
Typed Relational Conversion

Petr Lozov1, Andrei Vyatkin1, and Dmitry Boulytchev1,2(B)

1 St. Petersburg State University,
Universitetski pr., 28, 198504 St. Petersburg, Russia

lozov.peter@gmail.com, dewshick@gmail.com, dboulytchev@math.spbu.ru
2 JetBrains Research, Universitetskaya emb., 7-9-11, bldg. 5A,

199034 St. Petersburg, Russia

Abstract. We address the problem of transforming typed functional
programs into relational form. In this form, a program can be run in
various “directions” with some arguments left free, making it possible
to acquire different behaviors from a single specification. We specify the
syntax, typing rules and semantics for the source language as well as its
relational extension, describe the conversion and prove its correctness
both in terms of typing and dynamic semantics. We also discuss the
limitations of our approach, present the implementation of the conversion
for the subset of OCaml and evaluate it on a number of realistic examples.

1 Introduction

Relational programming is an attractive technique, based on the idea of con-
structing programs as relations. While in general some relational effects can be
reproduced with a number of languages for logic programming, such as Prolog,
Mercury1, or Curry2, in a narrow sense relational programming amounts to writ-
ing relational specifications in miniKanren [10]. miniKanren3, initially designed
as a small relational DSL, embedded in Scheme/Racket, was later implemented
for a number of general-purpose host languages, including Scala, Haskell, Stan-
dard ML and OCaml.

With relational approach, it becomes possible to give simple and elegant
solutions for the problems, otherwise considered as tricky, tough, tedious, or
boring [6]. For example, relational interpreters can be used to derive quines—
programs, which reduce to themselves, as well as twines or thrines (pairs or
triples of programs, reducing to each other) [8]; a straightforward relational
description of simply typed lambda calculus [3] inference rules works both as
type inferencer and inhabitation problem solver [5]; relational list sorting can be
used to generate all permutations [13], etc.

On the other hand, writing relational specifications can sometimes be a tricky
and error-prone task. Fortunately, many specifications can be written systemat-
ically by “generalizing” a certain functional program. From the very beginning,
1 https://mercurylang.org.
2 http://www-ps.informatik.uni-kiel.de/currywiki.
3 http://minikanren.org.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Wang and S. Owens (Eds.): TFP 2017, LNCS 10788, pp. 39–58, 2018.
https://doi.org/10.1007/978-3-319-89719-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89719-6_3&domain=pdf
http://orcid.org/0000-0001-8363-7143
https://mercurylang.org
http://www-ps.informatik.uni-kiel.de/currywiki
http://minikanren.org

40 P. Lozov et al.

the conversion from functional to relational form was considered as an element
of relational programming thesaurus [10]. However, the traditional approach—
unnesting—was formulated for an untyped case, worked only for specifically
written programs and was never implemented.

We present a generalized form of relational conversion, which can be applied
to typed terms in general form. We study the relational conversion for a
small ML-like language (essentially, a certain subset of OCaml), equipped with
Hindley-Milner type system with let-polymorphism [15]. We start from retelling
the syntax, typing rules, and operational semantics, and then extend the source
language with a conventional set of relational constructs. This set corresponds
to existing typed embedding of miniKanren into OCaml [13]. We then present
typing rules and develop operational semantics for this relational extension; to
our knowledge, this is the first attempt to specify formal semantics for miniKan-
ren. Next, we develop formal rules for relational conversion and prove, that these
rules respect both typing and semantics. Finally, we describe the implementa-
tion of a relational converter and demonstrate its application for a number of
problems, for some of which we present a relational solution for the first time.

We would like to express our gratitude to William Byrd and the anonymous
reviewers for their constructive remarks, which, we believe, led to the improve-
ment of the presentation.

2 Relational Programming in miniKanren

In the context of this paper, we will use a certain concrete implementation of
miniKanren—a shallow DSL for OCaml4, called OCanren [13]. OCanren cor-
responds to miniKanren with disequality constraints [1], and (modulo typing)
follows the original implementation [11,12]. Here we describe the external view
on OCanren, giving the only intuitive meaning of its constructs; the formal
description will be presented in Sect. 3.2. We also use a simplified syntax, which
is a little bit different from the concrete syntax in actual implementation, but
assumed to be easier to read.

The central notion of miniKanren is goal ; in OCanren a goal can be an
arbitrary expression of reserved goal type, which we denote G. There are only
five syntactic forms of goals (denoted below as g, g1, g2, etc.):

– conjunction g1 ∧ g2;
– disjunction g1 ∨ g2;
– fresh variable introduction fresh (x) g;
– unification t1 ≡ t2;
– disequality constraint t1 �≡ t2.

Two last forms of goals constitute a basis for goal construction; here t1 and
t2 are terms. In OCanren a term is an arbitrary expression of polymorphic logic

4 https://github.com/dboulytchev/ocanren.

https://github.com/dboulytchev/ocanren

Typed Relational Conversion 41

type αo. The postfix notation �o is a traditional way to denote relational entities,
and we will use it for types as well5.

