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Preface

This volume contains a selection of the papers presented at TFP 2017: the Symposium
on Trends in Function Programming 2017, held during June 19–21, 2017, in
Canterbury, UK.

TFP is an international forum for researchers with interests in all aspects of func-
tional programming, taking a broad view of current and future trends in the area. It
aspires to be a lively environment for presenting the latest research results and other
contributions, described in draft papers submitted prior to the symposium. For the
symposium, the Program Committee chair verified that these drafts were within the
scope of TFP. Submissions appearing in the draft proceedings are not considered as
peer-reviewed publications.

The TFP 2017 program consisted of two invited talks and 21 presentations. The
invited talks were given by Conor McBride (University of Strathclyde, UK) on
“Everybody’s Got to be Somewhere,” and Cătălin Hriţcu (Inria Paris, France) on
“Verified Effectful Programming in F*.” The 21 presentations led to a total of 16 full
papers submitted to the formal post-refereeing process. Each submission was reviewed
by at least three reviewers. The Program Committee selected eight papers, which are
included in these proceedings.

We are grateful to everyone at the University of Kent for their help in preparing and
organizing TFP 2017, in particular Olaf Chitil and Jo Sharrad. We also gratefully
acknowledge the assistance of the TFP 2017 Program Committee and the TFP Steering
Committee for their advice while organizing the symposium.

February 2018 Meng Wang
Scott Owens
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Memoized Flat Closures for CPS
or Taming Memory Allocation for λ in CPS

Marco T. Morazán1(B), Lindsey M. Reams2, Nicholas R. Olson1,
and Shamil Dzhatdoyev1

1 Seton Hall University, South Orange, USA
{morazanm,dzhatdsh}@shu.edu, nrolson5@gmail.com

2 University of Massachusetts, Lowell, USA
reamslin@gmail.com

Abstract. Compilers for functional languages are judged, in part, on
how well they handle λ-expressions. The evaluation of λ-expressions tra-
ditionally requires closure allocations which can be intensive and can
interact poorly with a garbage collector. Work on closure representa-
tion and garbage collection has successfully improved this interaction.
This work, however, does not address the actual allocation of closures in
the first place. This is important, because the only closures that do not
have to be garbage collected are the closures that are never allocated.
This article explores a novel mechanism to reduce flat-closure alloca-
tions based on memoization. To test this new mechanism, a compiler
has been developed that uses continuation-passing style as an intermedi-
ate representation–which makes closure allocation ubiquitous. Empirical
results strongly suggest that flat-closure memoization is an important
optimization that significantly reduces running time as well as memory
and closure allocation.

1 Introduction

Functional languages have a reputation for heavy memory allocation. Heavy
memory allocation on modern computer architectures is a problem that limits
performance given that CPU speeds are much faster than memory speeds [1].
To mitigate the problem of heavy memory allocation (and to liberate program-
mers from low-level memory management), virtually all functional languages are
garbage collected. Garbage collection automatically recycles memory occupied
by data that is no longer in use by a program [2]. Although garbage collection
makes programs easier to write and maintain, it does not keep memory alloca-
tion and occupation minimal [3]. In fact, it has been empirically demonstrated
that conservative garbage collection algorithms significantly decrease locality of
reference causing one or two orders of magnitude more page faults [4]1. Thus,
it is desirable for programming languages to minimize memory allocation and,
therefore, spark fewer garbage collections.
1 This study, however, was performed using the imperative C language.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Wang and S. Owens (Eds.): TFP 2017, LNCS 10788, pp. 1–18, 2018.
https://doi.org/10.1007/978-3-319-89719-6_1
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2 M. T. Morazán et al.

A feature of functional languages that allocates memory is the implemen-
tation of first-class functions. To represent a function at runtime, functional
languages allocate a closure–a data structure that stores the bindings of free
variables and (a pointer to) the body of the function to be evaluated, if at all, in
the future of the computation. Early implementations of functional languages,
like Henderson’s Lisp [5] using a SECD machine [6], used linked closures (a.k.a
deep closures). This closure representation makes closure creation fast at the
expense of making the resolution of variable references slower [7]. In addition,
bindings that are no longer relevant to a computation are unnecessarily kept
alive (i.e., not garbage collected) by storing all lexically defined variables as part
of the closure. To make accesses to free variables faster and to make garbage
collection more effective, many functional languages use flat closures [8] (a.k.a
display closures [7]). These advantages come at the cost of making closure cre-
ation slower as the bindings of free variables must be copied to the closure. If
free variable accesses are more frequent than closure creation, then the extra cost
of closure creation is amortized over such accesses and over less garbage collec-
tion. To reduce the copying of bindings done to create flat closures, safely-linked
closures allow for bindings to be shared between closures [9]. This closure repre-
sentation makes closure creation faster than flat-closure creation at the expense
of adding overhead to the resolution of references to free variables. Unlike linked
closures, bindings are only kept alive while they may still be relevant to the
computation allowing the memory space they occupy to be recycled as soon as
possible by a garbage collector.

The work done on closure representation successfully addresses interfacing
with a garbage collector to efficiently reclaim memory. It does not, however,
address how to avoid closure allocations in the first place. The relationship
between safely-linked closures and flat closures, however, suggests a new mecha-
nism for reducing closure allocation. In essence, this relationship is based on the
similarity of different closures. This similarity stems from the fact that closures
may store some or all of the same values. These similarities can be memoized
and, thus, allocated once and reused many times to reduce memory allocation.
For instance, consider the following code to compute the operands of a function
application in a typical interpreter:

; (listof expr) environment --> (listof expr-vals)
(define (eval-operands rands env)

(map (lambda (e) (eval-expr e env)) rands))

Evaluating the expression

(f (h ...) (g ...) (f ...))

leads to (at least) four calls to eval-operands. Each of these calls evaluates the
lambda expression to create a single-value closure with the same binding for env.
Instead of allocating the same closure four times, the closure can be allocated
once for the outer call to f, memoized, and reused for the calls to h, g, and the
inner call to f.
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This article explores the impact memoizing flat closures has on memory allo-
cation and on running time using the Green programming language. To effectively
explore this impact, Green uses continuation-passing style (CPS) as an interme-
diate representation to make the use of closures ubiquitous. Section 2 briefly
discusses related work and draws contrasts with the work presented in this arti-
cle. Section 3 describes two strategies to memoize flat closures. It outlines how
to capture the repetition in closure creation that makes memoization effective.
The key to success is to implement closures for user-defined functions differ-
ently than closures for continuations. Section 4 briefly describes the Green pro-
gramming language and the Green Virtual Machine (GVM). Section 5 presents
empirical results. Finally, Sect. 6 presents concluding remarks and future work.

2 Related Work

There is a long history in compilers for functional languages that discusses how
to allocate closures. In fact, historically many compilers treat closures for con-
tinuations differently than closures for user-defined functions. The driving force
behind this is that the success of compilers, in part, depends on their ability
to handle λ-expressions [10]. The RABBIT compiler, for example, makes a dis-
tinction between λ-expressions and continuations, and between function calls
and continuation invocations, to facilitate code generation [11]. For user-defined
function calls, code for argument set-up is followed by code for the body of a
λ. In the case of a continuation, a function is first called placing its value in an
appropriate place to then call the continuation. In contrast, Green treats func-
tion and continuation applications in the same general manner: register set-up
followed by a call. Nonetheless, Green also treats continuations differently by
making them implicit parameters to user-defined functions much like the heap
is an implicit parameter. Another difference between Green and RABBIT is that
RABBIT adds continuations to primitive functions which is not done in Green.

The Orbit compiler reduces the amount of memory used by closures by deter-
mining when a closure can be allocated on a stack (or in registers) instead of
the heap [12]. In addition, Orbit packs code pointers that reference the same
variables into a single runtime structure. This means that closures share val-
ues (like safely-linked closures) and are allocated as soon as the bindings of the
free variables are known. Closures are heap-allocated when they are used as a
non-continuation argument. Continuation-closures are allocated on a stack given
that they are used once and never used again. The work done with Green reveals,
in contrast, that if continuation-closures are heap-allocated, so that they can be
memoized, then this can lead to speed-ups. However, continuation-closures are
so short lived and reused relatively little that not heap allocating them (and
only memoizing noncontinuation-closures) leads to consistently larger speed-ups.
In addition, continuation-closures are stored in an accumulator akin to Orbit’s
strategy to stack continuations. In fact, a stack is one implementation strategy
for an accumulator that follows a last-in first-out access pattern–precisely how
continuations are accessed.
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The Pascal compiler also treats continuation-closures differently [13]. Like
Orbit, continuation-closures are stack-allocated. Non-continuation-closures are
also stack-allocated when it can be proven that when invoking its control context
(i.e., the current continuation) the function cannot be called again. In contrast
to compilers that stack-allocate continuations and never use them again once
popped off the stack, the re-use of these closures avoids a significant amount of
memory allocation through memoization. That is, Green debunks the common
belief that continuation-closures must only be used once to achieve speed-ups
and better memory utilization. The key to success in Green is to not store con-
tinuations as a part of any closure. Despite the gains observed by memoizing
continuations, the empirical data in this article, however, also strongly suggests
that even larger speed-ups are obtained by a CPS-based compiler when contin-
uations are stacked and not memoized.

The SML/NJ compiler does not stack-allocate continuation-closures [14].
Instead, all closures are heap-allocated. The reasoning behind this implemen-
tation choice is that garbage collection need not be expensive and, therefore,
the expected difference in performance is not large. In contrast, the work pre-
sented here explores both the stacking of heap-allocated continuations and of
non-heap-allocated continuations. The continuation accumulator in Green allows
for control to be an implicit argument to functions. Heap allocation of closures,
of course, ought to only be done if it leads to the best speed-ups when using
memoization.

The debate over compiling with or without continuations rages on. Detrac-
tors of CPS favor using A-normal form (ANF) as an intermediate representation
[15,16]. They argue that an ANF-based compiler can do just as naturally almost
anything that is done by a CPS-based compiler. One important exception, how-
ever, is converting calls to known functions into jumps. Given that continuations
are not explicit in ANF, it is difficult to naturally perform this optimization.
Other detractors of CPS point out that CPS terms are complex and that it is
costly to allocate closures for the λ-expressions introduced by the transforma-
tion. These drawbacks, however, are considered more apparent than real by some
as efficient code can be generated from a CPS representation [17]. Furthermore,
it is argued that inlining is simpler in a CPS representation. The work presented
in this article does not resolve the CPS versus ANF (versus contification [18])
debate, but does strongly suggest that there is value in closure memoization.
Even if λ-expressions are less common in ANF-based and contification-based
compilers, the data presented in this article shows significant speed-ups and
significant less memory allocation for noncontinuation-closures when memoiza-
tion is used. The benefits are greater when only noncontinuation-closures are
memoized and continuation-closures are not heap-allocated. Furthermore, the
work presented suggests that the penalty incurred to allocate closures for con-
tinuations introduced by the CPS transformation is not as severe as commonly
believed if memoization is utilized.
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3 Closure Memoization

Memoization requires carefully addressing equality and caching with precise
dependencies [19]. Equality in the context of closure memoization refers to being
able to determine if a closure is cached. Determining closure equality is achieved
by exploiting the naming convention used for closures. Each memoized closure
is given a fresh identifier that is a linear combination of the heap addresses
of the bindings of the free variables and the address of the code to be evalu-
ated. Caching with precise dependencies in this context refers to storing closures
with respect to the bindings of the free variables and the code to be executed.
The naming strategy described guarantees that closures are cached with precise
dependencies given that all the values needed to generate a specialized identifier
are known at the time of closure creation.

The mechanism for equality and for caching with precise dependencies
now allows us to outline the closure-memoization algorithm. This section first
presents the basic closure-memoization algorithm. It then proceeds to describe
the complications that arise with continuations and the mechanisms developed
to allow closure-memoization to be effective. In essence, continuations cannot
be stored in closures for memoization to be effective. This follows from observ-
ing that a function’s continuation is necessarily different each time it is called
and, therefore, any closure that captures that continuation will necessarily be
different at each call. In addition, the last-in first-out discipline of continuations
provides compiler writers with the choice to heap-allocate and memoize or to
not heap-allocate and not memoize continuation-closures.

3.1 Basic Closure Memoization

To illustrate the salient closure memoization features, consider the following
function used in the naive solution to the graph isomorphism problem:

;map-neighs: (listof nodes) dict -> (listof nodes)
(define map-neighs (lambda (lon d)

(map (lambda (i) (name-mapper i d)) lon)))

In this solution, for two graphs with n nodes, all n! possible mappings are tested.
For each possible mapping, the function map-neighs is called for each of the n
nodes. This function takes as input a list of nodes (the neighbors) and a mapping
(i.e., a dictionary representing the mapping) and returns a list of (the mapped)
nodes.

For a given mapping, m1, a closure for

(lambda (i) (name-mapper i m1))

is allocated n times (once for each node). Observe that all n closures are exactly
the same for a given m1: d bound to d1 (the heap address of m1) and a pointer
to the body of the lambda expression, say L1. This leads to a total allocation of
n ∗ n! closures to test all possible mappings.
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For the first call to map-neighs with m1, using closure memoization, a closure
is allocated and cached as, say, d1 − L1. This closure is then re-used for all sub-
sequent calls to map-neighs with m1. Under this strategy, the number of closures
allocated is reduced to n! from n ∗ n!. Even for modest values of n the savings
in the number of closure allocations is significant.

3.2 Closure Memoization in the Presence of Continuations

The general outline for basic closure memoization of the previous subsection
is not the complete story. The compiler must do a bit more work to memoize
closures in the presence of continuations. In particular, it must treat user-defined
and continuation function construction and application differently. This is best
illustrated using an example. Consider the function map-neighs (λ-lifted and)
transformed to continuation-passing style:

(define map-neighs
(lambda (a0 a1 V)

(F0 name-mapper
a1
(lambda (V0) (map V0 a0 V)))))

(define F0
(lambda (name-mapper a1 V)

(V (lambda (a2 V0) (name-mapper a2 a1 V0)))))

Intuitively, as before, we expect n! closures to be allocated when memoization is
used. Our intuitive expectations are not met, because one of the free variables,
V , stored in the created closures is a continuation. Recall, that a continuation
is, in essence, a function to compute the value of the rest of the computation.
Therefore, each call to map-neighs with a mapping, m1, is made with a different
continuation and allocates a different closure. None of the closures are re-used
and we have a total of n ∗ n! closures allocated under closure memoization.

This situation is precisely where memoization becomes ineffective. Memoiza-
tion is predicated on repetition. Intuitively, we can see that there is repetition in
the calls to map-neighs with m1. That is, a lot of the same information is stored
in the different closures. Specifically, the binding of m1 and the pointer to the
body of the λ-expression. These values would be captured and shared, instead
of copied, by safely-linked closures.

The key to success, therefore, is to isolate these repetitive components from
the non-repetitive components (akin to what is done by safely-linked closures).
That is, continuations cannot be stored in closures. Thus, providing the oppor-
tunity to memoize the repetitive nature that exists in continuation-closure con-
struction. For noncontinuation-closures, this is not an issue given that these
closures never store a continuation. They only receive a continuation as input as
the reader can observe in the nested λ in F0.

Fortunately, CPS allows us to not store continuations in continuation-
closures. CPS serializes computations by making control explicit. Continua-
tions, simply stated, are accumulators for control information. As such, the last
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continuation constructed is always the first continuation applied [14]. There is
nothing in this control mechanism that forces us to explicitly pass control infor-
mation to every user-defined function. Instead, control information (i.e., the
continuation) can be an implicit argument much like the heap is an implicit
argument.

To achieve this, the compiler must generate code to construct continuation-
closures that differs from code generated to construct noncontinuation-closures.
When a continuation-closure is constructed, the enclosing continuation is not
stored in it. Instead, it is stored in an accumulator for continuations. In Green,
we have two possible flat-closure representations for continuation-closures. In
the first, references to heap-allocated continuation-closures are stored in the
accumulator allowing for memoization. In the second, continuation-closures are
represented as a collection of heap references (to the bindings of free variables)
that are directly stored in the accumulator (without allocating a closure data
structure in the heap). This implementation strategy reduces the amount of
heap memory that must be explicitly garbage collected at the expense of disal-
lowing continuation-closure memoization (if it is not permanently allocated in
the heap, then it can not be memoized). One clear consequence of this second
representation choice is that it eliminates the overhead of closure memoization
for continuations. Regardless of the representation, if ci and cj are the last and
next to last continuations accumulated, then the enclosing continuation for ci
is cj . If a new continuation, ch, is constructed then it is added to this accumu-
lator in front of ci. When a continuation is applied, the top continuation, say
ch, is removed and applied to its argument. Its enclosing continuation, ci, then
becomes the top continuation in the accumulator.

At runtime a hash table is used to store references to heap-allocated closures.
Instead of allocating a closure and then populating it when a closure is con-
structed, the values needed to create the closure are accumulated. As the values
are accumulated, the unique descriptor is constructed. When a closure construc-
tor is executed, descriptor membership in the hash table is tested (i.e., equality
is tested). If the closure exists, a new closure is not allocated, the accumulated
values are discarded, and the previously generated closure is used. If the closure
does not exist, a new closure is allocated in the heap using the accumulated values
and the new closure is added to the hash table. This mechanism is the same for
both continuation- and noncontinuation-closures when both are heap-allocated.
If continuation-closures are not heap-allocated, then their construction dispenses
with the creation of the unique identifier and the use of the hash table. The cre-
ation of the unique key and the testing of hash table membership adds overhead
to the flat closure creation mechanism. To achieve speed-ups, this overhead must
be effectively amortized over the number of times closures are re-used.

4 The Green Programming Language and Virtual
Machine

Before examining empirical data, the Green programming language and the GVM
are briefly described. Green is a functional, eager, and impure programming
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program ::= (def∗)
def ::= (define symbol expr)

expr ::= symbol | number | boolean | string
| (list expr∗) | (array expr∗) |(quote symbol)
| (λ (symbol∗) expr) | (λc (symbol∗) expr)
| (let ((symbol expr)∗) expr) | (if expr expr expr)
| (set! expr expr) | (begin expr∗)
| (primitive expr∗) | (expr+) | (apply-cont expr expr)

Fig. 1. The Green core language

Source Parse Desugar -Reduce λ-Lift CPS Registerize CodeGen

Fig. 2. The architecture of the CPS-based Green compiler.

language. Although mutation is supported, its use is, in general, discouraged
favoring mutation-free programming whenever possible. The syntax of the Green
core language is displayed in Fig. 12. A program is a list of definitions. A defini-
tion binds a symbol to the value of an expression. An expression can either be
a variable, a primitive value (e.g., number, boolean, string, or symbol), a list,
an array, a function definition (i.e., a λ-expression), an expression with local
declarations (i.e., a let-expression), a conditional, an assignment statement, a
sequencing statement (i.e., a begin-expression), or a primitive/function applica-
tion. In addition, since continuations are treated differently from user-defined
functions, an expression can be a continuation definition (i.e., a λc-expression)
or a continuation application (i.e., an apply-cont-expression). Through the pro-
cess of desugaring [20], a much richer source syntax is presented to programmers.
This source language allows users to have, for example, nested definitions, general
conditionals (i.e., cond-expressions), and/or-expressions, quoted lists, structure
definitions, and quasiquoted lists.

The Green compiler (implemented in Racket) transforms a program written
in source syntax into bytecode for the GVM. The architecture of the compiler
is displayed in Fig. 2. Source syntax is parsed and desugared. The desugaring
process eliminates all non-core expressions. In addition, all let expressions are
transformed into function applications. The let-free program is then δ-reduced
transforming expressions to normal form whenever possible. After δ-reduction,
the program is transformed using λ-lifting [21,22]. After this step, all functions
are defined at the top level. If a function does not contain free variables the
definition contains a λ-expression with a body that is not a λ-expression. If
the function has free variables, then there is a nested λ-expression. The outer
λ-expression has the free variables as parameters. The nested λ has as parameters
those specified in the source program. A λ-expression does not appear elsewhere
in the program. This means that we precisely know when a user-defined func-

2 The use of bold type signals a reserved word.
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tion is being compiled (as opposed to a continuation) and what free variables
are needed to construct a closure. After λ-lifting, the program is transformed
to continuation-passing style. This step adds a continuation parameter to all
functions and adds a continuation argument to all application expressions. The
continuation argument is always a variable-expression or a λc-expression which,
technically speaking, undoes the work of λ-lifting. For our purposes, however, this
is precisely the goal. A λc-expression indicates that a continuation, not a user-
defined function, is being compiled. In addition, wherever the source program
returns an expressed value it now returns the result of applying the continua-
tion to that expressed value. The expressed value can be a closure which means
that a λ-expression can be an argument to a λc-expression. The CPS program
is then registerized eliminating function parameters in favor of using registers to
pass values to functions. To further aid the compilation process, let-expressions
are reintroduced. The body of a let expression must be a λc-expression and the
local variable declarations capture the free variables of the continuation. Thus,
we precisely know how to build the closure for the continuation with or with-
out closure memoization. In addition, function calls are implemented as GOTOs
given that they all appear in tail position. Finally, the code generator transforms
the registerized program to bytecode for the GVM. A flag indicates to the code
generator whether or not closure memoization is desired.

The GVM is, in essence, a bytecode interpreter (written in C++) that man-
ages a heap from which memory is dynamically allocated at runtime. It has a
set of registers that are used for parameter passing. These registers must be set
correctly to transfer control to a function being called as the GVM has no mech-
anism for returning from a function call. That is, the GVM assumes that there
are no delayed operations in the code produced by the compiler as is expected
for programs written in CPS. Heap elements all consist of five bytes: a one-
byte tag and a four-byte value. Values are either literals or a reference to other
heap-allocated values. A closure requires a header that has a closure tag and a
reference to the compiled body of a λ-expression or λc-expression. This 5-byte
header is followed in the heap by an array of references to the free variable bind-
ings (each a 5-byte heap element). There is no need to store a reference to this
array in the heap element representing a closure.

A novel feature of the GVM is that it maintains a hash table for the man-
agement of memoized closures. If closures are not memoized, the hash table is
not used. To memoize a closure, as previously stated, a descriptor (i.e., a unique
key to be hashed) is created. If the descriptor exists in the closure hash table,
then the closure is not created and the previously generated closure is used. If
the key does not exist in the closure hash table, then the closure is allocated
and added to the hash table. The construction of a descriptor adds overhead
to memoized-closure allocation. This overhead, however, is amortized over less
closure creation. If memory allocation is significantly less, then this overhead on
closure construction is justified even in the absence of garbage collection.

When continuations are not memoized, references to the values of the free
variables are stored in a heap-allocated stack. The stack itself is allocated in
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f

ALLOC 2 L_gencodeFL0 ;;;Allocates continuation of size 2

FVC 0 R1 ;;;Copy free variable 0 from R1

FVC 1 R2 ;;;Copy free variable 1 from R2

POP R1 ;;;pop continuation into R1

GOTO g ;;;go to code for g

L_gencodeFL0

FVACC 0 ;;;access free variable 0 in current closure

PUSHREG R0 ;;;push register 0 onto stack

* ;;;multiply together

POP R0 ;;;pop answer into R0

FVACC 1 ;;;access free varaible 1 (continuation)

GOTOFV ;;;goto continuation

Fig. 3. Bytecode when closures are not memoized and continuations are explicit.

contiguous heap addresses to allow automatic recycling of memory for continua-
tions without the interference of a garbage collector. This implementation choice
is justifiable if the amount of heap memory not automatically recycled (without
the interference of a garbage collector) is significantly reduced and/or speed-ups
are observed.

To make the compilation more concrete consider compiling the following
function already transformed to CPS:

(define (f x y k)
(g x (lambda (a) (k (* y a)))))

Figure 3 displays the generated bytecode when closures are not memoized and
continuations are explicit. The bytecode for f allocates a closure of size 2 to
store the free variables, y and k, for the nested lambda (i.e., the continuation).
The bindings of these free variables are, respectively, stored in registers 1 and 2
when f is called and are, respectively, copied into the closure at positions 0 and 1.
A reference to the closure is placed into register 1 as it is the second argument to
g. There is no need to do anything for the first argument to g, x, as it is already
in register 0 (given that it is the first parameter to f). Finally, the bytecode
transfers control to g. The bytecode for the nested lambda accesses the value of
y in position 0 of the closure and the argument to the continuation in register 0,
multiplies them, and places the product in register 0 in preparation for the call
to k. The saved continuation, k, is retrieved from the closure, where it is stored
in position 1, and control is transferred to it.

Figure 4 displays the bytecode generated when all closures are memoized.
The byetcode for f starts building the name of the closure by accessing y in
register 1. As it is the only free variable (recall that continuations are not stored
in closures), the continuation constructor (i.e., CONT) checks if the continuation
already exists. If so, it returns it. If not, it allocates it using the binding for y.
Finally, the bytecode transfers control to g. The bytecode for the nested lambda
multiplies y, stored in position 0 of the closure, and (g x), the only parameter to
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f

FVC2 0 R1 ;;;begin building closure name with R1

CONT 1 L_gencodeFL0 ;;;continuation constructor

GOTO g ;;;go to g

L_gencodeFL0

FVACC 0 ;;;access free variable 0

PUSHREG R0 ;;;push register 0 onto stack

* ;;;multiply

POP R0 ;;;pop answer into R0

GOTOCS ;;;invoke the top continuation

Fig. 4. Bytecode when all closures are memoized.

f

SCONT 1 L_gencodeFL0 ;;;allocates continuation on stack

CFVC 0 R1 ;;;copies R1 to closure at position 0

GOTO g ;;;transfers control to g

L_gencodeFL0

FVACC 0 ;;;access free variable 0

PUSHREG R0 ;;;push R0 onto the stack

* ;;;multiply

POP R0 ;;;pop into R0

GOTOCS ;;;transfers control to top continuation

Fig. 5. Bytecode when only non-continuation closures are memoized.

the continuation which is stored in register 0, placing the product in register 0 in
preparation for the invocation of the continuation. Finally, control is transferred
to the top continuation on the continuation stack.

Figure 5 displays the bytecode generated when only non-continuation closures
are memoized. The bytecode for f allocates a closure of size one directly on the
continuation stack. The binding of the free variable, y, is copied to the closure
and control is transferred to g. The bytecode for the nested lambda accesses,
as before, y and a, multiplies them, and places the product in register 0. Con-
trol is then transferred to the top continuation and its closure is popped of the
stack. No memory footprint remains of the popped continuation as the mem-
ory it occupies is immediately recycled and made available for future use in the
continuation stack.

5 Empirical Measurements

This section presents empirical measurements taken using three non-trivial
benchmarks. The benchmarks include:

MM This benchmark multiplies two 50×50 matrices of random fixed-sized inte-
gers. The matrix is represented as a list of columns. The well-known formula,
rij = ai · bj , is used to compute the result. That is, the entry of the ith row
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and jth column of the result is the dot product of the ith row of A and the
jth column of B [23].

TSP This benchmark solves the NP-complete Traveling Salesman Problem [24].
The input is, K6, the complete graph of 6 nodes. The graph is represented as
an adjacency list of nodes with weighted edges. The first node in the graph
is considered the start/end node. The algorithm generates all permutations
of possible intermediate nodes and returns the valid path, if any, with the
smallest weight.

GI This benchmark determines if two graphs are isomorphic. This problem is
not known to be NP-complete and it is not known to have a polynomial-time
solution [25]. The inputs given are two complete graphs, K7, with 7 nodes.
The algorithm checks to see if both graphs have the same number of nodes. If
so, all mappings of nodes in the second graph to the nodes in the first graph
are checked to see if any generate the same lists of corresponding edges in the
second graph.

The data collected analyzes the impact of closure memoization along four
fronts: total number of closures allocated, running time, total number of noncon-
tinuation closures allocated, and heap size after execution. Each benchmark was
executed using the three implementation strategies described: Non-Memoized
(i.e., traditional flat closures implement λ and λc expressions), All Closures Mem-
oized (i.e., all λ and λc expressions are implemented using heap-allocated closures
that are memoized), and Noncontinuation Closures Memoized (i.e., λ expressions
are implemented as memoized heap-allocated closures and λc expressions are
implemented as a collection of references on the stack). Finally, all benchmarks
were executed to termination without the interference of a garbage collector.

Figure 6 displays the total number of heap-allocated closures for each imple-
mentation strategy. This data is presented using a log-based scale (i.e., the y-
axis). The strategy that does not memoize closures always allocates the most
closures: about 106 for all benchmarks. The second best strategy is the one that
memoizes all closures. For this strategy, when compared with traditional flat clo-
sures, we observe about one order of magnitude fewer heap-allocated closures for
MM, about two orders of magnitude fewer heap-allocated closures for TSP, and
less than an order of magnitude fewer heap-allocated closures for GI. To no sur-
prise, the strategy that exhibits the fewest heap-allocated closures is the one that
only heap-allocates and memoizes noncontinuation-closures (i.e., λ-expressions).
The data clearly establishes that the bulk of the closures that are heap-allocated
are for continuations, as expected for a CPS representation, and that not heap-
allocating (and not memoizing) continuations significantly reduces the memory
footprint of closures.

Figure 7 displays the relative difference in running time between using tra-
ditional flat closures and the other two implementation strategies. The x-axis
represents the running time using traditional flat closures. A positive relative
difference indicates that the use of traditional flat closures is slower and is rep-
resented by a bar above the x-axis. A negative relative difference indicates that
the use of traditional flat closures is faster and is represented by a bar below
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Fig. 6. Total number of heap-allocated closures.

the x-axis. Memoizing all closures produces better running times for MM (about
1%) and for TSP (about 8%). For GI, we observe that memoizing all closures
increases execution time (by about 7%). The observed performance is explained
by the effectiveness of memoization. In Fig. 6, we observed that memoizing all
closures is much more effective for MM and TSP. This means that the overhead
incurred by memoization is well-amortized over the gains obtained from fewer
closures being allocated. In contrast, the relatively modest gains in the reduction
in closure allocation for GI do not suffice to overcome this overhead and cause
this benchmark to run slower.

Figure 7 also shows that all benchmarks run faster than using traditional
flat closures when only heap-allocating and memoizing noncontinuation closures.
MM is about 5% faster, TSP is about 15% faster, and GI is about 10% faster.
These are significant gains in execution time. We can also observe that only
heap-allocating and memoizing noncontinuation-closures is also faster for all
benchmarks when compared to heap-allocating and memoizing all closures. The
explanation for this observed performance is at least three-fold. First, we observe
that noncontinuation-closures are effectively memoized (i.e., there is significant
reuse of noncontinuation-closures) while continuation-closures are not effectively
memoized. Second, pushing and popping continuations closures from the stack
is faster that heap allocation. Third, the frequent access to the top of the contin-
uation stack is likely to exhibit better cache behavior than heap allocated data.

Figure 7 also reveals that that all benchmarks run faster only heap-allocating
and memoizing noncontinuation closures when compared to memoizing all clo-
sures. It is about 4% faster for MM, about 8% faster for TSP, and about 18%
faster for GI. The observed speed-ups are remarkably good. The explanation for
this is that memoized continuations are not re-used enough to justify memoizing
them. This means that the overhead of memoizing continuations has a sub-
stantial impact on execution time. Put differently, the memoization overhead for
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Fig. 8. Total number of noncontinuation closures allocated.

continuations is not effectively amortized over the number of times continuations
are re-used.

Figure 8 displays the total number of noncontinuation-closures allocated
when they are not memoized and when they are memoized. The data is presented
using a log-based scale. For all benchmarks, we see a significant reduction in non-
continuation closures allocated: one order of magnitude for MM, three orders of
magnitude for TSP, and almost an order of magnitude for GI. These differences
explain why memoization overhead is effectively amortized over closure reuse
leading to, in part, the speed-ups observed in Fig. 7. This data suggests that clo-
sure memoization ought to be an effective strategy for non-CPS-based compilers
that generate code that only allocates noncontinuation closures. This hypothesis,
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of course, needs to be validated with empirical studies that, for instance, use an
ANF-based compiler.

Figure 9 displays the memory footprint (i.e., total number of allocated heap
elements after execution) for each benchmark using all three closure implemen-
tation strategies. Not surprisingly, traditional flat closures have the largest foot-
print. Memoizing all closures has the next best memory footprint. When com-
pared to traditional flat closures, memoizing all closures exhibits a reduction
of one order of magnitude for MM, one order of magnitude for TSP, and less
than one order of magnitude for GI. The best footprint observed is from only
heap-allocating and memoizing noncontinuation closures. When compared to
traditional flat closures, we see one order of magnitude reduction for MM, two
orders of magnitude for TSP, and less than one order of magnitude for GI. This
data brings us back to garbage collection. Allocating continuation-closures on
a stack to automatically recycle their memory with every pop operation and
memoizing noncontinuation closures is the most effective strategy to reduce the
memory footprint of the observed programs. This means that the amount of
work and the number of times a garbage collector must be invoked is reduced.

In conclusion, the data presented strongly suggests that the best closure
implementation strategy based on flat closures is to only memoize noncontin-
uation closures and to stack-allocate continuation closures. The data empiri-
cally validates the strategy pioneered by the Orbit compiler to stack-allocate
continuation-closures. It also suggests that flat closure memoization is a viable
and important optimization for CPS-based compilers and may also be an impor-
tant optimization for non-CPS based compilers. It is noteworthy, that the data
bears out the historical trend that continuation-closures must be treated differ-
ently from noncontinuation-closures and that flat closure memoization is yet
another step towards making functional languages interact even better with
garbage collectors.
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6 Concluding Remarks

This article explores a new mechanism to reduce closure allocations. The new
mechanism is based on the memoization of flat closures. To test this new
implementation strategy a compiler that uses continuation-passing style as an
intermediate representation was developed. As is well known, programs trans-
formed to continuation-passing style make λ-expressions ubiquitous and, there-
fore, make an excellent platform to test new closure allocation mechanisms. The
empirical data presented strongly suggests that the key to success is to have
the compiler treat continuation-closures and noncontinuation-closures differ-
ently. Continuation-closures ought to be stack-allocated while noncontinuation-
closures ought to be heap-allocated and memoized. For the presented bench-
marks, this implementation strategy produced the best observed speed-ups,
reductions in overall closure allocation, reductions in noncontinuation-closure
allocations, and heap memory footprint.

