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Abstract. The spatial data mining (SDM) is a process that extracts
knowledge from large volumes of spatial data. It takes into account the
spatial relationships between the data. To integrate these relations in the
mining process, SDM uses two main approaches: Static approach that
integrates spatial relationships in a preprocessing phase, and dynamic
approach that takes into consideration the spatial relationship during
the process. In this work, we are interested in this last approach. Our
proposition consists on taking into consideration the spatial component
in the similarity measure. We propose two similarity measures; dDyn1,
dDyn2. We will use those distances on the main task of SDM, spatial
clustering, particularly on K-means algorithm. Moreover, a comparaison
between these two approaches and other methods of clustering will be
given. The tests are conducted on Boston dataset with 590 objects.
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1 Introduction

These last decades have seen an explosion in the volume of spatial data. This is
due to the various technological advances and the development of automatic data
acquisition tools (GPS, satellite images,...). The wide use of these data has given
rise to spatial data mining (SDM). It is a process that allows extracting knowl-
edge and useful patterns from large volumes of spatial datasets [11,15]. Spatial
data consist of two types of components; a descriptive component containing
data of usual type: integer, real, boolean,... describing some features of the data
and geometric component which describes the spatial localization of the data.
The SDM is more difficult than classical data mining as it handles geo-spatial
data characterized by autocorrelation. In SDM, spatial component can be taken
into account according to three different approaches. The first one is basic and
considers all attributes in the same way (spatial and non-spatial) and uses the
techniques of classical data mining. As a result, the auto-correlation between
objects is not taken into consideration. In fact, several studies have shown that
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this process produces inconsistent results, [14,19]. The second approach (static),
likewise, uses classical DM techniques to process geo-spatial data. However, a
preliminary data preprocessing is required. It consists of extracting and rep-
resenting the geo-spatial relationship between entities, in an explicit manner
[4,17]. This approach has many drawbacks. First of all, it is time consuming as
the preprocessing of the data takes time. Indeed, extraction may require a lot
of computation time when many relationships must be considered. Second, the
preprocessed and the original data have to be stored leading to a redundancy in
storage. Moreover, if the original data is modified, the pre-processing has to be
executed again. To overcome these drawbacks, the dynamic approach emerged.
It consists on taking into consideration the geo-spatial component during the
data-mining process. Our proposal lies in this last approach, as, in the litera-
ture, spatial dynamic processing is not explicitly defined (see [12]). Our approach
consists on taking into consideration the spatial component in the similarity mea-
sure. We will be interested, in this work, in the main task of SDM, clustering.
Formally, it consists on partitioning a set S of N objects, S = {O1, O2, ..., ON},
based on a similarity metric, into a number of clusters (C1, C2, ..., CK), such
as: Ci �= ∅ for i = 1, ...,K, Ci ∩ Cj = ∅ for 1, ..., k and j = 1, ...,K ,i �= j,
S = ∪k

i=1Ci. Objects of a cluster must be as similar as possible, while objects of
different clusters must be as dissimilar as possible. It is an important task as it
enables to show interesting objects grouping without a priori knowledge.

The objective of this paper is to propose two similarity distances that take
into consideration the spatial component during the clustering process. To show
the effectiveness of this proposal, we used these distances in K-means, a simple
partitioning method yet efficient and widely used. We compared the obtained
results to the first approache which we called static using K-means. Then we com-
pare the three versions of K-means to density based clustering method DBSCAN
[8] and CAH an ascending hierarchical clustering method.

This paper is organized as follows: In Sect. 2, we will introduce the static
approach. Then in Sect. 3, we will present the similarity distances to be used for
dynamic clustering. In Sect. 4, we present some clustering algorithms. Finally in
Sect. 5, tests and results on the different approaches will be presented.