The simplest expression of logic type is a variable, bound in fresh. Another
example is a primitive value, injected into the logic domain with a built-in
primitive “↑”, such as ↑ 3 (of type into) or ↑true (of type boolo). Other
types (pairs, lists, user-defined algebraic datatypes, etc.) can be used in rela-
tional specifications as well, being injected by the same primitive. For example,
expression ↑ (1,‘‘ abc ’’) has the type (int ∗ string)o, ↑ [1; 2; 3]—the
type (int list)o, etc. The subtle part is that (since the unification only works
for logical types) the placement of “o” determines the granularity of unification.
Indeed, a logical variable can only be placed where logical type is expected.
Thus, in unification one can use a value of type (int ∗ int)o as a whole, but
in order to control the contents of the pair relationally, the type (into, into)o

is required. This makes it impossible to reuse some built-in or standard types in
relational code—for example, predefined list type is not flexible enough, since it
does not allow the tail of the list to be logical. Instead, logical list type has to
be introduced:

type α llist = Nil | Cons of αo ∗ (α llist)o

With logical list type, we can implement some relations for lists:

val append : (α llist)o → (α llist)o → (α llist)o → G
let rec appendo x y xy =

(x ≡ ↑Nil ∧ xy ≡ y) ∨
(fresh (h t ty)

x ≡ ↑(Cons (h , t)) ∧
xy ≡ ↑(Cons (h , ty)) ∧
appendo t y ty

)

Here we defined relational list concatenation appendo, a canonical example in
the field. This ternary relation is constructed, using case analysis and recursion:

1. If the first list is empty, then the second and the third lists must be equal.
2. Otherwise, the first list can be split into a head and a tail, and two fresh

variables h and t are needed to denote them. We also need a fresh variable
ty to denote the list, such that appending y to t equals ty. To ensure this

property, we use a recursive call to appendo. Finally, we acquire the final
result by consing h and ty.

The definition of appendo takes three logical lists x, y and xy as arguments,
and constructs a goal, which can be executed or combined with other goals. In
the former case, a stream of answers is returned. An element of the stream
5 In the real implementation the terms have a more complex two-parametric type,

which encodes a tagging, needed to be performed when the results of the relational
program are returned into the functional world; these details, however, are irrelevant
to the objectives of the paper, and we stick with the simplified version.

42 P. Lozov et al.

contains the description of certain constraints for logical variables, which have
to be respected in order for the relation to hold. We denote the running primitive
“�”, so

fresh (q) appendo ↑(Cons (↑1, ↑Nil)) q ↑Nil � []

returns an empty stream, since there is no list q, such that appending
Cons (1, Nil) and q gives empty list, while

fresh (q) appendo q ↑Nil ↑(Cons (↑1, ↑Nil)) � [q 	→ Cons (1 , Nil)]

discovers the expected constraint for the variable q.
As it can be seen from the type, relational concatenation is polymorphic, like

its functional counterpart. However, the query

appendo ↑(Cons (↑λx .x , ↑Nil)) q ↑(Cons (↑λy .y , ↑Nil))

ends with a run-time error due to inability to unify closures. This is a funda-
mental limitation in original miniKanren as well, as it deals only with first-order
syntactic unification [2]. This example demonstrates, that, unlike pure OCaml,
the typing in OCanren is somewhat weak. In order to restore the strong typing,
some of the type variables have to be bounded to range over only non-functional
types. The lack of direct support for bounded polymorphism [9] in OCaml makes
this step problematic. Our experience, however, shows, that in practice this defi-
ciency rarely gets in the way. In the following development, we assume, that in
polymorphic types some type variables may be implicitly bounded by the set
of non-function types, and these boundings are respected in all instantiations of
those type variables.

Finally, we describe the unnesting technique [10], which was introduced as a
method for manual transformation of functional programs into relational form.
Unnesting introduces a new name for each nested subexpression; now, when the
value of each subexpression is bound to a certain variable, the conversion is
straightforward: each pattern-matching construct is transformed into a disjunc-
tion, new names, introduced in pattern bindings and unnestings, are transformed
into fresh variables, and each converted function is supplied with the additional
argument, unified with the result. As a result we consider, again, the list con-
catenation function (see Fig. 1a). The result of unnesting is shown on Fig. 1b,
while the final relational form—on Fig. 1c.

However, not every definition can be converted to a relational form by unnest-
ing. Consider, for example, the definition on Fig. 2a. Unnesting would transform
this program into the form, shown on Fig. 2b, which is obviously invalid, since
it unifies a function f with a logical variable r. In order to apply unnesting, one
needs to η-expand the definition of g, making the functional nature of its return
type syntactically visible. We stress, that relational conversion, described in
Sect. 4, is essentially different from unnesting. In particular, we use η-expansion
in a very limited manner (only in one case).

Typed Relational Conversion 43

Fig. 1. Unnesting example

Fig. 2. Unnesting: invalid case

3 The Source Language and Relational Extension

Our development of relational conversion is based on the idea of transforming
a program in a functional language into a program in relational extension of
that language. In the context of miniKanren, this approach looks quite natural,
since miniKanren itself, as a DSL, reuses many important features (for example,
function definitions) from a host language.

In this section, we present a formal description of a small functional language,
taken as a source for relational conversion. We describe its syntax, typing rules,
and semantics, and then extend it with relational constructs. We specify the
typing rules and semantics for the extension as well.

