Chunk size

BNL
SLS

Fig. 12 Runtime for 100000
objects

R
un

tim
e

(s
ec

)

Chunk size

20

40

60

80

100

120

140

10 50 100 200 500 1000

BNL
SLS

For more comprehensive experiments on synthetic data we refer to [18] and [19],
since our algorithm is an extended version of the lattice algorithms presented in
these publications.

7.1.2 Experiments on Real World Data

We also performed experiments on real-world data from Twitter. We varied the
chunk sizes from 10 to 1000 objects and the size of the input stream. Our test query
is based on the preference given in Example 1.

Figures 11 and 12 show our results, which are similar to the results of our
previous experiments. For small chunk sizes up to 200 objects our SLS algorithm is
much better than BNL. From a chunk size of 500 objects on, BNL is nearly as good
as SLS, but still worse. This can be explained by the less number of unions which
has to be carried out after each chunk evaluation, cp. Eq. (2).

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 85

Since real-time processing requires high efficient algorithms on few data objects
in very short time intervals, our SLS algorithm is superior for real-time preference
evaluation as found out in our experiments.

7.2 Benchmarks for Borda Social Choice Clustering

For our clustering experiments we created anti-correlated sets of multidimensional
objects and varied the number of dimensions, the number of objects per set, and
the number of desired clusters. Synthetic data allows us to carefully explore the
behavior of our Borda social choice clustering approach.

We investigated runtime and number of iterations of our approach compared to
the basic k-means algorithm using the Euclidean norm as distance measure. In order
to set the focus on distances using small domains as well, the Canberra distance
is a very suitable measure. It sums up the absolute fractional distances of two d-
dimensional points in relation to the range of the focussed dimensions. Furthermore
results of our experiments with k-means++ are also presented.

7.2.1 Runtime

In the following experiments we investigated the runtime of our Borda algorithm.
In the 3-dimensional testrow in Fig. 13 for growing number of clusters and sets

of input objects (5000, 10000, 15000) the runtime is growing, too. Our approach
(Borda) works in equal time compared to k-means with Euclidean (Eucl.) and
Canberra (Canb.) for small numbers of clusters. For 7 and 9 clusters our approach is
slower independent of the number of input objects because of a higher complexity
of our approach. Benefits of a faster runtime for k-means++ (Borda++) is hardly
recognizable in most cases.

Figure 14: For growing numbers of dimensions our approach reaches a better
runtime compared to the Euclidean distance except for high number of clusters in
all benchmarked sets of 5000, 10000, and 15000 object. In some cases our approach
terminates faster than k-means using Canberra, e.g., the testrow with seven clusters,
but all in all our approach mostly reaches an equal runtime in a 5-dimensional space.

A similar behavior illustrates the testrow for a 9-dimensional set of objects in
Fig. 15. While both our approaches terminate in similar time compared to k-means
with Canberra for 3 and 5 clusters, they are a lot faster than k-means with Euclidean
distance. The trends for growing runtimes w.r.t. the number of clusters and objects
can be noticed in 9-dimensional space, too.

86 M. Endres et al.

Fig. 13 Runtime for 3
dimensions

 0

 100

 200

 300

 400

 500

 600

 700

3 5 7 9

ru
nt

im
e

(m
s)

number of clusters

Eucl. 5000;
Canb. 5000;
Borda 5000;

Borda++ 5000;

Eucl. 10000;
Canb. 10000;
Borda 10000;

Borda++ 10000;

Eucl. 15000;
Canb. 15000;
Borda 15000;

Borda++ 15000;

Fig. 14 Runtime for 5
dimensions

 0

 100

 200

 300

 400

 500

 600

 700

 800

3 5 7 9

ru
nt

im
e

(m
s)

number of clusters

Eucl. 5000;
Canb. 5000;
Borda 5000;

Borda++ 5000;

Eucl. 10000;
Canb. 10000;
Borda 10000;

Borda++ 10000;

Eucl. 15000;
Canb. 15000;
Borda 15000;

Borda++ 15000;

Fig. 15 Runtime for 9
dimensions

 0

 200

 400

 600

 800

 1000

 1200

 1400

3 5 7 9

ru
nt

im
e

(m
s)

number of clusters

Eucl. 5000;
Canb. 5000;
Borda 5000;

Borda++ 5000;

Eucl. 10000;
Canb. 10000;
Borda 10000;

Borda++ 10000;

Eucl. 15000;
Canb. 15000;
Borda 15000;

Borda++ 15000;

7.2.2 Iterations

For growing numbers of clusters and growing numbers of objects per set the
numbers of needed iterations until termination is ascending for all dimensions as
it can be seen in Figs. 16, 17 and 18.

Both our versions of k-means reach a stable clustering in clearly less iterations,
especially for higher number of clusters and bigger sets of objects. While the number
of iterations is growing fast for growing numbers of dimensions for k-means using

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 87

Fig. 16 Iterations for 3
dimensions

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

3 5 7 9

ite
ra

tio
ns

number of clusters

Eucl. 5000;
Canb. 5000;
Borda 5000;

Borda++ 5000;

Eucl. 10000;
Canb. 10000;
Borda 10000;

Borda++ 10000;

Eucl. 15000;
Canb. 15000;
Borda 15000;

Borda++ 15000;

Fig. 17 Iterations for 5
dimensions

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

3 5 7 9

ite
ra

tio
ns

number of clusters

Eucl. 5000;
Canb. 5000;
Borda 5000;

Borda++ 5000;

Eucl. 10000;
Canb. 10000;
Borda 10000;

Borda++ 10000;

Eucl. 15000;
Canb. 15000;
Borda 15000;

Borda++ 15000;

Fig. 18 Iterations for 9
dimensions

 0

 20

 40

 60

 80

 100

 120

 140

 160

3 5 7 9

ite
ra

tio
ns

number of clusters

Eucl. 5000;
Canb. 5000;
Borda 5000;

Borda++ 5000;

Eucl. 10000;
Canb. 10000;
Borda 10000;

Borda++ 10000;

Eucl. 15000;
Canb. 15000;
Borda 15000;

Borda++ 15000;

Euclidean and Canberra, our Borda approach only needs less additional iterations
compared to smaller dimensions. K-means++ has only small effects on the iterations
of k-means with Borda social choice for the cluster allocation.

Finally our approach works at most in equal time compared to k-means with both
of the other distances, but for higher numbers of clusters it needs more time until
termination because of the higher complexity of the Borda voting rule. Moreover our
approaches need only a fractional part of iterations until termination for all testrows.

88 M. Endres et al.

8 Conclusion

We presented a novel method to analyze data streams which are common in our
daily lives. Our approach is based on the well-known concept of user preferences
and profiles and allows personalized stream processing in order to find only relevant
and valuable information. We proposed a preference stream processing framework
which supports the PCQL language to query data streams as well as the SLS
algorithm for real-time preference evaluation. In the case of too many Pareto-
optimal objects we apply a clustering approach based on the Borda social choice
rule for cluster allocation. Compared to traditional clustering approaches, Borda
ensures that each dimension is treated as equal important as a Pareto preference
does, whether they have different domains or not. Our experiments have shown the
benefit of this approach in comparison to standard techniques.

Future work includes the development of the SLS algorithm to handle unre-
stricted domains, e.g., as in [19, 22], as well as the implementation of a top-k
approach as described in [20, 47]. In addition we want to develop an open-
source application which combines preference stream analytics with data stored
in databases which still play an important role to create efficient decision support
systems. Furthermore we want to perform a user-based research study in order
to consider the quality of the clusterings compared to clustering-algorithms using
traditional distance measures.

Acknowledgements This work has been partially funded by the German Federal Ministry for
Economic Affairs and Energy according to a decision by the German Bundestag, grant no.
ZF4034402LF5.

References

1. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.:
Stream: the stanford stream data manager. In: SIGMOD ’03, pp. 665–665. ACM, New York
(2003)

2. Arasu, A., Babu, S., Widom, J.: CQL: A Language for Continuous Queries over Streams and
Relations, pp. 1–19. Springer, Berlin (2004)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. VLDB J. 15(2), 121–142 (2006)

4. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings
of the Eighteenth Annual ACM-SIAM, SODA ’07, pp. 1027–1035. Society for Industrial and
Applied Mathematics, Philadelphia, PA (2007)

5. Babcock, B., Babu., S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: PODS ’02, pp. 1–16. New York (2002)

6. Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Rec. 30(3), 109–120
(2001)

7. Baruah, R.D., Angelov, P., Baruah, D.: Dynamically evolving clustering for data streams. In:
EAIS ’14 IEEE, pp. 1–6 (2014)

8. Bezerra, C.G., Costa, B.S.J., Guedes, L.A., Angelov, P.P.: A new evolving clustering algorithm
for online data streams. In: EAIS ’16, pp. 162–168 (2016)

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 89

9. Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: MDM ’01, pp. 3–14.
Springer, London (2001)

10. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE ’01, pp. 421–430.
IEEE, Washington, DC (2001)

11. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for
representing and reasoning with conditional Ceteris Paribus preference statements. J. Artif.
Intell. Res. 21, 135–191 (2004)

12. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous query system for
internet databases. In: SIGMOD ’00, pp. 379–390. ACM, New York (2000)

13. Chomicki, J.: Preference formulas in relational queries. In: TODS ’03: ACM Transactions on
Database Systems, vol. 28, pp. 427–466. ACM Press, New York, NY (2003)

14. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. SIGMOD 42(3),
6–18 (2013)

15. de Andrade Silva, J., Hruschka, E.R., Gama, J.: An evolutionary algorithm for clustering data
streams with a variable number of clusters. Expert Syst. Appl. 67, 228–238 (2017)

16. Döring, S., Preisinger, T., Endres, M.: Advanced preference query processing for E-commerce.
In: SAC ’08 Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1457–
1462. ACM, New York, NY (2008)

17. Dovẑan, D., Logar, V., Ŝkrjanc, I.: Implementation of an evolving fuzzy model (eFuMo) in a
monitoring system for a waste-water treatment process. IEEE Trans. Fuzzy Syst. 23(5), 1761–
1776 (2015)

18. Endres, M., Kießling, W.: High parallel skyline computation over low-cardinality domains. In:
Proceedings of ADBIS ’14, pp. 97–111. Springer, Berlin (2014)

19. Endres, M., Kießling, W.: Parallel skyline computation exploiting the lattice structure. J.
Database Manag. 26, 18–43 (2016)

20. Endres, M., Preisinger, T.: Behind the skyline. In: DBKDA ’15. IARIA (2015)
21. Endres, M., Preisinger, T.: Beyond skylines: explicit preferences. In: DASFAA ’17, pp. 327–

342. Springer International Publishing, Cham (2017)
22. Endres, M., Roocks, P., Kießling, W.: Scalagon: an efficient skyline algorithm for all seasons.

In: DASFAA ’15 (2015)
23. Faria, E.R., Gonçalves, I.J.C.R., de Carvalho, A.C.P.L.F., Gama, J.: Novelty detection in data

streams. Artif. Intell. Rev. 45(2), 235–269 (2016)
24. Ferligoj, A., Batagelj, V.: Direct multicriteria clustering algorithms. J. Classif. 9(1), 43–61

(1992)
25. Gama, J.: Clustering from Data Streams, pp. 226–231. Springer US, Boston, MA (2017)
26. Golfarelli, M., Rizzi, S.: Expressing OLAP preferences. In: SSDBM ’09, SSDBM 2009, pp.

83–91. Springer, Berlin (2009)
27. Gu, X., Angelov, P.P.: Autonomous data-driven clustering for live data stream. In: SMC ’16

IEEE, pp. 1128–1135 (2016)
28. Huang, Z., Xiang, Y., Zhang, B., Liu, X.: A clustering based approach for skyline diversity.

Expert Syst. Appl. 38(7), 7984–7993 (2011)
29. Hyde, R., Angelov, P., MacKenzie, A.: Fully online clustering of evolving data streams into

arbitrarily shaped clusters. Inf. Sci. 382–383, 96–114 (2017)
30. Ienco, D., Bifet, A., Žliobaitė, I., Pfahringer, B.: Clustering Based Active Learning for Evolving

Data Streams, pp. 79–93. Springer, Berlin (2013)
31. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666

(2010)
32. Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Cetintemel, U.,

Cherniack, M., Tibbetts, R., Zdonik, S.B.: Towards a streaming SQL standard. PVLDB 1(2),
1379–1390 (2008)

33. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its
application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002). https://
doi.org/10.1109/91.995117

https://doi.org/10.1109/91.995117
https://doi.org/10.1109/91.995117

90 M. Endres et al.

34. Kastner, J., Endres, M., Kießling, W.: A Pareto-dominant clustering approach for Pareto-
frontiers. In: DOLAP Workshops of EDBT/ICDT ’17, Venice (2017)

35. Kießling, W.: Foundations of Preferences in Database Systems. In: Proceedings of VLDB ’02,
pp. 311–322. VLDB, Hong Kong (2002)

36. Kießling, W.: Foundations of Preferences in Database Systems. In: VLDB ’02, pp. 311–322.
VLDB Endowment, Hong Kong SAR (2002)

37. Kießling, W.: Preference queries with SV-semantics. In: COMAD ’05, pp. 15–26. Computer
Society of India, Goa (2005)

38. Kießling, W., Endres, M., Wenzel, F.: The Preference SQL system - an overview. IEEE
Comput. Soc. Bull. Techn. Commitee Data Eng. 34(2), 11–18 (2011)

39. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous processing of preference
queries in data streams. In: SOFSEM ’10, pp. 47–60. Springer, Berlin, Špindlerův Mlýn,
Czech Republic (2010)

40. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T.,
Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges for data stream mining
research. SIGKDD ’14 Explor. Newsl. 16(1), 1–10 (2014)

41. Lee, Y.W., Lee, K.Y., Kim, M.H.: Efficient processing of multiple continuous skyline queries
over a data stream. Inf. Sci. 221, 316–337 (2013)

42. Lughofer, E., Sayed-Mouchaweh, M.: Autonomous data stream clustering implementing split-
and-merge concepts towards a plug-and-play approach. Inf. Sci. 304, 54 – 79 (2015)

43. Morse, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-cardinality
domains. In: VLDB ’07, pp. 267–278 (2007)

44. Okazaki, M., Matsuo, Y.: Semantic twitter: analyzing tweets for real-time event notification. In:
BlogTalk. Lecture Notes in Computer Science, vol. 6045, pp. 63–74. Springer, Berlin (2009)

45. Pohl, D., Bouchachia, A., Hellwagner, H.: Online indexing and clustering of social media data
for emergency management. Neurocomputing 172(C), 168–179 (2016)

46. Pratama, M., Anavatti, S.G., Er, M.J., Lughofer, E.: pclass: an effective classifier for streaming
examples. IEEE Trans. Fuzzy Syst. 23(2), 369–386 (2015)

47. Preisinger, T., Endres, M.: Looking for the best, but not too many of them: multi-level and
top-k skylines. Int. J. Adv. Softw. 8(3, 4), 467–480 (2015)

48. Preisinger, T., Kießling, W.: The Hexagon algorithm for evaluating Pareto preference queries.
In: MPref ’07 (2007)

49. Railean, C., Moraru, A.: Discovering popular events from tweets. In: SiKDD ’13. Ljubljana
(2013)

50. Ribeiro, M.R., Barioni, M.C.N., de Amo, S., Roncancio, C., Labbé, C.: Reasoning with
temporal preferences over data streams. In: Florida Artificial Intelligence Research Society
Conference (FLAIRS ’17), Marco Island

51. Roocks, P., Endres, M., Huhn, A., Kießling, W., Mandl, S.: Design and implementation of a
framework for context-aware preference queries. J. Comput. Sci. Eng. 6(4), 243–256 (2012)

52. Roocks, P., Endres, M., Mandl, S., Kießling, W.: Composition and efficient evaluation of
context-aware preference queries. In: DASFAA ’12: Proceedings of the 17th International
Conference on Database Systems for Advanced Applications (2012)

53. Rossi, F., Venable, K.B., Walsh, T.: A Short Introduction to Preferences Between Artificial
Intelligence and Social Choice. Morgan & Claypool Publishers, San Rafael (2011)

54. Rudenko, L., Endres, M.: Personalized stream analysis with PreferenceSQL. In: PPI Workshop
of BTW ’17, pp. 181–184, Stuttgart (2017)

55. Rudenko, L., Endres, M., Roocks, P., Kießling, W.: A preference-based stream analyzer. In:
Streamvolv Workshop of ECML PKKD’16 (2016)

56. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.: Twitterstand:
news in tweets. In: ACM ’09, pp. 42–51 (2009)

57. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A., Gama, J.: Data stream
clustering: a survey. ACM Comput. Surv. 46(1) (2013). https://doi.org/10.1145/2522968.
2522981

https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1145/2522968.2522981

Analyzing and Clustering Pareto-Optimal Objects in Data Streams 91

58. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition and
application of preferences in database systems. ACM TODS 36(3), 19:1–19:45 (2011)

59. Truong, D.T., Battiti, R.: A flexible cluster-oriented alternative clustering algorithm for
choosing from the Pareto front of solutions. Mach. Learn. 98(1), 57–91 (2015)

60. Wenzel, F., Endres, M., Mandl, S., Kießling, W.: Complex preference queries supporting spatial
applications for user groups. PVLDB 5(12), 1946–1949 (2012)

Error-Bounded Approximation of Data
Stream: Methods and Theories

Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng

Abstract Since the development of sensor network and Internet of Things, the
volume of data is rapidly increasing and the streaming data has attracted much
attention recently. To efficiently process and explore data streams, the compact
data representation is playing an important role, since the data approximations other
than the original data items are usually applied in many stream mining tasks, such
as clustering, classification, and correlation analysis. In this chapter, we focus on
the maximum error-bounded approximation of data stream, which represents the
streaming data with constrained approximation error on each data point. There
are two criteria for the approximation solution: self-adaption over time for varied
error bound and real-time processing. We reviewed the existing data approximation
techniques and summarized some essential theories such as optimization guarantee.

Reprinted by permission from Springer Nature: Springer, The VLDB Journal, Maximum error-
bounded piecewise linear representation for online stream approximation, Q. Xie et al., ©Springer-
Verlag Berlin Heidelberg 2014 (https://doi.org/10.1007/s00778-014-0355-0).

Q. Xie (�)
Wuhan University of Technology, Wuhan, China
e-mail: felixxq@whut.edu.cn

C. Pang
Ningbo Institute of Technology, Zhejiang University, Ningbo, China

X. Zhou
University of Queensland, Brisbane, QLD, Australia

Soochow University, Suzhou, China
e-mail: zxf@itee.uq.edu.au

X. Zhang (�)
CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal,
Kingdom of Saudi Arabia
e-mail: xiangliang.zhang@kaust.edu.sa

K. Deng
RMIT University, Melbourne, VIC, Australia
e-mail: ke.deng@rmit.edu.au

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_5&domain=pdf
https://doi.org/10.1007/s00778-014-0355-0
mailto:felixxq@whut.edu.cn
mailto:zxf@itee.uq.edu.au
mailto:xiangliang.zhang@kaust.edu.sa
mailto:ke.deng@rmit.edu.au
https://doi.org/10.1007/978-3-319-89803-2_5

94 Q. Xie et al.

Two optimal linear-time algorithms are introduced to construct error-bounded
piecewise linear representation for data stream. One generates the line segments
by data convex analysis, and the other one is based on the transformed space, which
can be extended to a general model. We theoretically analyzed and compared these
two different spaces, and proved the theoretical equivalence between them, as well
as the two algorithms.

1 Introduction

Since the development of information system and sensor networks, especially the
increasing attention on Internet of Things (IOT) [1, 17], streaming data is attracting
much attention and has now been involved in various applications, including the
medical data recording the status of patients [23, 28], financial data denoting the
changing trends of stock prices [29], the large amount of data during network
communications [18], and those scientific data such as sun spot numbers and ocean
surface temperatures. The booming web techniques and the widely popularized
mobile devices bring in the impressive popularity of web data access and shar-
ing [30, 31], which further increase the production and proliferation of streaming
data. The rapid growth of streaming data, together with its high significance in the
area of health, finance, entertainment, and communication in daily life, has desired
novel techniques and advanced systems to manage and process the streaming data
efficiently.

Characterized as continuous, random, varying, and rapid in arrival, streaming
data in the data stream model differ from conventionally stored data in several
ways [2]:

• The data elements in the stream arrive online.
• The system has no control over the order in which data elements arrive to be

processed, either within a data stream or across data streams.
• Data streams are potentially unbounded in size.
• Once an element from a data stream has been processed, it is discarded or

archived, so that it cannot be retrieved easily unless it is explicitly stored in
memory, which typically is small relative to the size of the data streams.

Since the streaming data have high input rate, and are potentially unbounded in
size, the query and operation on streaming data usually require approximate results.
Therefore it is necessary to find a proper and compact form to represent the data
stream, so that the query and operation on streaming data can be more efficiently
solved from the compact representations. In practical applications, the dynamics of
data such as trends, patterns, and outliers are most attractive. In this regard, many
techniques such as histogram, line segment, and wavelet are employed for effective
data approximation and efficient stream query processing [9, 11, 12, 33].

The intensive work on stream approximation research is the size-bounded repre-
sentation [5, 8]. Its objective is to construct a prescribed number of representations
that minimize the approximation error under a specified metric, where L2 norm (i.e.,

Error-Bounded Approximation of Data Stream: Methods and Theories 95

Fig. 1 An example of PLR on a time series data stream

Euclidean Distance) is mostly used. However, there are two main drawbacks on the
size-bounded constraint and the use of L2 norm for approximation: firstly, the size-
bounded constraint lacks the ability to generate error-guaranteed representations
for streaming data since the stream is naturally unbounded in size; secondly, the
use of L2 norm leads to the inability of controlling the approximation error on
individual stream data items. To alleviate these drawbacks, researchers have made
efforts in constructing the representations with guaranteed maximum allowable
approximate error on each data point (L∞ norm), which is termed the error-bounded
representations. It has been engaged in many real-world applications, such as
continuous queries over data streams [15, 19], sensor network management [25, 35],
and monitoring physiological data for surgery operations [23, 36].

The use of line segments to represent a time series data stream, termed Piecewise
Linear Representation (PLR) [4, 6, 16, 33], has been extensively studied for decades
under different criteria [22]. The idea of PLR is to represent a complicated wave-
like data stream with a number of simple line segments, so that the streaming
data can be efficiently archived, and a query on the stream can be approximately
answered by a query on the line segments. Compared with the stream itself, the line
segments constructed from PLR provide striking visual outlines of stream trends
and can be more efficiently processed and represented in the database (Fig. 1).
These advantages make PLR the most popular representation technique for the data
stream [13], and it has been widely applied to support date indexing [5, 14, 26],
similarity search [29, 37], and correlation analysis [32, 35].

Histogram is also employed as contemporary error-bounded representation, i.e.,
Piecewise Constant Representation (PCR). For error-bounded PCR, Lazaridis et al.
[15] provided an optimal algorithm to approximate sensor data stream. Gandhi
et al. [7] proposed GAMPS that compressed multi-stream with guaranteed L∞ error
as well as a notable worst-case quality of approximation. They also extended the
framework to address amnesic approximation and out-of-order approximation [8]
using bucket-merging. As the PCR uses constant values (i.e., horizontal line
segments) in representing a wave-like stream, it fails to reflect the trends of
streaming data. Regarded as a generalized version of error-bounded PCR, the error-
bounded PLR usually achieves a greater compression ratio and has more superiority
for advanced applications than PCR.

In comparison to wavelet-based methods [10], PLR is more visually comprehen-
sive and convenient for stream queries. For example, the line segments generated by

96 Q. Xie et al.

error-bounded PLR on a stream can denote the stream trends and be used directly for
answering trend queries. Such queries are crucial in monitoring patients in intensive
care as medical specialists [21] believe that more accurate and earlier notifications
of adverse events can be predicted from the accumulated trends and variations of
the physiological streams. Even though error-bounded wavelet representations can
be constructed very efficiently and effectively [23, 24], the wavelet synopses may
not be ready to answer stream trends directly.

In this chapter, we introduce the state-of-the-art optimal algorithms to generate
the error-bounded PLR for data stream, which aim to construct the smallest number
of line segments with approximation error constrained on each data point. We will
investigate the algorithm designed in time domain named as OptimalPLR [33],
and also another algorithm proposed in an interesting parameter space, which is
named as ParaOptimal [20]. Such innovative transformed space has been applied
in the recent research for advanced applications [27, 34]. Theoretically, the optimal
results can be achieved by greedy mechanism. In order to adjust a line segment to
approximate as many stream points as possible, the general idea is to determine
the range of all feasible line segments, which is incrementally updated during the
processing of consecutive sequence points. Whenever the current point cannot be
approximated within error bound, a line segment can be determined.

Both ParaOptimal and OptimalPLR are optimal solutions with linear time com-
plexity for error-bounded PLR problem, but derived from different spaces, which
provide essential and new sight on this classic problem. We further theoretically
compare these two algorithms and the spaces they are based on, so as to provide
deeper and more theoretical understanding for this problem. By setting up a
mapping between the point and line in these two spaces, we theoretically proved
the equivalence of these two spaces, and further linked the two algorithms together,
which explained the optimal solution from different views.

2 Preliminary

In this section, along with some notations and new concepts for the study of
error-bounded PLR, we formally provide the problem definition and the objective
addressed in this chapter. We also present Theorem 1 which guarantees that the
smallest number of line segments for the error-bounded PLR can be achieved
by maximizing each representative line segment. The general notations used
throughout this chapter are summarized in Table 1.

Let S = 〈s1, s2, . . . , sk, . . .〉 denote a data stream where each point si = (xi, yi)

designates the actual value yi at time stamp xi . We use S[i, j] = 〈si, si+1, . . . , sj 〉
to denote the stream fragment on time slot [xi, xj] (i < j) and |S[i, j]| = j − i + 1
to denote the cardinality of S[i, j].

As an approximation technique, PLR approximates S with line segments. A line
segment on time slot [xi, xj] is representable by the linear function y = a · x + b

for x ∈ [xi, xj] with two parameters: slope a and offset b. Since a line can be

Error-Bounded Approximation of Data Stream: Methods and Theories 97

Table 1 Notations

Symbol Description

δ Error bound for approximation (>0)

S = 〈s1, s2, . . . , sk, . . .〉 A data stream

si = (xi , yi) Data point si at time stamp xi with value yi

S[i, j] = 〈si , si+1, . . . , sj 〉 A (stream) fragment from time xi to xj

si = (xi , yi − δ) Data point with deleted tolerant error

si = (xi , yi + δ) Data point with added tolerant error

seg[i, j] A δ-representative line on time slot [xi , xj]
slp[i, j] The slope of seg[i, j]
slp[i, j] or slp[i, j] The minimum or maximum slopes of all slp[i, j]
line(si , sj) Line (segment) that passes point si and sj

line(ρ, s) Line (segment) with slope ρ that passes point s

slope(si , sj) The slope of line(si , sj)

cvxk , cvxk Reduced convex hulls for S[1, k].
cvx / cvx bulge downward/upward

determined by its slope and a line point or two different line points alternatively, for
the convenience of presentation, we also use line(ρ, s) to denote the line that passes
point s with slope ρ, and line(si, sj) to denote the line that passes the two points si
and sj . With this notation, we use slope(si, sj) as the slope of line(si, sj).

We define a stream fragment S[i, j] (i < j) as δ-representable (at time slot
[ti , tj]) if there exists a line segment identified by y′

h = a · xh + b, such that |y′
h −

yh| ≤ δ holds for each point sh = (xh, yh) of S[i, j] (i ≤ h ≤ j). In this situation,
such line segment is defined as a δ-representative for fragment S[i, j]. (Notice that
there can be more than one δ-representative.) For simplicity, we use seg[i, j] to
represent the δ-representative, and slp[i, j] to denote the slope of seg[i, j]. Here, we
use the maximum error metric L∞ to guarantee the approximation quality at each
stream data point. Furthermore, if fragment S[i, j] is δ-representable but S[i, j + 1]
is not, then fragment S[i, j] is maximally δ-representable on time slot [ti , tj]1 and
accordingly its seg[i, j] is called maximal δ-representative.

With these designations, the Error-bounded Piecewise Linear Representation
(Error-bounded PLR) problem discussed in this chapter is precisely defined as
follows:

Definition 1 (Error-Bounded PLR) Given a predefined error bound δ > 0 and a
data stream fragment S[1, n] = 〈s1, s2, . . . , sn〉, the (optimal) error-bounded PLR
is to construct a (minimal) number of δ-representative line segments {seg[i1, i2 −
1], seg[i2, i3 − 1], . . . , seg[ik, ik+1 − 1]} to represent S[1, n], where i1 = 1 and
ik+1 − 1 = n.

1It should be noted that S[i − 1, j] can be δ-representable even if S[i, j] is maximally δ-
representable.

98 Q. Xie et al.

Fig. 2 The proof of Theorem 1: α = 4

By the definition, we specify that this problem focuses on generating disconnected
line segments, i.e., the consecutive segments do not share same end points.

The following theorem has been explored in literature [4, 15] which indicates
that the optimal error-bounded PLR can be solved through computing maximal δ-
representative line segments.

Theorem 1 Given an error bound δ > 0 and stream fragment S[1, n], assume
that seg[ij , ij+1 − 1] is a maximal δ-representative of S[ij , ij+1 − 1] on time slot
[ij , ij+1 − 1] for 1 ≤ j ≤ k with i1 = 1 and ik+1 − 1 = n. Then the error-bounded
PLR on fragment S[1, n] has at least k line segments.

Proof Clearly, the claim is true for k = 1. For k > 1, assume that an optimal error-
bounded PLR solution for fragment S[1, n] is the set of segments seg′[lh, lh+1 − 1]
for 1 ≤ h ≤ m, where l1 = 1, lm+1 − 1 = n and m < k (Fig. 2).

As claimed in the theorem, since each segment is a maximal δ-representative,
both i1 = l1 = 1 and l2 ≤ i2 hold. Let α be the index value such that lα ≤ iα
and lα+1 > iα+1 hold. Alternatively, since both m < k and lm+1 − 1 = n hold,
im+1 < lm+1 holds. Hence, we have that α exists and 1 ≤ α ≤ m is confirmed.

Thus, we have lα ≤ iα < iα+1 − 1 < lα+1 − 1. It means that S[iα, lα+1 − 1]
is δ-representable and is contradictory to the hypothesis that seg[iα, iα+1 − 1] is a
maximal δ-representative line segment. Therefore, k ≤ m holds, and the result is
proven. ��

With Theorem 1, it is inspired that the optimal error-bounded PLR results can
be achieved by maximizing each δ-representative line segment, which is naturally
the greedy mechanism. The algorithms introduced in this chapter all follow such
mechanism.

3 OptimalPLR: An Optimal Algorithm to Generate
Error-Bounded PLR

In this section, we will introduce an optimal algorithm to generate the error-bounded
PLR, named OptimalPLR [33]. It can theoretically construct the minimal number
of line segments, and achieve the linear time efficiency. The algorithm is based on
the essential analysis on the convex outline of the data stream.

Error-Bounded Approximation of Data Stream: Methods and Theories 99

Fig. 3 Rotation examples. (a) Error-bounded PCR. (b) Error-bounded PLR. (c) Rotation

3.1 Extreme Slopes of Maximal δ-Representative

Generally, there can exist many δ-representative segments with various slopes for a
δ-representable stream fragment. The range of the candidates’ slopes depends on the
tolerant error δ and the stream itself. We first discuss the complete slope range of the
δ-representative segments for a δ-representable stream fragment, and then study the
slope reductions and alterations when a new point is added to the stream fragment.
Such analysis can provide the intuition of how to maximize the δ-representatives.
Our discussion is based on the rotation of Cartesian coordinate system.

3.1.1 Slope Rotation and Extreme Slopes

We start from the methods proposed by Buragohain et al. [4] and Lazaridis et al.
[15] for error-bounded PCR. As a simplified version of error-bounded PLR, error-
bounded PCR uses constant values rather than general line segments for the
representation. Constant values can be regarded as a line with zero slope that is
denoted by a horizontal line in a Cartesian coordinate plane as in Fig. 3a. Under a
predefined error bound δ > 0, the optimal error-bounded PCR aims at constructing
the smallest number of representation B = {ci1 , ci2 , . . . , cih} for a given stream
fragment S[1, n] = 〈s1, s2, . . . , sn〉 such that

{
0 = i0 < ik < ih = n for 0 < k < h,

|yj − cik | ≤ δ for ik−1 < j ≤ ik and 1 ≤ k ≤ h.

That is, using constant value cik represents yj for ik−1 < j ≤ ik and 1 ≤ k ≤ h.
To build B, the scheme of [4, 15] greedily checks the points of the stream frag-

ment in order and finds the maximally δ-representable stream fragment iteratively.
Here, the stream fragment is only approximated by horizontal lines. To choose the
maximally δ-representable fragment started from xi , the scheme needs to find the
maximum time stamp xj such that max

i≤i1<i2≤j
|yi1 − yi2 | ≤ 2δ. In fact, the scheme

constructs the longest horizontal rectangle with 2δ width starting from xi to cover
the maximal number of steam points. The intuition is depicted in Fig. 3a in general.

Extending the idea to error-bounded PLR, we have the following observation that
can be proven easily according to the error bound definition.

100 Q. Xie et al.

Observation 1 A stream fragment S[i, j] is δ-representable if and only if there
exists a parallelogram of 2δ width in the vertical direction such that no points of
S[i, j] are placed outside of the parallelogram.

The intuition of this observation is illustrated in Fig. 3b. We will use this observation
to study the feasible slopes of a line segment approximating a δ-representable stream
fragment through rotating the Cartesian coordinate plane.

To simplify the discussion, we assume that S[1, k − 1] = 〈s1, s2, . . . , sk−1〉 is δ-
representable, and we use a line segment to represent it. For each point si = (xi, yi)

of S[1, k − 1] where 1 ≤ i < k, its new coordinates s′
i = (x′

i , y
′
i), after having the

axis rotated around the origin by an angle of −π/2 < θ < π/2, must satisfy:

{
x′
i = xi cos θ + yi sin θ,

y′
i = −xi sin θ + yi cos θ,

as illustrated in Fig. 3c, which is derived by rotation matrix. According to the
observation, since fragment S[1, k −1] is δ-representable, there exists −π/2 < θ <

π/2 such that for each pair of {i, j}, |y′
i −y′

j | ≤ 2δ| cos θ |. Since −π/2 < θ < π/2,
| cos θ |
= 0 and

|y′
i − y′

j | = |[(−xi tan θ + yi) − (−xj tan θ + yj)] cos θ |

hold, we have |(xj − xi) tan θ − (yj − yi)| ≤ 2δ. By extending this formula, we
have2:

(yj − δ) − (yi + δ)

(xj − xi)
≤ tan θ ≤ (yj + δ) − (yi − δ)

(xj − xi)
. (1)

In fact, θ is the intersection angle of x-axis and the parallelogram’s non-vertical
edge, which is also the inclination angle of a possible δ-representative for S[1, k−1]
(i.e., the centerline parallel to the parallelogram’s non-vertical edge). In this sense,
the tan θ is the slope of the δ-representative line segment.

Since for each pair of {i, j}, the relationship of Eq. (1) must hold, we can derive
the range of tan θ . Let slp[1, k − 1] and slp[1, k − 1] denote the minimum and
maximum line slopes of the δ-representative for fragment S[1, k − 1], respectively,
and we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

slp[1, k − 1] = max
1≤i<j≤k−1

(yj −δ)−(yi+δ)

(xj −xi)

= (yc−δ)−(ya+δ)
(xc−xa)

,

slp[1, k − 1] = min
1≤i<j≤k−1

(yj +δ)−(yi−δ)

(xj −xi)

= (yd+δ)−(yb−δ)
(xd−xb)

,

(2)

2Without the loss of generality, we assume that xi < xj .

Error-Bounded Approximation of Data Stream: Methods and Theories 101

Then, for a possible δ-representative line segment of S[1, k−1], its slope slp[1, k−1]
satisfies:

slp[1, k − 1] ≤ slp[1, k − 1] ≤ slp[1, k − 1]. (3)

In fact, Eq. (3) denotes that the stream fragment S[1, k − 1] is δ-representable
if and only if slp[1, k − 1] ≤ slp[1, k − 1]. In the situations of slp[1, k − 1] <

slp[1, k−1], slp[1, k−1] can have many feasible values within the range [slp[1, k−
1], slp[1, k − 1]]. Hence, it is natural to discover the feasible range of the line slope
in terms of slp[1, k − 1] and slp[1, k − 1].

Specifically, we define the extreme points as those identify the δ-representatives
with extreme slopes. Based on Eq. (2), we define:

⎧
⎪⎨

⎪⎩

{a, c} = arg max
1≤i<j≤k−1

(yj −δ)−(yi+δ)

(xj −xi)
, (a < c)

{b, d} = arg min
1≤i<j≤k−1

(yj +δ)−(yi−δ)

(xj −xi)
, (b < d)

where points sa and sb (sc and sd , respectively) are the rightmost (leftmost,
respectively) points that satisfy 1 ≤ a < c ≤ k −1 and 1 ≤ b < d ≤ k −1. Assume
si = (xi, yi − δ) denotes data point with deleted tolerant error, and si = (xi, yi + δ)

denotes data point with added tolerant error, then sa , sc, sb, and sd are the extreme
points. As previously mentioned, we use line(sa, sc) to denote the line that passes
points sa and sc, and use line(sb, sd) to denote the line that passes points sb and sd .
In this way, line(sa, sc) and line(sb, sd) are the bounding lines with extreme slopes
for all δ-representatives (Fig. 4).

L1: line(sa, sc) L2: line(sb, sd)

data range [yi- , yi+] at xi

xa xb xd xkxc

ya+

yb-

yd+

yc-
slp[1,k-1]

slp[1,k-1]

L1

L2
yc+

yk-

S[1,k]

Fig. 4 Extreme slope evolution

102 Q. Xie et al.

According to Eqs. (2) and (3), we have the following lemma:

Lemma 1 For each 1 ≤ i ≤ k − 1, data range [yi − δ, yi + δ] at time stamp xi is
intersected or met by line(sa, sc) and line(sb, sd).

The proof is straightforward: If any range [yi − δ, yi + δ] is not intersected or met
by one of these two lines, it will be contradictory with the definition of slp[1, k − 1]
or slp[1, k − 1].

As depicted in Fig. 4, Lemma 1 means that each data range [yi − δ, yi + δ],
denoted by the thick vertical gray line at xi , interacts (or meets) with both line(sa, sc)
(labeled by L1) and line(sb, sd) (labeled by L2).

3.1.2 Slope Evolution and Reduction

Let S[1, k] be the fragment created by the addition of a new point sk at the end
of fragment S[1, k − 1]. As inspired by Theorem 1, we need to check if S[1, k] is
δ-representable greedily and resolve slp[1, k], slp[1, k] and slp[1, k] to derive the
potential maximal δ-representative. We will interpret how to simplify the process in
three stages: Increment, Localization, and the Reduction of convex hull.

First, derived from Lemma 1, we have the following corollary [4, 6] to incremen-
tally determine whether S[1, k] is δ-representable when S[1, k − 1] is.

Corollary 1 Suppose fragment S[1, k − 1] is δ-representable, fragment S[1, k] is
δ-representable if and only if the range [yk − δ, yk + δ] at time xk is not located
below line(sa, sc) or above line(sb, sd).

Proof For sufficiency, if the range [yk − δ, yk + δ] at time xk is not located below
line(sa, sc) or above line(sb, sd), it is obvious that sk can be approximated within
error bound δ by at least one seg[1, k − 1], so S[1, k] is δ-representable.

For necessity, given S[1, k] is δ-representable, according to Lemma 1, data range
[yk − δ, yk + δ] must be intersected or met by the bounding lines of S[1, k]. Since
S[1, k − 1] is always δ-representable, the bounding lines of S[1, k] must be covered
by those of S[1, k − 1], i.e., line(sa, sc) and line(sb, sd). If the range [yk − δ, yk + δ]
is located below line(sa, sc) or above line(sb, sd), then it will be also out of the
bounding lines of S[1, k], which conflicts with Lemma 1.

Combining the above two parts, the corollary is proven. ��
Such corollary provides the method to quick check whether we should keep

updating the extreme slopes for S[1, k], or we can determine a fragment S[1, k − 1]
as maximally δ-representable. Assuming that S[1, k] is verified as δ-representable,
the next question is how to obtain slp[1, k] and slp[1, k]. Computing them directly
via Eq. (2) can be expensive in time cost as they require the complete computation
of the intersection of slopes delineated by the equation. In the following, we will
simplify the computation of slp[1, k] and slp[1, k] by incremental and localizing

strategies in terms of slp[1, k − 1] and slp[1, k − 1].

Error-Bounded Approximation of Data Stream: Methods and Theories 103

Increment We will refine Eq. (2) and express slp[1, k] in terms of slp[1, k − 1].
From Eq. (2), we have

⎧
⎨

⎩

slp[1, k] = max1≤i<j≤k
(yj −δ)−(yi+δ)

(xj −xi)
,

slp[1, k] = min1≤i<j≤k
(yj +δ)−(yi−δ)

(xj −xi)
.

According to the definitions of slp[1, k − 1] and slp[1, k − 1], we have

⎧
⎪⎨

⎪⎩

slp[1, k] = max
1≤i<k

{
(yk−δ)−(yi+δ)

(xk−xi)
, slp[1, k − 1]

}
,

slp[1, k] = min
1≤i<k

{
(yk+δ)−(yi−δ)

(xk−xi)
, slp[1, k − 1]

}
.

(4)

Equation (4) indicates that slp[1, k] and slp[1, k] can be derived by comparing
point si with sk (i < k) rather than each pair of points si and sj (i < j ≤ k).
Therefore, the extreme slopes can be more efficiently computed from Eq. (4) than
from Eq. (2). However, based on the incremental strategy, we demonstrate that this
process can be further simplified, according to the Lemma 1.

Localization With the availability of slp[1, k −1], slp[1, k −1], and {sa, sc, sb, sd}
defined before, we can further reduce the range of points needed to check for
the extreme slopes. We take the update of slp[1, k] as an example to explain the
reduction.

As exemplified in the Fig. 5, according to Corollary 1, if S[1, k] is δ-
representable, sk must be within area A1 or A2 (as indicated by the dotted line, and
the length of A1 is 2δ). For i ∈ [1, b), if sk is in A1 area, slope(si, sk) ≥ slp[1, k−1]
holds; if sk is in A2 area, the range [yb − δ, yb + δ] is above line(si, sk). For
i ∈ (c, k − 1], the range [yc − δ, yc + δ] is always above line(si, sk). According
to the Lemma 1 and the definition of extreme slopes, if S[1, k] is δ-representable,
there is no need to check the points before sb and after sc. The similar conclusion
can be made on the case of slp[1, k] update. Thus, Eq. (4) can be rewritten into

Fig. 5 Localization of slope
reduction 1A

2A

{

is
bs

cs
js

2δ

as ds
ks

104 Q. Xie et al.

Fig. 6 Example of the
convex hull points cvx 1kcvx −

bs
si js

cs

⎧
⎪⎨

⎪⎩

slp[1, k] = max
a≤i≤d

{
(yk−δ)−(yi+δ)

(xk−xi)
, slp[1, k − 1]

}
,

slp[1, k] = min
b≤i≤c

{
(yk+δ)−(yi−δ)

(xk−xi)
, slp[1, k − 1]

}
.

(5)

Convex Reduction In the following, based on the definition of the extreme lines
and Lemma 1, we further indicate that the computation can be constrained to those
localized points on the convex hulls.

For stream fragment S[1, k − 1], let cvxk−1 denote the set of convex points
of the sequence {sb, sb+1, . . . , sc}, which are points with deleted tolerant error.
Here, cvxk−1 bulges upward and is depicted by a sequence of point in the ascent
time stamp order. For example, cvxk−1 = 〈sb, si , sj , sc〉 in Fig. 6. Similarly, we
define cvxk−1 to be the points of the convex hull of {sa, sa+1, . . . , sd} that bulges
downward. With the notations of cvxk−1 and cvxk−1, we have the following lemma.

Lemma 2 If slp[1, k] = slope(si, sk) and xa ≤ xi ≤ xd , then si is in cvxk−1.

Similarly, if slp[1, k] = slope(sj , sk) and xb ≤ xj ≤ xc, then sj is in cvxk−1.

Proof We only prove the case of slp[1, k]. According to the definition of convex
hull, if si is not in the convex hull, line(si, sk) must go inside the convex hull, and
there is at least one point sh for xa ≤ xh ≤ xd below line(si, sk). If slp[1, k] =
slope(si, sk), it will be contradictory with Lemma 1 and Corollary 1, so si is in
cvxk−1. ��

Lemma 2 implies that Eq. (5) can be rewritten into

⎧
⎪⎨

⎪⎩

slp[1, k] = max
si∈cvxk−1

{
(yk−δ)−(yi+δ)

(xk−xi)
, slp[1, k − 1]

}
,

slp[1, k] = min
sj ∈cvxk−1

{
(yk+δ)−(yj −δ)

(xk−xj)
, slp[1, k − 1]

}
.

(6)

Clearly, slp[1, k] and slp[1, k] can be more efficiently obtained from Eq. (6) than
from Eq. (5) as the number of points in the convex hulls can be significantly smaller
than the total number of data points in the relevant intervals.

3.2 Optimization Strategies

Based on the previous discussion, we will provide some useful theorems, which
derive the design of the optimal algorithm for error-bounded PLR generation. The

Error-Bounded Approximation of Data Stream: Methods and Theories 105

update of extreme slopes and the convex hulls are the major points we will focus
on. In the following, we will study the maintenance of cvxk−1 and cvxk−1 and the
derivation of slp[1, k] and slp[1, k] based on Eq. (6). The results are demonstrated
in Theorem 2. For simplicity, we will only discuss the results for the update of cvxk

and slp[1, k] as the analogous results exist for cvxk and slp[1, k].

3.2.1 Computing Extreme Slopes

In the process of computing slp[1, k], we first decide whether slp[1, k] > slp[1, k −
1] and whether the bounding lines with extreme slopes need to update. Theorem 2
suggests that only the first and last points of the convex hulls need to be used to
determine further processing. If the extreme slope slp[1, k] needs to update from
slp[1, k − 1], Theorem 2 also concludes that the computation can be incrementally
performed and the time cost for computing slp[1, k] is proportional to the number
of removed points from cvxk−1.

Theorem 2 Suppose cvxk−1 = 〈si1 , . . . , sih〉, here si1 = sa and sih = sd , then the
following results hold for slp[1, k] and cvxk .

(1) If slope(si1, sk) ≤ slp[1, k − 1], then slp[1, k] = slp[1, k − 1] holds.

(2) If slope(si1 , sk) > slp[1, k − 1], then slp[1, k] = maxe
(yk−δ)−(yie+δ)

(xk−xie)
where

1 ≤ e ≤ h, and sim
∈ cvxk for 1 ≤ m < e.

Proof The proof of claim (1): If slope(si1, sk) ≤ slp[1, k − 1], then point sk =
(xk, yk−δ) is either below or on the line of line(sa, sc). Again, under the assumption,
each point sie ∈ cvxk−1 is not below the line of line(sa, sc). As a result,

max
si∈cvxk−1

{
(yk − δ) − (yi + δ)

(xk − xi)

}

≤ slp[1, k − 1]

holds, which leads to slp[1, k] = slp[1, k − 1] from Eq. (6).
The Proof of Claim (2): Clearly, if slope(si1 , sk) > slp[1, k − 1] then point

sk = (xk, yk − δ) is above the line of line(sa, sc), and the new extreme slope can
be derived from the points on the convex hull. From Eq. (6), we have slp[1, k] =
maxe

(yk−δ)−(yie+δ)

(xk−xie)
where 1 ≤ e ≤ h. Moreover, since we confirm the new extreme

line is determined by sie and sk , sie will replace as new sa , so all the points on the
convex hull before sie will be removed from the new convex hull cvxk . ��

In fact, from the theorem and its proof, we can conclude that when we determine
that the extreme slope should be updated, the new extreme slope is actually the slope
of tangent line from sk to the convex hull cvxk−1.

106 Q. Xie et al.

3.2.2 Updating Convex Hulls

If the extreme slopes are not updated when processing the new point, then the
convex hulls keep unchanged. Or else if we have updated the extreme slopes
after adding the new stream point, the convex hulls should also be updated. The
maintenance of convex hull is formed by two parts: point deletion and point
addition. We also take the updating of slp[1, k] as an example to explain the process.

The point deletion part has been previously mentioned in Theorem 2(2), that is,
if slp[1, k] = slope(si, sk) for si ∈ cvxk−1, then the earlier points of cvxk−1 before
si are NOT in cvxk .

For the point addition part, we have cvxk ⊆ cvx′
k−1 ∪ {sk}, where cvx′

k−1
denotes the updated cvxk−1 after removing those earlier points in point deletion.
If sk determines the new extreme slope, it should also be added into cvxk , since
it will replace as new sc as defined before. After adding sk to the tail of cvx′

k−1,
some previous convex points may have to be deleted in order to keep the convex
characteristic. Such process can be derived from the triangle check technique in [3],
which will be explained later.

3.3 Error-Bounded PLR Algorithm

Now we present the linear-time algorithm OptimalPLR for the error-bounded PLR
problem. Let us assume that the given stream fragment has n points, and the error
bound for each data point is δ. The OptimalPLR algorithm outputs a set of maximal
δ-representative line segments with a minimized space cost upper bounded by n,
and achieves the minimized number of segments. For the convenience of algorithm
presentation, we use ρ or ρ to represent the extreme slopes during processing. In
general, the strategy used in this algorithm is to progressively propagate the extreme
slopes slp[1, k] and slp[1, k] upon new stream points in the process of generating
maximal δ-representative segments.

3.3.1 Description of OptimalPLR

Given a stream fragment S[1, n], the OptimalPLR algorithm generates maximal
δ-representative line segments starting from x1 successively. In the process of
generating the maximal δ-representative segment from xi (we assume i = 1 without
the loss of generality), the OptimalPLR algorithm needs to maintain cvxk−1, cvxk−1,
ρ, and ρ to compute slp[1, k] and slp[1, k] as indicated in Sect. 3.2. In this part,
we first describe the OptimalPLR algorithm and then discuss its time and space
complexities.

Error-Bounded Approximation of Data Stream: Methods and Theories 107

cvx

cvx

cvx

cvx cvx
as ds

dsas as ds

bs bscs cs
1s 2s s s

Fig. 7 Optimal algorithm: (a) Initialization; (b) Updating of extreme slopes; (c) Updating of
convex hull

Algorithm 1: OptimalPLR
Input: S: stream fragment starts from x1; δ: the specified error bound
Output: A maximal δ-representative line segment starts from x1

1 % Initialization
2 s1 = (x1, y1); s2 = (x2, y2);
3 sa = (x1, y1 + δ); sc = (x2, y2 − δ);
4 sb = (x1, y1 − δ); sd = (x2, y2 + δ);
5 ρ = slope(sa, sc); ρ = slope(sb, sd);
6 cvx = 〈sa, sd 〉; cvx = 〈sb, sc〉;
7 % Processing
8 while s is NOT outside the two lines, line(sa, sc) and line(sb, sd), more than δ do
9 % Maintain ρ, ρ, cvx and cvx

10 if y + δ < ρ(x − xb) − yb then
11 find the point q of cvx that minimizes slope(q, s);
12 let sb be q and sd be s;
13 delete all the points of cvx prior to point q;
14 ρ = slope(sb, s);
15 insert s to the tail of cvx, and update cvx by triangle check([3]);
16 end
17 if y − δ > ρ(x − xa) − ya then
18 find the point q of cvx that maximizes slope(q, s);
19 let sa be q and sc be s;
20 delete all the points of cvx prior to point q;
21 ρ = slope(sa, s);
22 insert s to the tail of cvx, and update cvx by triangle check;
23 end
24 end
25 % Producing a line segment
26 Let so = (xo, yo) be the intersection of line(sa, sc) and line(sb, sd);
27 ρ = (ρ + ρ)/2;
28 return a line segment: pass point so = (xo, yo) with slope ρ

The general steps of OptimalPLR are interpreted in Fig. 7, and we depict the
procedure for constructing a maximal δ-representative line segment in Algorithm 1.
Referring to the figure and the algorithm, we describe the OptimalPLR in detail.

108 Q. Xie et al.

Initialization Primely we initialize the extreme lines and the convex hulls by the
first two stream points s1 and s2 by setting cvx = 〈sb, sc〉 and cvx = 〈sa, sd〉. (a =
b = 1, c = d = 2)

Extreme Slope Updating As stated in Sect. 3.2, the extreme lines and the convex
hulls may need to be updated when a new point s is read in. The condition of Line
(8) implies that point s is in the current segment.

Taking the update of ρ as an example, since the approximate value for point
s is within the range of [s, s], if s is NOT under the extreme line line(sb, sd),
the maximum slope will not be updated and the extreme line line(sb, sd) will be
used as the new extreme line. Otherwise, the maximum slope should be reduced.
As exemplified in Fig. 7b, the strategy is to find the point q of cvx that minimizes
slope(q, s), which can be found by the tangent line of the convex hull from s. The
new extreme line is then defined as line(q, s) and the new cvx is updated from the
old one by removing the points before q.

Convex Hull Updating After updating the extreme line, s should be merged into
the upper convex hull cvx. Figure 7c depicts the merging strategy. After inserting
s into the tail of cvx, the triangle check [3] needs to be carried out to maintain the
convex characteristic. It starts by examining the three most recent consecutive points
and then moving backwards. If the middle point is above or on the line formed by
the other two points, then the middle point is removed. This process is continued
for the remaining three most recent consecutive points until the middle point is no
longer being removed (refer to [3] for the details of convex hull algorithm).

The correctness of OptimalPLR algorithm is evidenced from both Theorem 1 and
the derivation of Eq. (6) as the deduction process preserves the maximum range of
slopes for δ-representative segments.

3.3.2 Complexity Analysis

In the following, we discuss the time and space complexity of OptimalPLR.

Time Complexity To show that the time complexity of the OptimalPLR algorithm
is O(n) for stream fragment S[1, n], it is sufficient to show the time complexity of
Algorithm 1 is O(k) for maximally δ-representable fragment S[1, k].

Clearly, the iteration times of while loop is bounded by k for fragment S[1, k].
In each loop, the extreme slopes (slp and slp) and convex hulls (cvx and cvx) need
to be updated for the newly inserted stream point. As indicated in Line (10–15),
the costs of updating extreme slopes are dominated by the costs of updating convex
hulls. In the process of updating convex hulls, each convex hull (cvx or cvx) needs to
be maintained by deleting some earlier stream points from it (e.g., Line (13)) and/or
inserting a recent stream point into it (e.g., Line (15)). Once a point is deleted from
cvx (or cvx), the point will not be inserted back into cvx (or cvx). Therefore, the total
costs for maintaining cvx (or cvx) in the process of constructing the segment are
bounded by 2k. Thus, the time cost of Algorithm 1 on fragment S[1, k] is bounded

Error-Bounded Approximation of Data Stream: Methods and Theories 109

by (2k + 2k) + ck = (4 + c)k, where c is a constant number that summarizes other
costs in the loop. We conclude that the time complexity of OptimalPLR is O(n).

Space Complexity Since each early obtained segment is not used for latter
computation and can be output directly, the space cost of the OptimalPLR algorithm
on stream fragment S[1, n] is proportional to the space cost on generating a maximal
δ-representative segment of S[1, n].

During the process of generating a segment, we only need to maintain cvx plus a
constant number of points such as ρ, at each while loop of Algorithm 1. Therefore,
the space complexity of the OptimalPLR algorithm is O(ncx), where ncx is the
size of maximum cvx. Let nsg denote the maximum number of stream points in the
derived maximal δ-representative segments of S[1, n]. Then, we have ncx ≤ nsg ≤
n holds. Therefore, the space cost of the OptimalPLR algorithm is also bounded by
O(n).

In summary, we have the following major result for the OptimalPLR algorithm.

Theorem 3 Given a stream fragment S[1, n] and the error bound δ, the Opti-
malPLR algorithm is an optimal algorithm for error-bounded PLR with O(n) time
and O(ncx) space complexities where ncx ≤ n.

3.3.3 Discussions of OptimalPLR

In this section, we will discuss some important issues of OptimalPLR algorithm,
including the application for high-dimensional data and the adaption for varied error
bound.

Extension for High-Dimensional Data

High-dimensional data are popular in streaming data nowadays, so here we discuss
whether OptimalPLR can work on high-dimensional data and how it can be
extended effectively.

Since the aim is to generate error-bounded PLR for data stream, it is essential
how we define the error bound. Different from the case that the stream point value
is a single number, for high-dimensional data, we have to consider whether the error
bound is defined on each dimension, or on the data point in high-dimensional space.

Case 1: Error Bound Defined on Each Dimension
If the error bound is same for each dimension, it will be easy to extend. We

can simply treat the data values of each dimension as a data stream and carry out the
original OptimalPLR algorithm to generate line segments. To combine the segments
of different dimensions together, when we find the first maximal δ-representative for
any dimension, we stop and determine a maximally representable segment, and then
start a new segmentation. Such strategy is also applied in [6].

110 Q. Xie et al.

Case 2: Error Bound Defined on High-Dimension Point
If the error bound is defined in high-dimensional space, it will be more

complicated. We will only discuss the data stream in 3D space, in which each stream
point at time stamp xk is identified by {yk, zk}. In this case, the error bound δ will
be defined as follows: For each stream point sk , the Euclidean distance between

original point and the approximate point satisfies
√

(y′
k − yk)

2 + (z′
k − zk)

2 ≤ δ.
From geometrical view, the error bound describes a circle with radius δ around the
point sk , so the OptimalPLR cannot be applied for this situation directly. However,
we can still find an approximated way to embed OptimalPLR.

First we have the following relationship:

√

2|y′
k − yk||z′

k − zk| ≤
√

(y′
k − yk)

2 + (z′
k − zk)

2 ≤ δ.

If we define |y′
k − yk| ≤ δ

/√
2 and |z′

k − zk| ≤ δ
/√

2, then it can be guaranteed

that the above relationship always holds. In this way, instead of dealing with the
error bound in high-dimensional space, we can define alternative error bound in
each dimension, and the solution can be designed as Case 1.

It should be noticed that such strategy cannot guarantee optimal results (mini-
mized number of segments), since we are not maintaining all feasible line segments.
However, it can be executed efficiently and promise the bounded approximation
error in high-dimensional space.

Adaption to Varied Error Bound

In practical applications, the real-time approximation criteria may vary during the
stream processing, so the error bound for different data points may change according
to the current data status. For example, when the sampling rate increases, the system
may need to reduce the approximation error, so the error bound should be reduced
accordingly. In those applications with periodic variation, e.g., the traffic monitoring
system, the approximation error margin for traffic flow in rush hour may be much
smaller than that in slack hours.

Fortunately, OptimalPLR algorithm can be easily extended to adapt to varied
error bound. During the algorithm, assume the approximate error bound for each
data point si is δi . In the algorithm procedure, the parameter δ can be replaced by δi

when processing si . In this way, the algorithm can execute as usual and at the same
time, adapt to different error bounds.

Error-Bounded Approximation of Data Stream: Methods and Theories 111

4 ParaOptimal: An Optimal Algorithm in Transformed
Space

In this section, we will introduce an interesting optimal algorithm to generate the
error-bounded PLR in transformed space, named ParaOptimal [20]. It designs the
algorithm in a special slope-offset parameter space, also with linear time efficiency.
Furthermore, we will introduce the generalization of such algorithm model.

4.1 Description of ParaOptimal

Similarly, the data stream is a sequence of data points which are numerical numbers,
and we denote it as S = 〈s1, s2, . . . , sn〉. Each data point si consists of the value
yi and the time stamp xi . The approximate value of si can be determined by y′

i =
a ·xi +b, where the a and b, respectively, stand for the slope and the offset of the line
segment approximating si . The error bound δ is defined to restrict the approximate
error on single point, i.e., ∀i ∈ [1, n], |y′

i − yi | ≤ δ.
The ParaOptimal is a greedy and incremental algorithm in which the line

segments are generated and adjusted to approximate as many points as possible.
The basic idea of ParaOptimal is to determine the line function by maintaining the
feasible region of all line candidates in the parameter space. More specifically, for a
point si , the approximate value should be within the error bound, that is,

yi − δ ≤ a · xi + b ≤ yi + δ.