2 Static Approach

This approach allows taking advantage of traditional data mining methods to
process spatial data. There are different types of spatial relationships: metric,
topological and directional. In this paper, we deal with metric relations as the
data considered are represented by points. The data preprocessing begins by
extracting the metric relationships between the data. These relationships are
then used to modify the attributes of data. There exist in the literature several
methods to extract it. Moran [16] and Geary [9] were the first to propose a
measure for spatial interaction. Since then, several measures have been proposed
[3]. Most of them require a threshold as parameter (obtained from the objects’
distance matrix) [13]. We have chosen to use the K nearest neighbors (KNN) as
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it is a simple non parametric method (does not need a threshold); moreover, it
is the most used method [13]. KNN processes as follows: For a given object Oi

of the dataset, KNN searches among all objects of the data set, the K-nearest
neighbors of Oi according to a distance such as the geometric distance. The
neighbor relations obtained by applying KNN on the original dataset are used
to obtain neighborhood matrix. The last step of the static approach consists on
building the new dataset (smoothing matrix) from the original one. In fact, each
attribute value of an object is replaced by the mean of its neighbors attribute.
The algorithm is given below:

Smoothing Matrix algorithm For each object Oi of S, i = 1, . . . , N :

(1) Compute K-nearest- neighbors of Oi with KNN algorithm.
(2) For each attribute of Oi, compute the mean of the attributes of Oi and its

corresponding neighbors’ attribute.
(3) Create a new object O

′
i which attributes values are the one computed in (2).

(4) Insert O
′
i in S′ where S′ is the new dataset.

3 Similarity Distances for a Dynamic Approach

This approach, unlike the previous one, proposes dynamic spatial data process-
ing. Its goal is to take into account the spatial component in the process of DM
and not through a preprocessing. However, in the literature very little work is
available on this approach [12]. This might be due to the fact that this research
area is relatively young [17]. One of the goals of this paper is to take into consid-
eration the spatial component, in a similarity distance. We propose two distances
dDyn1 and dDyn2. Both compute the similarity between spatial objects by con-
sidering the non-spatial attributes and spatial attributes simultaneously. They
are based on two distances: Euclidean distance that measures the similarity
between the non-spatial attributes and geographic distance that measures the
metric relationship. The first one, dDyn1 is formally defined as the product of the
Euclidean distance between the non-spatial attributes and geographic distance
between the spatial attributes:

dDyn1(Oi, Ok) = deuclidian(Oi, Ok) ∗ dgeo(Oi, Ok).

Where

deuclidian(Oi, Ok) =

√
√
√
√

m∑

j=1

(Oi − Ok)2

and

dgeo(Oi, Ok) = 6371 ∗ Acos[Cos(lat1) ∗ Cos(lat2) ∗ Cos(long2 − long1)
+Sin(lat1) ∗ Sin(lat.2)].

Where (lat1, long1) and (lat2, long2) are the spatial coordinates of respectively
points Oi and Ok. In the second proposed distance dDyn2, weights are assigned
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to the two types of attributes (spatial and non-spatial). The formula of dDyn2 is
given below:

dDyn2(Oi, Ok) = αdeuclidian(Oi, Ok) + βdgeo(Oi, Ok).

where α and β are respectively weights of Euclidian and geographic distance and
verify that α + β = 1. When α = 1(β = 0), clustering is done on descriptive
attributes only. The spatial attributes are ignored. On the contrary, when α =
0(β = 1), only spatial attributes are considered and we obtain a regionalization.

4 Clustering Algorithms

Many methods dedicated to the clustering exist in the literature. They fall into
two main classes: partitioning methods and hierarchical methods. They differ in
the way they build clusters. While the second gradually build those clusters, the
first discover them by moving objects between clusters [11]. In addition to these
two fundamental approaches, other methods exist such as density and grid based
methods. They use different mechanisms for data organization and processing,
and for building the clusters [1].

4.1 Partitioning Methods

They seek to find the best k partitions for a set of n objects (data), while
optimizing an objective function. This function aims to maximize the similar-
ity between objects of the same cluster and to minimize the similarity between
objects of different clusters. These methods improve iteratively clusters by mov-
ing objects between clusters. There exist several partitioning methods among
which K-means, the first clustering method. K-means is by far the most popular
clustering algorithm and widely used in scientific and industrial applications [5].
Its popularity is due to the fact that it is simple to implement and converges
rapidly. However, it has some drawbacks. It is influenced by outliers and the
obtained clustering depends on the initial one.