There are several natural lines for long term future work. The first is to
continue the process of memoization by memoizing applications of closures to
arguments. If successful, in addition to the benefits of flat closure memoization,
programs will perform less computation. Another important and new line of
research that rises from this work is the development of a garbage collector for
memoized closures. There is a large spectrum of possibilities to explore that
ranges from always considering memoized closures not in the live set to using
heuristics to decide which memoized closures to consider garbage to only garbage
collecting memoized closures if necessary. Future work also includes measuring
the impact of memoized flat closures for an ANF-based compiler. Finally, part of
our future work will study the elimination of flat closures in favor of generating
memoized bytecode at runtime using a controlled form of β-reduction [26].
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to explain why spin one-half particles obey Fermi Dirac statistics [27]. He rose to the
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Computer Science Department at Seton Hall University for their support that made
the development of this work possible and for their support of our continuing efforts
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O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 37–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85373-2 3

23. Venit, S., Bishop, W.: Elementary Linear Algebra, 2nd edn. Prindle, Weber &
Schmidt, Boston (1985)

24. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd
edn. Prentice Hall PTR, Upper Saddle River (1997)
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Abstract. Task Oriented Programming is a programming paradigm
that enhances ‘classic’ functional programming with means to express
the coordination of work among people and computer systems, the dis-
tribution and control of data sources, and the human-machine interfaces.
To make the creation process of such applications feasible, it is impor-
tant to have separation of concerns. In this paper we demonstrate how
this is achieved within the Task Oriented Software Development process
and illustrate the approach by means of a case study.

1 Introduction

In software development, it is well known that achieving separation of con-
cerns is instrumental in creating well structured software. The reason is that by
“focussing one’s attention upon some aspect” [10] software developers put them-
selves in a better position to ascertain that they are constructing the intended
software in the correct way. A guideline to obtain this is to “design your software
so that each unit or component does one thing and one thing only” [25]. Figure 1a
illustrates a common text book approach that uses layers to structure applica-
tions. The resource access layer is concerned with all external, temporary, and
persistent information sources; the concern of the business layer is the applica-
tion workflow; the presentation layer ’s concern is the design and implementation
of the UI. When applied in a strict way, each layer relies only on the interface
offered by the one immediately below it. For efficiency this is sometimes relaxed.

Task Oriented Programming (TOP) [19,23] is a functional style program-
ming paradigm with a software development approach (Task Oriented Software
Development) that deals with separation of concerns in a novel way. This is
illustrated in Fig. 1b. For each of the above mentioned concerns, it introduces
one core type-parameterized concept : shared data sources (SDS) for the remote
access layer, tasks for the business layer, and UI modeling for the presenta-
tion layer. Instead of hiding the application entities and their relations – the
Universe of Discourse (UoD) – within the business layer, in TOP the UoD is
modeled explicitly and separately. This is done by identifying the entities via

c© Springer International Publishing AG, part of Springer Nature 2018
M. Wang and S. Owens (Eds.): TFP 2017, LNCS 10788, pp. 19–38, 2018.
https://doi.org/10.1007/978-3-319-89719-6_2
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(a) Traditional layered approach (b) TOP approach

Fig. 1. Separation of concerns

data structures and the relations that exist between entities via pure functions.
Hence, this can be done by traditional functional programming. As a result,
TOP enhances functional programming with type-parameterized concepts that
handle their concerns in a better way than a singular functional programming
solution can. TOP is not a layered approach. Instead, UoD elements, SDS’s,
tasks, and UI modeling can use each other where appropriate, which motivates
our choice to illustrate this by means of a pie-chart shape. In TOP types have
a pivotal function. Types convey sufficient information for a TOP implementa-
tion to generate all boilerplate code that comes with programming applications:
(G)UI generation, data (de)serialization, and code distribution. As a result, a
TOP program(mer) is not concerned with these issues. Instead, the above men-
tioned concepts suffice to generate a complete application. For this reason, TOP
is an example of type-driven model based software development.

Task Oriented Software Development (TOSD) is the TOP software develop-
ment approach (Sect. 2). It has emerged from a number of case studies. Some
of them have been reported in [19] and concern case studies performed in col-
laboration with the Dutch coast guard [18,20]. In other case studies we have
investigated the development of distributed games [2,3].

In this paper we show how TOSD achieves separation of concerns (Sect. 3).
We present a small, yet realistic, case study that we have conducted for the Dutch
tax authorities. The case study is implemented in the iTasks framework [24] that
implements TOP as a Domain Specific Language (DSL), shallowly embedded in
the host language Clean to create distributed, multi-user, web-applications. It
uses generic programming [5,15] and dynamic types [26] to satisfy the type driven
requirement of the TOP paradigm. iTasks is not the only TOP implementation:
µTasks [21] is a Haskell embedded TOP DSL implementation for interruptible
embedded systems, and mTasks, currently under development, is a Clean based
TOP implementation for IoT devices [16]. In the remainder of the paper we
discuss related work (Sect. 4), and conclude (Sect. 5).
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2 Task Oriented Software Development

TOSD distinguishes the following phases that are related one-to-one with the
TOP concepts illustrated in Fig. 1b: (1) UoD Modeling, (2) SDS Modeling,
(3) Task Modeling, and (4) UI Modeling. TOSD does not impose or assume a
particular software engineering discipline, such as waterfall, agile, or evolution-
ary software development [25]. It can be used in any of these approaches. The
TOSD phases can be implemented in any order. In our experience it is advisable
to start with the UoD Modeling phase because the entity types and relations
serve as input for the type-driven model based software development approach of
TOP and TOSD. Next, SDS Modeling and Task Modeling are iteratively applied
to identify the (local) data sources and the (computational and user-) tasks that
need to be accomplished in the application. Often, this also involves the UoD to
get improved along the way. It is important to note that at any point in time,
during these phases, one has access to a working application that is generated
by the TOP implementation. In particular, all UI elements are generated and
task distribution is taken care of. This makes the approach particularly useful
for exploration, rapid prototyping, and iterative software development. Finally,
UI Modeling is applied to obtain the proper UI ‘screens’ and layout.

The rest of this section describes the individual TOSD phases in more detail.
Each phase starts with a phrase that describes its key concern.

2.1 UoD Modeling

Concerns the acquisition of the ‘vocabulary’ of the application domain. The pur-
pose of this phase is establish a common ground between the stakeholders of the
application and the developers. The vocabulary is obtained via stakeholder inter-
views and investigation of the application domain. Entities are modeled using
the host language data types, while the entity-relations are modeled using pure
functions. Developing a TOP program starts off the same way as any functional
program. However, for defining side-effects, I/O, user interfaces, communication,
synchronization, TOP concepts are used instead of familiar FP techniques.

The absence of side-effects in the resulting domain model ensures that this
part of the code can be tested and maintained using best-practices such as Test-
Driven Development and Type-Driven Development.

2.2 SDS Modeling

Concerns the identification of existing or needed sources of information. The
purpose of this phase is to identify the sources of information without committing
oneself to how, when, or by what and whom these are used. Sharing information
typically increases the opportunities for collaboration.

Shared Data Sources [12] (Fig. 2) are type-parameterized interfaces to infor-
mation sources. With a SDS of type RWShared p r w, information is read as a
value of type r, and written as a value of type w. The focus domain p controls
the amount of information that is transferred, which is vital in case of large



22 J. Stutterheim et al.

:: RWShared p r w // is an opaque type
:: SDS r w :== RWShared () r w
:: Shared a :== SDS a a
// SDS combinators:
(>*<) :: (RWShared p a b) (RWShared p c d) -> RWShared p (a,c) (b,d) | iTask p
mapRead :: ( r -> r‘) (RWShared p r w) -> RWShared p r‘ w | iTask p
mapWrite :: (w‘ r -> Maybe w) (RWShared p r w) -> RWShared p r w‘ | iTask p
// SDS access:
get :: (SDS r w) -> Task r | iTask r
set :: w (SDS r w) -> Task w | iTask w
upd :: (r -> w) (SDS r w) -> Task w | iTask r & iTask w
watch :: (SDS r w) -> Task r | iTask r
// predefined SDS:
currentDate :: SDS Date ()

Fig. 2. Fragment of the iTask API concerning SDS Modeling

volumes of data. In this paper this is not used, and instead the simpler versions,
SDS and Shared are used. SDSs use a publish-subscribe approach: whenever shared
information is changed by someone, those parties who need to be informed are
automatically updated. SDSs can be defined globally and locally, thus limiting
and protecting their access. Examples of global SDSs are the current time, the
current value of sensors on some other system, information stored in data bases,
and files on file systems. SDSs are compositional in two directions: some SDS
combinators aggregate SDSs, while others allow for projections of information.
Examples in Fig. 2 are >*< that combines two SDSs into a paired version, mapRead
that alters the read-interface, and mapWrite that alters the write-interface.

2.3 Task Modeling

Concerns the identification of the user and application tasks. The purpose of
this phase is to identify who is working on what, the users, task dependencies,
required information, and the interaction points: what information needs to be
exchanged between application and users.

More precisely, a task is a type-parameterized interface expressed as a func-
tion that results in a value of opaque type Task a (Fig. 3a). Task functions can
have arguments like any other function, and may be higher order: they can have
functions and tasks as argument or result. Tasks are opaque and observable at
the same time: the type parameter a is used by the opaque task to inform who-
ever is interested about the current ‘progress’ of the task by means of a task
value of type TaskValue a that can change over time. The type and values are
determined by the task. When there is no value, the task has no sensible infor-
mation about its progress. When a task value is unstable, the task has sensible
information about its progress, but further on, the task value might be differ-
ent. Finally, when a task value is stable, it will no longer change. The monadic
style return combinator has a stable task value. The functor operator @ alters
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the task value but not its stability. Tasks that define interaction points (the task
functions with Information in their name) never have a stable task value. Every
interaction point comes with a UI that is automatically generated from the type
of its task value and that allows the user to enter, view, or update values of the
specified type. This value can also reside within a SDS (the task functions that
also have Shared in their name) and in that case SDS changes caused by other
tasks are also automatically applied to that interaction point.

Tasks are compositional. We first discuss the sequential combinators
(Fig. 3b). The core sequential task combinator is step, >>*. While a task is run-
ning, the OnValue task continuations observe its task value and may automatically
trigger the execution of the next task as soon as the first of them computes a Just

task. The OnAction task continuation is similar, but requires a user to activate the
corresponding Action. A number of standard task continuation function patterns
are provided: ifValue only yields a continuation task if the predicate holds for
the currently observed task value, ifCond yields a continuation task only if the
given condition holds and ignores the currently observed task value, and always

ignores everything and simply returns the continuation task. Note that because
the latter two patterns ignore the currently observed task value, they typically
occur in combination with the OnAction task continuation. The monadic style
bind combinators >>= and >>- both make a step when the observed task has a
stable task value, but >>= adds an OnAction to allow the user to make this step
also when the observed task is unstable. The >>| is the usual derived combinator
of >>= that ignores the task value altogether.

The signature of the core parallel task combinator is too extensive to discuss
in this paper: it controls a dynamic collection of local and remote tasks that
each have access to each other’s task values. Instead, we present the derived
task combinators that are used in the case study (Fig. 3c). The task value of the
-&&- combinator consists of the task values of its sub tasks, if any, and is stable
only if both task values are stable. The task value of the -||- combinator is either
the first stable task value of its sub tasks, or reflects the most recent unstable
task value, if any. The ||- combinator forks the first task, and mirrors only the
task value of the second task (vice versa for -||). Finally, the @: combinator forks
a remote task and adds it to the work pool of the identified user who can be
anyone, have a particular role, or a specific individual. The user decides in what
order to work on the tasks in her task pool.

Higher-order tasks encourage developers to create reusable task patterns. In
Fig. 4 we show a few of them that are used in the case study. The maybeCancel

task adds a ‘panic’ button to ensure that the user can always force progress. The
waitForDate task shows the content of the currentDate SDS (Fig. 2) until a given
date. The deadlineWith task adds a parallel task that returns a value after some
time, thus ensuring that the combined task always returns a value. The reminder

task displays a reminder message after a given date.
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:: Task a // is an opaque type
:: TaskValue a = NoValue | Value a Stability
:: Stability = Unstable | Stable
// Monadic style return:
return :: a -> Task a | iTask a
// Alter task value and retain stability:
(@) infixl 1 :: (Task a) (a -> b) -> Task b
// Interaction point tasks (see Figure 5 for the Option types):
enterInformation :: String [EnterOption m ] -> Task m | iTask m
viewInformation :: String [ViewOption m ] m -> Task m | iTask m
updateInformation :: String [UpdateOption m m] m -> Task m | iTask m
viewSharedInformation :: String [ViewOption r ] (SDS r w) -> Task r | iTask r
updateSharedInformation :: String [UpdateOption r w] (SDS r w) -> Task r | iTask r

& iTask w

(a) Tasks and basic task functions

// Step combinator:
(>>*) :: (Task a) [TaskCont a (Task b)] -> Task b | iTask a & iTask b
:: TaskCont a b = OnValue ((TaskValue a) -> Maybe b)

| OnAction Action ((TaskValue a) -> Maybe b) | . . .
:: Action = Action String
// Task continuation functions:
ifValue :: (a -> Bool) (a -> b) (TaskValue a) -> Maybe b
ifCond :: Bool b (TaskValue a) -> Maybe b
always :: b (TaskValue a) -> Maybe b
// Derived combinators of step:
(>>-) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b
(>>=) infixl 1 :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b
(>>|) infixl 1 :: (Task a) (Task b) -> Task b | iTask a & iTask b

(b) Step combinator and derived combinators

// Derived combinators of parallel:
(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a,b) | iTask a & iTask b
(-||-) infixr 3 :: (Task a) (Task a) -> Task a | iTask a
(-|| ) infixl 3 :: (Task a) (Task b) -> Task a | iTask a & iTask b
( ||-) infixl 3 :: (Task a) (Task b) -> Task b | iTask a & iTask b
// Task distribution:
:: UserConstraint = AnyUser | UserWithId UserId | UserWithRole Role
:: UserId :== String
:: Role :== String
(@:) :: (UserConstraint,String) (Task a) -> Task a | iTask a

(c) Derived parallel combinators

Fig. 3. Fragment of the iTask API concerning Task Modeling
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maybeCancel :: String (Task a) -> Task (Maybe a) | iTask a
maybeCancel panic t = t >>* [ OnValue (ifStable (return o Just) )

, OnAction (Action panic) (always (return Nothing)) ]

waitForDate :: Date -> Task Date
waitForDate d
= viewSharedInformation ("Wait�until�" +++ toString d) [] currentDate
>>* [OnValue (ifValue (\now -> date < now) return)]

deadlineWith :: Date a (Task a) -> Task a | iTask a
deadlineWith d a t = t -||- (waitForDate d >>| return a)

reminder :: Date String -> Task ()
reminder d m = waitForDate d >>| viewInformation ("Reminder:�please�" +++ m) [] ()

Fig. 4. Generally useful task patterns

2.4 UI Modeling

Concerns obtaining the appropriate UI experience. The iTasks framework gen-
erates for each interaction point a web-based interactive editor task with which
the user can construct a proper value of the demanded type for any first order
type. The web-based user interfaces work in any HTML5 compatible browser.
Because of the type driven approach of TOP, this amounts to deciding the type
of information that should be exchanged, knowing that a fully working user
interface is generated automatically. This way of working is completely opposite
of the more traditional approach of first designing the collection of user interface
screens, and develop the program to implement these screens.

vksaTi&)a>-v(sAretnE:v.E=anoitpOretnE::
| E.v: EnterUsing (v -> a) (Editor v) & iTask v

vksaTi&)v>-a(sAweiV:v.E=anoitpOweiV::
| E.v: ViewUsing (a -> v) (Editor v) & iTask v

:: UpdateOption a b = E.v: UpdateAs (a -> v) (a v -> b) & iTask v
| E.v: UpdateUsing (a -> v) (a v -> b) (Editor v) & iTask v

:: SVGEditor m v = { initView :: m -> v, updView :: m v -> v, updModel :: m v -> m
, renderImage :: m v *TagSource -> Image v }

fromSVGEditor :: (SVGEditor v w) -> Editor v | iTask v

Fig. 5. Fragment of the iTask API concerning UI Modeling

Automatically generated user interfaces may not always have the right look
and feel, so it is necessary that they can be customized. It is important to note
that this does not alter the role of the interaction points within the task struc-
tures as defined during the Task Modeling phase, but only requires a local change
per interaction point that needs to be customized (Fig. 5). In the simplest case,
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a type is transformed to another type (EnterAs, ViewAs, UpdateAs), after which the
generic machinery generates another user interface. A more sophisticated cus-
tomization can be achieved defining custom client-side editors [11] (EnterUsing,
ViewUsing, UpdateUsing). One such editor is fromSVGEditor with which a scalable vec-
tor graphics (SVG) [9] Image [3] can be created from the required model and view
values and keeps them ‘in sync’ (updView and updModel). Finally, the programmer
can overrule the generated layout of task UIs with local annotations [4].

3 Case Study: Solar Panel Tax Compensation

The case has been provided by the Dutch tax authorities and is about a fictional,
yet representative, law that enables citizens to apply for tax compensation when
they have covered part of their home’s roof with solar panels. The execution of
this law is done by the Dutch tax authorities. Informally, the solar panel tax
compensation law says:

1. the compensation applies only to homes in the Netherlands;
2. the applicant must own the house and reside in it;
3. the solar panels must be of an officially acknowledged type;
4. the solar panels are installed by an officially acknowledged roofing company;
5. the applicant can apply only once every five years per home address.

For rules 1 and 2 the application needs information from civil affairs and the
cadastre. To check rules 3 and 4, the application must have access to a list of
acknowledged solar panel types and roofing companies. The latter is maintained
by the chamber of commerce. Finally, dossiers need to be created and stored
to check rule 5. For this particular case, a dossier consists of the applicant’s
data, invoices and proofs of payment, and a declaration by the roofing company
to support the claim. The dossier needs to be completed within three months
after the applicant has started the procedure (and a reminder is sent within two
months). Completed dossiers are verified by an appropriate tax officer who can
either accept or reject, with reason, an application. The applicant is informed,
and can, in the latter case, attempt to resubmit the application.

From this specification, we learn that the users are citizens, companies, and
tax officers. Besides the tax authorities, information from civil affairs, the cham-
ber of commerce, and the cadastre is required. For each organisation, we intro-
duce a module: Compensation, CivilAffairs, ChamberOfCommerce, Cadastre. We apply
TOSD below in the order UoD Modeling (Sect. 3.1), SDS Modeling (Sect. 3.2),
Task Modeling (Sect. 3.3), and UI Modeling (Sect. 3.4). In Sect. 3.5, we argue
why this case study achieves separation of concerns.

3.1 UoD Modeling

The ‘vocabulary’ of the application domain is given in Figs. 6 and 7. The rela-
tions in these modules are straightforward functions. The civil affairs module
defines the Citizen entity. Citizens are identified via a social security number
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definition module CivilAffairs.UoD
import iTasks

:: Citizen
= { ssn :: SSN
, name :: Name
, homeAddress :: Maybe Address }

:: NameHomeAddress
= { name :: Name
, homeAddress :: Address }

:: Name
= { forename :: String
, surname :: String }

:: Address
= { postcode :: Postcode
, houseNumber :: Int }

:: SSN :== String
:: Postcode :== String
:: Amount :== Int

citizenFromSSN
:: SSN [Citizen] -> Maybe Citizen

nameHomeAddressFromCitizen
:: Citizen -> NameHomeAddress

definition module ChamberOfCommerce.UoD
import iTasks

:: Company
= { cocNo :: COCN
, cocName :: String
, type :: [CompanyType] }

:: COCN :== String
:: CompanyType :== String

companyHasType
:: CompanyType Company -> Bool

definition module Cadastre.UoD

import CivilAffairs.UoD
import ChamberOfCommerce.UoD

:: CadastreRealEstate
= { address :: Address
, mainOwner :: Owner
, subOwners :: [Owner] }

:: Owner
:== Either SSN COCN

Fig. 6. The UoDs of civil affairs, chamber of commerce, and cadastre

(SSN). The chamber of commerce module defines the information regarding com-
panies (Company). They are identified via a chamber of commerce number (COCN).
The company type keeps track of the officially registered roles of the company.
The cadastre module keeps track of all real estate (not only homes). Real estates
are identified via their address, and can be owned by citizens and companies.

The chief module Compensation.UoD captures the entities and relations of the
solar panel tax compensation. It depends on the entities and relations that are
visible through the cadastre module. Besides that, it uses the predefined iTasks
types Date and Document. A Document is an entity that can be uploaded, which is
useful for invoices and photos. The decisionsAfter relation retrieves all relevant
decisions concerning a citizen after a given date. The collectionsAfter relation
retrieves all collections of a citizen after a given date. The realEstatesOfCitizen

relation uses the cadastre information to retrieve all (sub) owned real estate
of a citizen and tracks which of these is the home of the citizen. Finally,
clientReminderDate and clientDeadlineDate yield the corresponding deadlines of two
and three months, using the general purpose relation shiftDate. For the sake of
brevity, we do not model entity formats such as social security and chamber of
commerce numbers, postcodes, and house numbers. In general, the required level
of detail of the UoD is limited only by the stakeholder needs and host language
expressiveness.
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definition module Compensation.UoD
import Cadastre.UoD // Figure 6

:: RealEstateOwner = { ownerID :: Owner
, addresses :: [Address] }

:: OwnedRealEstate = { isHomeAddress :: Bool
, postcode :: Postcode
, houseNumber :: Int }

:: Decision = { ssn :: SSN
, date :: Date
, description :: String
, status :: DecisionStatus
, invoiceAmount :: Amount
, compensation :: Amount }

:: Collection = { ssn :: SSN
, description :: String
, date :: Date
, amount :: Amount }

:: TaxSolarPanelDossier = { request :: TaxCompensationCitizenRequest
, declarationCompany :: CompanyDeclaration
, date :: Date }

:: TaxCompensationCitizenRequest
= { ssn :: SSN
, applicant :: NameHomeAddress
, documents :: TaxCompensationDocuments
, company :: Company }

:: TaxCompensationDocuments
= { invoiceAmount :: Amount
, invoiceDate :: Date
, invoiceProof :: Document
, proofOfPayment :: Document
, roofPhotos :: [Document] }

:: CompanyDeclaration = { solarPanelType :: AcceptedSolarPanel
, roofPhotos :: [Document]
, roofAreaCovered :: RoofAreaCovered
, date :: Date }

:: DecisionStatus = Approved | Rejected Reason
:: Reason :== String
:: AcceptedSolarPanels = SolarPanels [AcceptedSolarPanel]
:: AcceptedSolarPanel :== String
:: RoofAreaCovered :== Int
:: TimePeriod = Years Int | Months Int | Days Int

decisionsAfter :: SSN (DecisionStatus -> Bool) Date [Decision] -> [Decision]
collectionsAfter :: SSN Date [Collection] -> [Collection]
realEstatesOfCitizen :: Citizen [CadastreRealEstate] -> [OwnedRealEstate]
shiftDate :: TimePeriod Date -> Date
clientReminderDate :: Date -> Date // (Months 2)
clientDeadlineDate :: Date -> Date // (Months 3)

Fig. 7. The UoD of the solar panel tax compensation
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3.2 SDS Modeling

The existing and needed information sources are enumerated in Fig. 8. For sim-
plicity, we assume that civil affairs, chamber of commerce, and cadastre provide
access to the citizens, companies, and real estate respectively. The compensation
module is split in two groups. The first group of SDSs are storages: keeping track
of real estate owned by citizens (realEstateOwners), all decisions (decisions), all col-
lections that need to be payed (collectionPayments) or claimed (collectionClaims),
or have been processed (collectionsProcessed), the officially accepted solar pan-
els (acceptedSolarPanels), and finally, all solar panel tax compensation dossiers
(solarPanelSubsidyRequests). The second group of SDSs use mapRead (Fig. 2) and an
appropriate relation from the compensation UoD (Fig. 7) to obtain information
regarding a particular citizen. Here is an example:

currentRealEstate c = mapRead (realEstatesOfCitizen c) cadastreRealEstate

definition module
CivilAffairs.SDS

import CivilAffairs.UoD

citizens :: Shared [Citizen]

definition module
ChamberOfCommerce.SDS

import ChamberOfCommerce.UoD

companies :: Shared [Company]
companiesOfType

:: CompanyType
-> Shared [Company]

definition module
Cadastre.SDS

import Cadastre.UoD

cadastreRealEstate
:: Shared [CadastreRealEstate]

definition module Compensation.SDS
import Compensation.UoD

realEstateOwners :: Shared [RealEstateOwner]
decisions :: Shared [Decision]
collectionPayments :: Shared [Collection]
collectionClaims :: Shared [Collection]
collectionsProcessed :: Shared [Collection]
acceptedSolarPanels :: Shared [AcceptedSolarPanel]
solarPanelSubsidyRequests

:: Shared [TaxSolarPanelDossier]

currentDecisions :: SSN (DecisionStatus -> Bool)
Date -> Shared [Decision]

currentPayments :: SSN Date -> Shared [Collection]
currentClaims :: SSN Date -> Shared [Collection]
currentProcessed :: SSN Date -> Shared [Collection]
currentRealEstate:: Citizen -> SDS [OwnedRealEstate]

[CadastreRealEstate]

Fig. 8. The SDSs of all organisations

3.3 Task Modeling

In the case study the users are the citizens, company employees, and tax offi-
cers. In the interaction points, we only need to concern ourselves with the type



30 J. Stutterheim et al.

of the information that is exchanged, knowing that a default UI is automatically
generated, and, equally important, it can always be customized without alter-
ing the task structure (Sect. 3.4). The application tasks are the automatic check
whether an application is valid and taking care of filing the dossiers, decisions,
and payments. The coordination involves parallelism between the applicant and
company employees, and timing constraints as dossiers need to be completed
within three months, and reminders need to be emitted after two months. To
complicate things further, applicants can cancel requests, companies can decide
not to provide the evidence, and applicants can resubmit rejected requests. Nev-
ertheless, the top level task requestSolarPanelCompensation (Fig. 9a) can be struc-
tured by three subsequent steps: the application automatically checks whether
the citizen meets the conditions (checkConditions); the declarations are obtained
from the citizen and the roofing company (obtainDeclarations); the request is
submitted and verified by a tax officer (submitOrCancelSubsidy). Although the task
specification fits in about 200 loc, it is still too large for this paper. We discuss
in more detail tasks checkConditions (Fig. 9b), obtainDeclarations (Fig. 9c), and
submitOrCancelSubsidy (Fig. 10b).

Task checkConditions accesses several SDSs to assess whether the applicant
is entitled to apply for the subsidy (owns the real estate and has not received
subsidy in the past five years). In obtainDeclarations, the applicant provides the
information regarding the installation of the solar panels (declarationApplicant),
and, at the same time (-&&-), the roofing company provides the evidence that they
have installed the solar panels (declarationCompany). (Figure 4 defines maybeCancel

and deadlineWith.) The progress of this task is reported as a Declarations value,
and is created by the pure function toDeclarations. It yields CanceledByCitizen if
the applicant hit the ‘panic’ button, CanceledByCompany if the company decided not
to provide information, and Declarations if all information has been provided.

The applicant (Fig. 9d) provides a TaxCompensationDocuments value (module
Compensation.UoD, Fig. 7). Figure 12 shows the initial UI (left) that is generated
for the enterInformation task, the specialized Date UI (middle), and manipulating
a list of documents (right). At the same time, a parallel task (-||) is started that
sends a reminder after two months if the first one has not been finished.

Before the company can be asked to provide the evidence, the applicant tells
which roofing company has been involved (Fig. 10a). This choice involves the
companiesOfType SDS (module ChamberOfCommerce.SDS, Fig. 8). The company receives
(@:) the provideDeclaration task to provide the evidence (Fig. 11a).

When in possession of the required documents, the applicant can decide to
submit the subsidy request to the tax authority in the submitOrCancelSubsidy task
(Fig. 10b). If she submits the request, a tax authority employee with role "officer"
can work on the processRequest task and decide whether or not to accept and fur-
ther process the request. If the request is not approved, the applicant can check
the reason and try to resubmit the request after editing it (resubmitSubsidy) or
just cancel it entirely. If the request has been approved, the applicant terminates
the entire procedure via the action labeled with Continue.
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requestSolarPanelCompensation :: Citizen -> Task ()
requestSolarPanelCompensation citizen
= checkConditions citizen
>>- \checks -> if (not checks.ownsRealEstate || not checks.noSubsidyPast5Years)

(showChecks checks)
( obtainDeclarations citizen
>>- \result ->
case result of
CanceledByCitizen _ = return ()
CanceledByCompany _ = showChecks {checks & declarationCompany = False}
Declarations dossier = submitOrCancelSubsidy dossier)

where showChecks c = viewInformation msg [] c >>| return ()
msg = "Your�request�can�not�be�submitted;�it�does�not�satisfy�these�rules:"

(a) The top level task description of applying for compensation

checkConditions :: Citizen -> Task ValidityChecks
checkConditions applicant
= get currentDate
>>- \today -> get (currentRealEstate applicant)
>>- \owns -> get (currentDecisions applicant.ssn ((==) Approved)

(shiftDate (Years -5) today))
>>- \grants -> return {ownsRealEstate = any (\own -> own.isHomeAddress) owns

,noSubsidyPast5Years = isEmpty grants
,declarationCompany = False}

(b) Checking the conditions of an applicant

:: Declarations = CanceledByCitizen NameHomeAddress
| CanceledByCompany Company
| Declarations TaxSolarPanelDossier

obtainDeclarations :: Citizen -> Task Declarations
obtainDeclarations citizen
= get currentDate
>>- \d -> deadlineWith (clientDeadlineDate d) Nothing

(maybeCancel "Cancel�Request"
(declarationApplicant d -&&- declarationCompany d applicant))

@ toDeclarations d applicant
where applicant = nameHomeAddressFromCitizen citizen

(c) The top level structure of obtaining applicant and company declarations

declarationApplicant :: Date -> Task TaxCompensationDocuments
declarationApplicant today
= (enterInformation msg [] >>= return) -||
(reminder (clientReminderDate today) "finish�your�request�for�tax�compensation")

where
msg = "Please�enter�the�following�information�for�your�tax�compensation�request:"

(d) The applicant creates the solar panel tax compensation documents

Fig. 9. Task Modeling, part 1
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declarationCompany:: Date NameHomeAddress -> Task (Company,Maybe CompanyDeclaration)
declarationCompany today applicant
= selectOfficialSolarPanelCompany
>>- \company ->

(UserWithId company.cocNo,"Request�declaration")
@: (provideDeclaration today applicant company)

-||
(reminder (clientReminderDate today) "finish�the�proof")

>>= \decl -> viewInformation (msg_decision company decl) [] decl
>>| return (company,decl)

where
msg_decision c d = "Declaration�was�" +++ if (isNothing d) "negative" "positive"

selectOfficialSolarPanelCompany :: Task Company
selectOfficialSolarPanelCompany
= enterChoiceWithShared msg [] (companiesOfType "solar�panel�company") >>= return

where
msg = "Please�enter�the�name�of�the�company�that�installed�the�solar�panels"

(a) The applicant identifies the roofing company

submitOrCancelSubsidy :: TaxSolarPanelDossier -> Task ()
submitOrCancelSubsidy dossier
= viewInformation "You�can�submit�the�subsidy" [] dossier
>>* [ OnAction (Action "Submit") (always (submitSubsidy dossier))

, OnAction (Action "Cancel") (always (return ())) ]

submitSubsidy :: TaxSolarPanelDossier -> Task ()
submitSubsidy dossier
= get currentDate
>>- \date -> let dossier = {dossier & date = date}
in (( viewInformation "Your�request�is�being�processed" [] ())

||-
( (UserWithRole "officer","Subsidy�request") @: processRequest dossier))

>>- \decision -> viewInformation "Your�request�has�been�processed" [] decision
>>* [ OnAction (Action "Edit�request") (ifCond (decision.status <> Approved)

(resubmitSubsidy dossier))
, OnAction (Action "Cancel�request") (ifCond (decision.status <> Approved)

(return ()))
, OnAction (Action "Continue") (ifCond (decision.status == Approved)

(return ())) ]
>>| return ()

resubmitSubsidy :: TaxSolarPanelDossier -> Task ()
resubmitSubsidy dossier
= updateInformation "Edit�your�documents" [] dossier.request.documents
>>= \new -> submitOrCancelSubsidy {dossier & request.documents = new }

(b) The applicant can submit, cancel, or update and resubmit a request

Fig. 10. Task Modeling, part 2
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provideDeclaration:: Date NameHomeAddress Company -> Task (Maybe CompanyDeclaration)
provideDeclaration today applicant company
= viewInformation msg [] applicant
>>* [ OnAction (Action "Yes,�I�provide�declaration")

(always (provide today >>- return o Just))
, OnAction (Action "No,�unknown�customer") (always (return Nothing))]

where
msg = "This�customer�would�like�to�receive�a�declaration�for�the�tax�authorities:"

provide :: Date -> Task CompanyDeclaration
provide today
= enterChoiceWithShared "Which�solar�panels�were�used?" [] acceptedSolarPanels

-&&-
enterInformation ("How�many�square�metres�of�solar�panels�have�been�installed?"

