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1 Introduction

In connection with the factorization of unimodular Sobolev maps, Haim Brezis and
the author observed the following property of Sobolev spaces [5]. Let 1 < p < ∞
and 0 < λ < 1. Then every function f ∈ W 1,p(RN) can be decomposed as

f = g + h, with g ∈ (Wλ,p/λ ∩ W 1,p)(RN) and h ∈ (Wp,1 ∩ W 1,p)(RN). (1)

We will present in appendix a proof of this fact using factorization. We will also
explain there how (1) is related to functional calculus (superposition operators) in
Sobolev spaces.

Decomposition (1) has a flavor of interpolation, and indeed we have for example
when p = 2 the equality [20, Section 2.4.3, Theorem, p. 66]

W 1,2 = [Wλ,2/λ, F 2
1,1]θ,2, with θ := 1/(2 − λ). (2)

[We will recall in the next section the definition of the Triebel-Lizorkin spaces
F s

p,q .] Using (2) and the embedding F 2
1,1 ↪→ W 2,1 (see the next section), we find

that W 1,2 ⊂ Wλ,2/λ + W 2,1. However, this does not yield the stronger conclusion
W 1,2 ⊂ (Wλ,2/λ ∩W 1,2)+ (W 2,1 ∩W 1,2). Actually, one cannot derive the equality
Z = (X∩Z)+(Y ∩Z) merely from the inclusion Z ⊂ X+Y (take e.g. X = R×{0},
Y = {0} × R and Z = {(x, x); x ∈ R)}.
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We address here the following question. Let 0 ≤ s, s1, s2 < ∞, and 1 ≤
p1, p, p2 ≤ ∞. Assume that

Ws,p(RN) ⊂ Ws1,p1(RN) + Ws2,p2(RN) for any N. (3)

Is it true that

Ws,p(RN) = (Ws1,p1 ∩ Ws,p)(RN) + (Ws2,p2 ∩ Ws,p)(RN) for any N? (4)

We emphasize the fact that we ask for N -independent properties. For example,
by the Sobolev embeddings we have W 1,1 ⊂ L2 when N = 1 or 2, but not for
N ≥ 3, and thus (3) does not hold for s1 = s2 = 0, s = 1, p1 = p2 = 2, p = 1.

Our first results characterize most of the triples T = (Ws1,p1 ,Ws,p,Ws2,p2) such
that (3) and (4) hold.

Proposition 1 Assume that (3) holds. Then there exists some θ ∈ [0, 1] such that

s ≥ θs1 + (1 − θ)s2, (5)

1

p
= θ

p1
+ (1 − θ)

p2
. (6)

Proposition 2 Assume that for some θ ∈ [0, 1] we have (6) and s > θs1+(1−θ)s2.
Then both (3) and (4) hold.

On the other hand, (3) and (4) trivially hold when (5)–(6) are satisfied with θ = 0
or 1, since we then have either Ws,p ↪→ Ws2,p2 , or Ws,p ↪→ Ws1,p1 . We next
investigate the case where

s = θs1 + (1 − θ)s2,
1

p
= θ

p1
+ 1 − θ

p2
for some θ ∈ (0, 1). (7)

In this case, (3) holds most of the time, but not always. For example, when N = 1
we have

W 1/2,2(R) 	⊂ W 1,1(R) + L∞(R), (8)

i.e., (3) does not hold for the triple T = (W 1,1,W 1/2,2, L∞). Indeed, for N = 1 we
have W 1,1 ↪→ L∞, and thus W 1,1 + L∞ = L∞. However, W 1/2,2 	⊂ L∞.

Definition 1 A triple T = (Ws1,p1 ,Ws,p,Ws2,p2) is admissible if it satisfies (7).
An admissible triple T is irregular if s1 	= s2, 1 < p < ∞ and (exactly) one of

the spaces Ws1,p1 , Ws2,p2 is of the form Wk,∞ with k ∈ N. T is regular otherwise.

Thus T = (W 1,1,W 1/2,2, L∞) (which corresponds to the example occurring
in (8)) is irregular.

Our main result is the following
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Theorem 1 Let T be a regular triple. Then both (3) and (4) hold.

Equivalently, for every regular triple T we have

Ws,p(RN) = (Ws1,p1 ∩ Ws,p)(RN) + (Ws2,p2 ∩ Ws,p)(RN), ∀N. (9)

For most of the regular triples, (4) follows automatically from (3), as explained
in Proposition 3 below. Thus, in particular, the conclusion of the theorem follows
whenever T is as in Proposition 3 and Ws,p can be obtained by interpolation
from Ws1,p1 and Ws2,p2 . However, when T is admissible Ws,p need not be an
interpolation space between Ws1,p1 and Ws2,p2 , at least for the standard real and
complex methods [20, Sections 2.4.2–2.4.7, p. 64–73]; thus one cannot derive
Theorem 1 directly from Proposition 3. We will present, in Sect. 3, a proof of
Theorem 1 which does not rely on interpolation and establishes simultaneously (3)
and (4).

Definition 2 A Sobolev space Ws,p is exceptional if s ∈ N and either p = 1 or
p = ∞. It is ordinary otherwise.

Proposition 3 Assume that Ws,p, Ws1,p1 and Ws2,p2 are all three ordinary Sobolev
spaces. Assume that for some (fixed) N we have Ws,p(RN) ⊂ Ws1,p1(RN) +
Ws2,p2(RN). Then for such N we have

Ws,p(RN) = (Ws1,p1 ∩ Ws,p)(RN) + (Ws2,p2 ∩ Ws,p)(RN).

We now turn to irregular T ’s. At least in some special cases (see (8) and, more
generally, the triples T = (W 1,1,W 1/p,p, L∞), with 1 < p < ∞), (3) does not
hold for such triples. We do not know the characterization of irregular triples T for
which (3) and/or (4) do not hold. For irregular triples, we were only able to establish
a weaker form of (4), in which the space Wk,∞ is replaced by a slightly larger space,
modeled on bmo (the local BMO space whose definition will be recalled in the next
section).

Theorem 2 Let T be an irregular triple, and assume e.g. that p2 = ∞ (and thus s2
is an integer). Let 1 < q2 < ∞. Then

Ws,p(RN) = (Ws1,p1 ∩ Ws,p)(RN) + (F s2∞,q2
∩ Ws,p)(RN). (10)

In particular, when s2 = 0 (and thus Ws2,p2 = L∞) we have

Ws,p(RN) = (Ws1,p1 ∩ Ws,p)(RN) + (bmo ∩ Ws,p)(RN). (11)

When s2 > 0, we have

Ws,p(RN) =(Ws1,p1 ∩ Ws,p)(RN)

+ ({f ∈ Ws2−1,∞; Ds2−1f ∈ bmo } ∩ Ws,p)(RN).
(12)
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In the special case s2 = 0, s 	∈ N, p1 = 1, Theorem 2 was established in [5,
Chapter 6].

Remark 1 The question of the validity of (3)–(4) is somewhat dual to the one of
the validity of the Gagliardo-Nirenberg inequalities. There, one asks whether the
inclusion

Ws1,p1(RN) ∩ Ws2,p2(RN) ⊂ Ws,p(RN) (13)

leads, for some appropriate θ ∈ [0, 1], to the estimate

‖f ‖Ws,p(RN) � ‖f ‖θ
Ws1,p1 (RN)

‖f ‖1−θ

Ws2,p2 (RN)
. (14)

In the spirit of our Proposition 1, one may prove that the validity of (13) for every
N requires

s ≤ θs1 + (1 − θ)s2, (15)

1

p
= θ

p1
+ (1 − θ)

p2
(16)

for some θ ∈ [0, 1]. If we have either “<” in (15) or θ ∈ {0, 1}, then we have
both (13) and (14); this follows from the main result in [4]. As in our situation, the
interesting case is the one of admissible triples. In that case, (15) and (16) hold when
s1, s, s2 are integers, as established in the seminal contributions of Gagliardo [11]
and Nirenberg [15]. It turns out that (15) and (16) hold for most of the admissible
triples, but not all of them. A characterization of the admissible triples for which (15)
and (16) hold has been obtained in [4]; see also [8, 12, 16] for older partial results.