3.1 The Source Language

The syntax of our source functional language is shown on Fig. 3. It consists of
a lambda calculus, enriched with constructors with fixed arities Cn, patterns
p and pattern-matching constructs, and expressions for recursive/non-recursive
let-bindings. Among the constructors we distinguish two nullary interpreted con-
structors true and false, and add a boolean equality operator “=”.

44 P. Lozov et al.

E = x
λx.e
e1 e2
Cn(e1, . . . , en)
true
false
let x = e1 in e2
let rec f = λx.e1 in e2
e1 = e2
match e with {pi ei}

P = Cn(x1, . . . , xn)

Fig. 3. The syntax of source
language

In a pattern matching, we only allow
shallow patterns (which is not an essen-
tial limitation) and do not allow wildcards
(which is important—converting wildcard pat-
tern matching into relational form would
require essentially different projections).

Our language is equipped with Hindley-
Milner type system, and we present the typ-
ing rules in a conventional syntax-directed form
on Fig. 4. Besides type variables and function
types, our system contains a number of implic-
itly defined algebraic datatypes T k, and we
stipulate, that each constructor Cn belongs to
the exactly one datatype. In the rule Con-
strT , we assume that type tC has the form
T k(t1, . . . , tk), where each of the types ti is
recovered from the types tCi of arguments of
constructor Cn and, moreover, these types agree in the sense of constructor
application. Similarly, in the rule MatchT , the types of all Cki

i (xi
1, . . . , x

i
ki

) are
expected to be equal tC , and tCi

j is a type of j-th argument of constructor Ci,
used in the pattern. The rule EqT specifies that both operands of equality oper-
ator must have the same (but arbitrary) type. Thus, we can call this operator
“polymorphic equality” (Fig. 5).

Fig. 4. Typing rules for the source language

Typed Relational Conversion 45

Fig. 5. Semantics for the source language

We describe the semantics of our language in the form of transition system.
The transition relation

〈S, e〉 −→ 〈S ′, e′〉
describes a one step of evaluation of expression e with a stack of contexts S, which
results in a new stack S ′ and a new expression e′. A context is an expression
with a unique hole; informally speaking, a stack of contexts describes a path in
the expression being evaluated from the topmost construct to the point, where
the evaluation currently is taking place. For a context C and an expression e,
we denote by C[e] a complete expression with no holes, which is obtained by
plugging e into the unique hole of C. From each state 〈C1 : C2 : · · · : Ck, e〉 we
can build an expression Ck[. . . [C2[C1[e]]] . . .], which represents an intermediate
result of evaluation according to a small-step semantics. This form of semantic
description originates from Felleisen-style [16] approach for small-step semantics,
and we’ve chosen it since it can be naturally extended for a relational case.

46 P. Lozov et al.

Our semantics describes call-by-value left-to-right evaluation; in the rules
Beta, Mu, LetVal, LetRec and MatchVal, we perform capture-avoiding
substitutions, which respect the names in abstractions and let-bindings. In the
rule MatchVal we assume, that at most one pattern matches the scrutinee—
this is an important difference from the usual semantics of pattern matching,
when the patterns are examined in a top-down manner until the matching suc-
ceeds. In the rules EqTrue and EqFalse we assume, that the values v, v1, v2
do not have the forms λx . . . or μf

Finally, for a closed expression e and a value v, we write e �f v, iff

〈ε, e〉 →∗ 〈ε, v〉

where ε—an empty stack, and “→∗” is a reflexive-transitive closure of “→”.

3.2 Relational Extension

The relational extension adds five conventional miniKanren expressions for con-
structing goals; the syntax is shown on Fig. 6. Since relational constructs are
added to regular functional ones, it becomes possible to construct expressions
like λ x .(x∧λy.y), etc. In order to rule such pathological expressions out, we
devised an extension for the type system of the source language. In fact, this
approach follows the actual implementation for OCaml, where a careful choice
of types for representing terms and goals made it possible to reject the majority
of non-well-formed programs at compile-time.

Our extension for the type system introduces one interpreted datatype con-
structor �o with one data constructor ↑—a polymorphic type and a constructor
for logical terms. In addition, we introduce an interpreted type of goals G, which
is distinct from all other types. The typing rules for the relational extension are
shown on Fig. 7. These rules describe rather expected typing: in unification and
disequality constraints only terms of the same logical type can be used, and
conjunction and disjunction can only be taken for goals. Note, in our extension
a term can be calculated as a result of arbitrary expression in initial functional
language (as long as this expression has expected logical type), but such “higher-
order” terms will never appear as a result of relational conversion, so, in fact,
relational extension we describe here defines a richer language, than we actually
need.

The semantics of extended language is shown on Fig. 8. First, the state is
extended: besides the stack of contexts and current expression it now contains
a set of used semantic variables Σ and a logical state σ. Semantic variables are
allocated and substituted for syntactic logic variable occurrences, when fresh
expression is evaluated (see rule Fresh). Logical states are affected, when uni-
fication or disequality constraint is evaluated; we explain them in details below.
All existing rules for the initial language are considered rewritten to propagate
newly added components of states unchanged. Then, we modify the substitution
to respect names, bound in fresh as well. Next, we consider two new kinds of
values: a semantic variable and a special value success. The former is a result

Typed Relational Conversion 47

of evaluation for a free logic variable, the latter—the result of evaluation for a
succeeded goal.