It means any pair of parameters {a, b} that meets the above inequalities can identify
a candidate line function, which composes the solution set. If more data points are
approximated, the solution set of line functions approximating all data points will
be the intersection of all solution sets for individual points.

Considering the parameter pair in the parameter space (Fig. 8), each pair can be
viewed as a point, and the error bound provides linear constraints on the parameters.
The ParaOptimal algorithm runs in this way: Each new point provides two linear
constraints; the algorithm incrementally updates the feasible region of candidate line
parameters by intersecting the feasible region with the solution region of new linear
constraints; a new line segment is determined if the feasible region is empty, and
then, the algorithm initializes the feasible region for a new segmentation. Figure 8
exemplifies the feasible region update in parameter space.

4.1.1 Theoretical Preparation

Primely, we provide some basic properties and lemmas for the further description.

112 Q. Xie et al.

Fig. 8 Feasible region
update in parameter space

constraint 1

constraint 2

a

b

Lemma 3 For the candidate line parameters, any edge of the feasible region
belongs to a boundary of a linear constraint.

Proof Since the feasible region is the intersection of all the solution regions for
all linear constraints, it is obvious that the boundaries of the feasible region are
composed of the boundaries of linear constraints, so any edge is part of a boundary
of a linear constraint. ��
Corollary 2 The feasible region of the candidate line parameters is a convex
polygon.

Proof Given an edge of the feasible region, it is part of a boundary of certain linear
constraint. Since the feasible region is the intersection of all solution regions of
linear constraints, it must be the subset of the solution region of corresponding linear
constraint, so all the feasible region lies on one side of the given edge. According to
the convex definition, the feasible region is a convex polygon. ��
Lemma 4 For the boundary of linear constraints provided by error bound, the
slopes are less than zero, and decreasing monotonously as the order of data points.

Proof Given an upper error bound of point si , the linear constraint is identified by
a · xi + b ≤ yi + δ, so the slope of the linear constraint boundary is −xi . Since
xi > 0 always holds, the slope is less than zero.

For any two points si and sj , if xi < xj , then the slope of the constraint boundary
corresponding to si is greater than that of sj . ��
Corollary 3 The left most point of the feasible region is the highest point; the right
most point of the feasible region is the lowest point.

Proof Given a point on the feasible region boundary, since all the edge slopes are
less than zero, it must be lower than the boundary point to its left. The rest can be
done in the same manner, and we will have the point is lower than the leftmost point
of the feasible region. So, the leftmost point is the highest point. Similarly, we can
have the rightmost point of the feasible region is the lowest point. ��

Error-Bounded Approximation of Data Stream: Methods and Theories 113

δ

δ

δ

1 1(,)x y

1 1(,)x y
2 2(,)x y

1 1a x b y δ⋅ + ≤ +

1 1y a x bδ− ≤ ⋅ +

2 2y a x bδ− ≤ ⋅ +

2 2a x b y δ⋅ + ≤ +

δ

Fig. 9 Initialization of feasible region

Now, we describe the ParaOptimal algorithm step by step in the following parts.

4.1.2 Initialization

In the parameter space, the error bound of a data point will provide two linear
constraints for the candidate line parameters, which compose a pair of parallels.
When the segmentation starts, to restrict the feasible region with bounded size, the
algorithm considers the first two points for initialization and generates the feasible
region. Figure 9 demonstrates this process.

4.1.3 Feasible Region Update

When the algorithm processes a new data point, it updates the current feasible region
according to the new linear constraints and checks whether it is possible to process
more points, or else a line segment can be determined. For simplification, we only
discuss the linear constraint by the upper error bound.

Assume we process a new data point si , and the linear constraint provided by
the upper error bound is a · xi + b ≤ yi + δ. Since xi is always greater than zero,
the solution area for the above linear constraint is the half space to the left of the
boundary, which is identified by linear function a · xi + b = yi + δ. As exemplified
in Fig. 10 in the clockwise order, we divide the edge points of feasible region into

114 Q. Xie et al.

Fig. 10 Points definition of
feasible region

lp

rp

1p

2p

1
p

2
p

p
l

pr

p1

p2

p1

p2

(a)

pl

pr

p1

p2

p1

p2

(b)

pl

pr

p1

p2

p1

p2

(c)

Fig. 11 Three cases for feasible region update. (a) Case 1. (b) Case 2. (c) Case 3

〈p1, p2, . . . , pt 〉 and 〈p
1
, p

2
, . . . , p

s
〉 by the leftmost point pl and rightmost point

pr . Each point is a 2-tuple {a, b} in parameter space.
The feasible region update can be categorized into three cases (Fig. 11).
Case 1: pr .a · xi +pr .b < yi + δ. In this case, the whole feasible region satisfies

the linear constraint, so the updated feasible region will remain the same and no
extra processing is needed.

Case 2: pl.a · xi + pl.b ≤ yi + δ ≤ pr .a · xi + pr .b. In this case, the solution
area of the linear constraint will intersect with the current feasible region, and the
updated feasible region should be determined. Since we discuss the linear constraint
from the upper error bound, we can first determine the new pr for the new feasible
region. We start from the first point of the sequence 〈p

1
, p

2
, . . . , p

s
〉, and check

backwards until the current point p
i

lies on the right side of the boundary of linear
constraint, that is, p

i
.a ·xi +p

i
.b ≤ yi +δ. Then, we calculate the intersection point

generated by the boundary line of linear constraint, and the line identified by point
p

i
and point p

i−1
. (For p

1
, p

i−1
is pr .) We set the intersection point as new pr .

Then, the sequence of 〈pi〉 should be updated similarly as the previous procedure
did, and then, the feasible region can be updated according to the new boundary
points.

Case 3: pl.a · xi + pl.b > yi + δ. In this case, the whole feasible region will fall
outside the solution area of linear constraint, so the updated region will be empty.
The line segment can be determined, and new segmentation can be initialized.

Error-Bounded Approximation of Data Stream: Methods and Theories 115

Algorithm 2: ParaOptimal
Input: S: stream fragment starts from x1; δ: the specified error bound
Output: A maximal δ-representative line segment starts from x1

1 % Initialization
2 s1 = (x1, y1); s2 = (x2, y2);

3 pl = (
y2−y1−2δ

x2−x1
,

x2y1−x1y2+x2δ+x1δ
x2−x1

); pr = (
y2−y1+2δ

x2−x1
,

x2y1−x1y2−x2δ−x1δ
x2−x1

);

4 p1 = (
y2−y1
x2−x1

,
x2y1−x1y2+x2δ−x1δ

x2−x1
); p

1
= (

y2−y1
x2−x1

,
x2y1−x1y2−x2δ+x1δ

x2−x1
);

5 Maintain the edge points of feasible region in clockwise order as pl , 〈p1〉,pr ,〈p
1
〉;

6 % Processing a new point s = (x, y)

7 while pl.a · x + pl.b ≤ y + δ do
8 % Update the edge points of feasible region
9 if pl.a · x + pl.b ≤ y + δ ≤ pr .a · x + pr .b then

10 set the new pr as the intersection point of line b = −x · a + y + δ with the
sequence 〈p

1
, p

2
, . . . , p

s
〉;

11 update the sequence 〈p1, p2, . . . , pt 〉 after intersecting with line
b = −x · a + y + δ;

12 set the new pl as the intersection point of line b = −x · a + y − δ with the
sequence 〈p1, p2, . . . , pt 〉;

13 update the sequence 〈p
1
, p

2
, . . . , p

s
〉 after intersecting with line

b = −x · a + y − δ;
14 end
15 end
16 % Producing a line segment
17 Let (ao, bo) be one point in the feasible region;
18 return a line segment: y = ao · x + bo

After the feasible region update, if the new feasible region is empty, we can
randomly choose a point in the old feasible region and apply the line segment
identified by the chosen parameter to approximate the streaming points until the
current point. The current point will be applied to initialize a new segmentation.
Otherwise, the feasible region is not empty, and the algorithm will continue reading
points and updating feasible region. All the procedures will work until the data
stream ends.

Formally, the procedure for constructing a maximal δ-representative line segment
by ParaOptimal is described in Algorithm 2.

4.2 Generalization of ParaOptimal

The core idea of ParaOptimal is to deal with the problem in the transformed space,
which can inspire a more general model to approximate the data stream.

Generally speaking, an application may need to approximate the data with an
k-degree polynomial, i.e., the approximate value of si is determined by y′

i = a0 +
a1xi + a2x

2
i + · · · + akx

k
i . Given the error bound δ, we have

116 Q. Xie et al.

yi − δ ≤ a0 + a1xi + a2x
2
i + · · · + akx

k
i ≤ yi + δ.

These inequalities identify two hyperplanes in the parameter space of {ai} (i =
1, 2, . . . , k), which are the linear constraints of the solution set. Similarly, if more
data points are considered, the intersection of all sub-spaces identified by the
hyperplanes can compose the final solution set. In this way, the ParaOptimal can
be generalized to process the polynomial approximation of any order. Specifically,
when k = 0, the problem is the PCR (Piecewise Constant Representation); when
k = 1, the problem is exactly the PLR. It should be noticed that when k ≥ 2,
the algorithm will be executed in high-dimensional space, and the complexity will
increase to O(nk) [34].

In addition, ParaOptimal algorithm can also support varied error bound, i.e., for
point si , its corresponding error bound is defined as δi . During the processing, only
the offset of the linear constraints will be adjusted accordingly, which will not affect
the algorithm mechanism.

5 Theoretical Analysis of the Equivalence

The OptimalPLR and ParaOptimal both achieve the optimal results with linear
complexity, but process the data points in different spaces, i.e. time-value stream
space and slope-offset parameter space. As a result, we are motivated to compare
these two algorithms theoretically. In this part, we will formally analyze the
relationship and difference between the stream space and the parameter space, and
discuss the equivalence between the two spaces and these two algorithms, which is
able to provide a deeper understanding for the optimal algorithm.

5.1 Mapping of Two Spaces

First, we put our effort to discover the relationship between the stream point space
and line parameter space, namely S-space and P-space. We have the following
theorem:

Theorem 4 The line function identified by two points in S-space is the intersection
point of two lines in P-space, which are corresponding to the linear constraints
brought by related points in S-space and vise versa.

Proof As denoted in Fig. 12, consider the stream points si and sj , and for the line
function to approximate the data points, the function parameters must satisfy the
following inequality set for upper error bound:

{
a · xi + b ≤ yi + δ

a · xj + b ≤ yj + δ

Error-Bounded Approximation of Data Stream: Methods and Theories 117

(,)i ix y δ+
(,)j jx y δ+

i ia x b y δ⋅ + = +

j ja x b y δ⋅ + = +

Fig. 12 Mapping between two spaces

Therefore, the boundary lines for corresponding linear constraints in P-space are
a·xi+b = yi+δ and a·xj +b = yj +δ, respectively. In this way, we can calculate the
intersection point of these two lines by combining and solving the above equations.

Notice that in S-space, the line identified by the upper error bound points of si and
sj is the line crossing (xi, yi + δ) and (xj , yj + δ). So, the line function parameters
are just mapped to the intersection point in the P-space as described above.

With the same argument, we claim that the line function identified by two points
in P-space is the intersection point of corresponding lines in S-space. ��

5.2 Equivalence Discussion

Based on Theorem 4, we can formally establish the equivalence between Opti-
malPLR and ParaOptimal algorithms.

For OptimalPLR, we model the convex hull which constrains the line candidates
in the following way. As depicted in Fig. 13, the segment sequence composing the
upper convex hull is denoted as 〈q1, q2, . . . , qs〉, and the sequence composing the
lower convex hull is 〈q

1
, q

2
, . . . , q

t
〉. The line segments with maximum slope and

minimum slope are qh and ql , respectively.
Define p ∼ q as the mapping relationship between point p and segment q,

and the following theorem illustrates the equivalence between OptimalPLR and
ParaOptimal in different spaces.

Theorem 5 The points on the feasible region in P-space are one-to-one mapped
with those segments composing the convex hull in S-space. More specifically, pi ∼
qi , p

i
∼ q

i
, pr ∼ qh and pl ∼ ql .

We apply mathematical induction method to prove the theorem.

Proof

Step 1: For the first two points of initialization, the theorem holds obviously
(Fig. 14).

Step 2: Assume for the first k points, the theorem holds.

118 Q. Xie et al.

Fig. 13 Segment definition
of convex hull in S-space

1q
2q 3q

1
q

2
q

hq

lq

1p

1q

1
p

1
q rp

lp
hq

lq

S-space P-space

Fig. 14 Mapping for the first two points

Step 3: Now, we discuss when processing the k + 1 point and still only consider
the upper error bound of sk+1. The case of lower error bound can be proved with
similar argument.

• Case 1: qh.a · xi+1 + qh.b < yi+1 + δ. In this case, the segment indicating the
maximum slope qh will not change. Since qh ∼ pr , Case 1 describes the same
situation as the first case in Fig. 11.

• Case 2: ql.a · xi+1 + ql.b ≤ yi+1 + δ ≤ qh.a · xi + 1 + qh.b.
In this case, qh should be adjusted. According to OptimalPLR, the new qh is

the tangent line from the point (xi+1, yi+1 + δ) toward the lower convex hull.
As described in Fig. 15a, the point of tangency is the intersection point of q

2
and q

3
, one of which is out of the upper error bound, and the other of which is

within the upper error bound. According to Theorem 4, the intersection point is
the segment connecting p

2
and p

3
. Therefore, the new qh is mapped with new

pr . For the lower convex hull, q
1

and q
2

should be deleted, and also for the
feasible region in the P-space, p

1
and p

2
are deleted. So, the rest of q

i
and p

i
is

still mapped.

Error-Bounded Approximation of Data Stream: Methods and Theories 119

1
q 2

q 3
q

4
q

1 1(,)i ix y δ+ + +

1 1(,)i ix y δ+ + +

1q
2q

3q
4q

1
p2

p3
p

4
p

rp

lp

rp

lp
1p

2p
3p

4p

(a)

(b)

Fig. 15 Mapping for k + 1 points

Furthermore, the upper convex hull should also change according to the new
qh. The OptimalPLR proposes to find the tangent line from point (xi+1, yi+1 +
δ) toward the upper convex hull. Similar as lower convex hull, we can find the
tangency point, and q3 and q4 are deleted. Accordingly, in P-space, p3 and p4
are deleted, and the rest of qi and pi is still mapped.

• Case 3: ql.a · xi+1 + ql.b > yi+1 + δ. In this case, the convex hull to indicate
the possible line segment candidates is empty, which is exactly same as the third
case in Fig. 11.

Based on the above analysis, we prove that ParaOptimal and OptimalPLR are
theoretically equivalent. ��

The theoretical meaning above is that it guarantees that the two methods
are basically the same, which reveals the inherent reason deriving the optimal
approximation with linear complexity and also provides the understanding of the
algorithm from different view. However, the two algorithms may have different
performance in practice, due to the different ways of recording intermediate data
during the processing, which results from the space they are based on. Such
difference may affect the processing efficiency in both memory and time cost under
certain situation.

6 Summary

In this chapter, the significant piecewise linear representation (PLR) for online
stream approximation problem is investigated with given error bound in L∞ norm.
Based on the theoretical analysis, highly practical algorithms in time domain

120 Q. Xie et al.

and parameter domain are introduced to achieve the optimal results with linear
time and space complexity. The relationship between the time-value space and
the parameter space is further investigated, which provides complete and better
theoretical understanding for this classic problem. In the future, we will further
study the application of PLR, and focus on the predictive stream analysis based
on PLR patterns.

Acknowledgements This work is partially supported by Natural Science Foundation of China
(Grant No. 61602353), Natural Science Foundation of Hubei Province (Grant No. 2017CFB505),
and the Fundamental Research Funds for the Central Universities (Grant No. WUT:2017IVA053
and WUT:2017IVB028).

References

1. Atzori, L., Lera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2787–
2805 (2010)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data
stream systems. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 1–16 (2002)

3. Berg, M.D., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry Algorithms
and Applications. Springer, Berlin (2008)

4. Buragohain, C., Shrivastava, N., Suri, S.: Space efficient streaming algorithms for the
maximum error histogram. In: Proceedings of the 23rd International Conference on Data
Engineering, pp. 1026–1035 (2007)

5. Chen, Q., Chen, L., Lian, X., Liu, Y., Yu, J.X.: Indexable pla for efficient similarity search.
In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 435–446
(2007)

6. Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref, W.G., Zwaenepoel, W.: Online piece-
wise linear approximation of numerical streams with precision guarantees. Proc. VLDB
Endow. 2, 145–156 (2009)

7. Gandhi, S., Nath, S., Suri, S., Liu, J.: Gamps: compressing multi sensor data by grouping
and amplitude scaling. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 771–784 (2009)

8. Gandhi, S., Foschini, L., Suri, S.: Space-efficient online approximation of time series data:
streams, amnesia, and out-of-order. In: Proceedings of IEEE 26th International Conference on
Data Engineering, pp. 924–935 (2010)

9. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Surfing wavelets on streams:
one-pass summaries for approximate aggregate queries. In: Proceedings of the International
Conference on Very Large Data Bases, pp. 79–88 (2001)

10. Guha, S., Harb, B.: Approximation algorithms for wavelet transform coding of data streams.
IEEE Trans. Inf. Theory 54, 811–830 (2008)

11. Guha, S., Shim, K.: A note on linear time algorithms for maximum error histograms. IEEE
Trans. Knowl. Data Eng. 19, 993–997 (2007)

12. Jagadish, H.V., Jin, H., Ooi, B.C., Tan, K.L.: Global optimization of histograms. In: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pp. 223–234
(2001)

13. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In:
Proceedings of the 1st IEEE International Conference on Data Mining, pp. 289–296 (2001)

Error-Bounded Approximation of Data Stream: Methods and Theories 121

14. Keogh, E., Chakrabarti, K., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality
reduction for indexing large time series databases. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 151–162 (2001)

15. Lazaridis, I., Mehrota, S.: Capturing sensor-generated time series with quality guarantees. In:
Proceedings of the 19th International Conference on Data Engineering, pp. 429–440 (2003)

16. Li, G., Li, J., Gao, H.: ε-Approximation to data streams in sensor networks. In: Proceedings of
IEEE INFOCOM, pp. 1663–1671 (2013)

17. Li, S., Xu, L.D., Zhao, S.: The internet of things: a survey. Inf. Syst. Front. 17, 243–259 (2015)
18. Nguyen, B., Abiteboul, S., Cobena, G., Preda, M.: Monitoring xml data on the web. In:

Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 437–
448 (2001)

19. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over distributed data
streams. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 563–574 (2003)

20. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges. Commun.
ACM 24(9), 574–578 (1981)

21. Paix, A.D., Williamson, J.A., Runciman, W.B.: Crisis management during anaesthesia: difficult
intubation. Qual. Saf. Health Care 14(3), e5 (2005)

22. Palpanas, T., Vlachos, M., Keogh, E.: Online amnesic approximation of streaming time series.
In: Proceedings of the 20th International Conference on Data Engineering, pp. 339–349 (2004)

23. Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Unrestricted wavelet synopses under maximum
error bound. In: Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, pp. 732–743 (2009)

24. Pang, C., Zhang, Q., Zhou, X., Hansen, D., Wang, S., Maeder, A.: Computing unrestricted
synopses under maximum error bound. Algorithmica 65, 1–42 (2013)

25. Sathe, S., Papaioannou, T.G., Jeung, H., Aberer, K.: A survey of model-based sensor data
acquisition and management. In: Managing and Mining Sensor Data, pp. 9–50. Springer, Berlin
(2013)

26. Shatkay, H., Zdonik, S.B.: Approximate queries and representations for large data sequences.
In: Proceedings of the 12th International Conference on Data Engineering, pp. 536–545 (1996)

27. Soroush, E., Wu, K., Pei, J.: Fast and quality-guaranteed data streaming in resource-constrained
sensor networks. In: Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pp. 391–400 (2008)

28. Vullings, H.J.L.M., Verhaegen, M.H.G., Verbruggen, H.B.: Ecg segmentation using time-
warping. In: Advances in Intelligent Data Analysis Reasoning About Data, vol. 2, pp. 275–285
(1997)

29. Wu, H., Salzberg, B., Zhang, D.: Online event-driven subsequence matching over financial data
streams. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 23–34 (2004)

30. Xie, Q., Huang, Z., Shen, H., Zhou, X., Pang, C.: Efficient and continuous near-duplicate video
detection. In: Proceedings of the 12th International Asia-Pacific Web Conference, pp. 260–266
(2010)

31. Xie, Q., Huang, Z., Shen, H.T., Zhou, X., Pang, C.: Quick identification of near-duplicate video
sequences with cut signature. World Wide Web J. 15, 355–382 (2012)

32. Xie, Q., Shang, S., Yuan, B., Pang, C., Zhang, X.: Local correlation detection with linearity
enhancement in streaming data. In: Proceedings of the ACM International Conference on
Information and Knowledge Management, pp. 309–318 (2013)

33. Xie, Q., Pang, C., Zhou, X., Zhang, X., Deng, K.: Maximum error-bounded piecewise linear
representation for online stream approximation. VLDB J. 23, 915–937 (2014)

34. Xu, Z., Zhang, R., Kotagiri, R., Parampalli, U.: An adaptive algorithm for online time series
segmentation with error bound guarantee. In: Proceedings of the 15th International Conference
on Extending Database Technology, pp. 192–203 (2012)

35. Yu, L., Li, J., Gao, H., Fang, X.: Enabling ε-approximate querying in sensor networks. Proc.
VLDB Endow. 2(1), 169–180 (2009)

122 Q. Xie et al.

36. Zhang, Q., Pang, C., Hansen, D.: On multidimensional wavelet synopses for maximum error
bounds. In: Proceedings of 14th International Conference on Database Systems for Advanced
Applications, pp. 646–661 (2009)

37. Zhou, M., Wong, M.H.: A segment-wise time warping method for time scaling searching. Inf.
Sci. 173, 227–254 (2005)

Ensemble Dynamics in Non-stationary
Data Stream Classification

Hossein Ghomeshi, Mohamed Medhat Gaber, and Yevgeniya Kovalchuk

Abstract Data stream classification is the process of learning supervised models
from continuous labelled examples in the form of an infinite stream that, in most
cases, can be read only once by the data mining algorithm. One of the most
challenging problems in this process is how to learn such models in non-stationary
environments, where the data/class distribution evolves over time. This phenomenon
is called concept drift. Ensemble learning techniques have been proven effective
adapting to concept drifts. Ensemble learning is the process of learning a number
of classifiers, and combining them to predict incoming data using a combination
rule. These techniques should incrementally process and learn from existing data
in a limited memory and time to predict incoming instances and also to cope with
different types of concept drifts including incremental, gradual, abrupt or recurring.
A sheer number of applications can benefit from data stream classification from
non-stationary data, including weather forecasting, stock market analysis, spam
filtering systems, credit card fraud detection, traffic monitoring, sensor data analysis
in Internet of Things (IoT) networks, to mention a few. Since each application has
its own characteristics and conditions, it is difficult to introduce a single approach
that would be suitable for all problem domains. This chapter studies ensembles’
dynamic behaviour of existing ensemble methods (e.g. addition, removal and
update of classifiers) in non-stationary data stream classification. It proposes a new,
compact, yet informative formalisation of state-of-the-art methods. The chapter also
presents results of our experiments comparing a diverse selection of best performing
algorithms when applied to several benchmark data sets with different types of
concept drifts from different problem domains.

H. Ghomeshi (�) · M. M. Gaber · Y. Kovalchuk
School of Computing and Digital Technology, Birmingham City University, Birmingham, UK
e-mail: Hossein.Ghomeshi@mail.bcu.ac.uk; Mohamed.Gaber@bcu.ac.uk;
Yevgeniya.Kovalchuk@bcu.ac.uk

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_6

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_6&domain=pdf
mailto:Hossein.Ghomeshi@mail.bcu.ac.uk
mailto:Mohamed.Gaber@bcu.ac.uk
mailto:Yevgeniya.Kovalchuk@bcu.ac.uk
https://doi.org/10.1007/978-3-319-89803-2_6

124 H. Ghomeshi et al.

1 Introduction

Over the past few years, data stream classification has been playing an important role
in the area of knowledge discovery and big data analytics. The goal of classification,
in the context of data streams, is to predict the class label of incoming instances from
continuous data records that, generally, can be read only once in a limited time and
memory. This is done by extracting useful knowledge from the past data inside the
stream by using machine learning techniques.

As our digital world is growing rapidly, there are more data available in the form
of data streams (e.g. World Wide Web, Internet of Things, etc.). That fact justifies
the importance of paying attention to the mentioned domain of research since
knowledge discovery is more complex in data streams. Suppose a sensor network
that produces data related to credit card transactions of a bank from different types
of devices (ATM, POS, online shopping, etc.) in the form of a data stream. A
credit card fraud detection system can detect the fraudulent transactions using a
data stream classification technique. The same task usually takes a long time or a
high cost of resources (manual works) in traditional systems. Other applications
of data stream classification include stock market analysis and prediction, weather
forecasting, spam detection and filtering, traffic and forest monitoring, electricity
management systems, web search pattern detection, sensor data analysis in an
Internet of Things (IoT) network, among many other applications.

In such tasks, the characteristics of different types of data streams should be taken
into careful consideration in order to have a successful data stream classification.
General characteristics of data streams as seen by Babcock et al. [1] include the
unlimited size of data streams, on-line arrival of data elements, order of data
elements that is not governable, and finally, the restrictions about processing the
elements only one time (it is possible to process an element more than once, but
with a high cost of storing elements).

From the data distribution point of view, there are two types of data streams:
stationary (stable) data streams, where the probability distribution of instances is
fixed, and non-stationary (evolving) data streams, where the probability distribution
of incoming data evolves or target concepts (labelling mechanism) change over
time. This later phenomena is called concept drift. Existence of concept drifts in
data streams makes classification tasks more complex and difficult to handle. This
chapter is focused on non-stationary data stream classification.

As stated by Gama et al. [10], concept drifts may manifest in different forms over
time. These forms can be divided into four general types: abrupt (sudden), gradual,
incremental, and recurrent (recurring). Different types of concepts are depicted in
Fig. 1. In abrupt or sudden concept drifts, the data distribution at time t is replaced
suddenly with a new distribution at time t+1. Incremental concept drifts occur when
the data distribution changes and stays in a new distribution after going through
some new, unstable, median data distributions. In gradual concept drifts, the amount
of new probability distribution of incoming data increases, while the amount of data
that belong to the former probability distribution decreases over time. Recurring
concepts happen when the same old probability distribution of data reappears after
some time of a different distribution.

Ensemble Dynamics in Non-stationary Data Stream Classification 125

Fig. 1 Different types of concept drifts. Adapted from [10]

Fig. 2 An ensemble learning system, adapted from [18]

In order to cope with the concept drift problem in a data stream, it is important
to build a classification system that adapts to different concept drifts as quickly as
possible. Ensemble learning techniques are among the most effective approaches
to do data stream classification [11], especially when dealing with non-stationary
environments and concept drifts [18].

Ensemble learning is a machine learning approach in which multiple classifiers
are created and combined with each other using a voting mechanism. In other words,
as can be seen in Fig. 2, a voting mechanism is used to combine different classifiers’
outputs in order to establish a single class label as the output of the ensemble. This is
done in order to cover different types of features in a data stream. The combination
is usually done by majority voting or weighted majority voting.

126 H. Ghomeshi et al.

Adaptation to concept drifts can be achieved via different methods, with the
most common ways being adding new classifiers into the ensemble, removing old
classifiers from it, updating the weights of classifiers (assigning higher weights for
more accurate classifiers at each iteration) and resetting the ensemble to an initial
state. All of these methods are related to the dynamic behaviour of the ensemble.

This chapter aims to study ensembles’ dynamic behaviour of existing ensemble
methods in non-stationary data stream classification. In the authors’ point of view,
the key to building a successful ensemble is to understand different ensembles’
dynamic behaviour and their reaction towards different concept drifts and envi-
ronments. Furthermore, this chapter presents a new, compact, yet informative
formalisation of the state-of-the-art methods. The authors argue that understanding
the dynamic behaviour of different ensembles, along with the introduced formalisa-
tion, can facilitate the development of new as well as the current ensembles.

The rest of this chapter is organised as follows. In Sect. 2, the current ensemble
approaches for non-stationary environments are introduced and their dynamic
behaviour is discussed. A novel taxonomy for classification in such environments
based on dynamic behaviour is proposed in Sect. 2. A formalisation, along with
some of the current ensemble techniques (based on their dynamism diversity) using
the proposed formalisation, is included in Sect. 3. In Sect. 4, the experimental results
of several ensemble techniques are presented and analysed using different data sets.
In Sect. 5, the observed behaviour of different mechanisms is discussed and several
suggestions are proposed with respect to various characteristics. Finally, a summary
of the experiments, along with some recommendations regarding the application of
each ensemble approach, is provided in Sect. 6.

2 Ensemble Dynamics

In non-stationary environments, where different types of concept drifts may happen,
it is expected that an ensemble adapts to a new concept drift swiftly. Since the
adaptation in such environments is being done by adding a new classifier to the
ensemble, removing old classifiers and changing the weights of current classifiers,
understanding the dynamic behaviour of an ensemble toward different types of
concept drifts can help us to choose the best approach for a specific application
domain and develop new ensemble learning techniques for the required purpose.

This section discusses the aspects of an ensemble technique that form the
ensemble dynamics of an approach. These aspects are addition, removal and
updating of classifiers in an ensemble. The following subsections describe each
of these aspects in detail, along with comparing different algorithms based on the
dynamism related criteria. Over 20 different ensemble methods for non-stationary
environments are studied and compared for this purpose. It has been tried to include
the most recent and diverse ensemble techniques in this study.

Ensemble Dynamics in Non-stationary Data Stream Classification 127

2.1 Addition

Adding new classifiers that have been trained with recent instances in a stream is
one of the most important actions that needs to be applied to the ensemble when
data is evolving. The aim of this operation is adapting to drifting data, as well as
improving classification accuracy of the ensemble based on the fact that, in most
cases, incoming data is more likely to be similar to upcoming instances. The lack
of this action might result in severe decrease in accuracy of the ensemble especially
when concept drift is happening. One decision that needs to be taken when making
a strategy for the ensemble is to decide when to add new classifiers to the ensemble,
or in other words, what time frame needs to be taken for the addition operation.
Some algorithms use a fixed time, while others use a dynamic time for it.

2.1.1 Fixed Time of Addition

Algorithms that use a fixed time to train and add new classifiers usually use a similar
strategy; they do the addition operation after receiving a new block of data or after
receiving a predefined p instances. A considerate number of existing algorithms are
using this strategy to add new classifiers. The main challenge to build or use such
algorithms is to pick a decent size of blocks or p in order to have the best possible
output. Picking a large size might decelerate the adaptation while using a small size
might make the ensemble sensitive to noise.

2.1.2 Dynamic Time of Addition

The algorithms that use dynamic time of training and adding are more diverse
than the ones that use fixed time. Some of them use a method based on concept
drift detection to determine when to train and add new classifiers. These types of
algorithms start to train a new classifier when the concept drift detector signals
and identifies a concept drift. Such mechanism is called detection based dynamic
approach for addition operation. Some algorithms start to build a new classifier once
the ensemble misclassifies an example. This strategy is called misclassified based
dynamic in this chapter. Other mechanisms include adding a new classifier based on
an acceptance factor [22]. This approach adds a new classifier when the threshold
of the acceptance factor has been passed and a new classifier is needed. Another
approach trains and adds a new classifier once an old classifier has been removed
and a free space is available [24].

All of the studied algorithms and their addition mechanisms are shown in Table 1.

128 H. Ghomeshi et al.

Table 1 Overview of dynamic behaviour of studied algorithms

Algorithm Addition Removal Update Train Reference

SEA Fixed Full No update No [25]

AWE Fixed Performance Fixed No [26]

CDC Other Performance Fixed No [24]

Aboost Fixed Full Dynamic No [7]

CBEA Fixed Full No update No [23]

AddExp Misclassify No removal Dynamic No [16]

ACE Detection No removal Dynamic No [20]

DWM Misclassify Performance Fixed Yes [17]

TRE Other No removal Fixed No [22]

Adwin Bag Detection Detection No update No [2]

BWE Detection Detection Fixed No [8]

Learn++ Fixed No removal Fixed No [9]

Heft-Stream Fixed Full Fixed No [19]

WAE Fixed Full Fixed No [27]

RCD Detection No removal Dynamic No [12]

DACC Fixed Full Fixed Yes [15]

ADACC Fixed Full Fixed Yes [15]

AUE Fixed Full Fixed Yes [6]

OAUE Fixed Full Fixed Yes [5]

Fast-AE Fixed Full Fixed No [21]

Fixed: Fixed time of adding/updating the classifiers, Detection: Detection based (dynamic)
times, Misclassify: Misclassified based (dynamic) times of adding classifiers, Full: Removing
old classifier when the ensemble size is full, Performance: removing when the performance of a
classifier drops from the predefined threshold

2.2 Removal

Removing classifiers is a strategy to forget previously gained knowledge from
a data stream that is unhelpful in the current situation, in order to adjust the
ensemble to an updated state. In the majority of cases, removing classifiers from
an ensemble happens when a predefined ensemble size is reached. However, in
some algorithms, classifiers are being removed when their accuracy drops below a
predefined threshold. In yet other algorithms, the size of ensemble is set unlimited,
hence no classifier will be eliminated from the ensemble unless a pruning method is
utilised. In this chapter, the removing strategy of algorithms is categorised into the
following four types as can be seen in Table 1:

• Full: is performed when the set ensemble size is reached, and there is a new
classifier that needs to be added to the ensemble. Such algorithms eliminate
classifiers based on the classifiers’ age in the ensemble or their performance
on the recent data. All of the algorithms that use this mechanism for removing
classifiers are the ones that use ‘fixed’ strategy for adding new classifiers.

Ensemble Dynamics in Non-stationary Data Stream Classification 129

• Performance based: is performed when the performance of a classifier in the
last predefined k example drops below a specified threshold in the stream. In
this mechanism, when a classifier becomes ‘unhelpful’ in a new concept, it is
considered as an obsolete classifier and is removed from the ensemble.

• Drift detection based: when a concept drift detection method identifies a ‘concept
drift’, a classifier is chosen to be eliminated. According to this approach, when
the ensemble is full, for every new concept drift that would be detected by a drift
detection method, only one classifier will be eliminated based on its accuracy
over the recent instances. This happens in order to make room for a new classifier
that needs to be added to the ensemble. All of such algorithms use a detection
dynamic mechanism for adding new classifiers.

• No removal: a considerable amount of algorithms do not remove any old
classifiers from the ensemble, and only the weights of classifiers are changed
in order to avoid ‘unhelpful’ classifiers. The main reason behind this strategy is
that when a classifier becomes weak in an environment, it can again be a useful
classifier once a drift has happened, especially when that drift is a recurring
concept drift. The algorithms that use such mechanisms need to have a pruning
method in place, in order to avoid memory overload (since no classifier is being
removed from the ensemble).

2.3 Update

Updating an ensemble can be referred to two main operations: the first one is
updating the weight or ranking each classifier in the ensemble, and the second
is whether or not to train old classifiers with incoming data. Most of the current
algorithms use the ‘updating weight’ mechanisms in order to improve accuracy,
however, only a few algorithms use the ‘training old classifiers’ mechanism, as a
high load of memory is needed to train all of the classifiers with incoming data. The
existing algorithms and their updating strategies are depicted in Table 1.

Updating the power of each classifier is an efficient way of improving the
accuracy of an ensemble, especially when a concept drift happens and there are
diverse classifiers in the ensemble. This is usually done by evaluating the positive
effectiveness of each classifier in an environment and changing the weight, or the
rank, of the classifier, so that the classifier with a higher accuracy towards the current
condition has a bigger impact to the ensemble’s output than a weaker classifier.
Note that the algorithms that use a simple majority voting method for selecting the
output of the ensemble are unable to employ this procedure, as there is no weight
or rank set for each classifier. Similar to the addition stage, the mechanisms for
updating weights of classifiers are categorised to fixed times and dynamic times.
The methods that use dynamic times for updating classifiers are usually used when
a drift is detected, except for AddExp algorithm [16], where updating is done when
a classifier misclassified an example.

130 H. Ghomeshi et al.

2.4 Ensemble Dynamics Taxonomy

To summarise the above operations, we propose a taxonomy for defining ensemble’s
dynamics in non-stationary data stream classification (Fig. 3). According to the
proposed taxonomy, the dynamic behaviour of ensemble techniques is categorised
into three main sections of addition, removal and update as mentioned in Sect. 2.
The addition mechanisms are partitioned into fixed and dynamic methods and
dynamic ones are then divided into detection based, performance based and others
(such as using acceptance factor, etc.). The removal techniques are partitioned into
full (which remove a classifier whenever the ensemble is full), performance based,
detection based and no removal (methods that do not remove classifiers). Finally, the
update section is divided into two subsections of updating the classifiers’ weights
(or ranks) and training old classifiers. The first updating subsection is partitioned
into fixed times, dynamic times and no update, while the second one (training) is
simply divided into the algorithms that do train the old classifiers (yes) and the ones
that do not do so (no).

In order to compare and analyse the existing algorithms with regard to their
dynamic behaviour (as presented in this chapter), six representative algorithms are
selected based on their diversity across the elements of the proposed taxonomy.
The selected algorithms are: Adaptive Boosting (Aboost) [7], Dynamic Weighted
Majority (DWM) [17], Track Recurring Ensemble (TRE)[22], Adwin Bagging
(AdwinBag) [2], Recurring Concept Drift (RCD) [12] and Online Accuracy Update
Ensemble (OAUE) [5]. These algorithms and their dynamic characteristics are
shown in Fig. 4. As can be observed from Fig. 4, none of the chosen algorithms
follow the same path across all four phases of addition, removal, updating and
training. Furthermore, there are no two algorithms with more than two common
dynamic characteristics in this selection.

3 Formalisation

Formalising algorithms is a suitable way to comprehend and modulate the existing
approaches in order to develop novel methods. In this chapter, a formalised version
of the selected algorithms (as specified in Sect. 2) is presented with the intention to
simplify the process of examining and building new approaches.

The following functions are used in the presented algorithms. Note that the
sequence of the functions is the matter of importance in this formalisation, and the
specific implementation of each function might be different for every algorithm.

• Classify(): The ensemble classifies data according to its combinational rule (e.g.,
weighted majority vote or majority vote).

• Eval(): Evaluating the whole ensemble or classifiers using an evaluation method.
• Update(): Updating the weights (or ranks) of all or one classifier with regard to

its own evaluation and updating mechanism.

Ensemble Dynamics in Non-stationary Data Stream Classification 131

Fig. 3 The proposed taxonomy for ensemble’s dynamics in non-stationary data stream classifica-
tion

• Build(): Building a new classifier using the recently received data.
• Add(): Adding the newly built classifier to the ensemble.
• Remove(): Removing one or some classifiers based on the ensemble’s specific

removal mechanism.
• Train(): Training all or some old classifiers using the new data or data block.
• DriftDetection(): Detecting drifts using a concept drift detection method.

Adaptive boosting (Aboost) algorithm [7] presented in Algorithm 1 takes blocks
of data, classifies the instances and then evaluates the ensemble’s performance.
If a concept drift is detected, it updates all the classifiers and assigns the default
weight of ‘one’ to them. Otherwise, it assigns a weight to each instance in the block

132 H. Ghomeshi et al.

Fig. 4 Selected algorithms diversity in addition, removal and updating phases

Algorithm 1: ABOOST Adaptive Boosting Algorithm
Input: Continuous data blocks, DB ={db1,db2,..,dbn}
Output: C: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights

w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 Eval(Ensemble)
5 if DriftDetection()=1 (drift is detected) then
6 Update(c)

7 else
8 Eval(dbi)
9 Update(dbi)

10 Build(ci+1)
11 Add(ci+1)
12 Remove() //remove oldest classifier
13 i = i + 1

according to whether or not that instance has been classified correctly (lines 8–9).
If an instance is misclassified, a higher weight would be assigned. If the instance
is classified correctly, the default weight of ‘one’ would be assigned. Finally, the
oldest classifier in the ensemble will be removed and a new classifier will be built
and added to the ensemble (based on the weighted instances in the block).

Ensemble Dynamics in Non-stationary Data Stream Classification 133

Algorithm 2: DWM Dynamic Weighted Majority algorithm
Input: A Data Stream, DS ={d1,d2,..,dn}
li : Real label of the ith example

1 �: Threshold for removing classifiers
2 p: specified period for addition, removal and update of classifiers.

Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights
w ={w1,w2,..,wm}

3
4 i := 1
5 while data stream is not empty do
6 for j = 1 to j = m do
7 Classify(di)
8 if Output(bj)
= li and i mod p = 0 then
9 Update()

10 if i mod p = 0 then
11 while wj < θ do
12 Remove(cj)

13 Train(cj)

14 if Classify(di)
= li then
15 Build()
16 Add()

17 i := i + 1

In Dynamic Weighted Majority (DWM) algorithm [17] shown in Algorithm 2,
the data comes in an online form and after a predefined period p, if a classifier
misclassifies an instance, the weight of that classifier will be reduced by a constant
value regardless of the ensemble’s output (lines 8–9). After this period, all the
weights will be normalised and the classifiers with lower weights than a threshold
(θ) will be removed from the ensemble. Finally, when the ensemble misclassifies
an instance, a new classifier will be built and added to the ensemble. Note that all
classifiers are trained incrementally with incoming samples.

In Tracking Recurrent Ensemble algorithm (TRE) [22], a new classifier will
be added only when the ensemble error reaches a predefined permitted error (τ).
Each classifier’s weight would be updated once its performance drops below an
acceptance factor (θ). This approach does not remove old classifiers unless a pruning
method is used. The formalised version of this algorithm is depicted in Algorithm 3.

Adwin Bagging (AdwinBag) [2] is an approach that uses a concept drift detection
method to specify when a new classifier is needed. When the new classifier is built
and there is no more room in the ensemble, the worst performing classifier will be
removed in order to make room for the new one. The formalised version of this
algorithm is shown in Algorithm 4.

The Recurring Concept Drift framework (RCD) [12] presented in Algorithm 5
uses a buffer to store the context related to each data distribution in the stream. When
the concept drift detector signals a warning, a new classifier is created and trained

134 H. Ghomeshi et al.

Algorithm 3: TRE Tracking Recurrent Ensemble

Input: Continuous data blocks, DB ={db1,db2,..,dbn}
τ : Permitted error θ : Acceptance factor
Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights

w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 for j = 1 to j = m do
5 Eval(cj)
6 if Eval(cj) < θ then
7 Update(cj)

8 Eval(Ensemble)
9 if Ensemble error > τ then

10 Build()
11 Add()

12 i := i + 1

Algorithm 4: ADWINBAG Adwin Bagging algorithm

Input: A Data Stream, DS ={d1,d2,..,dn}
M: Ensemble size
Output: A set of classifiers c ={c1,c2,..,cm}

1 i := 1
2 while data stream is not empty do
3 Classify(di)
4 if DriftDetection()=1 then
5 Build()
6 Add()

7 for j = 1 to j = m do
8 Eval(cj)

9 if Ensemble size = M then
10 Remove() //remove worst performing classifier

11 i := i + 1

alongside with a new buffer. If the concept drift detector signals a drift, which means
the concept drift is certain, the framework checks whether or not the new concept
drift is similar to previous concepts in the buffer (in case it is a recurring concept
drift). If the new concept is similar to an old concept based on a statistical test, the
framework uses the classifier created with that concept to classify incoming data and
starts to train that classifier. If data distribution (concept) is new to the framework,
it stores the new buffer and classifier in the system and uses the new classifier to
classify incoming data. Otherwise, if the signal was a false alarm, the system ignores
the stored data and continues to classify using the last classifier. In this approach,
only one classifier is active at a time and does the classification task.

Ensemble Dynamics in Non-stationary Data Stream Classification 135

Algorithm 5: RCD Recurring Concept Drift framework
Input: A Data Stream, DS ={d1,d2,..,dn}
Output: A set of classifiers c ={c1,c2,..,cm}, Buffer list b ={b1,b2,..,bm}

1 ca= Active classifier, ba= Active buffer
2 cn= New classifier, bn= New buffer
3 i := 1
4 while data stream is not empty do
5 Classify(di)
6 DriftDetection()
7 switch Drift Detection do
8 case DriftDetection()= Warning and cn=null do
9 Build(cn)

10 Build(bn)

11 case DriftDetection()= Warning and cn
=null do
12 Train(cn)

13 case DriftDetection()= Drift do
14 ca ← cn

15 ba ← bn

16 otherwise do
17 cn = bn = null

18 i := i + 1

Online Accuracy Update Ensemble (OAUE) Algorithm [5] is designed to
incrementally train all of the old classifiers and weight them based on their error
in constant time and memory. Since this approach needs a high load of memory due
to training all classifiers with incoming data, a threshold for memory is assigned—
so that, whenever the threshold is met, a pruning method is used to decrease the size
of classifiers. The formalised version of this approach is depicted in Algorithm 6.

4 Experimental Study

To evaluate and analyse the selected algorithms (as specified in Sect. 2), and to
observe the behaviour of different mechanisms with respect to various concept
drifts, a set of experiments are conducted using several data sets. For this purpose,
two artificial and two real world data streams are employed and the algorithms are
compared using different criteria including classification accuracy, training time,
memory usage, average adaptation time to concept drifts and average accuracy drop
upon concept drifts. Each evaluation run in these experiments involves passing one
of the chosen data sets described below through a specific algorithm in a form of
data stream with a specified number of instances per interval.

136 H. Ghomeshi et al.

Algorithm 6: OAUE Online Accuracy Updated Ensemble algorithm

Input: A continuous blocks of data, DB ={db1,db2,..,dbn}
M: Ensemble size, θ : Memory threshold
Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding weights

w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 Eval(c)
5 Build(ci)
6 if i < M then
7 Add(ci)

8 else
9 Remove() //remove least accurate classifier

10 Add(ci)

11 for j = 1 to j = m do
12 Update(cj)
13 Train(cj)

14 if Memory usage > θ then
15 Prune(c) //decrease size of classifiers

16 i := i + 1

All of the experiments are implemented by Massive Online Analysis (MOA)
framework [3]. MOA is an open source framework for data stream mining in
evolving environments implemented at the University of Waikato. Aboost, DWM,
OAUE and AdwinBag algorithms are already included in MOA framework and
TRE and RCD algorithms are added using classifiers and drift detection methods
extension.1 The experiments were performed on a machine equipped with an Intel
Core i7-4702MQ CPU @ 2.20 GHz and 8.00 GB of Installed memory (RAM).

4.1 Data Sets

4.1.1 Hyperplane Generator

Hyperplane generator is a synthetic data stream with drifting concepts based on
a rotating hyperplane. A hyperplane in d-dimensional space is the set of points

that satisfy
d∑

i=1

wixi = w0 where xi is the ith coordinator of point x. Instances

1http://sites.google.com/site/moaextensions.

http://sites.google.com/site/moaextensions

Ensemble Dynamics in Non-stationary Data Stream Classification 137

with
d∑

i=1

wixi ≥ w0 are labelled as positive and
d∑

i=1

wixi < w0 are labelled as

negative. Rotating Hyperplane Generator was introduced by Hulten et al. [14] and is
a good way to simulate concept drift by changing the location of the hyperplane and
additionally to change the smoothness of drifting data by specifying the magnitude
of the changes.

For this experiment, the number of classes and attributes are set to four and
fourteen respectively, and the magnitude of change is set to 0.01.

4.1.2 SEA Data Stream Generator

SEA generator is a data set inspired by four SEA concepts as described in [25].
The data set is a set of random points in a three-dimensional feature space. All
three features have the value between 0 and 10, but only the first two are relevant to
classification. These points are then divided into four blocks with different concepts.
This is done to specify different concept drifts by assigning different conditions and
goals for each class.

For this experiment along with the normal concept drifts that are being generated
in the data stream, three abrupt concept drifts are added manually in three predefined
times in order to be able to analyse the behaviour of different algorithms in the exact
same situation specifically towards abrupt concept drifts.

4.1.3 Forest Cover-Type Data Set

Forest Cover-type data set [4] from the UCI Machine Learning Repository2 contains
the forest cover type of 30 × 30 meter cells obtained from the US Forest Service
(USFS) Region 2 Resource Information System (RIS) data. It contains 581,012
instances and 54 attributes. The goal with this data set is to predict the forest cover
type from cartographic variables.

4.1.4 Electricity Data Set

Electricity is a widely used data set by Harries and Wales [13] collected from the
Australian New South Wales Electricity Market. In this market, prices are not fixed
and are affected by demand and supply. The Electricity data set contains 45,312
instances. Each instance contains 8 attributes and the target class specifies the
change of the price (whether going up or down) according to a moving average
of the last 24 h.

2http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml

138 H. Ghomeshi et al.

4.2 Results and Analysis

To evaluate performance of the selected algorithms, three generic criteria are used,
including ‘Accuracy’, ‘Execution time’ and ‘Memory usage’. Accuracy is the
percentage of correctly classified instances in the given interval. Execution time
and memory usage represent how much time and memory overall it takes for an
algorithm to complete an evaluation run. For the second experiment with SEA data
stream, two more criteria are utilised in order to study algorithms’ behaviour in the
presence of abrupt concept drift. These criteria are accuracy drop upon a concept
drift and recovery time from a concept drift (adaptation time). Accuracy drop is
calculated as a ratio (in %) between the last interval’s accuracy rate before the new
drift is introduced and the next interval’s accuracy rate. Recovery time is the average
number of instances it takes for each algorithm to achieve its average accuracy again
(after an abrupt concept drift).

Figure 5 shows the percentage of classification accuracy of the selected algo-
rithms over Hyperplane data set. Algorithms’ behaviour in identical scenarios are
demonstrated in Fig. 6. The elapsed time and memory usage are shown in Figs. 7
and 8.

Accuracy rates of the selected algorithms over SEA generator data stream
are shown in Fig. 9. In order to create abrupt concept drifts at specified times,
one million instances are generated from SEA data generator [25] with three
different parameters that happen every 250 thousand instances. Figure 10 compares
algorithms’ accuracy rates in one chart.

Figure 11 demonstrates behaviour of the tested algorithms towards one of
the added abrupt concept drifts. In Fig. 12, the selected algorithms are compared
according to their accuracy drop, recovery time, average accuracy, average memory
usage and the overall time of an experiment.

The average accuracy of the selected algorithms over Forest Cover-type data set
is depicted in Fig. 13. Comparison of the algorithms over this data set is demon-
strated in Fig. 14 and the memory usage and execution time of the algorithms is
shown in Figs. 15 and 16, respectively. Average accuracy, performance comparison,
memory usage and overall execution time of all algorithms over Electricity data set
is demonstrated in Figs. 17, 18, 19, and 20 respectively.

Finally, the overall results of the above mentioned experiments are summarised
in Table 2 according to the three main criteria: classification accuracy, execution
time, and memory usage.

As it can be observed from Table 2 along with the above mentioned figures,
the RCD algorithm [12] has the lowest memory usage and execution time in all
experiments, but it has the poorest classification accuracy for the majority of the
data sets (Hyperplane, SEA and Forest-cover type). This algorithm has a long
recovery time from concept drifts (average of 25,900 instances), and its accuracy
drops drastically upon abrupt concept drifts (average drop of 7.2% (Fig. 12)). The
OAUE algorithm [5] has the best classification accuracy for the majority of the

Ensemble Dynamics in Non-stationary Data Stream Classification 139

Fig. 5 Classification accuracy of different algorithms for Hyperplane data stream generator (one
million instances). X-axis: Instance number; Y -axis: Accuracy in % (calculated every 5000
instances). (a): Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c):
Dynamic Weighted Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking
Recurrent Ensemble, (f): Adwin Bagging algorithm

data sets (Hyperplane, SEA and Forest-cover type) with an average execution time,
but a relatively high memory usage, especially for Electricity data set (Fig. 19).
Furthermore, it has the lowest recovery time from concept drifts (average of 4940
instances) and a medium performance drop upon abrupt concept drifts (average drop
of 5.2%). Aboost algorithm [7] has a high classification performance (with the best
observed accuracy over Electricity data set), along with an average execution time.
However, it has the highest level of memory load for Hyperplane, SEA and Forest
Cover-Type data sets. This algorithm has an average time of recovery from concept

140 H. Ghomeshi et al.

Fig. 6 Comparison of algorithms’ accuracy rates over Hyperplane generator

1600

1400

1200

1000

800

600

400

200

0
Aboost OAUE DWM RCD TRE AdwinBag

Fig. 7 Overall execution time of the selected algorithms over Hyperplane data generator (in
seconds)

drifts (average of 23,800 instances) and the poorest classification performance
upon abrupt concept drifts (7.9% drop). In DWM algorithm [17], memory usage
and execution time are average and classification performance is acceptable in the
majority of the cases (except for Electricity data set, where the average accuracy
is 70.7%). The accuracy decreases slightly in the presence of abrupt concept drifts
(average drop of 2.1%), and the average time of adaptation is mediocre (average
of 20,900 instances). TRE algorithm [22] has the longest execution time for all
data sets, however, the accuracy and memory usage are medium in most cases
(except for accuracy in Electricity data set, which is 71.7%). This algorithm has

Ensemble Dynamics in Non-stationary Data Stream Classification 141

Fig. 8 Memory usage of the selected algorithms (calculated every 5000 instances). X-axis:
Instance number; Y -axis: Memory in bytes

an average adaptation time (average of 16,000 instances) and the lowest accuracy
drop upon abrupt concept drifts among the other selected algorithms (1.1%). Finally,
in Adwin Bagging algorithm [2], the classification accuracy is high in all cases and
memory usage and execution time are relatively low for the majority of the data
sets. However, it has the highest value of adaptation time in concept drifts (average
of 34,100 instances), and the accuracy drops drastically once an abrupt concept drift
happens (5.9%).

5 Discussion

It is observed from the first experiment (over the Hyperplane Generator data set)
that in RCD and Aboost algorithms, where the update phase happens in dynamic
times (upon drift detection), the fluctuation of accuracy is relatively high (Fig. 5).
This might be due to the fact that such algorithms are sensitive to concept drifts
and also prone to false alarms, where noise can be detected as a concept drift.
As can be seen from Fig. 6 for example, accuracy rates of both RCD and Aboost
algorithms during the instance numbers 215,000–250,000 drop drastically, while
for other algorithms, accuracy remains the same or increases. This can be explained
by inability of the algorithms to distinguish between the true signal and noise. In
the instance number 775,000, the accuracy of all algorithms drops smoothly, while
in Aboost and especially RCD this drop is more severe. Furthermore, in Fig. 5, it is
clear that accuracies of OAUE and DWM algorithms (b,c) have the lowest rate of

142 H. Ghomeshi et al.

Fig. 9 Classification accuracy of the algorithms over SEA data stream generator (one million
instances). X-axis: Instance number; Y -axis: Accuracy rate (calculated every 5000 instances in
%). (a): Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c): Dynamic
Weighted Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking Recurrent
Ensemble, (f): Adwin Bagging algorithm

fluctuation among the others. This is possibly the result of training old classifiers as
new examples are passing through the ensemble.

As can be noticed from the second experiment (over SEA generator), where
three abrupt concept drifts are added in the points 250,000, 500,000 and 750,000
in Figs. 9, 10, 11, and 12, the accuracy of TRE algorithm is the most consistent
when the concept drifts happen. The reason for such behaviour might be due to
the fact that in TRE no classifier is removed from the ensemble and the algorithm
regularly checks to see if a new concept drift is similar to an old one. Note that
while RCD algorithm has the same mechanism as TRE for recurring concept drifts,
a drift detection method is used in RCD, which makes it sensitive to concept drifts.

Ensemble Dynamics in Non-stationary Data Stream Classification 143

Fig. 10 Comparison of algorithms’ accuracy rates over SEA generator

95

93

91

89

87

85

83

81

79

77

75

Aboost OAUE DWM RCD TRE AdwinBag

24
00

00
24

50
00

25
00

00
25

50
00

26
00

00
26

50
00

27
00

00
27

50
00

28
00

00
28

50
00

29
00

00
29

50
00

30
00

00
30

50
00

31
00

00
31

50
00

32
00

00
32

50
00

33
00

00
33

50
00

34
00

00

Fig. 11 A closer look at one of the added abrupt concept drifts and the behaviour of different
algorithms towards this drift. X-axis: Instance number; Y -axis: Classification accuracy rate
(calculated every 5000 instances in %)

In addition, only one classifier at a time is active in RCD algorithm. According
to Fig. 10, accuracies of OAUE and DWM algorithms drop upon concept drifts,
however, they recover from (adapt to) those concepts swiftly (Fig. 12). This is due
to training old classifiers with incoming data in these algorithms. Similar to the
previous experiment (Hyperplane data set), the algorithms that use concept drift
detection methods (AdwinBag, RCD and Aboost) adapt to concept drifts slowly
and their accuracy drops drastically upon concept drifts (Fig. 12).

144 H. Ghomeshi et al.

Fig. 12 Comparison of the algorithms in SEA generator data stream in the presence of different
concept drifts in one million instances. (a): Average accuracy in %, (b): Average drop of accuracy
upon concept drifts, (c): Average time of recovery (adaptation) from concept drift (number of
instances to pass in order to achieve the average performance again), (d): Overall time, (e): Average
memory usage

Ensemble Dynamics in Non-stationary Data Stream Classification 145

Fig. 13 Classification accuracy of the tested algorithms over the Forest Cover-type data set
(581,012 instances). X-axis: Instance number, Y -axis: Accuracy rate (calculated every 2000
instances in %). (a): Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c):
Dynamic Weighted Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking
Recurrent Ensemble, (f): Adwin Bagging algorithm

In Fig. 11, which shows the first added concept drift more closely, it is interesting
to see that four algorithms with different mechanisms (Aboost, OAUE, RCD and
AdwinBag) have exactly the same reaction to the concept drift in the first 5000
instances after the concept drift happened (time 250,000–255,000). However after
this time, each algorithm has its own reaction to the concept drift. This shows that
these algorithms either do not have an immediate reaction to concept drifts or they
detect and approve concept drifts with a delay. The consistency of TRE and DWM
algorithms in Fig. 11 is significant as their accuracy rates do not drop from 86%,

146 H. Ghomeshi et al.

Fig. 14 Comparison of algorithms’ accuracy rates over the Forest Cover-type data set

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000

0

Aboost OAUE DWM RCD TRE AdwinBag

20
00

10
00

0
18

00
0

26
00

0
34

00
0

42
00

0
50

00
0

58
00

0
66

00
0

74
00

0
82

00
0

90
00

0
98

00
0

10
60

00
11

40
00

12
20

00
13

00
00

13
80

00
14

60
00

15
40

00
16

20
00

17
00

00
17

80
00

18
60

00
19

40
00

20
20

00
21

00
00

21
80

00
22

60
00

23
40

00
24

20
00

25
00

00
25

80
00

26
60

00
27

40
00

28
20

00
29

00
00

29
80

00
30

60
00

Fig. 15 Memory usage of the selected algorithms over Forest Cover-type data set (calculated every
2000 instances). X-axis: Instance number, Y -axis: memory used (in bytes)

which shows a promising reaction to such drifts. This is due to the fact that in these
algorithms more new classifiers will be built and added to the ensemble when data
is evolving. DWM adds a new classifier when an example is misclassified and TRE
does the same when the threshold of an acceptance factor is passed. Upon concept
drifts, both conditions happen often, which leads to adding new classifiers more
frequently.

Ensemble Dynamics in Non-stationary Data Stream Classification 147

1600

1400

1200

1000

800

600

400

200

0
Aboost OAUE DWM RCD TRE AdwinBag

Fig. 16 Overall execution time of the selected algorithms over Forest Cover-type data set (in
seconds)

The accuracy of all algorithms over Forest Cover-type data set fluctuates a
lot according to Figs. 13 and 14 (when compared with other experiments). This
shows that Forest Cover-type data set has more severe drifting data than the other
data sets. However, the mentioned behaviour toward concept drifts remains the
same and only the drop of accuracy is more drastic than in previous experiments
(Fig. 13), particularly at points 164,000, 218,000 and 326,000. The initial accuracy
of algorithms DWM, TRE and especially Aboost that have the average accuracy
rates of about 50, 49 and 18% in the first 18,000 instances, shows that these
algorithms need some time in order to achieve an initial consistency. Furthermore,
it can be noticed from Fig. 14 that RCD and Aboost algorithms have inconsistent
performance in highly evolving data sets.