Remark 2 As one may expect, whenever it is possible to decompose f = f1 + f2
with f1 ∈ (Ws1,p1 ∩ Ws,p)(RN) and f2 ∈ (Ws2,p2 ∩ Ws,p)(RN), we also
have a norm control for f1 and f2 in terms of ‖f ‖Ws,p . A simple example of
such decomposition with norm control is the following. For f ∈ L2(RN), set
f1 := f 1{x; |f (x)|>‖f ‖

L2(RN )
} and f2 := f 1{x; |f (x)|≤‖f ‖

L2(RN )
}. Then clearly

f1 ∈ (L1 ∩ L2)(RN) and f2 ∈ (L∞ ∩ L2)(RN), and in addition we have the
norm controls

‖f1‖L1(RN) ≤ ‖f ‖L2(RN), ‖f1‖L2(RN) ≤ ‖f ‖L2(RN),

‖f2‖L∞(RN) ≤ ‖f ‖L2(RN), ‖f2‖L2(RN) ≤ ‖f ‖L2(RN).

Note however that the map f �→ (f1, f2) is not linear. Likewise, in general we
will construct nonlinear decompositions.

Our text is organized as follows. In Sect. 2, we recall some basic facts on
function spaces, instrumental for our purposes. The proofs of Propositions 1, 2 and 3
and of Theorems 1 and 2 are presented in Sect. 3. A final appendix presents the
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factorization theory and its connections with the sum-intersection property and with
the functional calculus in Sobolev spaces.

2 Basic Properties of Triebel-Lizorkin Spaces

Definition 3 Let ψ ∈ C∞
c (RN) be such that ψ = 1 in B1(0) and supp ψ ⊂ B2(0).

Define ψ0 = ψ and, for j ≥ 1, ψj (x) := ψ(x/2j ) − ψ(x/2j−1). Set ϕj :=
F−1ψj ∈ S .1 Then for each temperate distribution f we have

f =
∑

j

fj in S ′, with fj := f ∗ ϕj . (17)

f = ∑
fj is “the” Littlewood-Paley decomposition of f ∈ S ′.

Note that Ffj = ψjFf is compactly supported, and therefore fj ∈ C∞ for
each j .

Definition 4 Starting from for Littlewood-Paley decomposition, we define the
Triebel-Lizorkin spaces F s

p,q as follows: for −∞ < s < ∞, 0 < p < ∞ and
0 < q ≤ ∞, we let

‖f ‖Fs
p,q

:=
∥∥∥∥∥

∥∥∥∥
(

2sj fj (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
Lp(RN)

, F s
p,q := {f ∈ S ′; ‖f ‖Fs

p,q
< ∞}.

Same definition when p = q = ∞.
This definition has to be changed when p = ∞ and 1 < q < ∞ [20, Section

2.3.4, p. 50]: we let

‖f ‖Fs∞,q = inf

⎧
⎨

⎩esssup
x∈RN

∥∥∥∥∥

∥∥∥∥
(

2sj fj (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
L∞(RN )

; fj ∈ L∞(RN), f =
∑

fj ∗ ϕj

⎫
⎬

⎭ ,

the latter equality being in the sense of S ′.

Most of the Sobolev spaces can be identified with Triebel-Lizorkin spaces [20,
Section 2.3.5] and [17, Section 2.1.2].

Theorem 3 The following equalities of spaces hold, with equivalence of norms:

1. If s > 0 is not an integer and 1 ≤ p ≤ ∞, then Ws,p(RN) = F s
p,p.

2. If s ≥ 0 is an integer and 1 < p < ∞, then Ws,p(RN) = F s
p,2.

1Equivalently, we have ϕ0 = F−1ψ and, for j ≥ 1, ϕj (x) = 2Njϕ0(2j x) − 2N(j−1)ϕ0(2j−1x).
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When s ≥ 0 is an integer and either p = 1 or p = ∞, the Sobolev space Ws,p

cannot be identified with a Triebel-Lizorkin space.

Theorem 3 is usually used in conjunction with Lemma 1 below. The reason is
that, in practice, we do not know the Littlewood-Paley decomposition of f , but only
a Nikol’skij decomposition of f .

Definition 5 A Nikol’skij decomposition of f ∈ S ′ is a representation of the form

f = ∑
f j in S ′, with suppFf j ⊂

{
B2j+1(0) \ B2j−1(0), if j ≥ 1

B2(0), if j = 0
.

Note that in particular the Littlewood-Paley decomposition f = ∑
fj is a

Nikol’skij decomposition.

Lemma 1 1. Let 1 < p < ∞, 1 < q ≤ ∞ and s ∈ R. Consider a sequence (f j )

such that

∥∥∥∥
∥∥∥
(
2sj f j (x)

)
j≥0

∥∥∥
lq (N)

∥∥∥∥
Lp(RN)

< ∞. Then f = ∑
f j ∗ ϕj converges

in S ′ and

‖f ‖Fs
p,q

�
∥∥∥∥∥

∥∥∥∥
(

2sj f j (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
Lp(RN)

. (18)

2. Same conclusion if 1 ≤ p = q ≤ ∞.

Proof It suffices to consider finite sums, and to establish (18) in this case. We start
with item 2, which is easier. Note that f ∈ Lp(RN), and thus f ∈ S ′.

Let f = ∑
j≥0 fj be the Littlewood-Paley decomposition of f . Since ϕj ∗ϕk = 0

if |j − k| ≥ 2, we find that

fj = f ∗ ϕj =
∑

k

f k ∗ ϕk ∗ ϕj =
∑

|k−j |≤1

f k ∗ ϕk ∗ ϕj , (19)

and thus

‖fj‖Lp(RN) ≤
∑

|k−j |≤1

‖f k ∗ ϕk ∗ ϕj‖Lp(RN)

≤
∑

|k−j |≤1

‖f k‖Lp(RN)‖ϕk ∗ ϕj‖L1(RN) ≤ C
∑

|k−j |≤1

‖f k‖Lp(RN).

(20)
We obtain (18) with p = q from (20).

We now consider item 1. From (19), we find that

|fj (x)| ≤
∑

|k−j |≤1

|f k ∗ ϕk ∗ ϕj (x)| ≤ C
∑

|k−j |≤1

Mf k(x). (21)



Sum-Intersection in Sobolev Spaces 209

Here, M is the standard maximal operator, and we used the inequality [18,
Proposition, p. 24]

|f ∗ ρε(x)| ≤ CρMf (x), ∀ ρ ∈ S , ∀ ε > 0.

Using (21), we find that

‖f ‖Fs
p,q

�
∥∥∥∥∥

∥∥∥∥
(

2sjMf j (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
Lp(RN)

�
∥∥∥∥∥

∥∥∥∥
(

2sj f j (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
Lp(RN)

,

the latter inequality being the Fefferman-Stein vectorial maximal inequality [10].

Definition 6 We define, for f ∈ L1
loc(R

N),

‖f ‖bmo := sup
|B|≤1

ˆ
B

|f | + sup
|B|≤1

 
B

 
B

|f (x) − f (y)| dxdy,

the sup being taken over the balls of volume ≤ 1. We set

bmo := {f ∈ L1
loc(R

N); ‖f ‖bmo < ∞}.