+++ "�[round�up�to�whole�numbers]") []
-&&-

enterInformation "Upload�photos" []
>>= \(type,(area,photos)) -> return { solarPanelType = type

, roofPhotos = photos
, date = today
, roofAreaCovered = area }

(a) The roofing company is asked to provide evidence

processRequest :: TaxSolarPanelDossier -> Task Decision
processRequest dossier
= viewInformation "Dossier�Request�Solar�Panel�Subsidy" [] dossier

||-
updateInformation "Approve�or�explain�why�request�is�rejected:" [] Approved

>>= \verdict -> get currentDate
>>- \today ->
let invoice = dossier.request.documents.invoiceAmount

compensation = if (verdict == Approved)
(solar_panel_subsidy_law today.year invoice) 0

decision = { ssn = dossier.request.ssn
, date = today
, description = "Solar�Panel�Subsidy�Request"
, status = verdict
, invoiceAmount = invoice
, compensation = compensation }

collection = { ssn = dossier.request.ssn
, description = "Solar�Panel�Subsidy�Collection"
, date = today
, amount = compensation }

in viewInformation "Decision" [] decision
>>| upd (append dossier) solarPanelSubsidyRequests
>>| upd (append decision) decisions
>>| upd (append collection)

(if (amount < 0) collectionClaims collectionPayments)
>>| return decision

(b) Tax officer decision and storage

Fig. 11. Task Modeling, part 3
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Fig. 12. Default UI of the declarationApplicant task

3.4 UI Modeling

We illustrate this phase by means of the provideDeclaration task (Fig. 11a). The
left image in Fig. 13 shows the default UI of this task. This is a rendering of the
record structure of the type NameHomeAddress. If we write a function customer ::

NameHomeAddress -> String that shows the same information in a single line of text,
then, only by replacing the [] of the viewInformation task with [ViewAs customer],
we obtain the UI that is displayed in Fig. 13 in the middle image. If we prefer to
use an image, and write the function card (Fig. 14), then, by replacing the [] of
the viewInformation task with [ViewUsing id (withImg card)], we obtain the UI that
is displayed in Fig. 13 in the right image.

Fig. 13. Customizing the UI of the provideDeclaration task

card :: (ImageTag,*ImageTag) NameHomeAddress -> Image NameHomeAddress
card (t,ut) {name={forename,surname}, homeAddress={postcode,houseNumber}}
= overlay [(AtMiddleX,AtMiddleY)] [] [tag ut
(grid (Rows 2) (RowMajor,LeftToRight,TopToBottom)

(repeat (AtLeft,AtMiddleY)) []
[person, text font (foldr (+++) "" [forename, "�", surname])
,house, text font (foldr (+++) "" [postcode, "�", toString houseNumber])]
NoHost)]

(Host (rect (imagexspan t *. 1.2) (imageyspan t *. 1.2) <@< {fill=white}))
where font = normalFontDef "Arial" 12.0

Fig. 14. Custom rendering of NameHomeAddress as an Image
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3.5 Discussion

The case study supports the claim that TOSD achieves separation of concerns.
First, the type driven approach of TOP eliminates the need to deal with

(G)UI construction, data (de)serialization, and code distribution. In the case
study there is no code for these issues, yet it contains sufficient information to
create a distributed, multi-user, web application.

Second, the modeling phases of TOSD have clearly formulated purposes. This
helps the stakeholders and task engineers to determine which modeling phase
to enter, what they should think about, and what they should not think about.
In UoD Modeling, the entities and relations are determined without considering
their rendering, serialization, and storage. In SDS Modeling, the shared informa-
tion is identified, without considering by who, what, when, or where, it is used.
In Task Modeling, the user (role)s and tasks are identified, without worrying
how (G)UI’s are created, how SDSs are accessed, or how work is distributed. In
UI Modeling, any interaction point can be customized locally, without impact-
ing the task structures, used SDSs, and UoD elements. One example of this
in the case study is formed by the UoD entities Citizen, CadastreRealEstate, and
OwnedRealEstate (Fig. 6), that are used in the relation realEstatesOfCitizen (Fig. 7),
which, in turn, is used in the derived SDS currentRealEstate (Fig. 8), which, in
turn, is used in the task checkConditions (Fig. 9b).

Third, the example also demonstrates that despite being created in separate
modeling phases, entities can mutually strengthen each other. UoD entities can
be stored and retrieved, viewed and manipulated in interaction points, and have
a customized rendering. SDSs can be combined with any other, behave as a
task, and be viewed and manipulated in interaction points, with a customized
rendering. Tasks only need to define their own behaviour, knowing that their
task value is the interface to other tasks and task combinators to obtain the
proper progress of the application. The UI modeling can use UoD entities to
customize the automatically created UI of the interaction points.

The separation of concerns leads to a modular structure of the source code
and results in a short development time. The first version of the case study
was created by a single person in two days. An additional day was used to
translate it from Dutch to English and do some refactoring. The source code is
small (817 loc, including empty and comment lines). The two largest modules
contain the UoD modules that were presented in Sect. 3.1 (260 loc, 32%) and
the tax authority tasks that were mostly presented in Sects. 3.3 and 3.4 (235
loc, 29%). The modules covering all the SDS’s (Sect. 3.2) are small because most
of them merely declare a SDS of a type (66 loc, 8%). One module contains
generally useful task extensions to manipulate SDS’s interactively (89 loc, 11%).
One module deals with the payments, and viewing the status of citizens (86 loc,
11%). The resulting system allows users to play different roles and manipulate
all SDS’s. For the latter purpose it suffices to merely connect an interaction task
with a SDS (21 loc, 2%). Finally, all top level tasks are collected and published
as a single web application in the main module (60 loc, 7%).
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4 Related Work

Functional Reactive Programming (FRP) was first introduced by Elliott and
Hudak [13]. FRP has two central notions: behaviours and events. Behaviours
are values that change continuously over time. Events are discrete. They can be
real-world events, like a mouse click, or something more abstract like a predicate.
Time-dependent behaviour is included in iTask by means of a SDS that provides
access to the current time (similar to the SDS that provides access to the current
date). This SDS can be turned into a task with watch (Fig. 2), and its evolving
time value can be transformed via a function with @ (Fig. 3). Vice versa, sources
of information (read-only SDS in TOP) are available in FRP, such as the mouseSF

signal transformer of Fruit [7] that gives access to the current mouse position.
The only other FRP state is obtained via a loop, resulting in state that is locally
encapsulated within a signal transformer. The TOP SDS concept is more general
than the state concept in FRP. TOP interaction points can be compared to
a signal transformer in FRP of the same input and output type, except that
in TOP the UI is generated automatically from the type, and the fact that
interaction points can be coupled with SDS’s. In FRP the signal transformers
are tightly coupled with the types of their input and output and the programmer
must use combinator functions to ‘pipeline’ the proper information to along the
circuit. The iData framework [1,22] shares this feature with FRP. In TOP the
coupling is much looser. In our experience with these systems we think that the
TOP approach is better suited to achieve separation of concerns.

Elm [8] was initially promoted as a practical implementation of FRP.
Recently, they abandoned FRP in favour of subscriptions. WebSharper [6,14] is
another example of a reactive web framework. It offers a more traditional Model-
View-Controller [17] (MVC) style framework for web application programming,
whereas TOP operates at the higher abstraction level of tasks. MVC is a popular
approach for implementing separation of concerns. The views concern the pre-
sentation layer, and part of the business layer is split between the model (keep
the information consistent, regardless of how many, and which views exist on
that information) and controller (that coordinates view changes to the model
and vice versa). In TOP the interaction points are an extreme take on MVC
because of the type-driven model based software development approach: the
type of a model (entities and relations) suffices to automatically generate the
views and controllers. Only when customizing a view, a ‘controller’ is defined
explicitly (Sect. 2.4). Note that the TOP interaction points are typically only a
small part of the business layer. The coordination of tasks and users and sharing
information between them is dealt with via the task structure.

5 Conclusions

We have shown a systematic approach, called TOSD, to develop TOP programs
in a way that results in a high degree of separation of concerns. This is obtained
by identifying four development phases that each have a clearly stated concern
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and purpose. TOP supports each concern via the typed abstractions SDS, Task,
and UI customization. These typed abstractions use the developed UoD entities
and their functional relations as input.
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TNO. We thank the anonymous reviewers for their constructive comments.
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Abstract. We address the problem of transforming typed functional
programs into relational form. In this form, a program can be run in
various “directions” with some arguments left free, making it possible
to acquire different behaviors from a single specification. We specify the
syntax, typing rules and semantics for the source language as well as its
relational extension, describe the conversion and prove its correctness
both in terms of typing and dynamic semantics. We also discuss the
limitations of our approach, present the implementation of the conversion
for the subset of OCaml and evaluate it on a number of realistic examples.

1 Introduction

Relational programming is an attractive technique, based on the idea of con-
structing programs as relations. While in general some relational effects can be
reproduced with a number of languages for logic programming, such as Prolog,
Mercury1, or Curry2, in a narrow sense relational programming amounts to writ-
ing relational specifications in miniKanren [10]. miniKanren3, initially designed
as a small relational DSL, embedded in Scheme/Racket, was later implemented
for a number of general-purpose host languages, including Scala, Haskell, Stan-
dard ML and OCaml.

With relational approach, it becomes possible to give simple and elegant
solutions for the problems, otherwise considered as tricky, tough, tedious, or
boring [6]. For example, relational interpreters can be used to derive quines—
programs, which reduce to themselves, as well as twines or thrines (pairs or
triples of programs, reducing to each other) [8]; a straightforward relational
description of simply typed lambda calculus [3] inference rules works both as
type inferencer and inhabitation problem solver [5]; relational list sorting can be
used to generate all permutations [13], etc.

On the other hand, writing relational specifications can sometimes be a tricky
and error-prone task. Fortunately, many specifications can be written systemat-
ically by “generalizing” a certain functional program. From the very beginning,
1 https://mercurylang.org.
2 http://www-ps.informatik.uni-kiel.de/currywiki.
3 http://minikanren.org.
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the conversion from functional to relational form was considered as an element
of relational programming thesaurus [10]. However, the traditional approach—
unnesting—was formulated for an untyped case, worked only for specifically
written programs and was never implemented.

We present a generalized form of relational conversion, which can be applied
to typed terms in general form. We study the relational conversion for a
small ML-like language (essentially, a certain subset of OCaml), equipped with
Hindley-Milner type system with let-polymorphism [15]. We start from retelling
the syntax, typing rules, and operational semantics, and then extend the source
language with a conventional set of relational constructs. This set corresponds
to existing typed embedding of miniKanren into OCaml [13]. We then present
typing rules and develop operational semantics for this relational extension; to
our knowledge, this is the first attempt to specify formal semantics for miniKan-
ren. Next, we develop formal rules for relational conversion and prove, that these
rules respect both typing and semantics. Finally, we describe the implementa-
tion of a relational converter and demonstrate its application for a number of
problems, for some of which we present a relational solution for the first time.

We would like to express our gratitude to William Byrd and the anonymous
reviewers for their constructive remarks, which, we believe, led to the improve-
ment of the presentation.

2 Relational Programming in miniKanren

In the context of this paper, we will use a certain concrete implementation of
miniKanren—a shallow DSL for OCaml4, called OCanren [13]. OCanren cor-
responds to miniKanren with disequality constraints [1], and (modulo typing)
follows the original implementation [11,12]. Here we describe the external view
on OCanren, giving the only intuitive meaning of its constructs; the formal
description will be presented in Sect. 3.2. We also use a simplified syntax, which
is a little bit different from the concrete syntax in actual implementation, but
assumed to be easier to read.

The central notion of miniKanren is goal ; in OCanren a goal can be an
arbitrary expression of reserved goal type, which we denote G. There are only
five syntactic forms of goals (denoted below as g, g1, g2, etc.):

– conjunction g1 ∧ g2;
– disjunction g1 ∨ g2;
– fresh variable introduction fresh (x) g;
– unification t1 ≡ t2;
– disequality constraint t1 �≡ t2.

Two last forms of goals constitute a basis for goal construction; here t1 and
t2 are terms. In OCanren a term is an arbitrary expression of polymorphic logic

4 https://github.com/dboulytchev/ocanren.

https://github.com/dboulytchev/ocanren
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type αo. The postfix notation �o is a traditional way to denote relational entities,
and we will use it for types as well5.

The simplest expression of logic type is a variable, bound in fresh. Another
example is a primitive value, injected into the logic domain with a built-in
primitive “↑”, such as ↑ 3 (of type into) or ↑true (of type boolo). Other
types (pairs, lists, user-defined algebraic datatypes, etc.) can be used in rela-
tional specifications as well, being injected by the same primitive. For example,
expression ↑ (1,‘‘ abc ’’) has the type (int ∗ string)o, ↑ [1; 2; 3]—the
type (int list)o, etc. The subtle part is that (since the unification only works
for logical types) the placement of “o” determines the granularity of unification.
Indeed, a logical variable can only be placed where logical type is expected.
Thus, in unification one can use a value of type (int ∗ int)o as a whole, but
in order to control the contents of the pair relationally, the type (into, into)o

is required. This makes it impossible to reuse some built-in or standard types in
relational code—for example, predefined list type is not flexible enough, since it
does not allow the tail of the list to be logical. Instead, logical list type has to
be introduced:

type α llist = Nil | Cons of αo ∗ (α llist)o

With logical list type, we can implement some relations for lists:

val append : (α llist)o → (α llist)o → (α llist)o → G
let rec appendo x y xy =

(x ≡ ↑Nil ∧ xy ≡ y) ∨
(fresh (h t ty)

x ≡ ↑(Cons (h , t)) ∧
xy ≡ ↑(Cons (h , ty)) ∧
appendo t y ty

)

Here we defined relational list concatenation appendo, a canonical example in
the field. This ternary relation is constructed, using case analysis and recursion:

1. If the first list is empty, then the second and the third lists must be equal.
2. Otherwise, the first list can be split into a head and a tail, and two fresh

variables h and t are needed to denote them. We also need a fresh variable
ty to denote the list, such that appending y to t equals ty. To ensure this

property, we use a recursive call to appendo. Finally, we acquire the final
result by consing h and ty.

The definition of appendo takes three logical lists x, y and xy as arguments,
and constructs a goal, which can be executed or combined with other goals. In
the former case, a stream of answers is returned. An element of the stream
5 In the real implementation the terms have a more complex two-parametric type,

which encodes a tagging, needed to be performed when the results of the relational
program are returned into the functional world; these details, however, are irrelevant
to the objectives of the paper, and we stick with the simplified version.
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contains the description of certain constraints for logical variables, which have
to be respected in order for the relation to hold. We denote the running primitive
“�”, so

fresh (q) appendo ↑(Cons (↑1, ↑Nil)) q ↑Nil � [ ]

returns an empty stream, since there is no list q, such that appending
Cons (1, Nil) and q gives empty list, while

fresh (q) appendo q ↑Nil ↑(Cons (↑1, ↑Nil)) � [q 	→ Cons (1 , Nil) ]

discovers the expected constraint for the variable q.
As it can be seen from the type, relational concatenation is polymorphic, like

its functional counterpart. However, the query

appendo ↑(Cons (↑λx .x , ↑Nil)) q ↑(Cons (↑λy .y , ↑Nil))

ends with a run-time error due to inability to unify closures. This is a funda-
mental limitation in original miniKanren as well, as it deals only with first-order
syntactic unification [2]. This example demonstrates, that, unlike pure OCaml,
the typing in OCanren is somewhat weak. In order to restore the strong typing,
some of the type variables have to be bounded to range over only non-functional
types. The lack of direct support for bounded polymorphism [9] in OCaml makes
this step problematic. Our experience, however, shows, that in practice this defi-
ciency rarely gets in the way. In the following development, we assume, that in
polymorphic types some type variables may be implicitly bounded by the set
of non-function types, and these boundings are respected in all instantiations of
those type variables.

Finally, we describe the unnesting technique [10], which was introduced as a
method for manual transformation of functional programs into relational form.
Unnesting introduces a new name for each nested subexpression; now, when the
value of each subexpression is bound to a certain variable, the conversion is
straightforward: each pattern-matching construct is transformed into a disjunc-
tion, new names, introduced in pattern bindings and unnestings, are transformed
into fresh variables, and each converted function is supplied with the additional
argument, unified with the result. As a result we consider, again, the list con-
catenation function (see Fig. 1a). The result of unnesting is shown on Fig. 1b,
while the final relational form—on Fig. 1c.

However, not every definition can be converted to a relational form by unnest-
ing. Consider, for example, the definition on Fig. 2a. Unnesting would transform
this program into the form, shown on Fig. 2b, which is obviously invalid, since
it unifies a function f with a logical variable r. In order to apply unnesting, one
needs to η-expand the definition of g, making the functional nature of its return
type syntactically visible. We stress, that relational conversion, described in
Sect. 4, is essentially different from unnesting. In particular, we use η-expansion
in a very limited manner (only in one case).



Typed Relational Conversion 43

Fig. 1. Unnesting example

Fig. 2. Unnesting: invalid case

3 The Source Language and Relational Extension

Our development of relational conversion is based on the idea of transforming
a program in a functional language into a program in relational extension of
that language. In the context of miniKanren, this approach looks quite natural,
since miniKanren itself, as a DSL, reuses many important features (for example,
function definitions) from a host language.

In this section, we present a formal description of a small functional language,
taken as a source for relational conversion. We describe its syntax, typing rules,
and semantics, and then extend it with relational constructs. We specify the
typing rules and semantics for the extension as well.

3.1 The Source Language

The syntax of our source functional language is shown on Fig. 3. It consists of
a lambda calculus, enriched with constructors with fixed arities Cn, patterns
p and pattern-matching constructs, and expressions for recursive/non-recursive
let-bindings. Among the constructors we distinguish two nullary interpreted con-
structors true and false, and add a boolean equality operator “=”.
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E = x
λx.e
e1 e2
Cn(e1, . . . , en)
true
false
let x = e1 in e2
let rec f = λx.e1 in e2
e1 = e2
match e with {pi ei}

P = Cn(x1, . . . , xn)

Fig. 3. The syntax of source
language

In a pattern matching, we only allow
shallow patterns (which is not an essen-
tial limitation) and do not allow wildcards
(which is important—converting wildcard pat-
tern matching into relational form would
require essentially different projections).

Our language is equipped with Hindley-
Milner type system, and we present the typ-
ing rules in a conventional syntax-directed form
on Fig. 4. Besides type variables and function
types, our system contains a number of implic-
itly defined algebraic datatypes T k, and we
stipulate, that each constructor Cn belongs to
the exactly one datatype. In the rule Con-
strT , we assume that type tC has the form
T k(t1, . . . , tk), where each of the types ti is
recovered from the types tCi of arguments of
constructor Cn and, moreover, these types agree in the sense of constructor
application. Similarly, in the rule MatchT , the types of all Cki

i (xi
1, . . . , x

i
ki

) are
expected to be equal tC , and tCi

j is a type of j-th argument of constructor Ci,
used in the pattern. The rule EqT specifies that both operands of equality oper-
ator must have the same (but arbitrary) type. Thus, we can call this operator
“polymorphic equality” (Fig. 5).

Fig. 4. Typing rules for the source language
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Fig. 5. Semantics for the source language

We describe the semantics of our language in the form of transition system.
The transition relation

〈S, e〉 −→ 〈S ′, e′〉
describes a one step of evaluation of expression e with a stack of contexts S, which
results in a new stack S ′ and a new expression e′. A context is an expression
with a unique hole; informally speaking, a stack of contexts describes a path in
the expression being evaluated from the topmost construct to the point, where
the evaluation currently is taking place. For a context C and an expression e,
we denote by C[e] a complete expression with no holes, which is obtained by
plugging e into the unique hole of C. From each state 〈C1 : C2 : · · · : Ck, e〉 we
can build an expression Ck[. . . [C2[C1[e]]] . . . ], which represents an intermediate
result of evaluation according to a small-step semantics. This form of semantic
description originates from Felleisen-style [16] approach for small-step semantics,
and we’ve chosen it since it can be naturally extended for a relational case.
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Our semantics describes call-by-value left-to-right evaluation; in the rules
Beta, Mu, LetVal, LetRec and MatchVal, we perform capture-avoiding
substitutions, which respect the names in abstractions and let-bindings. In the
rule MatchVal we assume, that at most one pattern matches the scrutinee—
this is an important difference from the usual semantics of pattern matching,
when the patterns are examined in a top-down manner until the matching suc-
ceeds. In the rules EqTrue and EqFalse we assume, that the values v, v1, v2
do not have the forms λx . . . or μf . . . .

Finally, for a closed expression e and a value v, we write e �f v, iff

〈ε, e〉 →∗ 〈ε, v〉

where ε—an empty stack, and “→∗” is a reflexive-transitive closure of “→”.

3.2 Relational Extension

The relational extension adds five conventional miniKanren expressions for con-
structing goals; the syntax is shown on Fig. 6. Since relational constructs are
added to regular functional ones, it becomes possible to construct expressions
like λ x .( x∧λy.y), etc. In order to rule such pathological expressions out, we
devised an extension for the type system of the source language. In fact, this
approach follows the actual implementation for OCaml, where a careful choice
of types for representing terms and goals made it possible to reject the majority
of non-well-formed programs at compile-time.

Our extension for the type system introduces one interpreted datatype con-
structor �o with one data constructor ↑—a polymorphic type and a constructor
for logical terms. In addition, we introduce an interpreted type of goals G, which
is distinct from all other types. The typing rules for the relational extension are
shown on Fig. 7. These rules describe rather expected typing: in unification and
disequality constraints only terms of the same logical type can be used, and
conjunction and disjunction can only be taken for goals. Note, in our extension
a term can be calculated as a result of arbitrary expression in initial functional
language (as long as this expression has expected logical type), but such “higher-
order” terms will never appear as a result of relational conversion, so, in fact,
relational extension we describe here defines a richer language, than we actually
need.

The semantics of extended language is shown on Fig. 8. First, the state is
extended: besides the stack of contexts and current expression it now contains
a set of used semantic variables Σ and a logical state σ. Semantic variables are
allocated and substituted for syntactic logic variable occurrences, when fresh
expression is evaluated (see rule Fresh). Logical states are affected, when uni-
fication or disequality constraint is evaluated; we explain them in details below.
All existing rules for the initial language are considered rewritten to propagate
newly added components of states unchanged. Then, we modify the substitution
to respect names, bound in fresh as well. Next, we consider two new kinds of
values: a semantic variable and a special value success. The former is a result
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of evaluation for a free logic variable, the latter—the result of evaluation for a
succeeded goal.

E += fresh (x) e
e1 ≡ e2
e1 �≡ e2
e1 ∨ e2
e1 ∧ e2

Fig. 6. The syntax of
relational extension

We also extend the definition of context to handle the
new kinds of expressions. In unification and disequality
constraint, the terms are evaluated left-to-right. Conjunc-
tion and disjunction, however, evaluate nondeterministi-
cally: in disjunction only one subgoal is chosen (see rules
DisjL and DisjR), a conjunction can evaluate either left,
or right subgoal first (see rules ConjStartL and ConjS-
tartR). When chosen subgoal is evaluated to the value
success, the other subgoal starts its evaluation (rules
ConjL and ConjR). We have chosen a nondeterministic
variant for the semantics, since different existing miniKanren implementations
use (a little bit) different search, and we do not want to depend on the implemen-
tation details. An opposite side of this solution is that for a concrete program
and a concrete miniKanren implementation, the result of the evaluation might
not coincide with that, prescribed by the semantics: in some concrete implemen-
tation a program can diverge, while nondeterministic semantics may still define
a certain scenario to complete with a result. We argue, that in this case, it will
always be possible to rewrite a program or/and interpreter to converge according
to that scenario.

Finally, we describe the structure of a logical state and the implementation of
unification and disequality constraint. The development is mainly based on the
existing implementation [1] and standard approaches for implementing unifica-
tion [2,14]. We, therefore, assume the familiarity of the reader with the following
notions:

– substitution (θ);
– application of substitution θ to a term t (t θ);
– composition of substitutions (θθ′);
– most general unifier of two terms (mgu (t1, t2)).

A logical state contains two components

σ = (θ,Θ−)

where θ is a substitution, Θ−—a set of negative substitutions, describing dise-
quality constraints, which can potentially be violated. The initial state contains
undefined substitution and empty set:

ι = (⊥, ∅)

The effect of unification is described by the following primitive:

unify (σ, t1, t2) = unify ((θ,Θ−), t1, t2)

First, it calculates the most general unifier for the terms under consideration
w.r.t. current substitution:

ρ = mgu (t1 θ, t2 θ)



48 P. Lozov et al.

Types:

L = αo | (Tn(l1, . . . , ln))o (logical types)

T += G

Typing rules:
Γ, x : l � e : G

Γ � fresh (x) e : G
[FreshT ]

Γ � e1 : l Γ � e2 : l

Γ � e1 ≡ e2 : G
[UnifyT ]

Γ � e1 : l Γ � e2 : l

Γ � e1 �≡ e2 : G
[DisequalityT ]

Γ � e1 : G Γ � e2 : G
Γ � e1 ∧ e2 : G

[ConjunctionT ]
Γ � e1 : G Γ � e2 : G

Γ � e1 ∨ e2 : G
[DisjunctionT ]

Fig. 7. Typing rules for the relational extension

Semantic variables:

S = s1, s2, . . .
Σ, Σ′ · · · ⊂ 2S

(sets of allocated semantics variables)〈
Σ′, s

〉
new Σ, Σ′ = Σ ∪ {s}, s /∈ Σ (allocation of a new semantic variable)

Values:

V += success | s

Contexts:
C += � ≡ e | v ≡ � | � �≡ e | v �≡ � | � ∧ e | e ∧ �

States:
〈Σ, S, e, σ〉 (set of allocated semantic variables, stack of contexts, expression, logical state)

〈∅, ε, e, ι〉 (initial state)

Transitions:
〈Σ, S, fresh(x) e, σ〉 �

〈
Σ′, S, e[x s], σ

〉
,
〈
Σ′, s

〉
new Σ [Fresh]

〈Σ, S, e1 ≡ e2, σ〉 � 〈Σ, � ≡ e2 : S, e1, σ〉 [UnifyL]

〈Σ, S, v ≡ e, σ〉 � 〈Σ, v ≡ � : S, e, σ〉 [UnifyR]

〈Σ, S, v1 ≡ v2, σ〉 �
〈
Σ, S, success, σ′〉, unify (σ, v1, v2) = σ′ [Unify]

〈Σ, S, e1 �≡ e2, σ〉 � 〈Σ, � �≡ e2 : S, e1, σ〉 [DisEqL]

〈Σ, S, v �≡ e, σ〉 � 〈Σ, v �≡ � : S, e, σ〉 [DisEqR]

〈Σ, S, v1 �≡ v2, σ〉 �
〈
Σ, S, success, σ′〉, diseq (σ, v1, v2) = σ′ [DisEq]

〈Σ, S, e1 ∨ e2, σ〉 � 〈Σ, S, e1, σ〉 [DisjL]

〈Σ, S, e1 ∨ e2, σ〉 � 〈Σ, S, e2, σ〉 [DisjR]

〈Σ, S, e1 ∧ e2, σ〉 � 〈Σ, � ∧ e2 : S, e1, σ〉 [ConjStartL]

〈Σ, S, e1 ∧ e2, σ〉 � 〈Σ, e1 ∧ � : S, e2, σ〉 [ConjStartR]

〈Σ, S, success ∧ e, σ〉 � 〈Σ, S, e, σ〉 [ConjL]

〈Σ, S, e ∧ success, σ〉 � 〈Σ, S, e, σ〉 [ConjR]

Fig. 8. Semantics for the relational extension

If there is no such ρ, the unification fails, and the evaluation terminates
unsuccessfully. Otherwise, ρ has to be checked against the disequality constraints,
represented by Θ− (if Θ− is empty, the check succeeds immediately).
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Being a substitution, ρ at the same time can be considered as the following
unification problem: we can try to unify a pair of terms

tl = (s1, . . . , sk)
tr = (ρ(s1), . . . , ρ(sk))

where {si} = dom (ρ). We pick every substitution θ− ∈ Θ− and calculate the
mgu (tl θ−, tr θ−). There are three possible outcomes:

1. The unification fails. This means, that disequality constraint, represented by
θ−, can no longer be violated. We remove θ− from Θ− and continue with the
next disequality constraint.

2. The unification succeeds with the empty substitution. This means, that dis-
equality constraint, represented by θ−, is violated. The check stops, and the
whole top-level unification fails.

3. The unification succeeds with a non-empty substitution θ′−. This means, that
in order not to violate disequality constraint, represented by θ−, θ′− has to
be respected. We replace θ− with θ′− in Θ− and continue with the next
disequality constraint.

If the disequality check succeeds, by the end we have a modified set Θ′−, and
we assume

unify ((θ,Θ−), t1, t2) = (θρ,Θ′−)

The evaluation of disequality constraint is performed in a similar manner
using the primitive

diseq (σ, t1, t2) = diseq ((θ,Θ−), t1, t2)

First, the mgu (t1 θ, t2 θ) is calculated. Again, there are three possible cases:

1. The unification fails. This means, that disequality constraint is satisfied.
2. The unification succeeds with the empty substitution. This means, that dis-

equality constraint is violated.
3. The unification succeeds with a non-empty substitution θ′−. This means,

that this substitution describes the disequality constraint, which has to be
respected in the future, so we add it to Θ−.

If disequality constraint succeeds, we obtain a (potentially) modified set Θ′−,
and we assume

diseq ((θ,Θ−), t1, t2) = (θ,Θ′−)

Finally, for a closed goal g and a logical state σ, we define g �r σ, iff

〈∅, ε, g, ι〉 �∗ 〈Σ, ε, success, σ〉 for some Σ

where “�∗” is a reflexive-transitive closure of “�”.
One may notice, that the typing rules for the relational extension add noth-

ing more than some interpreted types and symbols w.r.t. the type system of
the substrate language. Thus, it is rather expected, that the relational extension
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inherits all its useful properties (like progress and type preservation). Surpris-
ingly, this is not completely so. Indeed, the only value for goals is success,
but, obviously, not every goal succeeds (for example, A ≡ B always fails). Thus,
our relational extension lacks the progress property—a decently typed non-value
goal sometimes cannot make a step. This makes no harm in the context of the
paper; in any case, a failure value for goals can be added to the language together
with the failure propagation rules.

4 Relational Conversion

Before we describe the relational conversion itself, we formulate some limitations
for the source programs. Functional programs tend to operate with higher-order
values, while miniKanren is limited by a first-order unification. Therefore, it
would be unreasonable to expect, that arbitrary functional program can be con-
verted into a relational form (at least using reasonably simple transformations).

We introduce the set of ground types G:

G = α | T k(g1, . . . , gk)

Informally, a value of a ground type cannot contain closures. Then we formu-
late the following limitations for the programs to be converted into a relational
form:

– all constructor parameter types must be type variables;
– constructors and polymorphic equality can only be applied to the values of

ground types;
– all match-expressions must be of ground types.

The first condition means, that all algebraic datatypes (which we consider as
defined implicitly, see Sect. 3.1) have to be fully-polymorphic. The first two lim-
itations then allow us to specify the polymorphism restriction for relational pro-
grams, which we mentioned informally in Sect. 2: all type variables are bounded
to range only over ground types (this condition, of course, is sufficient, but not
necessary).

The third limitation is not essential and introduced only to simplify the
presentation. If a match-expression does not have a ground type, it can always
be transformed to have one by applying η-expansion:

match e with {pi → ei} � λx̄ .match e with {pi → ei x̄}
where x̄ is a vector of new variables, different from those in e, ei, and pi. In fact,
our implementation, described in Sect. 5, performs this expansion as long as a
non-ground type match-expression is encountered. This is the single case when
we actually inspect types and perform η-expansion.

The general idea behind the conversion can be illustrated on a type level: an
expression of type t in the source language is transformed into the expression
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of type �t�t in relational extension, where the transformation �•�t is defined as
follows:

�g�t = g → G
�t1 → t2�

t = �t1�
t → �t2�

t

In other words, an expression of a ground type is converted into a goal-
returning function. The informal semantics of this function is to make its argu-
ment respect a certain contract. As the argument can have some free variable
occurrences, the goal tries to substitute these variables with some values in order
to respect the contract this goal represents. For example, a constant Nil is con-
verted into a function λq . q ≡↑Nil.

The conversion itself is described in terms of transformation �•�c, see Fig. 9.
The first five rules simply propagate the conversion through the expression; the
last three actually do the work. These rules themselves may look complicated,
but the idea is rather simple.

In the case of constructor we know, that all expressions ei have ground types.
Thus, their relational images are goal-returning functions. We create a set of fresh
variables (one for each expression) and pass them as arguments to these functions
to associate them with the values of the expressions. The result of conversion for
the constructor application itself has to be a goal-returning function as well. We
surround expression constructed so far with abstraction and unify its argument
q with the constructor, applied to corresponding logical variables. We also apply
logical constructor ↑ to respect the typing rule for unification.