In the last experiment done over Electricity data set, the fluctuation of accuracy
as depicted in Fig. 17 is less than in previous experiments, which proves the fact
that the number of concept drifts in this data set is less or concept drifts are
more smooth (gradual) in this data set. This result is more prominent in Aboost
algorithm which has consistent accuracy over Electricity data set, unlike for the
rest of the algorithms (Fig. 18). Accuracy rates of the algorithms that use fixed
times of addition (OAUE and Aboost) are higher and have more stability than
the other algorithms. Furthermore, in DWM algorithm with average accuracy of
70.7% the performance is not satisfactory. This is possibly due to the addition
operation in DWM algorithm happening when an instance is misclassified by the
whole ensemble and the removal operation is based on the performance of each
classifier at specific times.

As can be seen from Figs. 7, 12c, 16, and 20, TRE algorithm has the longest
execution time by far. This is due to the fact that in TRE algorithms there is no

148 H. Ghomeshi et al.

Fig. 17 Classification accuracy of different algorithms over Electricity data set (45,312 instances).
X-axis: Instance number; Y -axis: Accuracy rate (calculated every 500 instances in %). (a):
Adaptive Boosting algorithm, (b): Online Accuracy Updated Ensemble, (c): Dynamic Weighted
Majority algorithm, (d): Recurring Concept Drift framework, (e): Tracking Recurrent Ensemble,
(f): Adwin Bagging algorithm

mechanism for removing old classifiers and new incoming instances are being
compared with previous ones in order to find recurring concept drifts. Furthermore,
DWM and OAUE algorithms mostly have the longest time of execution after TRE,
since in these algorithms all the classifiers are trained using new data. As opposed to
TRE, RCD algorithm has the shortest execution time because in this algorithm, only
one classifier is active at a time and a new classifier is being built at the same time.
Finally, AdwinBag algorithm has relatively low execution times in all experiments
(Table 2), as this approach does not update the weight or rank classifiers.

Ensemble Dynamics in Non-stationary Data Stream Classification 149

Fig. 18 Comparison of algorithms’ accuracy rates over Electricity data set

Fig. 19 Memory usage of the selected algorithms over Electricity data set (calculated every 500
instances). X-axis: Instance number; Y -axis: Memory in bytes

Memory usage of different experiments are shown in Figs. 8, 12, 15, and 19. It
is clear that RCD algorithm is the least memory greedy method, with an average
memory usage of around one kilobyte for each classification task. This is obviously
due to its addition mechanism and output determination. A new classifier in RCD
is built only upon new concept drifts, and for each example, only one classifier
specifies the output. AdwinBag algorithm is the most efficient algorithm after RCD
in terms of memory usage. This is because a limited amount of classifiers is involved
in each iteration and in addition, previously built classifiers are not being trained
or updated in the procedure. Aboost algorithm has a low memory usage at the

150 H. Ghomeshi et al.

Fig. 20 Overall execution time of the selected algorithms over Electricity data set (in seconds)

Table 2 Overview of all experiments with respect to accuracy, execution time and memory usage

Average accuracy (%) Execution time (second) Memory usage (KB)
Algorithm Plane SEA Forest Elec Plane SEA Forest Elec Plane SEA Forest Elec

Aboost 87.56 87.91 75.48 89.77 188 46 184 4 14,807 3515 5631 550

OAUE 90.69 89.42 90.11 87.5 128 49 164 3.98 2888 2754 1947 844

DWM 89.66 87.87 80.26 70.73 247 58 317 5.48 609 249 932 330

RCD 84.7 86.2 62.66 73.45 34 5 62 1.98 4.4 1.1 24.7 2.6
TRE 88.33 88.05 77.3 71.68 1378 260 1509 8.77 1924 694 3423 666

AdwinBag 90.06 88.17 84.81 84.34 86 46 124 2.97 2059 2612 428 238

Bold values represent best performance in accuracy, time and memory criteria over different data
streams (higher average accuracy, lower execution time and lower memory usage)

beginning of the process, but as new instances come, it grows incrementally. This
feature of Aboost algorithm makes it heavy for long lasting tasks and light for short
time classification tasks. TRE and OAUE algorithms use a high value of memory.
This is because in TRE algorithm, no classifier is being removed, and in OAUE
algorithm, all classifiers are incrementally trained. This leads to both algorithms
needing a pruning method to shrink the number of classifiers in TRE, and to shrink
the size of each classifier in OAUE.

Overall, for applications where the overall accuracy is an important factor and
classification time is not restricted, OAUE and Aboost algorithms demonstrate
better results. For applications where memory and time are limited, AdwinBag and
RCD algorithms are recommended. In applications where consistency of accuracy
is important, algorithms such as TRE, DWM and OAUE should be used. Finally,
for applications where good performance upon concept drift is required, TRE and
DWM algorithms are recommended as they demonstrate the most consistent results.

Ensemble Dynamics in Non-stationary Data Stream Classification 151

6 Summary

In this chapter, dynamic changes of different ensemble-based approaches for data
stream classification in non-stationary environments have been studied. A novel
taxonomy has been proposed based on dynamic behaviour of these approaches,
in order to establish different types of reactions to concept drifts. To simplify
the process of understanding the current approaches’ dynamics and to encourage
the development of novel algorithms, a formalisation method for classification
algorithms in streaming analytics has been presented and characteristics of some
of the current algorithms have been represented using this method. Finally, six
algorithms out of the studied twenty algorithms are selected based on their diverse
dynamic behaviour and four experiments have been designed for the purpose of this
chapter. These experiments have been conducted to analyse the consequences of
employing different types of dynamic behaviour towards different applications and
concept drifts.

Based on the experimental results, the most significant observations are as
follows:

• For the tasks where accuracy is the most important factor and the target data
stream is being evolved frequently and severely, it is suggested to use algorithms
with frequent updating and training phases, such as Aboost, OAUE and DWM.

• For applications where only a small amount of memory is available (such as IoT
and sensor networks) or the time of output needs to be short, it is suggested to
use RCD, Adwin Bagging and other algorithms with less updating or adding
procedures.

• For the applications where frequent recurring concept drifts happen and memory
usage is not crucial, algorithms such as TRE algorithm, where no classifier is
deleted, are recommended to use.

• For the tasks where the memory capacity is limited and the job needs to be
done in a short time with a satisfactory level of accuracy, AdwinBag and DWM
algorithms are suggested.

• For least evolving data streams, algorithms such as Aboost and OAUE demon-
strate the best performance, especially in terms of accuracy.

• For applications where recovery time (time of adaptation) is a critical factor,
OAUE and DWM algorithms that train all classifiers incrementally seem to be
the best option.

• For applications where consistency of accuracy rate is important, algorithms such
as DWM, TRE and OAUE that update their classifiers frequently are the best
choices.

• For applications where the accuracy over concept drifts is the most important
factor, algorithms that add more classifiers or have more ‘adding’ procedures in
evolving environments (e.g., misclassified-based and performance-based mecha-
nisms of adding), such as TRE and DWM are proved to be the best options.

152 H. Ghomeshi et al.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 1–16. ACM, New York (2002)

2. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for
evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 139–148. ACM, New York (2009)

3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: massive online analysis. J. Mach. Learn.
Res. 11, 1601–1604 (2010)

4. Blackard, J.A., Dean, D.J.: Comparative accuracies of artificial neural networks and discrim-
inant analysis in predicting forest cover types from cartographic variables. Comput. Electron.
Agric. 24(3), 131–151 (1999)

5. Brzezinski, D., Stefanowski, J.: Combining block-based and online methods in learning
ensembles from concept drifting data streams. Inf. Sci. 265, 50–67 (2014)

6. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy
updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

7. Chu, F., Zaniolo, C.: Fast and light boosting for adaptive mining of data streams. In: Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 282–292. Springer, Berlin
(2004)

8. Deckert, M.: Batch weighted ensemble for mining data streams with concept drift. In: Inter-
national Symposium on Methodologies for Intelligent Systems, pp. 290–299. Springer, Berlin
(2011)

9. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments.
IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

10. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. (CSUR), 46(4), 44 (2014)

11. Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.: A survey on ensemble learning for data
stream classification. ACM Comput. Surv. (CSUR) 50(2), 23 (2017)

12. Gonçalves, P.M., Jr., De Barros, R.S.M.: RCD: a recurring concept drift framework. Pattern
Recogn. Lett. 34(9), 1018–1025 (2013)

13. Harries, M., Wales, N.S.: Splice-2 comparative evaluation: Electricity pricing (1999)
14. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings

of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 97–106. ACM, New York (2001)

15. Jaber, G.: An approach for online learning in the presence of concept change. PhD thesis,
Citeseer (2013)

16. Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In:
Proceedings of the 22nd International Conference on Machine Learning, pp. 449–456. ACM,
New York (2005)

17. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting
concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

18. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for
data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

19. Nguyen, H.-L., Woon, Y.-K., Ng, W.-K., Wan, L.: Heterogeneous ensemble for feature drifts
in data streams. In: Advances in Knowledge Discovery and Data Mining, pp. 1–12 (2012)

20. Nishida, K., Yamauchi, K.: Adaptive classifiers-ensemble system for tracking concept drift. In:
Machine Learning and Cybernetics, 2007 International Conference on, vol. 6, pp. 3607–3612.
IEEE, New York (2007)

21. Ortíz Díaz, A., del Campo-Ávila, J., Ramos-Jiménez, G., Frías Blanco, I., Caballero Mota, Y.,
Mustelier Hechavarría, A., Morales-Bueno, R.: Fast adapting ensemble: a new algorithm for
mining data streams with concept drift. Sci. World J. 2015, 1–15 (2015)

Ensemble Dynamics in Non-stationary Data Stream Classification 153

22. Ramamurthy, S., Bhatnagar, R.: Tracking recurrent concept drift in streaming data using
ensemble classifiers. In: Machine Learning and Applications, 2007. ICMLA 2007. Sixth
International Conference on, pp. 404–409. IEEE, New York (2007)

23. Rushing, J., Graves, S., Criswell, E., Lin, A.: A coverage based ensemble algorithm (CBEA)
for streaming data. In: Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE
International Conference on, pp. 106–112. IEEE, New York (2004)

24. Stanley, K.O.: Learning concept drift with a committee of decision trees. Informe técnico: UT-
AI-TR-03-302, Department of Computer Sciences, University of Texas at Austin, USA (2003)

25. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In:
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 377–382. ACM, New York (2001)

26. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble clas-
sifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 226–235. ACM, New York (2003)

27. Woźniak, M.: Application of combined classifiers to data stream classification. In: Computer
Information Systems and Industrial Management, pp. 13–23. Springer, Berlin (2013)

Processing Evolving Social Networks for
Change Detection Based on Centrality
Measures

Fabíola S. F. Pereira, Shazia Tabassum, João Gama, Sandra de Amo,
and Gina M. B. Oliveira

Abstract Social networks have an evolving characteristic due to the continuous
interaction between users, with nodes associating and disassociating with each other
as time flies. The analysis of such networks is especially challenging, because it
needs to be performed with an online approach, under the one-pass constraint of data
streams. Such evolving behavior leads to changes in the network topology that can
be investigated under different perspectives. In this work we focus on the analysis
of nodes position evolution—a node-centric perspective. Our goal is to spot change-
points in an evolving network at which a node deviates from its normal behavior.
Therefore, we propose a change detection model for processing evolving network
streams which employs three different aggregating mechanisms for tracking the
evolution of centrality metrics of a node. Our model is space and time efficient
with memory less mechanisms and in other mechanisms at most we require the
network of current time step T only. Additionally, we also compare the influence
on different centralities’ fluctuations by the dynamics of real-world preferences.
Consecutively, we apply our model in the user preference change detection task,
reaching competitive levels of accuracy on Twitter network.

1 Introduction

Social networks evolve at a fast rate of edge arrival. Due to this characteristic
processing and analyzing such networks is challenging. Usually, the most feasible
approach to process them is to consider network streams and perform analysis under
online approaches and one-pass constraints [8]. When considering such evolving

F. S. F. Pereira (�) · S. de Amo · G. M. B. Oliveira
Federal University of Uberlandia, Uberlandia, Brazil
e-mail: fabiola.pereira@ufu.br; deamo@ufu.br; gina@ufu.br

S. Tabassum · J. Gama
University of Porto, LIAAD INESC TEC, Porto, Portugal
e-mail: shazia.tabassum@inesctec.pt; jgama@fep.up.pt

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_7

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_7&domain=pdf
mailto:fabiola.pereira@ufu.br
mailto:deamo@ufu.br
mailto:gina@ufu.br
mailto:shazia.tabassum@inesctec.pt
mailto:jgama@fep.up.pt
https://doi.org/10.1007/978-3-319-89803-2_7

156 F. S. F. Pereira et al.

aspect, analysis can be performed from the perspective of changes on the structure
of the underlying network.

According to [11], change detection refers to techniques and mechanisms for
explicit drift detection characterized by the identification of change points or small
time intervals during which changes occur. In evolving networks context, these
changes can be detected observing the whole network, for instance communities
[7] and motifs [4] evolution; or the changes can be analyzed in a node-centric way,
where nodes centrality and roles are observed during network evolution [17]. In this
work, our focus is on node-centric network evolving analysis.

Semantically, social networks structures model users’ relationships and are able
to reveal their behaviors and preferences. In an evolving environment, all the
time users are facing others’ opinions and being socially influenced, making their
preferences fairly dynamic. This scenario dispatches several research efforts to
investigate the interplay between user preferences and social networks [1, 13].

In this paper we propose a model for processing evolving network streams to
calculate node-centric centrality scores and further to detect change points based
on these centrality values. Essentially, our model consists in processing edges’
stream, calculating nodes centrality, and employing aggregating mechanisms such
as moving window average, weighted moving window average, and Page–Hinckley
test [16] for tracking the evolution of the centrality measures for a given user u. We
show that this evolution is related to u’s preference changes.

Massive networks are difficult to be stored in memory as a total aggregated
network and processing them as aggregate makes no sense with evolution. Our
model uses a memory less Page–Hinckley test and two window based mechanisms
with only window size of memory required for centrality measures of corresponding
nodes. For updating centralities such as betweenness and closeness we only need to
store the network of current time step T as far as for updating degree centrality we
don’t even need to store any network.

Rest of the paper is organized as follows: initially, in Sect. 2, we explain what
are user preferences and how they evolve in a temporal environment. In Sect. 3
we present our method for processing evolving network streams to calculate node-
centric centrality scores. Section 4 outlines main algorithms designed to implement
the proposed aggregating mechanisms. In Sect. 5 we present the evolving networks
and preference extraction strategy used to run the experiments, which are then
described in Sect. 6. Finally, related work is highlighted in Sects. 7 and 8 concludes
the paper.

2 User Preference Dynamics

We present background definitions that ground the applicability of our proposed
model in this article for processing evolving network stream. The following
concepts have been proposed in [18].

Processing Evolving Social Networks 157

2.1 User Preferences

According to [14], a preference is a comparative opinion that establishes an order
relation between two objects. For example, when a user says “I prefer to read news
about politics than sports” we can identify a preference of politics over sports.

A preference relation on a finite set of objects on a running domain A =
{a1, . . . , an} is a strict partial order over A, represented by �. We denote by a1 �t a2
the fact that a1 is preferred to a2 at time t . The transitive closure (TC) of all
preference relations of a user u at t composes u preferences at t , denoted by T Cu

t . As
example, let A = {sports, politics, religion} be the set of objects in our running
domain. We have T Cu

4 = {sports �4 politics, politics �4 religion, sports �4
religion} and T Cu

6 = {politics �6 sports}.

2.2 Preference Changes in Evolving Environments

We have interest in analyzing preferences in evolving environments. User Pref-
erence Dynamics (UPD) refer to the observation of how a user evolves his/her
preferences over time. Two preferences a1 �t ′ a2 and a2 �t a3, for t ′ <

t , can be unified to infer a third preference a1 �t a3 at t once consider-
ing transitivity of both, preference relation � and timestamp order. We have
defined this as user profile union Ωu

t . Remarking on above example, Ωu
6 =

{sports �4 politics, politics �4 religion, sports �4 religion, politics �6
sports, politics �6 politics, sports �6 s ports}.

A key property of preferences in evolving environments is the irreflexivity. We
say that Ωu

t is inconsistent when there is a preference a1 �t a1 ∈ Ωu
t . It would

mean that “u prefers a1 better than a1!”, which does not hold for strict partial orders.
When this scenario occurs, we say that there is preference change event. Therefore,
we have defined a preference change based on the consistency of a user profile
union.

Definition 1 (Preference Change δu
t) If Ωu

t is inconsistent, a preference change
event has been detected at time t for user u.

δu
t =

{
1 if Ωu

t is inconsistent

0 otherwise
(1)

Remarking on our running example, we have a preference change at t = 6, as
politics �6 politics ∈ Ωu

6 .

158 F. S. F. Pereira et al.

3 Preference Change Detection

In this section we present our model for processing evolving network streams
to calculate node-centric centrality scores and further employing aggregating
mechanisms such as moving window average, weighted moving window average,
and Page–Hinckley test for tracking the vacillation of preferences by users based
on their temporal streams of centrality scores. Additionally we use a change point
scoring function and change point detection threshold to quantify the change points
obtained. Some assumptions for the above model such as handling of insertions
and deletions are briefed in Sect. 3.8. Lastly in this section we detail the evaluation
methodology for gauging our results.

3.1 Processing Streaming Network

For change detection in traditional uni-variate time series data, multiple change
points were detected from a vector of elements distributed temporally. We have a
similar temporal data, which is networked and evolving that makes it complex. In
this work we consider not just one vector of uni-variate time series data but we
have such |V| number of multiple streams of uni-variate time series considering
the centrality measures of each node in the network. This problem is different to
multivariate time series as the centrality score stream of each node is treated inde-
pendent to each other and the change points are detected per node independently.
The only dependence is considered while computing centralities. To elucidate the
aforementioned process, we delineate the model below.

Definition 2 (Evolving Network Stream) We consider an edge stream S which is
a continuous and unbounded flow of objects E1, E2, E3, where each edge Ei

is defined by (v, u, t) which represents a connection between vertices/nodes u and
v at time t. The vertices {u, v,} ∈ V and get added to or deleted from V at
anytime t.

For every incoming edge (v, u, t) from the above defined stream S, the centrality
scores Cm(v) and Cm(u) for nodes u and v are updated in the order of t (In case of
degree centrality, the degree of nodes u and v is updated for every incoming edge
{u, v} at t where as in the case of betweenness and closeness, the centrality of nodes
are updated only after every T). Another variable T is a discrete time-step/time-
interval with granularity defined by the user. In our experiments we considered
the granularity of T as 1 day. After every T the centrality scores are reset and
start accumulating again. Therefore, we keep track of centrality score of nodes
per day. Consequently we store a set of nodes (with changing cardinality) and a
streaming vector of its associated centralities per time step T . As a result, we have
an independent non-stationary stream of centrality scores {Cm

T1
, Cm

T2
, Cm

T3
.}

for every node v in S after every time step T . To get a normalized version of scores,

Processing Evolving Social Networks 159

after every time-step T the centrality of a node is divided by the number of nodes in
graph at T . Therefore we have normalized centrality scores {Cm

T1
, Cm

T2
, Cm

T3
.}

in the vector stream. For notational simplicity in the below equations we use CT

for Cm
T (v) as all notations for the techniques below are considered for a stream of

centrality scores per node per centrality metric. Further we employed the smoothing
mechanisms below (Sects. 3.3–3.5) to the above streams of centrality scores per
node.

As the centrality score stream of every node is independent of each other, parallel
implementation of the above aggregating mechanisms per node centrality feature
stream is practicable. Though here we employed them sequentially for every node
in the graph, as computing mean for |V| number of nodes is not expensive.

3.2 Computing Centralities

We have considered three centralities for our experiments, degree, betweenness
and closeness which are explained below. The notion of employing three types of
measures is to compare their efficiency for predicting preference changes of a node
while considering the trade-offs between efficiency, time, and space complexity. The
process of calculating centralities is explained below.

3.2.1 Degree Centrality

Degree Centrality of a node is the measure of number of edges adjacent to it. Degree
Centrality can be computed on a fly for streaming data. As explained above the
centrality score of a node is updated for every incoming edge. It is then stored in a
queue as it should follow first in first out principle for window based approaches,
then the edges are discarded. Degree centrality is space efficient with O(VT) (where
VT is the number of nodes from the time-step T) as we do not need to store the
network. For updating centrality at the arrival of edge the cost is negligible with
O(VT) as it only needs to increment a counter for degree centrality. For window
based approaches the length of queue storing degree centralities is always equal to
the window size WS and the space used is constant, whereas for PH test we only
need to store the current degree centrality score.

3.2.2 Betweenness Centrality

Number of shortest paths passing through a node is the Betweenness Centrality
measure of that node. For computing this measure we follow the strategy described
in [5] which is implemented by Gephi API.1 Different from degree centrality,

1github.com/gephi.

github.com/gephi

160 F. S. F. Pereira et al.

betweenness is not computed in a stream fashion. This measure is not updated
incrementally for every incoming edge, but the edges/network are stored for
each T . After every T the betweenness centrality is batch calculated and current
centrality score CT generated. The edges are then discarded and the process restarts.
Betweenness centrality requires O(VT + ET) space and run in O(VT ET) time
on unweighted networks, where VT and ET is the number of nodes and edges
from time-step T . Note that in this approach, centrality score is not computed
incrementally, but after being generated we maintain the streaming strategy by
adding in a queue the centrality score (after every T) for window based approaches
(constant used space of size WS) and maintaining only the current Betweenness
score for PH test.

3.2.3 Closeness Centrality

Closeness centrality is the inverse of the average shortest path length between a
node and all the other nodes in the graph. The smaller the average shortest path
length, the higher the centrality for the node. Computing closeness centrality follows
the same strategy above described for betweenness as it is also a shortest-path
based centrality. We need to store incoming edges/network at each T , batch process
closeness [5] and then discard edges and restart the process. The space complexity
is O(VT + ET) and requires O(VT ET) time. In PH test just current closeness
score is maintained and for window based approaches the centrality score is stored,
consuming WS space.

3.3 Moving Window Average (MWA)

A window of size WS consists of data points from the latest temporal time steps
{T , T − 1, T − 2, . . . , T − (WS − 1)}. The window keeps on sliding to always
maintain the latest WS time steps and the data points from T − WS are forgotten.
Alongside, the mean of data points within the window is calculated by using simple
Eq. (2) where CT −i is the stream of centrality scores at time-step T −i using measure
m per node. In this approach all the data points in the window are assigned equal
weights.

μT = 1

WS

WS−1∑

i=0

CT −i (2)

As the window slides the mean of data points in the window is updated, by using
the above Eq. (2) for small window sizes and Eq. (3) for large window sizes.

μT = μT −1WS − CT −WS
+ CT (3)

Processing Evolving Social Networks 161

3.4 Weighted Moving Window Average (WMWA)

Weighted moving window average follows the same window sliding strategy as in
MWA and computes average over the data points in the window. The improvement
over MWA is that the accumulated data points per time step T in the window are
weighted linearly as given in Eq. (4). The oldest data points in the window attain a
least weight and the latest data point acquires the highest weight linear to the least
one. Weights are updated, when the window slides. Assignment of weights per data
point depends on the size of window.

μT =
WS−1∑

i=0

CT −i (WS − i)

WS − i
(4)

3.5 Page–Hinckley Test (PH)

Page–Hinckley [16] is one of the memory less sequential analysis techniques
typically used for change detection [10, 11, 15, 21]. We use it as a non-parametric
test, as the distribution is non-stationary and not known. This test considers a
cumulative variable mT , defined as the cumulated difference between the latest
centrality score at T and the previous mean till the current moment, as given in
Eq. (5) below:

mT =
T∑

i=1

|CT − μT −1| − α (5)

where μT = 1/|T |∑T
i=1 Ci , μ0 = 0 and α = magnitude of changes that are

allowed. For calculating μT we also need to store the number of time-steps passed.

Relative α Equation (5) given above uses fixed α value, which is not pertinent with
our multiple vector streams of centralities per node, where the centrality scores of
few active nodes are way higher than some least active nodes. Therefore, using same
value of α over differing node centralities would not be fair enough. Hence, we use
a relative α, which is relative with the differing centrality scores per node. Relative
α is a point percentage of previous aggregated mean of that node, as given in Eq. (6).
Example: Consider a node from stream S with a current centrality score CT = 2
and μT −1 = 3 and fixed α =0.1. Using Eq. (5) we get mT as 3 − 2 − 0.1 = 0.9.
Using relative alpha (0.1 ∗ 3 = 0.3) in Eq. (6) we get mT as 3 − 2 − 0.3 = 0.7.
Consider another node of high activity from the same stream S with CT = 60 and
μT −1 = 50, with fixed α mT = |50 − 60|− 0.1 which doesn’t make a proper sense,
while using relative α, i.e (0.1*60) we get mT = |50 − 60| − 6.

162 F. S. F. Pereira et al.

mT =
T∑

i=1

|CT − μT −1| − αμT −1 (6)

Further to calculate change point score we need a variable MT which is the
minimum value of mT and is always maintained and updated for every new time
step T as given in Eq. (7)

MT = min(mT ; i = 1. . .T) (7)

3.6 Change Point Scoring Function

To detect the change points and their magnitude after every time-step T in MWA
and WMWA, we use a change point scoring function given in Eq. (8)

�T = |CT − μT −1|
max(CT , μT −1)

(8)

where CT is the current centrality score and μT −1 is the mean of previous centrality
scores in the window. The change point scoring function gives the percentage point
increase or decrease of the current centrality score with the previous mean. It takes
values 0 ≤ �T ≤ 1.

For a PH test, after every time-step T the change points are scored using Eq. (9).

�T = mT − MT (9)

3.7 Change Point Detection

We can decide the magnitude of change allowed by the above change point scoring
function. For this we use a threshold θ on � to signal an alarm of change in the
preference of the user/node. It takes values either 0 or 1. “1” indicates a preference
change and “0” indicates no change.

εT =
{

1, if �T ≥ θ.

0, otherwise.
(10)

Relative θ As a relative α given in Sect. 3.6 (Eq. (9)), we also apply a relative θ for
detecting change points in PH Test only, as the change point scores from windowed
approaches are already normalized in Eq. (8). Therefore to normalize threshold over

Processing Evolving Social Networks 163

multiple streams of centrality scores in PH test we use a relative threshold θ by
multiplying the threshold θ with MT of that node at time T as in Eq. (11).

εT =
{

1, if �T ≥ (θ × MT).

0, otherwise.
(11)

3.8 Assumptions

While carrying out the above-mentioned mechanisms we considered the following
assumptions.

• For window based approaches change detection starts only after the window of
size WS is filled.

• If there exists no edges for a node in a time step T , then the mean is calculated
assuming a “0” centrality score.

• If a node is newly introduced (with edges) in the stream in the time interval T

then the previous mean at T − 1 is considered “0” during change point scoring.
• In window based approaches if a node does not appear in the stream for a WS

time steps, the node is deleted to save space.

3.9 Evaluation

The output of our change detection model is a kind of binary classification problem.
For every centrality stream, after every T we label CT as a preference change point
or not. We compare this with our ground truth of preference changes in the data
set using a strategy described in Sect. 5.2. Therefore we use Recall, Precision, and
F-measure. The experimental results are presented in Sect. 6. The purpose of our
model is not just to evaluate the efficiency of our model but we intend to compare
the different centrality measures and the impact of their changes on the dynamics of
real-world preferences. The motive of using aggregate mechanisms is to investigate
the deviations of current centrality values with the past values over preference
changes.

4 Algorithms

We now present the algorithms for processing evolving network streams to calculate
node-centric centrality scores and detect change points. The goal of all algorithms
is to process the evolving network handled as edge stream and store in a binary

164 F. S. F. Pereira et al.

Algorithm 1 MWA
Input: Target node v, an edge stream E1...Er , window size WS , threshold θ , centrality metric m

Output: A binary vector εv containing v’s events for each time-step T

1: V ← ∅, E ← ∅, N = (V ,E)

2: μ ← 0, CT ← 0
3: W ← ∅ // W is a queue structure representing the window
4: T ← t // T is the initial time-step
5: for each incoming edge stream object Ei = (u, z, t) do
6: if t ≥ T + 1 then // next time-step
7: if m ∈ {betweenness, closeness} then
8: CT ← computeCentrality(N, v)
9: if W.size ≤ WS then // window is not full

10: μ ← μ + CT /WS

11: else // slides window
12: CT −WS

← W.head

13: μ ← μ − (CT −WS
/WS) + (CT /WS)

14: Dequeue(W)

15: �T ← |CT − μ|/max(CT , μ) // change point scoring function
16: εv

T ← �T ≥ θ ? 1 : 0 // change point detection

17: Enqueue(W,CT)

18: T ← T + 1
19: E ← ∅, V ← ∅, CT ← 0
20: if m ∈ {betweenness, closeness} then
21: E ← E ∪ {Ei}, V ← V ∪ {u, z}
22: else if m ∈ {degree}, z = v or u = v then // update degree incrementally
23: CT ← CT + 1
24: return εv

vector εv events detected for node v at each time-step T . The centrality metric m ∈
{degree, closeness, betweenness} slightly impacts on network processing approach.
Algorithms complexity is ruled by computing centralities algorithms, previously
described in Sect. 3.2.

Algorithm 1 refers to Moving Window Average (MWA) strategy. The main loop
from line 5 indicates the network evolving. In lines 20–23 we distinguish centrali-
ties, as degree is incrementally calculated whereas closeness and betweenness need
to store edges for each T to be calculated. Line 6 indicates a transition to next time-
step. Lines 7–8 compute betweenness or closeness centrality according to input m

using algorithms described in Sects. 3.2.2 and 3.2.3, respectively. While window W

is not full, the moving window average μ is accumulated. When W is full (from line
11), T − WS centrality scores are forgotten and μ updated with current centrality
score (lines 12–14). Finally, line 15 implements the change point scoring function
(Eq. (8)) and line 16 detects a change point based on θ (Eq. (10)).

Algorithm 2 describes the Weighted Moving Window Average (WMWA), which
follows the same sliding window strategy as in MWA. The difference is that the
accumulated moving window average μ is composed by linearly weighted centrality
scores (lines 13–17).

Processing Evolving Social Networks 165

Algorithm 2 WMWA
Input: Target node v, an edge stream E1...Er , window size WS , threshold θ , centrality metric m

Output: A binary vector εv containing v’s events for each time-step T

– copy from line 1 – 8 of MWA algorithm –
9: if W.size > WS then // slides window

10: sum ← 0, denominator ← 0
11: for i ← 0...WS − 1 do
12: sum ← sum + W [i] ∗ (i + 1)

13: denominator ← denominator + (i + 1)

14: μ ← sum/denominator

15: Dequeue(W)

16: �T ← |CT − μ|/max(CT , μ) // change point scoring function
17: εv

T ← �T ≥ θ ? 1 : 0 // change point detection

– continue from line 17 of MWA algorithm –

Algorithm 3 Page–Hinckley Test (PH)
Input: Target node v, an edge stream E1...Er , threshold θ , centrality metric m

Output: A vector εv containing v’s events for each time step T

1: V ← ∅, E ← ∅, N = (V ,E)

2: T ← t // T is the initial time step
3: mT ← 0, MT ← MAXV ALUE, μ ← 0, CT ← 0, instancesSeen ← 0
4: for each incoming edge stream object Ei = (u, z, t) do
5: if t ≥ T + 1 then // next time step
6: if m ∈ {betweenness, closeness} then
7: CT ← computeCentrality(N, v)
8: instancesSeen ← instancesSeen + 1
9: percentualV alue ← μ ∗ α

10: mT ← mT + |CT − μ| − percentualV alue

11: μ ← μ + CT /instancesSeen

12: if mT < MT then
13: MT ← mT

14: �T ← mT − MT // change point scoring function
15: εv

T ← �T ≥ θ ∗ MT ? 1 : 0 // change point detection
16: T ← T + 1
17: E ← ∅, V ← ∅, CT ← 0
18: if m ∈ {betweenness, closeness} then
19: E ← E ∪ {Ei}, V ← V ∪ {u, z}
20: else if m ∈ {degree}, z = v or u = v then // update degree incrementally
21: CT ← CT + 1
22: return εv

The Page–Hinckley strategy is implemented by Algorithm 3. As in previous
algorithms, network stream processing is represented by the main loop in line 4,
considering the differences among centralities computation (lines 18–21 and lines
6–7). The cumulative variable mT represents the cumulated difference between the
latest centrality score CT and the previous mean μ. Remark that in this strategy we
do not handle window. Finally, at line 14 change point scoring function is applied
and line 15 implements PH test (Eq. (11)).

166 F. S. F. Pereira et al.

5 Methodology

5.1 Dataset and Evolving Networks

We used Twitter data to run experiments. Through Twitter Streaming APIs,2 during
the course of 95 days, we collected tweets related to Brazilian news. All tweets,
retweets, and quoted-status3 containing some mention to the Brazilian newspaper,
whose Twitter user is @folha were considered. In all, we collected 1,771,435 tweets
and 292,310 distinct users in a time span of tweets posting times from Aug 7, 2016
to Nov 9, 2016. From the collected data, we built two different evolving networks.

5.1.1 Homogeneous Network

The first one, homogeneous network H , is based on retweets. Nodes are Twitter
users and two nodes u1 and u2 have a direct edge (u2, u1, t) if u1 retweeted u2
at time t (note that edge direction represents the information flow). Figure 1a
summarizes the network building strategy. This strategy is similar to the one used in
[17].

An important characteristic of our H network is that it has a low average path
length. This is a consequence of the fact that in Twitter a retweet always comes
from the original post, not mattering from where the user read that post—from the
user who originally posted it or from an intermediate user who already retweeted
it. As our dataset has a high diversity of Twitter users, such as celebrities, common
users, and commercial users, in this network we can identify nodes with different
centrality roles. There are nodes that maintain high out-degree during the whole
evolving period (mostly is retweeted, thus a content producer), nodes with high in-
degree (mostly retweets, thus content consumer), and nodes with balanced behavior.
Figure 2 describes nodes and edges evolution behavior. On average, H contains
10,189 nodes and 14,662 edges per day.

5.1.2 Bipartite Network

The second one is a bipartite network B where nodes are Twitter users or topics.
Topics represent the main themes that users are tweeting about and have been
extracted using LDA (Latent Dirichlet Allocation) model. In [17] more details about
this topic extraction process can be found. An edge (u, p, t, w) means that user u

tweeted/retweeted about topic p at time t , w times. As our time granularity is 1 day,

2https://dev.twitter.com/streaming/.
3Quoted-status are retweets with comments.

https://dev.twitter.com/streaming/

Processing Evolving Social Networks 167

Fig. 1 Strategy to build (a) homogeneous network and (b) bipartite network from Twitter data

4

4

0 10 20 30 40 50 60 70 80 90 100
0

2

4

·10

Days

HomogeneousNetwork

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

·10

Days

BipartiteNetwork

Number of Nodes Number of Edges

Fig. 2 Evolving behavior description of homogeneous (up) and bipartite (down) networks

a user can post many times at t and this volume of daily-post is represented through
edges weights w. Thus B is a weighted bipartite network. Figure 1b summarizes
this network building strategy.

168 F. S. F. Pereira et al.

The bipartite network represents essentially what is being “talked” in Twitter
(topics) and who is talking (users). From a user perspective it is possible to track
his evolution regarding topics that he mostly interacted with. In all, we defined 10
topics nodes. Thus, these nodes, during the whole network evolution, have high
degree value, while user nodes, on average, have low degree values (as users do not
talk about several topics in a day). Figure 2 describes nodes and edges evolution
behavior. On average, B contains 9176 nodes, being 10 nodes topics, and 11,892
edges per day.

5.2 User Preference Change Events

Considering our dataset, rich of user’s interactions over news content, we have
extracted users’ preferences. The strategy used to extract preferences is the same
proposed in [17]. If user u tweets (or retweets) about o at time t , then u has
more interest in o over the remaining topics in domain in that moment. We
also considered a weight wu

t (o) based on the number of tweets posted at the
same time about some topic o (our time granularity is 1 day; therefore, a user
can post many tweets at t). In this case, the top posted topic is preferred over
others, the second top posted topic is preferred over remaining ones and so on.
A = {politics, international, corruption, sports, religion, entertainment ,
education, e − conomy, security, others} is the set of topics in the preference
domain on which we extract user preferences. These are the topics extracted by
LDA model previous described (Sect. 5.1.2) and each tweet is labeled with one topic
o ∈ A.

In Fig. 3 we illustrate the preference change evolution of user u1 (id = 14594813)
based on concepts explained in Sect. 2.

Once extracted users’ preferences and detected preference change events, we
used these change events as ground truth to evaluate our methods for node event
detection based on centrality metrics in evolving networks.

0 10 20 30 40 50 60 70 80 90 100

Days

Preference Change Events u1

Fig. 3 Ground truth of preference change events for user u1

Processing Evolving Social Networks 169

6 Experiments

6.1 Experimental Environment

Nodes We have selected ten specific nodes to perform our analysis. These nodes
were randomly selected among users in the dataset. For the sake of simplicity
we refer to them as u1, u2, . . . , u10 and the corresponding dataset ids are: u1
(14594813), u2 (334345564), u3 (3145222787), u4 (343820098), u5 (122757872),
u6 (28958495), u7 (260856271), u8 (636368737), u9 (279635698), u10 (58488491).
All the presented results correspond to the average value among these 10 nodes.

Threshold θ The threshold corresponds to the magnitude of changes allowed. We
varied θ = {0.01, 0.1, 0.2, 0.4} in order to explore how this magnitude impacts on
our findings. In PH method we set the factor α = 0.1 which is also related to the
magnitude of changes we deal with.

Window Size WS The methods MWA and WMWA are based on sliding window
mechanism. We varied WS = {2, 5} and analyzed how this window size can
influence in our findings.

Evolving Networks We run experiments considering the homogeneous network H

and the bipartite network B.

Centrality Metrics The node centralities we used are degree for B and in-degree
for H , betweenness and closeness. During the analysis our target is to compare their
efficiency for predicting preference changes of a node.

Methods Finally, we compare the three proposed methods in this paper MWA,
WMWA, and PH. Table 1 summarizes the experimental environment.

Table 1 Experimental environment

Feature Variation Default

Node u1, u2, . . . , u10 u1

θ 0.01, 0.1, 0.2, 0.4 0.1

α (PH) 0.1 0.1

WS (MWA, WMWA) 2, 5 2

Centrality metric Degree/in-degree, betweenness, closeness In-degree

Evolving network Bipartite, homogeneous Homogeneous

Methods MWA, WMWA, PH MWA

170 F. S. F. Pereira et al.

0 20 40 60 80 100
Days

0
5

10
15

In
-d
eg
re
e

Pref change-points In-degree

(a)

(b)

0 20 40 60 80 100
Days

0
0.2
0.4
0.6
0.8
1

M
W
A

of
in
-d
eg
re
e

MWA change-points MWA of in-degree

Fig. 4 Comparative analysis between preference change-points and MWA detected change-points
considering default setup for node u1. The accuracy is F-measure = 0.61. (a) u1 in-degree values
against u1 preference ground-truth change-points. (b) MWA values for u1 in-degree against MWA
detected change-points

6.2 Detecting u1 Change-Points

As illustrative example, we describe the change-point detection process for user u1
considering our default scenario. As time flies, current u1 in-degree centrality and
MWA of past u1 in-degree centralities are calculated and compared to each other.
Then, the change-point scoring function is computed raising alarms when change-
points are detected. In the end, the detected change-points and the preference
ground-truth are compared to obtain the accuracy of the method.

In Fig. 4a we show the relation between u1 in-degree centrality evolution and
preference ground truth change-points in homogeneous network (default setup).
Intuitively, the expectation is that centrality peaks/valleys overlap preference
change-points. We can observe that there are some overlaps despite the number
of preference change events is higher than peaks/valleys. In Fig. 4b we depicted
the evolution of MWA of u1 in-degree centrality in the same scenario previously
described. The performance of the method is directly related to the balance between
the magnitude of changes that we are looking for, i.e. threshold θ value, and the past
average values that should be considered, i.e. window size WS . Considering our
default setup, we reach precision 0.46, recall 0.9, and F-measure 0.61 for node u1.

Processing Evolving Social Networks 171

6.3 Performance of Proposed Methods

Here we come to the task of evaluating our proposed methods considering different
scenarios. Figures 5 and 6 present the results for homogeneous and bipartite
networks, respectively. In a general way, bipartite network got lower accuracy than
homogeneous network, specially when considering high threshold and window
sizes. As in bipartite network topic nodes occupy extremely central positions, the
notion of centrality cannot be efficient for the task of detecting events.

When observing centrality measures, betweenness clearly got the worst per-
formance. This can be explained by the fact that bridge nodes usually do not
vary significantly their positions. Moreover, we can conclude that the notion of
bridge itself is not a good centrality metric to correlate with preference change.
Even so, in most of the scenarios betweenness got performance superior to a
naive random baseline (F-measure = 0.5). Comparing degree and closeness, we
observe that degree is slightly more accurate than closeness. Considering that the
notion of preference change has been defined based on the number of tweets, and
consequently number of edges incoming in a node, it was expected that degree
centrality fit well in the context.

We also observe that for homogeneous graph, degree centrality performs better
and bipartite graphs closeness is superior. This difference in behaviors is based on
the graph data, as homogeneous graph is a multi-graph incorporating frequency of
edges i.e edge weights are considered while using this graph. In bipartite graph the
weights of edges are not considered. Hence we see that when frequency of an edge is
considered, it is favorable to employ degree centrality, while when we do not know
the frequency of edges or for un-weighted graphs it is beneficial to use closeness.
Finally, comparing the performance of our proposed methods, Page–Hinckley got
the most significant results, with homogeneous behavior in different scenarios.
We can conclude that the idea of accumulating values and base the evolution on
the minimum obtained value so far is the most suitable. On average, PH degree
performances reach F-measure = 0.75. There is no consensus between MWA and
WMWA performances and the choice for one method is not conclusive.

6.4 Impact of Parameters

The goal here is to analyze the behavior of parameters trade off. Varying WS means
that we are considering the recent past for low values (short-term events) or a big
historic for high values (long-term events). θ adjusts the intensity of the events,
varying from smooth to drastic events. From a general viewpoint, we observed that
performances keep the proportions according to parameters setup for MWA and
WMWA, but not for PH, which got similar results independent of the parameter
setup. Another observation is that recall is always higher than precision, except for
the highest θ = 0.4. This behavior indicates that performances decrease as the
magnitude of allowed changes increase.

172 F. S. F. Pereira et al.

1

Degree Betweenness

Homogeneous-q0.2-w2

Homogeneous-q0.4-w2 Homogeneous-q0.4-w5

Homogeneous-q0.2-w5

Homogeneous-q0.1-w5

Homogeneous-q0.01-w5

Homogeneous-q0.1-w2

Homogeneous-q0.01-w2

Closeness

MWA WMWA PH

Degree Betweenness Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness Degree Betweenness Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness

0.8
0.6
0.4
0.2

0

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

Fig. 5 Performance of our proposed methods in different scenarios for different centrality
measures in homogeneous network

7 Related Work

We discuss related work in the directions of event and change detection in networks,
and graph stream processing. Our proposal is innovative when considering change
detection from a node-centric perspective in a stream processing environment.

Event Detection in Networks The most studied events in evolving networks
are anomalies and bursts [7]. Anomaly detection refers to the discovery of rare
occurrences in datasets and has been largely explored when considering dynamic
networks [3, 19]. The pioneer work in anomaly detection for dynamic graphs is [12].
It addresses the problem considering a time sequence of graphs (graph sequences).
First, authors extract activity vectors from the principal eigenvector of dependency
matrix. Next, via singular value decomposition, it is possible to find a typical activity
pattern (in t − 1) and the current activity vector (t). In the end, the angular variable
between the vectors defines the anomaly metric. The network processing is through
snapshots, not in a streaming fashion. Moreover, this Eigen Behavior based Event

Processing Evolving Social Networks 173

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

1
0.8
0.6
0.4
0.2

0

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

A
vg

 F
-M

ea
su

re
A

vg
 F

-M
ea

su
re

Degree Betweenness

Bipartite-q0.01-w2 Bipartite-q0.01-w5

Bipartite-q0.1-w5

Bipartite-q0.2-w5

Bipartite-q0.4-w5

Bipartite-q0.1-w2

Bipartite-q0.2-w2

Bipartite-q0.4-w2

Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness Degree Betweenness Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness

Degree Betweenness Closeness

MWA WMWA PH

Fig. 6 Performance of our proposed methods in different scenarios for different centrality
measures in bipartite network

Detection (EBED) method is orthogonal to ours as it detects events in a global
perspective of the network, while ours is node-centric.

Burst events are generally related to topic evolving detection and tracking [7].
These works are looking for events like hot buzz words, what are users’ sentiments
about a product release or how is a specific topic evolving. In [6] the goal is to
track interest profiles in real time by detecting bursts in Twitter’s social media
stream in real time using linear regression. These approaches are orthogonal to
ours because are focused on the content of the network (texts, topics) not on the
topology evolution analysis. The work [2] incorporates network structure in event
discovery over purely content-based methods. Each text message is associated with
at least a pair of actors in the social network. The events detected are also related
with topics evolving. Finally, in [20] authors consider the problem of mining activity
networks in order to identify interesting events, such as a big concert in a city, or
a trending keyword in a user community in a social network. The algorithms are
founded in geo-spatial event detection information. Any stream processing strategy
is addressed.

174 F. S. F. Pereira et al.

Change Detection Our model is similar to [22] where three window based aggre-
gation techniques are employed, namely simple aggregation, linear aggregation,
and exponential aggregation based on assigning weights to time-steps in the
window. These methods were used to aggregate the centrality scores per node
inside the window. The aggregations were called persistence p. The comparison
of aggregations of time-step pt to pt − 1 of a node v was called Emergence.
Further they used a regression model over the above outcome to predict the future
centrality scores (based on previous window based aggregated scores) and evaluate
the results with the actual ground truth centrality scores. While in our work we
used three techniques from which two are window based and the other is Page–
Hinckley test for change detection. For the window based techniques, we used two
weighting mechanisms inside the window one is, equal weights to all time-steps
other is linearly increasing weights to the latest time step. The two window based
techniques not just aggregate the centrality scores per node inside the window but
calculate the mean of scores. As the Emergence function in [22] we use a change
point scoring function which calculates the percentage change of new score at t to
t − 1 per node. Our scenario is similar to a binary classification problem, therefore
we used precision, recall, and F-measure to evaluate by comparing the change
points detected in ground truth. The motive of our work is not just to evaluate
the correlation between previous scores and the latest score but how well the
centrality scores depict the real-world preference changes. Additionally we present
the comparison between three techniques (briefed above) in a streaming perspective
for change detection. Further more we analyze which of the three centrality metrics
portrays the real preference change points.

Graph Streams Processing Processing graphs as streams is an incoming problem.
The work [4] is one of the most complete works when considering data mining in
evolving graph streams. The focus, however, is on mining closed graphs, not on
event detection. In [8] a framework for processing graphs as streams is proposed
for the link prediction task. This framework considers the cumulative grown of the
graph, not addressing the space saving feature [9].

8 Conclusion

We have proposed a model for processing evolving network streams and detect
change points based on centrality measures. We have explored two window-based
aggregating mechanisms—moving window average (MWA) and weighted moving
window average (WMWA), and a third memory less mechanism—Page–Hinckley
(PH). Moreover, we have implemented algorithms considering degree, betweenness,
and closeness centrality measures. We have applied our proposed model in the
user preference change detection problem and evaluated the performance of our
algorithms on homogeneous and bipartite Twitter networks. As a result, degree
centrality in homogeneous network using PH approach has performed with the
highest F-measure values.

Processing Evolving Social Networks 175

Acknowledgements This work was supported by the research project “TEC4Growth - Pervasive
Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-
000020,” financed by the North Portugal Regional Operational Programme (NORTE 2020). This
work was also supported by the Brazilian Research Agencies CAPES, CNPq, and Fapemig.

References

1. Abbasi, M.A., Tang, J., Liu, H.: Scalable learning of users’ preferences using networked data.
In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, HT ’14, pp. 4–
12. ACM, New York, NY (2014)

2. Aggarwal, C.C., Subbian, K.: Event detection in social streams. In: 12th SIAM International
Conference on Data Mining, pp. 624–635 (2012)

3. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey.
Data Min. Knowl. Disc. 29(3), 626–688 (2015)

4. Bifet, A., Holmes, G., Pfahringer, B., Gavaldà, R.: Mining frequent closed graphs on evolving
data streams. In: 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’11, pp. 591–599 (2011)

5. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)
6. Buntain, C., Lin, J.: Burst detection in social media streams for tracking interest profiles in real

time. In: 39th International ACM SIGIR Conference (2016)
7. Cordeiro, M., Gama, J.: Online Social Networks Event Detection: A Survey, pp. 1–41. Springer

International Publishing, Cham (2016)
8. Fairbanks, J., Ediger, D., McColl, R., Bader, D.A., Gilbert, E.: A statistical framework for

streaming graph analysis. In: IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM ’13, pp. 341–347 (2013)

9. Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, Boca Raton
(2010)

10. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach.
Learn. 90(3), 317–346 (2013)

11. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

12. IDÉ, T., KASHIMA, H.: Eigenspace-based anomaly detection in computer systems. In:
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’04, pp. 440–449 (2004)

13. Li, J., Ritter, A., Jurafsky, D.: Inferring user preferences by probabilistic logical reasoning over
social networks. CoRR (2014). http://arxiv.org/abs/1411.2679

14. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Rafael
(2012)

15. Mouss, H., Mouss, D., Mouss, N., Sefouhi, L.: Test of page-hinckley, an approach for fault
detection in an agro-alimentary production system. In: Control Conference, 2004, 5th Asian,
vol. 2, pp. 815–818. IEEE, New York (2004)

16. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
17. Pereira, F.S.F., de Amo, S., Gama, J.: Detecting events in evolving social networks through

node centrality analysis. Workshop on Large-scale Learning from Data Streams in Evolving
Environments Co-located with ECML/PKDD (2016)

18. Pereira, F.S.F., de Amo, S., Gama, J.: On Using Temporal Networks to Analyze User
Preferences Dynamics, pp. 408–423. Springer International Publishing, Cham (2016)

19. Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F.: Anomaly
detection in dynamic networks: a survey. Wiley Interdiscip. Rev. Comput. Stat. 7(3), 223–247
(2015)

http://arxiv.org/abs/1411.2679

176 F. S. F. Pereira et al.

20. Rozenshtein, P., Anagnostopoulos, A., Gionis, A., Tatti, N.: Event detection in activity
networks. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pp. 1176–1185 (2014)

21. Sebastião, R., Silva, M.M., Rabiço, R., Gama, J., Mendonça, T.: Real-time algorithm for
changes detection in depth of anesthesia signals. Evol. Syst. 4(1), 3–12 (2013)

22. Wei, W., Carley, K.M.: Measuring temporal patterns in dynamic social networks. ACM Trans.
Knowl. Discov. Data (TKDD) 10(1), 9 (2015)

Large-Scale Learning from Data Streams
with Apache SAMOA

Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet

Abstract Apache SAMOA (Scalable Advanced Massive Online Analysis) is an
open-source platform for mining big data streams. Big data is defined as datasets
whose size is beyond the ability of typical software tools to capture, store, manage,
and analyze, due to the time and memory complexity. Apache SAMOA provides
a collection of distributed streaming algorithms for the most common data mining
and machine learning tasks such as classification, clustering, and regression, as well
as programming abstractions to develop new algorithms. It features a pluggable
architecture that allows it to run on several distributed stream processing engines
such as Apache Flink, Apache Storm, and Apache Samza. Apache SAMOA is
written in Java and is available at https://samoa.incubator.apache.org under the
Apache Software License version 2.0.

1 Introduction

Big data are “data whose characteristics force us to look beyond the traditional
methods that are prevalent at the time” [18]. For instance, social media are one of
the largest and most dynamic sources of data. These data are not only very large due
to their fine grain, but also being produced continuously. Furthermore, such data
are nowadays produced by users in different environments and via a multitude of
devices. For these reasons, data from social media and ubiquitous environments are
perfect examples of the challenges posed by big data.

N. Kourtellis (�)
Telefonica Research, Barcelona, Spain
e-mail: nicolas.kourtellis@telefonica.com

G. De Francisci Morales
Qatar Computing Research Institute, Doha, Qatar
e-mail: gdfm@acm.org

A. Bifet
LTCI, Télécom ParisTech, Paris, France
e-mail: albert.bifet@telecom-paristech.fr

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_8

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_8&domain=pdf
https://samoa.incubator.apache.org
mailto:nicolas.kourtellis@telefonica.com
mailto:gdfm@acm.org
mailto:albert.bifet@telecom-paristech.fr
https://doi.org/10.1007/978-3-319-89803-2_8

178 N. Kourtellis et al.

Currently, there are two main ways to deal with these challenges: streaming
algorithms and distributed computing (e.g., MapReduce). Apache SAMOA aims
at satisfying the future needs for big data stream mining by combining the two
approaches in a single platform under an open source umbrella [9].

Data mining and machine learning are well-established techniques among Web
and social media companies to draw insights from data coming from ubiquitous
and social environments. Online content analysis for detecting aggression [6], stock
trade volume prediction [5], online spam detection [7], recommendation [12], and
personalization [10] are just a few of the applications made possible by mining
the huge quantity of data available nowadays. Just think of Facebook’s relevance
algorithm for the news feed for a famous example.

In order to cope with Web-scale datasets, data scientists have resorted to parallel
and distributed computing. MapReduce [11] is currently the de-facto standard
programming paradigm in this area, mostly thanks to the popularity of Hadoop,1

an open source implementation of MapReduce. Hadoop and its ecosystem (e.g.,
Mahout2) have proven to be an extremely successful platform to support the
aforementioned process at web scale.

However, nowadays most data are generated in the form of a stream, especially
when dealing with social media. Batch data are just a snapshot of streaming data
obtained in an interval (window) of time. Researchers have conceptualized and
abstracted this setting in the streaming model. In this model, data arrive at high
speed, one instance at a time, and algorithms must process it in one pass under very
strict constraints of space and time. Extracting knowledge from these massive data
streams to perform dynamic network analysis [19] or to create predictive models [1],
and using them, e.g., to choose a suitable business strategy, or to improve healthcare
services, can generate substantial competitive advantages. Many applications need
to process incoming data and react on-the-fly by using comprehensible prediction
mechanisms (e.g., card fraud detection) and, thus, streaming algorithms make use
of probabilistic data structures to give fast and approximate answers.

On the one hand, MapReduce is not suitable to express streaming algorithms. On
the other hand, traditional sequential online algorithms are limited by the memory
and bandwidth of a single machine. Distributed stream processing engines (DSPEs)
are a new emergent family of MapReduce-inspired technologies that address this
issue. These engines allow to express parallel computation on streams, and combine
the scalability of distributed processing with the efficiency of streaming algorithms.
Examples include Storm,3 Flink,4 Samza,5 and Apex.6

1http://hadoop.apache.org.
2http://mahout.apache.org.
3http://storm.apache.org.
4http://flink.apache.org.
5http://samza.apache.org.
6https://apex.apache.org.

http://hadoop.apache.org
http://mahout.apache.org
http://storm.apache.org
http://flink.apache.org
http://samza.apache.org
https://apex.apache.org

Large-Scale Learning from Data Streams with Apache SAMOA 179

Data
Mining

Centralized Distributed

Batch Stream

Hadoop,
Spark

Storm, Flink,
Samza, Apex

Mahout, MLlibMOA SAMOA

Batch Stream

WEKA

API

DSPE adapter

Algorithms

M
L

ad
ap

te
r

Storm Flink Local

SAMOA-
Storm

SAMOA-
Flink

SAMOA-
Local

SAMOA
MOA

Other ML
packages

Fig. 1 (Left) Taxonomy of data mining and machine learning tools. (Right) High level architecture
of Apache SAMOA

Alas, currently there is no common solution for mining big data streams, that is,
for running data mining and machine learning algorithms on a distributed stream
processing engine. The goal of Apache SAMOA is to fill this gap, as exemplified by
Fig. 1 (left).

2 Description

Apache SAMOA (SCALABLE ADVANCED MASSIVE ONLINE ANALYSIS) is a
platform for mining big data streams [8]. For a simple analogy, think of Apache
SAMOA as Mahout for streaming. As most of the rest of the big data ecosystem, it
is written in Java.

Apache SAMOA is both a framework and a library. As a framework, it allows
the algorithm developer to abstract from the underlying execution engine, and
therefore reuse their code on different engines. It features a pluggable architecture
that allows it to run on several distributed stream processing engines such as Storm,
Flink, Samza, and Apex. This capability is achieved by designing a minimal API
that captures the essence of modern DSPEs. This API also allows to easily write
new bindings to port Apache SAMOA to new execution engines. Apache SAMOA

takes care of hiding the differences of the underlying DSPEs in terms of API and
deployment.

As a library, Apache SAMOA contains implementations of state-of-the-art algo-
rithms for distributed machine learning on streams. For classification, Apache
SAMOA provides a Vertical Hoeffding Tree (VHT), a distributed streaming version
of a decision tree. For clustering, it includes an algorithm based on CluStream.
For regression, HAMR, a distributed implementation of Adaptive Model Rules.
The library also includes meta-algorithms such as bagging and boosting [26]. The
platform is intended to be useful for both research-oriented settings for the design
and experimentation of new algorithms, and real-world deployments in production
settings.

180 N. Kourtellis et al.

Related Work: We identify two frameworks that belong to the category of
distributed streaming machine learning: Jubatus and StormMOA. Jubatus7 is an
example of distributed streaming machine learning framework. It includes a library
for streaming machine learning such as regression, classification, recommendation,
anomaly detection, and graph mining. It introduces the local ML model concept
which means there can be multiple models running at the same time and they
process different sets of data. Using this technique, Jubatus achieves scalability
via horizontal parallelism in partitioning data. We test horizontal parallelism in
our experiments, by implementing a horizontally scaled version of the Hoeffding
tree. Jubatus establishes tight coupling between the machine learning library
implementation and the underlying distributed stream processing engine (SPE). The
reason is Jubatus builds and implements its own custom distributed SPE. In addition,
Jubatus does not offer any tree learning algorithm, as all of its models need to be
linear by construction.

StormMOA8 is a project to combine MOA with Storm to satisfy the need of
scalable implementation of streaming ML frameworks. It uses Storm’s Trident
abstraction and MOA library to implement OzaBag and OzaBoost [21]. Similarly
to Jubatus, StormMOA also establishes tight coupling between MOA (the machine
learning library) and Storm (the underlying distributed SPE). This coupling prevents
StormMOA’s extension by using other SPEs to execute the machine learning library.
StormMOA only allows to run a single model in each Storm bolt (processor). This
characteristic restricts the kind of models that can be run in parallel to ensembles.

3 High Level Architecture

We identify three types of Apache SAMOA users:

1. Platform users, who use available ML algorithms without implementing new
ones.

2. ML developers, who develop new ML algorithms on top of Apache SAMOA and
want to be isolated from changes in the underlying SPEs.

3. Platform developers, who extend Apache SAMOA to integrate more DSPEs into
Apache SAMOA.

There are three important design goals of Apache SAMOA:

1. Flexibility in terms of developing new ML algorithms or reusing existing ML
algorithms from other frameworks.

2. Extensibility in terms of porting Apache SAMOA to new DSPEs.
3. Scalability in terms of handling ever increasing amount of data.

7http://jubat.us/en.
8http://github.com/vpa1977/stormmoa.

http://jubat.us/en
http://github.com/vpa1977/stormmoa

Large-Scale Learning from Data Streams with Apache SAMOA 181

Figure 1(right) shows the high-level architecture of Apache SAMOA which
attempts to fulfill the aforementioned design goals. The algorithm layer contains
existing distributed streaming algorithms that have been implemented in Apache
SAMOA. This layer enables platform users to easily use the existing algorithm on
any DSPE of their choice.

The application programming interface (API) layer consists of primitives and
components that facilitate ML developers when implementing new algorithms. The
ML-adapter layer allows ML developers to integrate existing algorithms in MOA or
other ML frameworks into Apache SAMOA. The API layer and ML-adapter layer in
Apache SAMOA fulfill the flexibility goal since they allow ML developers to rapidly
develop algorithms.