With its natural norm, bmo is the local BMO space.

Then we have [21, Theorem, p. 47] bmo = F 0
∞,2. Using this equality,

Definition 4 and the embedding 	q ↪→ 	2, 0 < q < 2, we obtain the following

Corollary 1 If f = ∑
j≥0 f j ∗ ϕj in S ′ and 0 < q < 2, then

‖f ‖2
bmo ≤ C esssup

x∈RN

∑

j

|f j (x)|2 ≤ C esssup
x∈RN

⎛

⎝
∑

j

|f j (x)|q
⎞

⎠
2/q

, (22)

for some C independent of the f j ’s.

Corollary 2 For 1 < q < 2, we have F 0∞,q ↪→ bmo .

As we noticed above, when s ∈ N the space Ws,1 is not a Triebel-Lizorkin space.
However, we have the following

Lemma 2

1. When s ≥ 0, we have F s
1,1 ↪→ Ws,1(RN).

2. More generally, for every s ≥ 0 and 1 ≤ p < ∞ we have F s
p,1 ↪→ Ws,p(RN).

The same holds when p = ∞ and s > 0 is not an integer.
3. When k > 0 is an integer and 1 < q ≤ 2, we have

Fk∞,q ↪→ {f ∈ Wk−1,∞(RN); Dk−1f ∈ bmo }.
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Proof We start with p = 1. When s is not an integer, we actually have equality.
When s = 0 and f ∈ F 0

1,1, we have ‖f ‖L1(RN) ≤ ∑
j≥0 ‖fj‖L1(RN) = ‖f ‖F 0

1,1
<

∞. When s ≥ 1 is an integer, we use the fact that [20, Section 2.3.8, Theorem (ii),
pp. 58–59]

‖f ‖Fs
1,1

∼
s∑

j=0

‖Djf ‖
F

s−j
1,1

≥
s∑

j=0

‖Djf ‖F 0
1,1

≥
s∑

j=0

‖Djf ‖L1(RN) = ‖f ‖Ws,1(RN).

When 1 < p < ∞, the desired inclusion follows from

F s
p,1 ↪→ F s

p,q = Ws,p(RN) (with q = 2 or q = p, according to s).

Similarly if p = ∞ and s is not an integer.
Finally, if p = ∞ and s is an integer, we argue as for p = 1, relying on

Corollary 2 and [20, Section 2.3.8, Remark 2, p. 60].

We now briefly recall the characterization of Triebel-Lizorkin spaces in terms of
wavelets.
Let ψ0, ψ1 be respectively a father and mother (sufficiently smooth) wavelets. For

G ∈ {0, 1}N , j ∈ N and m ∈ Z
N , let ψ

j
G,m(x) := 2Nj/2

N∏

r=1

ψGr (2
j xr − mr),

x ∈ R
N . Let, for f ∈ S ′,

λ
j
G,m :=

{
0, if j > 0 and G = {0}N
2Nj/2 (f, ψ

j
G,m), otherwise

.

Recall [22, Section 3.1.3] that f =
∑

j,G,m

2−Nj/2λ
j
G,mψ

j
G,m in the sense of S ′.

Conversely, if

f =
∑

G,m

μ0
G,mψ0

G,m +
∑

j>0,G	={0}N ,m

2−Nj/2μ
j
G,mψ

j
G,m in the sense of S ′,

then the wavelet coefficients λ
j
G,m of f are given by

λ
j
G,m =

{
0, if j > 0 and G = {0}N
μ

j
G,m, otherwise

.

Let, for j ∈ N and m ∈ Z
N , Qj,m be the cube

N∏

r=1

[2−j (mr − 1), 2−j (mr + 1)]. Set,

for 0 < q < ∞, s ∈ R,
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g(x) = gs
p,q(x) :=

(∑
2sqj |λj

G,m|q1Qj,m
(x)

)1/q

. (23)

When q = ∞, we replace the 	q norm by the sup norm.
Then one may read the smoothness of f in terms of the integrability properties

of g. The following statement is a rephrasing of [22, Theorem 1.64, p. 33].

Theorem 4

1. Let −∞ < s < ∞, 1 ≤ p < ∞, 0 < q ≤ ∞. Then ‖f ‖Fs
p,q

∼ ‖gs
p,q‖Lp(RN).

2. Same conclusion if p = q = ∞.
3. In particular, if s > 0 is not an integer and 1 ≤ p ≤ ∞, then ‖f ‖Ws,p(RN) ∼

‖gs
p,p‖Lp .

4. If s ≥ 0 is an integer and 1 < p < ∞, then ‖f ‖Ws,p(RN) ∼ ‖gs,2‖Lp .

Let us note that when p = q, this norm equivalence takes a particularly simple
form. More specifically, we have

‖f ‖p
F s

p,p
∼

∑

j,G,m

2(sp−N)j |λj
G,m|p, −∞ < s < ∞, 1 ≤ p < ∞ (24)

‖f ‖Fs∞,∞ ∼ sup
j,G,m

2sj |λj
G,m|, −∞ < s < ∞. (25)

Our next result relies on properties of the Besov spaces Bs
p,q . In order to keep

this section short, we will be rather sketchy.

Lemma 3 Let 0 ≤ s < ∞, 1 ≤ p ≤ ∞ and ε > 0. Then, with gs
p,q as in (23), we

have

‖f ‖Ws,p(RN) � ‖gs+ε
p,p ‖Lp(RN), (26)

‖gs−ε
p,p ‖Lp(RN) � ‖f ‖Ws,p(RN). (27)

Proof (Sketch of Proof) The above estimates are equivalent to the embeddings

F s+ε
p,p ↪→ Ws,p(RN) ↪→ F s−ε

p,p . (28)

When s is not an in an integer, we have Ws,p(RN) = F s
p,p, and the conclusion

is clear.
When s is an integer and 1 ≤ p ≤ ∞, the Littlewood-Paley decomposition

f = ∑
j fj of f satisfies [7, Lemma 2.1.1]

‖f0‖Lp(RN) ≤ ‖f ‖Lp(RN), 2sj‖fj‖Lp(RN) � ‖Dsf ‖Lp(RN), ∀ j ≥ 1. (29)

Thus supj 2sj‖fj‖Lp(RN) � ‖f ‖Ws,p(RN), i.e., we have the embedding
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Ws,p(RN) ↪→ Bs
p,∞. (30)

On the other hand, we have [19, Chapter 5, Lemma 3.14]

‖Dsfj‖Lp(RN) � 2sj‖fj‖Lp(RN), ∀ j ≥ 0,

and thus

‖f ‖Ws,p(RN) �
∑

j

(‖fj‖Lp(RN) + ‖Dsfj‖Lp(RN)

)
�

∑

j

2sj‖fj‖Lp(RN).

Equivalently, we have the embedding

Bs
p,1 ↪→ Ws,p(RN). (31)

We obtain (28) via (30)–(31) and the following elementary embeddings [20,
Section 2.3.2, Proposition 2, p. 47]

F s+ε
p,p = Bs+ε

p,p ↪→ Bs
p,1 ↪→ Ws,p(RN) ↪→ Bs

p,∞ ↪→ Bs−ε
p,p = F s−ε

p,p .

��

3 Proofs

Proof (Proof of Proposition 1) In order to prove the existence of some θ such
that (6) holds, we have to establish the double inequality

min{p1, p2} ≤ p ≤ max{p1, p2}. (32)

We argue by contradiction. Assume first that p > max{p1, p2}. Let

f (x) = 2

(1 + x2)(1+ε)/(2p)
, ∀ x ∈ R.