4.2 Hierarchical Methods

These clustering methods build hierarchical clusters gradually. They can be of
two types ascending hierarchical clustering methods and descending ones. Hier-
archical methods have many advantages such as flexibility regarding the level of
granularity one wants to have. However they present some drawbacks such as
the difficulty of setting a stopping criterion and their high execution time [6].
In what follows, we present, CAH, an ascending hierarchical clustering method.
CAH builds a hierarchy of clusters assuming that initially each object is a clus-
ter. Then the most similar clusters are aggregated. The aggregation is repeated
until having a single cluster containing all objects.
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4.3 Density Based Methods

These methods characterize classes as homogeneous high density regions, sepa-
rated by regions of low density. Unlike partitioning methods, methods based on
density are able to discover classes of concave forms and do not take into account
outliers as they are removed during the process. There are two approaches for
this type of methods. The first approach is based on the density connectivity.
It takes two input parameters, the neighborhood radius Eps which represents
the maximum distance between points and the density threshold MinPts which
represents the minimum number of points in the neighborhood. The best known
algorithms are DBSCAN and GDBSCA-N [2]. The second approach is based on
sound mathematical principles and uses a density function in its process. The
best known algorithm is DENCLUE [10].

5 Tests and Results

In this section, we will give a summary of the different tests performed. We will
start by presenting the result of k-means using the two proposed distances dDyn1

and dDyn2, respectively named K-meansdDyn1 and K-meansdDyn2 . K-means with
preprocessing using KNN is called K-meansstatic. Then we will compare those
results to DBSCAN and CAH algorithms. These tests were executed on an unsu-
pervised spatial benchmark Boston1, represented in Fig. 1. Benchmark Boston
contains 506 objects and represents Boston housing and neighborhood data.
Each object is represented by 18 non spatial features and longitude and latitude
(spatial attributes). The different features describe the type of area of the dif-
ferent housing such as: hot district characterized by high criminality level, rich
district, poor one... One can notice that this benchmark is very dense.

Fig. 1. Representation of benchmark Boston.

1 https://geodacenter.asu.edu.

https://geodacenter.asu.edu
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5.1 Dynamic vs Static K-means

To compare the dynamic versions of K-means (K-meansdDyn1 and K meansdDyn2)
to the static one we conducted several tests. For all the tested version of K-means,
the number of iterations was set to 100. As this benchmark is unsupervised one,
and to compare the results of the three versions of k-means, we executed clas-
sical k-means (k = 3) on the non spatial attributes of the benchmark to bet-
ter visualize the objects distribution and their meaning. Moreover, we executed
K-meansdDyn2 on spatial attributes(α = 0), obtaining a regionalization. The
results of both executions are given in the following Figures. In Fig. 2, the blue
color represents north districts, the yellow one the center, and the red one south
districts. In Fig. 3, the blue color represents the wealthy neighborhood, the yellow
one the middle class neighborhood and the red color the poor neighborhood.

Fig. 2. Regionalization. (Color figure online)

Fig. 3. Classical K-means. (Color figure online)

5.2 Comparison of K − meansstatic , K − meansdD y n 1

and K − meansdD y n 2

Figures 4, 5, 6 and 7 show the results of visualization of K-meansstatic (with
the number of neighbors for KNN being to 2 and 4), K-meansdDyn1 and
K-meansdDyn2 (α = β = 0.5). For these tests, the number of classes for K-means
was set to 3.

If we take a closer look at Figs. 4 and 5, we can see the influence of the KNN
parameter on the clustering. For a number of neighbors = 2, a certain number of
objects (the ones between the red class and the yellow one) are considered belong-
ing to the cluster “poor neighborhood”. While when more neighbors are taken
into consideration when building the smoothing matrix, this number decreases.
One notes that some objects classified in the blue cluster in Fig. 4 are classified
in the red cluster in Fig. 5.
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Fig. 4. Static K means with number of neighbors = 2. (Color figure online)

Fig. 5. Static K means with number of neighbors = 4. (Color figure online)

Fig. 6. K means Dyn1. (Color figure online)

Fig. 7. K-means Dyn2 (α = β = 0.5). (Color figure online)