Next, the DSPE-adapter layer supports platform developers in integrating new
DSPEs into Apache SAMOA. To perform the integration, platform developers
should implement the samoa-SPE layer as shown in Fig. 1(right). Currently Apache
SAMOA is equipped with four adapters: the samoa-Storm adapter for Storm, the
samoa-Samza adapter for Samza, the samoa-Flink adapter for Flink, and the samoa-
Apex adapter for Apex. To satisfy the extensibility goal, the DSPE-adapter layer
decouples DSPEs and ML algorithms implementations in Apache SAMOA, so that
platform developers are able to easily integrate more DSPE platforms.

The last goal, scalability, implies that Apache SAMOA should be able to scale to
cope ever increasing amount of data. To fulfill this goal, Apache SAMOA utilizes
modern DSPEs to execute its ML algorithms. The reason for using modern DSPEs
such as Storm, Flink, Samza, and Apex in Apache SAMOA is that they are designed
to provide horizontal scalability to cope with Web-scale streams.

4 System Design

An algorithm in Apache SAMOA is represented by a directed graph of nodes that
communicate via messages along streams which connect pairs of nodes. Borrowing
the terminology from Storm, this graph is called a Topology. Each node in a
Topology is a Processor that sends messages through a Stream. A Processor is a
container for the code implementing the algorithm. A Stream can have a single
source but several destinations (akin to a pub-sub system). A Topology is built by
using a TopologyBuilder, which connects the various pieces of user code to the
platform code and performs the necessary bookkeeping in the background. The
following code snippet builds a topology that joins two data streams in Apache
SAMOA:

TopologyBuilder builder = new TopologyBuilder();
Processor sourceOne = new SourceProcessor();
builder.addProcessor(sourceOne);
Stream streamOne = builder

.createStream(sourceOne);

182 N. Kourtellis et al.

Processor sourceTwo = new SourceProcessor();
builder.addProcessor(sourceTwo);
Stream streamTwo = builder

.createStream(sourceTwo);

Processor join = new JoinProcessor();
builder.addProcessor(join)

.connectInputShuffle(streamOne)

.connectInputKey(streamTwo);

A Task is an execution entity, similar to a job in Hadoop. A Topology is
instantiated inside a Task to be run by Apache SAMOA. An example of a Task is
PrequentialEvaluation, a classification task where each instance is used for testing
first, and then for training.

A message or an event is called Content Event in Apache SAMOA. As the name
suggests, it is an event which contains content that needs to be processed by the
processors. Finally, a Processing Item is a hidden physical unit of the topology and
is just a wrapper of Processor. It is used internally, and it is not accessible from the
API.

5 Machine Learning Algorithms

In Apache SAMOA there are currently three types of algorithms performing basic
machine learning functionalities such as classification via a decision tree (VHT),
clustering (CluStream), and regression rules (AMR).

The Vertical Hoeffding Tree (VHT) [20] is a distributed extension of the
VFDT [13]. VHT uses vertical parallelism to split the workload across several
machines. Vertical parallelism leverages the parallelism across attributes in the
same example, rather than across different examples in the stream. In practice, each
training example is routed through the tree model to a leaf. There, the example is
split into its constituting attributes, and each attribute is sent to a different Processor
instance that keeps track of sufficient statistics. This architecture has two main
advantages over one based on horizontal parallelism. First, attribute counters are not
replicated across several machines, thus, reducing the memory footprint. Second,
the computation of the fitness of an attribute for a split decision (via, e.g., entropy or
information gain) can be performed in parallel. The drawback is that in order to get
good performances, there must be sufficient inherent parallelism in the data. That
is, the VHT works best for high-dimensional data.

Apache SAMOA includes a distributed version of CluStream, an algorithm for
clustering evolving data streams. CluStream keeps a small summary of the data
received so far by computing micro-clusters online. These micro-clusters are further
refined to create macro-clusters by a micro-batch process, which is triggered
periodically. The period is configured via a command line parameter (e.g., every
10,000 examples).

Large-Scale Learning from Data Streams with Apache SAMOA 183

For regression, Apache SAMOA provides a distributed implementation of Adap-
tive Model Rules [23]. The algorithm, HAMR, uses a hybrid of vertical and
horizontal parallelism to distribute AMRules on a cluster.

Apache SAMOA also includes adaptive implementations of ensemble methods
such as bagging and boosting. These methods include state-of-the-art change
detectors such as ADWIN, DDM, EDDM, and Page-Hinckley [15]. These meta-
algorithms are most useful in conjunction with external single-machine classifiers,
which can be plugged in Apache SAMOA in several ways. For instance, open-
source connectors for MOA [4] are provided separately by the Apache SAMOA-MOA

package.9

The following listing shows how to download, build, and run Apache SAMOA.

download and build SAMOA
git clone http://git.apache.org/incubator-samoa.git
cd incubator-samoa
mvn package

download the Forest Cover Type dataset
wget "http://downloads.sourceforge.net/project/moa-datastream/

Datasets/Classification/covtypeNorm.arff.zip"
unzip "covtypeNorm.arff.zip"

run SAMOA in local mode
bin/samoa local target/SAMOA-Local-0.4.0-SNAPSHOT.jar "

PrequentialEvaluation -l classifiers.ensemble.Bagging -s
(ArffFileStream -f covtypeNorm.arff) -f 100000"

6 Vertical Hoeffding Tree

We explain the details of the Vertical Hoeffding Tree [20], which is a data-parallel,
distributed version of the Hoeffding tree. The Hoeffding tree [13] (a.k.a. VFDT)
is a streaming decision tree learner with statistical guarantees. In particular, by
leveraging the Chernoff-Hoeffding bound [16], it guarantees that the learned model
is asymptotically close to the model learned by the batch greedy heuristic, under
mild assumptions. The learning algorithm is very simple. Each leaf keeps track of
the statistics for the portion of the stream it is reached by, and computes the best two
attributes according to the splitting criterion. Let �G be the difference between the
value of the functions that represent the splitting criterion of these two attributes.
Let ε be a quantity that depends on a user-defined confidence parameter δ, and that
decreases with the number of instances processed. When �G > ε, then the current
best attribute is selected to split the leaf. The Hoeffding bound guarantees that this
choice is the correct one with probability at least 1 − δ.

9https://github.com/samoa-moa/samoa-moa.

https://github.com/samoa-moa/samoa-moa

184 N. Kourtellis et al.

In this section, first, we describe the parallelization and the ideas behind our
design choice. Then, we present the engineering details and optimizations we
employed to obtain the best performance.

6.1 Vertical Parallelism

Data parallelism is a way of distributing work across different nodes in a parallel
computing environment such as a cluster. In this setting, each node executes the
same operation on different parts of the dataset. Contrast this definition with
task parallelism (aka pipelined parallelism), where each node executes a different
operator, and the whole dataset flows through each node at different stages. When
applicable, data parallelism is able to scale to much larger deployments, for two
reasons: (1) data has usually much higher intrinsic parallelism that can be leveraged
compared to tasks, and (2) it is easier to balance the load of a data-parallel
application compared to a task-parallel one. These attributes have led to the high
popularity of the currently available DSPEs. For these reasons, we employ data
parallelism in the design of VHT.

In machine learning, it is common to think about data in matrix form. A typical
linear classification formulation requires to find a vector x such that A·x ≈ b, where
A is the data matrix and b is a class label vector. The matrix A is n×m-dimensional,
with n being the number of data instances and m being the number of attributes of
the dataset.

There are two ways to slice the data matrix to obtain data parallelism: by row or
column. The former is called horizontal parallelism, the latter vertical parallelism.
With horizontal parallelism, data instances are independent from each other, and
can be processed in isolation while considering all available attributes. With vertical
parallelism, instead, attributes are considered independently from each other.

The fundamental operation of the algorithm is to accumulate statistics nijk (i.e.,
counters) for triplets of attribute i, value j , and class k, for each leaf l of the tree.
The counters for each leaf are independent, so let us consider the case for a single
leaf. These counters, together with the learned tree structure, constitute the state of
the VHT algorithm.

Different kinds of parallelism distribute the counters across computing nodes
in different ways. With horizontal parallelism [3], the instances are distributed
randomly, thus multiple instances of the same counter can exist on several nodes.
On the other hand, when using vertical parallelism, the counters for one attribute are
grouped on a single node.

This latter design has several advantages. First, by having a single copy of the
counter, the memory requirements for the model are the same as in the sequential
version. In contrast, with horizontal parallelism a single attribute may be tracked on
every node, thus the memory requirements grow linearly with the parallelism level.
Second, by having each attribute tracked independently, the computation of the split
criterion can be performed in parallel by several nodes. Conversely, with horizontal

Large-Scale Learning from Data Streams with Apache SAMOA 185

partitioning the algorithm needs to (centrally) aggregate the partial counters before
being able to compute the splitting criterion.

Of course, the vertically-parallel design has also its drawbacks. In particular,
horizontal parallelism achieves a good load balance more easily, even though
solutions for these problems have recently been proposed for vertical parallelism
as well [24, 25]. In addition, if the instance stream arrives in row-format, it needs to
be transformed in column-format, and this transformation generates additional CPU
overhead at the source. Indeed, each attribute that constitutes an instance needs to be
sent independently, and needs to carry the class label of its instance. Therefore, both
the number of messages and the size of the data transferred increase. Nevertheless,
the advantages of vertical parallelism outweigh its disadvantages for several real-
world settings.

6.2 Algorithm Structure

We are now ready to explain the structure of the VHT algorithm. In general,
there are two main parts to the Hoeffding tree algorithm: sorting the instances
through the current model, and accumulating statistics of the stream at each leaf
node. This separation offers a neat cut point to modularize the algorithm in two
separate components. We call the first component model aggregator, and the second
component local statistics. Figure 2 presents a visual depiction of the algorithm, and
specifically, of its components and how the data flow among them. Also, Table 1
summarizes a list of components used in the rest of the algorithm description.

The model aggregator holds the current model (the tree) produced so far in a
Processor node. Its main duty is to receive the incoming instances and sort them
to the correct leaf. If the instance is unlabeled, the model predicts the label at the
leaf and sends it downstream (e.g., for evaluation). Otherwise, if the instance is
labeled, it is also used as training data. The VHT decomposes the instance into its
constituent attributes, attaches the class label to each, and sends them independently

Split

Source Model Aggregator Local Statistics

Attributes

Instance

Shuffle Grouping
Key Grouping
All Grouping

Fig. 2 High level diagram of the VHT topology

186 N. Kourtellis et al.

Table 1 Definitions and symbols

Description Symbol

Source receiving/distributing instances S

Training instance from S E

Model aggregator MA

Current state of the decision tree in MA V HT _tree

Local statistic LS

Counter for attribute i, value j, class k nijk

Instances seen at leaf l nl

Information gain or entropy of attribute i in leaf l Gl(X
local
i)

Algorithm 1 MA: VerticalHoeffdingTreeInduction(E, V HT _tree)
Require: E wrapped in instance content event
Require: V HT _tree in MA

1: Use V HT _tree to sort E into a leaf l

2: Send attribute content events to LSs
3: Increment nl

4: if nl mod nmin = 0 and not all instances seen at l belong to the same class then
5: Add l into the list of splitting leaves
6: Send compute content event with the id of leaf l to all LSs
7: end if

Algorithm 2 LS: UpdateLocalStatistic(attribute, local_statistic)
Require: attribute is an attribute content event
Require: local_statistic is the LS in charge of attribute, could be implemented as

T able < leaf _id, attribute_id >

1: Update local_statistic with data in attribute: attribute value, class value and instance
weights

to the following stage, the local statistics. Algorithm 1 shows a pseudocode for the
model aggregator.

The local statistics contain the counters nijk for a set of attribute-value-class
triplets. Conceptually, the local statistics can be viewed as a large distributed table,
indexed by leaf id (row), and attribute id (column). The value of the cell represents
a set of counters, one for each pair of attribute value and class. The local statistics
accumulate statistics on the data sent by the model aggregator. Pseudocode for the
update function is shown in Algorithm 2.

In Apache SAMOA, we implement vertical parallelism by connecting the model
to the statistics via key grouping. We use a composite key made by the leaf id and
the attribute id. Horizontal parallelism can similarly be implemented via shuffle
grouping on the instances themselves.

Leaf Splitting: Periodically, the model aggregator tries to see if the model needs
to evolve by splitting a leaf. When a sufficient number of instances nmin have been
sorted through a leaf, and not all instances that reached l belong to the same class

Large-Scale Learning from Data Streams with Apache SAMOA 187

Algorithm 3 LS: ReceiveComputeMessage(compute, local_statistic)
Require: compute is a compute content event
Require: local_statistic is the LS in charge of attribute, could be implemented as

T able < leaf _id, attribute_id >

1: Get leaf l ID from compute content event
2: For each attribute i that belongs to leaf l in local statistic, compute Gl(Xi)

3: Find Xlocal
a , i.e., the attribute with highest Gl based on the local statistic

4: Find Xlocal
b , i.e., the attribute with second highest Gl based on the local statistic

5: Send Xlocal
a and Xlocal

b using local-result content event to model-aggregator PI via
computation-result stream

(line 4, Algorithm 1), the aggregator sends a broadcast message to the statistics,
asking to compute the split criterion for the given leaf id. The statistics Processor
gets the table corresponding to the leaf, and for each attribute compute the splitting
criterion in parallel (an information-theoretic function such as information gain or
entropy). Each local statistic then sends back to the model the top two attributes
according to the chosen criterion, together with their scores (Gl(X

local
i), i = a, b;

Algorithm 3).
Subsequently, the model aggregator (Algorithm 4) simply needs to compute the

overall top two attributes received so far from the available statistics, apply the
Hoeffding bound (line 4), and see whether the leaf needs to be split (line 5). The
algorithm also computes the criterion for the scenario where no split takes places
(X∅). Domingos and Hulten [13] refer to this inclusion of a no-split scenario with
the term pre-pruning. The decision to split or not is taken after a time has elapsed,
as explained next.

By using the top two attributes, the model aggregator computes the difference of
their splitting criterion values �Gl = Gl(Xa) − Gl(Xb). To determine whether the
leaf needs to be split, it compares the difference �Gl to the Hoeffding bound ε =√

R2 ln(1/δ)
2nl

for the current confidence parameter δ (where R is the range of possible

values of the criterion). If the difference is larger than the bound (�Gl > ε), then
Xa is the best attribute with high confidence 1 − δ, and can therefore be used to
split the leaf. If the best attribute is the no-split scenario (X∅), the algorithm does
not perform any split. The algorithm also uses a tie-breaking τ mechanism to handle
the case where the difference in splitting criterion between Xa and Xb is very small.
If the Hoeffding bound becomes smaller than τ (�Gl < ε < τ), then the current
best attribute is chosen regardless of the values of �Gl .

Two cases can arise: the leaf needs splitting, or it does not. In the latter case, the
algorithm simply continues without taking any action. In the former case instead, the
model modifies the tree by splitting the leaf l on the selected attribute, replacing l

with an internal node (line 6), and generating a new leaf for each possible value
of the branch (these leaves are initialized using the class distribution observed
at the best attribute splitting at l (line 8)). Then, it broadcasts a drop message
containing the former leaf id to the local statistics (line 10). This message is needed
to release the resources held by the leaf and make space for the newly created leaves.

188 N. Kourtellis et al.

Algorithm 4 MA: Receive(local_result , V HT _tree)
Require: local_result is an local-result content event
Require: V HT _tree in MA

1: Get correct leaf l from the list of splitting leaves
2: Update Xa and Xb in the splitting leaf l with Xlocal

a and Xlocal
b from local_result

3: if local_results from all LSs received or time out reached then

4: Compute Hoeffding bound ε =
√

R2 ln(1/δ)
2nl

5: if Xa
= X∅ and (Gl(Xa) − Gl(Xb) > ε or ε < τ) then
6: Replace l with a split-node on Xa

7: for all branches of the split do
8: Add new leaf with derived sufficient statistic from split node
9: end for

10: Send drop content event with id of leaf l to all LSs
11: end if
12: end if

Table 2 Types of content events used during the execution of VHT algorithm

Name Parameters From To

instance < attr 1, . . . , attr m, class C > S MA

attribute < attr id, attr value, class C > MA LS id =< leaf id + attr id >

compute < leaf id > MA All LS

local-result < Gl(X
local
a),Gl(X

local
b) > LSid MA

drop < leaf id > MA All LS

Subsequently, the tree can resume sorting instances to the new leaves. The local
statistics creates a new table for the new leaves lazily, whenever they first receive
a previously unseen leaf id. In its simplest version, while the tree adjustment is
performed, the algorithm drops the new incoming instances. We show in the next
section an optimized version that buffers them to improve accuracy.

Messages: During the VHT execution several types of events are sent and received
from the different parts of the algorithm, as summarized in Table 2.

6.3 Evaluation

In our experimental evaluation of the VHT method, we aim to study the following
questions:

Q1: How does a centralized VHT compare to a centralized hoeffding tree with
respect to accuracy and throughput?

Q2: How does the vertical parallelism used by VHT compare to the horizontal
parallelism?

Q3: What is the effect of number and density of attributes?
Q4: How does discarding or buffering instances affect the performance of VHT?

Large-Scale Learning from Data Streams with Apache SAMOA 189

Experimental Setup: In order to study these questions, we experiment with five
datasets (two synthetic generators and three real datasets), five different versions
of the hoeffding tree algorithm, and up to four levels of computing parallelism.
We measure classification accuracy during, and at the end of the execution,
and throughput (number of classified instances per second). We execute each
experimental configuration ten times and report the average of these measures.

Synthetic Datasets: We use synthetic data streams produced by two random
generators: one for dense and one for sparse attributes.

• Dense attributes are extracted from a random decision tree. We test different
number of attributes, and include both categorical and numerical types. The label
for each configuration is the number of categorical-numerical used (e.g, 100–
100 means the configuration has 100 categorical and 100 numerical attributes).
We produce 10 differently seeded streams with 1M instances for each tree, with
one of two balanced classes in each instance, and take measurements every 100k
instances.

• Sparse attributes are extracted from a random tweet generator. We test different
dimensionalities for the attribute space: 100, 1k, 10k. These attributes represent
the appearance of words from a predefined bag-of-words. On average, the
generator produces 15 words per tweet (size of a tweet is Gaussian), and uses
a Zipf distribution with skew z = 1.5 to select words from the bag. We produce
10 differently seeded streams with 1M tweets in each stream. Each tweet has a
binary class chosen uniformly at random, which conditions the Zipf distribution
used to generate the words.

Real Datasets: We also test VHT on three real data streams to assess its perfor-
mance on benchmark data.10

• (elec) Electricity: 45312 instances, 8 numerical attributes, 2 classes.
• (phy) Particle Physics: 50000 instances, 78 numerical attributes, 2 classes.
• (covtype) CovertypeNorm: 581012 instances, 54 numerical attributes, 7 classes.

Algorithms: We compare the following versions of the hoeffding tree algorithm.

• moa: This is the standard Hoeffding tree in MOA.
• local: This algorithm executes VHT in a local, sequential execution engine. All

split decisions are made in a sequential manner in the same process, with no
communication and feedback delays between statistics and model.

• wok: This algorithm discards instances that arrive during a split decision. This
version is the vanilla VHT.

• wk(z): This algorithm sends instances that arrive during a split decision down-
stream. It also adds instances to a buffer of size z until full. If the split decision
is taken, it replays the instances in the buffer through the new tree model.

10http://moa.cms.waikato.ac.nz/datasets/,
http://osmot.cs.cornell.edu/kddcup/datasets.html.

http://moa.cms.waikato.ac.nz/datasets/
http://osmot.cs.cornell.edu/kddcup/datasets.html

190 N. Kourtellis et al.

Otherwise, it discards the buffer, as the instances have already been incorporated
in the statistics downstream.

• sharding: Splits the incoming stream horizontally among an ensemble of
Hoeffding trees. The final prediction is computed by majority voting. This
method is an instance of horizontal parallelism applied to Hoeffding trees. It
creates an ensemble of hoeffding trees, but each tree is built with a subset of
instances split horizontally, while using all available attributes.

Experimental Configuration: All experiments are performed on a Linux server
with 24 cores (Intel Xeon X5650), clocked at 2.67 GHz, L1d cache: 32 kB, L1i
cache: 32 kB, L2 cache: 256 kB, L3 cache: 12288 kB, and 65 GB of main memory.
On this server, we run a Storm cluster (v0.9.3) and zookeeper (v3.4.6). We use
Apache SAMOA v0.4.0 (development version) and MOA v2016.04 available from
the respective project websites.

We use several parallelism levels in the range of p = 2, . . . , 16, depending on the
experimental configuration. For dense instances, we stop at p = 8 due to memory
constraints, while for sparse instances we scale up to p = 16. We disable model
replication (i.e., use a single model aggregator), as in our setup the model is not the
bottleneck.

6.3.1 Accuracy and Time of VHT Local vs. MOA

In this first set of experiments, we test if VHT is performing as well as its counterpart
hoeffding tree in MOA. This is mostly a sanity check to confirm that the algorithm
used to build the VHT does not affect the performance of the tree when all instances
are processed sequentially by the model. To verify this fact, we execute VHT
local and MOA with both dense and sparse instances. Figure 3 shows that VHT
local achieves the same accuracy as MOA, even besting it at times. However, VHT
local always takes longer than MOA to execute. Indeed, the local execution engine
of Apache SAMOA is optimized for simplicity rather than speed. Therefore, the
additional overhead required to interface VHT to DSPEs is not amortized by scaling
the algorithm out. Future optimized versions of VHT and the local execution engine
should be able to close this gap.

6.3.2 Accuracy of VHT Local vs. Distributed

Next, we compare the performance of VHT local with VHT built in a distributed
fashion over multiple processors for scalability. We use up to p = 8 parallel
statistics, due to memory restrictions, as our setup runs on a single machine. In
this set of experiments we compare the different versions of VHT, wok and wk(z),
to understand what is the impact of keeping instances for training after a model’s
split. Accuracy of the model might be affected, compared to the local execution,
due to delays in the feedback loop between statistics and model. That is, instances

Large-Scale Learning from Data Streams with Apache SAMOA 191

 80

 85

 90

 95

 100

10-10 100-100 1k-1k 10k-10k

%
 a

cc
ur

ac
y

nominal attributes - numerical attributes

Dense attributes

local
moa

100 1k 10k
attributes

Sparse attributes

100

101

102

103

104

105

10-10 100-100 1k-1k 10k-10k

Ex
ec

ut
io

n
tim

e
(s

)

nominal attributes - numerical attributes

Dense attributes

local
moa

100 1k 10k
attributes

Sparse attributes

Fig. 3 Accuracy and execution time of VHT executed in local mode on Apache SAMOA compared
to MOA, for dense and sparse datasets

 0

 20

 40

 60

 80

 100

10-10 100-100 1k-1k 10k-10k

%
 a

cc
ur

ac
y

parallelism = 2
sharding wok wk(0) wk(1k) wk(10k) local

 0

 20

 40

 60

 80

 100

10-10 100-100 1k-1k 10k-10k
nominal attributes - numerical attributes

parallelism = 4

 0

 20

 40

 60

 80

 100

10-10 100-100 1k-1k 10k-10k

parallelism = 8

Fig. 4 Accuracy of several versions of VHT (local, wok, wk(z)) and sharding, for dense datasets

arriving during a split are classified using an older version of the model compared
to the sequential execution. As our target is a distributed system where independent
processes run without coordination, this delay is a characteristic of the algorithm as
much as of the distributed SPE we employ.

We expect that buffering instances and replaying them when a split is decided
would improve the accuracy of the model. In fact, this is the case for dense instances
with a small number of attributes (i.e., around 200), as shown in Fig. 4. However,
when the number of available attributes increases significantly, the load imposed on
the model seems to outweigh the benefits of keeping the instances for replaying. We

192 N. Kourtellis et al.

 0

 20

 40

 60

 80

 100

100 1k 10k

%
 a

cc
ur

ac
y

attributes

parallelism = 2

sharding wok wk(0) wk(1k) wk(10k) local

 0

 20

 40

 60

 80

 100

100 1k 10k
attributes

parallelism = 4

 0

 20

 40

 60

 80

 100

100 1k 10k

%
 a

cc
ur

ac
y

attributes

parallelism = 8

 0

 20

 40

 60

 80

 100

100 1k 10k
attributes

parallelism = 16

Fig. 5 Accuracy of several versions of VHT (local, wok, wk(z)) and sharding, for sparse datasets

conjecture that the increased load in computing the splitting criterion in the statistics
further delays the feedback to compute the split. Therefore, a larger number of
instances are classified with an older model, thus, negatively affecting the accuracy
of the tree. In this case, the additional load imposed by replaying the buffer further
delays the split decision. For this reason, the accuracy for VHT wk(z) drops by
about 30% compared to VHT local. Conversely, the accuracy of VHT wok drops
more gracefully, and is always within 18% of the local version.

VHT always performs approximatively 10% better than sharding. For dense
instances with a large number of attributes (20k), sharding fails to complete due to
its memory requirements exceeding the available memory. Indeed, sharding builds
a full model for each shard, on a subset of the stream. Therefore, its memory
requirements are p times higher than a standard hoeffding tree.

When using sparse instances, the number of attributes per instance is constant,
while the dimensionality of the attribute space increases. In this scenario, increasing
the number of attributes does not put additional load on the system. Indeed, Fig. 5
shows that the accuracy of all versions is quite similar, and close to the local one.
This observation is in line with our conjecture that the overload on the system is the
cause for the drop in accuracy on dense instances.

Large-Scale Learning from Data Streams with Apache SAMOA 193

 0

 20

 40

 60

 80

 100

 2⋅105 4⋅105 6⋅105 8⋅105 1⋅106

%
 a

cc
ur

ac
y

instances

p=2, u=10, o=10

local
moa

wk(0)
wk(1k)

wk(10k)
wok

sharding
 0

 20

 40

 60

 80

 100

 2⋅105 4⋅105 6⋅105 8⋅105 1⋅106

instances

p=2, u=1000, o=1000

local
moa

wk(0)
wk(1k)

wk(10k)
wok

sharding

Fig. 6 Evolution of accuracy with respect to instances arriving, for several versions of VHT (local,
wok, wk(z)) and sharding, for dense datasets

 0

 20

 40

 60

 80

 100

 2⋅105 4⋅105 6⋅105 8⋅105 1⋅106

%
 a

cc
ur

ac
y

instances

p=2, a=100

local
moa

wk(0)
wk(1k)

wk(10k)
wok

sharding
 0

 20

 40

 60

 80

 100

 2⋅105 4⋅105 6⋅105 8⋅105 1⋅106

instances

p=2, a=10000

local
moa

wk(0)
wk(1k)

wk(10k)
wok

sharding

Fig. 7 Evolution of accuracy with respect to instances arriving, for several versions of VHT (local,
wok, wk(z)) and sharding, for sparse datasets

We also study how the accuracy evolves over time. In general, the accuracy of
all algorithms is rather stable, as shown in Figs. 6 and 7. For instances with 10 to
100 attributes, all algorithms perform similarly. For dense instances, the versions of
VHT with buffering, wk(z), outperform wok, which in turn outperforms sharding.
This result confirms that buffering is beneficial for small number of attributes. When
the number of attributes increases to a few thousand per instance, the performance
of these more elaborate algorithms drops considerably. However, the VHT wok
continues to perform relatively well and better than sharding. This performance
coupled with good speedup over MOA (as shown next) makes it a viable option
for streams with a large number of attributes and a large number of instances.

Speedup of VHT distributed vs. MOA Since the accuracy of VHT wk(z) is
not satisfactory for both types of instances, next we focus our investigation on
VHT wok. Figure 8 shows the speedup of VHT for dense instances. VHT wok
is about 2–10 times faster than VHT local and up to 4 times faster than MOA.

194 N. Kourtellis et al.

 1

 2

 3

 4

 5

10-10 100-100 1k-1k 10k-10k

Sp
ee

du
p

ov
er

 m
oa

parallelism = 2

sharding
wok

 1

 2

 3

 4

 5

10-10 100-100 1k-1k 10k-10k
nominal attributes - numerical attributes

parallelism = 4

 1

 2

 3

 4

 5

10-10 100-100 1k-1k 10k-10k

parallelism = 8

Fig. 8 Speedup of VHT wok executed on Apache SAMOA compared to MOA for dense datasets

Clearly, the algorithm achieves a higher speedup when more attributes are present
in each instance, as (1) there is more opportunity for parallelization, and (2) the
implicit load shedding caused by discarding instances during splits has a larger
effect. Even though sharding performs well in speedup with respect to MOA on
small number of attributes, it fails to build a model for large number of attributes
due to running out of memory. In addition, even for a small number of attributes,
VHT wok outperforms sharding with a parallelism of 8. Thus, it is clear from the
results that the vertical parallelism used by VHT offers better scaling behavior than
the horizontal parallelism used by sharding.

When testing the algorithms on sparse instances, as shown in Fig. 9, we notice
that VHT wok can reach up to 60 times the throughput of VHT local and 20
times the one of MOA (for clarity we only show the results with respect to MOA).
Similarly to what observed for dense instances, a higher speedup is observed when
a larger number of attributes are present for the model to process. This very large,
superlinear speedup (20× with p = 2) is due to the aggressive load shedding
implicit in the wok version of VHT. The algorithm actually performs consistently
less work than the local version and MOA.

However, note that for sparse instances the algorithm processes a constant
number of attributes, albeit from an increasingly larger space. Therefore, in this
setup, wok has a constant overhead for processing each sparse instance, differently
from the dense case. VHT wok outperforms sharding in most scenarios and
especially for larger numbers of attributes and larger parallelism.

Increased parallelism does not impact accuracy of the model (see Figs. 4 and
5), but its throughput is improved. Boosting the parallelism from 2 to 4 makes
VHT wok up to 2 times faster. However, adding more processors does not improve
speedup, and in some cases there is a slowdown due to additional communication
overhead (for dense instances). Particularly for sparse instances, parallelism does
not impact accuracy which enables handling large sparse data streams while
achieving high speedup over MOA.

Large-Scale Learning from Data Streams with Apache SAMOA 195

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

100 1k 10k

Sp
ee

du
p

ov
er

 m
oa

Number attributes

parallelism = 2

sharding
wok

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

100 1k 10k
Number attributes

parallelism = 4

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

100 1k 10k

Sp
ee

du
p

ov
er

 m
oa

Number attributes

parallelism = 8

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

100 1k 10k
Number attributes

parallelism = 16

Fig. 9 Speedup of VHT wok executed on Apache SAMOA compared to MOA for sparse datasets

Table 3 Average accuracy (%) for different algorithms, with parallelism level (p), on the real-
world datasets

VHT Sharding

Dataset MOA Local wok p = 2 wok p = 4 wk(0) p = 2 wk(0) p = 4 p = 2 p = 4

elec 75.4 75.4 75.0 75.2 75.4 75.6 74.7 74.3

phy 63.3 63.8 62.6 62.7 63.8 63.7 62.4 61.4

covtype 67.9 68.4 68.0 68.8 67.5 68.0 67.9 60.0

Performance on Real-World Datasets: Tables 3 and 4 show the performance of
VHT, either running in a local mode or in a distributed fashion over a storm cluster
of a few processors. We also test two versions of VHT: wok and wk(0). In the same
tables we compare VHT’s performance with MOA and sharding.

The results from these real datasets demonstrate that VHT can perform similarly
to MOA with respect to accuracy and at the same time process the instances faster.
In fact, for the larger dataset, covtypeNorm, VHT wok exhibits 1.8 speedup with
respect to MOA, even though the number of attributes is not very large (54 numeric
attributes). VHT wok also performs better than sharding, even though the latter is
faster in some cases. However, the speedup offered by sharding decreases when the
parallelism level is increased from 2 to 4 shards.

196 N. Kourtellis et al.

Table 4 Average execution time (seconds) for different algorithms, with parallelism level (p),
on the real-world datasets

VHT Sharding

Dataset MOA Local wok p = 2 wok p = 4 wk(0) p = 2 wk(0) p = 4 p = 2 p = 4

elec 1.09 1 2 2 2 2 2 2.33

phy 5.41 4 3.25 4 3 3.75 3 4

covtype 21.77 16 12 12 13 12 9 11

6.4 Summary

In conclusion, our VHT algorithm has the following performance traits. We learned
that for a small number of attributes, it helps to buffer incoming instances that can
be used in future decisions of split. For larger number of attributes, the load in
the model can be high and larger delays can be observed in the integration of the
feedback from the local statistics into the model. In this case, buffered instances may
not be used on the most up-to-date model and this can penalize the overall accuracy
of the model.

With respect to a centralized sequential tree model (MOA), it processes dense
instances with thousands of attributes up to 4× faster with only 10–20% drop in
accuracy. It can also process sparse instances with thousands of attributes up to
20× faster with only 5–10% drop in accuracy. Also, its ability to build the tree in
a distributed fashion using tens of processors allows it to scale and accommodate
thousands of attributes and parse millions of instances. Competing methods cannot
handle these data sizes due to increased memory and computational complexity.

7 Distributed AMRules

Decision rule learning is a category of machine learning algorithms whose goal is
to extract a set of decision rules from the training data. These rules are later used
to predict the unknown label values for test data. A rule is a logic expression of the
form:

IF antecedent THEN consequent

or, equivalently, head ← body, where head and body correspond to the consequent
and antecedent, respectively.

The body of a rule is a conjunction of multiple clauses called features, each of
which is a condition on an attribute of the instances. Such conditions consist of the
identity of an attribute, a threshold value and an operator. For instance, the feature
“x < 5” is a condition on attribute x, with threshold value 5 and operator less-than
(<). An instance is said to be covered by a rule if its attribute values satisfy all the

Large-Scale Learning from Data Streams with Apache SAMOA 197

features in the rule body. The head of the rule is a function to be applied on the
covered instances to determine their label values. This function can be a constant or
a function of the attributes of the instances, e.g., ax + b ← x < 5.

AMRules is an algorithm for learning regression rules on streaming data. It
incrementally constructs the rule model from the incoming data stream. The rule
model consists of a set of normal rules (which is empty at the beginning), and
a default rule. Each normal rule is composed of 3 parts: a body which is a list
of features, a head with information to compute the prediction for those instance
covered by the rule, and statistics of past instances to decide when and how to add
a new feature to its body. In fact, the default rule is a rule with an empty body.

For each incoming instance, AMRules searches the current rule set for those
rules that cover the instance. If an instance is not covered by any rule in the set, it
is considered as being covered by the default rule. The heads of the rules are first
used to compute the prediction for the instance they cover. Later, their statistics
are updated with the attribute values and label value of the instance. There are two
possible modes of operation: ordered and unordered. In ordered-rules mode, the
rules are checked according to the order of their creation, and only the first rule is
used for prediction and then updated. In unordered-rules mode, all covering rules
are used and updated. In this work, we focus on the former which is more often
used albeit more challenging to parallelize.

Each rule tries to expand its body after it receives Nm updates. In order to decide
on the feature to expand, the rule incrementally computes a standard deviation
reduction (SDR) measure [17] for each potential feature. Then, it computes the
ratio of the second-largest SDR value over the largest SDR value. This ratio is
used with a high confidence interval ε computed using the Hoeffding bound [16] to
decide to expand the rule or not: if ratio + ε < 1, the rule is expanded with the
feature corresponding to the largest SDR value. Besides, to avoid missing a good
feature when there are two (or more) equally good ones, rules are also expanded
if the Hoeffding bound ε falls below a threshold. If the default rule is expanded, it
becomes a normal rule and is added to the rule set. A new default rule is initialized
to replace the previous one.

Each rule records its prediction error and applies a modified version of the Page-
Hinkley test [22] for streaming data to detect changes. If the test indicates that
the cumulative error has exceeded a threshold, the rule is evicted from the rule
set. The algorithm also employs outlier detection to check if an instance, although
being covered by a rule, is an anomaly. If an instance is deemed as an anomaly,
it is treated as if the rule does not cover it and is checked against other rules. The
following sections describe two possible strategies to parallelize AMRules that are
implemented in Apache SAMOA.

198 N. Kourtellis et al.

Model
Aggregator

Learner1

Learner2

Learnerp

Predictions

Instances

New Rules

Rule
Updates

Model
Aggregator1

Model
Aggregator2

Model
Aggregatorr

Predictions

Instances

New Rules

Rule
Updates

Learners

Fig. 10 (Left) Vertical AMRules (VAMR). (Right) AMRules with multiple horizontally paral-
lelized model aggregators

7.1 Vertical Parallelism

In AMRules, each rule can evolve independently, as its expansion is based solely
on the statistics of instances it covers. Also, searching for the best feature among all
possible ones in an attempt to expand a rule is computationally expensive.

Given these observations, we decide to parallelize AMRules by delegating the
training process of rules to multiple learner processors, each of which handles
only a subset of the rules. Besides the learners, a model aggregator processor is
also required to filter and redirect the incoming instances to the correct learners.
The aggregator manages a set of simplified rules that have only head and body,
i.e., do not keep statistics. The bodies are used to identify the rules that cover
an instance, while the heads are used to compute the prediction. Each instance is
forwarded to the designated learners by using the ID of the covering rule. At the
learners, the corresponding rules’ statistics are updated with the forwarded instance.
This parallelization scheme guarantees that the rules created are the same as in the
sequential algorithm. Figure 10(left) depicts the design of this vertically parallelized
version of AMRules, or Vertical AMRules (VAMR for brevity).

The model aggregator also manages the statistics of the default rule, and updates
it with instances not being covered by any other rule in the set. When the default
rule is expanded and adds a new rule to the set, the model aggregator sends a
message with the newly added rule to one of the learners, which is responsible for its
management. The assignment of a rule to a learner is done based on the rule’s ID via
key grouping. All subsequent instances that are covered by this rule are forwarded
to the same learner.

At the same time, learners update the statistics of each corresponding rule with
each processed instance. When enough statistics have been accumulated and a rule
is expanded, the new feature is sent to the model aggregator to update the body of
the rule. Learners can also detect changes and remove existing rules. In such an
event, learners inform the model aggregator with a message containing the removed
rule ID.

Large-Scale Learning from Data Streams with Apache SAMOA 199

As each rule is replicated in the model aggregator and in one of the learners,
their bodies in model aggregator might not be up-to-date. The delay between rule
expansion in the learner and model update in the aggregator depends mainly on the
queue length at the model aggregator. The queue length, in turn, is proportional to
the volume and speed of the incoming data stream. Therefore, instances that are in
the queue before the model update event might be forwarded to a recently expanded
rule which no longer covers the instance.

Coverage test is performed again at the learner, thus the instance is dropped if it
was incorrectly forwarded. Given this additional test, and given that rule expansion
can only increase the selectivity of a rule, when using unordered rules the accuracy
of the algorithm is unaltered. However, in ordered-rules mode, these temporary
inconsistencies might affect the statistics of other rules because the instance should
have been forwarded to a different rule.

7.2 Horizontal Parallelism

A bottleneck in VAMR is the centralized model aggregator. Given that there is no
straightforward way to vertically parallelize the execution of the model aggregator
while maintaining the order of the rules, we explore an alternative based on
horizontal parallelism. Specifically, we introduce multiple replicas of the model
aggregator, so that each replica maintains the same copy of the rule set but processes
only a portion of the incoming instances.

Horizontally Parallelized Model Aggregator: The design of this scheme is
illustrated in Fig. 10(right). The basic idea is to extend VAMR and accommodate
multiple model aggregators into the design. Each model aggregator still has a rule
set and a default rule. The behavior of this scheme is similar to VAMR, except
that each model aggregator now processes only a portion of the input data, i.e., the
amount of instances each of them receives is inversely proportional to the number of
model aggregators. This affects the prediction statistics and, most importantly, the
training statistics of the default rules.

Since each model aggregator processes only a portion of the input stream,
each default rule is trained independently with different portions of the stream.
Thus, these default rules evolve independently and potentially create overlapping
or conflicting rules. This fact also introduces the need for a scheme to synchronize
and order the rules created by different model aggregators. Additionally, at the
beginning, the scheme is less reactive compared to VAMR as it requires more
instances for the default rules to start expanding. Besides, as the prediction function
of each rule is adaptively constructed based on attribute values and label values
of past instances, having only a portion of the data stream leads to having less
information and potentially lower accuracy. We show how to address these issues
next.

200 N. Kourtellis et al.

Predictions

Instances

New Rules

Rule
Updates

LearnersModel
Aggregators

Default Rule
Learner

New Rules

Source

Default
Rule

Learner

Learner

Model
Aggregator Evaluator

Fig. 11 (Left) Hybrid AMRules (HAMR) with multiple model aggregators and separate default
rule learner. (Right) Prequential evaluation task for HAMR. Single lines represent single messages
(key grouping, shuffle grouping) while double lines represent broadcast messages (all grouping)

Centralized Rule Creation: In order to address the issues with distributed creation
of rules, we move the default rule in model aggregators to a specialized default rule
learner processor. With the introduction of this new component, some modifications
are required in the model aggregators, but the behavior of the learners is still the
same as in VAMR. However, as a result, all the model aggregators are in synch.

As the default rule is now moved to the designated learner, those instances that
are not covered by any rules are forwarded from the model aggregators to this
learner. This specialized learner updates its statistics with the received instances
and, when the default rule expands, it broadcasts the newly created rule to the model
aggregators. The new rule is also sent to the assigned learner, as determined by the
rule’s ID.

The components of this scheme are shown in Fig. 11(left), where this scheme
is referred to as Hybrid AMRules (HAMR), as it is a combination of vertical and
horizontal parallelism strategies.

7.3 Evaluation

We evaluate the performance of the 2 distributed implementations of AMRules, i.e.,
VAMR and HAMR, in comparison to the centralized implementation in MOA11

(MAMR).

Evaluation Methodology: We plug VAMR and HAMR into a prequential evalu-
ation task [14], where each instance is first used to test and then to train the model.

11http://moa.cms.waikato.ac.nz.

http://moa.cms.waikato.ac.nz

Large-Scale Learning from Data Streams with Apache SAMOA 201

This evaluation task includes a source processor which provides the input stream
and an evaluator processor which records the rate and accuracy of prediction results.
The final task for HAMR is depicted in Fig. 11(right). The parallelism level of the
model is controlled by setting the number of learners p and the number of model
aggregators r . The task for VAMR is similar but the default rule learner is excluded
and model aggregator’s parallelism level is always 1. Each task is repeated for five
runs.

Datasets: We perform the same set of experiments with 3 different datasets, i.e.,
electricity, airlines, and waveform.

• Electricity: A dataset from the UCI Machine Learning Repository [2] which
records the electricity power consumption (in watt-hour) of a household from
December 2006 to November 2010. The dataset contains more than 2 millions
12-attribute records.

• Airlines: A dataset recording the arrival delay (in seconds) of commercial flights
within the USA in year 2008.12 It contains more than 5.8 millions records, each
with 10 numerical attributes.

• Waveform: A dataset generated using an artificial random generator. To generate
an instance, it picks a random waveform among the 3 available ones, and 21
attribute values for this instance are generated according to the chosen waveform.
Another 19 noise attributes are generated and included in the new instance,
making a total of 40 attributes for each instance. The label value is the index
of the waveform (0, 1, or 2). Although this dataset does not fit perfectly to the
definition of a regression task, it allows us to test our implementations with a
high number of numerical attributes.

Setup: The evaluation is performed on an OpenStack13 cluster of 9 nodes, each
with 2 Virtual CPUs @ 2.3 GHz and 4 GB of RAM. All the nodes run Red Hat
Enterprise Linux 6. The distributed implementations are evaluated on a Samza14

cluster with Hadoop YARN 2.215 and Kafka 0.8.1.16 The Kafka brokers coordinate
with each other via a single-node ZooKeeper 3.4.317 instance. The replication
factor of Kafka’s streams in these experiments is 1. The performance of MAMR
is measured on one of the nodes in the cluster.

Throughput: The throughput of several variants of AMRules is shown in Fig. 12
for each dataset examined. HAMR-1 and HAMR-2 stand for HAMR with 1 learner
and HAMR with 2 learners. The parallelism levels of VAMR represent the number

12http://kt.ijs.si/elena_ikonomovska/data.html.
13http://www.openstack.org.
14http://samza.incubator.apache.org.
15http://hadoop.apache.org.
16http://kafka.apache.org.
17http://zookeeper.apache.org.

http://kt.ijs.si/elena_ikonomovska/data.html
http://www.openstack.org
http://samza.incubator.apache.org
http://hadoop.apache.org
http://kafka.apache.org
http://zookeeper.apache.org

202 N. Kourtellis et al.

0

5

10

15

20

25

30

35

8421

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

s)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

0

5

10

15

20

25

30

35

8421

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

s)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

0

5

10

15

20

25

30

35

8421

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

s)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 12 Throughput of distributed AMRules with electricity (left), airlines (mid), and waveform
(right)

Table 5 Statistics for features and rules (with MAMR) for different datasets

Electricity Airlines Waveform

Instances 2,049,280 5,810,462 1,000,000

Attributes 12 10 40

Result message size (B) 891 764 1446

Rules created 1203 2501 270

Rules removed 1103 1040 51

Avg. # rules 100 1461 219

Features created 1069 10,606 1245

of its learners, while in the case of HAMR it represents the number of model
aggregators.

With electricity and waveform, the communication overhead in VAMR (to send
instances from model aggregator to learners and evaluator) exceeds the throughput
gained from delegating the training process to the learners and results in a lower
overall throughput compared to MAMR’s. However, with airlines, the performance
of VAMR is better than MAMR. To verify that the training process for airlines is
more computationally intensive than the other two datasets and, thus, VAMR is more
effective for this dataset, we compare the statistics of rules and predicates creation
for the 3 datasets. The number of rules created, rules removed, and features created
(when a rule is expanded) by MAMR with the 3 datasets are presented in Table 5.
By subtracting the total number of rules removed from the total number of rules
created, we can have an estimation of the average number of rules in the model for
each dataset. A higher number of rules in the model and a higher number of features
created suggest that the model is more complex and it takes more processing power
to search for the best new feature when a rule attempts to expand.

Although VAMR can perform better than MAMR for computationally intensive
datasets, its throughput does not change with different parallelism level. This is due
to the bottleneck at the model aggregator. The processing of each instance at the
model aggregator consists of three steps: finding the covering rules, forwarding the
instance to the corresponding learners, and applying covering rules to predict the
label value of the instance. Since the complexity of these three steps for an instance
is constant, the final throughput is unaffected by the parallelism level.

Large-Scale Learning from Data Streams with Apache SAMOA 203

0

10

20

30

40

50

50
0

A
ir
lin

es

E
le

ct
ri
ci

ty

10
00

W
av

ef
or

m

20
00

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
 i
ns

ta
nc

es
 /

se
co

nd
)

Result message size (B)

Reference
Max throughput

Fig. 13 Maximum throughput of HAMR vs message size

The throughput of HAMR-1 and HAMR-2 exhibits a better scalability compared
to VAMR. Up to parallelism level of 4, the throughput increases almost linearly with
the number of model aggregators. However, there is no or little improvement when
this number is increased from 4 to 8. As we measure this throughput at a single
evaluator, we suspect that the bottleneck is in the maximum rate the evaluator can
read from the output streams of the model aggregators and default rule learner. To
investigate this issue, we plot the maximum throughput of HAMR against the size
of messages from model aggregators and default rule learner to evaluator in Fig. 13.
The values of throughput of a single-partition Samza stream with messages of size
500 B, 1000 B, and 2000 B are used to compute the linear regression line (reference
line) in the figure. The message size for different datasets is shown in Table 5.

As reading is expected to be faster than writing in Samza and Kafka, the
maximum rate the evaluator in HAMR can read from multiple stream partitions
is expected to be higher than the throughput represented by the reference line. This
fact is reflected in Fig. 13 as the maximum throughput of HAMR for the 3 datasets
constantly exceeds the reference line. However, the difference between them is
relatively small. This result is a strong indicator that the bottleneck is the maximum
reading rate of the evaluator. If there is no need to aggregate the result from different
streams, this bottleneck can be eliminated.

Accuracy: We evaluate accuracy of the different implementations of AMRules
in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).
Figures 14, 15, and 16 show the MAE and RMSE for the three datasets, normalized
by the range of label values in each dataset.

204 N. Kourtellis et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8421

M
A

E
/(
M

ax
-M

in
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8421

R
M

SE
/(
M

ax
-M

in
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 14 MAE (left) and RMSE (right) of distributed AMRules with the electricity dataset

0

0.005

0.01

0.015

0.02

8421

M
A

E
/(
M

ax
-M

in
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

0

0.005

0.01

0.015

0.02

8421

R
M

SE
/(
M

ax
-M

in
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 15 MAE (left) and RMSE (right) of distributed AMRules with the airlines dataset

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8421

M
A

E
/(
M

ax
-M

in
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

8421

R
M

SE
/(
M

ax
-M

in
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 16 MAE (left) and RMSE (right) of distributed AMRules with the waveform random
generator

Most of the figures show that error values of distributed implementations present
very small fluctuations around the corresponding MAMR error line. However, there
is a significant increment in the value of RMSE in HAMR with electricity dataset
when the number of model aggregators is increased to 4 or 8. Moreover, larger
variances, i.e., standard error is greater than 5% of the average MAE or RMSE,

Large-Scale Learning from Data Streams with Apache SAMOA 205

Table 6 Memory consumption of MAMR for different datasets

Memory consumption (MB)
Dataset Avg. Std. dev.

Electricity 52.4 2.1

Airlines 120.7 51.1

Waveform 223.5 8

Table 7 Memory consumption of VAMR for different datasets and parallelism levels (AVG:
average; SD: standard deviation)

Memory consumption (MB)

Model aggregator Model learner

Dataset Parallelism AVG SD AVG SD

Electricity 1 266.5 5.6 40.1 4.3

2 264.9 2.8 23.8 3.9

4 267.4 6.6 20.1 3.2

8 273.5 3.9 34.7 2.9

Airlines 1 337.6 2.8 83.6 4.1

2 338.1 1.0 38.7 1.8

4 337.3 1.0 38.8 7.1

8 336.4 0.8 31.7 0.2

Waveform 1 286.3 5.0 171.7 2.5

2 286.8 4.3 119.5 10.4

4 289.1 5.9 46.5 12.1

8 287.3 3.1 33.8 5.7

are also observed in the case of higher parallelism levels (p ≥ 4) of HAMR. The
probable cause is that when a rule in the model aggregators is out-of-sync with the
corresponding one in the learners, i.e., model aggregators are not yet updated with a
newly created rule, the number of instances that use an outdated model is multiplied
by the throughput.

Memory: The reference memory consumption of MAMR for different datasets is
presented in Table 6. This table shows that waveform consumes the largest amount
of memory, followed by airlines and then electricity.

Table 7 reports the memory consumption (average and standard deviation) of
model aggregator and learner processors of VAMR for the 3 datasets with different
parallelism levels. First of all, we notice a high memory consumption at the model
aggregator. However this amount does not differ much for different datasets. This
suggests that, at the model aggregator, there is a constant overhead in memory usage,
but the memory consumption due to the growing decision model is small.

Second, the memory consumption per learner decreases as more learners are
used. As there is definitely some memory overhead for each learner instance, there
is no significant reduction of memory usage per learner when the parallelism level

206 N. Kourtellis et al.

goes from 4 to 8. However, the result indicates that we can spread a large decision
model over multiple learners and make it possible to learn very large models whose
size exceeds the memory capacity of a single machine.

8 Conclusions

We presented the Apache SAMOA platform for mining big data streams. The
platform supports the most common machine learning tasks such as classification,
clustering, and regression. It also provides a simple API for developers that allows
to implement distributed streaming algorithms easily. Apache SAMOA is already
available and can be found online at:

https://samoa.incubator.apache.org
The website includes a wiki, an API reference, and a developer’s manual. Several

examples of how the software can be used are also available. The code is hosted
on GitHub. Finally, Apache SAMOA is released as open source software under the
Apache Software License v2.0.

References

1. Aggarwal, C.C.: Data Streams: Models and Algorithms. Springer, Berlin (2007)
2. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/

ml
3. Ben-Haim, Y., Tom-Tov, E.: A streaming parallel decision tree algorithm. J. Mach. Learn. Res.

11, 849–872 (2010). ISSN 1532–4435. http://dl.acm.org/citation.cfm?id=1756006.1756034
4. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis. J. Mach.

Learn. Res. 11, 1601–1604 (2010)
5. Bordino, I., Kourtellis, N., Laptev, N., Billawala, Y.: Stock trade volume prediction with

Yahoo Finance user browsing behavior. In: 30th International Conference on Data Engineering
(ICDE), pp. 1168–1173. IEEE, New York (2014)

6. Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G., Vakali, A.: Mean
birds: detecting aggression and bullying on Twitter. In: 9th International Conference on Web
Science (WebSci). ACM, New York (2017)

7. Chen, C., Zhang, J., Chen, X., Xiang, Y., Zhou, W.: 6 million spam tweets: a large ground truth
for timely Twitter spam detection. In: International Conference on Communications (ICC).
IEEE, New York (2015)

8. De Francisci Morales, G.: SAMOA: a platform for mining big data streams. In: RAMSS: 2nd
International Workshop on Real-Time Analysis and Mining of Social Streams @WWW (2013)

9. De Francisci Morales, G., Bifet, A.: SAMOA: scalable advanced massive online analysis. J.
Mach. Learn. Res. 16, 149–153 (2015)

10. De Francisci Morales, G., Gionis, A., Lucchese, C.: From chatter to headlines: harnessing the
real-time web for personalized news recommendation. In: 5th ACM International Conference
on Web Search and Data Mining (WSDM), pp. 153–162. ACM, New York (2012)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: 6th
Symposium on Operating Systems Design and Implementation (OSDI), pp. 137–150. USENIX
Association, Berkeley (2004)

https://samoa.incubator.apache.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dl.acm.org/citation.cfm?id=1756006.1756034

Large-Scale Learning from Data Streams with Apache SAMOA 207

12. Devooght, R., Kourtellis, N., Mantrach, A.: Dynamic matrix factorization with priors on
unknown values. In: 21st International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pp. 189–198. ACM, New York (2015)

13. Domingos, P., Hulten, G.: Mining high-speed data streams. In: 6th International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 71–80 (2000)

14. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach.
Learn. 90(3), 317–346 (2013)

15. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. 46(4), 13–30 (2014)

16. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat.
Assoc. 58(301), 13–30 (1963). http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.
10500830

17. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams.
Data Min. Knowl. Disc. 23(1), 128–168 (2011)

18. Jacobs, A.: The pathologies of big data. Commun. ACM 52(8), 36–44 (2009)
19. Kourtellis, N., Bonchi, F., De Francisci Morales, G.: Scalable online betweenness centrality in

evolving graphs. IEEE Trans. Knowl. Data Eng. 27(9), 2494–2506 (2015)
20. Kourtellis, N., De Francisci Morales, G., Bifet, A.: VHT: vertical hoeffding tree. In: 4th IEEE

International Conference on Big Data (BigData) (2016)
21. Oza, N.C., Russell, S.: Online bagging and boosting. In: Artificial Intelligence and Statistics,

pp. 105–112. Morgan Kaufmann, Los Altos (2001)
22. Page, E.: Continuous inspection schemes. Biometrika 41(1–2), 100–115 (1954)
23. Thu Vu, A., De Francisci Morales, G., Gama, J., Bifet, A.: Distributed adaptive model rules for

mining big data streams. In: 2nd IEEE International Conference on Big Data (BigData) (2014)
24. Uddin Nasir, M.A., De Francisci Morales, G., Garcia-Soriano, D., Kourtellis, N., Serafini, M.:

The power of both choices: practical load balancing for distributed stream processing engines.
In: 31st International Conference on Data Engineering (ICDE) (2015)

25. Uddin Nasir, M.A., De Francisci Morales, G., Kourtellis, N., Serafini, M.: When two choices
are not enough: balancing at scale in distributed stream processing. In: 32nd International
Conference on Data Engineering (ICDE) (2016)

26. Vasiloudis, T., Beligianni, F., De Francisci Morales, G.: BoostVHT: boosting distributed
streaming decision trees. In: 26th ACM International Conference on Information and Knowl-
edge Management (CIKM) (2017)

http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830

Process Mining for Analyzing Customer
Relationship Management Systems:
A Case Study

Ahmed Fares, João Gama, and Pedro Campos

Abstract Process Mining aims to discover and evaluate As-Is processes from sets
of sequential events, by examining different instances of the same process and
building models that can detect patterns and behaviors. In the meanwhile, organiza-
tional perspective is being considered in Process Mining by taking advantage of the
ability to extract social networks that represent different kinds of relations between
resources performing the process. The case study tries to describe how Process
Mining could be applied in order to detect and improve “Customer Relationship
Management” process and extract some kind of social networks that represent the
relations between the employees(resources) of National Institute of Statistics of
Portugal (INE) using event logs.

1 Introduction

Process Mining is the link between traditional process model analyses and data-
oriented analysis like Data Mining and Machine Learning, focused on end to end
process using the real data [1]. Nowadays almost all enterprise information systems
store relevant events in more or less structured form using several software systems
like Enterprise Resource Planning systems (ERP) and Customer Relationship
Management (CRM) systems. There is a standard definition of the structure of the
saved event log, whatever the name it is being referred to, e.g. transaction log, audit
trial, history, etc. The high-level structure of any of these logs could be explained
in the form of “Case” and “Activity.” The case is the process instance which has

A. Fares (�)
LIAAD-INESC TEC, Porto, Portugal
e-mail: ahmed.a.fares@inesctec.pt

J. Gama · P. Campos
LIAAD-INESC TEC, Porto, Portugal

Faculty of Economics, University of Porto, Porto, Portugal
e-mail: jgama@fep.up.pt; pcampos@fep.up.pt

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_9

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_9&domain=pdf
mailto:ahmed.a.fares@inesctec.pt
mailto:jgama@fep.up.pt
mailto:pcampos@fep.up.pt
https://doi.org/10.1007/978-3-319-89803-2_9

210 A. Fares et al.

Table 1 Sample of event log

Case Activity Timestamp Performer

Case 1 Record the request 1-1-2015 Agent01
Case 2 Record the request 1-1-2015 Agent02

Case 3 Record the request 2-1-2015 Agent01

Case 1 Response from internal department 2-1-2015 Cons02
Case 1 Sending final answer 2-1-2015 Agent01
Case 2 Response from internal department 2-1-2015 Cons01

Case 2 Sending final answer 2-1-2015 Agent02

Case 3 Response from internal department 3-1-2015 Cons01

Case 2 Close the request 3-1-2015 Agent02

Case 1 Close the request 3-1-2015 Agent01
Case 4 Record the request 4-1-2015 Agent03

Case 5 Record the request 4-1-2015 Agent03

Case 4 Response from internal department 4-1-2015 Agent03

Case 3 Sending final answer 4-1-2015 Agent01

Case 3 Close the request 4-1-2015 Agent01

Case 5 Sending clarification or link 4-1-2015 Agent03

Case 5 Close the request 4-1-2015 Agent03

Case 4 Sending final answer 5-1-2015 Cons01

Case 4 Close the request 6-1-2015 Agent03

begging, intermediate, and ending activities. Moreover, as most of the activities
are performed by resources, event logs also would contain information about these
resources who are initiating or executing activities.

A sample of the event log for a CRM system is presented in Table 1 involving
19 events, 5 process instances(cases), and 6 performers. Considering Case 1 as
an example. It has four unique activities that started with activity “Record the
request” on 1-1-2015 by Agent01, followed by activities “Response from internal
department” and “sending final answer” on 2-1-2015 by Consultant02 and Agent01,
respectively, finally it ends by activity “Close the request” on 3-1-2015 by Agent01.
Using a similar event log, Process Mining techniques are able to construct process
models like the one in Fig. 1 where most of patterns and sequences of the work are
represented. For example, Case 1 is perfectly fit in the model as we can trace the
flow of its events going through the model. Also, the social network in Fig. 2 shows
the relationships among the performers based on the handover of work, e.g. Agent01
and Cons02 have a two-way relation as each one is handing the work over to each
other. On the other hand, Cons01 has relations with all agents, while Cons02 is only
receiving work from Agent01.

Of course, using a sample of five cases, the information is so clear to be caught,
but considering the full data set with thousands of cases, it will not be that easy to
capture the real process model and the relations between performers.

Process Mining for Analyzing Customer Relationship Management Systems. . . 211

Record The
request

OR-
split

OR-
join

Sending
final answer

Close the
request

Response
from

internal
department

Sending
clarification

of link

Fig. 1 Potential process model

Fig. 2 Social network based
on handover-of-work Agent01 Agent02

Agent03

Cons02 Cons01

2 Related Work

Some theoretical researches and practical case studies had been done in order
to prove the applicability of Process Mining and Mining Social Networks in
real life. Also, tools have been developed in order to aggregate enhance Process
Mining algorithms. ProM [2] is the most powerful and extensible framework that is
entirely pluggable environment used mainly for discovering, enhancing, and doing
conformance checking for process models.