Clearly, f ∈ Lp(R), and more generally f ∈ Wk,p(R) for every integer k. It
follows that f ∈ Ws,p(R) for every s ≥ 0. On the other hand, for every f1, f2 such
that f = f1+f2 and every x we have either |f1(x)| ≥ f (x)/2 or |f2(x)| ≥ f (x)/2.
We find that

|f1(x)|p1 + |f2(x)|p2 � f (x)p1 + f (x)p2 := g(x).

Since, for sufficiently small ε, we have g 	∈ L1(R), we find that f 	∈ Lp1(R) +
Lp2(R). Therefore, f 	∈ Ws1,p1(R) + Ws2,p2(R), which is a contradiction.
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Assume next that p < min{p1, p2}. Let p < r < min{p1, p2}. Let N be
sufficiently large such that Ws,p(B) 	⊂ Lr(B); here, B is a ball in R

N . By a standard
extension argument, there exists some f ∈ W

s,p
c (RN) such that f 	∈ Lr(RN). Such

an f does not belong to Lr
loc(R

N), and thus does not belong to Lp1(RN)+Lp2(RN).
We find that f 	∈ Ws1,p1(RN) + Ws2,p2(RN), again a contradiction.

We thus know that (32) holds, or equivalently, that (6) holds for some θ .
We next proceed to the proof of (5). Assume first that p1 = p2 = p. Then θ is

not determined by (6), and its existence is equivalent to s ≥ min{s1, s2}. Arguing
by contradiction, assume that s < min{s1, s2}. Let s < ρ < min{s1, s2}. If f ∈
Ws,p(R) \ Wρ,p(R), then

f 	∈ Ws1,p(R) + Ws2,p(R) = Wmin{s1,s2},p(R) ⊂ Wρ,p(R),

a contradiction.
Assume next that p1 	= p2. Then θ is determined by (6). Argue again by

contradiction and assume that s < θs1 + (1 − θ)s2. Set σ := θs1 + (1 − θ)s2 > s.
Consider some ε > 0 such that s + ε < σ − ε. In view of Lemma 3, in order to
contradict (3) it suffices to establish, for some appropriate N , the non inclusion

F s+ε
p,p 	⊂ F s1−ε

p1,p1
+ F s1−ε

p2,p2
. (33)

With no loss of generality, we may assume that

1 ≤ p1 < p2 ≤ ∞. (34)

We will treat separately the cases p2 < ∞ and p2 = ∞.
Set, in all cases,

α :=
s1 − ε

p2
− s2 − ε

p1
1

p1
− 1

p2

=
s1

p2
− s2

p1
1

p1
− 1

p2

+ ε. (35)

Proof of (33) When p2 < ∞. We rely on the following
Claim. For appropriate C1, C2 > 0, we have

[a + b = S, S ≥ C12αj ] �⇒ [2(s1−ε)jp1 |a|p1 + 2(s2−ε)jp2 |b|p2 ≥ C22(σ−ε)jp].
(36)

Granted the claim, we conclude as follows. Consider some f ∈ S ′ such that
for every j , G and m we have either λ

j
G,m = 0 or |λj

G,m| ≥ C12αj , with C1 as
in (36). The claim combined with (24) implies that for every possible decomposition
f = f1 + f2 we have

‖f1‖p1

F
s1−ε
p1,p1

+ ‖f2‖p1

F
s2−ε
p2,p2

� ‖f ‖p

Fσ−ε
p,p

. (37)
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We are now in position to obtain a contradiction. Let N be sufficiently large such
that (σ−ε+α)p < N . Let δ := N−(σ−ε+α)p > 0. Fix some G0 ∈ {0, 1}N\{0}N .
For every j ∈ N, consider a set Mj ⊂ Z

N such that #Mj ∼ 2δj . Set

f :=
∑

j,m∈Mj

2−Nj/2C12αjψ
j
G0,m

.

By (24), we have

‖f ‖p

F s+ε
p,p

∼
∑

j

2((s+ε+α)p−N+δ)j =
∑

j

2−((σ−ε)−(s+ε))jp < ∞,

while

‖f ‖p

Fσ−ε
p,p

∼
∑

j

2((σ−ε+α)p−N+δ)j =
∑

j

1 = ∞.

We complete the proof of (33) when p2 < ∞ using the two above inequalities
and (37).
Proof of (33) When p2 = ∞ and θ ∈ (0, 1]. This time we have α = −(s2 − ε). We
modify the definition of f by setting

f :=
∑

j,m∈Mj

2−Nj/2j2αjψ
j
G0,m

.

Assume, by contradiction, that f = f1 + f2 for some f1 ∈ F
s1−ε
p1,p1 and f2 ∈

F
s2−ε∞,∞. Write f1 = ∑

j,G,m 2−Nj/2a
j
G,mψ

j
G,m, f2 = ∑

j,G,m 2−Nj/2b
j
G,mψ

j
G,m.

Since f2 ∈ F
s2−ε∞,∞, we have

|bj
G,m| ≤ C2−(s2−ε)j = C2αj , ∀ j,G,m.

Since a
j
G0,m

+ b
j
G0,m

= j2αj , ∀ j , ∀m ∈ Mj , for sufficiently large j0 we have

|aj
G0,m

| ≥ 1

2
j2αj , ∀ j ≥ j0, ∀m ∈ Mj.

Inserting this into (24) and using the fact that

(s1 − ε + α)p1 − N + δ = (s1 − s2)p1 − θ(s1 − s2)p = (s1 − s2)(p1 − θp) = 0

(since p1 = θp), we find that
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‖f ‖p1

F
s1−ε
p1,p1

�
∑

j≥j0,m∈Mj

jp12((s1−ε+α)p1−N)j

∼
∑

j≥j0

jp1 2((s1−ε+α)p1−N+δ)j =
∑

j≥j0,m∈Mj

jp1 = ∞.

On the other hand, we have

‖f ‖p

F s+ε
p,p

∼
∑

jp2((s+ε+α)p−N+δ)j =
∑

jp2−((σ−ε)−(s+ε))jp < ∞.

This leads to a contradiction and completes the proof of (33) when p2 = ∞ and
θ ∈ (0, 1].
Proof of (33) When p2 = ∞ and θ = 0. This is similar to the case p2 = ∞
and θ ∈ (0, 1]. We have α = −(s2 − ε) = −(σ − ε) < −(s + ε). Consider
f := ∑

j,m 2−Nj/2j2αjψ
j
G0,m

. [This time, the sum in m is over all m ∈ Z
N .]

We then have f ∈ F s+ε∞,∞. Arguing by contradiction, we obtain that f cannot be

decomposed as f = f1 + f2 with f1 ∈ F
s1−ε
p1,p1 and f2 ∈ F

s2−ε∞,∞. Indeed, as in the
previous case, if f2 ∈ F

s2−ε∞,∞ then for large j0 we have

‖f1‖p1

F
s1−ε
p1,p1

�
∑

j≥j0

∑

m∈ZN

jp12(s1αp1−N)j = ∞.