E += fresh (x) e
e1 ≡ e2
e1 �≡ e2
e1 ∨ e2
e1 ∧ e2

Fig. 6. The syntax of
relational extension

We also extend the definition of context to handle the
new kinds of expressions. In unification and disequality
constraint, the terms are evaluated left-to-right. Conjunc-
tion and disjunction, however, evaluate nondeterministi-
cally: in disjunction only one subgoal is chosen (see rules
DisjL and DisjR), a conjunction can evaluate either left,
or right subgoal first (see rules ConjStartL and ConjS-
tartR). When chosen subgoal is evaluated to the value
success, the other subgoal starts its evaluation (rules
ConjL and ConjR). We have chosen a nondeterministic
variant for the semantics, since different existing miniKanren implementations
use (a little bit) different search, and we do not want to depend on the implemen-
tation details. An opposite side of this solution is that for a concrete program
and a concrete miniKanren implementation, the result of the evaluation might
not coincide with that, prescribed by the semantics: in some concrete implemen-
tation a program can diverge, while nondeterministic semantics may still define
a certain scenario to complete with a result. We argue, that in this case, it will
always be possible to rewrite a program or/and interpreter to converge according
to that scenario.

Finally, we describe the structure of a logical state and the implementation of
unification and disequality constraint. The development is mainly based on the
existing implementation [1] and standard approaches for implementing unifica-
tion [2,14]. We, therefore, assume the familiarity of the reader with the following
notions:

– substitution (θ);
– application of substitution θ to a term t (t θ);
– composition of substitutions (θθ′);
– most general unifier of two terms (mgu (t1, t2)).

A logical state contains two components

σ = (θ,Θ−)

where θ is a substitution, Θ−—a set of negative substitutions, describing dise-
quality constraints, which can potentially be violated. The initial state contains
undefined substitution and empty set:

ι = (⊥, ∅)

The effect of unification is described by the following primitive:

unify (σ, t1, t2) = unify ((θ,Θ−), t1, t2)

First, it calculates the most general unifier for the terms under consideration
w.r.t. current substitution:

ρ = mgu (t1 θ, t2 θ)

48 P. Lozov et al.

Types:

L = αo | (Tn(l1, . . . , ln))o (logical types)

T += G

Typing rules:
Γ, x : l � e : G

Γ � fresh (x) e : G
[FreshT]

Γ � e1 : l Γ � e2 : l

Γ � e1 ≡ e2 : G
[UnifyT]

Γ � e1 : l Γ � e2 : l

Γ � e1 �≡ e2 : G
[DisequalityT]

Γ � e1 : G Γ � e2 : G
Γ � e1 ∧ e2 : G

[ConjunctionT]
Γ � e1 : G Γ � e2 : G

Γ � e1 ∨ e2 : G
[DisjunctionT]

Fig. 7. Typing rules for the relational extension

Semantic variables:

S = s1, s2, . . .
Σ, Σ′ · · · ⊂ 2S

(sets of allocated semantics variables)〈
Σ′, s

〉
new Σ, Σ′ = Σ ∪ {s}, s /∈ Σ (allocation of a new semantic variable)

Values:

V += success | s

Contexts:
C += � ≡ e | v ≡ � | � �≡ e | v �≡ � | � ∧ e | e ∧ �

States:
〈Σ, S, e, σ〉 (set of allocated semantic variables, stack of contexts, expression, logical state)

〈∅, ε, e, ι〉 (initial state)

Transitions:
〈Σ, S, fresh(x) e, σ〉 �

〈
Σ′, S, e[x s], σ

〉
,
〈
Σ′, s

〉
new Σ [Fresh]

〈Σ, S, e1 ≡ e2, σ〉 � 〈Σ, � ≡ e2 : S, e1, σ〉 [UnifyL]

〈Σ, S, v ≡ e, σ〉 � 〈Σ, v ≡ � : S, e, σ〉 [UnifyR]

〈Σ, S, v1 ≡ v2, σ〉 �
〈
Σ, S, success, σ′〉, unify (σ, v1, v2) = σ′ [Unify]

〈Σ, S, e1 �≡ e2, σ〉 � 〈Σ, � �≡ e2 : S, e1, σ〉 [DisEqL]

〈Σ, S, v �≡ e, σ〉 � 〈Σ, v �≡ � : S, e, σ〉 [DisEqR]

〈Σ, S, v1 �≡ v2, σ〉 �
〈
Σ, S, success, σ′〉, diseq (σ, v1, v2) = σ′ [DisEq]

〈Σ, S, e1 ∨ e2, σ〉 � 〈Σ, S, e1, σ〉 [DisjL]

〈Σ, S, e1 ∨ e2, σ〉 � 〈Σ, S, e2, σ〉 [DisjR]

〈Σ, S, e1 ∧ e2, σ〉 � 〈Σ, � ∧ e2 : S, e1, σ〉 [ConjStartL]

〈Σ, S, e1 ∧ e2, σ〉 � 〈Σ, e1 ∧ � : S, e2, σ〉 [ConjStartR]

〈Σ, S, success ∧ e, σ〉 � 〈Σ, S, e, σ〉 [ConjL]

〈Σ, S, e ∧ success, σ〉 � 〈Σ, S, e, σ〉 [ConjR]

Fig. 8. Semantics for the relational extension

If there is no such ρ, the unification fails, and the evaluation terminates
unsuccessfully. Otherwise, ρ has to be checked against the disequality constraints,
represented by Θ− (if Θ− is empty, the check succeeds immediately).