Aalst and Song [3] were pioneers in extracting social structure from event logs.
Also, they defined the basic metrics and developed a tool to mine social networks
from event logs (MiSoN) which have been embedded in ProM software.

Later, case studies have been done especially in healthcare [4] and industrial
[5] domains considering (a)process perspective, (b)organizational perspective, and
(c)case perspective. This paper’s focus on the applicability of Process Mining in the
customer service domain considering organizational perspective.

212 A. Fares et al.

3 INE Case Study

3.1 What Is INE?

INE stands for Instituto Nacional de estatstica in Portuguese and the English
translation is “National Institute of Statistics.” INE is responsible for preparing and
publishing official statistical information regarding several sectors in Portugal, e.g.
health sector, environment sector, economic sector, etc. It was created in 1935 with
a head office in Lisbon and four delegations in the main cities Évora, Faro, Coimbra,
and Porto [6].

3.2 Data and Pre-processing

The data is related to Customer Relationship Management (CRM) system that INE
uses in recording all communications with clients requesting data or information.
The process of CRM starts when customer service resource receives a request from
a client regarding some kind of information. Then, he/she replies to the client with
feedback in case the request was within his/her knowledge, otherwise, the request is
being forwarded to one of the internal department resources based on the type of the
request. Later, whenever the internal department has a response, customer service
resource receives the response from the internal department and forward it to the
client.

The event log file has all requests received during the year 2015. There were
5811 requests with 18 unique activities and 81 originators (resources execute that
activities). The numbers of activities per case vary from 3 to 18 with the mean value
of 4. All cases started with activity “Record the request,” but 98% of cases ended
with activity “Close the request.” We can categorize the cases with the irregular
behavior of closing the request into two categories. (a) When a client asks for
clarification after INE considering the request is closed, which could be a minor
problem. (b) When receiving a response from the internal department after closing
the request, which is a major problem that needs a further investigation.

3.3 Questions

Our goal is to answer the following questions:

– How is the real process looks like based on the actual data?
– What activities have to be included in the model?
– What activities could be ignored from the model without causing a significant

impact on the quality of the model?
– Does the process take so much time? And what are the causes?
– Which performers are deeply involved? And how are they related to each other?

Process Mining for Analyzing Customer Relationship Management Systems. . . 213

3.4 Process Discovery

The primary function of Process Mining is to discover the process model using
the real data. We had tried several algorithms in order to know the best of them
to describe our process model taking into consideration the balance between the
four quality forces: fitness, simplicity, precision, and generalization, as most of the
observations in the log should fit in the model but at the same time the model should
be represented in a simple way. Also, the model should be precise enough and not
allow too many behaviors that were not observed in the log, but at the same time
should not be too restricted and to be more general to accept more behaviors.

Before considering the quality forces, the generated model should be reliable
by guaranteeing the soundness (bug-free). In order to consider a model as a sound
model the following three properties should be satisfied: loops of length 1, option to
complete, and proper completion [1, 7].

Alpha Algorithm is the first algorithm that has fit the gap between event logs
and process models [1]. The major flaw of the Alpha algorithm is that it does not
consider frequencies, so all connections between activities are presented even if it
just happened only one time, which produces very complicated models as shown in
Fig. 3a where all the 18 activities were presented while 9 of them occurred in just 2%
of the cases. Because of that we had regenerated the model after filtering out the less
frequent activities from the original log file. The new model is presented in Fig. 3b.
The model was less complicated but it was not sound as it was not able to figure out
Loops of length one (cannot detect unary relationship) so it has represented these
relations as an isolated transition i.e. “Response from Internal Department.”

Fig. 3 Process models discovered with Alpha algorithm miner

214 A. Fares et al.

Fig. 4 Process models discovered with Heuristics miner

Heuristics Miner is an improvement of the Alpha algorithm, especially in three
issues [8]. (a) It takes frequencies into account so that it can filter out noisy or
infrequent behaviors, (b) it’s able to detect short loops (like loops of length one),
and (c) it allows skipping of single activities. However, it does not guarantee sound
process models. The model generated using Heuristics miner had overcome loops of
length 1 (see Fig. 4) with focus on transition “Response from internal department,”
but the model is not sound yet because the proper completion problem still exists
as some transitions produce two tokens, one of them was stuck in the model and
couldn’t reach the end stat.

Evolutionary Tree Mine ETM algorithm always guarantees to generate sound
models as it uses process trees which reduce the search space, so unsound models
will not be considered [7]. On the other hand, it gives users the flexibility of
choosing the preferred balance between quality criteria through two ways. The first
way is to define relative weights for the quality criteria, and ETM miner will search
for the optimal model satisfying the balance between quality criteria according
to user-defined weights. The second way is to define a set of constraints for the
desired qualities for each criterion independently, so ETM will return a set of models
satisfying these constraints. Later the user can preview and select the best model in
case he is not able to define relative weights between quality criteria.

The first way, we had defined the relative weights according to the importance
of each criterion as following: Fitness = 10, Precision = 5, Simplicity = 1,
Generalization = 1. The algorithm has reached the best model with overall fitness of
0.967. The process model (Petri net) in Fig. 5 represents the best model, after coding
activities in letters for the readability as mentioned in Table 2.

The process model has nine transitions or activities, starts with “Record the
request” activity, then having a non-exclusive choice (OR) between three activities
on the first hand that either “Request is not feasible” or exclusive choice loop with

Process Mining for Analyzing Customer Relationship Management Systems. . . 215

Fig. 5 Petri net produced by ETM miner

Table 2 Activities legend Code Activity

A Record the request

B Request is not feasible

C Response from internal department

D Budget accepted

E Sending clarification or link

F General communication with the client

G Sending final answer

H Request is duplicated

I Close the request

S Silent transition

“Budget accepted” or “Response from Int.dep.”. Normally the process instant has
one “Budget accepted” event and one or more “Response from Int.dep.” which in
most of the cases followed itself because the system does not record the event of
sending the request to an internal department and just record the response from
the internal department. Also, there could be several responses from the internal
department for the same request as the client could not be satisfied by the response
or he had changed his requirements during the same request. On the other hand of
the non-exclusive choice, there could be one of two activities “Sending clarification
of link” or “General communication with the client.” Then the process goes to an
exclusive choice (XOR) between either “Request is duplicated” or “Sending final
answer” as the last step before reaching the end of the process by “Close the request”
activity.

The second way, we had used the following constraints: Minimum 0.85 for fitness
and precision, minimum 0.75 for simplicity and generalization and 1000 maximum
number of generations. As the primary quality dimension is replay fitness, we had
chosen the best five models with the highest fitness values but also considering the
business requirements of the desired model as some models return unacceptable
results, e.g. having the option to start with activities other than “Record the request”
which is illogical for the business. The results are shown in Table 3, ordered by the
average quality assuming equal weights for all dimensions.

216 A. Fares et al.

Table 3 Quality dimensions for the best 5 models in Pareto front with ETM

Seq. Fitness Precision Generalization Simplicity Overall average quality

1 0.962 0.907 0.967 1.000 0.959

2 0.962 0.895 0.974 1.000 0.958

3 0.966 0.895 0.967 1.000 0.957

4 0.968 0.862 0.975 1.000 0.951

5 0.971 0.853 0.972 1.000 0.949

Although numbers in Table 3 are very close to each other, the models represented
in process trees are quite different, e.g. models 1, 3, and 5 have ten nodes but
models 2 and 4 have just nine nodes, and some nodes are not in common. Another
example of the differences between models is that models 1, 3, and 4 do not have a
parallel relation (AND) but models 2 and 5 have a parallel relation between activities
“General communication with the client” and “Budget accepted” that two activities
are represented in the rest of models by non-exclusive relation. These differences
prove that quality dimensions are helping to filter the candidate models but the
opinion of business experts and business process requirements will always have the
final decision.

The major drawback of ETM miner is not in the quality of the generated models
but in time consumed in generating these models. As ETM is a genetic algorithm, it
is building models based on repeating the following cycle until one or more stopping
criteria are satisfied, it could be a maximum number of generations, a maximum
time consumed and/or the number of steady states. The cycle starts with generating
random models, evaluates each model by computing overall quality based on the
user defined weights, selects the best candidates and adds them to the new generated
random models [9], and then repeats the cycle. After satisfying the stopping criteria,
the best model for the last generation will be selected.

3.5 Conformance Checking

The alignment-based approach is the most advanced conformance checking
approach [1]. It starts with aligning observed behavior from the log with the
modeled traces (by choosing the trace in the model which is the best-matched to
the behavior from the log). In the case of not having a perfect match (Synchronous
move), the most similar trace would be chosen based on the cost function. (Cost
function: giving a cost to each move happening in log only and does not have a
similar move in the model and another cost for move in the model only which does
not have a similar move in the log). The total cost defines which alignment should
be considered (which trace should be considered for a particular behavior). There
could be more than one alignment solution (equals cost), so fitness and other quality
measures will be used to decide the best alignment solution.

Process Mining for Analyzing Customer Relationship Management Systems. . . 217

Fig. 6 Petri net after projected with alignment

First, we had to convert process tree into a Petri net and coding activities in letters
for the readability as mentioned in Table 2, also note that silent transition is not an
activity but it is being used to handle multiple paths between activities [1].

Later, we had projected the Petri net with alignment as shown in Fig. 6, where
each rectangle (Transition) represents an activity and each circle (Place) used to
control firing transitions. The color of transitions and the thickness of arrows show
the frequency of cases going through this transition. The size of places shows moves
on log frequency (traces in the log which couldn’t be aligned to the model).

For example, transition E has a high number of traces going through it, and all of
them are entirely aligned with the model (100% Synchronous) with a total number
of cases went through it 4083. On the other hand, Transition F have a total of 1035
moves in the model, 425 of them moved in the model only without occurrence in
the original log, and 610 moves were Synchronous in both model and log. Finally,
most activities have a perfect match between log and model except for activities B,
F, and H. Where cases had deviated in these three activities and algorithm had to
make some moves on the model in order to align these traces to the closest path.

3.6 Performance Analysis

We had generated the same process model (Petri net) but now it is projected with
time consumed in each transition as shown in Fig. 7 which allows us to detect the
bottlenecks in the process by discovering which activity takes much time to be
performed.

Using the alignments, we know exactly how to relate events to the process model,
and we can annotate activities with the times at which it has been observed. For now,
we only know the completion times, and we had no clue when they had started.
So the time has been calculated for each activity as the difference between its
completion time and the previous activity’s completion time (which leads to the
current activity). If we also had the starting time, we could distinguish between
waiting time and execution time of activity. The color of transitions shows the
relative time consumed in order to perform each activity, e.g. activity C has the

218 A. Fares et al.

Fig. 7 Performance analysis using time perspective

longest time as it appears with very dark color which means it is taking so much time
to be accomplished comparing with the rest of activities. Also, we had discovered
that it takes on average 5.59 days to be performed while the whole cycle takes on
average 5.41 days, so we can say that there is a potential bottleneck in activity C
which needs further analysis with the cooperation of business owners in order to
know the origin of the problem.

3.7 Building Social Network

All organizations establish a formal organizational structure where all the hierar-
chical relationships between employees are defined. However, in most cases, the
workflow in the organizations has some gaps with the predefined structure [10].

Our focus here was on organizational perspective, more precisely in extracting
social network from event logs and makes it available for further social network
analysis. As events are being executed and/or initiated by resources, so it is natural
to collect information about these resources while recording the activities details
[11]. The social network in Fig. 8 has been inferred from the event log, where each
node represents a resource, connection represents a handover of work between two
resources in the same case, and the arrow shows the direction of handover. Also,
there are two types of resources, customer service resources (Agentxx) and internal
department resources (Consxx). Agents with very high number of connections with
Cons. are centralized, while resources on the periphery (most of them are Cons.) are
only communicating with particular agents, e.g. in Fig. 9, Cons39 is connected with
just four resources, but always receiving tasks from 3 of them (Agent01, Agent03,
Agent08) and handover tasks to two resources (Agent01, Cons41). It is not normal
to have two resources with the same type connected to each other (Cons39 and
Cons41) which needs a further investigation.

There are some drawbacks in ProM social network package such as the results
are just presented in a graphical form, so the relations between nodes cannot be
extracted in a numerical way to be used in further analysis.

Process Mining for Analyzing Customer Relationship Management Systems. . . 219

Fig. 8 Social network based on handover-of-work

Fig. 9 Zoom in social network

220 A. Fares et al.

3.8 Conclusions and Future Study

Process Mining techniques can be applied to analyze and improve any operational
processes in a variety of domains as it is very relevant for today’s organizations
because almost all enterprise information systems are storing relevant events in
some structured form (ERP, CRM, WFMS, etc.).

The final process model that has been extracted during this work based on the
real log history would help INE to have a clear model that only includes the most
relevant activities, and ignores the rest of activities that will not have a significant
impact on the model quality. Also, a potential bottleneck has been discovered, which
needs further analysis using detailed row data including some information regarding
the time when the task is assigned to a resource and when it has been accomplished.
So we will be able to define the root of the problem.

On the other hand, INE assumes that any internal department resource can be
contacting with any customer service agent. During this work, we had proof that
this assumption is not correct and some resources are only receiving tasks from
specific resources. Also, it has been discovered that some resources have a dual role
and can act as a customer service and internal department resource at the same time.

For a future study, we will need to extract more detailed row data that will allow
us to analyze the time perspective deeper, in order to focus more on detecting real
bottleneck and recourses response time. Also, we are waiting for some updates on
Social Network package in ProM software that would allow us to extract social
network in a numerical form which could be used to extend this work.

Acknowledgements This work was supported by the research project TEC4Growth—Pervasive
Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-
000020, , North Portugal Regional Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, and through the European Regional Development Fund
(ERDF) and the ERDF European Regional Development Fund through the Operational Pro-
gramme for Competitiveness and Internationalization—COMPETE 2020 Programme within
project POCI-01-0145-FEDER-006961, and by National Funds through the FCT Fundao para a
Cincia e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project
UID/EEA/50014/2013.

References

1. Van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Berlin (2011)

2. ProM: Prom 6 tutorial. http://www.promtools.org/prom6/downloads/prom-6.0-tutorial.pdf
(2010)

3. Van der Aalst, W., Song, M.: Mining social networks: uncovering interaction patterns in
business processes. In: International Conference on Business Process Management. Springer,
Berlin (2004)

4. Mans, R.S., Schonenberg, M.H., Song, M., et al.: Application of process mining in healthcare
: a case study in a Dutch hospital. Biomed. Eng. Syst. Technol. 25, 425–438 (2009)

http://www.promtools.org/prom6/downloads/prom-6.0-tutorial.pdf

Process Mining for Analyzing Customer Relationship Management Systems. . . 221

5. van der Aalst, W.M.P., Reijers, H.A., Weijters, A., et al.: Business process mining: an industrial
application. Inf. Syst. 32(5), 713–732 (2007)

6. INE: Statistics Portugal. https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE
(2015)

7. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: OTM 2012: On the Move to Meaningful
Internet Systems: OTM 2012, pp. 305–322. Springer, Berlin (2012)

8. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (fhm). In: IEEE Symposium on
Computational Intelligence and Data 565 Mining (CIDM), pp. 310–317 (2011)

9. Van Eck, M. L., Buijs, J.C.A.M., van Dongen, B.F.: Genetic process mining: alignment-based
process model mutation. In: Business Process Management Workshops, pp. 291–303. Springer
International Publishing, Cham (2015)

10. CROSS, R.: Knowing what we know: supporting knowledge creation and sharing in social
networks. Organ. Dyn. 30, 100120 (2001)

11. Song, M., van der Aalst, W.: Towards comprehensive support for organizational mining. Decis.
Support. Syst. 46(1), 300317 (2008)

https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE

Detecting Smooth Cluster Changes in
Evolving Graph Structures

Sohei Okui, Kaho Osamura, and Akihiro Inokuchi

Abstract Graph mining is a set of techniques for finding useful patterns in various
types of structured data. Many effective algorithms for mining static graphs have
been proposed. However, graphs of human relationships and evolving genes change
over time, and such evolving graphs require different algorithms for analysis. In
this chapter, we explain a method called O2I for clustering in evolving graphs
that can detect changes in clusters over time. O2I partitions the graph sequence
into smooth clusters, even when the numbers of clusters and vertices vary. It first
constructs a graph from the graph sequence, then uses spectral clustering and the
RatioCut to apply k partitioning to this graph. O2I is compared in detail with the
preserving clustering membership (PCM) algorithm, which is a conventional online
graph-sequence clustering algorithm in which the numbers of clusters and vertices
must remain constant. We further show that, in contrast to PCM, the performance
of O2I is not dependent on the clustering of the initial graph in the graph sequence.
Experiments on synthetic evolving graphs show that O2I is practical to calculate and
addresses the main disadvantages of PCM. Further tests on real-world data show
that O2I can obtain reasonable clusters. This method is hence a flexible clustering
solution and will be useful on a wide range of graph-mining applications in which
the connections, number of clusters, and number of vertices of the graphs evolve
over time.

S. Okui
Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Japan

K. Osamura · A. Inokuchi (�)
School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
e-mail: osamura.kaho.oe5@is.naist.jp; inokuchi@kwansei.ac.jp

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_10

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_10&domain=pdf
mailto:osamura.kaho.oe5@is.naist.jp
mailto:inokuchi@kwansei.ac.jp
https://doi.org/10.1007/978-3-319-89803-2_10

224 S. Okui et al.

1 Introduction

Studies on graph mining have established many approaches for finding useful
patterns in various types of structured data. Although the major algorithms for
graph mining are quite effective in practice, most of them focus on static graphs,
whose structures do not change over time. However, evolving graphs are used to
model many real-world applications [12]. For example, a human network can be
represented as a graph in which each human and each relationship between two
humans correspond to a vertex and an edge, respectively. If a human joins (or leaves)
a community in the human network, the numbers of vertices and edges in the graph
can change. Similarly, the evolution of a gene network, which consists of genes
and their interactions, produces a graph sequence when genes are added, deleted,
or mutated. Recently, much attention has been given to graph mining from evolving
graphs [6, 19]. Figure 1 shows an example of an evolving graph with four steps
and ten unique IDs, indicated by the numbers attached to the vertices. In addition,
edge weights are represented by line thickness. For example, humans in a human
network correspond to vertices, each of the humans has a unique ID. The strength
of the friendship between two humans is represented as an edge weight between
two vertices. The current human network is represented as a weighted graph, and
the network evolves over time. To represent the evolving network, we use a graph
sequence consisting of a series of graphs.

In this chapter, we tackle the problem of clustering in evolving graphs to detect
changes in the clusters. In an evolving graph, the number of clusters increases when
a cluster divides or decreases when two clusters merge. Although most conventional
clustering algorithms focus on partitioning a set of points in a vector space into k

clusters, von Luxburg [18] notes that the k partition problem in a vector space can
be reduced to the k partition problem in a graph, where each vertex corresponds
to a point in the set to be partitioned and an edge indicates the similarity between
two vertices. Therefore, the methods in this chapter are applicable to both evolving
graphs and points arriving over time.

In [19], problems involving clustering points arriving over time are categorized
into four types. Let Dt be a set of points at time t in the vector space, and let
D = 〈D1,D2, . . . , DT 〉 be a series of sets of points. The first type of clustering

Fig. 1 Example of a weighted graph sequence with four steps (numbers attached to vertices
represent vertex IDs)

Detecting Smooth Cluster Changes in Evolving Graph Structures 225

problem is where only one point arrives at each time t [1–3, 7, 9, 11, 15]. This
type of problem focuses on online data processing. The second type of problem is
clustering n sequences into k clusters and is applicable to clustering DNA sequences
or protein sequences in bioinformatics [4, 14, 17]. This differs from the first type of
problem as it does not require online data processing and Dt consists of n points.
The third type of problem is to cluster n data streams into k clusters [5, 8]. Although
this is the same as the first type in terms of the online analysis of data, each set Dt

contains n points, unlike the first type. Preserving cluster membership in Sect. 2.2
tackles this type of problem.

The fourth type of problem, which is addressed in this chapter, analyzes a series
D of sets Dt , each of which contains at most n points and is given before the
analysis [19]. Although each point clustered in the second type of problem is a
sequence, each point clustered in the fourth type of problem is a point in Dt . In
addition, while a set of k clusters is returned in the second type of problem, T sets
of k clusters are returned in the fourth type. While the predecessors Dτ (τ < t) of
Dt are used to cluster Dt in the third type of problem, its successors Dτ (τ ≥ t) are
also used to cluster Dt in the fourth type.

In this chapter, we explain an algorithm called O2I that partitions the vertices
of a graph sequence into smooth clusters, even when the number of vertices is
allowed to vary over time [16]. O2I uses spectral clustering and relies on applying
the k partition problem to a graph constructed from a graph sequence. Several
experiments demonstrate the performance of O2I and its advantages over existing
methods.

The remainder of this chapter is organized as follows: In Sect. 2, we formalize
the graph sequence clustering problem that we consider in this chapter and explain
the conventional method called PCM and its some drawbacks. In Sect. 3, we
explain a method called O2I that overcomes the drawbacks of PCM and discuss
the relationship between the performance of OI2 and connectivities of graphs in
a graph sequence. In Sect. 4, we compare O2I with PCM in terms of clustering
accuracy using artificially generated datasets, and verify the practicality of O2I on a
real-world dataset. Finally, we conclude the chapter in Sect. 5.

2 Clustering a Graph Sequence

2.1 Problem Definition

In this chapter, to model an evolving graph, we use a weighted graph sequence. A
weighted graph at time t is represented by G(t) = (

V (t), E(t), w(t)
)
, where V (t) is

a set of vertices, each of which has a unique ID, E(t) = V (t) × V (t) is the set of
all edges, and w(t) is a function that assigns nonnegative real values to the edges
at time t . A series of T graphs is called a weighted graph sequence with T steps
and is denoted by

〈
G(1),G(2), . . . ,G(T)

〉
. Although we assume that the value of

226 S. Okui et al.

|V (t)| = n is unchanged in the graph sequence in this section, the value of |V (t)| in
O2I explained in the next section changes over time.

Figure 1 shows an example of a graph sequence with four steps. In the figure,
edge weights are represented by line thickness. For the sake of simplicity, we do not
show edges with weight 0 in the figures in this chapter.1

The vertices V (t) in a graph at time t are partitioned into k disjoint subsets

P (t) =
{
C

(t)
1 , C

(t)
2 , . . . , C

(t)
k

}
, where

⋃k
j=1 C

(t)
j = V (t). Using this notation, a

cluster sequence can be written as
〈
C

(1)
j , C

(2)
j , . . . , C

(T)
j

〉
for 1 ≤ j ≤ k.

Given a graph sequence
〈
G(1),G(2), . . . ,G(T)

〉
and the number of clusters k

as inputs, the problem addressed in this chapter is how to determine cluster

sequences
{〈

C
(1)
j , C

(2)
j , . . . , C

(T)
j

〉
| 1 ≤ j ≤ k)

}
that satisfy the following two

requirements:

1. Vertices connected by high-weight edges in a graph at time t should appear in
the same cluster for each graph in the sequence.

2. Clusters C
(t)
j and C

(t+1)
j should be almost the same. This requirement is called

cluster smoothness.

Figures 2 and 3 show cluster sequences obtained from the graph sequence in
Fig. 1. When we do not take requirement (2) into account, vertices 5 and 6 appear
in the same cluster because the edge (5, 6) at time 3 has a high weight, as shown in
Fig. 2. In contrast, when we take requirement (2) into account, vertex 6 is assigned
to C

(t)
2 before and after time 3, and hence both clusters C

(2)
2 and C

(3)
2 are the same.

Fig. 2 Cluster sequences (1) obtained from the graph sequence in Fig. 1

1The weight 0 means that there is no connection between two vertices. We need these zeros to
create Laplacian matrices in Sect. 2.2.

Detecting Smooth Cluster Changes in Evolving Graph Structures 227

Fig. 3 Cluster sequences (2) obtained from the graph sequence in Fig. 1

2.2 Preserving Cluster Membership

The k partition problem for a graph G = (V ,E,w) is defined as the problem of
finding non-empty sets C1, C2, . . . , Ck that partition V and that minimize

k∑

j=1

1

|Cj |
∑

e∈E(Cj ,V \Cj)

w(e),

where E(S, V \ S) is the set of edges (v, u) with v ∈ S and u ∈ V \ S. This
optimization problem minimizes the function called RatioCut. According to [18],
the above minimization problem is equivalent to

min
X∈Rn×k

tr(XT LX) s.t. XT X = I, 2 (1)

where the n-by-k matrix X indicates the cluster to which each vertex belongs, with
element xij of the matrix given by

xij =
{

1√|Cj | if vi ∈ Cj ,

0 otherwise,

where XT X = I indicates that each vertex in graph G belongs to one cluster, where
I is the identity matrix of size n. In addition, L is the Laplacian matrix of G, defined
as follows. Let A be an adjacency matrix for G, where the (i, j)th element aij is
weight w((i, j)) if an edge exists between vi and vj in G. Otherwise, aij is 0. Setting
D = diag(

∑n
i=1 ai1,

∑n
i=1 ai2, . . . ,

∑n
i=1 ain), the Laplacian matrix is L = D−A.

Equation (1) is called spectral clustering.

2Because of space limitations, we omit XT X = I henceforth.

228 S. Okui et al.

One online algorithm for clustering a graph sequence is called preserving cluster
membership (PCM) [10]. In this algorithm, the matrix Xt−1 corresponding to G(t−1)

is known and we are given graph G(t). The algorithm obtains cluster sequences by
iteratively optimizing

min
Xt∈Rn×k

tr(XT
t LtXt) + α||XtX

T
t − Xt−1X

T
t−1||2, (2)

where α ≥ 0 and Lt is the Laplacian matrix of G(t). If the ith and j th vertices
belong to the same cluster at time t , then the (i, j)th element of XtX

T
t is a positive

real number. Otherwise, the (i, j)th element is 0. Minimizing the second term of the
objective function in Eq. (2) under the Frobenius norm, where ||W ||2 = tr(WT W),
satisfies requirement (2). The objective function is transformed as follows:

tr(XT
t LtXt) + α||XtX

T
t − Xt−1X

T
t−1||2

= tr(XT
t LtXt) + α tr(XtX

T
t − Xt−1X

T
t−1)

T (XtX
T
t − Xt−1X

T
t−1)

= tr(XT
t LtXt) + α tr(XtX

T
t XtX

T
t − 2XtX

T
t Xt−1X

T
t−1 + Xt−1X

T
t−1Xt−1X

T
t−1)

= tr(XT
t LtXt) + 2αk − 2α tr(XT

t Xt−1X
T
t−1Xt)

= 2αk + tr(XT
t LtXt − 2αXT

t Xt−1X
T
t−1Xt)

= 2αk + tr[XT
t (Lt − 2αXt−1X

T
t−1)Xt].

Therefore, Eq. (2) is equivalent to

min
Xt∈Rn×k

tr
[
XT

t

(
Lt − 2αXt−1X

T
t−1

)
Xt

]
. (3)

In [10], an offline algorithm was also proposed as an extension to PCM. To
demonstrate the offline algorithm, the authors introduced an optimization problem
for clustering G(t) using known Xt−1 and Xt+1 corresponding to clusters P (t−1)

and P (t+1), respectively:

min
Xt∈Rn×k

tr
[
XT

t

(
Lt − αXt−1X

T
t−1 − αXt+1X

T
t+1

)
Xt

]
. (4)

We define the functions f unc1(L), f unc2(Lt ,Xt−1, α), and f unc3(Lt ,Xt−1,

Xt+1, α) to be the minimum values of Eqs. (2), (3), and (4), respectively. Using these
functions, the PCM offline algorithm is shown in Algorithm 1. First, the PCM offline
algorithm clusters G(1), and then it clusters G(2) using the results from time 1. This
process is repeated for the series of graphs. Next, it clusters G(1) using the results
from time 2. Then, it clusters G(2) using the results from times 1 and 3. The process
repeats until convergence.

Detecting Smooth Cluster Changes in Evolving Graph Structures 229

Algorithm 1: PCM_offline

Data: 〈G(1),G(2), . . . , G(T)〉, k
Result: X1, X2, . . . , XT

1 for t ∈ [1, T] do
2 if t = 1 then
3 X1 = f unc1(L1);
4 else

Xt = f unc2(Lt ,Xt−1, α);

5 repeat
6 for t ∈ [1, T] do
7 if t = 1 then
8 X1 = f unc2(L1, X2, α);
9 else

if t = T then
10 XT = f unc2(LT ,XT −1, α);
11 else

Xt = f unc3(Lt ,Xt−1, Xt+1, α);

until X1, X2, . . . , XT converge;
12 return X1, X2, . . . , XT ;

When α is decreased, each graph in a graph sequence is clustered independently
because the first term in Eq. (2), which relates to requirement (1), is emphasized
over requirement (2). This results in the cluster sequences in Fig. 2. On the one hand,
when α is increased, the smooth cluster sequences in Fig. 3 are obtained because the
second term in Eq. (2), which relates to requirement (2), is emphasized. In concrete
terms, vertex 6 at time 3 belongs to cluster sequence C1 in Fig. 2, while it belongs
to the other cluster sequence C2 at times 2 and 4. On the other hand, placing vertex
6 in C1 in Fig. 3 decreases the second term of Eq. (2), and hence vertex 6 belongs to
C1 at all times.

2.3 Drawbacks of PCM

We point out three drawbacks of the PCM offline algorithm. First, the performance
of PCM is dependent on G(1). If the vertices in each latent cluster of G(1) are
strongly connected, then the problem of obtaining cluster sequences from a graph
sequence is relatively easy because the algorithm uses X1 to cluster G(2) and then
uses Xt to cluster G(t+1) for t > 1. However, if the clusters for G(1) are not suitable,
then this unsuitability propagates to clusters in P (t) for t > 1 because of the second
term in Eq. (2).

The second drawback comes from having k clusters at all times. For this reason,
PCM cannot determine suitable cluster sequences from a graph sequence when the
number of clusters increases after one cluster divides or when the number of clusters

230 S. Okui et al.

decreases after two clusters merge. To detect suitable cluster sequences from a graph
sequence, we should allow the number of clusters to vary over time.

The third drawback of PCM is related to the second drawback. The number of
vertices in the graph is the same at all times in PCM. However, the members of a
social network are not constant, but change over time. Therefore, we should allow
members to join and leave the network and develop a clustering algorithm for data
in which the number of vertices is not constant.

3 Detecting Smooth Cluster Changes in a Graph Sequence

3.1 Clustering a Graph Sequence Using Smoothness Between
Two Successive Graphs

Okui et al. have proposed a method called O2I that overcomes the first and second
drawbacks of PCM that are explained in the previous section [16]. To explain the
method, we discuss the problem of obtaining the X1, X2, . . . , XT ∈ Rn×k that
minimize

T∑

t=1

tr(XT
t LtXt) + α′

T −1∑

t=1

||Xt − Xt+1||2, (5)

where α′ > 0. Minimizing the first term in Eq. (5) corresponds to clustering
each graph G(t) in a graph sequence according to requirement (1). To show that
minimizing the second term in Eq. (5) corresponds to requirement (2), we consider
a graph sequence consisting of only two graphs. The objective function for the
sequence is given by

tr(XT
1 L1X1) + tr(XT

2 L2X2) + α′||X1 − X2||2. (6)

From Eq. (6), we derive the equation in Fig. 4. Similarly, the equation shown in
Fig. 5 is derived from Eq. (5). When D′ is the underlined matrix in Fig. 5 and W ′ is
the double underlined matrix in Fig. 5, matrix L′ = D′ −W ′ is the Laplacian matrix
for a graph G′ that satisfies the following:

• The number of vertices in G′ is n × T . Henceforth, the ith vertex of G′ at time t

is represented by vt,i .
• If G(t) contains an edge (i, j) of weight w((i, j)), then G′ also contains an edge

(vt,i , vt,j) of w((i, j)).
• Graph G′ contains an edge (vt,i , vt+1,i) of weight α′ for 1 ≤ t ≤ T − 1 and

1 ≤ i ≤ n.

Therefore, the problem of minimizing Eq. (5) is reduced to the k partition problem
for G′. The edges between vertices vt,i and vt+1,i have weight α′. Cutting some

Detecting Smooth Cluster Changes in Evolving Graph Structures 231

tr XT
1 L1X1 + tr XT

2 L2X2 +α ||X1 −X2||2
= tr XT

1 L1X1 +XT
2 L2X2 +α tr[XT

1 X1 +XT
2 X2 −XT

2 X1 −XT
1 X2]

= tr X1
X2

T L1 0
0 L2

X1
X2

+α tr X1
X2

T I −I
−I I

X1
X2

= tr X1
X2

T L1 +α I −α I
−α I L2 +α I

X1
X2

= tr X1
X2

T D1 +α I 0
0 D2 +α I − W1 α I

α I W2

X1
X2

Fig. 4 Objective function for a graph sequence with two steps

Fig. 5 Objective function for a graph sequence with T steps

)2()1(,GG 'G

1,1v

2,1v
3,1v

4,1v 5,1v
6,1v

7,1v
8,1v

9,1v 10,1v

11,1v

1,2v

2,2v 3,2v

4,2v
5,2v

6,2v 7,2v8,2v

9,2v
10,2v11,2v

Fig. 6 Conversion of a graph sequence with two steps into a graph G′

of these edges increases the value of the objective function in Eq. (5) when G′ is
partitioned to k subgraphs. For this reason, vt,i and vt+1,i are likely to appear in the
same cluster, so these edges may not be cut. Therefore, minimizing Eq. (5) satisfies
requirement (2). Figure 6 shows an example of transforming a graph sequence with
two steps 〈G(1),G(2)〉 to a graph G′. In this figure, broken lines represent edges of
weights α′.

The problem of minimizing Eq. (5) has hence been reduced to the k partition
problem for G′. The cluster sequences obtained by O2I is not dependent on
clustering G(1), unlike in PCM, which first partitions G(1) and then iteratively
partitions the other graphs. Thus, the first drawback of PCM is overcome. In

232 S. Okui et al.

Algorithm 2: O2I

Data: 〈G(1),G(2), . . . , G(T)〉, k
Result: X1, X2, . . . , XT

1 Construct G′ from 〈G(1),G(2), . . . , G(T)〉;
2 � = n × T ;
3 Compute the Laplacian matrix L′ of G′;
4 Compute the first k eigenvectors u1, u2, . . . , uk of L′;
5 Let U ∈ R�×k be the matrix that has uq as its qth column;
6 For i = 1, . . . , �, let yi ∈ Rk be the vector corresponding to the ith row of �;
7 Use the k-means algorithm to cluster the points {y1, y2, . . . , y�} in Rk into clusters

P1, P2, . . . , Pk ;
8 for t ∈ [1, T] do
9 Xt = 0;

10 for j ∈ [1, k] do
11 for vt,i ∈ Pj do
12 x

(t)
i,j = 1√|{vt ′,i′ ∈Pj |t=t ′}| ;

13 return X1, X2, . . . , XT ;

addition, some clusters obtained using O2I may not contain any vertex from time t .
Therefore, O2I does not guarantee a partition of each graph G(t) into exactly
k clusters, but instead partitions the graph into k or fewer clusters. Hence, O2I
overcomes the second drawback.

Note that O2I requires α′ > 0 in Eq. (5). If α′ = 0, then there are no edges
between G(t) and G(t+1) in G′, so when G′ is partitioned into T clusters, each
graph G(t) becomes a cluster. Therefore, α′ should be a positive real number.

The objective function for O2I is similar to the objective function for PCM.
However, it is impossible to derive an equation in the form of Fig. 4 from

tr(XT
1 L1X1) + tr(XT

2 L2X2) + α||XT
1 X1 − XT

2 X2|| 2.

Thus, it is impossible to reduce the objective function for PCM to the k partition
problem for a graph.

Algorithm 2 shows the pseudo code for O2I. The method uses the spectral
clustering algorithm [18] in lines 3–6. It then initializes Xt to the zero matrix in
lines 7–8. In lines 9–11, if the j th cluster Pj contains vt,i , then 1√|{vt ′,i′ ∈Pj |t=t ′}|
replaces x

(t)
i,j in Xt .

Using Algorithm 2, the number of vertices does not have to be n at all times.
The third drawback is hence resolved by replacing � = n × T in line 2 with � =∑T

t=1 |V (t)|.

Detecting Smooth Cluster Changes in Evolving Graph Structures 233

3.2 Clustering Using the Forgetting Rate

We considered the smoothness of clusters between two consecutive timesteps in the
previous subsection. In this section, we extend O2I to consider cluster smoothness
between timesteps separated by distance τ . This is formulated in the following
equation:

T∑

t=1

tr(XT
t LtXt) + α′

T −1∑

τ=1

γ τ−1
T −τ∑

t=1

||Xt − Xt+τ ||2, (7)

where γ is called the forgetting rate and 0 ≤ γ ≤ 1. Equation (7) is a
generalization of Eq. (5), as they are equivalent when γ = 0. The equation shown
in Fig. 7 is derived in a manner similar to that in the previous section, where
Bt = α′ ∑T

τ=1,τ
=t γ |t−τ |−1I is a diagonal matrix. The underlined part in Fig. 7
is the Laplacian matrix L′′ of graph G′′ that satisfies the following:

• The number of vertices in G′′ is n × T .
• If G(t) contains an edge (i, j) of weight w((i, j)), then G′ also contains an edge

(vt,i , vt,j) of w((i, j)).
• Graph G′′ contains an edge of weight α′γ (t ′−t−1) between vt,i and vt ′,i for 1 ≤

t < t ′ ≤ T and 1 ≤ i ≤ n.

Graph G′ is a subgraph of G′′. When γ = 0, G′ is isomorphic to G′′. Algorithm 2
is applicable to G′′ by replacing G′ and L′ with G′′ and L′′, respectively. In the
previous section, we explained that O2I overcomes the third drawback of PCM.
However, when vi is contained in G(t) but not in both G(t−1) and G(t+1), we
cannot consider the smoothness of clusters for this vertex. In contrast, O2I using
the forgetting rate further overcomes the third drawback by introducing edges with
weights that decrease exponentially with the distance between graphs.

Fig. 7 Objective function with forgetting rate for a graph sequence with T steps

234 S. Okui et al.

3.3 Connectivities of Graphs

In this section, we discuss the effect of the connectivity of each graph in a graph
sequence on the clustering result. For the sake of simplicity, we consider the simple
example of a sequence of sets of points, as shown in Fig. 8. Each timestep consists
of three points whose coordinates are given in the figure. We convert each of the
sets of the points into a graph where the vertices and edge weights are the points

and exp(− d2

2), respectively, where d is the Euclidean distance between two points.
We then obtain a graph sequence with two steps. We assume that 〈{v1}, {v1, v2}〉 and
〈{v2, v3}, {v3}〉 are desirable cluster sequences obtained from the graph sequence for
k = 2.

Figure 9 shows the graph G′
1 = (V ′

1, E
′
1, w

′
1) created from the graph sequence

with two steps. Because G′
1 is partitioned by RatioCut, we obtain the following

solutions depending on the value of α′.

min
2∑

j=1

1

|Cj |
∑

e∈E′
1(Cj ,V ′

1\Cj)

w′
1(e)

=
{

2α′ if 0 < α′ ≤ 0.56 (C1 = {v1,1, v1,2, v1,3}), and

1.11 otherwise (C1 = {v1,1, v2,1}).
(8)

Fig. 8 Example of a
sequence of sets of points

Fig. 9 Graph G′
1 created

from the sequence of points
in Fig. 8

Detecting Smooth Cluster Changes in Evolving Graph Structures 235

Fig. 10 Solutions for G′
1 and

various α′

Fig. 11 Solutions for G′
2 and

various α′

Equation (8) is represented by Fig. 10 for various α′. When α′ is less than 0.56,
G′

1 is partitioned into {v1,1, v1,2, v1,3} and {v2,1, v2,2, v2,3}, which does not satisfy
cluster smoothness. In contrast, when α′ is greater than 0.56, G′

1 is partitioned
into {v1,1, v2,1} and {v1,2, v1,3, v2,2, v2,3}, which means that O2I cannot detect any
changes in the clusters because requirement (2) is oversatisfied. Thus, O2I has no
chance to obtain the desirable cluster sequences from G′

1 shown in Fig. 9, even if α′
is tuned to the optimal value.

In the previous example, we created the complete graph from each set of points
in a timestep. In [18], the ε-neighborhood graph and κ-nearest neighbor graph are
introduced as an alternative to a complete graph created from a set of points. In the
ε-neighborhood graph, two points are connected by an edge if a distance d between
the points is less than ε. In the κ-nearest neighbor graph, two points are connected
if one of them is among the κ-nearest neighbors of the other. When ε-neighborhood
graph G′

2 = (V ′
2, E

′
2, w

′
2) of ε 1 is created from a sequence of points, we obtain

the following solutions, depending on the value of α′ after partitioning G′
2 using

RatioCut.

min
2∑

j=1

1

|Cj |
∑

e∈E′
2(Cj ,V ′

2\Cj)

w′
2(e)

=

⎧
⎪⎪⎨

⎪⎪⎩

2α′ if 0 < α′ ≤ 0.43 (C1 = {v1,1, v1,2, v1,3})
0.67α′ + 0.57 if 0.43 < α′ ≤ 0.50 (C1 = {v1,1, v2,1, v2,2})
1.11 otherwise (C1 = {v1,1, v2,1}).

(9)

236 S. Okui et al.

Similarly to Eq. (8) and Fig. 10, Eq. (9) is illustrated by Fig. 11 for various α′. In
contrast to the case for G′

1, Fig. 11 indicates that O2I can obtain the desirable cluster
sequence when 0.43 < α′ ≤ 0.50.

When G′
1 consists of two complete graphs, each of which is created from a

set of points, vertices coming from the same timestep are connected densely with
each other, while every pair of vertices coming from different timesteps is rarely
connected. In this case, {v1,1, v1,2, v1,3} coming from the same timestep minimizes
RatioCut rather than {v1,1, v2,1, v2,2}. In contrast, when a sparse graph is created
from a set of points instead of a dense graph, the connectivities among vertices
coming from the same timestep and among vertices coming from the different
timesteps are balanced, and O2I can select {v1,1, v2,1, v2,2} to minimize RatioCut
for G′ by tuning α′.

4 Experimental Evaluation

4.1 Experimental Setup

In this section, we compare O2I with the PCM offline algorithm using the adjusted
Rand index (ARI). The ARI measures the similarity of two sets of clusters,
and is calculated using the number of vertices common to each pair of clusters.
We assume that a set of n vertices is partitioned both into r disjoint subsets
U = {U1, U2, . . . , Ur} and into c disjoint subsets V = {V1, V2, . . . , Vc}, so that∑r

i=1 |Ui | = ∑c
j=1 |Vj | = n. The number of vertices common to Ui and Vj is

denoted by nij , as shown in Table 1 , where ni. and n.j are the numbers of vertices
in clusters Ui and Vj , respectively. The number of pairs of vertices commonly
contained in Ui and Vj is calculated by

(nij

2

)
. The ARI is hence calculated as

∑
i,j

(nij

2

) −
[∑

i

(
ni.

2

)∑
j

(n.j

2

)]
/
(
n
2

)

1
2

[∑
i

(
ni.

2

) + ∑
j

(n.j

2

)] −
[∑

i

(
ni.

2

)∑
j

(n.j

2

)]
/
(
n
2

) .

The ARI takes a value between 0 and 1. Larger ARI values indicate that the obtained
clusters are more suitable because U and V correspond to the original partition of

Table 1 Contingency table
comparing partitions U and
V

V

U V1 V2 . . . Vc Total

U1 n11 n12 . . . n1c n1.

U2 n21 n22 . . . n2c n2.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Ur nr1 nr2 . . . nrc nr.

Total n.1 n.2 . . . n.c n.. = n

Detecting Smooth Cluster Changes in Evolving Graph Structures 237

the data and the partition obtained by the algorithm, respectively. The ARI values
given in this chapter are averages for 20 trials.

4.2 Results

4.2.1 Dependence on the Initial Graph of the Graph Sequence

To compare O2I with PCM, we generated artificial datasets using the following
procedures with the parameters shown in Table 2. The means of the k Gaussian
distributions were placed at equal intervals on a circle of radius r whose center is
the origin. A set of points was generated under a Gaussian distribution for each
of the means. In this experiment, the sizes of the three sets of points were set to
600, 300, and 200. The set of generated points corresponds to a latent cluster of
vertices. The sets of points move toward and away from the origin as time advances,
as shown in Fig. 12. The means of the Gaussian distributions are on a sine curve
whose amplitude, angular frequency, and initial phase are denoted by A, ω, and ϕ,
respectively. Therefore, the mean of the Gaussian distribution corresponding to the
j th cluster at time t is given by

Table 2 Parameters of the artificial data

Parameters Default values

Number of cluster sequences k =3

Radius r =3

Variance of each Gaussian distribution var =1.0

Number of vertices n =1100 (=600+300+200)

Amplitude A =1.0

Angular frequency ω = π
4

Initial phase ϕ =0

Steps T =10

Number of moving vertices m =5

Connectivity κ =10

Fig. 12 Generation of the artificial datasets

238 S. Okui et al.

Fig. 13 ARIs for O2I for
various values of α′

Fig. 14 Computation time
for various values of n

(
x

y

)

= R

(
2π(j − 1)

k

)[

A

(
sin (ω(t − 1) + ϕ)

0

)

+
(

r

0

)]

, (10)

where R(θ) is a rotation matrix for angle θ , with 1 ≤ j ≤ k and 1 ≤ t ≤ T . In
addition, m points in the largest cluster move to the second-largest cluster at each
step. The sets of points at time t are converted into the κ-nearest neighbor graph G(t)

with edges with weights exp
(
− d2

2

)
, where d is the Euclidean distance between two

of the points.
Figure 13 shows the ARIs for O2I as α′ increases from 1 to 100,000. When

α′ = 40, the two requirements are balanced. When α′ > 40, the ARI decreases
because requirement (2) is oversatisfied because of the influence of the second term
in Eq. (5). In contrast, when α′ < 40, the ARI decreases because requirement (1) is
oversatisfied because of the influence of the first term in Eq. (5). Moreover, when α′
is decreased to less than 1, the ARI decreases drastically because the weights of the
edges between two successive graphs in the graph sequence are less than the weights
of the edges in each graph G(t) and O2I partitions G′ into clusters by cutting the
edges between successive graphs. Therefore, these results confirm that O2I obtains
suitable cluster sequences satisfying the requirements by tuning α′. Henceforth, α′
is set to 40. Because a similar result was obtained for PCM, α was set to 4.

Figure 14 shows the computation time for O2I when the number of vertices in
each graph in a graph sequence increases. The computation time is proportional to
the cube of the number of the vertices because the most time-consuming procedure
in O2I is the calculation of the eigenvectors of the Laplacian matrix of G′. Figure 14
shows that O2I is practical for graphs G′ with more than 10,000 × 10 vertices.

Detecting Smooth Cluster Changes in Evolving Graph Structures 239

Fig. 15 ARIs for various
values of ϕ

Figure 15 shows the ARIs for O2I and PCM when ϕ increases from 0 to 2π .
The ARI for PCM substantially decreases around ϕ = 3

2π . When ϕ = 3
2π , the

distributions of the points significantly overlap at t = 1, 5, and 9, because the
means of the distributions approach one another. In particular, when the clusters for
G(1) are not suitable, the ARI value decreases substantially because the unsuitability
propagates through the clusters for G(t) with t > 1. In contrast, the ARI for O2I is
better than the ARI for PCM for all ϕ, although the ARI decreases slightly around
ϕ = 3

2π . Hence, the results confirm that O2I overcomes the first drawback of PCM.

4.2.2 Varying Cluster Numbers

In this experiment, the means of the two small latent clusters out of the three clusters
are located at

(
x

y

)

= R

(
2π(j − 1)

k

)

r

(
exp [β(t − T)]

0

)

, (11)

rather than the points in Eq. (10). Although the means of the two clusters are close
to each other at time 1, they diverge exponentially and move toward a circle of
radius r whose center is the origin at time T . By assuming that the points generated
from distributions whose means are closer than 2var belong to the same cluster, we
generate an artificial graph sequence where one of the latent clusters divides into
two latent clusters. In this experiment, m is set to 0.

Figure 16 shows the ARIs for O2I and PCM as β increases from 0 to 0.4. When
β is low, the ARI for PCM is high because the three latent clusters are separate from
one another in G(1) and remain separate until time T . However, when β is high, the
ARI value decreases because PCM partitions each graph G(t) into three clusters for
small t even though the number of latent clusters is 2. In contrast, O2I partitions
each graph into k or fewer clusters because it first converts the graph sequence into
G′ and then solves the k partition problem for G′. Thus, O2I partitions each graph
G(t) into two clusters for small t and into three clusters for large t . Hence, it detects
suitable clusters for various values of β.

Figure 17 shows three sets of points: One of the sets is derived from Eq. (10)
and the others are derived from Eq. (11). Each point is colored according to cluster

240 S. Okui et al.

Fig. 16 ARIs for various
values of β

Fig. 17 Distribution of vertices in detected cluster sequences

Detecting Smooth Cluster Changes in Evolving Graph Structures 241

sequences detected by O2I. This result was obtained for n = 110 and β = 0.35.
The points with arrows are points with the same ID. Because cluster 1 vibrates in a
sinusoid, the number of points is almost the same over time. In contrast, although the
number of points in detected cluster 3 is 0 at time 1, the number of vertices increases
and becomes 18 at the last timestep.3 It is a difficult task to detect the three different
clusters at time 2 by conventional methods because the point detected as a point in
cluster 3 at time 2 exists near the centroid of cluster 2. However, the second term of
Eq. (5) enables O2I to detect the three clusters. This figure indicates that O2I detects
cluster sequences in which one cluster divides into two clusters.

In this experiment, we generated artificial graph sequences where one of the
latent clusters divides into two latent clusters. O2I does not depend on the direction
of the temporal axis because it converts the graph sequence into graph G′ and solves
the k partition problem for G′. If Eq. (12) is used instead of Eq. (11), we can generate
an artificial graph sequence in which two latent clusters merge.

(
x

y

)

= R

(
2π(j − 1)

k

)

r

(
exp [−β(t − 1)]

0

)

(12)

In this case, the same result is obtained for O2I as in Fig. 16. Therefore, we have
confirmed that O2I overcomes the second drawback of PCM.

4.2.3 Varying Numbers of Vertices

Figure 18 shows the ARIs for O2I for artificial data with ratio% of the vertices
removed from a graph sequence generated using Eq. (10). In this experiment, we
measure the ARIs for forgetting rates γ equal to 0, 0.1, 0.2, 0.3, 0.4, and 0.5, as
ratio increases from 0 to 30. The setting for ratio = 0 and γ = 0 is the same as in
the experiments for Fig. 13. Figure 18 does not contain any results for PCM because
PCM cannot be applied to this data. When γ is increased, then ARI increases except

Fig. 18 ARIs for various
values of ratio and γ

3The numbers of vertices in the third detected cluster sequence increases with time as
〈0, 1, 4, 8, 13, 16, 16, 18, 18, 18〉.

242 S. Okui et al.

Fig. 19 AIRs for various
values of α′ and κ (1)

for ratio = 0 because vertices with the same ID that are � timesteps apart are
connected by an edge weight α′γ �−1 and requirement (2) is satisfied. In particular,
increasing γ from 0 to 0.025 is the most effective. When γ is increased further,
the ARI decreases because requirement (2) is oversatisfied. This result is consistent
with Sect. 4.2.1 In contrast, because α′ for ratio = 0 is sufficiently tuned in the
experiment of Sect. 4.2.1. The ARI decreases when γ is increased. Hence, these
results confirm that O2I overcomes the third drawback of PCM.

For γ ≥ 0.1, the reason why ARI for large ratio is more than for small ratio

is as follows. Because the graph G(t) for ratio = 0 and γ = 0 has about κ|V (t)|/2
edges and it connects to G(t+1) with |V (t)| edges, the former connectivity is higher
than the latter. Their connectivities are not balanced. In contrast, when ratio or γ

is increased, both connectivities are balanced and the ARI increases. In the next
subsections, we further investigate effect of other parameters on connectivities of
graphs in graph sequences.

4.2.4 Graph Connectivities

Figure 19 shows the result of ARIs when α′ and κ are changed. When κ is increased
for a certain α′, the ARI decreases. This is because the connectivity among vertices
coming from the same timestep becomes dense by increasing κ , and cutting edges
with weights α′ in G′ minimizes the objective function Eq. (5) of O2I compared
with cutting edges among the vertices coming from the same timestamp. Figure 20
shows the maximum ARIs and their corresponding α′ obtained by setting α′ to 1,
5, 10, 50, 100, 500, 1000, 5000, and 10,000 for each κ . Because vertices in the
latent clusters in G′ rarely connect with one another for small κ , the ARI increases
when κ is increased. When κ is further increased, the ARI decreases drastically.
When κ is greater than 100, the tuned α′ is greater than 500. In this case, most of
the clusters in the obtained cluster sequences satisfy C

(t)
j = C

(t+1)
j , which means

that the cluster sequences do not change over time. Thus, although the effectiveness
of O2I decreases when κ becomes too large, we can improve its effectiveness by
making the graphs in the graph sequences sparse.

Detecting Smooth Cluster Changes in Evolving Graph Structures 243

Fig. 20 AIRs for various
values of α′ and κ (2)

Fig. 21 Distribution of yi for
α′ = 50 and κ = 10

Fig. 22 Distribution of yi for
α′ = 50 and κ = 1000

As mentioned in Algorithm 2, O2I contains spectral clustering. In general, when
the spectral clustering is applied to a certain graph G1 consisting of k connected
components, all vertices in the j th (1 ≤ j ≤ k) connected component are mapped to
the same point pj in the k-dimensional space in Line 6 of Algorithm 2. In addition,
when the spectral clustering is applied to another connected graph G2 created from
G1 by adding some edges with small weights, all of the vertices that formed the
j th (1 ≤ j ≤ k) connected component in G1 are mapped to points yi around
the point pj in k-dimensional space [18].4 Because k-means is applied to points yi

around this point pj , the spectral clustering adequately detects clusters in which the
vertices are connected with large weights to one another in G2. Figures 21 and 22
show the distributions of yi derived from artificially generated graph sequences
for κ = 10 and κ = 1000, respectively. Although yi are 3-dimensional vectors,
we use their second and third elements to plot the distributions because their first

4Vector yi is the same symbol used in Algorithm 2.

244 S. Okui et al.

elements are the same. Each point is colored according to the latent clusters to which
the point belongs. In Fig. 21, because points in each cluster are distributed around
either (0.00, 0.015), (−0.005, −0.005), or (−0.02, 0.005), k-means detects the latent
clusters accurately. In this figure, the reason why the distributions for clusters 1 and 2
overlap is because m points at each timestep move from cluster 1 to cluster 2. In
contrast, in Fig. 22, the distributions of the three clusters overlap around the origin.
This is because vertices coming from the same timestamps connect to each other,
vertices coming from the different timestamps connect with large weights α′ and G′
becomes a large connected component. In this case, k-means cannot partition the
points around the origin accurately, and the ARI of O2I decreases.

The above experiments confirm that κ is an important hyperparameter of O2I that
enables the method to cluster graph sequences accurately. When a graph sequence
consisting of dense graphs is given as input, we must select edges with large weights
in the graphs to make the graphs sparse before line 1 of Algorithm 2. Making graphs
sparse is easier than making graphs dense.

4.2.5 Real-World Data

To assess the practicality of O2I, we applied it to the Enron e-mail dataset [13]. We
divided the dataset into T periods according to timestamps of e-mails, assigned a
unique ID to the e-mail address for each person participating in the communication,
and assigned an edge to a pair of individuals if they communicate via e-mail within
each period, assigned weight log(c+1) to the edge between two vertices if c e-mails
are sent between the corresponding individuals, and obtained graphs G(t) for each
period t .

Figure 23 shows the number of vertices in the clusters detected by O2I at
each timestep. This result was obtained from a graph sequence with eight steps
in which the vertices correspond to about 150 senior managers. The hyperpa-
rameters for O2I were set as k = 24, α′ = 12, and γ = 0.1, and O2I
took about 5 s to obtain this result. For the sake of visibility, we omitted any

Fig. 23 Number of vertices
in each cluster at time t

Detecting Smooth Cluster Changes in Evolving Graph Structures 245

detected outliers having only a few vertices from the figure. The reason why
O2I detects the outliers is that there are many senior managers who each con-
tacted a particular senior manager in the dataset. This figure shows that O2I
is applicable to a graph sequence where the number of vertices varies over
time, with (|V (1)|, |V (2)|, . . . , |V (8)|) = (79, 99, 113, 113, 114, 123, 124, 109). In
addition, the number of clusters detected by O2I also varies over time, with
(|P (1)|, |P (2)|, . . . , |P (8)|) = (8, 9, 12, 14, 9, 15, 17, 16). As shown in Fig. 23, the
cluster represented by dark blue appears at time 3 and then gradually grows larger,
although it does not exist at times 1 and 2.

We also applied O2I to the same graph sequence for the approximately 150
managers, with γ = 0 and the other hyperparameters set as before. In the detected
cluster sequences, more than 90% of the vertices belong to a particular cluster
sequence at each time and the rest of the vertices belong to k−1 outliers. Therefore,
the forgetting rate γ in O2I is beneficial for obtaining suitable cluster sequences.

5 Conclusion

In this chapter, we explained O2I for clustering in evolving graphs that can detect
changes in clusters over time. In O2I, the graph sequence is partitioned into smooth
clusters, even when the numbers of clusters and vertices vary. The method first
constructs a graph from the graph sequence, then uses spectral clustering and the
RatioCut to apply k partitioning to this graph. The method approach was compared
in detail with the preserving clustering membership (PCM) algorithm, which is a
conventional online graph-sequence clustering algorithm in which the numbers of
clusters and vertices must remain constant. We further showed that, in contrast to
PCM, the performance of O2I is not dependent on the clustering of the initial graph
in the graph sequence. Experiments on synthetic evolving graphs showed that O2I is
practical to calculate and addresses the main disadvantages of PCM. Further tests on
real-world data showed that O2I can obtain reasonable clusters. It is hence a flexible
clustering solution and will be useful on a wide range of graph-mining applications
in which the connections, number of clusters, and number of vertices of the graphs
evolve over time.

References

1. Aggarwal, C.C., Han, J., Wang, J., Philip S.Y.: A framework for clustering evolving data
streams. In: Proceedings of International Conference on Very Large Data Bases (VLDB),
pp. 81–92 (2003)

2. Aggarwal, C.C., Han, J., Wang, J., Philip S.Y.: A framework for projected clustering of high
dimensional data streams. In: Proc. of International Conference on Very Large Data Bases
(VLDB), pp. 852–863 (2004)

246 S. Okui et al.

3. Aggarwal, C.C., Han, J., Wang, J., Philip S.Y.: On demand classification of data streams. In:
Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD),
pp. 503–508 (2004)

4. Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T.S., Simon, I.: A new approach to
analyzing gene expression time series data. In: Proceedings of International Conference on
Computational Biology (RECOMB), pp. 39–48 (2002)

5. Beringer, J., Hüllermeier, E.: Online clustering of parallel data streams. Data Knowl. Eng.
58(2), 180–204 (2006)

6. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution rules. In:
Proceedings of European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD), pp. 115–130 (2009)

7. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data
stream with noise. In: Proceedings of SIAM International Conference on Data Mining (SDM),
pp. 328–339 (2006)

8. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pp. 554–560 (2006)

9. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering
problems. In: Proceedings of Annual ACM Symposium on Theory of Computing (STOC),
pp. 30–39 (2003)

10. Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L.: On evolutionary spectral clustering. ACM
Trans. Knowl. Discov. Data 3(4), 17:1–17:30 (2009)

11. Domingos, P.M., Hulten, G.: A general method for scaling up machine learning algorithms and
its application to clustering. In: Proceedings of International Conference on Machine Learning
(ICML), pp. 106–113 (2001)

12. Inokuchi, A., Washio, I.: Mining frequent graph sequence patterns induced by vertices. In:
Proceedings of SIAM International Conference on Data Mining (SDM), pp. 466–477 (2010)

13. Klimmt, B., Yang, Y.: Introducing the Enron corpus. In: CEAS Conference (2004)
14. Möller-Levet, C.S., Klawonn, F., Cho, K.-H., Yin, H., Wolkenhauer, O.: Clustering of unevenly

sampled gene expression time-series data. Fuzzy Sets Syst. 152(1), 49–66 (2005)
15. O’Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming-data algorithms

for high-quality clustering. In: Proceedings of International Conference on Data Engineering
(ICDE), pp. 685–694 (2002)

16. Okui, S., Osamura, K., Inokuchi, A.: Detecting smooth cluster changes in evolving graphs.
In: Proceedings of International Conference on Machine Learning and Applications (ICMLA),
pp. 369–374 (2016)

17. van Wijk, J.J., van Selow, E.R.: Cluster and calendar based visualization of time series data.
In: Proceedings of IEEE Symposium on Information Visualization (INFOVIS), pp. 4–9 (1999)

18. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
19. Wang, Y., Liu, S.-X., Feng, J., Zhou, L.: Mining naturally smooth evolution of clusters from

dynamic data. In: Proceedings of SIAM International Conference on Data Mining (SDM),
pp. 125–134 (2007)

Efficient Estimation of Dynamic Density
Functions with Applications in Data
Streams

Abdulhakim Qahtan, Suojin Wang, and Xiangliang Zhang

Abstract Recently, many applications such as network monitoring, traffic man-
agement and environmental studies generate huge amount of data that cannot fit in
the computer memory. Data of such applications arrive continuously in the form
of streams. The main challenges for mining data streams are the high speed and
the large volume of the arriving data. A typical solution to tackle the problems of
mining data streams is to learn a model that fits in the computer memory. However,
the underlying distributions of the streaming data change over time in unpredicted
scenarios. In this sense, the learned models should be updated continuously and rely
more on the most recent data in the streams.