The rule for pattern-matching conversion operates similarly. First, the scru-
tinee must have a ground type (since it is matched against constructors). We
create a fresh variable qe and associate it with the value of the scrutinee exactly
as in the previous case. Then, for each branch we create a number of fresh vari-
ables (one for each variable in the pattern for the branch) and express pattern-
matching in terms of unification, using these variables and corresponding con-
structor. Finally, the body ei of the branch is an expression with free variables,
corresponding to those in the pattern. We, therefore, convert ei and surround
the result with lambdas, closing all these variables. To pass the bindings qij for
pattern variables to the body, we apply this function to goal-returning functions
(≡qij). This, again, gives us a goal-returning function, which we apply to the
topmost result variable q.

The last rule follows the same pattern: both arguments of polymorphic equal-
ity are transformed into goal-returning functions, and we know, that the argu-
ments of these functions are of some ground type. We apply these functions to
fresh variables and perform case analysis. Note, this is the only case when we
actually use disequality constraints (Fig. 9).

An interesting property of relational conversion is that it does not change
terms, which do not use constructors, equality, and pattern-matching. Thus, a
lot of useful higher-order functions—application, composition, fixed point, etc.—
are already relational and can be used in relational specifications.

Another observation is that our transformation is compositional (a relational
image of application is an application of relational images). This means, that
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Fig. 9. Relational conversion

relational conversion is compatible with separate compilation—multiple source
files can be converted independently without losing the possibility to work prop-
erly when combined.

Then, it is interesting, that the result of relational conversion runs in a
forward direction deterministically. Thus, relational conversion imposes only a
constant-time slowdown in a forward direction.

Finally, we formulate the following properties for relational conversion:

– Static correctness: if an expression e has a type t in the source language,
then �e�c has a type �t�t in relational extension. In other words, relational
conversion transforms properly typed programs into properly typed. Proof is
by structural induction (and trivial).

– Partial semantic correctness: if an expression e has a ground type t and e �f v
for some value v, then fresh(x)(�e�c x) �r (θ, ∅), and θ(s) = v, where s
is a semantic variable, associated with x on the first step of the relational
evaluation.

In order to prove the complete correctness, we need some means to interpret
the results of relational derivation with free variables in functional case. This is
a subject of future research.
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5 Implementation and Application

We implemented relational conversion for the subset of OCaml language, using
the infrastructure of the original compiler. In its current form, the converter takes
the whole file and converts every definition into relational form, but in future, we
consider to implement a more flexible approach, when only some definitions are
converted, being attributed for this purpose in some way. Our converter rewrites
the original abstract syntax tree, annotated with the types, inferred by the com-
piler, into relational form, using the set of combinators from OCanren. Note, the
semantics of OCaml is different from the semantics of source language we pre-
sented in Sect. 3.1: in OCaml, the order of reductions in application and binary
operators is unspecified (unlike left-to-right in our case), pattern-matching in
OCaml is performed in a top-down manner (and, thus, there can be more than
one pattern matching the scrutinee), etc. We, therefore, trust an end user to
apply relational conversion only to programs, for which these differences play no
role.

Our preliminary evaluation discovered two problems. First, the converter
used to generate a lot of abstractions, many of which could be applied immedi-
ately. We additionally implemented an optimization pass, which performs admin-
istrative reductions where possible. This optimization greatly improves the qual-
ity of converted programs in terms of both readability and performance. Next, in
our initial implementation, too many values were functionalized and, as a result,
massively recalculated with essential performance degradation. We improved the
implementation by identifying the important specific case and handling it with
a little different transformation.

As the first example of the conversion we consider the implementation of
concatenation function for lists (see Fig. 10a). In Sect. 2, we already saw the
canonical version of relational concatenation. The result of relational conversion,
however, is slightly different (see Fig. 10b). The main difference comes from the

Fig. 10. An example of relational conversion
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functionalization of primitive values: while conventional appendo operates on
logical lists, the converted variant uses a goal-returning functions. Thus, the
conventional appendo for arguments x, y and q can be expressed using the
converted one as appendo (≡x) (≡y) q.

In the next subsections, we consider more elaborated and interesting exam-
ples. From now on, we refrain from presenting the complete source and converted
code and consider only the signatures and some interesting queries.

5.1 Higher-Order Lambda Interpreter

As we mentioned in Sect. 1, one of the important application domains for
miniKanren is the implementation of relational interpreters [5,6,8]. Writing
relational interpreter, as a rule, amounts to a careful rewriting of functional
implementation in miniKanren. In this regard, obtaining a relational interpreter
automatically from a functional specification looks a natural idea.

In our case, we generalize this idea a little bit: we build a relational interpreter
for a family of languages—essentially, the lambda calculus with various reduction
orders. The construction of this interpreter was inspired by Felleisen-style seman-
tic description [16]. Our interpreter takes as its first argument a function, which
decomposes a term, passed as a second argument, into a redex and a context
(if possible). After the decomposition, the interpreter performs beta-reduction
on the redex and reconstructs the term by plugging the result back into the
context. These steps are repeated until the decomposition is no longer possible
(or infinitely). This approach brings us a few benefits: first, various reduction
orders can be expressed by changing only the decomposition function, and next,
we demonstrate the applicability of our technique for a higher-order case.

The signatures of relevant functions are

val eval : (term → split) → term → term

val call_by_name : term → split

val call_by_value : term → split

val normal_order : term → split

where term and split are the types of the terms (in de Bruijn form) and
context-term pairs respectively; eval is a higher-order interpreter, all other
functions define corresponding reduction orders. Relational counterparts for
these definitions, provided by the conversion, are shown below:

val evalo : ((termo → G) → splito → G) → (termo → G) →
termo → G

val call_by_nameo : (termo → G) → splito → G

val call_by_valueo : (termo → G) → splito → G

val normal_ordero : (termo → G) → splito → G

Note, due to the compositionality of the conversion, the type of functions,
representing reduction orders, still corresponds to the type of the first argument
of the interpreter.
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The interpreter, constructed by our tool, can be run in a forward direction
(for readability purposes, we use here a symbolic quoted representation of the
terms instead of concrete datatype constructor-based):

evalo normal_ordero (≡ ‘(λ 0) 1 ’) q � [q �→ ‘1 ’ ]
evalo call_by_nameo (≡ ‘0 ((λ 0) 1) ’) q � [q �→ ‘0 ((λ 0) 1) ’ ]
evalo call_by_valueo (≡ ‘0 ((λ 0) 1) ’) q � [q �→ ‘0 1 ’ ]

As it is expected from relational interpreter, it equally can be run in the
opposite direction, returning for a term a (potentially infinite) stream of terms,
reducing to it:

evalo normal_ordero (≡ q) ( ‘λ 0 ’) � [
q �→ ‘λ 0 ’ ;
q �→ ‘(λ 0) (λ 0) ’ ;

q �→ ‘λ ((λ 1) 0 ) ’ ;

q �→ ‘(λ 0) ((λ 0) (λ 0)) ’ ; . . . ]
evalo call_by_nameo (≡ q) ( ‘λ 0 ’) � [

q �→ ‘λ 0 ’ ;
q �→ ‘(λ 0) (λ 0) ’ ;
q �→ ‘(λ 0) ((λ 0) (λ 0)) ’ ;
q �→ ‘(λ λ 0) 0 ’ ; . . . ]

This interpreter can be extended to the subset of Scheme, with which the
quines/twines/thrines benchmarks [8] can be reproduced.

5.2 Hindley-Milner Type Inference

Our next example is the type inference for Hindley-Milner type system [15].
Interestingly enough, that while typing rules for STLC can be directly expressed
in relational terms, providing the solutions for type inference, type checking,
and type inhabitation problems at the same time, for not so different Hindley-
Milner system with let-polymorphism, the problem becomes much harder. The
most robust existing relational solution requires the extension of miniKanren
with nominal constructs [7], while the correctness of other implementations in
conventional miniKanren is still a matter of discussion [4].

On the other hand, in terms of functional programming, this task is rather
a textbook exercise. We implemented a simple version of syntax-directed type
inference and converted it into the relational form; the signatures for the original
and converted implementations are shown below:

val type_inference : term → typ

val type_inferenceo : (termo → G) → typo → G

For this example, we use a conventional representation of terms with named
variables. In a forward direction, our relational implementation works, as
expected, as a type inferencer—given a term it infers its type:

type_inferenceo (≡ ‘λx → x ’) q � [q �→ ‘a → a ’ ]
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In a reverse direction, relational type inferencer is capable of finding the
inhabitants of a specified type:

type_inferenceo (≡ q) ‘a ’ � ⊥
type_inferenceo (≡ q) ‘a → a ’ � [

q �→ ‘λ 0 → 0 ’ ;

q �→ ‘λ 0 → (λ 1 → 1 ) 0 ’ ;

q �→ ‘λ 0 → let 1 = 2 in 0 ’ ( 0 �≡ 1 ) ;

q �→ ‘(λ 0 → 0 ) (λ 1 → 1 ) ’ ; . . . ]

Note, the first query diverges, providing no results (which is rather expected
since the type is un-inhabited). This is a long-time known phenomenon of
miniKanren—the search can diverge, when no answers exist; relational speci-
fications, which always stop in this case, are called refutationally complete [5].
Given example demonstrates, that our derived relational specification is not
refutationally complete, which is not a rarity in the relational world; making it
refutationally complete is a separate task.

It may appear at first glance, that using relational Hindley-Milner inferencer
for solving inhabitance problem is superfluous, since the inhabitance for Hindley-
Milner is equivalent to inhabitance for STLC. However, with relational inferencer
we may solve some problems, which are distinct from both pure inference and
pure inhabitance:

type_inferenceo (≡ ‘let f = � in f (λ x → f x) ’) ‘a → a ’ �
[� �→ ‘λ 0 → 0 ’ ; . . . ]

In this query, we supplied an incomplete term with a hole (�) and some
type, and as a result, we’ve got a term to plug into the hole in order for the
complete term to have that type. Note, the term we’ve got as a result cannot be
typed in STLC, since the variable f is applied there twice with different types
of arguments.

A final observation: we do not claim to completely solve the problem of
relational implementation of Hindley-Milner type system. Even though our con-
verted relational implementation behaves as expected, it still not ideal—indeed,
in functional implementation we had to implement unification on types, which
does not make use of built-in unification in miniKanren and, to some extent,
doubles the work. We, therefore, do not consider this approach as an ideal
solution.

5.3 miniKanren with Disequality Constraints

Our final example is an implementation of miniKanren in miniKanren. Although
there already exist a few similar implementations, written directly in miniKan-
ren, our version is different, since it supports disequality constraints. We consider
this as an important distinction—first, the presence of disequality constraints
makes the language much more expressible, and next, implementing disequality
constraints directly in miniKanren is a very tedious and error-prone task. On the



Typed Relational Conversion 57

other hand, providing relationally converted version amounts only to repeating
a well-known and rather compact original implementation [1].

The signatures for functional and relational miniKanren implementations are
as follows:

val mk : goal → substitution list

val mko : (goalo → G) → (substitution llist)o → G

Here goal stands for the type, representing the goals, substitution—for
the type of substitutions. Again, our relational miniKanren interpreter works in
both directions. As a more interesting query, we consider the following:

mko

(≡
‘let rec add a b c =

((a ≡ Z) ∧ (b ≡ c)) ∨
(fresh (a0 c0) (a ≡ S a0) ∧ � ∧ (add a0 b c0 ))

in fresh (x y z) (add x y z) ’) ( [ [x=‘1’; y=‘1’; z=‘2 ’]]) �
[� �→ ‘c ≡ S c0 ’ ; . . . ]

Here we specified an incomplete relational program (specifically, a relational
addition of numbers in Peano form). The hole (�) replaces one of the branches,
and expected substitution describes the results of addition. Our relational inter-
preter, converted from functional implementation, turned out to be capable of
finding the correct subgoal—“ c ≡ S c0”—to be placed into the hole.

6 Conclusion

We presented an approach for converting typed functional programs into rela-
tions. Relational conversion in many cases allows us to avoid tedious recoding of
functional specifications into relational form and to concentrate on writing rela-
tional specifications only when their reconstruction from functions is impossible
or undesirable. Our implementation works for the subset of OCaml; we evalu-
ated it for a number of interesting examples and acquired some new relational
solutions.

There is a number of directions for future research. First, a performance
evaluation is desirable—at present time we do not know, what slowdown factor is.
Another problem is a development of an approach to prove complete correctness
(or refute this claim).
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Abstract. Patricia trees are a space-efficient, purely functional data
structure, useful for efficiently implementing both integer sets and dic-
tionaries with integer keys. In this paper we illustrate how to build a
QuickCheck model of the data structure for the purpose of testing a
mature OCaml library implementing it. In doing so, we encounter a sub-
tle bug, initially inherited from a paper by Okasaki and Gill, and since
then flying under the radar for almost two decades.

1 Introduction

Since data structures are at the heart of many applications it is important to
ensure their correctness. This becomes even more important as software modules
are often reused thanks to the growing popularity of open source software and
code-sharing platforms such as GitHub.

In this paper we illustrate how one can build a straightforward QuickCheck
model for testing Patricia trees, a commonly used functional data structure. In
doing so, we encounter a subtle bug in a common Patricia tree library, inher-
ited from a published paper (Okasaki and Gill 1998). Our paper thereby serves
multiple purposes:

– as a tutorial example of building a QuickCheck model to unveil the bug,
– to document this error, and
– to illustrate the significance of generators for QuickChecking.

2 Background

We first recall the relevant background material on Patricia trees and
QuickCheck.

2.1 Patricia Trees

A Patricia tree is a data structure for representing integer sets (and dictionaries)
compactly and functionally. Historically Patricia trees were introduced 50 years
ago by Morrison (1968). Thirty years later they were recast as a functional data
structure and popularized by Okasaki and Gill (1998). The data structure works
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by inspecting and traversing the underlying representation of a set’s numbers
bit by bit (alphanumerically). Below we explain the little endian version that
traverses the bits from the least to the most significant bit.

Elements in a Patricia tree are ordered similarly to a standard binary search
tree. Specifically the order of elements is determined by a branching bit in all
internal nodes: elements with a 0 in the branching bit belong in the internal
node’s left sub-tree, whereas elements with a 1 in the branching bit belong in
the internal node’s right sub-tree. For example, the branching bit of the root node
in the Patricia tree in Fig. 1 is the least significant bit (the parity bit, 0001, when
we limit the presentation to only four bits). Therefore the even element 8 with
bit representation (1000) belong to the left sub-tree, whereas the odd elements
5 (0101) and 13 (1101) belong to the right sub-tree. Similarly the branching bit
of the root’s right child is the fourth bit (1000) and lets us distinguish its two
children (0101 and 1101).

Fig. 1. The Patricia tree corresponding to the set {5, 8, 13}

To avoid needless branches the internal nodes of a Patricia tree also carry a
shared prefix representing the string of bits that all elements in a given sub-tree
have in common. For example, the elements 5 (0101) and 13 (1101) in Fig. 1
share the common prefix 101 but differ in the fourth bit (1000).

The ptrees library is a mature OCaml implementation of Patricia trees.
For example, the Sawja library (Hubert et al. 2011) internally uses ptrees for
efficient functional data structures, and Sawja is again used as the Java front-end
in Facebook’s static analyzer Infer (Calcagno and Distefano 2011). Like other
data structures, such as red-black trees, we can use the Patricia tree structure to
create both integer sets (by storing at each leaf only set-membership information)
and to create dictionaries with integer keys (by storing at each leaf the entry
associated with the given integer key). In ptrees this is realized by two sub-
modules: One sub-module Ptset of ptrees implements integer sets whereas
another sub-module Ptmap of ptrees represents dictionaries with integer keys.1

In the following we will focus on the set implementation Ptset.2

1 The most recent version has simply split ptrees into separate packages Ptset and
Ptmap, both of which are available through OCaml’s package manager OPAM.

2 The module Ptset also contains a sub-module implementing a big-endian version
following the description of Okasaki and Gill (1998).
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Following Okasaki and Gill (1998), Ptset represents Patricia trees as an
algebraic data type with three constructors:

type t =
| Empty
| Leaf of int
| Branch of int * int * t * t

The first constructor Empty represents the empty set, the second constructor
Leaf represents a singleton set, and the third constructor Branch splices together
two sub-trees based on a shared prefix and a branching bit as explained above.

As an example operation, consider mem : int -> t -> bool, a member-
ship predicate. The mem predicate can be implemented as a recursive function
that pattern matches on the node type:

let zero_bit k bb = (k land bb) == 0
let rec mem k = function

| Empty -> false
| Leaf j -> k == j
| Branch (_, bb, l, r) ->

mem k (if zero_bit k bb then l else r)

For empty trees and leaves mem’s code is straightforward: empty sets contain no
members and a singleton set {j} contains only j. For internal nodes we test
whether the branching bit bb is zero (after extracting it by a suitable logical
and’ing), and continue the search recursively in the left (or right) sub-tree.

One interesting fact about Patricia trees is that they have a unique represen-
tation, meaning that identical sets will have identical structure. For now we will
not concern ourselves with how Patricia trees are implemented under the hood
but rather take a black-box view of the Ptset module for testing purposes. To
this end we limit ourselves to the following subset of operations to keep things
manageable:

val empty : Ptset.t
val singleton : int -> Ptset.t
val mem : int -> Ptset.t -> bool
val add : int -> Ptset.t -> Ptset.t
val remove : int -> Ptset.t -> Ptset.t
val union : Ptset.t -> Ptset.t -> Ptset.t
val inter : Ptset.t -> Ptset.t -> Ptset.t

All of these should be self-explanatory as operations over integer sets. The add

operation for example expects an integer and a Patricia tree as arguments and
returns a new Patricia tree representing the resulting, bigger set.

2.2 QuickCheck

QuickCheck (Claessen and Hughes 2000) is also known as (randomized) property-
based testing. As such, it builds on the idea of expressing a family of tests by
a property (quantified over some input) and a generator of input. For the rest
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of this paper we will use OCaml’s QCheck library.3 As an example, consider
McCarthy’s 91 function:

let rec mc x =
if x > 100 then x - 10 else mc (mc (x + 11))

This function is renown for being observably equivalent to the following simpler
specification:

mc(n) =

{
91 n ≤ 101
n − 10 n > 101

(if we allow ourselves to ignore stack overflows due to the heavy use of recursion).
To test this property, we supply Test.make with the equivalence property

and an input generator small signed int (a builtin generator of small signed
integers from the QCheck library) to form a QuickCheck test:

where we additionally specify the name of the tested property and the number
of desired test runs (1000) as optional parameters and . We can
subsequently run this QuickCheck test:

and confirm the specification over the generated, small integer inputs:

law McCarthy 91 corr. spec: 1000 relevant cases (1000 total)
success (ran 1 tests)

Suppose we instead phrase a test of the incorrect property that McCarthy’s
91 function is equivalent to the constant function always returning 91:

and run it, QCheck will immediately inform us of this failed property and print
a minimal (shrunk) input for which it fails:

law McCarthy 91 constant: 3 relevant cases (3 total)
test ‘McCarthy 91 constant‘
failed on ≥ 1 cases:
102 (after 30 shrink steps)

In this case it took the QCheck library 30 simplification steps to cut a failing
input down to this minimal one, 102. Such shrinking is important in trying
to understand the (often large) machine generated counterexamples on which
a property fails. For example, if we disable the default, builtin shrinking over
integers we may get a larger counterexample:
3 Available at https://github.com/c-cube/qcheck/.

https://github.com/c-cube/qcheck/
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law McCarthy 91 constant: 8 relevant cases (8 total)
test ‘McCarthy 91 constant‘ failed on ≥ 1 cases: 4921

From the input 4921 it may be less clear what the underlying problem is.
In the Erlang community it is common to combine the randomized property-

based testing approach with that of model-based testing (Hughes 2010; Arts
and Castro 2011). Concretely, this involves expressing an abstract model of the
system (or module) under test and to test each of the available operations ‘op’
for the property

the model and the implementation of ‘op’ agree

akin to how we have tested agreement between McCarthy’s 91 function and its
specification. For this reason the commercial QuickCheck implementation offered
by Quviq comes with a domain-specific language (DSL) for compactly expressing

– models,
– generators of arbitrary sequences of operations, and
– the above agreement property.

However we do not need such a DSL to express a model (Claessen and Hughes
2002; Arts et al. 2008). In the next section we will build an example model.

3 Building a Model

Following practice within the QuickCheck community (Claessen and Hughes
2002; Hughes 2010), we build a model of Patricia trees that distills their func-
tionality to its core. Unlike the established Erlang tradition (Hughes 2010; Arts
and Castro 2011) we will explicitly express a model, a symbolic representation
of operation sequences, a generator of arbitrary sequences of operations, and the
agreement property. The following subsections are concerned with each of these.

3.1 A Model

A model serves as an executable specification of the intended meaning of a piece
of software, similarly to how a definitional interpreter (Reynolds 1972) specifies
the intended meaning (the semantics) of a programming language. When Patricia
trees are used to implement integer sets, we can easily model them using a list.
For example, an empty set can be modeled with an empty list, a singleton set can
be modeled with a singleton list, and the membership predicate can be delegated
to List.mem from the standard library (assuming it has been thoroughly tested):

let empty_m = []
let singleton_m i = [i]
let mem_m i s = List.mem i s

where we suffix the operations with m to underline that these operations belong
to our model.
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The distinguishing feature of sets, namely uniqueness of elements, surfaces
when building a model for the remaining operations. For these we choose to
maintain a sorted list representation. Based on this choice we can now implement
a model straightforwardly. For example:

let add_m i s =
if List.mem i s then s else List.sort compare (i::s)

where we rely on List.sort : (’a -> ’a -> int) -> ’a list ->

’a list which expects a comparison function as its first argument.
The model for set union structurally recurses over its two argument lists,

always puts the least element first, and thereby maintains the sorted invariant:

let rec union_m s s’ = match s,s’ with
| [], _ -> s’
| _, [] -> s
| i::is,j::js -> if i<j then i::(union_m is s’) else

if i>j then j::(union_m s js) else
i::(union_m is js)

The remaining models for remove and inter are straightforward and therefore
omitted here.

In our situation of testing a functional data structure, the model may simply
be regarded as an obviously correct but inefficient implementation of the abstract
data type of sets (Arts et al. 2008). The model-based QuickCheck approach
was initially suggested (among others) for testing monadic code (Claessen and
Hughes 2002) and has since been used successfully and repeatedly for locating
defects in imperative code such as Google’s LevelDB key-value data storage
library4 and the underlying AUTOSAR modules used in Volvo cars (Hughes
2016).

3.2 Symbolic Operations

We first formulate a data type for symbolically representing calls to the Ptset

API:

type instr_tree =
| Empty
| Singleton of int
| Add of int * instr_tree
| Remove of int * instr_tree
| Union of instr_tree * instr_tree
| Inter of instr_tree * instr_tree

Each of these constructors correspond to one of the operations listed earlier.
The Add constructor for example represents the add : int -> Ptset.t ->

Ptset.t operation from the API. It expects an integer (the element to be added)
and a sub-tree representing the set the element is to be added to.

The alert reader may have noticed that we did not include a symbolic Mem

constructor. The reason for this omission is simple: since a Patricia tree is a
4 http://www.quviq.com/google-leveldb/.

http://www.quviq.com/google-leveldb/
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functional data structure, a query cannot affect it. For the purposes of repre-
senting and generating arbitrary Patricia trees a mem-query therefore has no
effect. We will of course include a test for agreement between mem and mem m in
our forthcoming test suite to exercise the operation.

We can now write an interpreter for such instruction trees. Following the
inductive definition the interpreter becomes a recursive function that interprets
each symbolic operation as the corresponding Patricia tree operation:

(* interpret : instr_tree -> Ptset.t *)
let rec interpret t = match t with

| Empty -> Ptset.empty
| Singleton n -> Ptset.singleton n
| Add (n,t) -> Ptset.add n (interpret t)
| Remove (n,t) -> Ptset.remove n (interpret t)
| Union (t,t’) ->

let s = interpret t in
let s’ = interpret t’ in
Ptset.union s s’

| Inter (t,t’) ->
let s = interpret t in
let s’ = interpret t’ in
Ptset.inter s s’

For example, we interpret a Singleton i node as a call to Ptset.singleton i

and we interpret a Union node by two recursive interpretations of the sub-trees
and a Ptset.union of their results.

3.3 A Generator

In order to QuickCheck the above properties we need the ability to generate
arbitrary trees of operations. Starting from the inside, the below expresses a
recursive generator expressed using QCheck’s Gen.fix combinator:

(* tree_gen : int Gen.t -> instr_tree Gen.t *)
let tree_gen int_gen =

Gen.sized (Gen.fix (fun rgen n -> match n with
| 0 -> Gen.oneof [Gen.return Empty;

Gen.map (fun i -> Singleton i) int_gen]
| _ ->

Gen.frequency
[(1,Gen.return Empty);
(1,Gen.map (fun i -> Singleton i) int_gen);
(2,Gen.map2 (fun i t -> Add (i,t)) int_gen (rgen (n-1)));
(2,Gen.map2 (fun i t -> Remove (i,t)) int_gen (rgen (n-1)));
(2,Gen.map2 (fun l r -> Union (l,r)) (rgen (n/2)) (rgen (n/2)));
(2,Gen.map2 (fun l r -> Inter (l,r)) (rgen (n/2)) (rgen (n/2)))

]))

Each invocation accepts a fuel parameter n to delimit the number of recursive
generator calls. When we run out of fuel (n = 0), we hit the first branch of
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the pattern match and generate either a symbolic empty set or a singleton set.
If there is still fuel left we choose between generating a list of things: empty
sets, singletons, adds, removes, unions, or intersections. Since the latter four
involves generating sub-trees we invoke the generator recursively, this time with
a decreased amount of fuel. By the design of QCheck’s fixed-point generator
Gen.fix the recursive generator is passed as a parameter (above named rgen).
For flexibility we have parameterized the tree generator over the integer gener-
ator int gen used in the singleton, add, and remove cases. We thereby avoid
having to rewrite the tree generator to experiment with integer generation.

To increase the chance of generating adds, removes, unions, or intersections
we assign them a higher weight (2), meaning that each of them will be chosen
with probability 2

1+1+2+2+2+2 = 1
5 whereas an empty set or a singleton is only

generated with probability only 1
10 . Finally we wrap the size-bounded, recursive

generator in a call to QCheck’s Gen.sized combinator, which first generates an
arbitrary (small) integer and subsequently passes it as the fuel parameter to the
size-bounded generator.

With the tree generator in place we can generate arbitrary trees from the
top level. For example:

# Gen.generate1 (tree_gen Gen.int);;
- : Qctest.instr_tree =
Union
(Union

(Union (Add (1247377935267464492, Singleton (-344203684848058197)),
Remove (788172988455234350, Empty)),

Add (3495994339175018836, Singleton (-3950939914241702626))),
Add (1460909625285095467,

Inter (Singleton 3576840527525220675,
Union (Empty, Singleton (-534074627919219807)))))

where we pass Gen.int as integer generator (a uniform generator of int).
Since OCaml does not supply a generic printer for use outside the top level,

QCheck cannot print our trees in case it should find a counterexample. It is
however straightforward to write (yet another) structural, recursive function
to string that serializes a symbolic instruction tree into a string. We can now
express our generator with printing capability as follows:

where we make use of QCheck’s make operation for combining the pure generator
resulting from tree gen with our pretty-printer to string into a full generator
(these are denoted by the parameterized type ’a arbitrary in QCheck).

3.4 Expressing Agreement

To express agreement between the implementation and our abstract model we
need a final piece of the puzzle: the ability to relate one to the other. Follow-
ing Claessen and Hughes (2002), we can do so with an abstraction function
abstract : Ptset.t -> int list. We can simply implement abstract as
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an alias for the elements operation from the earlier versions of ptrees’s set
API. In the recent API versions however, elements has been removed. In this
case we can easily implement it as a fold, followed by a subsequent sorting:

let abstract s =
List.sort compare (Ptset.fold (fun i a -> i::a) s [])

At last we are in position to test! For example we can write a test that
expresses agreement between the singleton operation over both Patricia trees
and our model:

This expresses that creating a singleton set as a Patricia tree and abstracting the
result as an ordered list should agree with our model interpretation over lists.

Similarly we can express agreement for the union operation:

This expresses that the elements of two joined Patricia trees should give the
same as taking the union of the elements for each tree.

3.5 Shrinking Trees

A sometimes neglected advantage of QuickCheck is shrinking : the ability to
systematically cut down large machine-generated counterexamples to small ones
that are easier for humans to understand. This mirrors the working routine of
a software engineer: first recreate a run with an input exhibiting a bug, then
systematically cut down the input (if possible) to a minimum in order to get to
the heart of the error.

In QCheck shrinkers are implemented as iterators: a lazy stream of values.
For example, Iter.empty creates the empty stream, Iter.return v creates
the singleton stream containing only v, Iter.of list vs creates a stream from
a list vs, and Iter.append sequences two iterator streams (it is also available
under the infix alias <+>).

We can now express our shrinker as follows:

(* tshrink : instr_tree -> instr_tree Iter.t *)
let rec tshrink t = match t with

| Empty -> Iter.empty
| Singleton i ->

(Iter.return Empty)
<+> (Iter.map (fun i’ -> Singleton i’) (Shrink.int i))
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| Add (i,t) ->
(Iter.of_list [Empty; t; Singleton i])
<+> (Iter.map (fun t’ -> Add (i,t’)) (tshrink t))
<+> (Iter.map (fun i’ -> Add (i’,t)) (Shrink.int i))

| Remove (i,t) ->
(Iter.of_list [Empty; t])
<+> (Iter.map (fun t’ -> Remove (i,t’)) (tshrink t))
<+> (Iter.map (fun i’ -> Remove (i’,t)) (Shrink.int i))

| Union (t0,t1) ->
(Iter.of_list [Empty;t0;t1])
<+> (Iter.map (fun t0’ -> Union (t0’,t1)) (tshrink t0))
<+> (Iter.map (fun t1’ -> Union (t0,t1’)) (tshrink t1))

| Inter (t0,t1) ->
(Iter.of_list [Empty;t0;t1])
<+> (Iter.map (fun t0’ -> Inter (t0’,t1)) (tshrink t0))
<+> (Iter.map (fun t1’ -> Inter (t0,t1’)) (tshrink t1))

This shrinker codifies a systematic reduction: (a) We cannot reduce empty trees
further. (b) We attempt to first replace a singleton with an empty tree, and
otherwise shrink the singleton element itself. (c) We attempt to first replace
addition and removal nodes with an empty tree, by dropping the node and
keeping only the sub-tree, by replacing an addition node with a singleton node, by
shrinking the sub-tree recursively, or by reducing the added or removed element.
(d) In both the remove, union, and intersection cases, we first attempt to replace
them with an empty tree, we then attempt to keep only a sub-tree, and finally
we attempt to reduce sub-trees recursively.

With tshrink for shrinking trees, we enhance our generator with this ability:

where arb int is some integer generator.

3.6 Refining the Integer Generator

We have expressed all tests in terms of arb int, an (unspecified) integer gen-
erator. If we run our tests with arb int implemented as a uniform generator
Gen.int everything appears to work as intended:

random seed: 33309109
law empty: 1 relevant cases (1 total)
law singleton test: 10000 relevant cases (10000 total)
law mem test: 10000 relevant cases (10000 total)
law add test: 10000 relevant cases (10000 total)
law remove test: 10000 relevant cases (10000 total)
law union test: 10000 relevant cases (10000 total)
law inter test: 10000 relevant cases (10000 total)
success (ran 7 tests)

Here we have tested the agreement property between the model and Ptset across
the 7 operations, each on 10.000 arbitrary inputs, with the exception of empty

which we only need to test once. Repeating this run (with different seeds for each
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run) does not change our perception. For example, if we repeat these 60.001 tests
10 times, totaling 600.010 tests the Patricia tree implementation still appears to
function correctly.

The strategy of generating integers uniformly for our test cases may however
be questioned. First, the chance of generating duplicate integer elements, e.g.,
for testing the remove or mem operations on a present element is diminishing
over OCaml’s 63-bit integers (on a 64-bit machine). By replacing the integer
generator with small signed int we have a much bigger chance of generating
duplicate elements as illustrated by the following two generator samples:

Notice how the integer 6 occurs twice in the last sample. Repeating the above
test run with small signed int as the integer generator however does not reveal
anything new: the Patricia tree implementation passes another 600.010 generated
tests.

A second concern about both the int generator and the small signed int

generator is the small chance of generating a corner case such as min int or
max int: Each of these is only emitted by the uniform int generator with a prob-
ability of one out of 263 with OCaml’s 63-bit integers and the small signed int

generator will never emit them. Yet the past decades of software engineering tells
us precisely to remember to test such corner cases! How can we do so?

One way to adjust the integer generator to include such corner cases is to
compose multiple different generators. For example, we can choose to either
generate a small signed int (which includes the corner case 0), generate an
integer uniformly (as above), or generate one of the two extremal corner cases:

let arb_int = frequency [(5,small_signed_int);
(3,int);
(1, oneofl [min_int;max_int])]

Here we have weighted each of these choices, by generating a small signed int

with chance 5
9 , by generating an integer uniformly with chance 3

9 = 1
3 , and

by generating min int or max int with chance 1
9 . Overall with this alternative

integer generator we still have some chance of generating all integers, but the
resulting distribution is skewed towards smaller numbers and corner cases both
with a reasonable chance of occurring repeatedly.