Proof of the Claim. Let S > 0. The function

[0,∞) � t �→ g(t) := 2(s1−ε)j (1 − t)S + 2(s2−ε)jp2/p1 tp2/p1Sp2/p1

is convex, and its derivative at the origin is negative. Thus g has a global minimum
at the point t0 where g′(t0) = 0. Solving the equation g′(t) = 0, we find that
t0 = C12αjS−1, with C1 > 0 independent of j . Provided that S ≥ C12αj , we have
t0 ≤ 1, and therefore the first term in g(t) is non negative. For such S, we thus have

g(t) ≥ g(t0) ≥ 2(s2−ε)jp2/p1(t0)
p2/p1Sp2/p1 = c 2(s2−ε+α)p2/p1j = c2(σ−ε)p/p1j ,

∀ t ≥ 0,

with c > 0 independent of S.
Let now a, b be such that a + b = S ≥ C12αj . Then

2s1jp1 |a|p1 + 2s2jp2 |b|p2 ≥ 2s1jp1ap1 + 2s2jp2bp2 ,

where

a :=

⎧
⎪⎪⎨

⎪⎪⎩

a, if 0 ≤ a, b ≤ S

0, if a < 0 and b > S

S, if a > S and b < 0

, b :=

⎧
⎪⎪⎨

⎪⎪⎩

b, if 0 ≤ a, b ≤ S

S, if a < 0 and b > S

0, if a > S and b < 0

. (38)
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Therefore, it suffices to prove (36) under the extra assumption that 0 ≤ a, b ≤ S.
Write a = (1 − t)S, b = tS, with t ∈ [0, 1]. We then have

2(s1−ε)jp1ap1 + 2(s2−ε)jp2bp2 ∼
(

2(s1−ε)j a + 2(s2−ε)jp2/p1bp2/p1
)p1

= [g(t)]p1 ≥ [g(t0)]p1 ≥ cp1 2(σ−ε)jp.

��
Proof of Proposition 2 Assuming Theorem 1. As already noticed in the proof of
Proposition 1, when p1 = p2 = p or when θ ∈ {0, 1}, properties (3) and (4)
are trivially true. We may thus assume that p1 	= p2 and θ ∈ (0, 1). Set λ :=
s − (θs1 + (1 − θ)s2) > 0. For 0 < ε <

λ

θ
, let δ > 0 satisfy θε + (1 − θ)δ = λ.

Then we may pick ε such that neither s1 + ε nor s2 + δ is an integer. Thus the triple
T := (Ws1+ε,p1 ,Ws,p,Ws2+δ,p2) is regular. Granted Theorem 1, this implies

Ws,p(RN) = (Ws1+ε,p1 ∩ Ws,p)(RN) + (Ws2+δ,p2 ∩ Ws,p)(RN)

⊂ (Ws1,p1 ∩ Ws,p)(RN) + (Ws2,p2 ∩ Ws,p)(RN).

��
Proof of Proposition 3. Decompose f ∈ Ws,p(RN) as f = f1 + f2, with f1 ∈
Ws1,p1(RN) and f2 ∈ Ws2,p2(RN). Write, in the sense of S ′,

f =
∑

j,G,m

2−Nj/2λ
j
G,mψ

j
G,m,

f1 =
∑

j,G,m

2−Nj/2a
j
G,mψ

j
G,m, f2 =

∑

j,G,m

2−Nj/2b
j
G,mψ

j
G,m.

In the spirit of (38), define

a
j
G,m :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
j
G,m, if 0 ≤ a

j
G,m, b

j
G,m ≤ λ

j
G,m

0, if a
j
G,m < 0 and b

j
G,m > λ

j
G,m

λ
j
G,m, if a

j
G,m > λ

j
G,m and b

j
G,m < 0

, f
1

:=
∑

j,G,m

2−Nj/2a
j
G,mψ

j
G,m

b
j
G,m :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b
j
G,m, if 0 ≤ a

j
G,m, b

j
G,m ≤ λ

j
G,m

λ
j
G,m, if a

j
G,m < 0 and b

j
G,m > λ

j
G,m

0, if a
j
G,m > λ

j
G,m and b

j
G,m < 0

, f
2

:=
∑

j,G,m

2−Nj/2b
j
G,mψ

j
G,m.

Then f = f
1
+ f

2
, and Theorem 4 implies that
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∥∥∥f
1

∥∥∥
Ws,p(RN)

� ‖f ‖Ws,p(RN) < ∞,

∥∥∥f
1

∥∥∥
Ws1,p1 (RN)

� ‖f1‖Ws1,p1 (RN) < ∞,

∥∥∥f
2

∥∥∥
Ws,p(RN)

� ‖f ‖Ws,p(RN) < ∞,

∥∥∥f
2

∥∥∥
Ws2,p2 (RN)

� ‖f2‖Ws2,p2 (RN) < ∞.

��
Proof of Theorem 1. The case where p1 = p2 is trivial, since we then have Ws,p ⊂
Wmin{s1,s2},p.

We may thus assume that

1 ≤ p1 < p < p2 ≤ ∞. (39)

We further distinguish between the cases s1 = s2 and s1 	= s2, and also between
p2 < ∞ and p2 = ∞.

Given f ∈ Ws,p(RN), we write f = ∑
j,G,m 2−Nj/2λ

j
G,mψ

j
G,m.

Case 1. s1 = s2 = s 	∈ N. Set

f1 :=
∑

j,G,m

2−Nj/2a
j
G,mψ

j
G,m, f2 :=

∑

j,G,m

2−Nj/2b
j
G,mψ

j
G,m,

with

a
j
G,m :=

{
λ

j
G,m, if |λj

G,m| ≥ 2−sj

0, if |λj
G,m| < 2−sj

, b
j
G,m :=

{
0, if |λj

G,m| ≥ 2−sj

λ
j
G,m, if |λj

G,m| < 2−sj
.

Since p1 < p, we have

|aj
G,m|p1 ≤ 2sj (p1−p)|λj

G,m|p. (40)

Using (40), the fact that s is not an integer and (24), we find that

‖f1‖Ws,p(RN) � ‖f ‖Ws,p(RN), ‖f1‖p1
Ws1,p1 (RN)

� ‖f ‖p

Ws,p(RN)
. (41)

Similarly, if p2 < ∞ then we have

‖f2‖Ws,p(RN) � ‖f ‖Ws,p(RN), ‖f2‖p2
Ws2,p2 (RN)

� ‖f ‖p

Ws,p(RN)
. (42)

On the other hand, if p2 = ∞ then

‖f2‖Ws,p(RN) � ‖f ‖Ws,p(RN), ‖f2‖Ws2,∞(RN) � 1. (43)

We complete this step via (41)–(43).
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Remark 3 The estimates (41)–(43) are nonlinear, while one would expect linear
estimates. Actually, it is possible to obtain linear estimates by cutting the coefficients
λ

j
G,m at height A2−sj instead of 2−sj , with A := ‖f ‖Ws,p(RN). The corresponding

decomposition satisfies

‖f1‖Ws,p(RN) + ‖f1‖Ws1,p1 (RN) + ‖f2‖Ws,p(RN) + ‖f2‖Ws2,p2 (RN) � ‖f ‖Ws,p(RN).

Similar observations apply to all the other cases.

Case 2. s1 = s2 = s ∈ N. In this case, we follow the ideas of DeVore and Scherer
[9] concerning the interpolation theory of classical spaces, in the form presented in
Bennett and Sharpley [1, Section 5.5, pp. 347–362].

We claim that it suffices to decompose every f ∈ (Ws,p ∩ C∞)(RN) as f =
f1 + f2, with

‖f1‖Ws,1(RN) � ‖f ‖Ws,p(RN), ‖f1‖Ws,p(RN) � ‖f ‖Ws,p(RN), (44)

‖f2‖Ws,∞(RN) � ‖f ‖Ws,p(RN), ‖f2‖Ws,p(RN) � ‖f ‖Ws,p(RN). (45)

Indeed, if this holds then Hölder’s inequality implies that

‖f1‖Ws,p1 (RN) � ‖f ‖Ws,p(RN), ‖f2‖Ws,p2 (RN) � ‖f ‖Ws,p(RN), 1 ≤ p1 < p2 ≤ ∞,

(46)
and then a density argument shows that (44)–(46) hold without the extra assumption
f ∈ C∞; this settles this case.