In this chapter, we present an online density estimator that builds a model called
KDE-Track for characterizing the dynamic density of the data streams. KDE-Track
summarizes the distribution of a data stream by estimating the Probability Density
Function (PDF) of the stream at a set of resampling points. KDE-Track is shown to
be more accurate (as reflected by smaller error values) and more computationally
efficient (as reflected by shorter running time) when compared with existing density
estimation techniques. We demonstrate the usefulness of KDE-Track in visualizing
the dynamic density of data streams and change detection.

A. Qahtan
Qatar Computing Research Institute (QCRI), HBKU, Doha, Qatar
e-mail: aqahtan@hbku.edu.qa

S. Wang
Department of Statistics, TAMU, College Station, TX, USA
e-mail: sjwang@stat.tamu.edu

X. Zhang (�)
CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal,
Kingdom of Saudi Arabia
e-mail: xiangliang.zhang@kaust.edu.sa

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_11

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_11&domain=pdf
mailto:aqahtan@hbku.edu.qa
mailto:sjwang@stat.tamu.edu
mailto:xiangliang.zhang@kaust.edu.sa
https://doi.org/10.1007/978-3-319-89803-2_11

248 A. Qhatan et al.

1 Introduction

Recent advances in computing technology allow for collecting vast amount of data
that arrive continuously in data streams. Examples of data streams can be found
in fields such as sensor networks, mobile data collection platform, and network
traffic. The data need to be processed and analyzed once they arrive. However, the
unbounded, rapid, and continuous arrival of data streams disallows the usage of
traditional data mining techniques. Therefore, the development of online algorithms
for processing data streams becomes highly important.

Density estimation has been widely used in various applications. Estimating
the Probability Density Function (PDF) for a given data set provides knowledge
about the underlying distribution of the data. Consequently, dense regions can be
recognized as clusters and quantities such as medians and centers of clusters can be
computed [1]. By contrast, sparse regions are reported as outliers that can be used
for fault detection, for example, in sensor networks [2]. Moreover, the estimated
dynamic density can be visualized to help on placing taxicabs in places with high
pickup rate at certain period of time [3], reducing ambulance emergencies response
time [4] and reflecting people’s interest at a particular location for specific seasons
[5].

Estimating the dynamic density that comes with evolving streams needs to
address the following challenges. First, the data distribution changes dynamically in
an unpredictable fashion. Second, an anytime-available model should be efficiently
updated to allow real-time monitoring of the density. Third, the spatial nonunifor-
mity of data distribution requires higher/lower resolutions in dense/sparse areas,
respectively, so that the estimation is accurate to catch the details.

Most of the existing approaches for estimating the density of data streams are
based on the Kernel Density Estimation (KDE) method due to its advantages for
estimating the true density [6]. Given a set of samples, S = {xxx1,xxx2, . . . , xxxn} with
xxxj ∈ Rd , KDE estimates the density at a point xxx as:

f̂ (xxx) = 1

n

n∑

j=1

Kh

(
xxx,xxxj

)
, (1)

where Kh

(
xxx,xxxj

)
is a kernel function, which is usually a radially symmetric

unimodal function that integrates to 1. Equation (1) shows that KDE uses all the
data samples to estimate the PDF at any given point. For online density estimation
of data stream, that is, estimating the density of every arriving data sample, KDE
has quadratic time complexity with respect to (w.r.t.) the stream size. Also, the space
requirement for KDE significantly increases with the dataset size.

In Sect. 3 of this chapter, we introduce our model that is called KDE-Track, to
model the data distribution as a set of resampling points with their estimated PDF. To
guarantee the estimation accuracy and to lighten the load on the model, an adaptive
resampling strategy is employed to control the number of resampling points, that is,

Density Estimation with Applications in Data Streams 249

more points are resampled in the areas where the PDF has a larger curvature, while a
low number of points are resampled in the areas where the function is approximately
linear. In order to overcome the quadratic time complexity of KDE when evaluating
the PDF for each new observation, linear interpolation is used with KDE for online
density estimation. It therefore has advantages of evaluating the PDF for any new
observation in linear time complexity and space complexity w.r.t. the number of
resampling points. Evaluating the PDF for all received observations will then take
linear time w.r.t. the stream size compared with the quadratic time complexity of
KDE. To timely track the evolving density, we use a sliding window strategy in
KDE-Track to estimate the density using the most recent data samples.

The KDE-Track has unique properties as follows:

1. It generates density functions that are available to visualize the dynamic density
of data streams at any time. After receiving one streaming data sample xxxt , KDE-
Track updates the PDF of the data stream and also estimates f (xxxt)

2. It has linear time and space complexities w.r.t. the model size for maintaining
the dynamic PDF of data stream upon the arrival of every new sample. It is thus
8–85 times faster than traditional KDE depending on the window size.

3. The estimation accuracy is achieved by adaptive resampling and optimized
bandwidth (h), which also address the spatial nonuniformity issue of data
streams.

In Sect. 4 of this chapter, we evaluate the most popular density estimators,
as well as KDE-Track in different scenarios of data streams. Advantages and
disadvantages of these evaluated methods are discussed based on the comparison
of their performance. The obtained dynamic density can be applied to diverse
problems. Section 5 of this chapter firstly presents a density visualization example,
which displays the real-time dynamic traffic distribution in the New York Taxi
streams where interesting patterns of community behavior are discovered. The
second application is for unsupervised change detection, where changes are usually
detected by comparing the distribution in a current (test) window sliding over the
data stream with a fixed reference window that contains data arrived after the last
detected change. The third application is outlier detection in data streams, which is
a straightforward application of estimated density. Data samples, which have small
PDF values compared to other points, are more likely to be outliers. Compared with
other outlier detection methods, the density-based approach is shown to report less
false positives. This application is omitted in this chapter due to space limitation.
Interested readers are referred to [7].

250 A. Qhatan et al.

2 Related Work

2.1 Dynamic Density

The design of a dynamic density estimator should not only take into consideration
the constraints of using limited memory and processing the data in real time [8, 9]
due to the nature of streams, but also the dynamic changes of the underlying density
function over time. To reduce the computational cost and space requirement of
KDE, methods have been proposed based on kernel merging, sampling, or space
partitioning. Kernel merging is used in [1, 10] and [11] where a specific number
of kernels are maintained through merging two or more kernels. Each kernel
summarizes a cluster of similar samples. A new arriving sample can either fall into
one existing kernel or trigger a new kernel. Two kernels are merged if the number
of kernels exceeds the specified number. Methods that utilize this concept include
M-Kernel [1], Cluster Kernels (CK) [10], and AKDE [11]. Another kernel method
emerges based on clustering by Self-Organizing Maps (SOM) [12]. Only trained
SOM neurons are utilized in density estimation, rather than the whole set of kernels.
In order to train the neurons and to minimize the time complexity, a data stream
is considered as a sequence of disjoint windows where data in each window are
assumed to have the same distribution.

Sampling was used in [13] to reduce the number of kernels while guaranteeing
an ε-approximation of the density function. The authors studied random sampling
and proposed group-selection and sort-selection, which achieve the same accuracy
as random sampling but with a smaller number of samples.

Space partitioning is also used to reduce the computational cost of KDE. A kd-
tree structure is used in [14] and [15] where the leaves contain a small number of
kernels and each internal node contains a statistical summary about the subspace
represented by that node. Estimating the density at any given point involves depth-
first traversal of the tree where only close-by nodes will be visited. Grid-based
methods were presented in [16, 17] for static datasets. They concentrate on the best
setting of the bin width using a fixed number of resampling points. This approach
will not work for data streams as the data are not available in advance, and the range
of the data is changing over time.

KDE-Track [18] differs from the above-mentioned methods by updating the
estimated density with the contribution of each new arriving sample. Hence, it
provides any time available density values, which can be used for visualizing the
density. The model size is controlled by adaptive resampling, rather than reducing
the number of used kernels in [1, 10–14]. The estimation error is thus minimized.
In addition, it is deployed with an accurate bandwidth selection method, which
improves the density estimation significantly (Table 1).

Density Estimation with Applications in Data Streams 251

Table 1 Summary of the key characteristics of the density estimators

Bandwidth of

Data Bandwidth each dim in Data points MV kernel Online

Method MV streams selection MV reduction function update

CK [10] No Yes Normal
rule

N/A Merge
kernels

N/A Yes

M-Kernels [1] No Yes Normal
rule

N/A Merge
kernels

N/A Yes

SOMKE [12] Yes Yes Normal
rule

Different Trained
neurons

MV BU

FFT-KDE [19] Yes Yes Normal
rule

Different None MV No

KDE [20] Yes Yes Normal
rule

Different None Product No

kd-tree [15] Yes No Cross
validation

Fixed None RI No

RS, GS, SS [13] Yes No User input Fixed Sampling RI No

MPLKernels [14] Yes Yes Normal
rule

Different Sampling Product Yes

KDE-Track [18] Yes Yes Plug in Different None Product Yes

MV multivariate data, RS random sampling, GS group selection, SS sort selection, RI rotation
invariant, BU batch update

2.2 Change Detection

Change detection is relevant to a wide range of applications such as intrusion
detection in computer networking [21], suspicious motion detection in vision
systems [22], studying the effects of nuclear radiation on the environment [23],
and online clustering and classification. For example, change detection can be used
in online classification for reporting when the classifier should be retrained (only
if a change in the data stream is observed). The problem of change detection has
been widely studied and referred to as data evolution [24], event detection [25], or
change-point detection [23, 26].

Unsupervised window-based change detection is based on comparing the dis-
tribution in a current stream window with a reference distribution [23, 27–30],
where density estimation techniques and divergence metrics are essential to model
and compare the distributions. Dasu et al. [28] used the kdq-tree data structure to
model data distribution and presented a 3-step process for change detection: (1)
updating the test distribution over the current window, (2) computing the change-
score between the test and reference distributions, and (3) emitting an alarm signal
if the change-score reaches the threshold specified using bootstrap sampling and the
permutation test used in [23]. Kawahara and Sugiyama [26] used the density-ratio
estimation that is based on the Kullback-Leibler Importance Estimation Procedure
(KLIEP) to model data distribution. The method’s complexity is quadratic w.r.t. the
window size. An online version of KLIEP was studied in [26] and [31].

252 A. Qhatan et al.

Table 2 Summary of change detection methods

Technique MV Data streams Compare distribution/prediction Threshold settings

kdq-tree [28] Yes Yes Compare distribution Bootstrap

PCA-SPLL [29] Yes No Compare distribution Fixed

KLIEP [26] Yes Yes Compare distribution Fixed

Kifer [23] No Yes Compare distribution Bootstrap

ADWIN [27] No Yes Other Dynamic

Density test [30] Yes No Compare distribution Bootstrap

CF [32] No Yes Prediction Fixed

CD-Area [33] Yes Yes Compare distribution Dynamic

MV multivariate

A statistical test, called the density test [30], determines whether the newly
observed data S′ are sampled from the same underlying distribution as the reference
dataset S. The change detection summarized above has the limitation of user-based
settings of key parameters, which requires users knowledge or they have high
computational cost that makes them unusable for online change detection in data
streams.

Table 2 summarizes the key characteristics of the existing methods for change
detection. In Sect. 5, a PCA-based change detection framework will be presented
[33]. The framework compares densities estimated by KDE-Track on selected
principal components and dynamically adjusts the threshold for reporting changes,
such that the false alarms are reduced and detection rate is improved.

3 KDE-Track: Dynamic Density Estimation

3.1 Theoretical Bases of Density Estimation

We first discuss the traditional KDE and its related issues, for example, selection of
kernel functions and smoothing parameter (bandwidth), and complexity.

KDE estimates the density f̂ (xxx) by Eq. (1). For the case of univariate data, Eq. (1)
is written as

f̂ (x) =
(

1

nh

) n∑

j=1

K

(
x − xj

h

)

. (2)

For the two-dimensional samples, where xxxj = (x1j , x2j)
T ∈ R2, kernel functions

Kh

(
xxx,xxxj

)
are defined as 1

h1h2
K

(
x1−x1j

h1
,

x2−x2j

h2

)
, where hi is the smoothing

parameter, called the bandwidth, on dimension i [6].

Density Estimation with Applications in Data Streams 253

A popular kernel function in case of multivariate data is called the multiplicative
(product) kernel [6], which uses the product of univariate kernel functions on each
dimension, and in the two-dimensional case computes f̂ (xxx) as

f̂ (xxx) = 1

n

n∑

j=1

2∏

i=1

{
1

hi

K

(
xi − xji

hi

)}

. (3)

Another option is to use the orientation-invariant kernel function [13] and [15],
which is

f̂ (xxx) =
(

1

nh2

) n∑

j=1

K

(‖xxx − xxxj‖
h

)

. (4)

This kernel function assumes that the data variation along all the dimensions is the
same, which may fail to capture densities of arbitrary shapes.

KDE-Related Issues The choice of a kernel function is relatively unimportant pro-
vided that a kernel function is continuous with finite support [20]. It is recommended
that the selected kernel is smooth, clearly unimodal and symmetric about the origin
[6]. In the study of this chapter, we choose the multiplicative Epanechnikov kernel
where the same univariate kernel function K(x) = 3

4 (1 − x2)I[−1,1](x) is used in
each dimension with a different bandwidth value. We use the Epanechnikov kernel
because of its asymptotically-optimal efficiency among all other kernel functions
[34].

The estimation accuracy of KDE is mainly affected by the bandwidth value [6,
20]. A large bandwidth value over-smooths the density function curve and hides a lot
of useful information, while a small bandwidth value makes the density function’s
curve too fluctuated. A general rule for selecting the bandwidth is to decrease the
bandwidth value (h → 0) as the number of samples used in the estimation increases
(n → ∞). However, the rate at which h is approaching 0 is much slower such that
(nh → ∞).

The Bandwidth h Equations (1) and (3) use different bandwidth values to capture
the spread of the data on each dimension. This suggests using the same analysis of
estimating the bandwidth for the case of univariate data on the marginal distribution
of the data on each dimension. Typically, bandwidth setting should minimize the
deviation between the true and the estimated densities. This deviation is measured
by the Mean Integrated Square Error (MISE) [35].

Let μk(x), R(f) be defined as μk(x) = ∫
xkK(x)dx and R(f) = ∫

f 2(x)dx.
The MISE of the estimator using a bandwidth value h is

MISE(h) =
∫

E
[
f̂ (x) − f (x)

]2
dx,

254 A. Qhatan et al.

which has the asymptotic expansion MISE(h) = AMISE(h) + O(n−1 + h5) under
suitable regularity conditions on K and f . The minimizer of the AMISE(h) =
1
nh

R(K) + h4
(

μ2(K)
4

)2
R
(
f ′′) is considered a good approximation for the optimal

bandwidth value, which can be estimated as

ĥ =
(

R(K)

μ2
2(K)R(f ′′)n

) 1
5

. (5)

However, this minimizer cannot be computed as it depends on the unknown
density f .

Many methods have been introduced to estimate R(f ′′) in Eq. (5). The normal
rule [20] is the most popular method for estimating the bandwidth, which assumes
the unknown density f as a normal density and scales it according to the sample
standard deviation. The bandwidth value selected using the normal rule is com-
puted as

ĥ = cσ̂n−1/5, (6)

where c is a constant that depends on the used kernel function K , σ̂ is the sample
standard deviation, and n is the number of kernels. This method is computationally
efficient but it does not work well when the density deviates significantly from
normality. Other methods based on cross-validation have been proposed in the
literature [36, 37]. These methods require performing density estimation for each
candidate of the bandwidth values, which multiplies the computational cost by
another factor equal to the number of candidates.

Plug-in methods [38, 39] estimate an approximation of R(f ′′) and plug it in
Eq. (5) to compute the optimal bandwidth. Estimating R(f ′′) requires also making
assumptions about the density function but it becomes more accurate than using
the normal rule. Sheather and Jones [37] estimate R(f ′′) by estimating f (4), which
in turn is estimated using R(f (6)). The value R(f (6)) is computed by assuming
that f (8) is the eighth derivative of a normal density. After estimating R(f (6)), a
backward substitution is performed to estimate R(f ′′). Shimazaki and Shinomoto
[40] assume that the true density follows a Poisson distribution and use Estimation-
Maximization (EM) method to find the optimal bandwidth value. The method
requires estimating the density for each estimation step of the EM optimization
procedure, which will be very expensive in the case of streaming data where the
density is changing dynamically and the bandwidth value needs to be estimated
frequently.

In the case of multidimensional data, most of the bandwidth selection methods
either consider a fixed bandwidth value for all the dimensions [13, 41] or use the
marginal distribution to estimate the bandwidth on each dimension [14, 20]. KDE
fails to capture densities of arbitrary shapes when using the same bandwidth value
for all dimensions. Methods with a different bandwidth value for each dimension
rely on the marginal distribution of the data on that dimension.

Density Estimation with Applications in Data Streams 255

The KDE-Track introduced next minimizes the effect of the normality assump-
tion of f by using the data samples to estimate f ′′. The numerical integration
technique is then used to compute R(f ′′), which is plugged in Eq. (5) to estimate
the bandwidths.

3.2 KDE-Track Method

KDE-Track models the distribution of the streaming data as a grid of resampling
points and their corresponding estimated density values. For example in the 2-
dim sample space, let U1 = {u1

0, u
1
1, . . . , u

1
U1−1

} and U2 = {u2
0, u

2
1, . . . , u

2
U2−1

}
be the set of points that discretize the range of the data on the first and the
second dimensions, respectively. The KDE-Track model M is defined as the set
of the grid points from U1 × U2 with their estimated densities. That is, M ={
M0,M1, . . . ,Mq−1

}
, where q = U1U2 is the number of the resampling points

and Ms is an ordered pair representing a grid point and its estimated PDF (Ms =
(mmms, f̂ (mmms))). Here mmms = (u1

k, u
2
l) ∈ U1 × U2 is the s-th resampling point with l, k

being the quotient and the remainder of the division of s by U1 and f̂ (mmms) is the
density estimated using KDE at mmms .

Density Estimation by Interpolation For a data sample aaa in 2-dim, the PDF at
aaa can be efficiently estimated by bilinear interpolation of the resampling points,
following two steps:

1. Fetch the estimated PDF values at resampling points mmms1,mmms1+1,mmms2 and mmms2+1
that surround the point aaa (as in Fig. 1). Let y(i) be the projection of vector yyy on
i-axis, then m

(1)
s1 = m

(1)
s2 ≤ a(1) < m

(1)
s1+1 = m

(1)
s2+1 and m

(2)
s1 = m

(2)
s1+1 ≤ a(2) <

m
(2)
s2 = m

(2)
s2+1. Then linearly interpolate the density at mmms1,mmms1+1 to estimate the

density at rrrs1 and interpolate the density at mmms2,mmms2+1 to compute the density at
rrrs2.

2. Estimate the density at aaa by interpolating the density at rrrs1, rrrs2.

Fig. 1 Computing the
density at aaa by interpolation
given the KDE estimation f̂

at mmms1, mmms1+1, mmms2 and
mmms2+1

mmms1 mmms1+1

mmms2 mmms2+1

rrrs1

rrrs2

aaa

︸︷︷︸

D(mmms1,rrrs1)

= D11

︸︷︷︸

D(rrrs1,mmms1+1)

= D12

︸
︷
︷
︸

D
(rr r

s
1
,aa a
)

=
D

21

︸
︷
︷
︸

D
(aa a

,rr r
s
2
)

=
D

22

256 A. Qhatan et al.

Let D(bbb,ccc) be the Euclidean distance between bbb and ccc. The density at aaa will be
computed as follows:

f̃ (aaa) = D (aaa, rrrs2) f̃ (rrrs1) + D (rrrs1,aaa) f̃ (rrrs2)

D (rrrs1, rrrs2)
, (7)

where

f̃ (rrrs1)= D (rrrs1,mmms1+1) f̂ (mmms1)+D (mmms1, rrrs1) f̂ (mmms1+1)

D (mmms1,mmms1+1)
,

and

f̃ (rrrs2)= D (rrrs2,mmms2+1) f̂ (mmms2)+D (mmms2, rrrs2) f̂ (mmms2+1)

D (mmms2,mmms2+1)
.

KDE interpolation is efficient as it stores only the function at the resampling points
whose total number is in the constant order and is small compared to the stream
size. The running time for estimating the PDF for all n arriving data samples will be
in O(n|M|).
Error Analysis Three types of errors may be introduced by KDE-Track: the
estimation error inherited from KDE, the interpolation error, and the rounding error.
Since rounding error (occurring when an infinite number of digits after the decimal
point are squeezed in a finite number of bits) is machine dependent, we focus on the
interpolation error and propose an adaptive resampling model to minimize this type
of error. The error inherited from KDE will be minimized by selecting the optimal
bandwidth values for the KDE.

In [7], we studied the interpolation error for the case of univariate data. Let f̂ (a)

and f̃ (a) be the estimated PDFs using the traditional KDE and the KDE-Track,
respectively, and Dm be the maximum distance between two consecutive resampling

points. The error is f̃ (a) − f̂ (a) = {Dm}2

8 f̂ ′′(a) + Op

({Dm}3) . The interpolation
error will increase in the case of multidimensional data. In [18], we derived the

interpolation error in two-dimension as f̃ (aaa)− f̂ (aaa) = D2
m

8

{

f̂x1x1(aaa)+ f̂x2x2(aaa)

}

+
Op({Dm}3), where Dm is the distance between two consecutive resampling points
in two-dimension. Note that the term Op(D3

m) includes also the terms with higher-
order derivatives. When using the Epanechnikov kernel function, the second partial
derivative will be constant and partial derivatives of higher order will be zeros.

Adaptive Resampling Model From the above error analysis, we know that the
accuracy of the linear interpolation depends on (1) the distance between two
adjacent resampling points, and (2) the second derivative of the density function.
To minimize the error while keeping the number of resampling points within a
reasonable margin, more resampling points can be added in the regions where the
density function has high curvature, as shown in Fig. 2. By contrast, in the regions
with approximately linear function, less resampling points are used.

Density Estimation with Applications in Data Streams 257

Fig. 2 Example of adaptive
resampling: more resampling
points are used in regions
with high curvature of the
function

5

u1
0

-5-5

0

u2

5
0

0.05

0.1

0.15

0.2

f
(u

1 ,
u

2)

In multidimensional data streams, the distribution is usually spatial, nonuniform,
and dynamic. Therefore, high resolution with sufficient resampling points is
required (1) in dense areas with high PDF values to catch the details; and (2) in
sensitive areas which are the boundary between dense and sparse areas to catch
dynamic changes. Adaptive resampling meets the requirement perfectly.

Bandwidth Selection KDE-Track uses different bandwidth values for each dimen-
sion. The marginal distribution of the data is used to compute the bandwidth
value on that dimension. From Eq. (5), the bandwidth value on dimension i can
be computed as

ĥi =
(

R(K)

μ2
2(K)R(f ′′

i)n

) 1
5

, (8)

where f ′′
i is the second derivative of the density function on the i-th dimension.

Initially, a pilot bandwidth is estimated using the normal rule h̃i = cσ̂in
−1/5, where

c is a constant that depends on the kernel function K and σ̂i is the standard deviation
of the projection of the data on axis i. This pilot bandwidth is used to estimate the
second derivative of the marginal distribution as

f̂ ′′
i (x) = 1

nh̃i

n∑

j=1

K ′′
(

x − xj

h̃i

)

. (9)

In this case, f̂ ′′
i will be a better approximation of f ′′

i than considering fi to be
a normal density. Using KDE-Track on the one-dimensional data will speed up
the computation of R(f̂ ′′

i) and ĥi . Since the distribution of the data will change
over time with the arrival of new samples from the stream, the bandwidth values
ĥi should be updated accordingly to represent the variation of the data along the
different dimensions. Using KDE-Track will also allow for updating the values of
ĥi online and efficiently.

258 A. Qhatan et al.

In this way, the estimated f̂ ′′
i will serve two roles. First, it is used to approximate

R(f ′′
i) to compute the bandwidth value. Second, it is used as a more accurate

indicator of the high curvature of the density function’s curve, which facilitates the
adaptive resampling in KDE-Track for obtaining more accurate estimation as we
will discuss in the following subsections.

3.3 KDE-Track Implementation

Estimating the density for each incoming data sample using KDE-Track requires
access to four resampling points only as discussed in Sect. 3.2. The key step is thus
the maintenance of the resampling model (resampling points and their PDF values).
Algorithm 1 shows the maintenance of KDE-Track’s model and using it for online
density estimation. Lines starting with the # sign represent comments.

Initializing the Resampling Model The resampling model is initialized by the
beginning part of streaming data, for example, the first 5000 points.1 The resampling
points,mmms, s = 1, . . . , q, are defined as the cartesian product of the set of equidistant
points selected on each dimension within the range of initial points received so far.2

The second derivative of the marginal density on each dimension is then estimated at
the initial resampling points and used for selecting the bandwidth value. Moreover,
the second derivative is used to add more resampling points in the regions with high
curvature of the density. Using the estimated bandwidth value, the density values
f̂ (mmms) of these resampling points are computed using the traditional KDE on the
initial batch of points.

Estimation Based on the Resampling Model Once all Mi have been initialized,
the density at each arriving point xxx can be estimated. Due to the usage of
interpolation method, the density at xxx can be estimated by (1) calculating, on each
dimension, the index of one resampling point who and whose successive neighbor
will contribute, (2) fetching the four resampling points in the cell surrounding xxx and
their densities, and (3) computing f̃ (xxx) using Eq. (7).

Updating the Resampling Model The resampling model is the basis of
the density estimator. The resampling points and their PDF values should
be updated after receiving a new data point. As discussed in Sect. 3.2, the
resampling points are adaptively maintained according to the curvature of density
function. An interval [ui

j , u
i
j+1] is divided into two equal subintervals when

1This first batch of data is used for initializing the resampling points and setting bandwidth values.
KDE-Track is not sensitive to how many points are used in this batch, as the resampling model and
bandwidth are updated online with new arriving data after initialization.
2The initial model is defined such that the distance between any two consecutive points on the xi

axis is h̃i1 , where h̃i1 is the pilot bandwidth estimated using the first batch of data points.

Density Estimation with Applications in Data Streams 259

Algorithm 1 KDE-TRACK MODEL

Parameters: w (window size)
Online flow in: streaming data S = {xxx1, . . . , xxxt , . . . }
Online output: f̃ (xxxt) (the PDF value at xxxt)
Procedure:
1: # Initialization:
2: W = {xxx1, . . . , xxxw}, updatestep = 0.05w and M = φ

3: Compute ĥi1 =
(

R(K)

μ2
2(K)R(f̂ ′′

i)w

) 1
5

(Sect. 3.2)

4: for k = 0 to U1 − 1 do (Sect. 3.2)
5: for l = 0 to U2 − 1 do
6: Put s = lU1 + k and mmms = (u1

k, u
2
l)

7: Compute f̂ (mmms) using Eq. (3)
8: Put Ms = (mmms, f̂ (mmms))

9: M = M ∪ {Ms}
10: end for
11: end for
12: while a new sample xxxt arrives in the stream do
13: if (1 ≤ t ≤ w) then
14: Compute f̃ (xxxt) using Eq. (7)
15: else
16: # Update the resampling model: (Sect. 3.3)
17: Remove xxxt−w from W and add xxxt to W

18: for each dimension i do
19: Update σ̂it using xxxt ,xxxt−w

20: Compute h̃it = cσ̂it w
−1/5

21: Update f̂ ′′
i (ui

k)

22: end for
23: for each dimension i do

24: Compute R(f̂ ′′
i), ĥit =

(
R(K)

μ2
2(K)R(f̂ ′′

i)w

) 1
5

25: ∀ s(0≤s ≤U1U2−1), update f̂ (mmms) by Eq. (11)
Update the adaptive resampling:

26: if mod(t, updatestep) = 0 then

27: Compute f̄ ′′
i = 1

Ui

∑Ui−1
j=0 |f̂ ′′

i (ui
j)|

28: if max(|f̂ ′′
i (ui

k)|, |f̂ ′′
i (ui

k−1)|) > f̄ ′′
i then

29: ui
temp = (ui

k − ui
k−1)/2

30: Compute f̂ ′′
i (ui

temp)

31: Insert ui
temp in U i

32: end if
33: �i = max(|f̂ ′′

i (ui
l−1)|, |f̂ ′′

i (ui
l)|, |f̂ ′′

i (ui
l+1)|)

34: if �i < 0.05f̄ ′′
i then

35: Merge [ui
l−1, u

i
l] and [ui

l , u
i
l+1]

36: end if
37: end if
38: end for
39: Compute f̃ (xxxt) using Eq. (7)
40: end if
41: end while

260 A. Qhatan et al.

max{|f̂ ′′
i (ui

j)|, |f̂ ′′
i (ui

j+1)|} > f̄ ′′
i , where f̄ ′′

i = 1
Ui

∑Ui−1
j=0 |f̂ ′′

i (ui
j)| is the average

of the second derivative absolute values. In this way, more resampling points are
inserted in areas which are the boundary between dense and sparse areas or are
dense with high peak values in density function. Two intervals [ui

l−1, u
i
l] and

[ui
l , u

i
l+1] are merged to reduce the number of resampling points when the density

function is close to linear, which means |f̂ ′′
i (ui

l−1)|, |f̂ ′′
i (ui

l)| and |f̂ ′′
i (ui

l+1)| are
close to zero (less than 0.05f̄ ′′

i). In sparse regions, the PDF values are close to
zero and the function is almost linear so the intervals are also merged to reduce the
number of resampling points.

When updating the densities of resampling points in the model M, the evolution
of the data distribution should be considered. Here, a sliding window strategy is used
to catch the evolution over time. The window size w is an application-dependent
parameter and can be set based on the arrival rate of the data samples and the time
interval during which we need to estimate the dynamic density. The window size
also controls the robustness of KDE-Track against noisy data where an isolated
outlier will increase the height of the PDF curve by maximum 1/w, which will not
be noticed. However, when a new pattern arrives, the new points will replace points
in the sliding window from the old pattern and their contribution will be observed
on the shape of the density function after receiving a reasonable number of data
points from the new pattern. Let nt denote the number of points that have been
received until time t . Due to the difference between w and nt , there are two different
scenarios when updating the model M, more specifically, updating the bandwidths
and density f̂ (mmms).

When nt ≤ w The received points cannot fill the whole window. The pilot
bandwidth value at time t is calculated using all nt points by the formula h̃it =
cσ̂it n

−1/5
t , where σ̂ 2

it
is the sample variance of the received data samples projected

on the i-th axis calculated as σ̂i
2
t = 1

nt−1

{
∑nt

j=1 xi
2
j − 1

nt

(∑nt

j=1 xij

)2
}

, i ∈ {1, 2}
[42], which can be updated with a constant time at each t . The pilot bandwidth
is used to update the estimation of the second derivative of the data marginal
distribution on dimension i. The roughness R(f ′′

i) is then computed to estimate
the bandwidth value on that dimension.

After receiving a point xxxt , the density at a resampling point mmms at time t is
updated using sample-point estimator [43]

f̂t (mmms) = nt − 1

nt

f̂t−1(mmms) + 1

nt ĥ1t ĥ2t

K
ĥ

(
mmms,xxxt

)
, (10)

where K
ĥ

is defined in Eq. (3). It is straightforward to show that the updated density

f̂t (mmms) is a good approximation to the estimated density using all the nt points. In

particular, since f̂t (xxx) = 1
nt

∑t
j=1

1
ĥ1j

ĥ2j

K
ĥj

(
xxx,xxxj

)
≥ 0 and ∀ j the integration

Density Estimation with Applications in Data Streams 261

over xxx of 1
ĥ1j

ĥ2j

K
ĥj

(
xxx,xxxj

)
= 1, averaging the integrations of the two terms in (10)

results in 1.

When nt > w In this case, the pilot bandwidth is calculated on the most recently
received w points inside the window as follows: ĥit = cσ̂it w

−1/5, where the sample
variance σ̂ 2

it
of the projected data on the i-th dimension can be easily updated by

σ̂ 2
it

= 1
w−1 (

∑t
j=t−w+1 x2

ij − 1
w

(
∑t

j=t−w+1 xij)
2). The pilot bandwidth is used to

update the estimation of the second derivative values and to compute the bandwidth
ĥit , which is used to update the density function at the resampling points. The PDF
values at the resampling points f̂t (mmms) are updated by absorbing the new arrived
point xxxt and deleting the old point that was moved out from the window:

f̂t (mmms) = f̂t−1(mmms) + K
ĥt

(mmms,xxxt)

wĥ1t ĥ2t

− K
ĥt

(mmms,xxxt−w)

wĥ1t−w ĥ2t−w

. (11)

The probabilistic properties of updated density function f̂t (x) can be proved as

1. f̂t (xxx) ≥ 0,∀ xxx, due to the fact that f̂t (xxx) = 1
w

∑t
j=t−w+1

1
ĥ1j

ĥ2j

K
ĥj

(
xxx,xxxj

)
is a

summation of nonnegative terms.
2. the integration

∫ ∞
−∞ f̂t (xxx)dx1dx2 = 1. Since for any j the integration of

(ĥ1j
ĥ2j

)−1K
ĥj

(
xxx,xxxj

) = 1, averaging w terms will also be 1.

Time and Space Complexity Analysis Based on the discussion earlier in this
section, the time complexity of estimating the density for a new incoming data point
is O(U1 +U2), where U1 and U2 were given in the beginning of Sect. 3.2. They are
independent of the number of points that have been received from the data stream.
Updating the model when receiving a new point requires computing time linear
to the total number of the resampling points |M|, since all the function values at
the resampling points are updated. The overall time complexity of processing each
arriving point is linear to the model size, which is usually a limited small number.
The time required for online density estimation of a data stream with n points is
O(n|M|), which linearly increases with the number of received points from the
stream.

Bandwidth selection requires maintaining a one-dimensional KDE-Track model
on each dimension. Since U1 × U2 = |M| and U1, U2 ≥ 1, the total number of
resampling points in both models of the one-dimensional KDE-Track is U1 +U2 ≤
|M + 1|, which will increase only the constant in the KDE-Track’s time complexity
formula. Thus, the KDE-Track time complexity is O(n|M|) = O(n × U1 × U2).

During the online density estimation process, KDE-Track keeps the resampling
model M and the points in the sliding window in memory. Therefore, the memory
usage is |M|w = U1 × U2 × w. Note that the model size |M| changes upon
the distribution variation in data streams due to merge/split operations in adaptive
resampling.

262 A. Qhatan et al.

Multidimensions Extending the two-dimensional KDE-Track to higher dimen-
sions is straightforward. The same technique can be used for selecting the bandwidth
using the marginal distribution of the data on each dimension. The KDE-Track
model for estimating the density of d-dimensional data can be constructed as
follows:

(1) Discretize the range of the data on the i-th dimension, with 1 ≤ i ≤ d, using
a set of points U i , (2) Define the set of resampling points as the cartesian product
U1 × U2 × · · · × Ud , and (3) Estimate the density function values at the set of
resampling points and store them with their estimated density in the model M.

The product kernel defined in Eq. (3) will be

Kh

(
xxx,xxxj

) =
d∏

i=1

{
1

hi

K

(
xi − xji

hi

)}

.

Some researchers avoid using the product kernel for the case of high-dimensional
data and replace it with an orientation-invariant kernel function

Kh

(
xxx,xxxj

) = 1

h
K

(‖xxx − xxxj‖
h

)

,

which may not be able to estimate densities with arbitrary shapes as it assumes equal
variance values of the data on each dimension.

The KDE-Track’s time complexity will remain linear in the size of the stream
O(n|M|), but the constant in the complexity formula will increase according to the
number of dimensions since |M| = |U1|× |U2|× · · ·× |Ud |. Let U = 1

d

∑d
i=1 |U i |

then |M| = U
d

and the time complexity of KDE-Track will be O(nU
d
).

The interpolation error for the case of d-dimensional data can be bounded
as follows: let Di

m be the maximum distance between the resampling points in
dimension i, i ∈ {1, 2, . . . , d} and Dm = max{Di

m, 1 ≤ i ≤ d}. Then we can
show using mathematical induction on d that

f̃ (aaa) = f̂ (aaa) + D2
m

8

{
d∑

i=1

f̂xixi
(aaa)

}

+ Op(D3
m).

The error is reducible by including more resampling points in certain regions.
However, using KDE-Track for estimating high-dimensional density might become
impractical as the data become sparse and the estimation error will be large. Besides,
applications that rely on visualizing the density functions will not benefit from
estimating the density for high-dimensional data as the density cannot be visualized
in the case of data streams with more than three dimensions.

Density Estimation with Applications in Data Streams 263

4 Density Estimation Performance Evaluation

This section evaluates the most popular density estimators, including (1) the
traditional KDE [20] defined in Eq. (1); (2) the FFT-KDE [19, 20], which deploys
FFT to convolve a very fine histogram of the data with a kernel function to produce
a continuous density function; (3) the Cluster Kernels (CK) [10], which maintains
a specific number of kernels by merging similar kernels; (4) SOMKE [12], which
employs SOM to cluster the data into a specific number of clusters and uses the
centroids of the clusters as the set of kernels; and (5) KDE-Track [18] presented in
Sect. 3.2.

4.1 Estimation Accuracy on Synthetic Data

4.1.1 Datasets

The one-dimensional stream (S1D) was generated by extracting data samples from
the fifteen densities suggested by Marron and Wand [44] and presented in Fig. 3.
The stream is constructed by extracting 3 × 104 data samples from each density and
concatenating the batches to get one stream of 4.5 × 105 data samples. The two-
dimensional data stream (S2D) is generated by extracting data segments of size 105

from the seven densities presented in Fig. 4. The total size of the stream is 7 × 105

x

pd
f

0

0.1

0.2

0.3

0.4

#1 Gaussian

x

pd
f

0

0.2

0.4

0.6
#2 Skewed Unimodal

x

pd
f

0

0.5

1

1.5
#3 Strongly Skewed

x

pd
f

0

0.5

1

1.5

#4 Kurtotic

x

pd
f

0

1

2

3

4
#5 Outlier

x

pd
f

0

0.1

0.2

0.3

#6 Bimodal

x

pd
f

0

0.1

0.2

0.3

0.4
#7 Sep. Bimodal

x

pd
f

0

0.1

0.2

0.3

0.4
#8 Asym. Bimodal

x

pd
f

0

0.1

0.2

0.3
#9 Trimodal

x

pd
f

0

0.2

0.4

0.6
#10 Claw

x

pd
f

0

0.1

0.2

0.3

0.4

#11 Double Claw

x

pd
f

0

0.1

0.2

0.3

0.4

#12 Asym. Claw

x

pd
f

0

0.1

0.2

0.3

0.4

#13 Asym. Db. Claw

x

pd
f

0

0.1

0.2

0.3

0.4

#14 Smooth Comb

x

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

pd
f

0

0.1

0.2

0.3

0.4

#15 Discrete Comb

Fig. 3 The fifteen densities recommended by Marron and Wand [44] to evaluate univariate density
estimators

264 A. Qhatan et al.

x

y

-2

0

2

x
y

-2

0

2

x

y

-2

0

2

x

y

-2

0

2

x

y

-2

0

2

x

y

-2

0

2

x

-2 0 2 -2 0 2 -2 0 2 -2 0 2

-2 0 2 -2 0 2 -2 0 2

y

-2

0

2

Fig. 4 The contours of the densities used to construct the 2D data stream that is used to evaluate
the density estimators

data samples. These streams are selected because they contain challenging densities
that are hard to be estimated accurately. Use of batches of the same size is to simplify
the calculation of the true density only.

Estimation Accuracy Figure 5 shows the MAE and the l∞ error incurred by the
evaluated methods when estimating the density of S1D (subfigures a, b) and S2D
(subfigures c, d). The MAE measures how the estimated density curve fits the curve
of the true density, while the l∞ measures the maximum variation between the true
and the estimated curves. The error is computed by defining a set of checkpoints
with the step of 1000. For each estimation method, at each checkpoint an evaluation
set E = {eee1, . . . , eee1000} of 1000 samples is generated from the same distribution
of the data in the sliding window. The true and estimated density values of the
evaluation points are then compared to compute the MAE and the l∞ error. The
window size is set to 2 × 104 data samples.

The CK and FFT-KDE methods are not designed to capture the dynamic density
of the data streams using the sliding window approach. To adapt these methods
with sliding windows, we rebuild their model at each evaluation checkpoint by
deleting the old model and creating a new model using the data samples in the
current window. This adaptation preserves the estimation accuracy of the methods.
However, the CK method is shown to be impractical for online density estimation
due to its high computational cost, as we will show later. SOMKE is adapted for the
case of sliding window by dividing the sliding window into batches of 1000 samples.
At each evaluation checkpoint, the kernels that represent the removed batch out of
the sliding window are deleted and replaced by the kernels that represent the most
recent batch added to the sliding window. Notice that CK is not evaluated on S2D
data as CK is proposed to estimate the density for univariate data only.

Density Estimation with Applications in Data Streams 265

Time ×105

M
A
E

0

0.1

0.2

0.3

KDE
FFT-KDE
CK
SOMKE
KDE-Track

Time ×105

l ∞
E
rr
or

0

0.2

0.4

0.6

0.8
KDE
FFT-KDE
CK
SOMKE
KDE-Track

(a) (b)

Time ×105

M
A
E

0

0.01

0.02

0.03

KDE
FFT-KDE
SOMKE
KDE-Track

Time ×105

0 1 2 3 4 0 1 2 3 4

0 2 4 6 0 2 4 6

l ∞
E
rr
or

0

0.03

0.06

0.09

0.12
KDE
FFT-KDE
SOMKE
KDE-Track

(c) (d)

Fig. 5 The MAE and the l∞ error incurred by the different density estimators when estimating
the density of S1D and S2D streams. The window size is 2 × 104. (a) MAE of S1D, (b) l∞ error
of S1D, (c) MAE of S2D, (d) l∞ error of S2D

Selecting the bandwidth values for each estimator is done using the same settings
as in the references. All the baseline methods use the normal rule because of its
efficiency, except the CK method which uses the Epanechnikov kernel function with
a recommended constant c = 1.06. This setting enables CK to perform well when
densities have high peaks and are multimodal. KDE-Track uses its own method for
setting the bandwidths, that is, estimating the roughness of the second derivative
R(f ′′) and plugging it in Eq. (5), which increases its accuracy significantly. The
results show that KDE-Track has the best performance (the smallest error). The
high accuracy obtained by KDE-Track is mainly because of the accurate bandwidth
selection method.

266 A. Qhatan et al.

WindowSize ×105

0

0.01

0.02

0.03

0.04

0.05
M

A
E

KDE
FFT-KDE
CK
SOMKE
KDE-Track

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
WindowSize ×105

0.3

0.6

0.9

0.12

0.3

0.6

0.9

M
A

E

KDE
FFT-KDE
SOMKE
KDE-Track

(b)(a)

Fig. 6 The MAE incurred by the different density estimators when estimating the density of the
S1D stream (a) and S2D stream (b). The window size varies from 5 × 104 to 3 × 105

Figure 6 shows the estimation error in terms of MAE for the different estimators
when estimating the densities of S1D and S2D with different sliding windows.
The sliding window’s size changes from 5 × 104 to 3 × 105. For large windows,
the density estimation becomes more accurate, which is reflected by smaller MAE
values. However, the decrease in the MAE is not as expected because the larger
windows include data from different densities, which complicates the density
estimation process. KDE-Track is shown to have the most accurate results. KDE,
FFT-KDE, and SOMKE have comparable results. In addition to the MAE, Fig. 6
shows the standard deviation for the sensitivity analysis of the window size, where
KDE-Track is the most accurate (with the lowest error) and most stable (with the
smallest standard deviation in error), especially in the S2D streams.

4.2 Computational Time Cost and Space Usage

Other important factors in the success of an online density estimator are its running
time and space usage, as streaming data arrive fast and have unlimited size. Since
we are estimating the dynamic density, which will be better represented by the most
recent samples, all the methods are modified to use the sliding window technique.
This technique requires storing the samples in the sliding window in the memory
either for using them to estimate the density as in KDE or to update the density
estimator’s model as in CK, FFT-KDE, SOMKE, and KDE-Track. Hence, all the
methods have comparable space complexity, which is linear in the window size.

The time complexity of KDE-Track, as discussed in Sect. 3.3, is O(n|M|).
Estimating the density using KDE at any given data sample requires scanning
the sliding window. Therefore, the time complexity of KDE when used for online

Density Estimation with Applications in Data Streams 267

density estimation is O(nw), where w is the window size. The time complexity of
CK is controlled by two main steps: (1) model reconstruction, which is performed
at each evaluation checkpoint and has a complexity of O(w); (2) density estimation
at any sample of the evaluation points, which has a constant time complexity. Thus,
using CK for online density estimation will have a complexity of O(nw). However,
the model’s reconstruction step of CK is more expensive than the density estimation
using all the kernels in KDE. It is expected that CK will be more timely efficient if
the data is stationary and the model is updated online without reconstruction.

FFT-KDE also has two main steps: (1) model reconstruction, which involves
updating the histogram after receiving a new data sample and convolving the
histogram with kernel function; and (2) density estimation of the evaluation samples.
The first step requires O(B log B), where B is the number of bins in the histogram,
and the second step has a constant time complexity. The time complexity is thus
O(nB log B).

The SOMKE model is built by training the SOM neurons with the current
window which has a time complexity of O(w). Estimating the density at the
evaluation samples using the trained SOM neurons has a constant time complexity.
The method’s time complexity is then O(nw), where the constant in the complexity
formula is smaller than that for KDE and CK. Figure 7 shows the running time for
using the density estimators for online density estimation of S1D and S2D streams.
The results in the figure confirm our analysis.3 KDE-Track and FFT-KDE are most
efficient with very small running time, which is not affected by the size of w.

Window Size ×105

R
un

ni
ng

 T
im

e
(S

ec
.)

0

1500

3000

4500
KDE
FFT-KDE
CK
SOMKE
KDE-Track

Window Size ×105
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

R
un

ni
ng

 T
im

e
(S

ec
.)

0

2000

4000

6000
KDE
FFT-KDE
SOMKE
KDE-Track

(b)(a)

Fig. 7 The running time of the different density estimators when estimating the density of the S1D
(a) and S2D (b) streams. The window size varies from 5 × 104 to 3 × 105

3All implementations were coded by C/C++ and run on Intel 2.5 GHz Dual-Core PC with 4 GB
memory.

268 A. Qhatan et al.

Fig. 8 The density estimated using New York Taxi trips data for different time intervals. (a)
weekend, (b) working day, (c) Thanksgiving, (d) working hours, (e) night, (f) after midnight

5 Applications

In this section, we apply the estimated dynamic density to two different application
problems: Taxi traffic real-time visualization and unsupervised online change
detection.

5.1 Visualizing the Taxi Traffic Data

Visualizing the density function in real time can help service planners in monitoring
the density of required services and forwarding more service providers to regions
that demand more services at a specific time. For example, monitoring the density of
taxi pickup data can tell the planners of taxi companies to forward more taxicabs to
a specific region of the city. In this subsection, we visualize the dynamic traffic
distribution in the New York Taxi trips dataset.4 The dataset is freely available
and contains records of trips that include pickup time, longitude and latitude of
the pickup and drop-off location, etc. We are mainly interested in the pickup time
and location. Figure 8 shows the density estimated using the pickup location with
window size of 104, where the data records are sorted according to their pickup
time. The first three subfigures show the pickup events occur in the early morning
of a weekend day (subfigure a), of a regular working day (subfigure b), and of a
national holiday (subfigure c). These subfigures show more pickup events during

4Available at: http://www.andresmh.com/nyctaxitrips/.

http://www.andresmh.com/nyctaxitrips/

Density Estimation with Applications in Data Streams 269

the weekends and holidays than during regular working days in the Greenwich and
the east villages where there are many restaurants and nightclubs. The frequency
of pickup events also increases during the weekends as it took less than 30 min to
record 104 events in a weekend but more than 3 h in the early morning of a working
day. More taxicabs are thus suggested in that region on similar events to satisfy the
high demand.

Interesting patterns of community behavior can also be found in a regular
working day. Figure 8d–f shows the pickup events on November 7 and 8, 2013,
at different time intervals. The pickup events during the working hours (subfigure d)
show close to uniform distribution within the area around the central park. Figure 8e
shows high density at Lincoln center during the time interval 21:48–22:55, when a
concert or other events may be over. After midnight, we can observe a small number
of pickup events occurred as it took six hours to accumulate 104 events with more
pickup events occurred around Trump and Freedom towers.

5.2 Online Change Detection

Change detection in data streams refers to the problem of finding time points, where
for each point, there exists a significant change in the current data distribution. A
typical window-based solution is to extract a fixed S1 (reference window) from
streaming samples and to update an S2 (test window) with newly arriving samples
[23, 28]. Changes are then detected by measuring the difference between the
distributions in S1 and S2.

Modeling the data distribution and selecting a comparison criterion are essential
for change detection in data streams. However, density estimation of multidimen-
sional data is difficult. It becomes less accurate and more computationally expensive
with increasing dimensionality. In this subsection, we introduce a framework which
applies Principal Component Analysis (PCA) to project the multidimensional data
from the stream on the principal components to obtain multiple 1D data streams.
Density estimation, distribution comparison, and change-score calculations can then
be conducted in parallel on those 1D data streams. Compared with projecting the
data on the original coordinates (i.e., using the original variables), projecting on
PCs has the following advantages: (1) it allows the detection of changes in data
correlations, which cannot be detected in the original individual variables; (2) it
guarantees that any changes in the original variables are reflected in PC projections;
and (3) it reduces the computation cost by discarding trivial PCs. Proofs can be
found in [33].

Change Detection Framework The framework is given in Algorithm 2, where
DM denotes any divergence metric for comparing two distributions.

Setting Windows Line 3 in Algorithm 2 sets the reference window S1 to be the first
w samples arriving after the change point tc. Intuitively, when a data distribution
shifts to a new one, the reference window should be updated to represent the new

270 A. Qhatan et al.

distribution. This update also enables the detection of further changes. Line 8 sets
the test window S2 as a collection of w samples after the reference window. This
S2 will slide along the data stream to include the newest w samples. The setting
of this parameter is usually left to the user to give them the ability to monitor the
long-/short-term changes, depending on their interests and the application sensitivity
against changes [24].

Algorithm 2 CHANGEDETECTIONFRAMEWORK

Parameters: window size w, ξ , δ

Online flow in: streaming data S = {x1, · · · , xt , · · · }
Online output: time t when detecting a change
Procedure:
1: Initialize tc = 0, step = min(0.05w, 100)

2: Initialize Sc,m,M to NULL.
3: Set reference window S1 = {xtc+1, · · · , xtc+w}
4: Extract principal components by applying PCA on S1 to obtain P1, P2, · · · , Pk

5: Project S1 on P1, P2, · · · , Pk to obtain S̆1
6: ∀ i (1 ≤ i ≤ k) estimate f̂i using data of the i-th component of S̆1
7: Clear S1 and S̆1
8: Set test window S2 = {xtc+w+1, · · · , xtc+2w}
9: Project S2 on P1, P2, · · · , Pk to obtain S̆2

10: Clear S2
11: Estimate ĝi using data of the i-th component of S̆2
12: while a new sample xt arrives in the stream do
13: Project xt on P1, P2, · · · , Pk to obtain x̆t

14: Remove x̆t−w from S̆2

15: ∀ i (1 ≤ i ≤ k) update ĝi using x̆(i)
t and x̆(i)

t−w

16: if mod(t, step) = 0 then

17: curScore = max
i

(
DM

(
ĝi ||f̂i

))

18: if CHANGEFINDER(curScore, Sc,m,M, ξ, δ) then
19: Report a change at time t and set tc = t

20: Clear S̆2 and GOTO step 2
21: end if
22: end if
23: end while

Projecting the Data After receiving the first w data samples in reference window
S1, PCA is applied to extract the principal components from S1. The first k PCs
with the largest eigenvalues are selected if they account for 99.9% of data variance
(i.e.,

∑k
i=1

λi∑d
j=1 λj

≥ 0.999). The data in the reference and test windows are then

projected on these k components. On each component, projections of the reference
and test windows are compared and a change-score value is recorded. The maximum
value among the k change-score values is considered as the final change-score. Any
new data sample is projected on the k components and the density functions of the
projection of the test window are updated and compared with the reference densities.

Density Estimation with Applications in Data Streams 271

Estimating Density Functions Because the change-score is used directly to trigger
change alarms, PDFs for distribution comparison must be accurately and efficiently
estimated. Here, KDE-Track is employed for estimating the density functions of the
projected data of S1 (line 6) and S2 (line 11), as well as for updating the test densities
when a new sample arrives (lines 13–15), due to its merits of both efficiency and
accuracy. Note that the update at line 15 ensures that ĝi is the current distribution of
the i-th component in the data stream.

Computing the Change-Score Values Change-scores are computed by using a
divergence metric on two density functions f̂i and ĝi (line 17), which are updated
upon the arrival of each sample. However, it is not necessary to compute change-
score at each time step, as the change of a distribution cannot be observed after
a single data sample. Therefore, to reduce unnecessary repeated comparisons that
may increase the execution time noticeably, we compute change-scores every
min(0.05 ∗ w, 100) samples (line 16). This setting of checkpoints complies with
the monitoring requirements of users. Monitoring short-term changes with a small
w needs frequent checkpoints while monitoring long-term changes by setting a large
w allows bigger checkpoint intervals. The granularity can be adjusted by changing
the 5% according to the users’ needs.

Divergence metric DM(ĝi ||f̂i) is crucial for computing change-scores, and can
be set differently. A widely used divergence metric, KL-divergence, is defined as

DKL (g||f) =
∫

x

g(x) log

(
g(x)

f (x)

)

dx. (12)

It is a nonnegative (≥ 0) and nonsymmetric measure. It is 0 when the two
distributions are completely identical, and becomes larger as the two distributions
deviate from each other. The non-symmetry property of the DKL complicates
the procedure of setting the threshold for detecting changes in data streams. To
overcome the problem of the KL-divergence, this framework provides two options
on setting divergence metrics. The first divergence metric is a modified symmetric
KL-divergence [45]

DMKL(ĝ||f̂) = max
(
DKL

(
ĝ||f̂

)
,DKL

(
f̂ ||ĝ

))
. (13)

This divergence metric mimics powerful order selection tests developed in current
statistics literature; see, for example, [46].

The second divergence metric is a measure of the intersection area under the
curves of two density functions [47],

DA

(
ĝ||f̂

)
= 1 −

∫

x

min
(
f̂ (x), ĝ(x)

)
dx. (14)

This DA takes values in [0, 1], where the value one means that the two distributions
are completely different and zero means the two distributions are identical. This
measure can also be computed using numerical integration techniques on the
intersection area.

272 A. Qhatan et al.

After computing the change-scores on all the PCs, the different change-score
values are aggregated by taking the maximum over all values. This is necessary to
maintain a single statistical quantity. The maximum is preferable for aggregating
the change-score values as it allows for treating any changes happening at any
component equally important. Also, when a change happens in a single PC, the
change-score will not be affected by the small change-score values obtained from
the other PCs.

Algorithm 3 CHANGEFINDER

Input: curScore, Sc,m,M, ξ, δ

Output: <True or False>: a change should be reported or not
1: Update Sc to include the curScore in the average.
2: newm = m + Sc − curScore + δ

3: if |newm| > M then
4: newM = newm.
5: end if
6: τt = ξ ∗ Sc

7: if curScore > τt then
8: return True
9: else

10: M = newM , m = newm

11: return False
12: end if

Dynamic Threshold Settings Typical statistical tests for change detection start
by considering the null hypothesis, which assumes that the data distribution is
stationary. A change-score value is then calculated to determine the probability
of rejecting the null hypothesis. The most popular technique to reject the null
hypothesis is to specify a threshold and declare a change whenever the change-score
becomes greater than the threshold. Most existing methods require a user-specified
threshold [48], which has two main issues. First, the fixed threshold cannot be used
to detect changes in different magnitudes. Second, the threshold is difficult to set,
as it is sensitive to the divergence metric, window size, underlying distribution,
and change types. In this framework, the threshold is dynamically adjusted in the
detection process (Algorithm 3). More details of the setting can be found in [33].

Performance Evaluation The above presented change detection framework is
evaluated together with two other change detection methods: kdq-tree [28] (using
kdq-tree data structure to model data distribution) and PCA-SPLL [29] (using PCs
with small variances for measuring distribution difference). Table 3 presents the
results on datasets, which are generated following the same generation mechanism
of [28] and contain the same types of changes: M(ε) means varying the mean
value, D(ε) means varying the standard deviation, and C(ε) means varying the
correlation. Each dataset contains 5 × 106 data samples with changes that occur
every 5 × 104 data samples with a total of 99 change points. At each change point, a

Density Estimation with Applications in Data Streams 273

Table 3 Evaluation results of Dasu’s method (kdq-tree) with Average Absolute Difference (AAD)
and KL-divergence metrics, Kuchneva’s method (PCA-SPLL), CD-Area, and CD-MKL with
KDE-Track as density estimators

kdq-tree [28]

Dataset AAD KL PCA-SPLL [29] CD-Area [33] CD-MKL [33]

M(0.01) 30/15/1/54 3/7/0/89 10/16/5/73 38/23/0/38 34/31/1/34

M(0.02) 77/14/6/8 3/7/0/89 18/9/3/72 87/12/0/0 89/7/0/3

M(0.05) 98/1/4/0 12/21/0/66 66/11/9/42 99/0/0/0 95/0/4/4

D(0.01) 42/18/2/39 4/2/0/93 29/5/4/65 45/29/0/25 54/25/0/20
D(0.02) 98/1/9/0 12/7/0/80 85/0/2/14 97/0/1/2 94/1/2/4

D(0.05) 99/0/2/0 24/4/2/71 89/2/2/8 99/0/0/0 98/0/2/1

C(0.1) 67/13/2/19 8/4/1/87 55/4/2/40 68/19/0/12 76/17/2/6
C(0.15) 78/9/5/12 8/7/1/84 63/6/4/30 84/7/1/8 85/9/0/5
C(0.2) 96/3/10/0 21/5/3/73 75/3/3/21 97/1/1/1 93/2/0/4

The results are in the form TP/L/FP/FN with TP = true positives, L = late detections, FP = the false
positives and FN = the false negatives. The best results are in bold

set of random numbers in the interval [−ε,−ε/2]∪[ε/2, ε] are generated and added
to the distribution’s parameters that will be changed. The parameter ε controls the
magnitude of the change, where smaller values for ε make changes harder to detect
and vice versa.

The presented framework using the maximum KL-divergence (Eq. (13)) is called
CD-MKL, and the one using the Area metric (Eq. (14)) is called CD-Area. The
performance of the different methods is measured according to the number of True
Positives (TP), Late detections (L), False Positives (FP), and False Negatives (FN).
By true positives, we mean the changes that were reported correctly before receiving
2w from the new distribution where w is the window size. Late detections are the
changes reported after processing 2w data samples from the new distribution. False
positives are changes reported by the method when there are no changes, and false
negatives are the missed changes. The window size w is set to 104 for all methods.