3.7 The Bug and Some Potential Fixes

If we try to run the test suite with the refined integer generator arb int the
framework quickly locates a problem:



70 J. Midtgaard

random seed: 448813938
law empty: 1 relevant cases (1 total)
law singleton test: 10000 relevant cases (10000 total)
law mem test: 10000 relevant cases (10000 total)
law add test: 10000 relevant cases (10000 total)
law remove test: 10000 relevant cases (10000 total)
law union test: 3363 relevant cases (3363 total)

test ‘union test‘
failed on ≥ 1 cases:
(Add (-4611686018427387904, Singleton 0),
Add (-4611686018427387904, Singleton 1)) (after 9 shrink steps)

law inter test: 10000 relevant cases (10000 total)
failure (1 tests failed, ran 7 tests)

We identify the number -4611686018427387904 as min int, the least repre-
sentable integer in 64-bit OCaml. With this in mind, the counterexample illus-
trates that a set union of the sets {min_int, 0} and {min_int, 1} does not yield
{min_int, 0, 1}! What does it yield then? If one calls abstract on the resulting
data structure it actually yields

[-4611686018427387904; -4611686018427387904; 0; 1]

with a duplicate min int entry!
To understand the problem we must reopen the black box of Ptset’s imple-

mentation. First, since min int is represented in 2-complement representation
as a string of 0’s with only a 1 in the sign bit, the left sub-tree resulting from add

min int (singleton 0) has the shape displayed on the left in Fig. 2. Similarly
the right sub-tree resulting from add min int (singleton 1) has the shape
displayed on the right in Fig. 2. Now, the union operator simply performs a call
to the internal merge operation, which is a recursive procedure for merging two
Patricia trees:

Fig. 2. The tree shapes resulting from add min int (singleton 0) and add
min int (singleton 1)
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1 let rec merge = function
2 | t1,t2 when t1==t2 -> t1
3 | Empty, t -> t
4 | t, Empty -> t
5 | Leaf k, t -> add k t
6 | t, Leaf k -> add k t
7 | (Branch (p,m,s0,s1) as s), (Branch (q,n,t0,t1) as t) ->
8 if m == n && match_prefix q p m then
9 (* The trees have the same prefix. Merge the subtrees. *)

10 Branch (p, m, merge (s0,t0), merge (s1,t1))
11 else if m < n && match_prefix q p m then
12 (* [q] contains [p]. Merge [t] with a subtree of [s]. *)
13 if zero_bit q m then
14 Branch (p, m, merge (s0,t), s1)
15 else
16 Branch (p, m, s0, merge (s1,t))
17 else if m > n && match_prefix p q n then
18 (* [p] contains [q]. Merge [s] with a subtree of [t]. *)
19 if zero_bit p n then
20 Branch (q, n, merge (s,t0), t1)
21 else
22 Branch (q, n, t0, merge (s,t1))
23 else
24 (* The prefixes disagree. *)
25 join (p, s, q, t)

The gist of the code is that it handles merging with empty sub-trees and leafs as
separate cases (lines 3–6). In our situation above we hit the case of merging two
branching nodes (line 7). This proceeds by a case analysis of the least significant
branching bit: are the branching bits identical (and do the prefixes agree) (lines
8–10), is one branching bit less than the other (and do the prefixes agree) (lines
11–16 and 17–22), or is there some disagreement (lines 23–25)? In our case the
branching bits are min int and 1 and comparing them with a signed comparison
(line 11) yields true contrasting the intention of taking the least significant bit.
From here on it is downhill. The empty prefix (q, represented as all 0’s) of the
right tree also has a zero sign bit (line 13), thereby causing Leaf 000...000 to
be merged recursively with the right tree (line 14). This boils down to invoking
add (line 5) and results in a structure of the form:

Branch(-,000...001)

Branch(000...000,100...000)

Leaf 000...000 Leaf 100...000

Leaf 000...001

which is in turn placed as the left sub-tree in the overall result by line 14:
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Branch(000...000,100...000)

Branch(-,000...001)

Branch(000...000,100...000)

Leaf 000...000 Leaf 100...000

Leaf 000...001

Leaf 100...000

and thereby explains the duplicate entry of min int in the result and the dis-
agreement between the implementation and our model.

In retrospect, we now realize that our shrinker constructed a minimal coun-
terexample: we need at least two branching nodes to hit line 7 and recreate the
bug. In the current setting the error is also limited to a case with min int occur-
ring twice in order to be erroneously duplicated in the resulting list of elements.
Subsequent runs with different seeds may of course produce different symbolic
counterexamples all illustrating the same underlying issue.

One potential fix is to change the representation of the branching bit. After all
we need only represent 63 different branching bit values on a 64-bit architecture
which can be done with only 6 bits.5 This fix is however a more invasive change
throughout the module.

An elegant and less invasive patch was suggested by Jean-Christophe
Filliâtre. The essence of the fix is to compare the two OCaml ints (a signed
integer data type) albeit using an unsigned comparison. Since the only members
we compare are branching bits on the binary form 0001, 0010, 0100, . . . , we
can do so as follows:

let unsigned_lt n m = n >= 0 && (m < 0 || n < m)

which boils down to n < m for all non-sign-bit cases, yields false when n is a
sign-bit (as desired), and yields true when m is a sign-bit (as desired). All sign
bit comparisons in the code (incl. lines 11 and 17) should thus be patched to call
unsigned lt instead. This fix furthermore has the advantage of costing only a
few more comparisons in the common cases (assuming the call is inlined by the
OCaml compiler).

The sub-module implementing the big endian version of sets and the Ptmap

module implementing dictionaries contain the same problematic comparisons.
They have all been fixed subsequently.

5 OCaml’s garbage collector reserves 1 tag bit in integers to distinguish them from
heap-allocated data.
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3.8 The Bug and the Research Paper

The identified bug is not only relevant to users of ptrees, but to the functional
programming community at large. Compare the listed OCaml merge function
to the following SML merge function from Okasaki and Gill (1998, Fig. 5):

1 fun merge c (s,t) =
2 let fun mrg (Empty, t) = t
3 | mrg (t, Empty) = t
4 | mrg (Lf (k,x), t) = insert c (k,x,t)
5 | mrg (t, Lf (k,x)) = (c o swap) (k,x,t)
6 | mrg (s as Br (p,m,s0,s1), t as Br (q,n,t0,t1)) =
7 if m=n andalso p=q then
8 (* The trees have the same prefix. Merge the subtrees. *)
9 Br (p,m,mrg (s0,t0),mrg (s1,t1))

10 else if m<n andalso matchPrefix (q,p,m) then
11 (* q contains p. Merge t with a subtree of s. *)
12 if zeroBit (q,m) then Br (p,m,mrg (s0,t),s1)
13 else Br (p,m,s0,mrg (s1,t))
14 else if m>n andalso matchPrefix (p,q,n) then
15 (* p contains q. Merge s with a subtree of t. *)
16 if zeroBit (p,n) then Br (q,n,mrg (s,t0),s1)
17 else Br (q,n,t0,mrg (s,t1))
18 else (* The prefixes disagree. *)
19 join (p,s,q,t)
20 in mrg (s,t) end

where the parameter c : ’a * ’a -> ’a is a combining function for resolving
key collisions (useful when Patricia trees are used to represent dictionaries in
general).

The comments and the structure of this code are the same as in the OCaml
version: lines 2–3 handle merging with empty trees, lines 4–5 handle merging
with singletons, and lines 6–19 handle the merging of two internal nodes with a
4-branch case analysis like the OCaml version: are the branching bits identical
(and do the prefixes agree) (lines 7–9), is one branching bit less than the other
(and do the prefixes agree) (lines 10–13 and 14–17), or is there some disagreement
(lines 18–19)?

The branching bit in the data type underlying the above operation is declared
as SML’s int type (also a signed integer data type):

datatype ’a Dict =
Empty

| Lf of int * ’a
| Br of int * int * ’a Dict * ’a Dict

As Okasaki and Gill’s merge function contains comparisons m<n and m>n writ-
ten using the signed integer comparison of SML it thereby exhibits the same
problematic behavior as the OCaml version.

Since the initial publication of our model, it has been reused by Simon Cru-
anes to QuickCheck the Patricia tree implementation in OCaml Containers, an
extension of the OCaml standard library.6 This merely required retargeting the

6 https://github.com/c-cube/ocaml-containers.

https://github.com/c-cube/ocaml-containers
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interpretation of the symbolic operations. This alternative implementation had
been developed independently and did not exhibit the bug.

4 Related Work

Over the past 17 years QuickCheck has evolved from a Haskell library (Claessen
and Hughes 2000) to the present situation where ports have been made to many
of the most popular programming languages.7 In the process the approach has
been extended to test imperative code (Claessen and Hughes 2002) and a com-
mercial port for Erlang has been developed by the company Quviq. Quviq’s
commercial port includes a compact state-machine DSL for easily specifying and
testing such code with abstract models (Hughes 2010) akin to the current paper.
One notable difference between Quviq’s state-machine DSL and the model in
this paper is that

– the state-machine approach is sequence-centric: it can be used to generate API
call sequences (at its core describing a regular language) and test agreement
between a model and an implementation’s output and behaviour, whereas

– the example model we have presented is tree-centric (describing a context-free
language).

The API of Quviq’s state-machine DSL has subsequently been mimicked in
Erlang’s open source QuickCheck libraries PropEr8 and Triq9. Early on Gast for
Clean (Koopman et al. 2003; Koopman and Plasmeijer 2005) supported compact
and powerful state-based models, but for a number of years the situation for other
languages was less promising. Only more recently has state-machine frameworks
for other languages surfaced, such as ScalaCheck (Nilsson 2014) for Scala and
Hedgehog10 for Scala, F#, and Haskell.

We are certainly not the first to test a data structure using QuickCheck. Arts
et al. (2008) present a general methodology to test abstract data types, exempli-
fied by testing a ‘decimal number type’ (up to some rounding) against a model
of floats. Their methodology is: (1) to define a model (and state equivalence), (2)
to write as many equivalence properties as there are data type operations (and
to work with a symbolic representation), (3) to write a generator, and (4) to
define shrinking preferences (if needed). The methodology thereby spells out the
model-based approach initially suggested by Claessen and Hughes (2002) and
which we have also followed here. In a follow-up paper, Arts and Castro (2011)
extend the methodology to test imperative data structures. This involves a com-
bination of the Quviq state machine framework and boilerplate code generation
of a test skeleton to keep the repetitive programming to a minimum.

7 The Wikipedia page https://en.wikipedia.org/wiki/QuickCheck lists ports to 33 lan-
guages as of May 2017.

8 http://proper.softlab.ntua.gr/.
9 http://krestenkrab.github.io/triq/.

10 https://github.com/hedgehogqa.

https://en.wikipedia.org/wiki/QuickCheck
http://proper.softlab.ntua.gr/
http://krestenkrab.github.io/triq/
https://github.com/hedgehogqa
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Since its introduction property-based testing has successfully been applied
to test and locate errors in a broad class of software: formal semantics (Felleisen
et al. 2009), election systems (Koopman and Plasmeijer 2011), optimizing
compilers (Pa�lka et al. 2011; Midtgaard et al. 2017), type environments (St-
Amour and Toronto 2013), dynamic analyzers (Hriţcu et al. 2013), type sys-
tems (Fetscher et al. 2015), static analyzers (Midtgaard and Møller 2015), and
computational geometry (Sergey 2016). Common to many of these are that they
are not model-based. For each particular domain, the involved operations are
instead tested to satisfy domain-specific properties, e.g., non-interference (Hriţcu
et al. 2013), lattice axioms (Midtgaard and Møller 2015), or geometric proper-
ties (Sergey 2016). Koopman et al. (2012) compare the bug-finding capabilities
of the two forms of QuickCheck specifications: the traditional logical properties
and input/output conformance in a state-machine framework. They conclude
that both are powerful for detecting errors, but that the latter is slightly more
effective.

Our refined integer generator arb int is by no means the final word on
integer generation. For some situations, e.g., our testing of McCarthy’s 91 func-
tion, we would prefer to avoid generating duplicate numbers, as these represent
redundant tests. In other situations (as we have argued) we would precisely
want a generator to emit duplicates. An orthogonal aspect is size: the builtin
generators of Quviq’s commercial QuickCheck implementation is based on gener-
ations. The distribution of their integer generator int() thus initially generates
smaller numbers but its output varies towards greater numbers as a property is
repeatedly tested (generations goes by).11 Testing and potentially catching errors
over small inputs first will again reflect in time saved shrinking a needlessly big
counterexample.

Recently there has been a trend towards letting a QuickCheck framework
generalize the found counterexamples. SmartCheck (Pike 2014) is a QuickCheck
extension that can perform such generalization with the goal of explaining the
general erroneous behaviour to the user. MoreBugs (Hughes et al. 2016) is
another QuickCheck extension performing such generalization with the goal of
avoiding repeated rediscovery of the same bugs. In practice this becomes a con-
cern if a tester does not want to pause the testing process until the first round
of errors is fixed or adjust his model specification to reflect the code’s buggy
behaviour (Hughes 2016).

5 Conclusion and Perspectives

We have demonstrated how QuickCheck can locate a subtle bug in a published
data structure paper after almost two decades—a bug which was also present in
an influential library implementation.

For the purpose of bug-finding, the quality of a QuickCheck library’s built-in
generators is of utmost importance. Simple uniform generators are unlikely to
exercise the corner cases that one would typically test by hand. As a consequence,
11 http://quviq.com/documentation/eqc/eqc gen.html.

http://quviq.com/documentation/eqc/eqc_gen.html
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a passing QuickCheck test suite based on such generators may give users a false
sense of certainty in an implementation. Furthermore, for a QuickCheck library
to be successful, the ability to efficiently shrink counterexamples is essential.
Otherwise, the machine generated counterexamples simply get too big to be
comprehensible for a human being. For both of these aspects, the commercial
Quviq QuickCheck implementation has a clear advantage, with several years of
effort in refining and engineering its generators and shrinkers.

The full source code of our developed tests is available for download at
https://github.com/jmid/qc-ptrees.
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C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 92–106. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-18070-5 7

https://github.com/jmid/qc-ptrees
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1007/978-3-642-18070-5_7


QuickChecking Patricia Trees 77

Hughes, J.: Software testing with QuickCheck. In: Horváth, Z., Plasmeijer, R., Zsók,
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Abstract. Debugging dynamic web applications is challenging in many
ways. Applications intrinsically consist of (at least) a server and a client
program, each deployed on different nodes. Because of that, web appli-
cations behave like distributed systems and debugging them faces much
of the same problems like managing state and heterogeneity of nodes.
For web applications the latter problem also applies for the distinction
between client and server code. These sections are typically written in
different languages which further complicates the debugging of a web
application.

The most common solution is dealing with each program layer indi-
vidually using language-specific debugging tools, but this does not give
an overview of the entire application flow.

Multi-tier languages allow programming a web application in a single
language as a single application. They are primarily designed to offer
advantages with regards to developing web applications, but this opens
up new possibilities for debugging as well. We propose Elmsvuur, a multi-
tier version of Elm, and a time-travel debugger for it. The debugger oper-
ates as a single tool for the whole client/server application. We discuss
how advanced timeline debugging features, such as resuming from differ-
ent points in the history, allows programmers to find bugs across tiers.

1 Introduction

Debugging dynamic web applications is challenging in many ways. Applications
consist of (at least) a server and a client program, each deployed on different
nodes with client and server often written in different languages. This variety in
programming languages further complicates the debugging of a web application
and makes it difficult to maintain a global view of the application when finding
bugs.

Multi-tier Languages. The classical process of developing a web application con-
sists of writing programs for the different programming layers or “tiers” of the
application as well as (parts of) the logic for communication that needs to happen
between them. With JavaScript being the most widely used language for client
applications and various options for the other layers, they are mostly written in
c© Springer International Publishing AG, part of Springer Nature 2018
M. Wang and S. Owens (Eds.): TFP 2017, LNCS 10788, pp. 79–97, 2018.
https://doi.org/10.1007/978-3-319-89719-6_5
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different languages. Such applications may also require code that handles send-
ing and receiving information between programming layers, as well as converting
that information to a format that both parties can understand.

Multi-tier languages were created to solve some of these problems. They
provide a developer with one language to create web applications, without the
need to write programs for each layer in different languages. Instead, the code
for the programming layers underneath is generated by the multi-tier framework
based on the multi-tier application source code. Links [1] and Hop [2] were
among the first multi-tier languages to be created, with Ur/Web [3], Hop.js [4]
and Eliom [5] as more recent examples. Having only one source language means
that the programming process is less partitioned, and depending on the design
of the multi-tier language they can also offer various abstractions, most notably
in terms of communication.

For debugging, similar simplifications apply. Multi-tier languages make it
possible to have a single debugging tool for the whole application, in contrast to
debuggers for each programming layer. Such tools, like the Hop debugger [6], also
have the benefit of having access to the complete execution of the application.

Time Travel Debugging. Finding and resolving bugs often comes down to retrac-
ing a series of events that led to the bug. This can be quite repetitive work,
especially if testing many different scenarios with the same event history. A
technique that can aid in such situations is time travel debugging [7,8]. This
style of debugging makes it possible to travel through the history of the applica-
tion and inspect it at previous points in the execution time line directly. Other
features can be: pausing the application, replaying past events (possibly with
hot-swapped code), continuing from a previous point, and more.

To make this all possible, time-travel debuggers need to store some kind of
information about the state of the program for each point in the timeline and
about the event that caused it. Not only to be examined afterwards, but also to
potentially rerun events.

Multi-tier Time Travel Debugging. We propose to combine the technique of
time travel debugging with a multi-tier debugger for web applications. This
combination results in a debugger that has more insight in the execution of the
application because of its multi-tier nature and has time travel capabilities that
apply on a multi-tier level. To accomplish this though, there are some challenges
to consider.

– Multi-tier languages offer one language to develop applications, but once
deployed, they consist of different programs for the server and each client
like any other web application, with each of those programs having their own
timeline of events. So inherently a multi-tier time travel debugger needs to
deal with multiple timelines and their interaction, distributed over client and
server. Figure 1 shows these different timelines with every node representing
an event. It also shows how the global timeline of the application is com-
posed out of those client and server timelines and how some of their events
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Fig. 1. Concept of multiple timelines

can be interconnected. In that context, it is important to consider how the
debugger constructs that global timeline and how time travel functionalities
are implemented with that architecture.

– Altering the global timeline of the application means potentially altering each
of the individual timelines and their state. This process requires that after
the change, the states of the server and clients end up in a consistent state.

– When the application is paused, the debugger needs to deal with events that
can still be received from pending client-server communication or finishing
side-effects.

– After changing the timeline of the application, events can be received that
originated from a previous timeline and have no place in the new one. So the
debugger has to be able to discard those accordingly.

Multi-tier Time Travel Debugging: an Implementation for Elm. Certain program
architectures lend themselves better for certain styles of debugging than others,
the design of a programming language or framework can largely affect how easy a
debugger is constructed and used. In this paper we focus on a multi-tier debugger
specific to Elmsvuur1, our own multi-tier framework based on the Elm language
[9] that lends itself well to event inspection. In fact, we point out that our design
and implementation are rather specific to Elmsvuur and its architecture and the

1 Elmsvuur is the dutch name for St. Elmo’s fire: a weather phenomenon that pro-
duces electric discharges from sharp objects (like ship masts) in certain atmospheric
conditions. The discharges remind us of messages escaping a single tier’s boundary.
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approach of multi-tier time-travel debugging would probably be considerably
harder to implement for other multi-tier languages. Our debugger has the same
design goals as the time travel debugger in Elm2. It is easy to inspect incoming
and outgoing events and the effect these have on the state of the application
but it is not within the scope of the Elmsvuur debugger to inspect the pure
computation that calculates such intermediate states.

Elm is a pure functional language that compiles to JavaScript, meant for
developing client-side web applications. Its goal is to be a language that makes
developing web applications easy and intuitive, instead of trying to solve short-
comings of JavaScript. Elm applications are written in the Elm architecture, a
simple pattern for developing applications. Elm enforces at least the main mod-
ule to have a separate definition of the program’s state, user interface and event
processing logic. Elmsvuur extends this pattern to a multi-tier level. Its debug-
ger, written as a multi-tier library, wraps itself around an Elmsvuur application
to add its instrumentation.

Overview. To summarize, the contributions of this paper are:

– A proposal for applying time-travel debugging in a multi-tier language, tak-
ing into account issues like separate timelines, causal dependencies across
timelines and the interplay between events and timeline modifications.

– The design and implementation of Elmsvuur, a multi-tier version of Elm,
built around a multi-tier version of the Elm architecture.

– A complete prototype implementation of both Elmsvuur and its debugger,
demonstrating their practicality3.

The remainder of this paper consists first of a look at the architecture of Elm
and Elmsvuur in Sect. 2. Then we give an overview of the Elmsvuur debugger and
its functionality in Sect. 3. Next, Sect. 4 offers a closer look at the architecture
and design of the debugger. Next, we discuss future work in Sect. 5 followed by
a final rundown of our contributions in Sect. 6 and finally conclude with related
work in Sect. 7.

2 Multi-tier Elm

Elmsvuur is a natural extension of the Elm architecture to a client/server setting.
Let us first look at the Elm architecture and then its multi-tier variant.

2.1 The Elm Architecture

Basic. Elm requires that every application is structured according to the Elm
architecture, shown schematically in Fig. 2. In its most basic form, there are

2 http://debug.elm-lang.org/.
3 https://github.com/JeffHoremans/elm-multitier-examples.

http://debug.elm-lang.org/
https://github.com/JeffHoremans/elm-multitier-examples
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Fig. 2. The Elm architecture

three core elements: the model, the update function and the view function. The
model is a data structure that stores the current state of the application. The
update function is responsible for converting the current state (or model) of the
application into a new one, based on an incoming message (Msg). Finally, the view
function defines how to turn the current model into a structure representing an
HTML tree. Such a structure defines what the user interface looks like as well
as which input elements trigger new messages for the Elm program. The only
responsibility of the programmer is to describe how to convert incoming data to
outgoing data using these three elements. It is then up to the Elm runtime to
connect those elements and perform actions accordingly.

Side-Effects. The basic architecture does not allow general communication and
reaction to the outside world. For that, two elements are added to the basic
architecture: subscriptions (Sub) and commands (Cmd). Just like the HTML con-
struct the view generates, both are data structures that describe something for
the Elm runtime to perform and both result in messages that return to the
program. Subscriptions describe what Elm needs to listen to, for example a web
socket or the current mouse coordinates. Commands on the other hand, describe
something Elm needs to do, for example perform a HTTP request or print to the
console. Effects in Elm are thus represented as data. They are not performed
immediately, instead they are passed to the runtime which actually performs
them while returning their results as messages for the update function.

Extensibility. The model, update and view structure is imposed on an Elm pro-
gram by the main value, which is not an imperative, but a declarative main that
expects a model, an update function and a view function. When one of those ele-
ments, or the entire main module becomes too complex, these declarations can
contain declarations of sub-modules. Although not imposed, the Elm architec-
ture is recommended to be used on those modules as well. Adding a sub-module
then consists of nesting or wrapping its model, update function and view func-
tion. So even large-scale Elm applications are only composed out of those few
core elements.
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Fig. 3. The Elmsvuur architecture

2.2 The Elmsvuur Architecture

The Elmsvuur architecture in Fig. 3 extends the Elm architecture logically on a
multi-tier level. Writing multi-tier applications in Elmsvuur is similar to writing
regular Elm applications. Instead of requiring a three component main function,
multi-tier Elm applications impose a different architecture. Although it is written
as a single application, the architecture does reflect the deployment over separate
Elm server and client tiers. In the following sections we explain the Elmsvuur
architecture and its elements gradually.

Client Tier. In its most basic form, our Elmsvuur architecture is identical to
the Elm architecture and only uses the original three core elements (model,
update and view). Such a multi-tier application compiles into a default Elm
server program that only hosts the simple client Elm program.

When using the full client Elm architecture with subscriptions and commands
the only exception is in the type of commands. Instead of requiring Cmd, we
require MultitierCmd. These new commands, can be one of two things, a regular
Elm command or a remote procedure call command which we discuss later.

To summarize: the client tier is defined as a client model, a client update
function and a client view function.

Server Tier. Up to this point, the resulting server program only contains default
framework code to run and host the client program. To be able to extend the
server application code, the Elmsvuur architecture defines server variants for
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each of the Elm architecture elements. The server defines its own model and
update function and allows for server-side commands and subscriptions.

With the full Elm architecture on the server it would be possible to listen to
the server’s clock with subscriptions or write files using commands.

Asynchronous Remote Procedure Calls. The final element of the Elmsvuur archi-
tecture is the use of remote procedure calls which allow clients to perform actions
on the server. These model regular HTTP requests in a multi-tier fashion and
fit naturally in the asynchronous Elm architecture. They are designed as data
structures that describes RPC actions and are interpreted by the Elm runtime.
RPC commands may update the server model and can even result in other server
commands or subscriptions. On completion, the result of the RPC is piped back
to the client update cycle in the form of a message.

As mentioned above, RPCs are a type of multi-tier command but unlike
regular client commands they describe something that needs to be done on the
server instead of the client.

Fig. 4. Screenshot of our room reservation application.

3 Multi-tier Time Travel Debugging by Example

This section presents the Elmsvuur and its debugger using an example room
reservation application. This application allows users to schedule a conference
room under a given reservation name by clicking available slots. Figure 4 offers
a screenshot of the application. The list of rooms with their reservations are
maintained on the server, with clients performing calls for updating reservations
and the server notifying clients with changes. For simplicity our interface only
shows a single room and a single reservation slot. We strongly encourage the
reader to explore the example and the debugger. The entire scenario as it is
described here can be tested on our project4.

To help illustrate the debugger we consider a simple scenario. Two clients
try to schedule the same room and both succeed in doing so, thus exposing
4 https://github.com/JeffHoremans/elm-multitier-examples.

https://github.com/JeffHoremans/elm-multitier-examples
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a bug. Figure 5 shows a diagram of the debugger after capturing this scenario
with screenshots for the different parts of the application. In the following para-
graphs we gradually explain the visual elements of the debugger and the actual
debugging process.

Fig. 5. Diagram with screenshots of the debugger at work.

Look and Feel. The 2 clients of the conference application are shown on the
right. They are visually extended by the debugger view, by adding a data view
at the bottom. It displays the current model of each client. That model contains
the information about the room it is displaying, so far it has received the latest
version. Additionally, there is a button above the data view, that switches the
interface to the server debugger view as displayed on the left. As indicated by
the dotted line, it acts as the main interface of the debugger. Client debugger
views can switch back and forth to the server view for seamless debugging.

The server debugging view is composed out of roughly 4 segments, as num-
bered on the figure: (1) controls for various actions and configuration options,
e.g., switching back to the client view, pausing and resuming, showing causal
dependencies between events and setting the resume strategy – more about these
later. (2) a data view of the server model (similar to the client view). In this
example it contains the list of conference rooms and their information. (3) a nav-
igable event list, containing all events from the whole client/server application
which make up the global timeline with the most recent event at the top. (4) a
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graphical representation of this global timeline which shows extra information
such as client/server communication in an intuitive way.

Debugging the Scenario: Interface. Looking at the event list (3) and the global
timeline of our example (4) we can identify three types of events: initialisation
events, message events and RPC events. The first represents the server or a
client starting with its initial state. Message events happen when the server or
a client program receives a message for the update function and RPC events
describe an asynchronous client to server request. Looking at the figure, we can
see that the debugger captured these events in our room reservation example.
We color-coded events of a single timeline in the event list to make clear which
events belong to which timeline in the global timeline.

Before looking at the scenario, we consider type definitions of a few parts of
the example application in Listing 1.1. The first line contains the definition of
the client model which holds the last-received list of rooms and the reservation
name. On the second line, the client’s messages are defined (as a union type).
On lines 5 and 6, we can see the definitions of the server model and that of the
room type. Finally, on line 7, remote server messages are defined, used in the
asynchronous client to server RPCs. Because of the multi-tier setting, the server
and client model are defined in the same code base, allowing the room type to
be shared by them.
1 type alias Model = { rooms: List Room , name: String }
2 type Msg =
3 UpdateRoom Room | Handle (Result Error (List Room)) | OnInput String
4 ...
5 type alias ServerModel = { rooms: List Room }
6 type alias Room = { number: Int , name: String , booked: Maybe String }
7 type RemoteServerMsg = UpdateRoomOnServer Room

Listing 1.1. Some type definitions of our example application.

Debugging the Scenario: Identifying a Bug. The example scenario contains a bug
where the room is scheduled twice. To find the bug we pause the application and
use the event list and the global timeline to inspect the sequence of events. For
now, it is sufficient to know that when selecting events on either of them (in 3
or 4), the data view of the server (2) and the data views of the clients output
the model state at the time the event occurred.

If we look at the events sequentially, we first see the initialisation event of the
server, followed by that of the first client. The latter is also visualised in the global
timeline, notice that the client’s timeline starts later. Next, the OnInput message
is received from the DOM indicating that this client has inserted his reservation
name. Then, a second client can be seen connecting and doing the same thing.
After that, client 1 tries to schedule the room, triggering an UpdateRoom message
on the client which updates the room with its reservation name. That message
causes the UpdateRoomOnServer RPC which performs the actual reservation of
the room on the server. The Handle message received on the client as a response
signifies this has succeeded, containing the updated room information. Before
client 2 is aware of this, he also attempts the same action and also succeeds. At
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that point we can see that the updating of the room on the server incorrectly
overwrites the room information and does not check if it is already taken.

What this shows us, is that the bug is related to that part in our implemen-
tation. The debugger gives us a good estimate that the code that dispatches
the UpdateRoomOnServer RPC contains a bug. This interactive inspection of the
client/server program as a whole quickly allows programmers to identify bugs in
sections of code.

4 Multi-tier Elm Debugger

4.1 Architecture

The Elmsvuur debugger itself is written as an Elmsvuur application, it follows
the Elmsvuur architecture of Sect. 2.2. To debug other Elmsvuur applications, it
wraps itself around them by extending each element of their architecture with its
own. This concept is shown in Fig. 6 where each element of the debugger archi-
tecture is an extension of the instrumented application. It allows the debugger
to have complete control over the application.

Fig. 6. The Elm multi-tier debugger architecture

Both on the server and on the client, the application model is nested in
the debugger model. The debugger stores the application’s model as well as
additional state specific to the debugger. The top-level messages are debugger
messages, so application messages are wrapped as debugger messages and first
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handled by the debugger update function. This allows the debugger to monitor
messages before they reach the application and make it possible to store or dis-
card them before propagating the message to the application’s update function.
By wrapping the view function, the debugger is able to add debugger specific
sections to the interface.

4.2 Global Timeline

The most prominent feature of the debugger interface is the visualization of the
global timeline. It is shown in the form of an event list and in the form of a
graphical global timeline.

They both form the same interactive stepper, with each node on the graph
(representing an event) in the global timeline corresponding from left to right
with the event data in the list above from bottom to top. Clicking events, either
in the list or on the timeline, can be used to step the application back to a
previous point in the global timeline. There are two functionalities exposed by
stepping back in the timeline. First, it can be used to quickly inspect different
states of the server model without impacting the entire application. Secondly, if
the client/server application is paused its true functionality can be used to step
back through the entire application. This results in the server and each client
updating their data view with their past model at the time of the event. For
clients, this also means updating their UI to its past state. Stepping through
the timeline thus allows inspecting events, but also shows how the models and
views of the different parts of the applications evolved over time. The entire
client/server application can be inspected as a single entity.

Event Order. An important thing to consider is the order of the timeline events.
We do not rebuild a global timeline based on some notion of synchronized clocks.
Instead, the debugger keeps track of a list of events in the order they are received
on the server. We make some assumptions to make this practical:

– The global timeline does not give an exact reflection of the real timeline. The
global timeline does not allow for events that occur at the same time. From
the server’s point of view, an order is enforced.

– We do not visualize the actual time in the timelines, e.g., in reality an event
can take a month to occur yet it shows up right behind the last event in the
timeline.

We found these assumptions to provide a good balance between reflecting
the actual situation and providing a good user experience. While our approach
cannot reproduce the exact global timeline, it does give an approximation that
has sufficient guarantees for debugging purposes.

Note that our prototype implementation still uses common HTTP requests
to send event data over the network to the server from the clients. At the moment
this is an implementation bug since the order of multiple HTTP requests cannot
be guaranteed to be the same as the order in which they actually occurred. This
can be solved by using communication that ensures in-order delivery, such as
websockets.
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Pausing and Resuming. When the application is running, the models of the
different tiers are kept up-to-date and the timeline is being updated with all
incoming events. From the moment the application is paused, the interface of
the clients is frozen. The debugger then allows quick inspection of previous states
throughout the entire client/server application.

When stepping the application back to a previous point in the global timeline,
the server and clients are notified to step back to their previous state at that
point. For this to be possible, the debugger does not just store each event that
occurs, it also keeps snapshots of the model of the server or each corresponding
client. With that information, the debugger can find the latest model state for
each connected client and the server whenever a point is selected to step back to.

Since we are dealing with a distributed environment, pausing and resuming
the application does not happen instantly at every tier. Between the time of
pausing at the server, and the client being instructed by the server to pause
as well, client events can have occurred. The same applies for resuming the
application. As such, in the background the application still runs and reacts to
the outside world. When the application is resumed this backgrounded model is
made current again and the application can seamlessly continue. This process is
shown in Figs. 7 and 8.

Fig. 7. Example timeline when paused

Fig. 8. Example timeline after resuming
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Stepping Back and Changing the Global Timeline. The debugger not only allows
quick inspection of several points in the timeline, it also allows the programmer
to resume from a previous point. This can be useful to test multiple related
scenarios which take many common events to set up, for instance testing different
error cases in a form.