We next proceed to the construction of f1 and f2. Let M denote the standard
maximal (uncentered) operator. Set H	(x) := ∑

|α|=	 |∂αf (x)| and H(x) :=
∑k

	=0 H	(x). Let Ω := {x ∈ R
N ;MH(x) > τ } and M := R

N \ Ω . Thus M

is closed and H(x) ≤ τ , ∀ x ∈ M .
Let c be such that ‖M g‖Lp(RN) ≤ c‖g‖Lp(RN), ∀ g ∈ Lp(RN). If τ :=

c‖H‖Lp(RN) ∼ ‖f ‖Ws,p(RN), then

|Ω| ≤ 1

τp

ˆ
Ω

(MH)p(x) dx ≤ 1

τp
‖MH‖p

Lp(RN)
≤ 1. (47)

We then let f2 be the Whitney extension of f|M and set f1 := f − f2. More
specifically, let (Qj ) be a Whitney covering of Ω with cubes of size 	j and
centers yj . Let Qj,t denote the cube of center yj and size t	j . Recall the following
properties of the Whitney covering:

(Qj,9/8) is a covering of Ω, Qj,4 intersects M, ∀ j,
∑

j

1Qj
(x) ≤ C(N), ∀ x.

(48)
Let (φj ) be an adapted Whitney partition of unity in Ω , i.e.,
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supp φj ⊂ Qj,9/8, ∀ j, and |∂αφj | � (	j )
−α, ∀α ∈ N

N. (49)

Let xj ∈ M ∩ Qj,4 and set

Tj (x) :=
∑

|α|≤s−1

∂αf (xj )
(x − xj )

α

α! ,

the Taylor expansion of order s − 1 of f around xj . Then we set f2 :={
f, in M
∑

Tjφj , in Ω
.

This f2 satisfies [1, Theorem 5.10, p. 355] f2 ∈ Ws,∞(RN) and

‖f2‖Ws,∞(RN) � τ ∼ ‖f ‖Ws,p(RN). (50)

On the other hand, using the fact that |Ω| ≤ 1 (by (47)), we find that for every
1 ≤ r ≤ p the function f1 satisfies

‖f1‖Ws,r (RN) = ‖f − f2‖Ws,r (Ω) ≤ ‖f ‖Ws,r (Ω) + ‖f2‖Ws,r (Ω)

� ‖f ‖Ws,r (Ω) + τ � ‖f ‖Ws,p(Ω) + τ � ‖f ‖Ws,p(RN).
(51)

Combining (50)–(51), we also have

‖f2‖Ws,p(RN) � ‖f ‖Ws,p(RN). (52)

We obtain (44) (and complete this case) from (50)–(52).
Case 3. s1 	= s2 and p2 < ∞. This is somewhat the general case. We will prove
below that

F s
p,q = (F s1

p1,q1
∩ F s

p,q) + (F s2
p2,q2

∩ F s
p,q), (53)

under the assumptions

− ∞ < s1, s, s2 < ∞, s1 	= s2, 0 < p1 < p < p2 < ∞
such that (7) holds, 0 < q1, q, q2 < ∞.

(54)

In view of Theorem 3 and Lemma 2, this is stronger than the conclusion of
Theorem 1.

We now proceed to the proof of (53). Throughout the calculations we perform in
this case, we assume (54).
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Define, in the spirit of (35),

α :=
s1

p2
− s2

p1
1

p1
− 1

p2

. (55)

Let us first note that the proportionality condition (7) leads to the following
identities

α =
s

p2
− s2

p

1

p
− 1

p2

=
s1

p
− s

p1
1

p1
− 1

p

(56)

and

(s1 + α)p1 = (s + α)p = (s2 + α)p2. (57)

In addition, we have

either s1 + α, s + α, s2 + α > 0, or s1 + α, s + α, s2 + α < 0. (58)

Given a sequence (xj ) of nonnegative numbers, set, for i = 1, 2,

Si(x) :=
∑

2si jqi (xj )
qi , gi(x) := [Si(x)]pi/qi ,

T (x) :=
∑

2sjq(xj )
q, h(x) := [T (x)]p/q .

(59)

Lemma 4 There exists some finite constant C such that

[xj ≤ 2αj , ∀ j ] �⇒ g2(x) ≤ Ch(x).

Lemma 5 There exists some finite constant C such that

[∀ j, xj ≥ 2αj or xj = 0] �⇒ g1(x) ≤ Ch(x).

Granted the two lemmas, we proceed to the proof of (53).
Let f ∈ F s

p,q and write, in the sense of S ′, f = ∑
j,G,m 2−Nj/2λ

j
G,mψ

j
G,m. Set

f1 :=
∑

|λj
G,m|>2αj

2−Nj/2λ
j
G,mψ

j
G,m, f2 :=

∑

|λj
G,m|≤2αj

2−Nj/2λ
j
G,mψ

j
G,m. (60)

Clearly, f1, f2 ∈ F s
p,q .
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We next note that, for each x and j , there exists some subset M(j, x) of ZN ,
say M(j, x) = {m	

j,x}k	=1 (with k := 3N independent of j and x), such that m 	∈
M(j, k) �⇒ x 	∈ Qj,m. This implies that for all x ∈ R

N we have

∑

j,G,m

2σjρ
∣∣∣aj

G,m

∣∣∣
ρ

1Qj,m
(x) ∼

∑

j,G,	

2σjρ

∣∣∣∣a
j

G,m	
j,x

∣∣∣∣
ρ

1Q
j,m	

j,x

(x), ∀ σ, ∀ ρ, ∀ a
j
G,m.

(61)

Applying Lemmas 4 and 5 with xj :=
∣∣∣∣λ

j

G,m	
j,x

∣∣∣∣ 1Q
j,m	

j,x

(x) and using (60)–(61),

we find that

‖f1‖p1

F
s1
p1,q1

� ‖f ‖p
F s

p,q
, ‖f2‖p2

F
s2
p2,q2

� ‖f ‖p
F s

p,q
. (62)

It thus remains to prove Lemmas 4 and 5.

Proof of Lemma 4. Define A := (s2 +α)q2, B := (s +α)q. By (57), we have either
A,B > 0, or A,B < 0.

Set aj := 2−αj xj ∈ [0, 1]. Then

S2(x) = S̃2(a) :=
∑

2Aj (aj )
q2, g2(x) = g̃2(a) := [

S̃2(a)
]p2/q2

,

T (x) = T̃ (a) :=
∑

2Bj (aj )
q, h(x) = h̃(a) := [

T̃ (a)
]p/q

.

Let J be an arbitrary nonnegative integer, and set

A2
J := {a = (aj )j≥0; aj ∈ [0, 1], ∀ j, and aj = 0, ∀ j > J }. (63)

In order to establish the lemma, it suffices to prove that

g̃2(a) ≤ Ch̃(a), ∀ a ∈ A2
J , (64)

provided C does not depend on J .

Fix J . For a ∈ A2
J , a 	≡ 0, set f̃2(a) := g̃2(a)

h̃(a)
. Since f̃2 is homogeneous of

degree p2 − p > 0, it attains its maximum at some a such that at least one of the
aj ’s equals 1. For this a, set

Λ1 := {j ≤ J ; aj = 0}, Λ2 := {j ≤ J ; aj = 1}, Λ2 := {j ≤ J ; 0 < aj < 1}.

By the above, we have Λ2 	= ∅. Set m := min Λ2 and M := max Λ2.
Step 1. Proof of the lemma when Λ3 = ∅. Assume first that A,B > 0. Then

S̃2(a) =
∑

j∈Λ2

2Aj ≤
∑

j≤M

2Aj � 2AM, T̃ (a) =
∑

j∈Λ2

2Bj ≥ 2BM.
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We find that

f̃2(a) � (2AM)p2/q2

(2BM)p/q
= 1,

since A
p2

q2
= B

p

q
(by (57)).