Typed Relational Conversion 49

Being a substitution, ρ at the same time can be considered as the following
unification problem: we can try to unify a pair of terms

tl = (s1, . . . , sk)
tr = (ρ(s1), . . . , ρ(sk))

where {si} = dom (ρ). We pick every substitution θ− ∈ Θ− and calculate the
mgu (tl θ−, tr θ−). There are three possible outcomes:

1. The unification fails. This means, that disequality constraint, represented by
θ−, can no longer be violated. We remove θ− from Θ− and continue with the
next disequality constraint.

2. The unification succeeds with the empty substitution. This means, that dis-
equality constraint, represented by θ−, is violated. The check stops, and the
whole top-level unification fails.

3. The unification succeeds with a non-empty substitution θ′−. This means, that
in order not to violate disequality constraint, represented by θ−, θ′− has to
be respected. We replace θ− with θ′− in Θ− and continue with the next
disequality constraint.

If the disequality check succeeds, by the end we have a modified set Θ′−, and
we assume

unify ((θ,Θ−), t1, t2) = (θρ,Θ′−)

The evaluation of disequality constraint is performed in a similar manner
using the primitive

diseq (σ, t1, t2) = diseq ((θ,Θ−), t1, t2)

First, the mgu (t1 θ, t2 θ) is calculated. Again, there are three possible cases:

1. The unification fails. This means, that disequality constraint is satisfied.
2. The unification succeeds with the empty substitution. This means, that dis-

equality constraint is violated.
3. The unification succeeds with a non-empty substitution θ′−. This means,

that this substitution describes the disequality constraint, which has to be
respected in the future, so we add it to Θ−.

If disequality constraint succeeds, we obtain a (potentially) modified set Θ′−,
and we assume

diseq ((θ,Θ−), t1, t2) = (θ,Θ′−)

Finally, for a closed goal g and a logical state σ, we define g �r σ, iff

〈∅, ε, g, ι〉 �∗ 〈Σ, ε, success, σ〉 for some Σ

where “�∗” is a reflexive-transitive closure of “�”.
One may notice, that the typing rules for the relational extension add noth-

ing more than some interpreted types and symbols w.r.t. the type system of
the substrate language. Thus, it is rather expected, that the relational extension

50 P. Lozov et al.

inherits all its useful properties (like progress and type preservation). Surpris-
ingly, this is not completely so. Indeed, the only value for goals is success,
but, obviously, not every goal succeeds (for example, A ≡ B always fails). Thus,
our relational extension lacks the progress property—a decently typed non-value
goal sometimes cannot make a step. This makes no harm in the context of the
paper; in any case, a failure value for goals can be added to the language together
with the failure propagation rules.

4 Relational Conversion

Before we describe the relational conversion itself, we formulate some limitations
for the source programs. Functional programs tend to operate with higher-order
values, while miniKanren is limited by a first-order unification. Therefore, it
would be unreasonable to expect, that arbitrary functional program can be con-
verted into a relational form (at least using reasonably simple transformations).

We introduce the set of ground types G:

G = α | T k(g1, . . . , gk)

Informally, a value of a ground type cannot contain closures. Then we formu-
late the following limitations for the programs to be converted into a relational
form:

– all constructor parameter types must be type variables;
– constructors and polymorphic equality can only be applied to the values of

ground types;
– all match-expressions must be of ground types.

The first condition means, that all algebraic datatypes (which we consider as
defined implicitly, see Sect. 3.1) have to be fully-polymorphic. The first two lim-
itations then allow us to specify the polymorphism restriction for relational pro-
grams, which we mentioned informally in Sect. 2: all type variables are bounded
to range only over ground types (this condition, of course, is sufficient, but not
necessary).

The third limitation is not essential and introduced only to simplify the
presentation. If a match-expression does not have a ground type, it can always
be transformed to have one by applying η-expansion:

match e with {pi → ei} � λx̄ .match e with {pi → ei x̄}
where x̄ is a vector of new variables, different from those in e, ei, and pi. In fact,
our implementation, described in Sect. 5, performs this expansion as long as a
non-ground type match-expression is encountered. This is the single case when
we actually inspect types and perform η-expansion.

The general idea behind the conversion can be illustrated on a type level: an
expression of type t in the source language is transformed into the expression

Typed Relational Conversion 51

of type �t�t in relational extension, where the transformation �•�t is defined as
follows:

�g�t = g → G
�t1 → t2�

t = �t1�
t → �t2�

t

In other words, an expression of a ground type is converted into a goal-
returning function. The informal semantics of this function is to make its argu-
ment respect a certain contract. As the argument can have some free variable
occurrences, the goal tries to substitute these variables with some values in order
to respect the contract this goal represents. For example, a constant Nil is con-
verted into a function λq . q ≡↑Nil.

The conversion itself is described in terms of transformation �•�c, see Fig. 9.
The first five rules simply propagate the conversion through the expression; the
last three actually do the work. These rules themselves may look complicated,
but the idea is rather simple.