Resuming from a previous point or event in the global timeline and thereby
changing it raises some important challenges:

– The debugger should be able to determine which events after the resume
point need to be kept and which to be removed. Events triggered by user
interaction or subscriptions need to be discarded as they are exactly the type
of events we would like to change by resuming from a previous point. But, for
events corresponding to side-effects this does not necessarily apply. In Elm,
side-effectful code is always executed asynchronously and their results enter
the program as a message. If such messages are the result of a side-effect that
started before the resume point, it needs to be kept to keep all the events
in the timeline consistent. The same applies for a chain of these connected
events that originated before the resume point. An example of this problem
is shown in Fig. 9.

– By changing the global timeline, at any point in time, events can still be
received asynchronously from finishing side-effects (even from past timelines!).
Some of these results may be started because of an event that has already been
removed from the timeline. These results need to be detected and discarded
to keep consistency.

Fig. 9. Discarding events when changing the timeline

The debugger deals with these challenges using two concepts, parentage and
run cycles:
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Causal Dependencies: Parentage. To handle the first challenge, the debugger
first needs to be able to distinguish between events that were caused by user
interaction, by subscriptions or indirectly by side-effects from processing other
events. It does so by wrapping message events triggered in the view, by subscrip-
tions or by commands appropriately. This already allows discarding the first two
types of events properly. Whenever the timeline resumes from a certain point, all
events that originated from HTML (the view) and subscriptions are discarded
immediately. But for the last type we need more information to determine if it
should be discarded or not. For those events we need to be able to check if they
are part of an event chain that originated before the resume point or after. This
is where the concept ‘parentage’ comes into play.

For this, the debugger keeps track of direct relations between events. In Elm
side-effectful code returns its results asynchronously in the form of a message.
By wrapping that message definition with a reference to the event that caused
it, it becomes possible to figure out where these messages originated from. Using
this reference, we can later identify parent relationships between messages. With
this feature, we can handle event chains properly and check if new messages need
to be discarded or not. Both cases can be seen in Fig. 9 that shows an example
discarding process with parent relations visualised.

Since the debugger keeps track of these causal dependencies anyway, we
decided to visualize them using arcs in the timeline. In Fig. 10, we include a
small screenshot of a global timeline with this feature enabled. From our expe-
rience, this functionality is useful for users to get a better understanding of how
events are related.

Fig. 10. Example timeline with parentage

Discarding Events with Run Cycles. The debugger addresses the remaining chal-
lenges by using run cycles. A run cycle is a number which corresponds to a specific
instance of the global timeline. The debugger wraps all events with this value.
Whenever a new global timeline is started by resuming from a previous point in
time, the run cycle is incremented and the older versions are considered to be
invalid. All events from this point on are wrapped using the new version of the
number.

Figure 11 shows how we can use run cycles to discard the proper events. The
program is run (cycle 0) and is paused before a final asynchronous side-effect has
finished computing (pending (0)). We resume the application from a previous
point (the second Msg on the client) which creates a new run cycle (1). We now
have two pending asynchronous side-effects belonging to two different run cycles.
The current run cycle is 1, as such, whenever pending (0) finishes computing its
messages are discarded.
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Fig. 11. Using run cycles when rerunning events

Invalidating Clients. When changing the global timeline it is possible to rewind
all the way back to a point where clients did not yet exist. In this case these
clients need to be invalidated since they should not have been created yet. The
timeline of such clients is completely removed from the debugger interface and a
message indicating their invalidation is shown on the clients. An example can be
seen in Fig. 12. The client can still be used as an interface to the server debugger
interface, but a refresh is required to start a new client session.

Fig. 12. Screenshot of an invalidated client

5 Future Work

More Efficient Snapshots. The debugger stores data for each incoming event,
including a snapshot with the current state of the application. When debugging
for long periods of time, this amount of data can grow large and eventually make
the debugger too slow. Using the alternative method of recomputing the program
state instead of storing it does requires less space, but will grow in computation
time instead.
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The better solution would be to combine them and snapshot the application
only occasionally. Inspecting or continuing from a previous event state then only
requires recomputing from the last snapshot point.

Importing and Exporting Sessions. The people that encounter bugs are often
not the same people who are responsible for resolving those bugs. In most cases
the latter are forced to rely on a description of the scenario that led to the bug.
Recreating the exact bug is not always straightforward, especially bugs that only
occur in rare circumstances.

Being able to export debugging sessions and import them afterwards, would
solve this problem. This enables inspecting the exact actions performed leading
up to the bug as if it was the original debugging session.

Importing sessions has some requirements though. When importing a session,
the program may already be altered, possibly making it impossible to import
the session. It would be necessary to detect if the session that is to be imported
is still consistent with the current program.

Hot Swapping. The debugger currently does not allow for hot swapping modified
code. As a result, checking if a bug is resolved after making changes requires
restarting the debugger and the debugging scenario that caused the bug.

Having the feature of importing and exporting sessions, discussed in the pre-
vious paragraph, could offer a partial solution. The debugger could then export
the debugging session with the bug, restart using the modified program and
import the session again for retesting the bug. But this only works if the consis-
tency requirement of importing a session is met.

Client Resurrection. When stepping the application back to a point where cur-
rently disconnected clients were still connected, the debugger has no means to
restart them. A potential resurrection strategy could be to let the client that
is operating as the debugger interface, open a new window and start a special
client who will serve as the new host for the old client. But opening new browser
windows with JavaScript can possibly be blocked and is currently not natively
supported in Elm. This would also require changing the initialisation phase of
the debugger, as currently every new client session starts a new timeline.

A simpler option would be to extend the debugger interface and allow switch-
ing to resurrected clients in the same client window, which solves the remarks
of the previous approach. The server already keeps track of client connections,
so when it detects trying to contact a disconnected client, it can reroute the
information to the clients who are operating as the debugger interface.

Visualising WebSocket Communication. Elmsvuur supports two kinds of com-
munication between client-server: RPC communication and WebSocket commu-
nication. The first of which is already visualised in the global timeline of its
debugger. RPC communication is controlled on both ends by Elmsvuur and is
a part of its multi-tier architecture. This allows them to be extended by the
debugger to include the parent information that is needed to visualize the com-
munication.
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To do the same for WebSockets communication, it also would need to become
part of the multi-tier architecture. We use the existing Elm WebSocket library on
the client, and a custom written server library on the server, both using regular
commands and subscriptions to expose their functionality. A possible solution
would be to build a construct that builds on those libraries, similar to the RPC
construct building on top of the Elm HTTP library.

6 Conclusion

In this paper we propose a multi-tier debugger, a tool that can be used to debug
an entire client/server application as a single entity. It focuses on web applica-
tions that are written using multi-tier languages, that is, web applications that
originate from a single codebase but are deployed to both client and server. The
debugger experience is focused on providing an interactive global timeline for the
application as a whole. We propose complex features with an intuitive interface
that allows programmers to quickly observe different states of a client/server
web application, as well as resume from any point in time.

To make our ideas more concrete we created a multi-tier version of the Elm
language. The multi-tier language uses an extended version of the Elm architec-
ture. We created the multi-tier debugger not as a low-level tool that inspects
Elm programs but as a high-level multi-tier Elm library that wraps multi-tier
applications with instrumentation as needed.

We succeeded in creating a prototype that demonstrates complex features
such as being able to inspect different states of a distributed application as a
whole as well as resume from earlier points in the history. We identified and
solved non-trivial issues such as dealing with asynchronous effects.

7 Related Work

We consider mainly work on time-travel debugging, distributed debugging and
specifically, multi-tier web application debugging.

Time-Travel Debugging. We can roughly divide time-travel debuggers into two
classes. One builds its timeline by capturing the application’s state (e.g. ODB
[8]), others capture out and incoming calls to the application (e.g. AIDS debug-
ger for FORTRAN [10] or [7] for SML). Liblog [11] is a replay debugging tool
for distributed C/C++ applications. It captures the execution of deployed dis-
tributed applications and replays them deterministically. For the browser, Dolos
[12] captures out and incoming calls to the application for the browser engine,
including user inputs and network callbacks.

The examples of these approaches are implemented as low-level tools and
intercept system calls or other low level operations (such as calls to libc). In
contrast, Elmsvuur is implemented as a library that wraps its target. Elm, a
pure language, allows us to make some assumptions which makes this both easier
and elegant. In our implementation we capture both the application’s state as
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well as the out and incoming calls to the application. Other than just its history
functionality, our tool focuses on providing a pleasant user experience with easy-
to-understand timeline graphics and other visuals.

Distributed Debugging and Causal Dependencies. Causeway [13] takes a message-
oriented approach and builds what they call ‘chains of expressed intentions’.
Such a chain is a path of a (possibly distributed) computation, akin to a high-
level stack trace it displays the causal dependencies between events and the
processing thereof. We employ a concept similar to chains in our debugger to
graphically show users which events trigger as a direct result of other events.
For example, executing an RPC command on the client graphically shows a
connection between that client’s view of the timeline and the server’s.

Multi-tier Debugging. In academic work the Hop debugger [6] copes with both
server and client-side executions. Their debugger focuses on providing a single-
application overview for all stack traces. Errors and their traces report the correct
source-code location regardless of whether the error occurred on the client or the
server. Albeit with a completely different debugging experience, similarly to Hop,
we treat a client/server application as a single entity to debug.

In industry the Google Web Toolkit (GWT) project is the only multi-tier
language that considers debugging. GWT is a Java-based multi-tier language
that runs its server side on the JVM and compiles Java to JavaScript for client
code. It can run in production mode or in dev-mode. Dev-mode does not compile
the client code to JavaScript, instead it runs it as a Java application while
propagating changes to a browser application. In this mode Java tools can be
used to debug both tiers of an application, however, the client/server application
is still seen as two entities to debug.
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Abstract. Algebraic effects and their handlers have been steadily gain-
ing attention as a programming language feature for composably express-
ing user-defined computational effects. While several prototype imple-
mentations of languages incorporating algebraic effects exist, Multicore
OCaml incorporates effect handlers as the primary means of expressing
concurrency in the language. In this paper, we make the observation that
effect handlers can elegantly express particularly difficult programs that
combine system programming and concurrency without compromising
performance. Our experimental results on a highly concurrent and scal-
able web server demonstrate that effect handlers perform on par with
highly optimised monadic concurrency libraries, while retaining the sim-
plicity of direct-style code.

1 Introduction

Algebraic effect handlers are a modular foundation for effectful programming,
which separate the operations available to effectful programs from their con-
crete implementations as handlers. Effect handlers provide a modular alter-
native to monads [25,35] for structuring effectful computations. They achieve
the separation between operations and their handlers through the use of delim-
ited continuations, allowing them to pause, resume and switch between different
computations. They provide a structured interface for programming with delim-
ited continuations [10], and can implement common abstractions such as state,
generators, async/await, promises, non-determinism, exception handlers and
backtracking search. Though originally studied in a theoretical setting [27,28],
effect handlers have gained practical interest with several prototype implemen-
tations in the form of libraries, interpreters, compilers and runtime representa-
tions [4,5,9,12,15,16,20,21].

However, the application space of effect handlers remains largely unexplored.
In this paper we explore the applicability of effect handlers to concurrent system
programming in Multicore OCaml. While Multicore OCaml supports shared-
memory parallel programming, this paper restricts its focus to concurrency i.e.
overlapped execution of tasks, leaving parallelism outside our scope.
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2 Motivation

Multicore OCaml [8] incorporates effect handlers as the primary means of
expressing concurrency in the language. The modular nature of effect handlers
allows the concurrent program to abstract over different scheduling strategies [9].
Moreover, effect handlers allow concurrent programs to be written in direct-style
retaining the simplicity of sequential code as opposed to callback-oriented style
(as used by e.g. Lwt [34] and Async [24]). In addition to being more read-
able, direct-style code tends to be easier to debug; unlike callback-oriented code,
direct-style code uses the stack for function calls, and hence, backtraces can be
obtained for debugging. Indeed, experience from Google suggests that as well as
making the code more compact and easier to understand (particularly important
when thousands of developers touch the code), direct-style code can perform as
well or better than callback-oriented code [3].

Some of the benefits of direct-style code can be achieved by rewriting direct-
style functions into callbacks, using syntactic sugar such as Haskell’s do-notation
for monads or F#’s async/await [32]. However, this separates functions which use
such rewriting from those that do not, leading to awkward mismatches and code
duplication: for instance, Haskell provides mapM, filterM and foldM because the
ordinary map, filter and foldl functions do not work with monadic arguments.
By contrast, effect handlers do not introduce an incompatible type of function.

In Multicore OCaml, the user-level thread schedulers themselves are
expressed as OCaml libraries, thus minimising the secret sauce that gets baked
into high-performance multicore runtime systems [31]. This modular design
allows the scheduling policy to be changed by swapping out the scheduler library
for a different one with the same interface. As the scheduler is a library, it can live
outside the compiler distribution and be tailored to application requirements.

However, the interaction between user-level threading systems and the oper-
ating system services is difficult. For example, the Unix write() system call may
block if the underlying buffer is full. This would be fine in a sequential program
or a program with each user-level thread mapped to a unique OS thread, but
with many user-level threads multiplexed over a single OS thread, a blocking
system call blocks the entire program. How then can we safely allow interaction
between user-level threads and system services?

Concurrent Haskell [23], which also has user-level threads, solves the prob-
lem with the help of specialised runtime system features such as safe FFI calls
and bound threads. However, implementing these features in the runtime system
warrants that the scheduler itself be part of the runtime system, which is incom-
patible with our goal of writing thread schedulers in OCaml. Attempts to lift the
scheduler from the runtime system to a library in the high-level language while
retaining other features in the runtime system lead to further complications [31].
Our goals then are:

– Retain the simplicity of direct-style code for concurrent OCaml programs.
– Allow user-level thread schedulers to be written in OCaml as libraries.
– Allow safe interaction between user-level threads and the operating system.
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– Perform as well as or better than existing solutions.

We observe that algebraic effects and their handlers can meet all of these
goals. In particular, we introduce asynchronous effects and their handlers, and
show how they elegantly solve the interaction between user-level threads and
operating system services. This paper makes the following contributions:

– We introduce effect handlers for Multicore OCaml and illustrate their utility
by constructing a high-performance asynchronous I/O library that exposes a
direct style API (Sect. 3).

– We show how asynchronous effects provide a clean interface to difficult-to-use
operating system services, such as signal handling and asynchronous notifica-
tion of I/O completion, and demonstrate how effect handlers enable scoped
interrupt handling (Sect. 4).

– We evaluate the performance of effect handlers in OCaml by implementing
a highly scalable web server and show that Multicore OCaml effect handlers
are efficient (Sect. 5).

After the technical content of the paper in Sects. 3, 4, and 5, we discuss
related work in Sect. 6 and our conclusions in Sect. 7.

3 Algebraic Effects and Their Handlers

Since the primary motivation for adding effect handlers in Multicore OCaml is
concurrency, we introduce effect handlers in constructing an asynchronous I/O
library which retains the simplicity of direct-style programming1.

3.1 Concurrency

We start with an abstraction for creating asynchronous tasks and waiting on
their results. We use the term fiber to indicate a lightweight user-level thread to
distinguish it from kernel threads.

val async : (α → β) → α → β promise

(* [async f v] spawns a fiber to run [f v] asynchronously. *)

val await : α promise → α
(* Block until the result of a promise is available. Raises

exception [e] if the promise raises [e]. *)

val yield : unit → unit

(* Yield control to other fibers. *)

Multicore OCaml extends OCaml with the ability to declare user-defined
effects with the help of the effect keyword. Since async, await and yield are
effectful operations, we declare them as follows:
1 A comprehensive list of example programs written using effect handlers in Multicore

OCaml is available at https://github.com/kayceesrk/effects-examples.

https://github.com/kayceesrk/effects-examples
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effect Async : (α → β) * α → β promise

effect Await : α promise → α
effect Yield : unit

The first declaration says that Async is an effect which is parameterised by a
pair of a thunk and a value, and returns a promise as a result when performed.
Await is parameterised by a promise and returns the result. Yield is a nullary
effect that returns a unit value. To be precise, these declarations are operations of
a single built-in effect type α eff in Multicore OCaml. Indeed, these declarations
are syntactic sugar for extending the built-in extensible variant type α eff:

type _ eff +=
| Async : (α → β) * α → β promise eff

| Await : α promise → α eff

| Yield : unit eff

Effects are performed with the perform :α eff → α primitive, which per-
forms the effect and returns the result. We can now define the functions
async, await and yield as:

let async f v = perform (Async (f,v))

let await p = perform (Await p)

let yield () = perform Yield

These effects are interpreted by an effect handler, as shown in Fig. 1. A
promise (lines 1–6) is either completed successfully Done v, failed with an excep-
tion Error e or still pending Waiting l, with a list of fibers waiting on it for
completion. The function run (line 8) is the top-level function that runs the main

concurrent program. run_q is the queue of concurrent fibers ready to run. The
effect handler itself is defined in the lines 17–38. An effect handler comprises of
five clauses – a value clause, an exception clause, and three clauses that handle
the effects Async, Await and Yield.

Effect clauses are of the form effect e k where e is the effect and k is the
continuation of the corresponding perform delimited by this handler. k is of type
(α ,β) continuation, representing a continuation waiting for a value of type
α and returning a value of type β when resumed. There are two primitives
operating on continuations: continue k x resumes the continuation k where it
left off, returning the value x from perform, while discontinue k exn resumes the
continuation k by raising the exception exn from perform.

In the case of an Async (f,v) effect (lines 28–31), we create a new promise
value p which is initially waiting to be completed. We set up the original fibers,
represented by continuation k, to resume with the promise using the continue

primitive. Finally, we recursively call fork to run the new fiber f v. Since Mul-
ticore OCaml uses so-called deep handlers, the continuation k references its sur-
rounding handler, and so we need not write another match expression when
continue-ing k (See Kammar et al. [15] for more on deep vs. shallow handlers).

In the case of Await p, we check whether the promise is complete. If success-
ful, we immediately resume with the value, and if failed, we use the discontinue

primitive to resume the continuation by raising an exception. Otherwise, we
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Fig. 1. A simple scheduler, implemented with effects

block the current fiber on the promise and resume the next fiber from the sched-
uler. In the case of Yield effect, we enqueue the current fiber and run the next
available fiber. In the case of a fiber successfully running to completion (lines
18–23) or raising an exception (lines 24–29), we update the promise, wake up
the waiting fibers and resume the next available fiber.
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3.2 Implementing Effect Handlers

Unlike other languages that incorporate effect handlers, effects in Multicore
OCaml are unchecked. That is, there is no static check for whether all the possi-
ble effects have been handled in the program. As a result, a fiber that performs
an unhandled effect is discontinued with Unhandled exception.

There are several alternatives to implement the continuations in effect han-
dlers including free monadic interpretations [16,17,36], CPS translations [13,20],
and runtime strategies. Multicore OCaml chooses the latter and uses a custom
stack layout, efficiently supported by the runtime system. We observe that many
effect handlers do not resume the continuations more than once, and support
only linear continuations by default, which can be implemented efficiently [9].
We also support explicit copying for non-linear use of continuations.

3.3 Adding I/O

Next let us add support for the following I/O operations:

val accept : file_descr → file_descr * sockaddr

val recv : file_descr → bytes → int → int

→ msg_flag list → int

val send : file_descr → bytes → int → int

→ msg_flag list → int

These functions have the same signature as their counterparts in the Unix

module. However, invoking any of these functions may block the kernel thread
until the I/O operation is complete. In a user-level threaded system this would
block the scheduler, preventing other fibers from running.

The standard solution to this problem is to use an event loop, suspending
each task performing a blocking I/O operation, and then multiplexing the out-
standing I/O operations through an OS-provided blocking mechanism such as
select, epoll, kqueue, IOCP, etc. Such asynchronous, non-blocking code typically
warrants callback-oriented programming, making the continuations of I/O oper-
ations explicit through explicit callbacks (à la JavaScript) or concurrency monad
(Lwt and Async libraries for OCaml). The resultant code is arguably messier and
more difficult to understand than direct-style code.

Effect handlers lets us retain direct-style while still allowing the use
of event loops. Below, we shall just consider accept. The other functions
are similar. As earlier, we start by declaring an effect for an accept func-
tion: effect Accept : file_descr → (file_descr * sockaddr). The handler for
Accept is:

| effect (Accept fd) k →
(match Unix.accept fd with

| (newfd , sockaddr) →
continue k (newfd , sockaddr)

| exception Unix_error(EWOULDBLOCK , _, _) →
record_waiting fd k; run_next ())
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If there is a waiting connection, Unix.accept returns it and we resume the
continuation. If not, Unix.accept raises the EWOULDBLOCK error, and we record that
the fiber is waiting to accept and switch to the next thread from the scheduler
queue. The send and recv operations have similar handler implementations.

let run_next () =
if Queue.is_empty run_q then

if io_is_pending () then begin

wait_until_io_ready (); do_io (); run_next ()

end else () (* done *)

else Queue.pop run_q ()

Correspondingly, the run_next function is updated such that it first runs all
the available threads, and then if any I/O is pending it waits until at least one
of the I/O operations is ready, and then tries to perform the I/O and continue.
If the scheduler queue is empty, and there is no pending I/O, then the scheduler
returns. The library blocks on I/O only if there are no ready threads and there
are pending I/O operations.

Using this API, we can write a simple server that echoes client messages:

let rec echo_server sock =
let sent = ref 0 in

let msg_len = (* receive message *)

try recv sock buffer 0 buf_size [] with

| _ → 0 (* Treat exceptions as 0 length message *) in

if msg_len > 0 then begin

(* echo message *)

(try while !sent < msg_len do

let write_count =
send sock buffer !sent (msg_len - !sent) [] in

sent := write_count + !sent

done with _ → ()); (* ignore send failures *)

echo_server sock

end else close sock (* client left , close connection *)

The details of the code are not important, but observe that the code is
in direct-style and moreover is the same code for the synchronous, blocking
echo server. Furthermore, since the following code is asynchronous, the two echo
servers on sock1 and sock2 do not block each other:

run (fun () →
async echo_server sock1; async echo_server sock2) ()

3.4 Default Handlers

For an invocation of an effectful operation to be meaningful it must happen in
the scope of an appropriate handler. A default handler is a convenient mecha-
nism for ensuring that an operation invocation is always meaningful even when
not in scope of a handler. A default handler provides a default interpretation
of an operation. This interpretation is chosen if no other appropriate handler
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encloses the invocation context. In other words, a default handler can opera-
tionally be understood as a top level handler which encloses the entire program
context including itself. As a concrete example we can give a default synchronous
semantics for Accept

effect Accept : file_descr → (file_descr * sockaddr)

with function Accept fd → Unix.accept fd

In Multicore OCaml a default handler is declared along with the effectful opera-
tion it is handling using the familiar function construct. In contrast to a regular
effect handler, a default handler does not expose the continuation of the oper-
ation to the programmer, rather, the continuation is implicitly applied to the
body clause(s). This particular design admits an efficient implementation, since
every continuation invocation in a default handler is guaranteed to be in tail
position. Thus the runtime does not need to allocate a continuation, it can sim-
ply return the value produced by the default handler clause. As a consequence
an invocation of a default handler amounts to a function call. This makes it
possible for effectful libraries to remain performance backwards compatible with
programs that do not use regular effect handlers.

Continuing, we can also obtain the synchronous counterparts to Await, Async,
and Yield by giving them all a default synchronous semantics, i.e.

effect Async : (α → β) * α → β promise

with function Async (f, v) →
match f v with

| v → ref (Done v)

| exception e → ref (Error e)

effect Await : α promise → α
with function Await (ref (Done v)) → v

| Await (ref (Error e)) → raise e

effect Yield : unit with function Yield → ()

If a default handler raises an exception, then the fiber is discontinued with
that exception. Furthermore, if a default handler performs an effect then the
default handler of that effect is invoked. If we define the default implementations
of Send and Recv in a similar way then by using default handlers the following
program behaves exactly like its synchronous counterpart.

async echo_server sock1; async echo_server sock2

4 Programming with Resources and Effects

Systems programming generally involves the manipulation of scarce resources
such as file handles, connections and locks. Such resources are inherently linear,
stateful values: once a file handle is closed, it cannot be used again.

Ordinary straight-line imperative code is not enough to use resources cor-
rectly in the presence of exceptions, let alone effects. For instance, the following
code leaks an unclosed file handle if do_stuff_with f raises an exception:
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let f = open_in ‘‘data.csv ’’ in

do_stuff_with f;

close_in f

We need to ensure that the file handle is closed, even if an exception is raised:

let f = open_in ‘‘data.csv ’’ in

match do_stuff_with f with

| () → close_in f

| exception e → close_in f; raise e

Note that the initial open_in occurs outside the exception handler - if opening
the file fails with an exception, we need not close it. This idiom or something
equivalent is widespread, often with syntactic support as try-finally.

However, note an implicit assumption in this code, that if do_stuff_with f

terminates then it does so only once. If the computation do_stuff_with f were
to return twice (by allowing a continuation captured inside f to be resumed
twice), then the cleanup code (close_in f in this example) would incorrectly run
multiple times. If the computation do_stuff_with_f were to continue execution
after the cleanup code had run, its operations would have unexpected effects.

As well as the performance advantages mentioned above, this is the other
major reason that our continuations are linear. By preserving the linearity of
computations (operations that are begun once do not complete twice), we allow
resource-manipulating code to work correctly in the presence of effects.

Some interesting examples of programming with effects and handlers (such
as backtracking) are incompatible with this approach, since they rely on con-
tinuations to be usable more than once. To support experimenting with such
examples, we do provide a primitive to allow re-use of continuations, with the
proviso that it is not safe in general when used with code that handles resources.

The linearity of computations is implicit in OCaml without effect handlers,
but once continuations appear as first-class values the possibility of using them
twice arises. OCaml does not have the linear types necessary to prevent this
statically (and we are not proposing to add them), so we must enforce linearity
dynamically. Ensuring that a continuation is not used twice is easy enough, by
keeping a bit of state in the continuation, updated by continue and discontinue

so that subsequent resumptions fail. Ensuring that a continuation is not sim-
ply discarded is harder: the system must detect when a continuation is being
garbage-collected, and discontinue it with a special exception so that resource
cleanup code runs.

4.1 Asynchronous Exceptions

Correct use of resources is much more difficult in the presence of asynchronous
exceptions. For example, on Unix-like systems when the user of a command-line
program presses Ctrl-C the SIGINT signal is sent. By default, this terminates the
program. However, programs may indicate that they can handle this signal, for
instance by cancelling a long-running task and accepting user input again.
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In OCaml, programs indicate willingness to handle SIGINT by calling
Sys.catch_break true. From that point onwards, the special exception Sys.Break

may be raised at essentially any point in the program, if the user presses Ctrl-C.
Unfortunately, the try-finally idiom does not clean up correctly in this case:

let f = open_in ‘‘data.csv ’’ in

match do_stuff_with f with

| () → close_in f

| exception e → close_in f; raise e

If Sys.Break is raised just after open_in returns but before the match statement
is entered, then the file handle will never be closed. To eliminate this possibility,
we need to temporarily disable asynchronous exceptions. Suppose we introduce
two functions set_mask and clear_mask, to disable (mask) and re-enable asyn-
chronous exceptions. Our second attempt at resource handling looks like:

set_mask ();

let f = open_in ‘‘data.csv ’’ in

match clear_mask (); do_stuff_with f; set_mask () with

| () → close_in f; clear_mask ()

| exception e → set_mask (); close_in f; clear_mask ();

raise e

Correctly placing calls to set_mask and clear_mask is a very tricky business.
Indeed, the above code has a serious bug: if open_in fails with an ordinary
synchronous exception (because e.g. the file is not found), then asynchronous
exceptions will never be unmasked.

Instead, we follow the good advice of Marlow et al. in the design of Haskell’s
asynchronous exceptions [22], and prefer instead scoped combinators:

mask (fun () →
let f = open_in ‘‘data.csv ’’ in

match unmask (fun () → do_stuff_with f) with

| () → close_in f

| exception e → close_in f; raise e)

The changes to the masking state made by mask and unmask apply only to
one scope, and are automatically undone, making it impossible to accidentally
leave asynchronous exceptions masked. The presence of unmask allows a further
improvement to the semantics: we model the asynchronous exception Sys.Break

as being raised not by whatever code happened to be executing when Ctrl-C was
pressed, but by the nearest enclosing unmask. This ensures that exception han-
dlers for asynchronous exceptions need not be treated specially. In particular,
the follow code cannot fail, no matter when Ctrl-C is pressed:

match 1 + 1 with

| n → n

| exception Sys.Break → failwith ‘‘what?’’
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4.2 Signal Handling and Asynchronous Effects

Even with the scoped masking combinators, it is difficult and unpleasant to
write code that correctly manipulates resources in the presence of asynchronous
exceptions. For this reason, many systems choose instead to poll for cancellation
requests, instead of being interrupted with one. That is, instead of a Sys.Break

exception being raised, the programmer manually and regularly checks a mutable
boolean cancellation_flag, which is asynchronously set to true when the user
presses Ctrl-C (This check may be combined with other system facilities: one
common choice is that cancellation is checked at all I/O operations, since the
program must handle failures there anyway).

On Unix-like systems, it is possible to implement this behaviour using a signal
handler, which is a callback invoked when a signal is raised (e.g. by the user press-
ing Ctrl-C). In OCaml, these can be installed using the function Sys.set_signal.
In fact, the behaviour of the previously-mentioned Sys.catch_break is imple-
mented by installing a signal handler that raises Sys.Break:

set_signal sigint (Signal_handle(fun _ → raise Break))

Synchronous cancellation can be implemented using a signal handler that sets a
cancellation flag:

let cancellation_flag = ref false

let is_cancelled () = !cancellation_flag

let () =
set_signal sigint (Signal_handle(fun _ →

cancellation_flag := true))

By removing the possibly of cancellation except at designated points, the
imperative parts of the system become safer and easier to write. However, as
Marlow et al. [22] note, for the purely functional parts of the system asyn-
chronous cancellation is both necessary and just as safe as synchronous: neces-
sary, because inspecting the mutable cancellation state breaks referential trans-
parency, and safe, because purely functional code holds no resources and pure
computations can be abandoned without issue.

In order to call a pure function from imperative code while maintaining
prompt cancellation, we need to switch from synchronous (polling) cancellation
to asynchronous cancellation and back, by providing a combinator:

async_cancellable : (unit → α) → (unit → α option)

Normally, async_cancellable f returns Some (f ()). However, the computation
f may be cancelled asynchronously, causing async_cancellable f to return None,
ensuring that asynchronous cancellation does not affect the caller.

Our first attempt at such a mechanism looks like:

let sync_handler = Signal_handle (fun _ →
cancellation_flag := true)

let async_handler = Signal_handle (fun _ →
raise Break)

let async_cancellable f =
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mask (fun () →
match

set_signal sigint async_handler;

let result = unmask f in

set_signal sigint sync_handler;

result

with

| x → Some x

| exception Break → None)

This code is tricky, due to its delicate mutation of global state. It is very similar
to the code we saw earlier using set_mask and clear_mask, and even has the same
bug: it leaves the wrong signal handler in place if f raises an exception.

As before, scoped combinators make such code easier to get right (or, more
accurately, harder to get wrong). To this end, we introduce asynchronous effects,
which are effects that can be performed asynchronously, just as asynchronous
exceptions can be raised asynchronously. By treating Break as an asynchronous
effect, we can mix synchronous and asynchronous cancellation reliably.

For synchronous cancellation, we handle the Break effect by setting a flag:

let cancellation_flag = ref false

let sync_cancellable f =
mask (fun () →

match unmask f with

| result → result

| effect Break k →
cancellation_flag := true; continue k ())

Asynchronously-cancellable code can be implemented by handling the Break

effect and discarding the continuation. Since effect handlers delimit the con-
tinuation, the asynchrony is limited to the specified function.

let async_cancellable f =
mask (fun () →

match unmask f with

| result → Some result

| effect Break k → None)

Instead of having a single global callback as the current signal handler, asyn-
chronous effects allow handlers to delimit their scope and nest correctly.

4.3 Managing Multiple Computations with Asynchronous Effects

Unlike signal handlers, asynchronous effects get an explicit representation of the
computation they interrupted by way of the continuation k. While signal handlers
can only resume the computation or abandon it (by raising an exception), effect
handlers have other options available. For instance, a scheduler which maintains
a collection of tasks can switch to another task when handling an asynchronous
effect, just as the scheduler in Fig. 1 does for the synchronous Yield effect. Using
asynchronous effects the cooperative scheduler of Fig. 1 can be made preemptive,
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by asking the operating system to provide a periodic timer signal (using e.g. the
Unix timer_create API), and adding a new clause to the scheduler:

| effect TimerTick k → enqueue (continue k); run_next ()

4.4 Asynchronous I/O Notifications

Operating systems provide several different I/O interfaces. The simplest is the
direct-style blocking I/O, in which the program calls operating-system functions
which do not return until the operation completes. This allows a straightforward
style of programming in which the sequence of I/O operations matches the flow
of the code. We aim to support this style of programming using alternative
operating system interfaces that allow multiple I/O operations to be overlapped.

In Sect. 3.3, we saw one way of accomplishing this with effects, by using
multiplexing mechanisms like select, poll, etc., which block until one of several
file descriptors is ready. An alternative is asynchronous I/O, in which multiple
operations are submitted to the operating system, which overlaps their execution.
However, applications written using asynchronous I/O tend to have complex
control flow which does not clearly explain the logic being implemented, due to
the complexity of handling the operating system’s asynchronous notifications of
I/O completion.

We propose effects and handlers as a means of writing direct-style I/O code,
but using the asynchronous operating system interfaces. We introduce two new
effect operations: Delayed, which describes an operation that has begun and will
complete later, and Completed, which describes its eventual completion. Both of
these take an integer parameter, which identifies the particular operation.