If we compare the results of classical K-means and those of K-meansstatic
(Fig. 5), we notice that the two classifications can be considered as close. We do
not see a clear impact of the spatial attributes on the clustering. One notices
that the boundaries between classes are clearly defined for K-meansdDyn1 (Fig. 6)
when compared to K-meansstatic (Figs. 4 and 7). Classes do not overlap as for
K-meansstatic. This may be due to the distance used which gives the same impor-
tance to both types of attributes. K-meansdDyn2 gives a different partitioning of
the objects. A close look at Fig. 7 shows that two classes of K-meansdDyn1 (the
poor neighborhood in red and the middle class neighborhood in yellow, Fig. 6)
are merged to form the poor neighborhood (in red). While the rich neighbor-
hood of Fig. 6 is split into two clusters: yellow one for middle class neighborhood
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Fig. 8. Results’ visualization of K-means static (with 4 neighbors and K = 5). (Color
figure online)

and blue one for rich neighborhood. To try to explain this, we executed the
K-meansstatic with 4 neighbors for KNN, setting the number of classes to 5. We
obtained the following results (Fig. 8): The obtained classes of this execution
are described as follows: The pink cluster represents the rich neighborhood, the
green one the middle class one, the yellow one the residential area, the blue
the economical one and the red one the poor neighborhood. Given this type of
information, we can conclude that the clustering of K-meansdDyn2 is interesting
as it merged the economical and poor neighborhood, found by K-meansstatic
and K-meansdDyn1 , into one class (Red one in Fig. 7). It also, separated the rich
class found by K-meansstatic and K-meansdDyn1 into two classes: Middle class
and rich neighborhood. Now, if we compare the different approaches according
to the intra cluster inertia and execution time (Figs. 9 and 10), we note that
as the number of classes increases, the inertia decreases. This is due to the fact
that as the size of clusters decreases, clusters will have more similar objects.
For 3 clusters, the best inertia is given by K-meansstatic with 2 neighbors, fol-
lowed by K-meansdDyn2 . However, the dynamic version of K-means is faster than
the preprocessing k-means (K-meansstatic). That was the goal of using dynamic
K-means.

5.3 Dynamic K-means vs DBSCAN and CAH

In this section, we will compare K-meansdDyn1and K-meansdDyn1 to DBSCAN
and CAH. Figures 11, 12, 13 and 14 display the results of respectively
K-meansdDyn1 , K meansdDyn2 , DBSCAN and CAH.

We can notice from these Figures, that the four methods give different clus-
tering. DBSCAN (Fig. 13) give more compact classes. One cluster (rich neigh-
borhood in blue) is bigger, in terms of size than the other two. K-meansdDyn2

divide this class into two (rich and middle classe neighborhood). CAH (Fig. 14)
does the same; however, its rich neighborhood is smaller and is located south.
Both K-meansdDyn2 and CAH define the same poor neighborhood.
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Fig. 9. Intra cluster inertia of the different k-means versions when varying k.

Fig. 10. Execution time of the different versions of K-means when varying K.

Fig. 11. K − meansdDyn1 .
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Fig. 12. K-meansdDyn2(α = β = 0.5).

Fig. 13. DBSCAN (Eps = 100 et MinPts = 5).

Fig. 14. CAH (α = β = 0.5).

If we compare the intra cluster inertia of DBSCAN, CAH and K-meansdDyn2

(see Fig. 15), we notice that, DBSCAN has the best followed by K-meansdDyn2

and CAH. However, for this method, objects that are distant or isolated are
considered noises and are not assigned to clusters. In Fig. 13, these points are
in black and represent 3.4% of the size of the benchmark. While the execution
time of DBSCAN and K-meansdDyn2 somehow similar, CAH takes much more
time (Fig. 15).

Fig. 15. Comparison between DBSCAN, CAH and K-meansdDyn2 .
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6 Conclusions

We focused, in our work, on the main descriptive task of SDM, spatial clustering.
The main goal of our study was to compare two spatial clustering approaches
namely: the spatial data preprocessing approach (static) and dynamic approach.
For the second approach, we proposed to take into consideration the spatial
component in the similarity measure. We proposed two distances, dDyn1 and
dDyn2. The various tests performed on the benchmark Boston, showed that the
approach proposed (K −meansdDyn1 ,K −meansdDyn2) gives better results than
the preprocessing approach in terms of execution time. This was the main goal
as the preprocessing approach takes too much time. The results obtained with
K − meansdDyn1 seems similar to those of the preprocessing approach but with
more precise boundaries. This is due to the fact that K −meansdDyn1 takes into
consideration both spatial and non spatial attributes. K − meansdDyn2 is more
efficient in terms of intra-class inertia, it makes a good description in terms of
regionalization and characterization of these obtained regions.
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approches prétopologiques et d’aggrégation d’opinions. Thèse de doctorat, Univer-
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