In the case of constructor we know, that all expressions ei have ground types.
Thus, their relational images are goal-returning functions. We create a set of fresh
variables (one for each expression) and pass them as arguments to these functions
to associate them with the values of the expressions. The result of conversion for
the constructor application itself has to be a goal-returning function as well. We
surround expression constructed so far with abstraction and unify its argument
q with the constructor, applied to corresponding logical variables. We also apply
logical constructor ↑ to respect the typing rule for unification.

The rule for pattern-matching conversion operates similarly. First, the scru-
tinee must have a ground type (since it is matched against constructors). We
create a fresh variable qe and associate it with the value of the scrutinee exactly
as in the previous case. Then, for each branch we create a number of fresh vari-
ables (one for each variable in the pattern for the branch) and express pattern-
matching in terms of unification, using these variables and corresponding con-
structor. Finally, the body ei of the branch is an expression with free variables,
corresponding to those in the pattern. We, therefore, convert ei and surround
the result with lambdas, closing all these variables. To pass the bindings qij for
pattern variables to the body, we apply this function to goal-returning functions
(≡qij). This, again, gives us a goal-returning function, which we apply to the
topmost result variable q.

The last rule follows the same pattern: both arguments of polymorphic equal-
ity are transformed into goal-returning functions, and we know, that the argu-
ments of these functions are of some ground type. We apply these functions to
fresh variables and perform case analysis. Note, this is the only case when we
actually use disequality constraints (Fig. 9).

An interesting property of relational conversion is that it does not change
terms, which do not use constructors, equality, and pattern-matching. Thus, a
lot of useful higher-order functions—application, composition, fixed point, etc.—
are already relational and can be used in relational specifications.

Another observation is that our transformation is compositional (a relational
image of application is an application of relational images). This means, that

52 P. Lozov et al.

Fig. 9. Relational conversion

relational conversion is compatible with separate compilation—multiple source
files can be converted independently without losing the possibility to work prop-
erly when combined.

Then, it is interesting, that the result of relational conversion runs in a
forward direction deterministically. Thus, relational conversion imposes only a
constant-time slowdown in a forward direction.

Finally, we formulate the following properties for relational conversion:

– Static correctness: if an expression e has a type t in the source language,
then �e�c has a type �t�t in relational extension. In other words, relational
conversion transforms properly typed programs into properly typed. Proof is
by structural induction (and trivial).

– Partial semantic correctness: if an expression e has a ground type t and e �f v
for some value v, then fresh(x)(�e�c x) �r (θ, ∅), and θ(s) = v, where s
is a semantic variable, associated with x on the first step of the relational
evaluation.

In order to prove the complete correctness, we need some means to interpret
the results of relational derivation with free variables in functional case. This is
a subject of future research.

Typed Relational Conversion 53

5 Implementation and Application

We implemented relational conversion for the subset of OCaml language, using
the infrastructure of the original compiler. In its current form, the converter takes
the whole file and converts every definition into relational form, but in future, we
consider to implement a more flexible approach, when only some definitions are
converted, being attributed for this purpose in some way. Our converter rewrites
the original abstract syntax tree, annotated with the types, inferred by the com-
piler, into relational form, using the set of combinators from OCanren. Note, the
semantics of OCaml is different from the semantics of source language we pre-
sented in Sect. 3.1: in OCaml, the order of reductions in application and binary
operators is unspecified (unlike left-to-right in our case), pattern-matching in
OCaml is performed in a top-down manner (and, thus, there can be more than
one pattern matching the scrutinee), etc. We, therefore, trust an end user to
apply relational conversion only to programs, for which these differences play no
role.

Our preliminary evaluation discovered two problems. First, the converter
used to generate a lot of abstractions, many of which could be applied immedi-
ately. We additionally implemented an optimization pass, which performs admin-
istrative reductions where possible. This optimization greatly improves the qual-
ity of converted programs in terms of both readability and performance. Next, in
our initial implementation, too many values were functionalized and, as a result,
massively recalculated with essential performance degradation. We improved the
implementation by identifying the important specific case and handling it with
a little different transformation.

As the first example of the conversion we consider the implementation of
concatenation function for lists (see Fig. 10a). In Sect. 2, we already saw the
canonical version of relational concatenation. The result of relational conversion,
however, is slightly different (see Fig. 10b). The main difference comes from the

Fig. 10. An example of relational conversion

54 P. Lozov et al.

functionalization of primitive values: while conventional appendo operates on
logical lists, the converted variant uses a goal-returning functions. Thus, the
conventional appendo for arguments x, y and q can be expressed using the
converted one as appendo (≡x) (≡y) q.

In the next subsections, we consider more elaborated and interesting exam-
ples. From now on, we refrain from presenting the complete source and converted
code and consider only the signatures and some interesting queries.

5.1 Higher-Order Lambda Interpreter

As we mentioned in Sect. 1, one of the important application domains for
miniKanren is the implementation of relational interpreters [5,6,8]. Writing
relational interpreter, as a rule, amounts to a careful rewriting of functional
implementation in miniKanren. In this regard, obtaining a relational interpreter
automatically from a functional specification looks a natural idea.