Potentially long-running operations like read perform the Delayed effect, indi-
cating that the operation has been submitted to the operating system but has
not yet completed. Later, upon receipt of an operating-system completion noti-
fication, the asynchronous effect Completed is performed.

Using this mechanism, support for asynchronous completions can be added
to the scheduler of Fig. 1 by adding clauses for the Delayed and Completed effects,
where ongoing_io is an initially empty hash table:

| effect (Delayed id) k →
Hashtbl.add ongoing_io id k

| effect (Completed id) k →
let k’ = Hashtbl.find ongoing_io id in

Hashtbl.remove ongoing_io id;

enqueue (fun () → continue k ());

continue k’ ()

In this sample, the continuation k of the Delayed effect is the continuation of the
code performing the I/O operation, which instead of being immediately invoked
is stored in a hash table until it can be invoked without blocking.

The continuation k of the Completed effect is the continuation of whichever
fiber was running when the I/O completed. This scheduler chooses to preempt
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that fiber in favour of the fiber that performed the I/O. Equally, the scheduler
could give priority to the running fiber, by swapping k and k’ in the last lines.

5 Results

So far we have presented what we believe are compelling applications of effect
handlers for elegant system programming. However, none of that would matter if
the resultant programs were unacceptably slower compared to extant solutions.
Hence, in this section, we evaluate the performance of a web server built with
effect handlers against existing production-quality web servers.

We have implemented an effect-based asynchronous I/O library, aeio [2],
that exposes a direct-style API to the clients. At its core, aeio uses the main
loop engine from the Lwt library using the libev2 event loop (using epoll in
our experiments). For the OCaml web server, we use httpaf, which is a high
performance, memory efficient, and scalable web server that uses the Async
library [24] (also using epoll as its I/O system call). We then extended httpaf

and implemented an effect handler based backend using aeio. The configurations
we use for the evaluation are:

– Effect: Effect-based version which uses httpaf with aeio on the Multi-
core OCaml compiler. The Multicore OCaml compiler was forked off vanilla
OCaml version 4.02.2.

– Async: Vanilla OCaml version 4.03.0, using httpaf + Async 113.33.03.
– Go: Go 1.6.3 version of the benchmark using net/http package.

For comparison, all three configurations were constrained to only one core (using
the GOMAXPROCS variable in the case of Go).

The evaluations were done on a 3 GHz Intel Core i7 with 16 GB of main
memory running 64-bit Ubuntu 16.10. The client workload was generated by
the wrk23 program. Each wrk2 run uses a fixed number of client connections that
issues requests at a constant rate, and measures request latency and throughput.

Figure 2 shows the latency profiles for 1 min runs under two different configu-
rations. At 1k connections and 10k requests per second, the effect implementation
performs marginally better than Async. Go performs the best with all requests
satisfied within 27 ms. The average request latency of effect configuration is 2.127
ms over 587969 requests. Under this configuration, the observed throughput is
between 9780 and 9800 requests per second in all of the configurations.

At high loads, the performance degrades substantially in every configuration,
but it is worse in the OCaml implementations. The average latency for satisfy-
ing a client request increases to 333.40 ms in the effect case, while it is 139 ms
in async and 107.25 ms in Go. While Go achieved 17389 requests per second,
Async and effect implementations achieved only 16761 and 15440 requests per

2 http://software.schmorp.de/pkg/libev.html.
3 https://github.com/giltene/wrk2.

http://software.schmorp.de/pkg/libev.html
https://github.com/giltene/wrk2
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Fig. 2. Latency profile of client requests

second, respectively. This indicates that there is room for optimisations. Multi-
core OCaml has a new garbage collector, which has not been tuned to the extent
of vanilla OCaml and Go. We strongly suspect that garbage collector optimi-
sation and tuning would lead to performance improvements. Importantly, the
tail latencies of both OCaml implementations (the vanilla Async and our effect-
based server) were comparable in both configurations, indicating that there is no
significant performance degradation from our switch to using the effects model
presented in this paper.

6 Related Work

Implementations of Effect Handlers. Since their inception, several implementa-
tions of algebraic effect handlers have appeared, many of which are implemented
as libraries in existing programming languages [5,15–18,30,36]. There are sev-
eral other implementations that like Multicore OCaml provide language level
support for effect handlers:

– Eff [4] is the first programming language designed with effect handlers in
mind. It is a strict language with Hindley-Milner type inference similar in
spirit to ML. It includes a novel feature for supporting fresh generation of
effects in order to support effects such as ML-style higher-order state. Eff
compiles to a free monad embedding in OCaml [29].

– Frank [21] is a programming language with effect handlers but no separate
notion of function: a function is but a special case of a handler. Frank has a
bidirectional type and effect system with a novel form of effect polymorphism.
Furthermore, the handlers in Frank are so-called shallow handlers, which do
not implicitly wrap themselves around the continuation, thereby allowing
nonuniform interpretations of operations.

– Koka is a functional web-oriented programming language which has recently
been enriched with effect handlers [20]. It has a type-and-effect system which
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is based on row polymorphism. Koka uses a novel type-and-effect driven selec-
tive CPS compilation scheme for implementing handlers on managed plat-
forms such as .NET and JavaScript.

– Links [7] is a single source, statically typed language with effect tracking
for multi-tier web programming. Links supports effect handlers on both the
client and the server. The server side implementation is based on a generalised
abstract CEK machine [12], while the client side implementation is based on
a CPS translation [13]. Links also has a prototype compiler for the server side
with effect handlers based on the Multicore OCaml compiler [14].

A common theme for the above implementations is that their handlers are
multi-shot handlers which permit multiple invocations of continuations.

Asynchronous IO. Many systems seek to combine the simplicity of direct-style,
blocking I/O with the performance gains of allowing independent operations
to complete in parallel. Indeed, the blocking I/O interfaces of most operating
systems are designed in this way, by descheduling a process that requests a slow
operation and running another process until the operation completes. However,
operating system mechanisms rely on hardware context switching. The high
overheads of such mechanisms lead to a desire for lightweight concurrent tasks
integrated into programming languages.

The Erlang system [33] is a good example, capable of managing large numbers
of lightweight processes with an integrated scheduler, and multiplexing their
I/O onto operating system interfaces like select, poll, etc. More recently, the
work by Syme et al. [32] adding async/await to F# allows the programmer to
specify which operations should be completed asynchronously, implemented by
compiling functions which use async differently from those that do not. The
work by Marlow et al. on Concurrent Haskell [23] also supports large numbers
of concurrent threads with multiplexed I/O, while allowing possibly-blocking
operating system services to be used without blocking the entire system via the
mechanism of safe foreign calls. Leijen [19] describes an implementation of a full-
fledged async-await library implemented using effect handlers in Koka including
cancellation and timeout. Koka compiles to JavaScript, whose concurrency model
is cooperative. In particular, there are no asynchronous interrupts in JavaScript
and Koka does not need the associated machinery to safely handle them.

Resource Handling with Control Operators. Programming languages sup-
porting systems programming and exceptions generally support some vari-
ant of the try-finally idiom, often with syntactic support. For example,
try{...}finally{...} in Java, using statements in C#, destructors and RAII
in C++, or defer in Go.

Languages with more powerful control operators require correspondingly
more powerful constructs for safe resource handling. The Common LISP con-
dition system allows conditions (similar to effects) to be handled by abandoning
the computation with an error, restarting it or ignoring the error and continuing,
but does not allow the continuation to be captured as a value. It supports the
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unwind-protect form to ensure that cleanup code is run no matter how a block
is exited. See Pitman [26] for an analysis of the condition system’s design.

Scheme supports general nonlinear continuations [1], which present difficul-
ties when handling inherently linear resources. Many Scheme implementations
provide a primitive dynamic-wind [11], which generalises the try-finally idiom by
taking some setup and cleanup code to be run not just once but every time con-
trol passes in and out of a specified block of code. However, this comes with its
own caveats: the naive approach of using dynamic-wind to open and close a file
will close and reopen the file every time a computation is paused and resumed,
which is not safe in general as the file may not still exist at the second opening.
One-shot (linear) continuations have also been proposed for Scheme [6].

Support for truly asynchronous interrupts is more rare, partially due to the
difficulty of programming in their presence. The Unix signalling mechanism is an
important example, but its reliance on global mutable state makes programming
difficult (see Sect. 4.2). Marlow et al. [22] present a more composable design for
asynchronous exceptions in Haskell. Our approach can be viewed as the extension
of the Haskell approach to effects as well as exceptions.

7 Conclusion

Multicore OCaml provides effect handlers as a means to abstract concurrency.
In this paper, we have described and demonstrated the utility of effect handlers
in concurrent system oriented programming. We have developed a direct-style
asynchronous I/O with effect handlers [2]. Using this library, we built a highly
concurrent and scalable web server. Our evaluation shows that this implemen-
tation retains a comparative performance with the current state of the art in
vanilla OCaml, but that OCaml has some room for improvement vs direct-style
multicore concurrency in Go.

Rather than providing the full generality of effect handlers with nonlinear
continuations, our design provides effect handlers with linear continuations. This
design admits a particularly efficient implementation. Furthermore, linear con-
tinuations interplay more smoothly with system resources. Our implementation
of asynchronous effects also provides an elegant solution to handling problematic
corner cases in typical operating system interfaces, such as reliable signal han-
dling and efficiently implementing quirky system call interfaces while exposing
a simple, portable interface to the developer.
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Abstract. We describe and implement an optimizing compiler trans-
formation which turns non–tail-recursive functions into equivalent tail-
recursive functions in an intermediate language of the CakeML com-
piler. CakeML is a strongly typed functional language based on Standard
ML with call-by-value semantics and a fully verified compiler. We inte-
grate our implementation into CakeML compiler, and provide a machine-
checked proof verifying that the observational semantics of programs is
preserved under the transformation. To the best of our knowledge, this is
the first fully verified implementation of this transformation in any mod-
ern compiler. Moreover, our verification efforts uncover surprising draw-
backs in some of the verification techniques employed in several parts of
the CakeML compiler. We provide a work-around for these drawbacks,
and compare it to potential alternatives.

1 Introduction

Consider the following definition of a function length in an ML-like language:

fun length [] = 0
| length (x :: xs) = length xs + 1

Regardless of what we choose as its name, the purpose of length should be imme-
diately clear even to a novice functional programmer – it computes the length of
a list. However, this aesthetically pleasing style of programming comes at a price:
length is not tail recursive. Since tail-recursive functions will in general compile
to more space efficient and faster code, we give an equivalent tail-recursive defi-
nition of length:

fun length ’ [] acc = acc
| length ’ (x :: xs) acc = length’ xs (1 + acc)

fun length xs = length’ xs 0

Functions written using tail calls enable compilers to perform a powerful
optimization called tail call elimination. In short, tail call elimination entails the
procedure of transforming tail-recursive functions into something which resem-
bles a while loop. Since such a function has a recursive call to itself directly in tail

c© Springer International Publishing AG, part of Springer Nature 2018
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position (i.e. the ‘last’ position visited when evaluating an expression), no addi-
tional bookkeeping is required to store a return address for the recursive call –
once the base case is reached, length’ may simply return to the function which
originally called it. Moreover, when a function performs a tail-call to itself, the
locations in memory or registers in which the function arguments are stored can
be reused for subsequent recursive calls. The benefits of the transformation are
constant stack space usage as well as increased performance due to the reduced
amount of bookkeeping.

CakeML. CakeML [4] is a strongly typed functional programming language with
call-by-value semantics, based on Standard ML. It supports a large subset of
the features present in Standard ML, including references, exceptions, modules
and I/O. The CakeML compiler targets several common hardware architectures,
including Intel x86, ARM, MIPS and RISC-V. The compiler is implemented in
higher-order logic using the HOL4 proof assistant, and comes with a mechan-
ically verified proof of correctness which guarantees that every valid CakeML
source program is compiled into semantically compatible machine code.

Contributions. In this paper, we describe a fully verified implementation of an
optimizing code transformation for functional programs, which automatically
introduces tail recursion using accumulators. The implementation acts on an
intermediate language in the fully verified CakeML compiler. Our contributions
consist of extending the CakeML compiler with a self-contained phase performing
the transformation, as well as a machine-checked proof of semantic preservation.
To the best of our knowledge, ours is the first proven-correct implementation of
this transformation existing in a compiler.

The verification approach taken in the internals of the CakeML compiler
lacks a static type system, which restricts the kind of optimizations that we can
verify using the existing approach. Although this approach has been sufficient
to verify intricate optimizations that manages to put CakeML in the league of
the OCaml and Poly/ML compilers on some benchmarks [7], some shortcomings
are exposed when verifying the transformation presented in this paper. We give
an account of these shortcomings and provide a workaround.

Notation. The notation we employ is as follows. ML code is typeset in sans-
serif with comments enclosed by (* ... *). With the exception of the examples
in Sects. 1 and 2.1, all source code listings consist of function definitions and
theorems in the higher-order logic of HOL4. The syntax of HOL closely resem-
bles that of ML-style languages: constructors, keywords and function names are
typeset in sans-serif. Variables are written in italic. Records are declared using

my record =
<| field1 := v1; field2 := v2; . . . |>

and use . (dot) for projection and with for update. Logical equivalence is denoted
by ⇐⇒ . Implication and case-style pattern matching is denoted by ⇒. All other
logical connectives retain their usual meaning.
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In addition to the above, we steer away from verbose abstract syntax when
possible, instead employing a briefer mathematical notation for function applica-
tions and operations, e.g. x + y for operations and f x for the function f applied
to the expression x .

2 Transforming Recursive Functions

In this section, we describe a code transformation for automatically transforming
recursive functions into tail-recursive functions. Although the transformation is
well-known [10], it is usually performed by the programmer at the source level.
We start by providing an informal description of the transformation through
a worked example in Sect. 2.1. The example is generalized to an algorithmic
description of the steps of the transformation in Sect. 2.2.

2.1 Example: List Reversal

Consider the following naive implementation of a function which reverses a list:

fun reverse [] = [] (∗ reverse base ∗)
| reverse (x :: xs) = reverse xs ++ [x] (∗ reverse rec ∗)

The tail position in the recursive case of reverse contains a list append operation
reverse xs ++ [x]. We will introduce a function reverse’ such that for all xs and
for all a, it holds that reverse’ xs a = reverse xs ++ a. We proceed by specifying
the recursive case:

fun reverse ’ (x :: xs) a = reverse (x :: xs) ++ a

Next, we substitute the definition of reverse rec for the call on the right-hand
side:

fun reverse ’ (x :: xs) a = (reverse xs ++ [x]) ++ a

We then utilize the associative property of (++), yielding

fun reverse ’ (x :: xs) a = reverse xs ++ ([x] ++ a)

Since the property reverse’ xs a = reverse xs ++ a holds for all choices of a, we
substitute reverse’ xs [] for reverse xs by an inductive argument.

fun reverse ’ (x :: xs) a = reverse ’ xs [] ++ ([x] ++ a)

We apply the inductive argument once more, this time with [x] ++ a for a.

fun reverse ’ (x :: xs) a = reverse ’ xs (([ x] ++ a) ++ [])

The same procedure is applied for the base case of reverse. Finally, we give
the definition some touch-ups utilizing the definition of (++) and introduce an
auxiliary function named so that reverse’ may be used in place of the original
reverse:
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fun reverse ’ [] a = a
| reverse ’ (x :: xs) a = reverse ’ xs (x :: a)

fun reverse xs = reverse ’ xs []

2.2 Tail Recursion Using Accumulators

The transformation steps applied in Sect. 2.1 can be generalized to work with
any operation in tail position, as long as it is associative and has an identity
element. Let + be some associative operator with identity 0, and let f be some
recursive function. The key takeaway from the reverse-example is that whenever
f has an operation

f x + a (1)

in tail position, we can replace this operation by a tail call, by introducing a
function f ′ satisfying

f ′ x a = f x + a. (2)

The additional argument a to f ′ is commonly referred to as an accumulator, since
it accumulates the partial sum of the result computed during the recursion. The
production of such a function f ′ can be performed as follows, by rewriting the
existing expression constituting the body of f :

1. For those expressions e in tail position that satisfy the form e := f x + y for
some x, y, replace e by f ′ x (y + a), where f ′ is an unused function name.

2. For all other expressions e in tail position, replace them with the expression
e + a.

3. Finally, rename f to f ′, and give it an additional argument pointed to by a.
The name f is re-used for an auxiliary definition applying f ′ to the identity
of + by setting f x = f ′ x 0.

3 The BVI Language

The CakeML compiler recently received a new backend [8] which makes use of
12 intermediate languages (ILs) during compilation. The IL under consideration
for our implementation is BVI (Bytecode-Value Intermediate language). BVI is
a first-order functional language. Like all other ILs in the new CakeML compiler
backend, its formal semantics is specified in terms of a functional big-step style [6]
(see Sect. 4).

The abstract syntax of the BVI language is shown in Fig. 1. The type num
corresponds to natural numbers, and op to one of the languages primitive
operations, e.g. arithmetic, I/O, pointer dereference, etc. The meaning of the
BVI expressions is as follows: Var i denotes a variable with de Bruijn-index
i , Raise exc raises an exception exc, and Op op xs denotes a primitive operation
op on the expressions xs. The expressions If and Let have their usual meaning.
A Call expression is of the form Call ticks dest args hdl , where dest denotes an
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Fig. 1. The abstract syntax of BVI.

address in the code table to the function being called, and args the function argu-
ments. Optionally, the address hdl to a function acting as an exception handler
is present. The ticks parameter to Call, and the Tick expression are related to
the verification of semantics preservation under divergence, and are in practice
no-ops.

3.1 Motivations for BVI

The transformation described in Sect. 2.2 is to be applied on BVI programs as
a standalone stage in the CakeML compiler. At this stage of compilation, the
input program has been divided into a list of functions stored in an immutable
code store, which we call the code table. Each entry in the code table is a tuple
of the form ((loc : num), (ar : num), (exp : exp)), where loc is a (unique) address
used to index into the table, ar defines the arity of the function, and exp the
expression which constitutes its body. Our motivations for choosing BVI for this
optimization are the following:

– The compiler stage which transforms a prior higher-level IL into BVI intro-
duces new functions into the compiler code table, and keeps track of what
function names are unused. This suits our purposes, since our transformation
needs to introduce auxiliary definitions, i.e. using previously unused entries
in the code table.

– BVI does not support closures. Determining equivalence between values in a
language with closures is complicated, since closure values contain program
expressions that would be changed by our transformation. Implementing the
transformation in a first-order language greatly simplifies verification, as it
enables us to use equality as equivalence between values before and after the
transformation.

3.2 Tail Recursion in BVI

We will now give an outline of how the transformation from Sect. 2.2 is imple-
mented in the BVI stage of the CakeML compiler. The transformation is
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restricted to expressions containing associative integer arithmetic and list append
in tail position, for the reason that these can be detected at compile-time with
relative ease.

1. We search the code table for entries (loc,ar ,exp) in which exp contains at
least one tail position in the shape of f x ⊕ y, where f is the name of the
function at address loc and ⊕ is any of the supported operations.

2. If the previous check succeeds, we create an expression expOPT by modifying
the tail positions of exp:

– Any expression f x ⊕ y is replaced by a function call f ′ x (y ⊕ a), where
f ′ is a function at the next unused address loc′ in the code table, and a
is a variable pointing at a newly allocated argument of the function.

– Any other expression y in tail position is replaced by y ⊕ a.
3. Finally, the transformed expression expOPT is inserted into the code table

as (loc′, ar + 1, expOPT), and an auxiliary expression expAUX is inserted as
(loc, ar, expAUX). This expression simply calls f ′ while appending the identity
of ⊕ to the arguments it was called with.

The algorithm described above is simple enough that it is tempting to
instantly proceed with verifying its correctness. First, however, we need to take
into consideration the following limitations that are specific to our setting.

Order of Evaluation. Aside from introducing tail-recursion, the transformation
described in this section will also change the order in which sub-expressions to
the transformed expressions are evaluated. In our case, substituting f ′ x y for
f x ⊕ y implies that y is moved forward in the order of evaluation. To preserve
the order in which observable side effects – such as I/O events – appear, we
need to impose additional restrictions on expressions such as f x ⊕ y. In fact,
restricting the contents of the expression y is sufficient to preserve the semantics
under the transformation.

Types of Expressions. As with all ILs in the CakeML compiler, the BVI lan-
guage lacks static type information. However, the transformation described in
this section involves the replacement of function base cases y with y ⊕ a, where
a is the accumulating variable. Although the type of a is known statically, the
type of y is not, and proving semantics preservation comes with the obligation
to show that the operation ⊕ is correctly applied.

Not only must we address the previously stated issues so that the imple-
mented transformation is correct, but we must also ensure that it is done in such
a way that correctness can be proven using the verification techniques employed
in the CakeML compiler. In particular, our proofs must be w.r.t. the existing
formal semantics of BVI, which is defined in the next section.

4 The BVI Semantics

Like all ILs in the CakeML compiler, the semantics of BVI is defined in a
functional big-step style using an interpreter function [6] called evaluate. The
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interpreter evaluate (see Fig. 2) takes as input a list of expressions, an envi-
ronment of concrete values, and a semantics state. The semantics state is the
following record type. Here, refs is a mapping from an identifier to a concrete
pointer, and global is a reference to a dynamic array used for storing global vari-
ables. The field ffi contains a state which tracks the calls made to the foreign
function interface. Lastly, clock is a natural number used by the semantics to
track divergence.

α state =
<| refs : (num �→ v ref); (* pointers to ref:s *)

clock : num; (* the compiler clock *)
global : (num option); (* pointer to global variables *)
code : ((num × exp) num map); (* compiler code table *)
ffi : (α ffi state) (* FFI state *)

|>

For a list of expressions xs, an environment env and a semantics state s, the
term evaluate (xs,env ,s) reduces to a tuple (r ,t) where t is a post-state, and r
is one of two different outcomes:

1. If the evaluation succeeds for all expressions in xs the result r is Rval vs, where
vs is a list of concrete values, each corresponding to an expression in xs.

2. Should the semantics get stuck (i.e. fail) for some expression in xs, the result r
is Rerr e, where e is an error which originates from the first failing expression
in xs. Such errors are are divided into two categories:
(a) Rraise a, resulting from an expression which raises an exception. Here a

is the result of evaluating exc in the BVI expression Raise exc.
(b) Rabort e, where e is one of:

i. Rtimeout error, if the evaluation of some expression in xs diverged.
ii. Rtype error, if an expression was ill-typed, or we attempted to access

an unbound variable.

The type inference algorithm used in the CakeML compiler comes with proof
of soundness and completeness [9]. This means that the semantics of any program
for which a type can be inferred is guaranteed to not get stuck with a Rtype error.
Since all ILs in the compiler lack static type information, this is the closest we
will get to a guarantee that programs are well-typed in our theorems.

5 Analysis of Expressions

We will now outline a method to statically determine the suitability of BVI
functions for transformation, taking into consideration the limitations listed in
Sect. 3.2, and the language semantics from Sect. 4. In particular, the latter will
be required to make informed decisions about the detection of the types of
expression, since the absence of type errors in the semantics is the only such
information at hand.
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Fig. 2. Some cases of the interpreter evaluate which defines the semantics of BVI.

Purity. Aside from exceptions, all sources of impurity in the BVI language stem
from Op expressions (see Fig. 1). These include operations that perform alloca-
tions, access references, or give rise to I/O events. Hence, purity can be ensured
by restricting the usage of such operations, and avoiding expressions that raise
exceptions.

Types. The types of some BVI expressions can be determined statically under
the assumption that their evaluation will not get stuck with a type error in the
semantics (see Sect. 4):

– Constants, such as integer literals or the empty list nil.
– Primitive operations such as integer arithmetic and list append.
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Additionally, it is sometimes possible to statically determine the type of vari-
ables, provided that they exist under primitive operations. By mimicking the
order used by evaluate (see Fig. 2) when traversing expressions, it is possible
to determine the type of variables under operations, as the semantics of a mis-
applied operation will always get stuck with a type error. Our implementation
constructs a context of local type information, allowing the type of a variable to
be accessed if it is encountered during later stages of analysis.

Order of Evaluation. The method of inferring types described herein relies on
the fact that expressions do not get stuck with an error in the semantics. This
turns out to be insufficient knowledge about an expression that is to be lifted
into an accumulating argument as described in Sect. 3.2; any such expression is
required to reduce to a concrete and well-typed value. We postpone discussing
the reasons for this until Sect. 6. Instead, we note that the method described
above can be extended to provide termination guarantees, as long as the restric-
tions are recursively applied to the sub-expressions of primitive operations, and
variables are ensured to be bound (see Fig. 2).

Taking into account the restrictions described in this section, the implemen-
tation from Sect. 3.2 is modified to work in two passes. In its first pass, the
procedure searches for suitable looking function definitions, and ensures that
the relevant sub-expressions of the program are well-typed and/or have the
required purity and termination properties. If this holds, the necessary details
are passed along to a second pass which rewrites the expression following the
original description of the implementation.

6 Semantics Preservation

In this section we outline the process of verifying the correctness of the BVI
implementation described in Sect. 3. In our setting, correctness means the preser-
vation of observational semantics.

Since our transformation works on the entire program code table – as opposed
to lists of expressions – it does not fit well into any of the existing stages in the
BVI phase of the compiler. We have therefore implemented it as a stand-alone
stage. In addition to proving theorems which state that observational semantics
are preserved when transforming single expressions, this also requires us to prove
a higher-level semantics theorem, stating that the semantics of all expressions
in the code table are preserved under the transformation.

Semantics of Programs. A BVI program is represented as a compiler code table
together with a starting address (the program entry-point) and an initial state.
Program semantics are described by the semantics function semantics (see Fig. 3)
which is defined in terms of evaluate. Intuitively, the semantics function describes
the behavior of a call to the address declared as the programs entry-point.
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– If the semantics of the call gets stuck with an error that is not a timeout
error (i.e. it does not diverge), then the evaluation got stuck with either a
type error or an uncaught exception. Such programs receive semantics Fail.

– If the evaluation of the call terminates with a concrete value, the program
semantics is Success.

– Otherwise, should the program diverge, the semantics is Diverge tr , where tr
is the least upper bound of the traces of I/O events in the FFI states obtained
when evaluating k steps in the semantics of the call, for all k ∈ N (see Sect. 4
and Fig. 3). Since the operational semantics is deterministic, tr can be viewed
as the possibly infinite trace obtained from allowing the evaluation to continue
indefinitely.

For an explanation of the semantics function in greater detail, see Owens,
et al. [6].

Fig. 3. The semantics of BVI programs.

Preserving Program Semantics. Using the semantics definition, we state the fol-
lowing semantics preservation theorem for our program transformation called
compile prog. Since all ill-typed programs are eliminated at an earlier stage of
compilation (see Sect. 4), we restrict our theorem to valid programs, i.e. those
with non-Fail semantics.
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Theorem 1. The semantics of any valid BVI program is preserved under the
transformation compile prog.

	 every (free locs n ◦ fst) prog ∧
all distinct (map fst prog) ∧
snd (compile prog n prog) = prog2 ∧
semantics ffi prog start �= Fail ⇒
semantics ffi prog start =
semantics ffi prog2 start

Here, all distinct ensures that the locations used for lookups into the code table
are unique, and free locs n that there are free slots for auxiliary functions in the
code table starting at location n. Since semantics is defined in terms of evaluate
proof of Theorem1 requires a support theorem stated in terms of expression
semantics.

Semantics of Expressions. To aid the proof of Theorem1, we state the following
theorem about the preservation of expression semantics under the transformation
implemented in Sect. 3.2.

Theorem 2. The semantics of any BVI expression evaluated in an environment
env1 and a state s is preserved under the transformation rewrite, if the trans-
formed expression is evaluated in an environment env2 related to env1 through
env rel, and a state with the code table c related to s .code through code rel, and
the context supplied to scan expr is related to the environment env1 through ty rel.

	 evaluate (xs,env1,s) = (r ,t) ∧ env rel opt acc env1 env2 ∧
code rel s.code c ∧ ty rel env1 ts ∧ (opt ⇒ length xs = 1) ∧
r �= Rerr (Rabort Rtype error) ⇒
evaluate (xs,env2,s with code := c) =
(r ,t with code := c) ∧

(opt ⇒
∀ op n exp arity .
lookup loc s.code = Some (arity ,exp) ∧
optimized code loc arity exp n c op ∧
(∃ op′ ty .

scan expr ts loc [hd xs] = [(ty ,Some op′)] ∧
ok type op′ ty ⇒
let x = rewrite (loc,n,op,acc,ts) (hd xs) in
evaluate ([x ],env2,s with code := c) =
evaluate
([apply op op (hd xs) (Var acc)],env2,
s with code := c))

The first few lines of Theorem 2 are quite common to any verification of an
optimization in the CakeML compiler. First, we limit our treatment to expres-
sions for which the semantics do not get stuck with a type error. Following this,
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the next few lines state that the semantics of the expressions xs is preserved in
the transformed code table c.

The unusual part of Theorem2 is the implication opt ⇒ . . . which states the
behavior of any expression in xs subjected to the transformation. Before going
into further detail we give a brief account of the functions and various relations
used in the theorem.

– code rel c1 c2 connects the code table locations of functions prior to transfor-
mation (in c1) to those after transformation (in c2).

– env rel opt acc env1 env2 ensures that the environment env1 is a prefix of env2,
and that the accumulator variable points to a well-typed concrete value in
env2 when evaluating a transformed expression.

– ty rel connects the environment with the context used in analysis, and states
that for any variable for which the type was detected during analysis, there
exists some concrete value in the environment with the correct type.

– scan expr ts loc exp performs the bulk of the work for the analysis phase. It
takes a context ts of variable types and a code table address loc for detection
of a recursive call, and returns the expression return type ty and the operation
op′ it finds in tail position.

– rewrite performs the accumulator transformation on a single expression uti-
lizing the operation found by scan expr.

– ok type op ty ensures that the operation op is compatible with the return-type
ty of the expression.

– Finally, additional guarantees about the locations and properties of trans-
formed expressions are given by the predicate optimized code.

The second part of Theorem 2 then states that any expression for which the anal-
ysis pass succeeds will be transformed by rewrite and have semantics equivalent
to that of the operation under consideration applied to the original expression
and the accumulator (cf. Sect. 2).

In most cases, the proof of Theorem 2 need only deal with recursively applied
transformations. These follow trivially by the induction hypothesis. However,
there are two cases that must receive special treatment.

Function Calls. As the transformation is applied to the entire code table, any
function call may potentially end up in a transformed expression. In this case,
the necessary information is available from code rel and optimized code, which
provides explicit code table locations for transformed expressions, and ensure
that the expressions in these locations have transformed by rewrite.

Operations. Operations in tail positions which satisfy the requirements detailed
in Sects. 3.2 and 5 are to be replaced by equivalent tail calls. That is, operations
f x + y are to be replaced by f ′ x (y + acc) for some accumulating variable acc
and some function f ′ satisfying

f ′ x a = f x + a.



130 O. Abrahamsson and M. O. Myreen

What is to be proven is that for such f ′ and some acc,

f x + y + acc ≡ f ′ x (y + acc)

where ≡ denotes semantic equivalence under the interpreter evaluate. From asso-
ciativity follows that

f x + y + acc ≡ f x + (y + acc)

and we would expect an inductive argument to yield that

f x + (y + acc) ≡ f ′ x (y + acc). (3)

This is certainly true in a broader setting where the expression y is known to
be well-typed, as the semantics for a well-typed pure expression will reduce to
a well-typed concrete value. However, no such information is available in our
setting. In particular, it would not be possible to prove that the semantics of the
expression y would reduce to any value at all without the restrictions discussed
in Sect. 5.

But why is a termination guarantee for the expression y needed? The culprit
turns out to be the altered order in which the expressions f x and y are evaluated
post-transformation.

6.1 Order of Evaluation

As previously stated, our theorems are set up to disregard any expressions for
which the semantics get stuck with a type error. In the case of transformed oper-
ations in Theorem 2, this guarantee entails that the semantics for the expression
f x + y (i.e. prior to the transformation taking place) will to not get stuck with
a type error. However, this is not to be mistaken for a guarantee that f x + y is
correctly typed.

To see why this is true, consider the semantics for operations in the BVI
semantics (see Fig. 2). The arguments to the operation are evaluated in a left-
to-right fashion before being passed on to the auxiliary function do app, which
performs the actual operation on the concrete values. Although the function
call f x can not get stuck with a type error, it could, for instance, diverge. In
that case the evaluation of the arguments [f x ; y ] would get stuck at f x with a
timeout error. At this point we can deduce nothing about the expression y , as
its semantics is completely overshadowed by the semantics of f x . In particular,
the semantics of y could very well get stuck with a type error, in which case
the semantics of f ′ x y would get stuck with a type error, so that Eq. (3) fails to
hold.

Conclusion. We conclude this section by noting that the above issues are not in
any way unique to the CakeML compiler. Instead, they are a consequence of the
decision to use a operational semantics as a means of enforcing the correctness
of programs without including static type information.
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7 Related Work

Burstall and Darlington [1] described a framework for transforming recursive
functions into more efficient iterative counterparts by unfolding function defini-
tions. Their approach is arguably more powerful than the one we employ. How-
ever, it relies on a user-guided procedure, and is thus not suitable for inclusion
in a fully automatic optimizing compiler.

An early systematic account of the transformation described in this paper
was given by Wadler [10], with the primary goal of eliminating quadratic list
append usage. Wadler notes that the transformation may be applied to various
associative operations on a variety of data structures. In our setting, detecting
non-primitive operations that may be optimized by the transformation is diffi-
cult. Moreover, we would be required to prove that all detected operations satisfy
the associative property.