If A,B < 0, we have similarly S̃2(a) � 2Am and T̃ (a) ≥ 2Bm, and therefore
f̃2(a) � 1.
Step 2. Proof of the lemma when Λ3 	= ∅. Set 	 := min Λ3, L := max Λ3.

If j ∈ Λ3, then
∂

∂aj

f̃2(a) = 0, and thus

p22Aj [S̃2(a)]p2/q2−1(aj )
q2−1[T̃ (a)]p/q = p2Bj [T̃ (a)]p/q−1(aj )

q−1[S̃2(a)]p2/q2,

which implies that

(aj )
q2−q = C12(B−A)j , ∀ j ∈ Λ2, with C1 = C1(a) constant. (65)

Step 2.1. Proof of the lemma when Λ3 	= ∅ and q2 = q. By (65), the quantity
2(B−A)j does not depend on j ∈ Λ3. On the other hand, since q2 = q we have
B − A = (s − s2)q 	= 0. Thus Λ3 contains only one element, Λ3 = {	} = {L}. We
find that

g̃2(a) =
∑

j∈Λ2

2Aj + 2A	(a	)
q, h̃(a) =

∑

j∈Λ2

2Bj + 2B	(a	)
q .

As in Step 1, when A,B > 0 we find that

f̃2(a) �
(
2AM + 2A	(a	)

q
)p2/q

(
2BM + 2B	(a	)q

)p/q
� 2Ap2/qM + 2Ap2/q(a	)

p2

2Bp/qM + 2Bp/q(a	)p
≤ 1,

the latter inequality following from A
p2

q2
= B

p

q
, p2 > p and 0 < a	 < 1.

The case where A,B < 0 is handled similarly.

Step 2.2. Proof of the lemma when Λ3 	= ∅ and q2 	= q. Define γ := B − A

q2 − q
. It

follows from (65) that

aj = C22γj , ∀ j ∈ Λ3. (66)

Let us note that

A + γ q2 = A + B − A

q2 − q
q2 = Bq2 − Aq

q2 − q
= qq2

s − s2

q2 − q
	= 0.
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We therefore have the following four possibilities:

1. A,B > 0, A + γ q2 > 0.
2. A,B > 0, A + γ q2 < 0.
3. A,B < 0, A + γ q2 > 0.
4. A,B < 0, A + γ q2 < 0.

We complete Step 2.2 in one of these cases, and let to the reader the three other
ones, which are similar. Assume e.g. that A,B > 0 and A + γ q2 < 0. In this case
we obtain an information on C2 by letting, in (66), j = 	. [If A + γ q2 > 0, we take
j = L.] Since 0 < a	 < 1, we have 0 < C22γ 	 < 1, and thus C2 = C32−γ 	, with
0 < C3 < 1. We find that

aj = C32γ (j−	), ∀ j ∈ Λ3, for some C3 ∈ (0, 1). (67)

Since A > 0 and A + γ q2 < 0, we find that

S̃2(a) ≤
∑

j≤M

2Aj +
∑

j≥	

2(A+γ q2)j (C3)
q2 2−γ q2	

� 2AM + 2(A+γ q2)	(C3)
q2 2−γ q2	 = 2AM + 2A	(C3)

q2 ,

while

T̃ (a) ≥ 2BM + 2B	(C3)
q .

We find that

f̃2(a) �
(
2AM + 2A	(C3)

q2
)p2/q2

(
2BM + 2B	(C3)q

)p/q
� 2Ap2/q2M + 2Ap2/q2	(C3)

p2

2Bp/qM + 2Bp/q	(C3)p
≤ 1,

since A
p2

q2
= B

p

q
, 0 < C3 < 1 and p2 > p.

The proof of Lemma 4 is complete. ��
Sketch of Proof of Lemma 5. This is very much similar to the proof of Lemma 4.
This time, we have aj ∈ {0} ∪ [1,∞). With C := (s1 + α)q1, we set S̃1(a) :=∑

2Cj (aj )
q1 and

A1
J := {a = (aj )j≥0; aj = 0 or aj ≥ 2αj , ∀ j, and aj = 0, ∀ j > J }.

If a ∈ A1
J , a 	≡ 0, we set f̃1(a) := [S̃1(a)]p1/q1

[T (a)]p/q
. We have to prove that f̃1(a) �

1, ∀ J , ∀ a ∈ A1
J , a 	≡ 0. This is obtained following the same strategy as in the proof

of Lemma 4, considering, for a maximum point a of f̃1, the sets
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Λ1 := {j ≤ J ; aj = 0}, Λ2 := {j ≤ J ; aj = 1}, Λ3 := {j ≤ J ; 1 < aj < ∞}.

The key ingredients are that C and B are either both positive or both negative,

respectively the fact that, when q 	= q1, the quantity C + B − C

q1 − q
q1 does not vanish.

Details are left to the reader. ��
Case 4. s1 	= s2 and p2 = ∞. This is very much similar to Case 3. We prove the
equality

F s
p,q = (F s1

p1,q1
∩ F s

p,q) + (F s2∞,∞ ∩ F s
p,q) (68)

under the assumptions

− ∞ < s1, s, s2 < ∞, s1 	= s2, 0 < p1 < p < p2 = ∞
such that (7) holds, 0 < q1, q < ∞.

(69)

[For an improvement of (68) under more restrictive conditions of p1, see the proof
of Theorem 2.]

In view of Theorem 3 and Lemma 2, this implies Case 4. In order to prove (68),
we decompose f ∈ F s

p,q as in (60). By Theorem 4 and Lemma 5, we have f1 ∈
F

s1
p1,q1 ∩ F s

p,q . On the other hand, since p2 = ∞ we have α = −s2, and then
clearly (60) implies that f2 ∈ F

s2∞,∞ ∩ F s,p.
The proof of Theorem 1 is complete. ��

Proof of Theorem 2. We will prove the following version of (68): we have

F s
p,q = (F s1

p1,q1
∩ F s

p,q) + (F s2∞,q2
∩ F s

p,q) (70)

under one of the following assumptions

− ∞ < s1, s, s2 < ∞, s1 	= s2, 1 < p1 < p < p2 = ∞
such that (7) holds, 0 < q < ∞, 1 < q1, q2 < ∞ (71)

or

− ∞ < s1, s, s2 < ∞, s1 	= s2, 1 = p1 < p < p2 = ∞
such that (7) holds, 0 < q < ∞, q1 = 1, 1 < q2 < ∞.

(72)

Granted (70), we obtain the conclusion of Theorem 2 via Theorem 3, Corollary 2
and Lemma 2.

We now proceed to the proof of (70).
Let f ∈ F s

p,q , and let f = ∑
fj be the Littlewood-Paley decomposition of f .

Set f j := ∑
|k−j |≤1 fk = ∑

|k−j |≤1 f ∗ ϕk ∗ ϕj . Taking into account the fact that
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ϕj ∗ ϕk = 0 if |j − k| ≥ 2 and that
∑

k ϕk = δ in the sense of S ′, we find that

∑

j

f j ∗ ϕj =
∑

j,k

f ∗ ϕk ∗ ϕj =
∑

j

f ∗ ϕj = f. (73)

On the other hand, we clearly have

∥∥∥∥∥

∥∥∥∥
(

2sj f j (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
Lp(RN)

�
∥∥∥∥∥

∥∥∥∥
(

2sj fj (x)
)

j≥0

∥∥∥∥
lq (N)

∥∥∥∥∥
Lp(RN)

= ‖f ‖Fs
p,q

.