In our case, we generalize this idea a little bit: we build a relational interpreter
for a family of languages—essentially, the lambda calculus with various reduction
orders. The construction of this interpreter was inspired by Felleisen-style seman-
tic description [16]. Our interpreter takes as its first argument a function, which
decomposes a term, passed as a second argument, into a redex and a context
(if possible). After the decomposition, the interpreter performs beta-reduction
on the redex and reconstructs the term by plugging the result back into the
context. These steps are repeated until the decomposition is no longer possible
(or infinitely). This approach brings us a few benefits: first, various reduction
orders can be expressed by changing only the decomposition function, and next,
we demonstrate the applicability of our technique for a higher-order case.

The signatures of relevant functions are

val eval : (term → split) → term → term

val call_by_name : term → split

val call_by_value : term → split

val normal_order : term → split

where term and split are the types of the terms (in de Bruijn form) and
context-term pairs respectively; eval is a higher-order interpreter, all other
functions define corresponding reduction orders. Relational counterparts for
these definitions, provided by the conversion, are shown below:

val evalo : ((termo → G) → splito → G) → (termo → G) →
termo → G

val call_by_nameo : (termo → G) → splito → G

val call_by_valueo : (termo → G) → splito → G

val normal_ordero : (termo → G) → splito → G

Note, due to the compositionality of the conversion, the type of functions,
representing reduction orders, still corresponds to the type of the first argument
of the interpreter.

Typed Relational Conversion 55

The interpreter, constructed by our tool, can be run in a forward direction
(for readability purposes, we use here a symbolic quoted representation of the
terms instead of concrete datatype constructor-based):

evalo normal_ordero (≡ ‘(λ 0) 1 ’) q � [q �→ ‘1 ’]
evalo call_by_nameo (≡ ‘0 ((λ 0) 1) ’) q � [q �→ ‘0 ((λ 0) 1) ’]
evalo call_by_valueo (≡ ‘0 ((λ 0) 1) ’) q � [q �→ ‘0 1 ’]

As it is expected from relational interpreter, it equally can be run in the
opposite direction, returning for a term a (potentially infinite) stream of terms,
reducing to it:

evalo normal_ordero (≡ q) (‘λ 0 ’) � [
q �→ ‘λ 0 ’ ;
q �→ ‘(λ 0) (λ 0) ’ ;

q �→ ‘λ ((λ 1) 0) ’ ;

q �→ ‘(λ 0) ((λ 0) (λ 0)) ’ ; . . .]
evalo call_by_nameo (≡ q) (‘λ 0 ’) � [

q �→ ‘λ 0 ’ ;
q �→ ‘(λ 0) (λ 0) ’ ;
q �→ ‘(λ 0) ((λ 0) (λ 0)) ’ ;
q �→ ‘(λ λ 0) 0 ’ ; . . .]

This interpreter can be extended to the subset of Scheme, with which the
quines/twines/thrines benchmarks [8] can be reproduced.

5.2 Hindley-Milner Type Inference

Our next example is the type inference for Hindley-Milner type system [15].
Interestingly enough, that while typing rules for STLC can be directly expressed
in relational terms, providing the solutions for type inference, type checking,
and type inhabitation problems at the same time, for not so different Hindley-
Milner system with let-polymorphism, the problem becomes much harder. The
most robust existing relational solution requires the extension of miniKanren
with nominal constructs [7], while the correctness of other implementations in
conventional miniKanren is still a matter of discussion [4].

On the other hand, in terms of functional programming, this task is rather
a textbook exercise. We implemented a simple version of syntax-directed type
inference and converted it into the relational form; the signatures for the original
and converted implementations are shown below:

val type_inference : term → typ

val type_inferenceo : (termo → G) → typo → G

For this example, we use a conventional representation of terms with named
variables. In a forward direction, our relational implementation works, as
expected, as a type inferencer—given a term it infers its type:

type_inferenceo (≡ ‘λx → x ’) q � [q �→ ‘a → a ’]

56 P. Lozov et al.

In a reverse direction, relational type inferencer is capable of finding the
inhabitants of a specified type:

type_inferenceo (≡ q) ‘a ’ � ⊥
type_inferenceo (≡ q) ‘a → a ’ � [

q �→ ‘λ 0 → 0 ’ ;

q �→ ‘λ 0 → (λ 1 → 1) 0 ’ ;

q �→ ‘λ 0 → let 1 = 2 in 0 ’ (0 �≡ 1) ;

q �→ ‘(λ 0 → 0) (λ 1 → 1) ’ ; . . .]

Note, the first query diverges, providing no results (which is rather expected
since the type is un-inhabited). This is a long-time known phenomenon of
miniKanren—the search can diverge, when no answers exist; relational speci-
fications, which always stop in this case, are called refutationally complete [5].
Given example demonstrates, that our derived relational specification is not
refutationally complete, which is not a rarity in the relational world; making it
refutationally complete is a separate task.

It may appear at first glance, that using relational Hindley-Milner inferencer
for solving inhabitance problem is superfluous, since the inhabitance for Hindley-
Milner is equivalent to inhabitance for STLC. However, with relational inferencer
we may solve some problems, which are distinct from both pure inference and
pure inhabitance:

type_inferenceo (≡ ‘let f = � in f (λ x → f x) ’) ‘a → a ’ �
[� �→ ‘λ 0 → 0 ’ ; . . .]

In this query, we supplied an incomplete term with a hole (�) and some
type, and as a result, we’ve got a term to plug into the hole in order for the
complete term to have that type. Note, the term we’ve got as a result cannot be
typed in STLC, since the variable f is applied there twice with different types
of arguments.