Results The experimental results show that the presented framework outperforms
kdq-tree and PCA-SPLL in terms of the number of correctly detected changes and
less false positives. Also, the performance of the framework when using the Area
metric (Eq. (14)) outperforms the performance of the framework when using the
MKL (Eq. (13)) metrics in most of the evaluation datasets. PCA-SPLL [29] shows
the worst performance, especially for detecting mean shifts.

The second set of experiments evaluates the detection accuracy in high-
dimensional datasets. As changes become less observable when the data
dimensionality increases, we used only datasets with a reasonable magnitude of
change (M(0.05),D(0.05), and C(0.2)). For each type of change, we generated three
datasets with 10, 20, and 30 dimensions. The changes in the data distribution affect
only two dimensions (variables) and for more complicated change detection cases,
we selected the variables that are affected by the change randomly at each change
point.

274 A. Qhatan et al.

Table 4 Evaluation results of kdq-tree with Average Absolute Difference (AAD) metric, PCA-
SPLL, CD-MKL, and CD-Area for (a) changes in Gaussian high-dimensional data (1st 9 datasets),
(b) changes in density shape from a list of non-Gaussian distributions (DistCh), and (c) changes in
nonlinear dependent data streams (DEMC, DDC, and SWRL)

Dataset kdq-tree(AAD) [28] PCA-SPLL [29] CD-MKL [33] CD-Area [33]

M(10D) 96/1/9/2 63/10/10/26 99/0/0/0 99/0/0/0
M(20D) 75/7/3/17 32/11/1/56 96/1/2/2 99/0/0/0
M(30D) 59/8/4/32 33/13/2/53 97/0/1/2 97/1/1/1
D(10D) 93/3/3/3 70/1/1/28 99/0/0/0 99/0/0/0
D(20D) 87/3/7/9 59/0/0/40 99/0/0/0 99/0/0/0
D(30D) 78/4/4/17 56/1/4/42 96/1/1/2 96/0/0/3

C(10D) 64/7/10/28 67/1/0/31 95/0/5/4 98/1/0/0
C(20D) 29/12/12/58 49/0/0/50 98/0/2/1 95/2/2/2

C(30D) 11/4/5/84 48/0/0/51 97/0/2/2 99/0/0/0
DistCh 99/0/7/0 72/0/44/27 99/0/0/0 99/0/0/0
DEMC 84/6/2/9 24/15/28/60 84/6/3/9 88/0/4/11
DDC 96/2/3/1 19/18/29/62 94/1/3/4 97/0/0/2
SWRL 99/0/6/0 23/10/29/66 95/0/2/4 99/0/2/0

The best results are in bold

We report the results for the kdq-tree method with AAD-divergence only because
KL-divergence shows very low accuracy for 2D data in Table 3. The results in
Table 4 show that CD-Area and CD-MKL are not affected by data dimensionality.
As all space partitioning methods, the kdq-tree method suffers from the curse of
dimensionality as data dimensionality increases. The PCA-SPLL has low accuracy
again.

The third set of experiments evaluates the detection accuracy in two special
cases: (1) changes in the density shape of data streams, and (2) changes in data
streams with nonlinear dependencies. Four datasets were generated for evaluation,
where each dataset contains 100 batches with batch size of 5 × 104, resulting in
a total of 99 changes. DistCh is generated by changing the data distribution in
consecutive batches, where a distribution is randomly drawn from a list of preset
distributions including standard Normal, highly skewed Normal, bimodal Normal,
trimodal Normal, Gamma and Laplace distributions. In each batch, the mean,
variance, and correlation are kept constant. The remaining three datasets evaluate the
detection accuracy on nonlinear dependent data streams. The first dataset includes a
Disc with EMpty Circle in the middle (DEMC). Changes in consecutive batches are
introduced by randomly altering the radius of the empty circle without affecting the
mean, variance, or correlation values. The second dataset includes Disc with Dense
Circle in the middle (DDC). Nonlinear changes in the distribution are introduced
by altering the radius of the dense circle in the center of the data points. The
third dataset is a Swiss roll (SWRL) dataset with changes designed by altering the
distance between any two consecutive contours of the Swiss roll.

Density Estimation with Applications in Data Streams 275

The results presented in Table 4 show that both CD-MKL and CD-Area
outperform other methods in DisCh, and that CD-Area obtained better results in
all nonlinear dependent data streams. While the experimental results are promising,
the proposed method is restricted by PCA’s limitation to handling only linearly
dependent data streams. Change detection in nonlinear dependent data streams will
be left for future study.

Computational Cost Analysis The time complexity of the presented framework
and the kdq-tree method is linear w.r.t. the size of the data stream. However, the
constant in the complexity formula controls the efficiency of the evaluated methods.
The cost of the PCA-based framework depends on three main subroutines: (1) The
PCA routine for extracting PCs, which is called only when a change is reported.
It has a complexity of O(d2 × w × Rc), where d is the data dimensionality, w is
the window size, and Rc is the number of reported changes; (2) The incremental
density update by KDE-Track, which requires a constant time at the arrival of a
new data sample from the stream; and (3) Computing the divergence metric, which
is done incrementally and costs a constant time upon the arrival of a new data
sample. Therefore, the computational cost of the PCA-based framework is affected
more by data dimensionality, as the PCA routine has quadratic complexity w.r.t.
dimensionality d, and maintaining the density and computing the change-score may
have to be done on more PCs when d is higher. The window size has a relatively
less effect on the running time of our framework as it affects only the PCA routine.

The running time of the kdq-tree method increases fast w.r.t. window size
and data dimensionality, mainly due to the expensive bootstrap sampling rou-
tine for computing the threshold to report changes. The overall complexity is
O(kdw log(1

ν
Rc)), where Rc is the number of reported changes.

The results in Fig. 9 confirm our analysis. We see a slight increase in the running
time of CD-Area and CD-MKL when increasing the window size (Fig. 9 Left),

104

0

100

200

300

400
kdq-tree
CD-Area
CD-MKL

0 1 2 0 5 10 15 20
0

100

200

300

400
kdq-tree
CD-Area
CD-MKL

Fig. 9 Running time of the evaluated methods for different window sizes (left) and different
number of dimensions (right). The stream size is 5 × 106 data samples. Changes occur every
5 × 104 data samples, and the number of changes is 99

276 A. Qhatan et al.

while the runtime increases almost linearly w.r.t. data dimensionality (Fig. 9 Right).
The running time of kdq-tree increases linearly with the window size and data
dimensionality.

Last, it is worth mentioning that kdq-tree requires the data to be normalized (into
[0, 1]) before running to ensure that growth of the tree growing is not stopped
prematurely by the stopping condition of the minimum cell width. However, it is
unrealistic to normalize data streams beforehand, as data arrives continuously. The
PCA-framework does not require normalization and is thus superior to kdq-tree in
processing a real data stream.

6 Summary and Future Work

Summary In this chapter, we studied the problem of estimating the dynamic
density that comes with data streams. We presented KDE-Track [18] that can
timely track the evolving distribution and accurately estimate the probability density
function of evolving data streams. KDE-Track models the data distribution as a
set of resampling points with their estimated PDF values, which are incrementally
updated upon the arrival of new data samples from the stream. The effectiveness
and efficiency of KDE-Track have been analytically studied and experimentally
demonstrated on both synthetic and real-world data.

KDE-Track provides any time available density function, which has been utilized
in two main applications. First, the estimated density is used for visualizing and
monitoring the changes in New York Taxi pickup data. KDE-Track allows for
visualizing the dynamic density estimated from the data in real time after receiving
any data sample.

Second, KDE-Track is used to develop a framework for detecting abrupt changes
in linearly dependent multidimensional data streams. The framework is based on
projecting data on selected principal components. On each projection, densities in
reference and test windows are estimated using KDE-Track and compared using
effective divergence metrics to compute a change-score value that are used to report
change in the data distribution when the score value increases for a reasonable
period.

Possible Future Work First, more applications that benefit from KDE-Track as
an accurate and computationally efficient density estimator can be studied. Second,
the change detection framework depends mainly on the PCA, which can reflect the
changes in linearly dependent data streams. However, more complex changes in
nonlinear dependent data streams should be further studied.

Density Estimation with Applications in Data Streams 277

References

1. Zhou, A., Cai, Z., Wei, L., Qian, W.: M-kernel merging: towards density estimation over data
streams. In: DASFAA (2003)

2. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online
outlier detection in sensor data using non-parametric models. In: VLDB (2006)

3. Schaller, B.: A regression model of the number of taxicabs in U.S. cities. J. Public Transp. 8,
63–78 (2005)

4. Zhou, Z., Matteson, D.: Predicting ambulance demand: a spatio-temporal kernel approach. In:
KDD (2015)

5. Wu, F., Li, Z., Lee, W., Wang, H., Huang, Z.: Semantic annotation of mobility data using social
media. In: WWW (2015)

6. Scott, D.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New
York (1992)

7. Qahtan, A., Zhang, X., Wang, S.: Efficient estimation of dynamic density functions with an
application to outlier detection. In: CIKM (2012)

8. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: ACM SIGMOD-SIGACT-SIGART (2002)

9. Zhang, X., Furtlehner, C., Germain-Renaud, C., Sebag, M.: Data stream clustering with affinity
propagation. IEEE Trans. Knowl. Data Eng. 26, 1644–1656 (2014)

10. Heinz, C., Seeger, B.: Cluster kernels: Resource-aware kernel density estimators over
streaming data. IEEE Trans. Knowl. Data Eng. 20, 880–893 (2008)

11. Boedihardjo, A.P., Lu, C., Chen, F.: A framework for estimating complex probability density
structures in data streams. In: CIKM (2008)

12. Cao, Y., He, H., Man, H.: SOMKE: Kernel density estimation over data streams by sequences
of self-organizing maps. IEEE Trans. Neural Netw. Learn. Syst. 23, 1254–1268 (2012)

13. Zheng, Y., Jestes, J., Phillips, J., Li, F.: Quality and efficiency in kernel density estimates for
large data. In: SIGMOD (2013)

14. Procopiuc, C., Procopiuc, O.: Density estimation for spatial data streams. In: SSTD (2005)
15. Gary, A., Moore, A.: Nonparametric density estimation: toward computational tractability. In:

SDM (2003)
16. Lin, C., Wu, J., Yen, C.: A note on kernel polygons. Biometrika 93, 228–234 (2006)
17. Hart, T., Zandbergen, P.: Kernel density estimation and hotspot mapping: examining the

influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing
Int. J. Police Strateg. Manag. 37, 305–323 (2014)

18. Qahtan, A., Wang, S., Zhang, X.: Kde-track: an efficient dynamic density estimator for data
streams. IEEE Trans. Knowl. Data Eng. 29, 642–655 (2017)

19. Wand, M.: Fast computation of multivariate kernel estimators. J. Comput. Graph. Stat. 3,
433–445 (1994)

20. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London
(1986)

21. Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line unsupervised outlier detection
using finite mixtures with discounting learning algorithms. Data Min. Knowl. Disc. 8, 275–300
(2004)

22. Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: ICCV (2007)
23. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: VLDB (2004)
24. Aggarwal, C.C.: A framework for diagnosing changes in evolving data streams. In: SIGMOD

(2003)
25. Guralnik, V., Srivastava, J.: Event detection from time series data. In: KDD (1999)
26. Kawahara, Y., Sugiyama, M.: Change-point detection in time-series data by direct density-ratio

estimation. In: SDM (2009)
27. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: SDM

(2007)

278 A. Qhatan et al.

28. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An information-theoretic approach
to detecting changes in multi-dimensional data streams. In: Symposium on the Interface of
Statistics, Computing Science, and Applications (2006)

29. Kuncheva, L.I., Faithfull, W.J.: PCA feature extraction for change detection in multidimen-
sional unlabeled data. IEEE Trans. Neural Netw. Learn. Syst. 25, 69–80 (2014)

30. Song, X., Wu, M., Jermaine, C., Ranka, S.: Statistical change detection for multi-dimensional
data. In: KDD (2007)

31. Liu, S., Yamada, M., Collier, N., Sugiyama, M.: Change-point detection in time-series data
by relative density-ratio estimation. In: International Conference on Structural, Syntactic, and
Statistical Pattern Recognition, pp. 363–372 (2012)

32. Takeuchi, J., Yamanishi, K.: A unifying framework for detecting outliers and change points
from time series. IEEE Trans. Knowl. Data Eng. 18, 482–492 (2006)

33. Qahtan, A.A., Alharbi, B., Wang, S., Zhang, X.: A PCA-Based change detection framework
for multidimensional data streams. In: SIGKDD, pp. 935–944 (2015)

34. Epanechnikov, V.A.: Non-parametric estimation of a multivariate probability density. Theory
Probab. Appl. 14, 153–158 (1969)

35. Turlach, B.: Bandwidth selection in kernel density estimation: a review. CORE and Institut de
Statistique, vol. 19, pp. 1–33 (1993)

36. Scott, D., Terrell, G.: Biased and unbiased cross-validation in density estimation. J. Am. Stat.
Assoc. 82, 1131–1146 (1987)

37. Hall, P., Sheather, S., Jones, M., Marron, J.: On optimal data-based bandwidth selection in
kernel density estimation. Biometrika 78, 263–269 (1992)

38. Hall, P., Marron, J.: Estimation of integrated squared density derivatives. Stat. Probab. Lett. 6,
109–115 (1987)

39. Jones, M.: The roles of ISE and mise in density estimation. Stat. Probab. Lett. 12, 51–56
(1991)

40. Shimazaki, H., Shinomoto, S.: Kernel bandwidth optimization in spike rate estimation. J.
Comput. Neurosci. 29, 171–182 (2010)

41. Zheng, Y., Phillips, J.: l∞ error and bandwidth selection for kernel density estimates of large
data. In: KDD (2015)

42. Chan, T., Golub, G., LeVeque, R.: Algorithms for computing the sample variance: Analysis
and recommendations. Am. Stat. 37, 242–247 (1983)

43. Sain, R.: Multivariate locally adaptive density estimation. Comput. Stat. Data Anal. 39, 165–
186 (2002)

44. Marron, J., Wand, M.: Exact mean integrated squared error. Ann. Stat. 20, 712–736 (1992)
45. Liu, D., Sun, D., Qiu, Z.: Feature selection for fusion of speaker verification via maximum

kullback-leibler distance. In: ICSP (2010)
46. Jin, L., Wang, S., Wang, H.: A new nonparametric stationarity test of time series in time

domain. J. R. Stat. Soc. Ser. B 77, 893–922 (2015)
47. Cha, S.: Comprehensive survey on distance/similarity measures between probability density

functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)
48. Dai, X.L., Khorram, S.: Remotely sensed change detection based on artificial neural networks.

Photogramm. Eng. Remote. Sens. 65, 1179–1186 (1999)

Incremental SVM Learning: Review

Isah Abdullahi Lawal

Abstract The aim of this paper is to present a review of methods for incremental
Support Vector Machines (SVM) learning and their adaptation for data stream
classification in evolving environments. We formalize a taxonomy of these methods
based on their characteristics and the type of solution they provide. We discuss the
strength and weakness of the various learning methods and also highlight some
applications involving data stream, where incremental SVM learning has been used.

1 Introduction

Data streams from high-rate sources, such as wireless sensor network, surveillance
camera network, and the Internet, require a timely and meaningful classification
to facilitate their interpretation [19, 40]. The classification of the data stream can
be performed with supervised [49], unsupervised [23], and semi-supervised [51]
learning methods, when the data are labeled, unlabeled, or a mixture of both,
respectively. Ideally, it is desirable to be able to consider all the samples in the data
stream at once during the learning of the classification model (i.e., the classifier)
in order to get the best estimation of the class distribution. However, when the
number of samples becomes too large, the learning process can get computationally
intractable [13]. In fact, the amount of memory required by the learning algorithms
increases prohibitively with an increase in the number of samples in the data
streams [24]. Moreover, sometimes the data stream exhibits a phenomenon referred
to as concept drift, where the underlying data distribution changes over time
[39, 47], making the classifier built with old samples become inconsistent with
new samples [59]. Thus if the learning algorithms do not contemplate and adapt to
the change in the data distribution, it will be impossible to properly learn a good
classifier. Recently, researchers have proposed incremental learning techniques

I. A. Lawal (�)
Department of Computer Engineering and Networks, Jouf University, Sakaka, Saudi Arabia
e-mail: ialawal@ju.edu.sa

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_12

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_12&domain=pdf
mailto:ialawal@ju.edu.sa
https://doi.org/10.1007/978-3-319-89803-2_12

280 I. A. Lawal

which allow the classifier to be built incrementally as the data arrives using the
limited computing resources available and guaranteeing the effectiveness of the
classifier over time [17, 57, 60]. In order to handle large-scale data stream, the
learning process is constrained to have a restricted number of samples in memory.
This is sometimes achieved by using fixed-window-size techniques which involve
learning of new samples as they arrived while reinforcing relevant information
learned from the previously seen samples. Moreover, some of the incremental
learning methods incorporate unlearning ability into their framework to allow the
removal of knowledge associated with old samples that are considered no longer
relevant in the classifier development process [18, 27].

The aim of this contribution is to provide a review of the methods for incremental
Support Vector Machines (SVM) learning. Though some reviews have been reported
for incremental and online learning in general for data streams [10, 16, 40], but to the
best of our knowledge, the articles that specifically discuss the various incremental
learning methods for SVM are very limited, despite the extensive use of SVM
for data classification. In fact, one survey article by Zhou et al. [61] came to our
attention while submitting this paper for review. The article briefly discusses a
set of papers (≈25 references) that adapt SVM for real-time acquisition system,
by categorizing them into Primal and Dual online algorithms based on the two
SVM standard formulations. Unlike [61], we provide a comprehensive review of
the incremental learning SVM methods by formalizing a taxonomy of the methods
based on their characteristics and the type of solution they provide. Moreover,
we compare the strength and weakness of the various methods and also highlight
some of their applications in real world. Our paper is organized as follows, Sect. 2
provides a brief overview of the classical SVM algorithm, while Sect. 3 discusses
the incremental SVM learning methods. Section 4 summarizes the discussion and
compares the methods, while Sect. 5 discusses some of the applications and Sect. 6
concludes the paper.

2 SVM for Classification

In this section, we describe the classical SVM algorithm for a binary classification
problem. Let F t = {

(xt
1, y

t
1), . . . , (x

t
N , yt

N)
}

be a set of data samples of size N

gathered at a generic instant of time t , with xt
i ∈ R

d , where d and yt
i ∈ Y = {−1, 1}

are the dimension and label of xt
i , respectively. The goal is to exploit F t , in order to

learn a decision function f t (i.e., the classifier) that will generalize well on future
unseen samples. If the samples in F t are linearly separable, then a linear SVM can
be used and f t is defined as

f t (xt) = sign
[
wt T xt + bt

]
(1)

Incremental SVM Learning: Review 281

where bt ∈ R the bias and wt ∈ R
d the weights of the samples in F t at t are the

parameters of f t that define the optimal separation of xt ∈ F t into two classes. The
values of bt and wt are obtained by solving the following soft margin SVM primal
quadratic programing problem [7]:

min
wt ,bt ,ξ t

1

2

∥
∥wt

∥
∥2 + C

N∑

i=1

ξ t
i (2)

yt
i

[(
wt T xt

i

)
+ bt

]
≥ 1 − ξ t

i ∀i ∈ {1, . . . , N}
ξ t
i ≥ 0 ∀i ∈ {1, . . . , N} ,

where ξ t
i are slack variables for penalizing misclassification errors and C is a hyper-

parameter of the SVM known as the regularization parameter [7]. The problem of
Eq. (2) can be solved directly in the primal formulation [5, 33], but it is easier when it
is transformed into its Wolfe dual form [50]. Therefore, the problem is reformulated
into a Lagrangian problem L() first, by introducing two sets of Lagrange multipliers,
αt ∈ R

N and μt ∈ R
N , one for each of the two constraints in the equation,

respectively, as

L(wt , bt , ξ t) = 1

2

∥
∥wt

∥
∥2 + C

N∑

i=1

ξ t
i

+
N∑

i=1

αt
i

(
yt
i

[(
wt T xt

i

)
+ bt

]
− 1 + ξ t

i

)
+

N∑

i=1

μt
iξ

t
i , (3)

then the derivatives of Eq. (3) with respect to wt , bt , and ξ t are derived in order
to obtain the Karush-Kuhn-Tucker (KKT) optimality conditions for the Lagrangian
problem [7]

∂L

∂wt
i

= 0 → wt
i =

N∑

i=1

αt
i y

t
i x

t
i , i = 1, . . . , N (4)

∂L

∂bt
= 0 →

N∑

i=1

αt
i y

t
i = 0 (5)

∂L

∂ξ t
i

= 0 → C − αt
i − μt

i = 0, i = 1, . . . , N (6)

αt
i

(
yt
i

[(
wt T xt

i

)
+ b

]
− 1 + ξ t

i

)
= 0, ∀i = 1, . . . , N (7)

μt
iξ

t
i = 0, li = 1, . . . , N (8)

282 I. A. Lawal

(
C − αt

i

)
ξ t
i = 0, i = 1, . . . , N (9)

αt
iμ

t
iξ

t
i = 0, i = 1, . . . , N. (10)

Lastly, the values of wt , bt , and ξ t obtained from the above are substituted in Eq. (2)
in order to derive its final Wolfe dual form as

min
αt

1

2

N∑

i=1

N∑

j=1

αt
i α

t
jQ

t
ij −

N∑

i=1

αt
i (11)

0 ≤ αt
i ≤ C ∀i ∈ {1, . . . , N}

N∑

i=1

yt
i α

t
i = 0,

where Qij = yt
i y

t
jK(xt

i , x
t
j), and K(., .) is a kernel function which allows nonlinear

mappings of xt ∈ F t when they are not linearly separable in the input space [7]. The
solution of Eq. (11), that is, αt

i ∀i, is obtained by using the Quadratic Programing
(QP) solvers already developed in the literature [21]. Finally, the new expression for
f t is obtained by substituting wt with αt

i ∀i in Eq. (1) as

f t (xt) = sign

[
N∑

i=1

yt
i α

t
iK(xt , xt

i) + bt

]

. (12)

The decision boundaries of the classifier f t are defined by few patterns St ∈ F t

known as the support vectors, that is, xt
i with corresponding 0 < αt

i ≤ C [3]. These
support vectors can be categorized into two sets: The set of margin support vectors
St

m with yt
i f

t (xt
i) = 1 and αt

i ∈ [0, C]; the set of bounded support vectors St
b with

yt
i f

t (xt
i) < 1 and αt

i = C.

3 Incremental SVM Learning

At time t + 1, when a new set of samples F t+1 =
{
(xt+1

1 , yt+1
1), . . .

}
are gathered,

f t can be updated to f t+1 using incremental learning without having to recompute
the classifier from the scratch (see Fig. 1). Depending on the application, the new
samples can occur instantly in time, such as in time series data or in batches after
long time intervals, such as research data and Web log records. Different SVM
incremental learning methods have been reported in the literature to accommodate
the ways in which the data streams are generated [54, 62]. These methods can be
categorized into two groups: online and semi-online. The online methods process
the data stream one sample at a time and ensure that the KKT conditions are

Incremental SVM Learning: Review 283

Fig. 1 Illustration of the incremental SVM learning procedure

maintained on all previously seen samples while updating the classifier [4]. The
semi-online methods, on the other hand, process the samples in batches and while
updating the classifier, they discard previously seen samples except those identified
as support vectors [48]. In the following sections, we identify the pioneering work
in both groups and explain the algorithm behind them. We also highlight their
advantages and drawbacks.

3.1 Online Incremental SVM Learning Methods

Cauwenberghs and Poggio [4] proposed the first online recursive algorithm for
incremental SVM learning. The method was later adapted to other variants of
kernel machines [12, 15, 33]. When a new stream of data (xt+1

1 , yt+1
1) is received,

the algorithm computes the value of yt+1
1 f t (xt+1

1) in order to check whether the
new sample has the potential to improve the classifier. If yt+1

1 f t (xt+1
1) ≤ 1, it

means the samples are useful. Thus, the algorithm initializes a coefficient αt+1
1

to 0 for the new sample and then perturbs the SVM by gradually increasing the
value of the coefficient until the optimal SVM solution is obtained [4]. During
the perturbation of the SVM, the other αt

i ∀i ∈ St
m and St

b are also adjusted in
order to maintain the KKT optimality conditions for all previously seen samples.
Algorithm 1 describes the main steps of the Cawenbergs and Poggio’s algorithm.
The incremental SVM learning is also reversible whereby the patterns in the SVM
solution can be unlearned one after another. To unlearn a pattern, the coefficient
of the corresponding sample is gradually decremented to zero, while coefficients
of the other samples are readjusted in order to maintain the KKT conditions [4].
In a later implementation of the Cawenbergh and Poggio’s algorithm [9], the hyper-
parameters (i.e., regularization and kernel parameters) of the SVM can be updated as
well during the incremental learning process. Updating the hyper-parameters is very
important because it guarantees the effectiveness of the classifier by enabling the
selection of the best decision boundaries in cases where the underlying distribution
of the data stream changes over time [1]. The Matlab code for this incremental

284 I. A. Lawal

Algorithm 1 The Cawenbergs and Poggio’s algorithm [4]

Input: (xt+1
1 , yt+1

1): new sample at time t + 1, f t : decision function at t

Output: f t+1 : updated decision function at t + 1
Definitions: αt

i : coefficient of the ith sample at t , St
m: margin support vector set at t , St

b:
bounded support vector set at t , Q: kernel matrix

1: Begin:
2: Compute z = yt+1

1 f t (xt+1
1),

3: If z > 1, then, f t+1 ← f t , and go to step 10
4: Else,
5: Initilaize αt+1

1 ← 0, for xt+1
1

6: Compute Qi1 for ∀ xt
i ∈ St

m

7: Increment αt+1
1 to its largest value while maintaining the KKT optimality conditions on all

previously seen samples
8: Check if one of the following conditions occurs:

I. If yt+1
1 f t (xt+1

1) = 1, then St
m ← xt+1

1

II. Else if αt+1
1 = C , then St

b ← xt+1
1

III. Else if any xt
i ∈ St

m become part of St
b, due to the change in their corresponding αt

i , then
update St

m and St
b accordingly

9: f t+1 ← f t , St+1
m ← St

m and St+1
b ← St

b

10: End

SVM learning is available online.1 The Cawenberghs and Poggio’s algorithm,
however, suffers from the following limitations. First, it is designed for 2-class
problems and cannot be applied directly to a multi-class data stream. It is possible
to employ conventional methods such as One-Vs-One and One-Vs-All [45] to allow
the algorithm cope with the multi-class problem, but this will significantly increase
the computational cost of the learning process [14]. Second, being a supervised
learning method, the algorithm requires the labeling of all the input training samples.
However, getting enough labeled data is expensive especially in large-scale data
stream applications [51].Thus, the algorithm is not directly applicable to data stream
problems with purely unlabeled data or a mixture of labeled and unlabeled data.

To address the first problem, Boukharouba et al. [2] reformulated the problem of
Eq. (2) as follows:

min
wt ,bt ,ξ t

1

2

K∑

i=1

K∑

j=i+1

∥
∥
∥wt

i
− wt

j

∥
∥
∥

2 + 1

2

K∑

i=1

∥
∥wt

i

∥
∥2 + C

N∑

i=1

K∑

j=i+1

∑

xt
k∈Ct

ij

ξ t
k (13)

∀xt
k ∈ Ct

ij

yt
k

[((
wt

i
− wt

j

)T

xt
k

)

+
(
bt
i − bt

j

)]

≥ 1 − ξ t
k,

ξ t
k ≥ 0 ∀i ∈ {1, . . . , K} , ∀j ∈ {i + 1, . . . , K} ,

1https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB.

https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB

Incremental SVM Learning: Review 285

where K(K > 2) is the number of classes in the data stream, with i and j

corresponding to the index of any two different classes. Ct
ij = (Ct

i ∪ Ct
j) and

yt
k = 1 if xt

k ∈ Ct
i , and yt

k = −1, if xt
k ∈ Ct

j . Then proceeded to derive the solution
of Eq. (13), after which the same learning procedure described in Algorithm 1 is
applied in order to allow the method to simultaneously discriminate between K

number of classes in the data stream.2

The second problem of the Cawenbergh and Poggio’s algorithm is addressed by
Chen et al. [6]. The method allows the incremental learning from partially labeled
samples by using the principle of transduction [25, 55]. The method starts by using
only the labeled samples gathered in the past to develop the initial decision function
f t and to determine the margins of the separating hyperplane of the SVM. At t >

1 when a new unlabeled sample xt+1
1 is received, it is classified and assigned a

label using the current f t . Also, its distance from the margins of the separating
hyperplane of the current SVM is estimated. If the distance falls outside the margin
of the SVM, then the sample contains no new information that will improve the
decision boundaries of the SVM, thus the f t remains unchanged and the sample
is discarded. On the other hand, if the distance falls within the margins of SVM,
then the sample contains useful information that should be incorporated in the SVM
model. Thus, f t is adjusted accordingly by updating the parameter of the SVM (as
described in Algorithm 1) while maintaining the KKT condition of all the previously
seen samples in the SVM. The adjustment of the decision boundaries can cause
the labels of some of the previously labeled samples to change. In that case, all
the affected samples are removed from the current SVM solution by decremental
learning [4] and declared as unlabeled samples. These unlabeled samples are then
subjected to an error correction process whereby they are relabeled, and used to
retrain the SVM. Algorithm 2 summarizes the steps involved in this method.

Another online SVM learning method is that proposed by Rai et al. [43]. The
method uses the concept of Minimum Enclosing Ball (MEB) to learn and/or update
the SVM. It starts by initializing the learning process using the first sample (xt

1, y
t
1)

generated at t = 1 as the center ct
i of the first MEB with radius rt

i = 0. When
a new sample (xt+1

1 , yt+1
1) is received at t + 1, the algorithm checks whether the

current MEB can enclose the new sample. If so, the sample is discarded because
it does not contain new information that will improve the SVM. Otherwise, the
sample is considered as a potential support vector for the SVM and it is placed in
a set known as the core set St . Then create a new MEB with ct+1

i and rt+1
i which

can cope with the new changes introduced by the addition of the new sample. The
ct+1
i is shown to lie on the straight line joining ct

i and xt+1
1 [43]. Thus, the shortest

distance δt between ct
i and ct+1

i is computed as ||ct+1
i − ct

i || = δt , where δt =
1
2 (||xt+1

1 − ct
i || − rt

i). The radius rt+1
i of the new MEB is then obtained as [43]

2For brevity and clarity, the derivation of the solution of Eq. (13) is not shown in this paper, the
interested reader is referred to [2] for a detail explanation.

286 I. A. Lawal

Algorithm 2 The Chen’s SVM algorithm [6]

Input: F t+1 = (xt+1
1): new unlabeled sample at time t + 1, f t : decision function at t , λt =

{
(xt

1, y
t
1), . . . , (x

t
k, y

t
k)
}

: set of k previously labeled samples
Output: f t+1 : updated decision function

1: Begin:
2: Classify xt+1

1 and assign a label to it, yt+1
1 = sign(f t (xt+1

1))
3: Check if |f t (xt+1

1)| < 1, then

4: Update f t+1 with (xt+1
1 , yt+1

1) using incremental learning (see Algorithm 1)
5: Compute y∗t

i = sign(f t+1(xt
i)), ∀ xt

i ∈ λt

6: Check if yt
i
= y∗t

i ∀ yt
i ∈ λt , then

7: Unlearn the defaulting (xt
i , y

t
i) from f t+1 using decremental learning [4], and mark then as

unlabeled samples
8: end if

9: else, λt+1 =
{
λt ∪ (xt+1

1 , yt+1
1)

}

10: end if
11: Return f t+1 , λt+1

12: End

rt+1
i = rt

i + δt , . (14)

The set of MEBs created over time is represented as L. As more samples are
received and can be enclosed by any of the MEBs, some of the MEBs are
merged together. The algorithm is implemented using the L2-SVM formulation and
Algorithm 3 describes the steps of the algorithm. The difference between L2-SVM
formulation and that shown in Eq. (2) is that L2-SVM uses C

∑N
i=1 ξ2

i

t
instead of

C
∑N

i=1 ξ t
i as it is a penalty term. As shown in Algorithm 3, the steps that update the

weight vector wt and margin Rt of the SVM correspond to the update of the MEB
center and radius, respectively, as discussed above. The advantage of this algorithm
is that its space and time complexity is relatively small. This is because only wt and
Rt need to be stored and/or updated over time. Moreover, the number of updates
required is limited by the size of the S and L which are generally small [43].

3.2 Semi Online Incremental SVM Learning Methods

The pioneer work in this group of incremental SVM learning is the one presented
by Syed et al. [48]. The algorithm processes the stream of data in batches of fixed
sample size. The first batch of data F t = {

(xt
1, y

t
1), . . . , (x

t
N , yt

N)
}

gathered at time
t = 1 is used to learn the f t as described in Sect. 2, then the algorithm discards all
the previously seen samples except those of the margin support vectors set St

m. At

time t + 1, when a new batch of data F t+1 =
{
(xt+1

1 , yt+1
1), . . . , (xt+1

N , yt+1
N)

}
is

gathered, the algorithm combined the new data with the previously stored support
vectors in order to create a new set of training data F̃ t+1 = {

F t+1 ∪ St
m ∪ St

b

}
.

Incremental SVM Learning: Review 287

Algorithm 3 The Rai’s SVM algorithm [43]

Input: F t+1 = (xt+1
1 , yt+1

1),: new sample at time t + 1, wt : weight vector at t , Rt : margin of
SVM at t , C: regularization parameter, ξ t : slack variable at t , St : size of the support vector set
at t

Output: f t+1 : updated decision function, Rt+1: updated SVM margin at t +1, St+1: updated
size of the support vector set, ξ t+1: slack variable at t + 1

1: Begin:
2: Compute the distance of the new sample xt+1

1 to the center of the current MEB δ =
√

||wt − yt+1
1 xt+1

1 ||2 + ξ2t + 1
C

3: Check if δ ≥ Rt , then
4: Compute wt+1 = wt + 1

2 (1 − Rt

δ
)(yt+1

1 xt+1
1 − wt)

5: Compute Rt+1 = Rt + 1
2 (δ − Rt)

6: Compute ξ2t+1
= ξ2t [1 − 1

2 (1 − Rt+1

δ
)]2 + [1

2 (1 − Rt+1

δ
)]2

7: Compute St+1 = St + 1
8: Compute f t+1 using wt+1 as shown in Eq. (1)
9: end if

10: Return f t+1 , Rt+1, ξ t+1 and St+1

11: End

The method then uses the samples in F̃ t+1 to retrain the SVM as described in
Sect. 2. This process is repeated every time new stream of data is collected (see
Algorithm 4). Although the method is simple and efficient because only a small
amount of data are processed at each time of the incremental learning, however, it
suffers from three major issues. First, the algorithm needs to store all the support
vectors that were previously learned, which is not sustainable for lifelong learning.
This is because the number of support vectors will grow over time, and this will
increase the space and time requirement of the learning process. Second, the method
also assumes that the properties of the batches of data do not vary over time; thus,
the decision boundaries of the classifier learnt using the first batch of data would
remain the same all the time. This is however not always true, because, in practice,
the distribution of data can change and the decision boundaries of the classifier
need to be adjusted accordingly in order to cope with the changes [46]. Third, the
method discards all input samples which are not support vectors during incremental
learning. However, the deleted samples may become support vectors later, especially
when new classes or new distributions data arrived. Thus, if the discarded samples
do not appear again in the new set of training data, then the current decision
boundaries of the SVM will become obsolete and the general performance of the
classifier will decline over time [22].

One way to address the first issue of the Syed’s algorithm is to analyze the support
vectors obtained during each phase of the incremental learning process in order to
check whether they are linearly dependent in the feature space [41, 44]. If they are,
then it is better to preserve only the support vectors which cannot be expressed
as a function of the others in the feature space. This will reduce the number of
support vectors that need to be stored [41]. Moreover, the second issue can be

288 I. A. Lawal

Algorithm 4 The Syed’s algorithm [48]

Input: F t+1 =
{
(xt+1

1 , yt+1
1), . . . , (xt+1

N , yt+1
N)

}
: new samples at time t + 1, St

m: margin

support vector set at t , St
b: bounded support vector set at t , f t : decision function at t

Output: f t+1 : updated decision function, St+1
m : margin support vector set at t + 1, St+1

b :
bounded support vector set at t + 1
Definitions: αt+1

i : coefficient of the ith sample at t + 1
1: Begin:
2: Compute F̃ t+1 = {

F t+1 ∪ St
m ∪ St

b

}
,

3: Using F̃ t+1 as input, solve for the problem of Eq. (11) to obtain αt+1
i ∀i

4: Compute f t+1 by solving the problem of Eq. (12)

5: Compute St+1
m =

{
St

m ∪ xt+1
i : yt+1

i f t+1(xt+1
i) = 1 & αt+1

i > 0
}

6: Compute St+1
b =

{
St

b ∪ xt+1
i : yt+1

i f t+1(xt+1
i) < 1 & αt+1

i = C
}

7: Discard all xt+1
i for which αt+1

i = 0

8: Return f t+1 , St+1
m and St+1

b

9: End

addressed by incorporating an optimization technique such as Dynamic Particle
Swarm Optimization (DPSO) [26] to allow the incremental selection of the best
SVM hyper-parameters when a new batch of data is being learned. This will ensure
that the classifier adapts to change in the distribution of the data stream over time.
Finally, the third issue can be addressed, for example, by retaining the previously
seen samples and then using a Least Recently Used (LRU) scheme [53] to discard
the oldest samples that have not been used after a given period of time. This will
minimize the risk of deleting potential support vectors among the previously seen
data samples.

Katagiri and Abe [28] presented a method for solving the problem identified
above. They showed that training samples that are likely to become support vectors
in the incremental learning future steps would typically be lying near the separating
hyperplane of SVM solution. Thus, they created a minimum volume hypersphere
for each class of the training data, and then a smaller concentric hyper-cone with
a vertex at the center of the hypersphere. After each incremental learning step, the
algorithm deletes only the samples that are trapped inside the smaller hyper-cone,
while that of those that exist near the boundary of the hypersphere are retained as
potential candidates for support vectors in the next step of the incremental learning.

Domeniconi et al. [11] extends the Syed’s algorithm in order to cope with
situations where the characteristics of the data change over time, such that SVM
built with old samples are no longer suitable for predicting the class of future
samples. The method processes the stream of data in batches of fixed sample size
N , and at any time t it retains the decision functions, that is, f t

1 , . . . , f t
k built from

the last 1, . . . , k batches of data, respectively, in memory. f t
k is the oldest decision

function and f t
1 is the most recent decision function which is representative of the

current distribution of the data stream in memory. At time t + 1 when new samples
are received, the algorithm discards f t

k and updates the remaining k-1 decision

Incremental SVM Learning: Review 289

functions (i.e., f t
2 ,. . . ,f t

k) incrementally using the new batch of data. Meanwhile,
only f t

1 , is built from scratch using the received batch of data. The memory overhead
of this method is limited because at any point in time it needs to store only k decision
functions and N samples in memory.

The idea of using prototype (compress data) for incremental SVM learning in
order to be able to handle large-scale data stream applications effectively has been
studied in the literature [52, 60]. The prototypes are generated according to the
properties of the data stream and are used to learn the support vectors of the SVM.
Because the size of the prototypes set is much smaller compared to the original
data, the incremental learning can be completed very fast. The work of Xing et al.
[56] is an example of this approach. The method incorporates a Learning Prototype
Network (LPN) which consists of an interconnection of representative prototypes
arranged in layers known as the Prototype Support Layer (PLS). The LPN learns
the prototypes Pi of each class in the data stream, then uses them to train SVM
incrementally. Each Pi is associated with a 3-tuple:

{
Wpi

Tpi
,Mpi

}
which represent

the weight vector, the similarity threshold, and the accumulated number of input
data for each prototype, respectively. For a binary classification problem, two sets
of prototypes P− and P+ are created one for each of the two classes, using the first
sample from each of the class (xt

1, y
t
1), (x

t
2, y

t
2) received at t = 1. The prototypes

are obtained as

P t
i = {

Wp
t
i
= xi , Tp

t
i
= ||xt

1 − xt
2||,Mp

t
i
= 1

}
, i = 1, 2. (15)

Algorithm 5 The Xing’s algorithm [56]

Input: F t+1 =
{
(xt+1

1 , yt+1
1), . . . , (xt+1

N , yt+1
N)

}
: new samples at t + 1, P t+: set of prototype

for positive class samples at t , P t−: set of prototype for negative class samples at t ,
Output: f t+1 : updated classifier at t + 1
Definitions: αt+1

i : coefficient of the ith sample at t + 1
1: Begin:
2: For i=1:N,
3: if yt+1

i = 1,

4: Update P t+ → P t+1+ using the LPN procedure
5: else,
6: Update P t− → P t+1− using the LPN procedure
7: end if
8: end For
9: Compute P t+1 =

{
P t+1+ ∪ P t+1−

}
,

10: Using P t+1 as input, solve for the problem of Eq. (11) to obtain αt+1
i ∀i

11: Compute f t+1 by solving the problem of Eq. (12)
12: Return f t+1 , P t+1+ and P t+1−
13: End

290 I. A. Lawal

At t + 1 when a new sample(xt+1
i , yt+1

i) is received, a similarity factor z =
||xt+1

i − Wp
t
i
|| is computed using the new sample and the weight vector Wp

t
i

of all
the P t

i in the current set of prototypes. If the value of z is greater than the similarity
threshold Tp

t
i
, then a new prototype is created as

P t+1
i =

{
Wp

t
i
= xt+1

i , Tp
t
i
= +∞,Mp

t
i
= 1

}
. (16)

Otherwise, the current set of prototypes is sufficient to cover the information
contained in the new sample and the elements of current P t

i are updated as follows:

Mp
t+1
i = Mp

t
i
+ 1 (17)

Wp
t+1
i = Wp

t
i
+ 1

Mp
t+1
i

(
xt+1

i − Mp
t
i

)
. (18)

Then the algorithm updates the connections between the set of prototypes in
the LPN using the Hebbian learning rule [30] as well. Over time, the concept
of connection obsolescence is considered in the LPN, that is, the connections
whose age is larger than a predefined threshold are removed. Once update of the
prototypes is completed, the algorithm proceeds with the SVM training. Algorithm 5
summarizes the procedure of the proposed method.

4 Discussion and Comparison

Table 1 compares the property of some of the incremental SVM learning methods
discussed in the previous sections. The methods discussed in Sect. 3.1 (e.g., [2, 4, 6,
9, 43]) modify the SVM optimization procedure to allow learning one sample at a
time. The advantages of these methods include providing an exact SVM solution by
maintaining the KKT optimality condition for all the previously seen samples in the
data streams, and also providing an efficient means of unlearning of non-informative
samples from the SVM solution. This particular feature is good for systems that
require long life learning. However, the preservation and use of all previously seen

Table 1 Comparison of the main properties of some of the incremental SVM learning methods

Properties [48] [11] [41] [28] [56] [4] [9] [2] [6] [43] [27]

Allows learning a sample at a time � � � � � �
Handles concept drift problem � � � � �
Allows learning with unlabeled data �
Handles multi-class problem � �
Suitable for large-scale data � � � � � � �
Suitable for longlife learning � � � � � � � � �

Incremental SVM Learning: Review 291

samples increase the computational and memory overhead of the methods over time
[31]. This overhead can be reduced by discarding some previously seen samples and
keeping only the support vectors in memory at the end of each incremental learning
process. But then this raises the question of how to choose which samples or support
vectors to keep or discard during the learning process. The methods discussed in
Sect. 3.2 (e.g., [11, 28, 41, 48, 54, 56]), on the other hand, use the conventional
quadratic programming solvers to solve the SVM learning problem in batch mode
and only keep the support vectors in memory. These methods are efficient and
suitable for large-scale data stream problems. But the indiscriminate removal of
nonsupport vectors samples at the end of each incremental learning phase can affect
the performance of the classifier over time. This is because some of the discarded
samples can become support vectors in the future. A summary of the peculiarity
of each group of the SVM incremental learning previously discussed in this paper
is presented in Table 2. It can be seen that each group of the learning methods
has its own advantage and drawback in terms of generalization power, memory, or
computational cost. The choice of which algorithm to use in any application strongly
depends on the requirements of the application.

5 Applications of Incremental SVM Learning

Incremental SVM learning algorithms have been used in many data stream applica-
tions [32, 38, 42, 58]. In this section, we identify four application areas and briefly
discuss them:

Document Stream Classification In this application, data appear as the flow of
documents, and the information and content included in the documents can evolve
over time [20]. There are two major addressable issues in this type of application: (1)
huge amount of data is involved and (2) the data evolve over time. Incremental SVM
learning had been used to realize an adaptive classifier for this kind of application
in the past [20, 37, 38]. For example, Ngo Ho et al. [38] applied incremental SVM
for the classification of streams of scanned documents according to their contents,
in order to facilitate the efficient and adaptive digitization process of the documents.
Similarly, Naqa et al. [37] applied SVM incremental learning for the purpose of
supporting medical diagnoses through a computationally efficient mammogram
image retrieval system.

Scene Characterization In this application, video data are generated as huge
streams of features representing the characteristic of objects in a scene under
surveillance [32]. The properties of this stream of features can change over time due
to the dynamic nature of the scene. For example, the appearance of an object can
change due to the illumination change in the scene or change in object orientation
when they move across the scene, etc. Incremental SVM learning has been used to
successfully classify scenes [34], objects [29], people [35], or flow of moving people
[32] in a highly dynamic video scenes for intelligent video surveillance system.

292 I. A. Lawal

Ta
bl

e
2

Su
m

m
ar

y
of

th
e

ad
va

nt
ag

e
an

d
di

sa
dv

an
ta

ge
of

th
e

SV
M

le
ar

ni
ng

m
et

ho
ds

di
sc

us
se

d
in

Se
ct

.3

M
et

ho
ds

M
od

e
of

tr
ai

ni
ng

Sp
ac

e
co

m
pl

ex
ity

T
im

e
co

m
pl

ex
ity

A
dv

an
ta

ge
D

is
ad

va
nt

ag
e

N
on

-i
nc

re
m

en
ta

lS
V

M
in

se
ct

io
n

2.
0

(e
.g

.,
[7

])
B

at
ch

w
ith

th
e

en
tir

e
tr

ai
ni

ng
se

t
**

**
C

re
at

es
a

ro
bu

st
SV

M
m

od
el

be
ca

us
e

of
its

gl
ob

al
vi

ew
of

th
e

en
tir

e
da

ta
sp

ac
e

(1
)

M
od

el
up

da
te

is
co

m
pu

ta
tio

na
lly

ex
pe

ns
iv

e.
(2

)
N

ot
su

ita
bl

e
fo

r
on

lin
e

ap
pl

ic
at

io
ns

.(
3)

N
ot

su
ita

bl
e

fo
r

la
rg

e-
sc

al
e

da
ta

st
re

am
ap

pl
ic

at
io

n

In
cr

em
en

ta
lS

V
M

in
se

ct
io

n
3.

1
(e

.g
.,

[4
,9

])
O

nl
in

e
w

ith
on

e
sa

m
pl

e
at

a
tim

e
O

(S
2
)

Q
ua

dr
at

ic
in

th
e

nu
m

be
r

of
sa

m
pl

es
le

ar
ne

d

(1
)

C
re

at
es

ro
bu

st
m

od
el

.(
2)

H
an

dl
es

pr
ob

le
m

of
co

nc
ep

td
ri

ft
.

(3
)

Pr
ov

id
es

ex
ac

tS
V

M
so

lu
tio

n.
(4

)
G

oo
d

fo
r

lif
el

on
g

le
ar

ni
ng

(1
)

R
eq

ui
re

s
m

or
e

m
em

or
y

sp
ac

e
to

st
or

e
th

e
pr

ev
io

us
ly

se
en

sa
m

pl
es

.(
2)

N
ot

su
ita

bl
e

fo
r

la
rg

e-
sc

al
e

da
ta

st
re

am
ap

pl
ic

at
io

n

In
cr

em
en

ta
lS

V
M

in
se

ct
io

n
3.

2
(e

.g
.,

[4
1,

48
])

B
at

ch
w

ith
su

bs
et

of
th

e
tr

ai
ni

ng
se

t
**

**
(1

)
L

es
s

m
em

or
y

re
qu

ir
em

en
ts

.(
2)

L
es

s
co

m
pu

ta
tio

na
lc

os
t.

(3
)

G
oo

d
fo

r
la

rg
e-

sc
al

e
da

ta
st

re
am

(1
)

Pr
ov

id
es

a
fr

am
ew

or
k

fo
r

ap
pr

ox
im

at
e

SV
M

so
lu

tio
n.

(2
)

N
ot

su
ita

bl
e

fo
r

si
tu

at
io

ns
w

he
re

th
e

di
st

ri
bu

tio
n

of
th

e
da

ta
ch

an
ge

s
fr

eq
ue

nt
ly

.

S
is

th
e

si
ze

of
th

e
su

pp
or

tv
ec

to
r

se
t

**
T

he
va

lu
e

de
pe

nd
s

on
th

e
ch

oi
ce

of
co

nv
en

tio
na

lQ
P

so
lv

er
us

ed

Incremental SVM Learning: Review 293

Fault Diagnosis In this type of application, the acquisition of diagnostic data
from sensors occurs continuously over time and with possible strong concept
drift presence. Incremental SVM learning has been employed to build an adaptive
classifier for automatic diagnosis of fault in systems equipped with sensors. For
example, fault detection and isolation of Heating, Ventilation, and Air Conditioning
(HVAC) system [8] and Diesel engine fault diagnosis [58].

Robotics and Autonomous System Autonomous systems are systems that contin-
uously updated itself with the information gathered from its environment, in order
to able to perform a given task with a high degree of autonomy. The updating
process is open-ended which requires an adaptive and efficient computational model
that is inherently incremental. Incremental SVM learning has been used in this
type of application as well, which allows the system adaptation to be performed
incrementally and also facilitates achieving a controlled-memory growth, reduced
computational complexity, and better system performance [36, 42].

6 Conclusion

The continuous growth of real-world applications involving massive and evolving
data streams has inevitably made incremental learning an important research
issue. Different proposals have been made to efficiently address the scalability
and adaptability of the learning process. In this paper, we have surveyed various
incremental learning methods for Support Vector Machines (SVMs). A comparison
of the methods in terms of their strengths and weaknesses is summarized in
a tabular form to ease readability. Moreover, we identified and discussed some
areas where incremental SVM learning has been successfully applied. Though
each work reviewed in this paper presents an improvement either in terms of
memory requirements, computational complexity or both in the learning process,
however, the incremental SVM learning problem is still very much open to further
research. Future research could be directed toward incorporating an online model
selection method (which is, by the way, a very important part of the SVM model
development process) in the incremental learning framework in order to guarantee
the effectiveness of the SVM for data stream applications.

References

1. Anguita, D., Ghio, A., Lawal, I.A., Oneto, L.: A heuristic approach to model selection for
online support vector machines. In: Proceedings of the International Workshop on Advances
in Regularization, Optimization, Kernel Methods and Support Vector Machines: Theory and
Application, pp. 77–78 (2013)

2. Boukharouba, K., Bako, L., Lecoeuche, S.: Incremental and decremental multi-category
classification by support vector machines. In: Proceedings of the International Conference on
Machine Learning and Applications, pp. 294–300 (2009)

294 I. A. Lawal

3. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min.
Knowl. Disc. 2(2), 121–167 (1998)

4. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning.
In: Proceedings of the International Conference on Advances in Neural Information Processing
Systems, pp. 409–415 (2000)

5. Chapelle, O.: Training a support vector machine in the primal. Neural Comput. 19(5), 1155–
1178 (2007)

6. Chen, M.S., Ho, T.Y., Huang, D.Y.: Online transductive support vector machines for classifi-
cation. In: Proceedings of the International Conference on Information Security and Intelligent
Control, pp. 258–261 (2012)

7. Cortes, C., Vapnik, V.: Supportvector networks. Mach. Learn. 20, 273–297 (1995)
8. Dehestani, D., Eftekhari, F., Guo, Y., Ling, S., Su, S., Nguyen, H.: Online support vector

machine application for model based fault detection and isolation of HVAC system. Int. J.
Mach. Learn. Comput. 1(1), 66–72 (2011)

9. Diehl, C., Cauwenberghs, G.: SVM incremental learning, adaptation and optimization. In:
Proceedings of the International Joint Conference on Neural Networks, pp. 2685–2690 (2003)

10. Diethe, T., Girolami, M.: Online learning with multiple kernels: a review. Neural Comput.
25(3), 567–625 (2013)

11. Domeniconi, C., Gunopulos, D.: Incremental support vector machine construction. In: Pro-
ceedings of the IEEE International Conference on Data Mining, pp. 589–592 (2001)

12. Duan, H., Shao, X., Hou, W., He, G., Zeng, Q.: An incremental learning algorithm for
lagrangian support vector machines. Pattern Recogn. Lett. 30(15), 1384–1391 (2009)

13. Fan, H., Song, Q., Yang, X., Xu, Z.: Kernel online learning algorithm with state feedbacks.
Knowl.-Based Syst. 89, 173–180 (2015)

14. Galmeanu, H., Andonie, R.: A multi-class incremental and decremental svm approach using
adaptive directed acyclic graphs. In: Proceedings of the International Conference on Adaptive
and Intelligent Systems, pp. 114–119 (2009)

15. Gâlmeanu, H., Sasu, L.M., Andonie, R.: Incremental and decremental svm for regression. Int.
J. Comput. Commun. Control 11(6), 755–775 (2016)

16. Gama, J.: A survey on learning from data streams: current and future trends. Prog. Artif. Intell.
1(1), 45–55 (2012)

17. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: Proceedings
of the European Sympoisum on Artificial Neural Networks, pp. 357–368 (2016)

18. Guo, J.: An improved incremental training approach for large scaled dataset based on support
vector machine. In: Proceedings of the International Conference on Big Data Computing
Applications and Technologies, pp. 149–157 (2016)

19. He, H., Chen, S., Li, K., Xu, X.: Incremental learning from stream data. IEEE Trans. Neural
Netw. 22(12), 1901–1914 (2011)

20. Ho, A.K.N., Ragot, N., Ramel, J.Y., Eglin, V., Sidere, N.: Document classification in a
non-stationary environment: a one-class svm approach. In: Proceedings of the International
Conference on Document Analysis and Recognition, pp. 616–620 (2013)

21. Hsieh, C.J., Si, S., Dhillon, I.: A divide-and-conquer solver for kernel support vector machines.
In: Proceedings of the International Conference on Machine Learning, pp. 566–574 (2014)

22. Ikeda, K., Yamasaki, T.: Incremental support vector machines and their geometrical analyses.
Neurocomputing 70(13–15), 2528–2533 (2007)

23. JinHyuk, H., Sung-Bue, C.: Incremental support vector machine for unlabeled data classi-
fication. In: Proceedings of the International Conference on Neural Information Processing,
pp. 1403–1407 (2002)

24. Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf,
B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods, pp. 169–184. MIT Press,
Cambridge, MA (1999)

25. Joachims, T.: Transductive inference for text classification using support vector machines. In:
International Conference on Machine Learning, pp. 200–209 (1999)

Incremental SVM Learning: Review 295

26. Kapp, M.N., Sabourin, R., Maupin, P.: Adaptive incremental learning with an ensemble
of support vector machines. In: Proceedings of the International Conference on Pattern
Recognition, pp. 4048–4051 (2010)

27. Karasuyama, M., Takeuchi, I.: Multiple incremental decremental learning of support vector
machines. IEEE Trans. Neural Netw. 21(7), 1048–1059 (2010)

28. Katagiri, S., Abe, S.: Incremental training of support vector machines using hyperspheres.
Pattern Recogn. Lett. 27(13), 1495–1507 (2006)

29. Kembhavi, A., Siddiquie, B., Miezianko, R., McCloskey, S., Davis, L.S.: Incremental multiple
kernel learning for object recognition. In: Proceedings of the International Conference on
Computer Vision, pp. 638–645 (2009)

30. Kohonen, T.: Self-organized formation of topologically correct feature maps. In: Anderson,
J.A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research, pp. 509–521. MIT Press,
Cambridge, MA (1988)

31. Laskov, P., Gehl, C., Kruger, S., Muller, K.R.: Incremental support vector learning: analysis,
implementation and applications. J. Mach. Learn. Res. 7, 1909–1936 (2006)

32. Lawal, I.A., Poiesi, F., Anguita, D., Cavallaro, A.: Support vector motion clustering. IEEE
Trans. Circuits Syst. Video Technol. 27(11), 2395–2408 (2017)

33. Liang, Z., Li, Y.: Incremental support vector machine learning in the primal and applications.
Neurocomputing 72, 2249–2258 (2009)

34. Lin, H., Deng, J.D., Woodford, B.J.: Anomaly detection in crowd scenes via online adaptive
one-class support vector machines. In: Proceedings of the International Conference on Image
Processing, pp. 2434–2438 (2015)

35. Lu, Y., Boukharouba, K., Boonært, J., Fleury, A., Lecuche, S.: Application of an incremental
svm algorithm for on-line human recognition from video surveillance using texture and color
features. Neurocomputing 126, 132–140 (2014)

36. Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: Incremental learning for place recognition in
dynamic environments. In: Proceedings of the IEEE International Conference on Intelligent
Robots and Systems, pp. 721–728 (2007)

37. Naqa, I., Yang, Y., Galatsanos, N., Wernick, M.: Relevance feedback based on incremental
learning for mammogram retrieval. In: Proceedings of the International Conference on Image
Processing, pp. 729–732 (2003)

38. Ngo Ho, A.K., Eglin, V., Ragot, N., Ramel, J.Y.: Multi one-class incremental svm for document
stream digitization. In: Proceedings of the International Workshop on Document Analysis
Systems, pp. 5–6 (2016)

39. Nguyen, H.M., Cooper, E.W., Kamei, K.: Online learning from imbalanced data streams.
In: Proceedings of the International Conference of Soft Computing and Pattern Recognition,
pp. 347–352 (2011)

40. Nguyen, H.L., Woon, Y.K., Ng, W.K.: A survey on data stream clustering and classification.
Knowl. Inf. Syst. 45(3), 535–569 (2015)

41. Orabona, F., Castellini, C., Caputo, B., Jie, L., Sandini, G.: On-line independent support vector
machines. Pattern Recogn. 43(4), 1402–1412 (2010)

42. Pronobis, A., Jie, L., Caputo, B.: The more you learn, the less you store: memory-controlled
incremental SVM for visual place recognition. Image Vis. Comput. 28(7), 1080–1097 (2010)

43. Rai, P., Daumé, H., Venkatasubramanian, S.: Streamed learning: one-pass svms. In: Proceed-
ings of the International Jont Conference on Artifical Intelligence, pp. 1211–1216 (2009)

44. Ralaivola, L., d’Alché Buc, F.: Incremental support vector machine learning: a local approach.
In: Proceedings of the International Conference on Artificial Neural Networks, pp. 322–329.
Springer, Berlin (2001)

45. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141
(2004)

46. Ruping, S.: Incremental learning with support vector machines. In: Proceedings of the
International Conference on Data Mining, pp. 641–642 (2001)

47. Sayed-Mouchaweh, M.: Learning from Data Streams in Dynamic Environments. Springer
International Publishing, Berlin (2016)

296 I. A. Lawal

48. Syed, N.A., Huan, S., Kah, L., Sung, K.: Incremental learning with support vector machines.
In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 161–
168 (1999)

49. Tsai, C.H., Lin, C.Y., Lin, C.J.: Incremental and decremental training for linear classification.
In: Proceedings of the International Conference on Knowledge Discovery and Data Mining,
pp. 343–352 (2014)

50. Vapnik, V.N.: The Nature Of Statistical Learning Theory. Springer, New York (1995)
51. Wang, J., Yang, D., Jiang, W., Zhou, J.: Semisupervised incremental support vector machine

learning based on neighborhood kernel estimation. IEEE Trans. Syst. Man Cybern. Syst.
PP(99), 1–11 (2017)

52. Wu, C., Wang, X., Bai, D., Zhang, H.: Fast SVM incremental learning based on the convex
hulls algorithm. In: Proceedings of the International Conference on Computational Intelligence
and Security, vol. 1, pp. 249–252 (2008)

53. Xiao, R., Wang, J., Zhang, F.: An approach to incremental SVM learning algorithm. In:
Proceedings of the International Conference on Tools with Artificial Intelligence, pp. 268–273
(2000)

54. Xie, W., Uhlmann, S., Kiranyaz, S., Gabbouj, M.: Incremental learning with support vector data
description. In: Proceedings of the International Conference on Pattern Recognition, pp. 3904–
3909 (2014)

55. Xihuang, Z., Wenbo, X.: The implementation of online transductive support vector machine.
In: Li, D., Wang, B. (eds.) Artificial Intelligence Applications and Innovations. AIAI 2005.
IFIP—The International Federation for Information Processing, vol. 187, pp. 231–238.
Springer, Boston (2005)

56. Xing, Y., Shen, F., Luo, C., Zhao, J.: L3-svm: a lifelong learning method for svm. In:
Proceedings of the International Joint Conference on Neural Networks, pp. 1–8 (2015)

57. Xu, S., Wang, J.: A fast incremental extreme learning machine algorithm for data streams
classification. Expert Syst. Appl. 65, 332–344 (2016)

58. Yin, G., Zhang, Y.T., Li, Z.N., Ren, G.Q., Fan, H.B.: Online fault diagnosis method based on
incremental support vector data description and extreme learning machine with incremental
output structure. Neurocomputing 128, 224–231 (2014)

59. Zang, W., Zhang, P., Zhou, C., Guo, L.: Comparative study between incremental and ensemble
learning on data streams: case study. J. Big Data 1(1), 1–16 (2014)

60. Zheng, J., Shen, F., Fan, H., Zhao, J.: An online incremental learning support vector machine
for large-scale data. Neural Comput. Appl. 22(5), 1023–1035 (2013)

61. Zhou, X., Zhang, X., Wang, B.: Online support vector machine: a survey. In: Kim, J., Geem, Z.
(eds.) Harmony Search Algorithm. Advances in Intelligent Systems and Computing, vol. 382,
pp. 269–278. Springer, Berlin (2016)

62. Zhu, Z., Zhu, X., Guo, Y.F., Xue, X.: Transfer incremental learning for pattern classification.
In: Proceedings of the 19th ACM International Conference on Information and Knowledge
Management, pp. 1709–1712 (2010)

On Social Network-Based Algorithms for
Data Stream Clustering

Jean Paul Barddal, Heitor Murilo Gomes, and Fabrício Enembreck

Abstract Extracting useful patterns from data is a challenging task that has been
extensively investigated by both machine learning researchers and practitioners for
many decades. This task becomes even more problematic when data is presented
as a potentially unbounded sequence, the so-called data streams. Albeit most of the
research on data stream mining focuses on supervised learning, the assumption that
labels are available for learning is unverifiable in most streaming scenarios. Thus,
several data stream clustering algorithms were proposed in the last decades to extract
meaningful patterns from streams. In this study, we present three recent data stream
clustering algorithms based on insights from social networks’ theory that exhibit
competitive results against the state of the art. The main distinctive characteristics
of these algorithms are the following: (1) they do not rely on a hyper-parameter
to define the number of clusters to be found; and (2) they do not require batch
processing during the offline steps. These algorithms are detailed and compared
against existing works on the area, showing their efficiency in clustering quality,
processing time, and memory usage.