Another transformation for introducing accumulators is presented in
Kühnemann et al. [3]. Although not limited to lists in the same ways as
Wadler [10], the transformation appears to be limited to unary functions. We
are not aware of any compiler which implements this transformation.

Chitil [2] describes an improvement of the short-cut deforestation algorithm
which, among other improvements, enables deforestation to act on list produc-
ers which consume their own result. It correctly handles the reverse example
from Sect. 2.1, but is limited to functions on lists, and requires static type infor-
mation. It is therefore not suitable for implementation in our setting. As with
Kühnemann et al. [3], we are not aware of any compiler which implements it.

In [5], Liu and Stoller shows how to transform general recursion into iteration
by exploiting associativity. Their algorithm is able to transform both linear and
non-linear recursion into iteration, and handles mutual recursion. The transfor-
mations are carried out in an imperative language with while loop statements. In
our case, neither non-linear nor mutual recursion is supported, and it is unclear
if doing so would bring any real benefits (see Sect. 8). Moreover, these additional
features would come at the price of increasingly complex proofs when verify-
ing semantics preservation, as our IL of choice is functional, where loops are
expressed as recursion.

8 Discussion

The implementation of the transformation we describe in this paper can be used
to lift arbitrary pure expressions into accumulating arguments when performed
in a statically typed language. Although CakeML is statically typed, the IL in
which we perform the transformation is not, and we are subsequently unable
to fully utilize the potential of the transformation, as the semantics of our IL
provides weak guarantees for ‘well-typed’ expressions (see Sects. 4 through 6).

We present a partial solution to these issues by means of an analysis pass
which statically detects the type of most variables whenever they are used
together with arithmetic, a relation on the integers, or list append. As long
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as their first appearance is not in tail position, they can be lifted into the accu-
mulator. Moreover, we can track the types of variables to some extent, as long
as there is not too much indirection.

An alternative approach to ours is to provide static type information. This
can be done either by annotating expressions, or even introduce an entire type
system for the BVI language. While this may appear attractive at first, any gains
would be offset by a significant increase in effort: since end-to-end verification is
employed in the CakeML compiler, all ILs prior to BVI would have to receive
type systems, and preservation of types proven for all existing transformations.
Introducing type annotations would lead to similar overhead.

Instead, we claim that our approach constitutes a sufficiently effective com-
promise. All analysis is local to the IL in which the transformation is performed,
and does not disturb prior stages of compilation. In addition, it is hard to imagine
sensible programs that should be optimized by the implementation, but cannot
because of too much indirection.

Benefits and Drawbacks. Any recursive function which is transformed into a tail-
recursive equivalent will no longer allocate additional stack frames when placing
recursive calls to itself. As a consequence, functions that only call themselves dur-
ing execution will have their stack space consumption bounded by a constant
factor. In addition to reduced memory usage, these functions will see an increase
in performance, as the allocation of new stack frames is a time-consuming
process.

Rewriting recursive functions using accumulators is unlikely to introduce
any shortcomings not already present in the transformed functions. However,
an increase in the degree to which a compiler optimizes programs will lead to
increased compile times. In our particular case, static analysis is as expensive as
rewriting, implying an increase in compile times regardless if expressions were
successfully rewritten or not.

In addition, the transformation presented in this work raises some interesting
questions with regards to the notion of semantical compatibility. Although no
notion of memory exists in the upper layers of the CakeML backend, the lowest
levels take into account various limitations of the target architectures, including
memory consumption. Hence, although semantics at the BVI level are equivalent
under the transformation, it might ‘repair’ programs which would previously run
out of stack space at the machine code level. At the time of writing, we have not
proved that this optimization leads to less “out-of-memory” errors.

Future Work. Although we have settled on an approach which successfully esti-
mates the types of some BVI expressions, there are likely more alternatives that
we are simply unaware of. We could also extend the method currently employ,
although sufficient extensions would simply tend towards a dynamic type sys-
tem that can be called upon statically, and the trade-off when compared against
providing static type information may just not be worth it.

Our transformation currently supports functions that perform linear recur-
sion. Supporting non-linear recursion is possible, but requires more sophisticated
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machinery for purity-checking. In particular, we need to ensure the purity of
entire functions, and provide proof that this knowledge can be applied locally in
an expression.

Like Standard ML, CakeML is somewhat restricted in its support for mutual
recursion. Hence, it is unclear if the effort required to support mutual recur-
sion is worth it. However, our implementation could be strengthened to support
operations in tail position containing recursive calls to any functions in scope.
This could be achieved by threading the BVI code table through the functions
performing the transformation while keeping track of which function definitions
that have previously received an accumulating definition.

9 Summary

We have described an implementation of an optimizing compiler transformation
acting on an IL in the CakeML compiler. The transformation introduces tail
recursion in certain recursive functions on the integers and lists, and is verified
to preserve the observational semantics of programs that are transformed. To
the best of our knowledge, this is the first fully verified implementation of this
transformation in any modern compiler.
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Abstract. It is difficult to understand how a compiler’s different phases
transform a program, especially if the only way to do so is by studying
the compiler’s source code. We have constructed a tool for the verified
CakeML compiler which allows programmers to step through its phases,
much like stepping through a program with a debugger. In particular,
we allow a programmer to see how a piece of source code is represented
in intermediate languages during compilation, and how pieces of inter-
mediate code at different phases relate to each other. It is our hope that
this feature will let the developers of CakeML more easily identify com-
piler optimizations, and that it will make it easier for new developers to
quickly gain an intuition for the compiler.

1 Introduction

A compiler can be quite an opaque piece of software. It may generate large
amounts of intermediate code, structured for other compiler phases—not
humans—to work with. Ideally, a developer would want to be able to under-
stand each transformation of the compiler, not only by reading the compiler
code but also by observing the intermediate representations and see how they
relate to each other. If a debugger is available, the developer might observe the
compiler transformations by stepping through them and seeing them happen.
Or, they might print intermediate representations and trace the expressions of
interest between the representations. Both these processes may be tedious and
error-prone. This project suggests a new way of observing a compiler’s behavior
and making it more accessible to study. The approach is specifically tailored to
the structure of a functional compiler, written as a pure function from source
program to machine words. By regarding each compilation phase as performing
a reduction of this function, we can relate each expression in each intermediate
language to the expressions it gets reduced into, letting a developer see how
their program is translated, step by step, or several steps at once, without them
needing to trace expressions manually.

For this project, we use the CakeML compiler, which is written as a pure
function. CakeML is a verified implementation of a subset of Standard ML [11].
The compiler backend is proven to preserve the semantics of the input program at
c© Springer International Publishing AG, part of Springer Nature 2018
M. Wang and S. Owens (Eds.): TFP 2017, LNCS 10788, pp. 135–148, 2018.
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every step, from source code to machine-code [13]. This is achieved by developing
each compiler phase alongside a theorem of its correctness [10]. The CakeML
project also stands out as an interesting project in the research field of verified
compilation, as it is the first such compiler to be bootstrapped, meaning it can
create an executable of itself, complete with a proof of the correctness of the
executable [13]. The CakeML compiler is particularly well suited for this project
as it uses many small, well-defined compilation steps, making the compilation
process relatively easy to follow.

We turn to an example of the mentioned opaqueness of compilers. Consider
a simple program in CakeML:

val x = 3 + 5;

Even when we take such a simple program and run it through the frontend and
first phase of the CakeML compiler, the result is this quite complex looking
intermediate representation1:

Prompt NONE [
Dlet 1 (Mat (App (Op Opapp) [

App (Op Opapp) [Var global 155; Lit (IntLit 3)];
Lit (IntLit 5)

]) [(Pvar "x", Pcon NONE [Var local "x"])])
]

Four compiler phases later, the compiled program has grown even more complex,
and has become hard for humans to read:

(Let (Seq (Extend global 1) (Handle (Seq (Seq (Let (Let (App (Op Opapp) [App (Op Opapp)
[Var global 155; Lit (IntLit 3)]; Lit (IntLit 5)]) (Pcon (SOME 0) [Var local 89])) (Let
(App (El 0) [Var local 89]) (Seq (App (Init global var 231) [Var local 90]) (Pcon (SOME 0)
[])))) (Pcon (SOME 0) [])) (Pcon (SOME 0) [])) [(Pvar 89, Pcon (SOME 0) [Var local 89])]))
(If (App (Tag eq 0 0) [Var local 89]) (Pcon (SOME 0) []) (Var local 89)))

The developers of CakeML have expressed a desire for a tool which could out-
put intermediate representations like the ones shown above, with some extended
capabilities. The tool would let the user choose two or more intermediate repre-
sentations to view and allow clicking any part of the source code or intermediate
code, which would lead to the corresponding expressions in the other representa-
tions to be highlighted. For example, clicking 5 in the source code above would
highlight Lit (IntLit 5) in the intermediate representations. By allowing this
sort of click highlighting, it is believed that it will be easier for the developers to
find possible optimizations to add to the compiler, and also that it will be easier
to teach new developers how the compiler works.

The purpose of this paper is to describe how we have made the necessary
extensions to the CakeML compiler to allow tracking expressions as they move
through phases and to show a proof-of-concept implementation of an interactive
1 This intermediate representation is abbreviated. The actual representation contains

a large number of pre-defined functions which can be referenced as global variables.
For instance, here + has been compiled to Var global 155.
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tool of the sort the CakeML developers have asked for. The key contributions
we make are the following:

– We introduce a recursive datatype, described in Sect. 2, called trace, which is
used to encode ancestry of expressions as they move through the compiler. We
then annotate every expression in each intermediate language of the compiler
with a trace. By comparing the traces of two expressions, we can decide
whether they are related or not, i.e., if one was created from the other during
compilation. The datatype also encodes source position so that, by looking
at an expression in an intermediate state, one can determine in which exact
position or positions in the source code the expression originated.

– We introduce three new intermediate languages which are used to compile
the program state after each phase into JSON format [6], complete with the
encoded ancestry information. In Sect. 3.1 we describe how we turn interme-
diate compiler representations into a standard format. From there, we can
transform the program into a simple structure, described in Sect. 3.2, which
can then easily be output in the desired format, in our case JSON.

– We present a simple web interface in Sect. 3.4 which displays the state of
the compiler after different phases and which can highlight expressions in
different states which are related.

Our solution is designed to work with a pure functional compiler.2 The solu-
tion is constrained by the proved correctness of the compiler: since the compiler
proof demonstrates that the semantics of the input program are preserved at
each compiler phase, any large structural changes to the compilation process
may cause significant trouble in updating intermediate proofs. We shall cope
with these constraints by introducing only small changes to the intermediate
languages that will carry the information we need to relate expressions to each
other, and then breaking free of the standard compilation process, introducing
an orthogonal translation process, which will make outputting the necessary
information a simple matter, and release this process from the burden of cor-
rectness proofs. We have not attempted to prove any properties of this process
at this stage, such as maintaining the well-formedness of traces, but have instead
focused on interfering as little as possible with the existing proofs of compiler
correctness.

2 Tracking Expressions

The first problem we have solved is that of encoding which expressions in differ-
ent compiler states are related. Our solution is a recursive datatype which we use
to annotate expressions in the compiler’s intermediate languages. We call this
datatype “trace”, or tra in the compiler code. Trace values serve as a fingerprint
of origin—all expressions with the same trace are of shared origin, and traces

2 Thus, even though we will sometimes use the term “state”, it has nothing to do with
program state, but rather with various stages of evaluation.



138 R. Hjort et al.

can be built upon to create new, unique fingerprints, while still preserving infor-
mation of origin. At a later point, we use this information to display ancestry of
expressions through a graphical interface, as will be described in Sect. 3.4.

Annotating expressions means simply adding a trace as the first argument
to expression constructors.3 For example, the expression constructor

Let (string option) exp exp

becomes
Let tra (string option) exp exp.

With this approach, each expression carries information of its origin that can
be read at any point of compilation, while not requiring any more updates to
the correctness proofs than ignoring the tra parameter. The trace will not be
carried along to the machine-code output of the compiler and is thus alleviated
of the burden of having to be proved to preserve semantics. We will show how
the trace is read together with the rest of the program after each compiler phase
in Sect. 3, through a separate translation process. This allows us to limit the
total changes to the compiler itself to adding the traces and logic for building
them.

Figure 1 shows the definition of the tra datatype. It is a recursive type with
two non-recursive constructors, SourceLoc and None. SourceLoc is the constructor
used to terminate recursion. We use None only for the particular purpose of
turning traces off when they are not needed, e.g., when compiling normally.
There are also two recursive constructors, � and Union. Here, � is an infix
constructor which can also be written as Cons in prefix form.

Using this datatype, we start by giving every expression in the source AST
a unique trace. We do this by taking the source position and encoding it in a

Fig. 1. tra datatype. Used for encoding the path any one expression has taken through
the compiler, where � encodes expressions being split and Union encodes expressions
being merged.

3 The decision to use this form of annotation rather than adding a new annotat-
ing constructor to each language was made in collaboration with the core CakeML
development team. The reasoning is that new mutually recursive datatypes would
complicate the compiler semantics and therefore the existing proofs, especially since
we do not wish to force the annotation to always be present. Furthermore, modifying
each constructor should be a one-off modification, since adding more metadata to
the compilation process in the future could be accomplished by modifying the tra

datatype.
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SourceLoc. In the example program val x = 3 + 5; the source position of the
partially applied function expression 3 + is from line 1, character 9, up to and
including line 1, character 11, and the initial trace for this expression would be:

SourceLoc 1 9 1 11. (1)

For all compiler phases following the initial one, traces are only allowed to
grow or remain unchanged, never shrink. Traces grow either by extending a trace
with � or by joining two traces together with Union. This gives us three possible
ways the trace of an expression may be altered as the expression is transformed
during a compiler phase. Each correlates to a way that the expression itself may
change, as this is exactly what the trace is supposed to inform us about.

The first case is when a compiler phase transforms an expression into exactly
one new expression. In this case, the trace will get passed on as is to the new
expression, which informs us no splitting or merging of expressions has taken
place.

The second case is when an expression is turned into more than one new
expression by a compiler phase. For example, when transforming an expression
such as (fn x => foo x (x + 5)) 4 into foo 4 (4 + 5) by inlining, we want
to be able to show that both instances of 4 in the result originate from the same
4 before the transformation. When this happens, the � constructor is used to
decorate the old trace with new numbers, starting from 1, producing as many
new unique traces as necessary. For example, if the expression carrying the trace
shown in (1) gets split into two expressions at a compiler phase, we would invent
two new traces, the only difference between them being the outermost number:

(SourceLoc 1 9 1 11 ) � 1
(SourceLoc 1 9 1 11 ) � 2.

(2)

The third and last case to consider is when expressions get merged. Merging is
rarer than splitting but is to be expected when performing certain optimizations,
e.g., constant folding. If for example, the expressions 3 + and 5 are folded into
one expression, 8, we would need some way of knowing that 8 originates in both
3 + and 5. Using the Union constructor, we can join the traces of 3 + and 5
together, to obtain the following trace:

Union

(SourceLoc 1 9 1 11 )
(SourceLoc 1 9 1 13 ).

(3)

To state the rules of growing expressions formally: whenever a compiler func-
tion sees two or more expressions being defined on the right-hand side of the
definition, and only one on the left, we use � to split the trace into several new
traces which we attach to the new expressions. Conversely, whenever two or more
expressions appear on the left-hand side of a definition, and only one appears
on the right, we apply Union to merge the traces.
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To decode ancestry from traces, i.e., to determine whether one expression
is the descendant of another, we look at the traces of both expressions. An
expression e1 with the trace t1 is the ancestor of another expression e2 with
the trace t2, if and only if t2 can be derived from t1. For a familiar metaphor,
we can view the traces as binary trees, where a � constructor is a node with a
numerical value and a left child, Union is a node with no value and two children,
and SourceLoc a leaf node with a four-tuple of numerical values. Then we can
say with certainty that e2 was derived from e1 if and only if t1 is a subtree of t2.
Note that when t1 and t2 are identical, this approach considers e1 and e2 to be
ancestors of each other, and we must make use of the order of their respective
intermediate languages to determine which is the ancestor, and which is the
descendant.

The following pseudocode function determines whether a trace is the exact
same trace as another, by checking that the traces have the exact same con-
struction, including the same original source positions. Traces containing None
are considered invalid for encoding ancestry, and using such a trace will always
give the result False.

equals (SourceLoc a b c d) (SourceLoc a’ b’ c’ d’) =
a == a’ && b == b’ && c == c’ && d == d’

equals (t � n) (t’ � n’) =
n == n’ && equals t t’

equals (Union t1 t2) (Union t1’ t2’) =
equals t1 t1’ && equals t2 t2’

equals _ _ = False

Using the above function, we can construct the following function that deter-
mines if one trace is the ancestor of another trace. It does not consider two equal
traces to be ancestors of each other.

is_ancestor t (t’ � n) = equals t t’ || is_ancestor t t’

is_ancestor t (Union t1 t2) =
eqauls t t1
|| equals t t2
|| is_ancestor t t1
|| is_ancestor t t2

is_ancestor _ _ = False

This function deconstructs the second trace one step at a time, at each step
checking for equality with the first trace. If the second trace is a SourceLoc, then
the second trace cannot have been constructed from the first, and the result is
False.
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3 Presentation

Since the existing compiler implementation is a pure function, in which the inter-
mediate representations have no memory of previous reductions, it is necessary
that we add some information to intermediate expressions which maintains this
memory. This is achieved in a relatively non-intrusive way through the trace
datatype, as explained in the previous section. The remainder of the logic for
relating expressions and presenting them then occurs without interfering with
the regular compilation. To achieve this, we introduce three intermediate lan-
guages, and translations from intermediate compiler states to these languages.

This section covers our second contribution to the CakeML compiler, namely
a sideways translation of sorts, that allows us to output every intermediate com-
piler state without further interference to the regular compilation. With this
facility, we can translate the program into a semantics-free JSON representation.
Each step of the translation serves a specific purpose. These are, respectively:
to move to a more flexible intermediate language without formal semantics and
thereby avoid the burden of correctness-proofs; to structure the representations,
which cover all intermediate languages, into a simple yet comprehensive format;
and to translate the structured representation into JSON. The final conversion
to JSON is done in a thin, outer layer, and it is a simple exercise to imple-
ment other output formats with minimal changes. The JSON representation can
then be used to present the intermediate states of regular compilation, as well
as relating expressions in different intermediate representations to each other in
the presentation, as will be explained in Sect. 3.4.

Figure 2 shows the flow through intermediate languages in the compiler. Each
box contains the name of an intermediate language. Horizontal arrows represent

Fig. 2. Flow of a program through the modified compiler. Horizontal arrows indicate
compilation with machine-code as the target, and vertical arrows represent translation
with JSON as the target. Dashed boxes and arrows are possible but unimplemented
alternative output formats.
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regular compilation with machine-code as the target. Vertical arrows represent
translation through our newly introduced intermediate languages, with JSON as
the target.

3.1 Standard Presentation Format

The first step towards translating the intermediate representations into JSON
is to move to a unified representation that captures the syntax of all existing
intermediate languages. This representation has no formal semantics, since it
will never be transformed into a runnable program, and therefore does not need
correctness proofs. We want to create a single, unified type to represent the inter-
mediate languages, so that we then can write a single function to translate this
representation further, without having to take into account which intermediate
language is being represented. Keeping with the spirit of the CakeML compiler,
we make this first translation step from the existing intermediate languages small
and almost trivial to implement, rather than translating directly into the smaller
type which we will introduce in Sect. 3.2.

This first step is handled by the intermediate language PresLang. This
language gathers every declaration, expression and pattern constructor of the
existing intermediate languages into a single type. Figure 3 shows an abbreviation
of the PresLang exp datatype. Since this type will only ever be presented, not
evaluated, semantics and well-typedness of the program are pointless. Therefore,

Fig. 3. PresLang exp datatype. In total, there are 37 constructors, and more are
added as our explorer adds support for more intermediate languages. As can be seen,
declarations, expressions, and patterns are not separated, since semantics and well-
typedness are no longer a concern.
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we do not need to separate declarations, expressions, and patterns, but can treat
them as being of the same type, simplifying the language and further translation.

Here we also run into an issue we have not yet mentioned, that will limit
our approach: most existing intermediate languages are represented by differ-
ent types. Thus, a function from one intermediate language will not be able to
accept an identical looking value from another intermediate language, since the
types are incompatible. As the total number of intermediate languages are small
and unlikely to change often, as are the types that represent each intermediate
language, we cope with this issue by simply writing one function from each type
to PresLang, which is quickly done.

3.2 Structuring Output

The language discussed in the previous section, PresLang, groups all decla-
rations, expressions, and patterns from all intermediate language into a single
expression type. This type constitutes a small transformation step from the exist-
ing intermediate languages but is unwieldy to work with. Thus, our next order
of business is to condense PresLang expressions into a small and handy format
to provide simplicity and consistency in the layer right before the final output
layer.

We created the intermediate language DisplayLang for this purpose. Dis-
playLang has a single datatype, sExp, with three constructors:

sExp = Item (tra option) string (sExp list) | Tuple (sExp list) | List (sExp list).

An sExp expression may either be an Item with an optional trace, a name, and a
list of expressions; a Tuple; or a List. The Tuple and List constructors correspond
to the tuples and lists of expressions that intermediate language constructors
take, while other source level primitives are expressed by a string representation
in an Item constructor. This simple structure can capture the entirety of Pres-
Lang, while having an easy to traverse tree structure, with strings and traces as
the only type of information in the nodes. The addition of tuples and lists also
makes for easy printing, as it is only a matter of printing the string contents of
Item, surround lists with square brackets, tuples with parentheses, and proceed
recursively. Here is an example of how an expression would be encoded in Dis-
playLang. Imagine a constructor in PresLang, Foo ((num × num) list). For
the final, printed output to show Foo [(1, 2)], the expression would be encoded
in DisplayLang as

Item NONE “Foo” [List [Tuple [Item NONE “1” [ ]; Item NONE “2” [ ]]]].

By going through this small language after PresLang, the final conversion
to JSON becomes very thin, making it easy to add new output formats as
needed. Perhaps even more importantly, this set-up provides consistency. The
sExp datatype enforces a neat and predictable structure that can be directly
translated into a JSON tree structure of named objects and lists, which can
then be printed without knowledge of the underlying complexity in PresLang.
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In the end, we translate DisplayLang into JSON via a simple scheme:
Item becomes an object with a name field containing the name of the original
constructor, e.g., “Prog”, its trace converted into a similar structure, and an
array of objects in the field args; a Tuple is an object with a boolean isTuple
flag and an array of args; and a List is simply turned into an array. The web
interface presents this structure by printing it in flat form, with parentheses,
and use the traces to associate parts of the presented strings with parts in other
intermediate representations.

3.3 From de Bruijn Indices to Variable Names

Here we pause to note a special situation that occurs in translations into Pres-
Lang. In PatLang (the first intermediate language in the compiler chain which
does not use pattern matches) and the two following intermediate languages,
the compiler uses the notational scheme known as De Bruijn indexing [7]. This
notation is convenient for compiler implementation and conducting proofs, as it
removes possible naming conflicts in β-reduction. However, it is hard for humans
to read, and we therefore replace the De Bruijn indices with standard variable
names when presenting the compiler states.

As an example, consider the following expression in CakeML, which declares
two mutually recursive local functions:

let
fun f x = g x
and g x = f x

in
f 2

end

Figure 4 shows the result of calling pat to pres exp, which converts a PatLang
expression to PresLang, on a simplified version of this expression in PatLang.
Look carefully at the occurrences of the numbers 0 and 1 before the conversion.
The number 0 refers to either the input variable of the functions or to the first
function, depending on context. Also, the first function is referred to as either
1 or 0, depending on context. In the result, each of the function definitions is
converted to a tuple with three elements: (1) the function’s name; (2) the name
of its input variable; and (3) the function body. The first function is named
“b” and the second “a”. In all three occurrences of App, the two functions are
referred to using the explicit names “a” and “b”.4

4 The names “b” and “a” are used instead of the source code names, “f” and “g”.
This is because in the conversion to PatLang, the original names are discarded.
It might be possible to reconstruct the original names using traces to determine
the origin of each variable in PatLang. However, this may not be feasible for the
exact reason that De Bruijn indices are used, namely the risk of naming conflicts. A
transformation may put two variables in the same namespace in a way that would
cause a conflict if the original names were used. We therefore opted instead to create
new variable names in a safe manner.
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Fig. 4. Example of replacing De Bruijn indices with variable names. In the result,
names have been assigned to the mutually recursive functions inside Letrec, and the
functions are referred to using the explicit names “a” and “b”.

Figure 5 shows two clauses of the function that performs this conversion. The
number h is carried along at each call and counts how many bound variables
are currently in scope, which is used to assign a unique variable name using a
function, num to varn, that turns natural numbers into identifier strings.

Fig. 5. Removing De Bruijn indexes in conversion to PresLang. The function
pat to pres exp takes a number, h, in addition to an expression. h is the number of
currently bound variables in the scope. This value is used to compute fixed variable
names from De Bruijn indices.

3.4 Web Application

Figure 6 shows our web application, with highlights on expressions corresponding
to the literal 5 in our running example, val x = 3 + 5;. We print the languages
horizontally and without pretty-printing for this proof-of-concept version of the
web application. Around each object with a trace (corresponding to an Item in
sExp), a <span> element is placed which we can use to highlight it. For each
expression, we maintain information about its trace. When an expression in any
language is clicked, its trace is sent via an event that is used to find and highlight
all expressions in other intermediate representations it is related to.
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Fig. 6. Web application after compilation, and after clicking an expression. Three dif-
ferent intermediate languages are shown in the bottom image, with IntLit 5 clicked in
the middle one. In reality, these expressions are not lined up, but may appear further
apart. This figure shows them cropped together for convenience.

4 Related Work

What we have achieved is a way of presenting a compiler’s inner workings by
both showing intermediate representations, and how each expression in each
intermediate representation relates to expressions before and after it. To the best
of our knowledge, there is no other tool available that combines these features.
We will briefly mention a selection of previous compiler explorers and their
features. They have in common that they perform one of these feats—displaying
intermediate states of compilation or relating sections of source code and target
code—but not both.

The HERMIT tool is a plugin to the Glasgow Haskell Compiler, GHC, that
lets Haskell programmers interact directly with the compilation of their source
program [8]. By pausing compilation and allowing the programmer to view and
interactively perform transformations on the GHC Core language AST, the pro-
grammer can find possible optimizations to their source program. HERMIT thus
has powerful capabilities not present in the Compiler Explorer presented in this
paper. HERMIT does not, however, implement something similar to our expres-
sion tracking, but relies on the programmer making manual edits and using
version control of the edits to observe different outcomes.

There exists at least one tool for relating source code in C++, D, Rust,
and Go code with corresponding assembly code, line by line [3]. In it, one can
highlight the code in the source or the assembly, much the same way as one
can in our interface described in Sect. 3.4. However, the tool does not show any
intermediate states, and it is therefore not possible to follow the compiler’s inner
workings step by step via the tool.



The CakeML Compiler Explorer 147

There also exists several tools for outputting intermediate compiler states
and information about them. Notably, there is an old, deprecated Compiler
Explorer for CakeML [2], developed by Yong Kiam Tan. There is also an unparser
for an educational compiler made by Sarkar et al. [12] which can pretty-print
the compiler’s intermediate states, and the LLVM Visualization Tool [4] which
can display intermediate compiler states in a number of ways, such as with
call hierarchies and control-flow graphs. What all these tools lack, however, is
the possibility to relate sections of code in each intermediate language. One is
presented only with the complete intermediate state, without any facilities to
relate expressions in them. For anything but very simple programs, it becomes
very difficult to follow the actual translation of sections of code and consequently
what transformations the compiler actually performs at intermediate steps. On
this basis, we believe our approach is viable and fills an important gap.

5 Summary

We have shown how to extend the pure functions of a verified compiler to be
able to track expressions as they pass through compilation, and how this track-
ing information can be presented. To make it possible to track expressions, we
introduce the tra datatype and show how its values can be built gradually to
encode ancestry. To output this information, we introduce three new intermedi-
ate languages with the special purpose of translation that does not interfere with
regular compilation but can still show the intermediate results of it. We have also
developed a basic interactive interface for visualizing the tracking information.

The changes to the compiler are included in the master branch of the offi-
cial CakeML repository [1] and our web application can be found in a separate
repository [5].
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96 Göteborg (2017). http://publications.lib.chalmers.se/records/fulltext/251308/
251308.pdf

10. Kumar, R.: Self-compilation and self-verification, chap. 3, pp. 37–48, Techni-
cal report, UCAM-CL-TR-879, University of Cambridge, Computer Laboratory,
February 2016. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-879.pdf

11. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Symposium on Principles of Programming Languages [POPL].
ACM Press (2014)

12. Sarkar, D., Waddell, O., Dybvig, R.K.: A nanopass framework for compiler educa-
tion. J. Funct. Program. 15(05), 653–667 (2005)

13. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new
verified compiler backend for CakeML. In: International Conference on Functional
Programming [ICFP]. ACM Press, September 2016

https://github.com/Saser/compiler-explorer-react
https://tools.ietf.org/html/rfc7159.html
http://publications.lib.chalmers.se/records/fulltext/251308/251308.pdf
http://publications.lib.chalmers.se/records/fulltext/251308/251308.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-879.pdf


Author Index

Abrahamsson, Oskar 118
Achten, Peter 19

Boulytchev, Dmitry 39

Devriese, Dominique 79
Dolan, Stephen 98
Dzhatdoyev, Shamil 1

Eliopoulos, Spiros 98

Hillerström, Daniel 98
Hjort, Rikard 135
Holmgren, Jakob 135
Horemans, Jeff 79

Lozov, Petr 39

Madhavapeddy, Anil 98
Midtgaard, Jan 59

Morazán, Marco T. 1
Myreen, Magnus O. 118

Olson, Nicholas R. 1

Persson, Christian 135
Piessens, Frank 79
Plasmeijer, Rinus 19

Reams, Lindsey M. 1
Reynders, Bob 79

Sivaramakrishnan, K. C. 98
Stutterheim, Jurriën 19

Vyatkin, Andrei 39

White, Leo 98


	Preface
	Organization
	Contents
	Memoized Flat Closures for CPS
	1 Introduction
	2 Related Work
	3 Closure Memoization
	3.1 Basic Closure Memoization
	3.2 Closure Memoization in the Presence of Continuations

	4 The Green Programming Language and Virtual Machine
	5 Empirical Measurements
	6 Concluding Remarks
	References

	Maintaining Separation of Concerns Through Task Oriented Software Development
	1 Introduction
	2 Task Oriented Software Development
	2.1 UoD Modeling
	2.2 SDS Modeling
	2.3 Task Modeling
	2.4 UI Modeling

	3 Case Study: Solar Panel Tax Compensation
	3.1 UoD Modeling
	3.2 SDS Modeling
	3.3 Task Modeling
	3.4 UI Modeling
	3.5 Discussion

	4 Related Work
	5 Conclusions
	References

	Typed Relational Conversion
	1 Introduction
	2 Relational Programming in miniKanren
	3 The Source Language and Relational Extension
	3.1 The Source Language
	3.2 Relational Extension

	4 Relational Conversion
	5 Implementation and Application
	5.1 Higher-Order Lambda Interpreter
	5.2 Hindley-Milner Type Inference
	5.3 miniKanren with Disequality Constraints

	6 Conclusion
	References

	QuickChecking Patricia Trees
	1 Introduction
	2 Background
	2.1 Patricia Trees
	2.2 QuickCheck

	3 Building a Model
	3.1 A Model
	3.2 Symbolic Operations
	3.3 A Generator
	3.4 Expressing Agreement
	3.5 Shrinking Trees
	3.6 Refining the Integer Generator
	3.7 The Bug and Some Potential Fixes
	3.8 The Bug and the Research Paper

	4 Related Work
	5 Conclusion and Perspectives
	References

	Elmsvuur: A Multi-tier Version of Elm and its Time-Traveling Debugger
	1 Introduction
	2 Multi-tier Elm
	2.1 The Elm Architecture
	2.2 The Elmsvuur Architecture

	3 Multi-tier Time Travel Debugging by Example
	4 Multi-tier Elm Debugger
	4.1 Architecture
	4.2 Global Timeline

	5 Future Work
	6 Conclusion
	7 Related Work
	References

	Concurrent System Programming with Effect Handlers
	1 Introduction
	2 Motivation
	3 Algebraic Effects and Their Handlers
	3.1 Concurrency
	3.2 Implementing Effect Handlers
	3.3 Adding I/O
	3.4 Default Handlers

	4 Programming with Resources and Effects
	4.1 Asynchronous Exceptions
	4.2 Signal Handling and Asynchronous Effects
	4.3 Managing Multiple Computations with Asynchronous Effects
	4.4 Asynchronous I/O Notifications

	5 Results
	6 Related Work
	7 Conclusion
	References

	Automatically Introducing Tail Recursion in CakeML
	1 Introduction
	2 Transforming Recursive Functions
	2.1 Example: List Reversal
	2.2 Tail Recursion Using Accumulators

	3 The BVI Language
	3.1 Motivations for BVI
	3.2 Tail Recursion in BVI

	4 The BVI Semantics
	5 Analysis of Expressions
	6 Semantics Preservation
	6.1 Order of Evaluation

	7 Related Work
	8 Discussion
	9 Summary
	References

	The CakeML Compiler Explorer
	1 Introduction
	2 Tracking Expressions
	3 Presentation
	3.1 Standard Presentation Format
	3.2 Structuring Output
	3.3 From de Bruijn Indices to Variable Names
	3.4 Web Application

	4 Related Work
	5 Summary
	References

	Author Index