A final observation: we do not claim to completely solve the problem of
relational implementation of Hindley-Milner type system. Even though our con-
verted relational implementation behaves as expected, it still not ideal—indeed,
in functional implementation we had to implement unification on types, which
does not make use of built-in unification in miniKanren and, to some extent,
doubles the work. We, therefore, do not consider this approach as an ideal
solution.

5.3 miniKanren with Disequality Constraints

Our final example is an implementation of miniKanren in miniKanren. Although
there already exist a few similar implementations, written directly in miniKan-
ren, our version is different, since it supports disequality constraints. We consider
this as an important distinction—first, the presence of disequality constraints
makes the language much more expressible, and next, implementing disequality
constraints directly in miniKanren is a very tedious and error-prone task. On the

Typed Relational Conversion 57

other hand, providing relationally converted version amounts only to repeating
a well-known and rather compact original implementation [1].

The signatures for functional and relational miniKanren implementations are
as follows:

val mk : goal → substitution list

val mko : (goalo → G) → (substitution llist)o → G

Here goal stands for the type, representing the goals, substitution—for
the type of substitutions. Again, our relational miniKanren interpreter works in
both directions. As a more interesting query, we consider the following:

mko

(≡
‘let rec add a b c =

((a ≡ Z) ∧ (b ≡ c)) ∨
(fresh (a0 c0) (a ≡ S a0) ∧ � ∧ (add a0 b c0))

in fresh (x y z) (add x y z) ’) ([[x=‘1’; y=‘1’; z=‘2 ’]]) �
[� �→ ‘c ≡ S c0 ’ ; . . .]

Here we specified an incomplete relational program (specifically, a relational
addition of numbers in Peano form). The hole (�) replaces one of the branches,
and expected substitution describes the results of addition. Our relational inter-
preter, converted from functional implementation, turned out to be capable of
finding the correct subgoal—“ c ≡ S c0”—to be placed into the hole.

6 Conclusion

We presented an approach for converting typed functional programs into rela-
tions. Relational conversion in many cases allows us to avoid tedious recoding of
functional specifications into relational form and to concentrate on writing rela-
tional specifications only when their reconstruction from functions is impossible
or undesirable. Our implementation works for the subset of OCaml; we evalu-
ated it for a number of interesting examples and acquired some new relational
solutions.

There is a number of directions for future research. First, a performance
evaluation is desirable—at present time we do not know, what slowdown factor is.
Another problem is a development of an approach to prove complete correctness
(or refute this claim).

References

1. Alvis, C.E., Willcock, J.J., Carter, K.M., Byrd, W.E., Friedman, D.P.: cKanren:
miniKanren with constraints. In: Proceedings of the 2011 Annual Workshop on
Scheme and Functional Programming, October 2011

2. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning.
Elsevier Science Publishers B.V., Amsterdam (2001)

58 P. Lozov et al.

3. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science, vol. 2, pp. 117–309. Oxford University Press Inc., New York (1992)

4. Byrd, W.E.: Private communication
5. Byrd, W.E.: Relational programming in miniKanren: techniques, applications, and

implementations. Ph.D. thesis, Indiana University, September 2009
6. Byrd, W.E., Ballantyne, M., Rosenblatt, G., Might, M.: A unified approach to solv-

ing seven programming problems (functional pearl). Proc. ACM Program. Lang.
1(ICFP), 8:1–8:26 (2017)

7. Byrd, W.E., Friedman, D.P.: αKanren: a fresh name in nominal logic program-
ming. In: Proceedings of the 2007 Annual Workshop on Scheme and Functional
Programming, pp. 79–90 (2007)

8. Byrd, W.E., Holk, E., Friedman, D.P.: miniKanren, live and untagged: quine gen-
eration via relational interpreters (programming pearl). In: Proceedings of the 2012
Annual Workshop on Scheme and Functional Programming, Scheme 2012, pp. 8–
29. ACM, New York (2012)

9. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv. 17(4), 471–523 (1985)

10. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. The MIT Press,
Cambridge (2005)

11. Hemann, J., Friedman, D.P.: μKanren: a minimal functional core for relational
programming. In: Proceedings of the 2013 Annual Workshop on Scheme and Func-
tional Programming (2013)

12. Hemann, J., Friedman, D.P., Byrd, W.E., Might, M.: A small embedding of logic
programming with a simple complete search. SIGPLAN Not. 52(2), 96–107 (2016)

13. Kosarev, D., Boulytchev, D.: Typed embedding of a relational language in OCaml.
In: ACM SIGPLAN Workshop on ML (2016)

14. Lassez, J.-L., Maher, M.J., Marriott, K.: Unification revisited. In: Foundations of
Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann
Publishers Inc., San Francisco (1988)

15. Pierce, B.C.: Types and Programming Languages, 1st edn. The MIT Press, Cam-
bridge (2002)

16. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

	Typed Relational Conversion
	1 Introduction
	2 Relational Programming in miniKanren
	3 The Source Language and Relational Extension
	3.1 The Source Language
	3.2 Relational Extension

	4 Relational Conversion
	5 Implementation and Application
	5.1 Higher-Order Lambda Interpreter
	5.2 Hindley-Milner Type Inference
	5.3 miniKanren with Disequality Constraints

	6 Conclusion
	References