(74)
Define

δ := 1

p(s − s2)
	= 0. (75)

Let us note that (7) and (75) imply the identity

p1

p
+ (s1 − s)δp1 = 1. (76)

Given x ∈ R
N , let h(x) :=

(∑
2sjq |f j (x)|q

)p/q

, so that h < ∞ a.e. Whenever

h(x) < ∞, define J = J (x) as follows: J is the least non negative integer such that
2J ≥ [h(x)]δ .

Lemma 6 Let δ and J be as above.

1. If δ > 0, then

⎛

⎝
∑

j<J

2s1jq1 |f j (x)|q1

⎞

⎠
p1/q1

� h(x) and

⎛

⎝
∑

j≥J

2s2jq2 |f j (x)|q2

⎞

⎠
1/q2

� 1.

(77)
2. If δ < 0, then

⎛

⎝
∑

j>J

2s1jq1 |f j (x)|q1

⎞

⎠
p1/q1

� h(x) and

⎛

⎝
∑

j≤J

2s2jq2 |f j (x)|q2

⎞

⎠
1/q2

� 1.

(78)

Granted Lemma 6, we complete the proof of Theorem 2 as follows. Assume e.g.
that δ > 0, the case δ < 0 being similar. Define, for a.e. x ∈ R

N ,

gj (x) :=
{

f j (x), if j < J(x)

0, if j ≥ J (x)
, hj (x) :=

{
0, if j < J(x)

f j (x), if j ≥ J (x)
. (79)
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Combining (73), (74), Lemma 6 and Lemma 1, we find that the series f1 :=∑
gj ∗ ϕj and f2 := hj ∗ ϕj converge in S ′, that f = f1 + f2, and that f1 ∈

F
s1
p1,q1 ∩ F s

p,q , f2 ∈ F
s2∞,q2 ∩ F s

p,q . ��
Proof of Lemma 6. We consider only the case δ > 0, the case δ < 0 being similar.
Set M := [h(x)]δ . We let to the reader the case where M < 1 and thus J = 0 and
the first sum in (77) vanishes. Assuming that M ≥ 1, we have 2J ∼ M and

|f j (x)| ≤ 2−sj [h(x)]1/p = 2−sjM1/(δp), ∀ j ≥ 0. (80)

Since δ > 0, we have s > s2, and thus s1 > s > s2. Using (80), we find that
∑

j<J

2s1jq1 |f j (x)|q1 � Mq1/(δp)
∑

j<J

2(s1−s)jq1 � Mq1/(δp)2(s1−s)Jq1

∼ Mq1[1/(δp)+(s1−s)]. (81)

Combining (76) and (81), we find that

⎛

⎝
∑

j<J

2s1jq1 |f j (x)|q1

⎞

⎠
p1/q1

�
[
M1/δ

]p1/p+(s−1−s)δ = M1/δ = h(x),

i.e., the first inequality in (77) holds.
For the second inequality, we note that (80) leads to

∑

j≥J

2s2jq2 |f j (x)|q2 � Mq2/(δp)
∑

j≥J

2(s2−s)jq2

� Mq2/(δp)2(s2−s)Jq2 ∼ Mq2[1/(δp)+(s2−s)] = 1,

the latter equality following from the definition of δ. ��

Appendix: Factorization, Functional Calculus,
Sum-Intersection

The lifting problem for S1-valued Sobolev maps is the following. Let B be a ball in
R

N . Let s > 0 and 1 ≤ p ≤ ∞. Is it possible to lift every map u ∈ Ws,p(B;S1)

as u = eıϕ with ϕ ∈ Ws,p(B;R)? This question has been completely answered in
[3]. The answer depends on s, p and N . For example, in W 1,p(B;S1) the answer is
positive if N = 1 or [N ≥ 2 and p ≥ 2], but negative if [N ≥ 2 and 1 ≤ p < 2].
Factorization is a substitute to lifting, but is also valid and relevant if the answer
to the lifting problem is positive. Special cases of factorization were announced in
[13]. The general case is presented in [5] and asserts the following. Let s > 0 and
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1 ≤ p < ∞. Then every map u ∈ Ws,p(B;S1) can be factorized as u = eıϕ v, with
ϕ ∈ Ws,p(B;R) and v ∈ F

sp

1,1(B;S1).
Factorization has the following application announced in the introduction. Let

p > 1 and consider some f ∈ W 1,p(B;S1). Set u := eıf ∈ W 1,p(B;S1). Let 0 <

λ < 1. Since u ∈ W 1,p ∩ L∞, we also have u ∈ Wλ,p/λ (by Gagliardo-Nirenberg).
Factorization implies that u = eıϕ v, with ϕ ∈ Wλ,p/λ and v ∈ F

p

1,1 ↪→ Wp,1.
We note that

Wp,1(B;R) � v = eı(f −ϕ), with f ∈ W 1,p(B;R) and ϕ ∈ Wλ,p/λ(B;R).

(82)
We next invoke the following delicate result [5]. If f1 ∈ Ws1,p1(B;R), f2 ∈

Ws2,p2(B;R) are such that

s1p1 ≥ 1, s2p2 ≥ 1, eı(f1+f2) ∈ Ws3,p3 , with s3 ≥ 1,

then f1 +f2 ∈ Ws3,p3 ∩Ws3p3,1. In our case, this implies that ψ := f −ϕ ∈ Wp,1 ∩
W 1,p, and thus ϕ = f − ψ ∈ W 1,p. Finally, f = ϕ + ψ , with ϕ ∈ Wλ,p/λ ∩ W 1,p

and ψ ∈ Wp,1 ∩ W 1,p.
Our Theorem 1 yields the same conclusion without factorization.
Let us also note that not only factorization leads to a sum-intersection property,

but sum-intersection is necessary for factorization to hold. Indeed, let p ≥ 2 and
u ∈ W 1,p(B;S1). Then we may write u = eıf with f ∈ W 1,p(B;R) [2]. Assume
that we want to factorize u = eıϕ v with ϕ ∈ Wλ,p/λ(B;R) and v ∈ Wp,1(B;S1).
The first step consists of splitting (assuming this is possible) f = ϕ + ψ , with
ϕ ∈ Wλ,p/λ and ψ ∈ Wp,1. However, this decomposition does not imply that
v := eıψ ∈ Wp,1(B;S1). Indeed, if s > 1 and ρ > 1, then a map g ∈ Wσ,ρ

satisfies eıg ∈ Wσ,ρ if and only if g satisfies the extra-assumption g ∈ W 1,σρ

[6]. In our case, this implies that factorization in Wλ,p/λ(B;S1) requires the sum-
intersection property of the triple T = (W 1,p,Wλ,p/λ,Wp,1). However, one cannot
reduce factorization to sum-intersection, since in general Ws,p(B;S1) does not have
the lifting property.

Sum-intersection property has the following implication related to lifting, pre-
sented in [5]. If sp < 1, then maps in Ws,p(B;S1) can be lifted within Ws,p

[3]. Factorization leads to a better result. Indeed, let u ∈ Ws,p(B;S1) and let
ϕ ∈ Ws,p(B;R) be a lifting of u. Write, as in Theorem 2, ϕ = ϕ1 + ϕ2, with
ϕ1 ∈ BMO ∩ Ws,p and ϕ2 ∈ Wsp,1 ∩ Ws,p. Set v := eıϕ2 ∈ Wsp,1. Then v has a
lifting ϕ3 ∈ Wsp,1 ∩ L∞ [14]. By Gagliardo-Nirenberg, we also have ϕ3 ∈ Ws,p,
and clearly ϕ3 ∈ BMO (since ϕ3 ∈ L∞). Finally, u = eıψ , where ψ := ϕ1 + ϕ3
satisfies the improved regularity ψ ∈ Ws,p ∩ BMO .
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