1 Introduction

Learning from data streams is a fast-growing research topic due to the ubiquity
of data generation and gathering in several real-world situations. Examples of data
streams include sensor networks, wearable sensors, computer network traffic and
video surveillance, to name a few. Given their ephemeral nature, data stream sources

J. P. Barddal (�) · F. Enembreck
Graduate Program in Informatics (PPGIa), Pontifícia Universidade Católica do Paraná, Curitiba,
Brazil
e-mail: jean.barddal@ppgia.pucpr.br; fabricio@ppgia.pucpr.br

H. M. Gomes
Institut Mines-Télécom, Department of Computer Science and Networks (INFRES), Université
Paris-Saclay, Paris, France
e-mail: heitor.gomes@telecom-paristech.fr

© Springer International Publishing AG, part of Springer Nature 2019
M. Sayed-Mouchaweh (ed.), Learning from Data Streams in Evolving
Environments, Studies in Big Data 41, https://doi.org/10.1007/978-3-319-89803-2_13

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89803-2_13&domain=pdf
mailto:jean.barddal@ppgia.pucpr.br
mailto:fabricio@ppgia.pucpr.br
mailto:heitor.gomes@telecom-paristech.fr
https://doi.org/10.1007/978-3-319-89803-2_13

298 J. P. Barddal et al.

are expected to present changes in their data distribution, thus giving rise to both
concept drifts and evolutions [13].

By far, the most common approach for learning from data streams is classifica-
tion. However, the task of classification works under the assumption that labeled
data is frequently—or periodically—input to the learner so that it can update
its predictive model accordingly. Labeling is a costly process [23] that is nearly
impossible in most streaming scenarios, since halting the processing of a stream to
gather labeled data may result in data loss. For the above reasons, researchers have
put an honorable amount of effort into extracting patterns from data streams using
unsupervised techniques [2, 9, 17, 20].

In this paper, we sum up three data stream clustering algorithms [5–7] tailored
on concepts stemmed from social networks theory. Social networks theory has
been successfully applied in many research fields due to its formal description of
structural variables. In contrast to classical graph theory, social networks theory
provides insights on how networks evolve through time, thus overlapping with
drifting data streams. The common ground of these algorithms is the layering of
micro-clusters in a graph, which is connected and updated given a variation of the
Scale-free Network model and homophily [3].

Individually, each of these algorithms has shown interesting results in clustering
quality and computational resources usage. However, they were not benchmarked
against each another in a common evaluation scenario. This gap disallows the
identification of which algorithm is the most efficient and efficient across different
scenarios and why each of its traits is being beneficial. Furthermore, in this study,
we compare these proposals against several data stream clustering algorithms in an
environment that encompasses both synthetic and real-world data.

This paper is divided as follows. Section 2 formalizes data stream clustering,
while Sect. 3 presents related work. Section 4 then sums up three social network-
based data stream clustering proposals: CNDenStream [5], SNCStream [6] and
SNCStream+ [7], which are later evaluated in Sect. 5. Finally, Sect. 6 concludes
this paper and provides insights on future work for social network-based data stream
clustering algorithms.

2 Data Stream Clustering

Extracting useful knowledge from data streams is a challenge per se. In contrast
to traditional batch machine learning schemes, data stream mining must iteratively
process a potentially unbounded incoming data sequence [13]. As a consequence,
instances should be processed right after their arrival (single-pass processing) or in
limited size batches (chunks) of data [24]. More importantly, due to the temporal
aspect of streams, their underlying generation process is expected to be ephemeral,
thus giving rise to concept drifts and evolutions [13].

Let S = [xt]t→∞
t=0 denote a data stream providing instances xt rapidly and

intermittently, where xt is a d-dimensional data object which arrives at a timestamp

On Social Network-Based Algorithms for Data Stream Clustering 299

t . The task of data stream clustering can be described as the act of grouping
streaming data in a set of meaningful clusters K = {k1, k2, . . . , kn} [4]. The
rationale behind most clustering techniques is that instances within a cluster are
more similar to each other when compared to instances in other clusters [13].

Data stream clustering algorithms must be capable of dealing with concept
drifts and evolutions. Concept drifts occur whenever the data distribution P [x]
changes [13], while concept evolutions refer to the appearance or disappearance
of clusters, that is, changes in cardinality of K [23]. Ideally, clustering algorithms
must: (i) detect concept drifts and adapt its clusters accordingly; (ii) detect concept
evolutions and create/delete clusters independently from user intervention; (iii)
discern between seeds of new clusters and noisy data; and finally (iv) not rely on
a multitude of parameters.

When combining items (ii) and (iv), we must also consider that defining optimal
values for parameters very often depends on the incoming data. Thus, if a concept
drift or evolution occurs, the clustering algorithm parameters’ values become
outdated and waiting for user intervention seems too optimistic and unrealistic. A
canonical example is a parameter that defines the ground-truth number of clusters to
be found n. Any algorithm, for example, k-means [22], that demands a predefined
value of n is thus unable to cope with concept evolutions with no user intervention.

3 Related Work

A variety of data stream clustering algorithms was developed in the last years and
its majority [2, 9, 17, 20] process incoming instances intercalating online and offline
steps.

During the online step, algorithms incrementally update specific data structures
to deal with the evolving nature of data streams and time/space constraints. To
efficiently represent instances, the feature vector structure and its variants are widely
adopted. A feature vector is a triplet CF = 〈LS, SS,N〉, where LS stands for the
sum of the objects summarized, SS is the squared sum of these objects and N is
the number of objects [24]. An instance xi can increment a feature vector CFj as
follows: LSj ← LSj + xi , SSj ← SSj + x 2

i and Nj ← Nj + 1. Also, two feature
vectors CFi and CFj can be merged in a third CFl as follows: LSl ← LSi + LSj ,
SSl ← SSi + SSj and Nl ← Ni + Nj .

Due to the ephemeral characteristics of data streams, a common approach
to assigning higher importance to recently retrieved instances and to “forget”
older concepts is windowing. In the clustering context, two techniques are widely
used: landmark and damped windows [14]. Landmark windows process streams in
disjoint batches of data, such that each of these is often sized following a user-given
parameter or a timespan (hourly, daily, weekly, and so on). Conversely, damped
windows associate weights to each instance, which decay with time to provide
higher importance to more recent data compared to those in the past.

300 J. P. Barddal et al.

During the offline step, often triggered by user requests, traditional batch
clustering algorithms such as k-means [22] and DBSCAN [12] are applied in batch
mode. These algorithms must be adapted to work with data structures, for example,
feature vectors, instead of instances themselves.

In this section, we present existing work on data stream clustering that was used
to compare the proposed methods. We forfeit from providing a complete survey on
the topic as this has been recently reported in [24]. All of the following algorithms
will be used during the empirical analysis, later presented in Sect. 5. The criteria
for selecting these clustering algorithms are as follows: (1) code availability for
experiment reproducibility, (2) interesting results in different data domains, and (3)
number of citations.

3.1 CluStream

During the online step, CluStream breaks the stream into chunks of data, whose size
is defined by a horizon parameter H [2]. During each landmark, q feature vectors
are created and updated to represent the instances obtained from the stream until a
new landmark is reached.

During the offline step, the original CluStream uses an adaptation of the k-means
algorithm [22] to obtain clusters based on the q feature vectors computed during the
online step.

3.2 ClusTree

ClusTree [20] maintains feature vectors in a hierarchical structure provided by an
R-Tree [15]. ClusTree creates a hierarchy of feature vectors at different granularity
levels. Accordingly to user-given thresholds, it is determined whether an instance
should be merged with an existing feature vector. In the negative case, a new feature
vector is created and added to the R-Tree. ClusTree is also capable of handling noisy
data by using outlier-buffers.

During the offline step, algorithms such as k-means [22] and DBSCAN [12] are
used to find final clusters, where feature vectors’ centers are treated as centroids.

3.3 DenStream

DenStream [9] extends the DBSCAN [12] algorithm to allow density-based clus-
tering for data streams. DenStream heavily relies on the definition of core micro-
cluster. A core object is an object that its ε-neighborhood has at least ψ neighbors
while a dense area is the union of all ε-neighborhoods of all core objects. Therefore,

On Social Network-Based Algorithms for Data Stream Clustering 301

a core micro-cluster is a CF that is defined as CMC(w, c, r, tc, tu) to a group of near
instances xi , . . . , xn where w stands for its weight, c its center, r its radius, tc the
timestamp of its creation and the timestamp of its last update (increment or addition)
tu; where w ≥ ψ , r ≤ ε, f (·, λ) is a exponential decay function with decaying
factor λ and d(·, ·) is an Euclidean distance. Core micro-clusters are classified based
on their weights w: if w ≥ βψ , it is a potential micro-cluster (PMC), otherwise, it
is considered an outlier micro-cluster (OMC).

The online step of DenStream updates both PMCs and OMCs if the merging of
an instance in its closest micro-cluster results in a structure with a radius less than
ε. On the other hand, new OMCs are created to represent instances that were not
aggregated.

Finally, the offline step of DenStream applies DBSCAN to find final clusters
upon the potential micro-clusters maintained during the online step.

3.4 HAStream

To automatically detect clusters of distinct densities, HAStream [17] performs
hierarchical density-based clustering that automatically adapts its density thresholds
according to the arrival of data.

During the online step, instances are processed using any feature vector model
such as provided by CluStream [2], ClusTree [20] or DenStream [9]. Following the
implementation used by the authors in the original paper, the implementation used
during the evaluation also follows the online step used in DenStream.

During the offline step, HAStream generates the final clusters using a hierarchical
density-based procedure. Since returning every possible hierarchical cluster forces
the evaluator to define the correct amount of clusters n, HAStream attempts different
dendrogram pruning options and returns the n clusters which maximize a concept
called cluster stability [17].

4 Social Network-Based Approaches

This section details three social network-based data stream clustering algorithms.
CNDenStream [5], SNCStream [6] and SNCStream+ [7] are based on the hypoth-
esis that intra-cluster data are related due to diminished dissimilarity while inter-
cluster data are not related, due to higher dissimilarity. To create and keep track of
high-quality clusters, these algorithms model clusters and their dynamics as a social
network, in which nodes are either instances or micro-clusters, edges represent
connections between these nodes and subgroups in the network represent clusters.

Social networks theory has been applied in many research fields, from computer
science to sociology, due to its formal description of structural variables based
on graph theory. However, in contrast to Graph Theory, Social Network Analysis

302 J. P. Barddal et al.

focuses on more subjective topics such as an individual behavior in society, and how
networks are formed and updated over time. This section starts with an overview of
social networks which justify some of the core decisions of the clustering algorithms
which will be presented in the following sections.

4.1 Background on Social Networks Theory

Even though Social Network Analysis focuses on subjective topics, its building
blocks (nodes and edges) are usually represented computationally as a graph G =
(V ,E,W) where V is the set of nodes, E the set of edges between nodes and W

is the set of tuples which associates to each edge in E a weight. This notation will
be used throughout this paper to denote both social networks and to explain the
fundamentals of all the discussed algorithms.

Different social network construction models were developed over the years,
with the objective of modeling both generation and evolution of networks, where
we emphasize: random [11], small-world [26], and scale-free [3].

The Random generation model is based on the hypothesis that the existence of
a connection between a pair of nodes is given by a probability p. The Small-world
model incorporates attributes of both random and regular networks. Consequently,
this topology presents a high clustering coefficient, inherited from the regular
networks (which are those where all nodes have the same degree), and a small
average path length, as random networks [26].

The objective of the Scale-free model is to represent the dynamics of real
networks, where connections between nodes can be replaced with time such as
the World Wide Web and Cellular Networks [3]. Thus, authors in [3] developed
generation and evolution elements. A Scale-free network starts with a small network
size n. For every time unit t , a new node is added to the network establishing
ω connections with already existing nodes. Also, on the Scale-free model, when
choosing the nodes which this new node will establish its connections, it is assumed
a probability

∏
(ωi) = ωi∑

j ωj
, where ωi represents the degree of a node vi . This

process is called “preferential attachment”, where nodes with higher degrees tend to
establish even more connections.

As a consequence of the preferential attachment process, Scale-free networks are
“dominated” by a few vertices denominated hubs. Thus, Scale–free network degree
distribution follows the distribution p(k) ∼ k−ξ where p(k) is the probability of a
random node being attached to ω other nodes and {ξ ∈ R | 2 ≤ λ ≤ 3} for many real
networks [3]. Also, at each time unit t , besides the addition of new nodes, a rewiring
process exists. The rewiring component is based on the homophily definition, where
nodes tend to eradicate connections with dissimilar nodes, replacing them by new
connections with more similar ones with probability θ . Since homophily tends to
establish connections between similar nodes, this process is useful for the task of
clustering.

On Social Network-Based Algorithms for Data Stream Clustering 303

4.2 CNDenStream

CNDenStream generates and updates a complex network G = (V ,E,W) and an
outlier micro-cluster buffer B. To keep track of clusters in the stream without the
need of batch processing during the offline step, CNDenStream uses homophily-
based insertion and rewiring procedures inspired by complex networks theory.

Initially, CNDenStream stores the first N instances retrieved from S in a burnout
buffer to an initial DBSCAN run, thus finding initial potential and outlier micro-
clusters. While outlier micro-clusters are stored in an outlier buffer B, potential
micro-clusters PMCi are added to the network G, where each potential micro-
cluster establishes with the ω closest possible neighbors (considering Euclidean
distances) currently in V as described in lines 1–7 of Algorithm 1.

Afterward, all PMCi are added to V , and edges and their corresponding weights
are added to its correspondent sets E and W . Figure 1 presents the insertion of
4 potential micro-clusters, namely PMC1 to PMC4. The insertion procedure can
connect the last added node to the ω-most similar nodes in G. Nevertheless, the same
cannot be said for the other nodes currently in G. In Fig. 1d one can see that after the
addition of PMC4, PMC1 should be connected to PMC4 instead of PMC3, since
d(PMC1, PMC4) < d(PMC1, PMC3), where d(·, ·) is an Euclidean distance
given by Eq. (1) and v iterates over all dimensions of a pair of instances.

Algorithm 1 Insertion procedure. Input: a micro-cluster PMCi , the network G =
(V ,E,W) and the amount of connections each micro-cluster will establish at its
insertion in the network ω.
1: neighbors ← the ω closest micro-clusters in V to PMCi

2: V ← V ∪ {PMCi}
3: for all PMCj ∈ neighbors do
4: newEdge ← 〈PMCi, PMCj 〉
5: E ← E ∪ { newEdge }
6: W ← W ∪ {〈newEdge, d(PMCi, PMCj)〉}
7: end for
8: {rewiring procedure}
9: for all PMCj ∈ V do

10: dj ← deg(PMCj)
11: newNeighbors ← the dj closest micro-clusters in V to PMCj

12: Remove all edges connecting PMCj from E and its correspondent weights from W

13: for all PMCk ∈ newNeighbors do
14: {Establishes new edges}
15: newEdge ← 〈PMCj , PMCk〉
16: E ← E ∪ {newEdge}
17: W ← W ∪ {〈newEdge, d(PMCj , PMCk)〉}
18: end for
19: end for

304 J. P. Barddal et al.

d(xi , xj) =
√
√
√
√

d∑

k=i

(
xi[v] − xj [v])2 (1)

After the addition of a PMCi to the network, all nodes PMCj ∈ V such that
i
= j perform rewirings based on homophily, such that each PMCj replaces
its edges with higher dissimilarities w by edges to its closest neighbors, that is,
edges with lower dissimilarity. For every PMCj , the Euclidean distances for all
of its 2-hop neighbors are then computed. A 2-hop neighborhood is assumed since
potential closest nodes are likely to be neighbors (2-hop) of the current neighbors (1-
hop). This 2-hop neighborhood is an approximation to prevent distance computation
between all nodes, which would be computationally costly. With the results of these
Euclidean distances, PMCj replaces edges by the most dissimilar instances with
some similar ones, yet maintaining its degree ωj . Lines 9–19 of Algorithm 1 detail
this process.

To exemplify how the rewiring procedure works, we refer back to the addition
of nodes presented in Fig. 1, where PMC1 is capable of connecting itself with
higher similar nodes. Therefore, Fig. 2 presents the rewiring of node PMC1.
First, Euclidean distances between PMC1 and its 2-hop neighborhood are com-
puted and compared to its current neighbors (1-hop). In Fig. 2b one can see that
d(PMC1, PMC4) < d(PMC1, PMC3). Consequently, PMC1, to maintain its
degree ω1 = 2, must eliminate its current most dissimilar edge to replace it with
a similar one. Figure 2c depicts the substitution of the edge between PMC1 and
PMC3 by a new one connecting PMC1 and PMC4.

Due to the rewiring process, communities of potential micro-clusters tend to
appear since some intra-clusters edges between similar micro-clusters grow, while
those linking dissimilar micro-clusters (interclusters) shrink. For instance, Fig. 3

PMC1

(a)

PMC1

PMC2

(b)

PMC1

PMC2 PMC3

(c)

PMC1

PMC2 PMC3

PMC4

(d)

Fig. 1 Insertion example using ω = 2. Adapted from [5]. (a) PMC1. (b) PMC2. (c) PMC3. (d)
PMC4

PMC1

PMC2
PMC3

PMC4

(a)

PMC1

PMC2
PMC3

PMC4

(b)

PMC1

PMC2
PMC3

PMC4

(c)

Fig. 2 Example of node PMC1 rewiring. Adapted from [5]. (a) Node PMC1 rewiring. (b)
Euclidean distance comparison. (c) Node PMC1 rewired

On Social Network-Based Algorithms for Data Stream Clustering 305

(a)(b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r)

Fig. 3 Insertion of potential micro-clusters obtained from the insertion of micro-clusters during
the RBF2 experiment. Adapted from [5].

presents the evolution of a network as instances arrive, where rewirings enlarge
the amount of intra-cluster edges while decreasing intercluster connections. This
procedure is repeated until, in Fig. 3r, two clusters emerge.

After the DBSCAN execution and the initial network is built, all arriving
instances xi are processed according to an adaptation of the DenStream algorithm.
First, CNDenStream finds the potential micro-cluster in V which minimizes
the dissimilarity with xi : PMCi . Afterward, CNDenStream verifies whether the
addition of xi with PMCi results in a micro-cluster with a radius below ε. If this
condition holds, xi is then merged with PMCi . Otherwise, this process is repeated
within the outlier micro-clusters. If xi is not merged with any potential or outlier
micro-clusters, it is used to instantiate a new outlier micro-cluster, which is then
added to B.

When an outlier micro-cluster OMCj is promoted to a potential micro-cluster,
that is, w(OMCj) ≥ βψ , it is removed from the outlier buffer B and is inserted in
the network G.

As in DenStream, both potential and outlier micro-clusters’ weights decay over
time according to an exponential decay function presented in Eq. (2), where �t =
ti − tu is the difference between the current timestamp and the instant of the last
update of each core-micro-cluster, N is the amount of instances summarized by
such micro-cluster and λ is the parameter for the exponential function.

w(CMCi) = 2N−λ�t (2)

306 J. P. Barddal et al.

Algorithm 2 Rewiring procedure for removal. Input: a micro-cluster PMCj to
rewire, a micro-cluster PMCi which is about to be removed from G and the network
G = (V ,E,W).
1: {PMCj is rewired to its dj closest micro-clusters with the exception of PMCi .}
2: dj ← deg(PMCj)
3: newNeighbors ← the dj closest micro-clusters in V to PMCj with the exception of PMCi

4: Remove all edges connecting PMCj from E and its correspondent weights from W

5: for all PMCk ∈ newNeighbors do
6: {Establishes new edges}
7: newEdge ← 〈PMCk, PMCj 〉
8: E ← E ∪ {newEdge}
9: W ← W ∪ {〈newEdge, d(PMCk, PMCj)〉}

10: end for

When the weight w(PMCi) of a micro-cluster PMCi is below βψ , it is removed
from the network. Whenever removal occurs, all neighbors PMCj of PMCi are
allowed to rewire to maintain their degree ωj . This procedure for a PMCj node is
described by Algorithm 2.

Following the concerns stated by the authors of DenStream [9], verifying all
potential micro-clusters weights according to the arrival of each instance xi can be
too computationally costly. Therefore, CNDenStream also encompasses a periodic
verification performed based on a clean-up window size Tp. Equation 3 presents the
computation of the clean-up window size Tp [9].

Tp =
⌈

1

λ
log

βψ

βψ − 1

⌉

(3)

4.3 SNCStream

The Social Network Clustering Stream (SNCStream) [6] is built on the same
hypothesis of CNDenStream, that is, that intra-cluster data are related due to high
similarity, and intercluster are not related due to low similarity. SNCStream extends
CNDenStream to overcome one of its major limitations: the initial DBSCAN run.

SNCStream is divided in three phases: initial network construction, network
transformation and network evolution.

During the first phase, the initial network construction, SNCStream gathers the
initial N instances to build its initial network. The construction of the network
follows the same procedure adopted by CNDenStream. At the arrival of an instance
xi , such that i < N holds, SNCStream computes Euclidean distances between
xi and all vertices vj ∈ V of the network. One important difference between
CNDenStream and SNCStream is that in the latter, vj represent instances until
this point. Later, SNCStream then establishes edges between xi and the ω closest

On Social Network-Based Algorithms for Data Stream Clustering 307

neighbors of xi . Later, the rewiring procedure is performed, allowing all other
vertices in the network to locally optimize their distances to neighbors.

After the processing of this burnout window, SNCStream proceeds with the
network transformation step, where all vertices in the network are replaced, giving
place to potential micro-clusters. Although simple, this transformation allows the
network to scale up to higher amounts of incoming instances. Maintaining a network
where its vertices represent instances would be computationally prohibitive since
the number of instances in the stream is potentially unbounded, and the number
of distance computations and rewirings would be cumbersome. In practice, all
instances xi in the network are replaced by potential micro-clusters PMC with
LS = xi , SS = (xi)

2 and N = 1. All edges and weights are maintained intact.
Additionally, the outlier micro-cluster buffer B is initialized as an empty set.

The final phase of SNCStream follows the same procedure adopted by CNDen-
Stream, that is, it tries to merge upcoming instances within existing micro-clusters.
Weights’ fading and verification are also computed as in DenStream according to
Eqs. (2) and 3, respectively.

The main advantage of SNCStream when compared to CNDenStream is that
SNCStream can provide clustering results regardless of how many instances were
observed. For instance, if a clustering request occurs to CNDenStream before its
initial DBSCAN run, no clustering results would be provided, a fact that does not
hold for SNCStream. Additionally, since SNCStream does not depend on DBSCAN,
the size of the burnout window in SNCStream can be decreased. In [6] authors show
that smaller burnout windows, for example, W = 100, are sufficient for a variety of
scenarios and can improve clustering quality results significantly.

4.4 SNCStream+

The core of both CNDenStream and SNCStream is the rewiring procedure. Addi-
tionally, both are capable of processing gigantic amounts of data by adopting
specific density-based statistical summaries, that is, core micro-clusters. After the
introduction of [6], several questions were raised over the impact of some of
SNCStream’s parameters.

In [7], authors introduced SNCStream+. SNCStream+ introduces three
enhancements to its original version, including: (1) an optimized rewiring
procedure, (2) a new micro-cluster weight window size, and (3) the adoption of
a fractional distance metric for high-dimensional streams.

The original rewiring procedure used in CNDenStream and SNCStream performs
linear access to all existing vertices in the network, and most of the times,
unnecessarily. This is mainly because most of the vertices in the network are
unlikely to be affected from the location of a vertex insertion. Instead of performing
linear access to all vertices in the network, SNCStream+ adopts a propagation
scheme to trigger rewirings in the network. Starting from the neighbors of the newly
added vertex, rewirings are triggered only by the neighbors who replaced at least one

308 J. P. Barddal et al.

v13

v3 v2

v1

v4 v5

v6

v7

v8

v9

v10

v11

v12

Verified vertices
Non-verified vertices

Fig. 4 Example of rewiring after the insertion of vertex v13, where verified vertices are displayed
in blue and non-verified in red. Adapted from [7]

of their edges. In practice, this propagation rewiring procedure decreases the number
of rewirings in the network, while converging to the original rewiring procedure [6].
In Fig. 4, we present an example of a rewiring procedure after the insertion of v13
to the network. In this case, only blue vertices were tested for possible rewirings,
while red nodes were not due to the lack of connections connecting subnetworks.

SNCStream verifies micro-clusters’ weights according to a clean-up window
size Tp, originally used in [9]. Intuitively, if these verifications take too long to
take place, micro-clusters that do not represent the current stream concept will join
the network and jeopardize the quality of final clusters. Conversely, performing
this verification too often may jeopardize algorithms’ processing time. In [7],
authors showed that assuming Tp = 1 is beneficial not only to promptly remove
micro-clusters with insufficient weight but also in processing time. Smaller values
are preferred since that infrequent weight verification allows micro-clusters to
stay longer in memory, and consequently, the number of distance computations
performed during the arrival of each instance also increases. Experiments conducted
in [7] showed that with the increase of Tp, the number of distance computations
exponentially increases due to the greater amount of micro-clusters in memory.
Thus, adopting Tp = 1 is beneficial since it allows prompt removal of insufficiently
weighted micro-clusters from memory, and fewer micro-clusters lead to a smaller
amount of distance computations.

Finally, the experiments provided in [6] showed that with the increase of
the stream dimensionality, the clustering quality of SNCStream decreased. This
phenomenon is known as “curse of dimensionality” [9], where Euclidean distances
fail to represent the dissimilarity between points in high-dimensional spaces,
enforcing algorithms to fall in its vastitude. In most high-dimensional applications,
the choice of the distance metric is concealed and the computation of dissimilarities
is rather heuristical [1]. There is very little work in the literature providing guidance
on choosing the correct distance metric to calculate dissimilarity between two
instances. By far, the most widely used distance metric is the Lp norm. The Lp

On Social Network-Based Algorithms for Data Stream Clustering 309

distance between two instances xi and xj can be computed according to Eq. (4),
where v iterates over all dimensions of the pair of instances.

dLp(xi , xj) =
[

d∑

v=1

| xi[v] − xj [v] |p
] 1

p

(4)

In [1], authors discuss about different values of p, enlightening that p = 1
(Manhattan distance) and p = 2 (Euclidean distance) are theoretically more
efficient than p ≥ 3 for high-dimensional problems. Additionally, authors provide
proofs that Lp rapidly decays with the increase of d. Encouraged by this trend,
authors examined the behavior of fractional distance metrics, where 0 ≤ p ≤ 1.
After several studies, p = 0.3 was pointed out as an interesting value for several
domains. Following these results, SNCStream+ adopted the fractional L.3 distance
metric, which showed improvements in clustering quality with the increase of
streams’ dimensionality [7].

5 Evaluation

Even though CNDenStream [5], SNCStream [6] and SNCStream+ [7] original
papers presented and compared their performances, they were not compared against
one another and related work. In this section, we merge the experimental protocols
used in these three papers and apply it to extensively evaluate them against each
other and related work.

5.1 Evaluation Procedure

In the following experiments, clustering quality is calculated using the Cluster
Mapping Measure (CMM), a metric developed aiming the evolving characteristics
of data streams [21]. In contrast to batch clustering evaluation metrics (e.g., Purity,
Precision, Recall), CMM is an external metric that accounts for nonassociated, mis-
associated instances and noisy data inclusion. It is also important to emphasize that
CMM considers recently retrieved instances with more weight than older ones by
using an exponential decay function. CMM is bounded in the [0; 1] interval, 1 being
the representation of a perfect clustering given a ground-truth set of clusters. For
more details on CMM’s computation and variants, the reader is referred to [21].

Processing time is computed as the time (in seconds) that each algorithm used
of CPU and memory usage is given in RAM-Hours, where each RAM-Hour equals
to 1 GB of RAM used in a processing hour. All experiments presented in this paper
were performed on an Intel Xeon CPU E5649 @ 2.53 GHz ×8 based computer

310 J. P. Barddal et al.

running CentOS with 16 GB of memory using Massive Online Analysis (MOA)
framework [8].

To determine whether a significant statistical difference between algorithms
exists in any evaluation metric, a combination of Friedman’s and Nemenyi’s [10]
nonparametric hypothesis tests with a 95% confidence level was used. The results
of these tests are graphically reported with critical difference (CD) plots.

5.2 Parametrization

All algorithms parameters were set according to their original papers. CluStream
parameters are: horizon H = 1000 and q = 1000 [2]. ClusTree parameters are: a
horizon H = 1000 and a maximum tree height of 8 [20]. DenStream parameters
are: ψ = 1, N = 1000, λ = 0.25, ε = .02, β = 0.2 and an offline multiplier
η = 2[9]. HAStream uses a DenStream-like online step, therefore adopts the same
density parameters [17].

Both CluStream and ClusTree were evaluated twice by changing their offline step
approach to find final clusters, that is, the usage of an informed k-means and the
adoption of DBSCAN. In the first case, whenever a clustering request is performed,
k-means received as input the ground-truth amount of clusters to be found n, which
can be seen as an optimistic clustering approach since this number is often unknown
in advance. On the other hand, the parameters for DBSCAN were the same as in
DenStream.

In Table 1 we present the parameters adopted by CNDenStream, SNCStream,
and SNCStream+. The main differences amongst them are: (1) CNDenStream
requires a larger burnout window N , (2) the fractional distance metric adopted
by SNCStream+, and (3) SNCStream also assumes Tp = 1 instead of using
Eq. (3). Again, we emphasize that neither of the social network-based algorithms
require the ground-truth amount of clusters to be found n. CNDenStream, SNC-
Stream, and SNCStream+ can be downloaded from https://sites.google.com/site/

Table 1 CNDenStream, SNCStream, and SNCStream+ parameters

Parameter CNDenStream [5] SNCStream [6] SNCStream+ [7]

ω 4 4 4

ψ 1 1 1

N 1000 100 100

λ 0.25 0.25 0.25

ε 0.02 0.02 0.02

β 0.2 0.2 0.2

Distance metric Euclidean L2 Euclidean L2 Fractional L.3

Tp Eq. (3) Eq. (3) 1

https://sites.google.com/site/moasocialbasedalgorithms/home

On Social Network-Based Algorithms for Data Stream Clustering 311

moasocialbasedalgorithms/home as a plugin for the Massive Online Analysis
(MOA) framework [8].

5.3 Synthetic Data

To evaluate whether a learning algorithm can work in different scenarios, it is
necessary to assess its performance in different data domains. Synthetic data stream
generators are important and often used due to their flexibility since they offer a
precise definition of drifts types and location during the streams. To synthesize data
streams, the Radial Basis Function (RBF) generator was used. This generator creates
a user-given amount of drifting centroids, which are defined by a label, center,
weight, and standard deviation given by a Gaussian distribution. Additionally,
ground-truth clusters appear and disappear during the stream, thus giving rise to
concept evolutions. We adopt the RBFd notation to refer to an experiment that uses
the RBF generator with a dimensionality d. In all RBF-based experiments, streams
were created with 100,000 instances where the ground-truth amount of ground-truth
clusters varied in the [2; 8] interval and an appearance/disappearance of a centroid
randomly occurs every 3000 instances.

5.4 Real-World Datasets

Besides the usage of data generators, the performance of algorithms should also
be evaluated along publicly available real datasets. Even though it is reasonably
difficult to justify if and when drifts and evolutions occur, it is still important
to verify how proposals act on different data domains. The following paragraphs
briefly describe these datasets.

Airlines (AIR) This dataset contains 539,383 instances and 8 attributes and
represents all flight arrivals and departures from US airports, from October 1987
until April 2008 [18].

Electricity (ELEC) This dataset was created by the Australian New South Wales
Electricity Market and stores energy prices obtained every 5 min [16]. In this
problem, energy prices are not fixed as they vary according to market supply and
demand. The Electricity dataset consists of 45,312 instances and 8 attributes.

Forest Covertype (COV) This dataset models the forest covertype prediction
problem based on cartographic variables [19]. This dataset consists of 900 m2

cells obtained from US Forest Service Region 2 Resource Information System and
contains 581,012 instances with 54 attributes.

https://sites.google.com/site/moasocialbasedalgorithms/home

312 J. P. Barddal et al.

KDD98 This dataset1 contains data about 95,412 donations described by 56
attributes. Donators groups are known to be nonstationary [20], thus is a challenge
for clustering algorithms. Additionally, this dataset is mostly constituted of categor-
ical features, which are either ignored or naively converted to numeric by clustering
algorithms.

KDD99 This dataset is composed of raw TCP dump data for a LAN. Each
connection has 42 attributes, and most of the 4,898,431 instances are labeled as
conventional connections. Also, this dataset is known to present appearances of
clusters over time, representing previously unknown types of cyber-attacks [2].

Body Posture and Movements (BPaM) This dataset consists of 165,632 instances
collected on 8 h of activities of 4 healthy subjects. The original goal is to classify
whether the subject is sitting down, standing up, standing, walking, or sitting based
on 18 attributes [25].

5.5 Results

In this section we evaluate CNDenStream, SNCStream, and SNCStream+ against
each other and algorithms presented in Sect. 3 using both synthetic and real data.

Table 2 presents the results obtained for the Clustering Mapping Measure
(CMM) quality metric. CMM results show that social network-based clustering
algorithms present higher clustering quality values, even surpassing informed k-

Table 2 Average CMM obtained during experiments

CMM

CluStream ClusTree Den HA CNDen SNC SNC
Experiment k-Means DBSCAN k-Means DBSCAN Stream Stream Stream Stream Stream+
RBF2 0.91 0.83 0.88 0.88 0.94 0.88 0.96 0.97 0.99
RBF5 0.99 0.67 0.98 0.8 0.84 0.86 0.93 0.95 0.99
RBF20 0.97 0.47 0.99 0.88 0.85 0.91 0.92 0.93 0.99
RBF50 0.76 0.48 0.99 0.44 0.85 0.81 0.93 0.91 0.99
Airlines 0.93 0.67 0.76 0.94 0.50 0.70 0.87 0.98 0.98
Electricity 0.75 0.41 0.76 0.44 0.61 0.43 0.88 0.89 0.98
Forest
cover-
type

0.76 0.41 0.75 0.43 0.38 0.37 0.81 0.97 0.97

KDD’98 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.42
KDD’99 0.40 0.50 0.44 0.40 0.69 0.77 0.84 0.90 0.95
BPaM 0.88 0.61 0.87 0.69 0.74 0.74 0.90 0.91 0.99

1http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html.

http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

On Social Network-Based Algorithms for Data Stream Clustering 313

(a)

(b)

123456789

CD = 3.62

SNCStream+
SNCStream
CNDenStream
ClusTree
CluStream

CluStream+DBSCAN
ClusTree+DBSCAN

HAStream
DenStream

123456789

CD = 3.62

ClusTree+DBSCAN
CluStream+DBSCAN
SNCStream+
ClusTree
SNCStream

DenStream
CNDenStream

CluStream
HAStream

123456789

CD = 3.62

ClusTree+DBSCAN
CluStream
SNCStream+
SNCStream
DenStream

CluStream+DBSCAN
ClusTree

HAStream
CNDenStream

(c)

Fig. 5 Nemenyi test results. (a) CMM . (b) CPU Time. (c) RAM-Hours

means approaches. Results also highlight the efficiency of SNCStream+, showing
high clustering quality results regardless of the dimensionality and domain of the
stream. We emphasize the results obtained in the KDD’98, which is known for
not having a clear data cohesion and several categorical attributes. Thus, clustering
becomes a highly challenging task [6].

Significant differences amongst algorithms were found after performing Fried-
man and Nemenyi tests, in which the average ranks differ by at least a Critical
Difference (CD). In Fig. 5a we report the results obtained, where {SNCStream+,
SNCStream, CNDenStream} � {ClusTree, CluStream, DenStream, ClusTree +
DBSCAN, CluStream + DBSCAN} with a 95% confidence level.

In Table 3 we present the results obtained for processing time, in seconds.
The results obtained show that ClusTree, on average, presents the best efficiency.
This occurs due to the hierarchical framing of micro-clusters in an R-Tree. This
allows quicker processing of incoming instances since the number of computations
is logarithmic with the number of micro-clusters stored, instead of linear, as it
occurs in other proposals. In Fig. 5b we report the critical differences obtained for
processing time comparison, where {ClusTree + DBSCAN, CluStream + DBSCAN,
SNCStream+, ClusTree, SNCStream} � {HAStream, CluStream, CNDenStream,
DenStream}. Even though the social network-based algorithms possess higher
asymptotic complexities, both SNCStream+ and SNCStream are practical as their
processing times are comparable to both ClusTree and CluStream.

314 J. P. Barddal et al.

Table 3 Processing time (s) obtained during experiments

CPU Time (s)

CluStream ClusTree Den HA CNDen SNC SNC
Experiment k-Means DBSCAN k-Means DBSCAN Stream Stream Stream Stream Stream+
RBF2 12.59 9.31 7.82 7.47 36.08 19.98 32.91 30.81 26.33

RBF5 13.67 9.02 10.39 6.74 28.88 18.91 19.50 18.25 15.60

RBF20 35.18 15.13 27.72 18.99 38.00 34.87 17.89 16.74 14.31

RBF50 71.62 24.59 56.27 18.60 23.71 64.49 25.99 24.53 20.79

Two moon 2.31 2.70 2.28 1.05 4.77 7.32 3.60 3.40 2.88

Airlines 262.18 179.65 161.38 108.12 240.76 108.44 156.16 144.92 124.93

Electricity 29.17 15.32 17.24 9.98 32.35 9.22 47.73 44.29 38.18

Forest
covertype

523.65 334.43 335.90 218.14 328.34 291.91 161.63 148.70 129.30

KDD’98 1774.32 1255.20 1783.24 1261.51 1104.74 1823.21 1485.15 1390.10 1188.12

KDD’99 751.71 280.30 319.10 196.67 657.26 594.50 936.39 883.95 749.11

BPaM 114.29 77.06 72.46 53.90 179.46 176.39 125.26 119.25 100.21

Finally, in Table 4, we present the memory consumption of the algorithms during
the experiments and Fig. 5c. For memory consumption, we were able to verify that
there is no significant difference between algorithms with a 95% confidence level.

6 Conclusion

In this study, we discussed the problem of data stream clustering and reviewed
three recent social network-based algorithms. These were discussed, compared
and thoroughly evaluated in both synthetic and real-world datasets that included
concept drifts and evolutions. Results showed the efficiency of social network-based
methods when compared to baselines and state-of-the-art clustering algorithms
regarding clustering quality, processing time and memory usage. Additionally, none
of the proposed methods require batch processing during the offline step to finding
clusters, nor demand the number of clusters to be found n, which are two important
and expected traits of data stream clustering algorithms.

Trends for future works involving data stream clustering techniques encompass
the adoption of these and other proposals in semi-supervised learning settings.
In semi-supervised learning, instances’ labels are periodically made available to
learners. Therefore, learners must maintain clusters that represent the current data
distribution to update their classification models during unlabeled periods of the
stream and use these clusters to detect concept drifts and evolutions based on
unlabeled data. In opposition to existing semi-supervised learning schemes, the
adoption of social network-based clustering algorithms would be beneficial since
they do not rely on a user-given amount of clusters to be found and have shown high
clustering quality in a variety of scenarios.

On Social Network-Based Algorithms for Data Stream Clustering 315

Ta
bl

e
4

R
A

M
-H

ou
rs

ob
ta

in
ed

du
ri

ng
ex

pe
ri

m
en

ts

R
A

M
-H

ou
rs

(G
B

-H
ou

r)

C
lu

St
re

am
C

lu
sT

re
e

E
xp

er
im

en
t

k-
M

ea
ns

D
B

SC
A

N
k-

M
ea

ns
D

B
SC

A
N

D
en

St
re

am
H

A
St

re
am

C
N

D
en

St
re

am
SN

C
St

re
am

SN
C

St
re

am
+

R
B

F 2
7.

40
×

10
−8

1.
74

×
10

−6
3.

81
×

10
−6

4.
55

×
10

−8
1.

04
×

10
−6

1.
01

×
10

−6
2.

91
×

10
−6

2.
47

×
10

−6
2.

33
×

10
−6

R
B

F 5
9.

73
×

10
−8

4.
56

×
10

−6
3.

40
×

10
−6

7.
34

×
10

−8
9.

17
×

10
−7

9.
59

×
10

−7
1.

15
×

10
−6

1.
02

×
10

−6
9.

23
×

10
−7

R
B

F 2
0

4.
69

×
10

−7
8.

76
×

10
−6

6.
24

×
10

−6
3.

68
×

10
−7

2.
43

×
10

−6
1.

77
×

10
−6

9.
71

×
10

−7
8.

47
×

10
−7

7.
77

×
10

−7

R
B

F 5
0

1.
84

×
10

−6
3.

70
×

10
−5

2.
80

×
10

−5
1.

45
×

10
−6

7.
93

×
10

−6
3.

27
×

10
−6

2.
02

×
10

−6
1.

77
×

10
−6

1.
61

×
10

−6

Tw
o

m
oo

n
3.

22
×

10
−9

3.
45

×
10

−9
3.

99
×

10
−8

4.
18

×
10

−8
3.

62
×

10
−7

5.
54

×
10

−8
8.

67
×

10
−8

6.
72

×
10

−8
6.

34
×

10
−8

A
ir

lin
es

1.
65

×
10

−6
8.

32
×

10
−5

5.
01

×
10

−5
1.

01
×

10
−6

7.
06

×
10

−6
3.

41
×

10
−5

8.
67

×
10

−6
7.

35
×

10
−6

6.
93

×
10

−6

E
le

ct
ri

ci
ty

2.
32

×
10

−7
7.

88
×

10
−6

5.
13

×
10

−6
1.

36
×

10
−7

1.
09

×
10

−6
3.

25
×

10
−6

2.
40

×
10

−6
2.

04
×

10
−6

1.
92

×
10

−6

Fo
re

st
co

ve
rt

yp
e

4.
81

×
10

−5
2.

27
×

10
−4

1.
48

×
10

−4
3.

07
×

10
−6

1.
37

×
10

−5
1.

27
×

10
−5

1.
39

×
10

−5
1.

20
×

10
−5

1.
11

×
10

−5

K
D

D
’9

8
3.

44
×

10
−5

1.
38

×
10

−4
8.

47
×

10
−5

9.
15

×
10

−5
3.

89
×

10
−5

8.
03

×
10

−4
1.

07
×

10
−4

2.
91

×
10

−5
2.

69
×

10
−5

K
D

D
’9

9
1.

44
×

10
−5

2.
33

×
10

−5
6.

08
×

10
−6

1.
63

×
10

−4
5.

69
×

10
−5

1.
45

×
10

−3
4.

74
×

10
−6

4.
13

×
10

−5
3.

79
×

10
−5

B
Pa

M
7.

66
×

10
−5

3.
23

×
10

−5
2.

26
×

10
−5

4.
82

×
10

−7
6.

22
×

10
−6

1.
24

×
10

−4
1.

84
×

10
−5

1.
62

×
10

−5
1.

47
×

10
−5

316 J. P. Barddal et al.

Acknowledgements This research was financially supported by the Coordenação de Aperfeiçoa–
mento de Pessoal de Nível Superior (CAPES) through the Programa de Suporte à Pòs-Graduação
de Instituições de Ensino Particulares (PROSUP) program and Fundação Araucária.

References

1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in
high dimensional space. In: International Conference on Database Theory 2001, pp. 420–434.
Springer, Berlin (2001). https://doi.org/10.1007/3-540-44503-X_27

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams.
In: Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29,
VLDB Endowment, VLDB ‘03, pp. 81–92 (2003)

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. In: Reviews of Modern
Physics, pp. 139–148. The American Physical Society (2002)

4. Amini, A., Wah, T.Y.: On density-based data streams clustering algorithms: a survey. J.
Comput. Sci. Technol. 29(1), 116–141 (2014). https://doi.org/1.1007/s11390-014-1416-y

5. Barddal, J.P., Gomes, H.M., Enembreck, F.: A complex network-based anytime data stream
clustering algorithm. In: Neural Information Processing - 22nd International Conference,
ICONIP 2015, Istanbul, Turkey, November 9–12, 2015, Proceedings, Part I, pp. 615–622
(2015). https://doi.org/10.1007/978-3-319-26532-2_68

6. Barddal, J.P., Gomes, H.M., Enembreck, F.: SNCStream: a social network-based data stream
clustering algorithm. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing (SAC). ACM, New York (2015)

7. Barddal, J.P., Gomes, H.M., Enembreck, F., Barthès, J.P.: SNCStream+: extending a high
quality true anytime data stream clustering algorithm. Inf. Syst. (2016). https://doi.org/10.1016/
j.is.2016.06.007

8. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online analysis. J. Mach.
Learn. Res. 11, 1601–1604 (2010)

9. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream
with noise. In: Proceedings of the 2006 SIAM International Conference on Data Mining,
pp 328–339 (2006)

10. Corder, G., Foreman, D.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step
Approach. Wiley, London (2011)

11. Erdos, P., Rényi, A.: On the evolution of random graphs. In: Publication of the Mathematical
Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) KDD-96
Proceedings, pp. 226–231. AAAI Press, Menlo Park (1996)

13. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Comput. Surv. 46(4), 1–37 (2014). https://doi.org/1.1145/2523813

14. Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.: A survey on ensemble learning for
data stream classification. ACM Comput. Surv. 50(2), 1–36 (2017). https://doi.org/10.1145/
3054925

15. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the
1984 ACM SIGMOD International Conference on Management of Data SIGMOD‘84, pp. 47–
57. ACM, New York (1984). https://doi.org/1.1145/602259.602266

16. Harries, M., Wales, N.S.: Splice-2 comparative evaluation: Electricity pricing (1999)
17. Hassani, M., Spaus, P., Seidl, T.: Adaptive multiple-resolution stream clustering. In: Perner, P.

(ed.) Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer
Science, vol. 8556, pp. 134–148. Springer International Publishing, Berlin (2014)

https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/1.1007/s11390-014-1416-y
https://doi.org/10.1007/978-3-319-26532-2_68
https://doi.org/10.1016/j.is.2016.06.007
https://doi.org/10.1016/j.is.2016.06.007
https://doi.org/1.1145/2523813
https://doi.org/10.1145/3054925
https://doi.org/10.1145/3054925
https://doi.org/1.1145/602259.602266

On Social Network-Based Algorithms for Data Stream Clustering 317

18. Ikonomovska, E., Gama, J., Zenko, B., Dzeroski, S.: Speeding-up hoeffding-based regression
trees with options. In: Proceedings of the 28th International Conference on International
Conference on Machine Learning, pp. 537–544 (2011)

19. Kosina, P., Gama, J.: Very fast decision rules for multi-class problems. In: Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC‘12, pp. 795–800. ACM, New
York (2012). https://doi.org/1.1145/2245276.2245431

20. Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The clustree: indexing micro-clusters for anytime
stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011)

21. Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., Pfahringer, B.: An effective
evaluation measure for clustering on evolving data streams. In: Proceedings of the 17th ACM
Conference on Knowledge Discovery and Data Mining (SIGKDD 2011), San Diego, CA,
pp. 868–876. ACM, New York (2011)

22. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
23. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.M.: Classification and novel class

detection in concept-drifting data streams under time constraints. IEEE Trans. Knowl. Data
Eng. 23(6), 859–874 (2011)

24. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., Carvalho, A.C.P.L.F.D., Gama, J.: Data
stream clustering: a survey. ACM Comput. Surv. 46(1), 1–31 (2013). https://doi.org/1.1145/
2522968.2522981

25. Ugulino, W., Cardador, D., Vega, K., Velloso, E., Milidia, R., Fuks, H.: Wearable computing:
accelerometers’ data classification of body postures and movements. In: Advances in Artificial
Intelligence - SBIA 2012. Lecture Notes in Computer Science, pp. 52–61. Springer, Berlin
(2012)

26. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684),
440–442 (1998)

https://doi.org/1.1145/2245276.2245431
https://doi.org/1.1145/2522968.2522981
https://doi.org/1.1145/2522968.2522981

	Preface
	Contents
	Introduction
	1 Learning from Data Streams
	2 General Classification of Methods to Learn from Data Streams
	3 Contents of This Book
	3.1 Chapter 2
	3.2 Chapter 3
	3.3 Chapter 4
	3.4 Chapter 5
	3.5 Chapter 6
	3.6 Chapter 7
	3.7 Chapter 8
	3.8 Chapter 9
	3.9 Chapter 10
	3.10 Chapter 11
	3.11 Chapter 12
	3.12 Chapter 13

	References

	Transfer Learning in Non-stationary Environments
	1 Introduction
	2 Transfer Learning (TL)
	2.1 Transductive TL
	2.2 Inductive TL

	3 Learning in Non-stationary Environments (NSE)
	3.1 Chunk-by-Chunk Approaches
	3.2 Example-by-Example Approaches

	4 The Relationship Between TL and Learning in NSE
	4.1 Similarities
	4.2 Differences

	5 The Potential of Transfer Learning in NSE
	5.1 Dynamic Cross-company Mapped Model Learning (Dycom)
	5.2 Diversity for Dealing with Drifts (DDD)

	6 Conclusions
	References

	A New Combination of Diversity Techniques in Ensemble Classifiers for Handling Complex Concept Drift
	1 Introduction
	2 Complex Concept Drift Characteristics and Challenges
	2.1 Speed
	2.2 Severity
	2.3 Complex Concept Drift

	3 Related Work
	3.1 Block-Based Technique
	3.2 Weighting-Data Technique
	3.3 Filtering-Data Technique

	4 The Proposed Approach
	4.1 Drift Monitoring Process in EnsembleEDIST2
	4.2 EnsembleEDIST2's Diversity by Variable-Sized Block Technique
	4.3 EnsembleEDIST2's Diversity by New Filtering-Data Criterion
	4.4 EnsembleEDIST2's Diversity by New Weighting-Data Process

	5 Experimental Evaluation
	5.1 Synthetic Datasets
	5.2 Real Datasets
	5.3 Evaluation Criteria
	5.3.1 Parameter Settings

	6 Comparative Study and Interpretation
	6.1 Impact of N0 on EnsembleEDIST2 Performance
	6.2 Impact of Ensemble Size on EnsembleEDIST2 Performance
	6.3 Accuracy of EnsembleEDIST2 Vs Other Ensembles

	7 Conclusion
	References

	Analyzing and Clustering Pareto-Optimal Objects in Data Streams
	1 Introduction
	2 Related Work
	3 Background
	3.1 Preference Constructors
	3.2 PreferenceSQL

	4 Preference-Based Stream Processing
	4.1 The Preference-Based Stream Processing Framework
	4.2 The Preference Continuous Query Language (PCQL)
	4.3 The Stream-Based Lattice Skyline Algorithm (SLS)
	4.3.1 Finding the BMO-Set of a Data Stream
	4.3.2 The SLS Algorithm

	5 Clustering of Pareto-Optimal Objects
	5.1 Clustering Background
	5.2 The Borda Social Choice Voting Rule for Clustering
	5.2.1 The Borda Social Choice Voting Rule
	5.2.2 Cluster Allocation
	5.2.3 Complexity and Convergence

	6 Application Use Case
	7 Experiments
	7.1 Benchmarks for Stream Lattice Skyline Algorithm
	7.1.1 Experiments on Artifical Data
	7.1.2 Experiments on Real World Data

	7.2 Benchmarks for Borda Social Choice Clustering
	7.2.1 Runtime
	7.2.2 Iterations

	8 Conclusion
	References

	Error-Bounded Approximation of Data Stream:Methods and Theories
	1 Introduction
	2 Preliminary
	3 OptimalPLR: An Optimal Algorithm to Generate Error-Bounded PLR
	3.1 Extreme Slopes of Maximal δ-Representative
	3.1.1 Slope Rotation and Extreme Slopes
	3.1.2 Slope Evolution and Reduction

	3.2 Optimization Strategies
	3.2.1 Computing Extreme Slopes
	3.2.2 Updating Convex Hulls

	3.3 Error-Bounded PLR Algorithm
	3.3.1 Description of OptimalPLR
	3.3.2 Complexity Analysis
	3.3.3 Discussions of OptimalPLR

	4 ParaOptimal: An Optimal Algorithm in Transformed Space
	4.1 Description of ParaOptimal
	4.1.1 Theoretical Preparation
	4.1.2 Initialization
	4.1.3 Feasible Region Update

	4.2 Generalization of ParaOptimal

	5 Theoretical Analysis of the Equivalence
	5.1 Mapping of Two Spaces
	5.2 Equivalence Discussion

	6 Summary
	References

	Ensemble Dynamics in Non-stationary Data Stream Classification
	1 Introduction
	2 Ensemble Dynamics
	2.1 Addition
	2.1.1 Fixed Time of Addition
	2.1.2 Dynamic Time of Addition

	2.2 Removal
	2.3 Update
	2.4 Ensemble Dynamics Taxonomy

	3 Formalisation
	4 Experimental Study
	4.1 Data Sets
	4.1.1 Hyperplane Generator
	4.1.2 SEA Data Stream Generator
	4.1.3 Forest Cover-Type Data Set
	4.1.4 Electricity Data Set

	4.2 Results and Analysis

	5 Discussion
	6 Summary
	References

	Processing Evolving Social Networks for Change Detection Based on Centrality Measures
	1 Introduction
	2 User Preference Dynamics
	2.1 User Preferences
	2.2 Preference Changes in Evolving Environments

	3 Preference Change Detection
	3.1 Processing Streaming Network
	3.2 Computing Centralities
	3.2.1 Degree Centrality
	3.2.2 Betweenness Centrality
	3.2.3 Closeness Centrality

	3.3 Moving Window Average (MWA)
	3.4 Weighted Moving Window Average (WMWA)
	3.5 Page–Hinckley Test (PH)
	3.6 Change Point Scoring Function
	3.7 Change Point Detection
	3.8 Assumptions
	3.9 Evaluation

	4 Algorithms
	5 Methodology
	5.1 Dataset and Evolving Networks
	5.1.1 Homogeneous Network
	5.1.2 Bipartite Network

	5.2 User Preference Change Events

	6 Experiments
	6.1 Experimental Environment
	6.2 Detecting u1 Change-Points
	6.3 Performance of Proposed Methods
	6.4 Impact of Parameters

	7 Related Work
	8 Conclusion
	References

	Large-Scale Learning from Data Streams with Apache SAMOA
	1 Introduction
	2 Description
	3 High Level Architecture
	4 System Design
	5 Machine Learning Algorithms
	6 Vertical Hoeffding Tree
	6.1 Vertical Parallelism
	6.2 Algorithm Structure
	6.3 Evaluation
	6.3.1 Accuracy and Time of VHT Local vs. MOA
	6.3.2 Accuracy of VHT Local vs. Distributed

	6.4 Summary

	7 Distributed AMRules
	7.1 Vertical Parallelism
	7.2 Horizontal Parallelism
	7.3 Evaluation

	8 Conclusions
	References

	Process Mining for Analyzing Customer Relationship Management Systems: A Case Study
	1 Introduction
	2 Related Work
	3 INE Case Study
	3.1 What Is INE?
	3.2 Data and Pre-processing
	3.3 Questions
	3.4 Process Discovery
	3.5 Conformance Checking
	3.6 Performance Analysis
	3.7 Building Social Network
	3.8 Conclusions and Future Study

	References

	Detecting Smooth Cluster Changes in Evolving Graph Structures
	1 Introduction
	2 Clustering a Graph Sequence
	2.1 Problem Definition
	2.2 Preserving Cluster Membership
	2.3 Drawbacks of PCM

	3 Detecting Smooth Cluster Changes in a Graph Sequence
	3.1 Clustering a Graph Sequence Using Smoothness Between Two Successive Graphs
	3.2 Clustering Using the Forgetting Rate
	3.3 Connectivities of Graphs

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.2.1 Dependence on the Initial Graph of the Graph Sequence
	4.2.2 Varying Cluster Numbers
	4.2.3 Varying Numbers of Vertices
	4.2.4 Graph Connectivities
	4.2.5 Real-World Data

	5 Conclusion
	References

	Efficient Estimation of Dynamic Density Functions with Applications in Data Streams
	1 Introduction
	2 Related Work
	2.1 Dynamic Density
	2.2 Change Detection

	3 KDE-Track: Dynamic Density Estimation
	3.1 Theoretical Bases of Density Estimation
	3.2 KDE-Track Method
	3.3 KDE-Track Implementation

	4 Density Estimation Performance Evaluation
	4.1 Estimation Accuracy on Synthetic Data
	4.1.1 Datasets

	4.2 Computational Time Cost and Space Usage

	5 Applications
	5.1 Visualizing the Taxi Traffic Data
	5.2 Online Change Detection

	6 Summary and Future Work
	References

	Incremental SVM Learning: Review
	1 Introduction
	2 SVM for Classification
	3 Incremental SVM Learning
	3.1 Online Incremental SVM Learning Methods
	3.2 Semi Online Incremental SVM Learning Methods

	4 Discussion and Comparison
	5 Applications of Incremental SVM Learning
	6 Conclusion
	References

	On Social Network-Based Algorithms for Data Stream Clustering
	1 Introduction
	2 Data Stream Clustering
	3 Related Work
	3.1 CluStream
	3.2 ClusTree
	3.3 DenStream
	3.4 HAStream

	4 Social Network-Based Approaches
	4.1 Background on Social Networks Theory
	4.2 CNDenStream
	4.3 SNCStream
	4.4 SNCStream+

	5 Evaluation
	5.1 Evaluation Procedure
	5.2 Parametrization
	5.3 Synthetic Data
	5.4 Real-World Datasets
	5.5 Results

	6 Conclusion
	References

